
Symbolic Logic

An Accessible Introduction to Serious Mathematical Logic

Volume II

Tony Roy

version 7.3

January 19, 2017

Preface

There is, I think, a gap between what many students learn in their first course in
formal logic, and what they are expected to know for their second. While courses
in mathematical logic with metalogical components often cast only the barest glance
at mathematical induction or even the very idea of reasoning from definitions, a first
course may also leave these untreated, and fail explicitly to lay down the definitions
upon which the second course is based. The aim of this text is to integrate material
from these courses and, in particular, to make serious mathematical logic accessible
to students I teach. The first parts introduce classical symbolic logic as appropriate
for beginning students; the last parts build to Gödel’s adequacy and incompleteness
results. A distinctive feature of the last section is a complete development of Gödel’s
second incompleteness theorem.

Accessibility, in this case, includes components which serve to locate this text
among others: First, assumptions about background knowledge are minimal. I do
not assume particular content about computer science, or about mathematics much
beyond high school algebra. Officially, everything is introduced from the ground up.
No doubt, the material requires a certain sophistication — which one might acquire
from other courses in critical reasoning, mathematics or computer science. But the
requirement does not extend to particular contents from any of these areas.

Second, I aim to build skills, and to keep conceptual distance for different ap-
plications of ‘so’ relatively short. Authors of books that are completely correct and
precise may assume skills and require readers to recognize connections not fully ex-
plicit. It may be that this accounts for some of the reputed difficulty of the material.
The results are often elegant. But this can exclude a class of students capable of
grasping and benefiting from the material, if only it is adequately explained. Thus I
attempt explanations and examples to put the student at every stage in a position to
understand the next. In some cases, I attempt this by introducing relatively concrete
methods for reasoning. The methods are, no doubt, tedious or unnecessary for the
experienced logician. However, I have found that they are valued by students, inso-

i

PREFACE ii

far as students are presented with an occasion for success. These methods are not
meant to wash over or substitute for understanding details, but rather to expose and
clarify them. Clarity, beauty and power come, I think, by getting at details, rather
than burying or ignoring them.

Third, the discussion is ruthlessly directed at core results. Results may be ren-
dered inaccessible to students, who have many constraints on their time and sched-
ules, simply because the results would come up in, say, a second course rather than
a first. My idea is to exclude side topics and problems, and to go directly after (what
I see as) the core. One manifestation is the way definitions and results from earlier
sections feed into ones that follow. Thus simple integration is a benefit. Another is
the way predicate logic with identity is introduced as a whole in Part I. Though it
is possible to isolate sentential logic from the first parts of chapter 2 through chap-
ter 7, and so to use the text for separate treatments of sentential and predicate logic,
the guiding idea is to avoid repetition that would be associated with independent
treatments for sentential logic, or perhaps monadic predicate logic, the full predicate
logic, and predicate logic with identity.

Also (though it may suggest I am not so ruthless about extraneous material as
I would like to think), I try to offer some perspective about what is accomplished
along the way. In addition, this text may be of particular interest to those who have,
or desire, an exposure to natural deduction in formal logic. In this case, accessibility
arises from the nature of the system, and association with what has come before.
In the first part, I introduce both axiomatic and natural derivation systems; and in
Part III, show how they are related.

There are different ways to organize a course around this text. For students who
are likely to complete the whole, the ideal is to proceed sequentially through the text
from beginning to end (but postponing chapter 3 until after chapter 6). Taken as
wholes, Part II depends on Part I; Parts III and IV on Parts I and II. Part IV is mostly
independent of Part III. I am currently working within a sequence that isolates sen-
tential logic from quantificational logic, treating them in separate quarters, together
covering all of chapters 1 - 7 (except 3). A third course picks up leftover chapters
from the first two parts (3 and 8) with Part III; and a fourth the leftover chapters
from the first parts with Part IV. Perhaps not the most efficient arrangement, but the
best I have been able to do with shifting student populations. Other organizations are
possible!

A remark about chapter 7 especially for the instructor: By a formal system for
reasoning with semantic definitions, chapter 7 aims to leverage derivation skills from
earlier chapters to informal reasoning with definitions. I have had a difficult time
convincing instructors to try this material — and even been told flatly that these

PREFACE iii

skills “cannot be taught.” In my experience, this is false (and when I have been able
to convince others to try the chapter, they have quickly seen its value). Perhaps the
difficulty is that it is “weird” — none of us had anything like this when we learned
logic. Of course, if one is presented with students whose mathematical sophistication
is sufficient for advanced work, the material is not necessary. But if, as is often the
case especially for students in philosophy, one obtains one’s mathematical sophis-
tication from courses in logic, this chapter is an important part of the bridge from
earlier material to later. Additionally, the chapter is an important “take-away” even
for students who will not continue to later material. The chapter closes an open ques-
tion from chapter 4 — how it is possible to demonstrate quantificational validity. But
further, the ability to reason closely with definitions is a skill from which students
in (sentential or) predicate logic, even though they never go on to formalize another
sentence or do another derivation, will benefit both in philosophy and more generally.

Another remark about the (long) sections 13.3, 13.4 and 13.5. These develop
in PA the “derivability conditions” for Gödel’s second theorem. They are perhaps
for enthusiasts. Still, in my experience many students are enthusiasts and, especially
from an introduction, benefit by seeing how the conditions are derived. There are
different ways to treat the sections. One might work through them in some detail.
One might wave at results individually. And even for the short shrift often accorded
the derivability conditions, there is an advantage having a sort of panorama at which
one can point and say “thus it is accomplished!”

Naturally, results in this book are not innovative. If there is anything original,
it is in presentation. Even here, I am greatly indebted to others, especially perhaps
Bergmann, Moor and Nelson, The Logic Book, Mendelson, Introduction to Math-
ematical Logic, and Smith, An Introduction to Gödel’s Theorems. I thank my first
logic teacher, G.J. Mattey, who communicated to me his love for the material. And I
thank especially my colleagues John Mumma and Darcy Otto for many helpful com-
ments. Hannah Baehr and Catlin Andrade made comments and produced answers to
exercises for certain parts. In addition I have received helpful feedback from Steve
Johnson, along with students in different logic classes at CSUSB. I welcome com-
ments, and expect that your sufferings will make it better still.

This text evolved over a number of years starting modestly from notes originally
provided as a supplement to other texts. It is now long (!) and perhaps best conceived
in separate volumes for Parts I and II and then Parts III and IV. With the addition of
Part IV it is complete for the first time in this version. (But chapter 11, which I
rarely get to in teaching, remains a stub that could be developed in different direc-
tions.) Most of the text is reasonably stable, though I shall be surprised if I have not
introduced errors in the last part both substantive and otherwise.

PREFACE iv

I think this is fascinating material, and consider it great reward when students
respond “cool!” as they sometimes do. I hope you will have that response more than
once along the way.

T.R.
Winter 2017

Contents

Preface i

Contents v

Named Definitions ix

Quick Reference Guides xvii

I The Elements: Four Notions of Validity 1

1 Logical Validity and Soundness 5
1.1 Consistent Stories . 6
1.2 The Definitions . 12
1.3 Some Consequences . 24

2 Formal Languages 32
2.1 Introductory . 32
2.2 Sentential Languages . 34
2.3 Quantificational Languages . 48

3 Axiomatic Deduction 69
3.1 General . 70
3.2 Sentential . 74
3.3 Quantificational . 82

4 Semantics 98
4.1 Sentential . 98
4.2 Quantificational . 115

v

CONTENTS vi

5 Translation 140
5.1 General . 140
5.2 Sentential . 142
5.3 Quantificational . 173

6 Natural Deduction 210
6.1 General . 210
6.2 Sentential . 220
6.3 Quantificational . 273
6.4 The system ND+ . 321

II Transition: Reasoning About Logic 332

7 Direct Semantic Reasoning 334
7.1 General . 335
7.2 Sentential . 338
7.3 Quantificational . 354

8 Mathematical Induction 381
8.1 General Characterization . 381
8.2 Preliminary Examples . 387
8.3 Further Examples (for Part III) . 401
8.4 Additional Examples (for Part IV) 411

III Classical Metalogic: Soundness and Adequacy 426

9 Preliminary Results 429
9.1 Semantic Validity Implies Logical Validity 429
9.2 Validity in AD Implies Validity in ND 434
9.3 Validity in ND Implies Validity in AD 441
9.4 Extending to ND+ . 462

10 Main Results 467
10.1 Soundness . 468
10.2 Sentential Adequacy . 475
10.3 Quantificational Adequacy: Basic Version 486
10.4 Quantificational Adequacy: Full Version 501

CONTENTS vii

11 More Main Results 517
11.1 Expressive Completeness . 517
11.2 Unique Readability . 522
11.3 Independence . 525
11.4 Isomorphic Models . 529
11.5 Compactness and Isomorphism . 539
11.6 Submodels and Löwenheim-Skolem 541

IV Logic and Arithmetic: Incompleteness and Computability 546

12 Recursive Functions and Q 550
12.1 Recursive Functions . 552
12.2 Expressing Recursive Functions 559
12.3 Capturing Recursive Functions . 569
12.4 More Recursive Functions . 587
12.5 Essential Results . 607

13 Gödel’s Theorems 618
13.1 Gödel’s First Theorem . 618
13.2 Gödel’s Second Theorem: Overview 626
13.3 The Derivability Conditions: Background 631
13.4 The Second Condition: �.P ! Q/! .�P ! �Q/ 670
13.5 The Third Condition: �P ! ��P 700
13.6 Reflections on the theorem . 722

14 Logic and Computability 732
14.1 Turing Computable Functions . 732
14.2 Essential Results . 746
14.3 Church’s Thesis . 752

Concluding Remarks 772

Answers to Selected Exercises 775
Chapter Nine . 776
Chapter Ten . 789
Chapter Eleven . 794
Chapter Twelve . 795
Chapter Thirteen . 802

CONTENTS viii

Chapter Fourteen . 910

Bibliography 911

Index 915

Named Definitions

chapter 1
AR Argument . 5
LV Logical Validity . 12
LS Logical Soundness 12
IT Invalidity Test . 13
VT Validity Test . 17

chapter 2
VC Vocabulary (sentential) 34
FR Formulas (sentential) 38
SB Subformulas . 40
IS Immediate Subformula 40
AS Atomic Subformula 40
MO Main Operator (formal) 40
AB Abbreviation (sentential) 42
FR0 Abbreviated Formulas (sentential) 43
VC Vocabulary . 49
TR Terms . 53
FR Formulas . 55
AB Abbreviation . 60
FR0 Abbreviated Formulas 61

chapter 3
MP Modus Ponens . 70
AV Axiomatic Consequence 71
AS AD Sentential . 74
AU AD Quantificational 83
AE AD Equality . 86
AD AD Axioms (summary) 89

ix

Named Definitions x

PA Peano Axioms . 90

chapter 4
ST Satisfaction as Truth (Sentential) 99
T(�) Characteristic Table (�) 99
T(!) Characteristic Table (!) 99
SV Sentential Validity 107
T(_) Characteristic Table (_) 111
T(^) Characteristic Table (^) 111
T($) Characteristic Table ($) 112
ST0 Truth for Abbreviations (Sentential) 114
QI Quantificational Interpretations 116
TA Term Assignment 120
SF Satisfaction . 123
B(s) Branch Condition (s) 124
B(r) Branch Condition (r) 124
B(�) Branch Condition (�) 124
B(!) Branch Condition (!) 124
B(8) Branch Condition (8) 125
TI Truth on an Interpretation 127
QV Quantificational Validity 130
B(^) Branch Condition (^) 135
B(_) Branch Condition (_) 135
B($) Branch Condition ($) 135
B(9) Branch Condition (9) 135
SF0 Satisfaction for Abbreviations 138

chapter 5
CG Criterion of Goodness for Translation 141
DC Declarative Sentences 147
SO Sentential Operator 147
CS Compound and Simple 147
MO Main Operator (informal) 147
TF Truth Functional Operator 147
TP Translation Procedure 150

chapter 6
N1 Natural Derivation One 211
SD Subderivation . 219
FA Accessible Formula 219

Named Definitions xi

SA Accessible Subderivation 219
R ND Reiteration . 219
!E ND! Exploitation 221
!I ND! Introduction 222
^E ND ^ Exploitation 225
^I ND ^ Introduction 225
�I ND � Introduction 230
�E ND � Exploitation 230
?I ND ? Introduction 231
�I ND � Introduction 232
�E ND � Exploitation 232
_I ND _ Introduction 233
_E ND _ Exploitation 233
$E ND$ Exploitation 239
$I ND$ Introduction 239
SG Strategies for a Goal (Sentential) 247
SC Strategies for a Contradiction (Sentential) 260
8E ND 8 Exploitation 274
9I ND 9 Introduction 276
8I ND 8 Introduction 280
9E ND 9 Exploitation 283
SG Strategies for a Goal 290
SC Strategies for a Contradiction 290
=I ND = Introduction 301
=E ND = Exploitation 302
(8E) (8) Exploitation . 306
(9I) (9) Introduction . 306
(8I) (8) Introduction . 306
(9E) (9) Exploitation . 306
Q Robinson Arithmetic Axioms 306
IN Mathematical Induction 312
PA7 Peano Induction Axiom 318
MT ND+ Modus Tollens 321
NB ND+ Negated Biconditional 321
DS ND+ Disjunctive Syllogism 322
HS ND+ Hypothetical Syllogism 322
DN ND+ Double Negation 323
Com ND+ Commutation 324

Named Definitions xii

Assoc ND+ Association 324
Idem ND+ Idempotence 324
Impl ND+ Implication 324
Trans ND+ Transposition 324
DeM ND+ DeMorgan . 325
Exp ND+ Exportation 325
Equiv ND+ Equivalence 325
Dist ND+ Distribution 325
QN ND+ Quantifier Negation 325
BQN ND+ Bounded Quantifier Negation 325

chapter 7
ST(Í) Satisfaction for Stroke 337
T(Í) Characteristic Table (Í) 338
ST Sentential Truth (formalized) 339
com Commutation (metalinguistic) 339
idm Idempotence (metalinguistic) 339
dem DeMorgan (metalinguistic) 339
cnj Conjunctive rules (metalinguistic) 339
dsj Disjunctive rules (metalinguistic) 339
neg Negation Rules (metalinguistic) 339
bot Bottom Introduction (metalinguistic) 339
SV Sentential Validity (formalized) 342
exs Existential rules (metalinguistic) 342
ins Inspection . 343
cnd Conditional rules (metalinguistic) 347
bcnd Biconditional rules (metalinguistic) 347
abv Abbreviation (metalinguistic) 347
ST0 Abbreviations for Sentential Truth (formalized) . . . 347
dst Distribution (metalinguistic) 349
SF Satisfaction (formalized) 354
SF0 Abbreviations for Satisfaction (formalized) 354
TI Truth on an Interpretation (formalized) 356
QV Quantificational Validity (formalized) 356
unv Universal rules (metalinguistic) 356
qn Quantifier negation (metalinguistic) 357
TA Term Assignment (formalized) 359
eq Equality rules (metalinguistic) 359

Named Definitions xiii

SF(R) Satisfaction for relation symbols (formalized) 360
SF(8) Satisfaction for 8 (formalized) 364
SF0.9/ Satisfaction for 9 (formalized) 364
def Definition (metalinguistic) 370

chapter 8
AI Term Assignment on an Interpretation 414

chapter 9

chapter 10
Con Consistency . 476
.�/ Core Thesis (sentential) 477
Max Maximality . 481
.?/ Core Thesis (preliminary) 489
Scgt Scapegoat Set . 493
.??/ Core Thesis (quantificational) 501

chapter 11
A1(�) Table for Independence (�) 526
A1(!) Table for Independence (!) 526
A2(�) Table for Independence (�) 529
A2(!) Table for Independence (!) 529
IS Isomorphism . 530
EE Elementary Equivalence 532
ST Satisfiability . 539
SM Submodel . 541
ES Elementary Submodel 541

chapter 12
suc.x/ successor . 553
zero.x/ zero . 553
idntjk identity . 553
CM Composition . 553
RC Recursion . 554
plus.x; y/ plus . 554
times.x; y/ times . 554
fact.y/ factorial . 555
RT Recursion Theorem 556
RM regular minimization 557
RF Recursive Functions 557

Named Definitions xiv

PR primitive recursive 558
power.x; y/ power . 558
EXr Expressionr . 559
EXf Expressionf . 560
CP Capture . 570
�0 Delta Formulas . 571
pred.y/ predecessor . 587
subc.x; y/ subtraction with cutoff 587
absval.x - y/ absolute value . 588
sg.y/ sign . 588
csg.y/ converse sign . 588
CF characteristic function 588
EQ.s.Ex/; t.Ey// equality . 589
LEQ.s.Ex/; t.Ey// less than or equal 590
LESS.s.Ex/; t.Ey// less than . 590
NEG.P.Ex// negation . 590
DSJ.P.Ex/; Q.Ey// disjunction . 590
IMP.P.Ex/; Q.Ey// implication . 590
.9y � z/P.Ex; z; y/ exists less than or equal to 590
.9y < z/P.Ex; z; y/ exists less than . 591
.8z � y/P.Ex; z/ all less than or equal to 591
.8z < y/P.Ex; z/ all less than . 591
.�y � z/P.Ex; z; y/ bounded minimization 591
f.Ex/=C0 : : : Ck definition by cases 592
FCTR.m; n/ factor . 592
PRIME.n/ prime . 593
pi.n/ prime sequence . 593
exp.n; i/ prime exponent . 593
len.n/ prime length . 594
rm.m; n/ remainder . 595
qt.m; n/ quotient . 595
cncat.m; n/ concatenation . 597
VAR.n/ variable . 598
TERMSEQ.m; n/ term sequence . 598
TERM.n/ term . 599
ATOMIC.n/ atomic formula . 599
WFF.n/ well-formed formula 599
FORMSEQ.m; n/ formula sequence 599

Named Definitions xv

PRFADS.m; n/ sentential proof . 600
AXIOMADS.n/ sentential axiom . 600
cnd.n; o/ conditional . 600
neg.n/ negation . 600
unv.v; n/ universal . 600
MP.m; n; o/ recursive modus ponens 600
TSUBSEQ.m; n; t; v; s; u/ substitution sequence for terms 602
TERMSUB.t; v; s; u/ substitution in terms 602
ATOMSUB.p; v; s; q/ substitution in atomics 603
FSUBSEQ.m; n; p; v; s; q/ substitution sequence for formulas 603
FORMSUB.p; v; s; q/ substitution in formulas 603
formusb.p; v; s/ formsub (function) 603
FREEt.t; v/ free in term . 604
FREEf.p; v/ free in formula . 604
SENT.n/ sentence . 604
FREEFOR.s; v; u/ free for . 604
FFSEQ.m; s; v; u/ free for sequence 604
AXIOMAD4.n/ axiom 4 . 605
AXIOMAD5.n/ axiom 5 . 605
GEN.m; n/ gen rule . 605
AXIOMAD6.n/ axiom 6 . 605
AXIOMAD7.n/ axiom 7 . 605
ICON.m; n; o/ immediate consequence 606
AXIOMPA7.n/ PA axiom 7 . 606
AXIOMAD.n/ axiom of AD . 606
PRFAD.m; n/ proof in AD . 606
AXIOMQ.n/ axiom of Q . 606
PRFQ.m; n/ proof in Q . 606
AXIOMQP.n/ axiom of Q less Q7 606
AXIOMPA.n/ axiom of PA . 606
PRFPA.m; n/ proof in PA . 606
num.n/ number of numeral for value of n 610

chapter 13
f .Ex; Ey; Ez/ composition . 640
�vQ.Ex; v/ minimization . 641
.�y � z/Q.Ex; z; y/ bounded minimization 641
rm remainder . 644

Named Definitions xvi

qt quotient . 645
ˇ beta function . 645
suc.x/ defined successor 646
zero.x/ defined zero . 646
idntj

k.x1 : : : xj / defined identity function 646
:- dot minus . 653
j Factor . 654
Pr Prime . 656
Rp Rprime . 656
G Good . 656
d least good . 656
lcm lcm . 659
plm plm . 659
maxp maxp . 662
maxs maxs . 662
h.i/ h(i) . 664
CF coordinate functions 671
CR coordinate relations 672
pred pred . 674
sg sg . 674
csg csg . 674
ex ex . 682
exc.m; n; i/ exc . 684
val.n; i/ val . 685
val�.m; n; i/ val* . 685
gvar.n/ number of variable n 704
numseq.n/ numseq . 704
†? Sigma Star Formulas 707
LR Löb Rule . 728

chapter 14
CT Church’s thesis . 753
LR Language for recursion 759
IR Interpretation of recursive language 759
AC Algorithmic computability 764
MKU MKU Machine . 765

Quick Reference Guides

Negation and Quantity . 21
Countability . 36
Parts of a Formula . 40
More on Countability . 50
Grammar Quick Reference . 64
AD Quick Reference . 89
Peano Arithmetic (AD) . 97
Semantics Quick Reference (Sentential) . 114
Basic Notions of Set Theory . 117
Semantics Quick Reference (quantificational) 138
Definitions for Translation . 147
Cause and Conditional . 167
Definitions for Auxiliary Assumptions . 219
ND Quick Reference (Sentential) . 241
ND Quick Reference (Quantificational) . 303
LNT reference . 307
Robinson and Peano Arithmetic (ND) . 318
ND+ Quick Reference . 327
Metalinguistic Quick Reference (sentential) 350
Metalinguistic Quick Reference (quantificational) 372
Theorems of Chapter 7 . 378
Induction Schemes . 388
First Theorems of Chapter 8 . 410
Final Theorems of Chapter 8 . 425
Theorems of Chapter 9 . 465
Some Arithmetic Relevant to Gödel Numbering 480
More Arithmetic Relevant to Gödel Numbering 492
Theorems of Chapter 10 . 516

xvii

Quick Reference Guides xviii

The Recursion Theorem . 556
Arithmetic for the Beta Function . 567
First Results of Chapter 12 . 608
Final Results of Chapter 12 . 617
Additional Theorems of PA . 632
First theorems of chapter 13 . 650
Font conventions . 669
Second theorems of chapter 13 . 701
Final theorems of chapter 13 . 731
Simple Time Dilation . 757
Theorems of chapter 14 . 770

Part III

Classical Metalogic: Soundness
and Adequacy

426

Introductory

In Part I we introduced four notions of validity. In this part, we set out to show that
they are interrelated as follows.

Logical
Validity

Semantic
Validity

Validity in ND

Validity in AD

� �
�
����
�
��	
@
@
@@R@
@
@@I

6

?

An argument is semantically valid iff it is valid in the derivation systems. So the
three formal notions apply to exactly the same arguments. And if an argument is
semantically valid, then it is logically valid. So any of the formal notions imply
logical validity for a corresponding ordinary argument.

More carefully, in Part I, we introduced four main notions of validity. There
are logical validity from chapter 1, semantic validity from chapter 4, and syntactic
validity in the derivation systems AD, from chapter 3 and ND from chapter 6. We
turn in this part to the task of thinking about these notions, and especially about
how they are related. The primary result is that � � P iff �

ÀD
P iff �

ǸD
P

(iff �
ǸDC

P). Thus our different formal notions of validity are met by just the
same arguments, and the derivation systems — themselves defined in terms of form
are “faithful” to the semantic notion: what is derivable is neither more nor less than
what is semantically valid. And this is just right: If what is derivable were more
than what is semantically valid, derivations could lead us from true premises to false
conclusions; if it were less, not all semantically valid arguments could be identified as
such by derivations. That the derivable is no more than what is semantically valid, is
known as soundness of a derivation system; that it is no less is adequacy. In addition,

427

PART III. CLASSICAL METALOGIC 428

we show that if an argument is semantically valid, then a corresponding ordinary
argument is logically valid. Given the equivalence between the formal notions of
validity, it follows that if an argument is valid in any of the formal senses, then it
is logically valid. This connects the formal machinery to the notion of validity with
which we began.2

We begin in chapter 9 showing that just the same arguments are valid in the
derivation systems ND and AD. This puts us in a position to demonstrate in chapter 10
the core result that the derivation systems are both sound and adequate. Chapter
chapter 11 fills out this core picture in different directions.

2Adequacy is commonly described as completeness. However, this only invites confusion with
theory completeness as described in Part IV.

Chapter 9

Preliminary Results

We have said that the aim of this part is to establish the following relations: An
argument is semantically valid iff it is valid in AD; iff it is valid in ND; and if an
argument is semantically valid, then it is logically valid.

Logical
Validity

Semantic
Validity

Validity in ND

Validity in AD

� �
�
����
�
��	
@
@
@@R@
@
@@I

6

?

In this chapter, we begin to develop these relations, taking up some of the simpler
cases. We consider the leftmost horizontal arrow, and the rightmost vertical ones.
Thus we show that quantificational (semantic) validity implies logical validity, that
validity in AD implies validity in ND, and that validity in ND implies validity in AD
(and similarly for ND+). Implications between semantic validity and the syntactical
notions will wait for chapter 10.

9.1 Semantic Validity Implies Logical Validity

Logical validity is defined for arguments in ordinary language. From LV, an argu-
ment is logically valid iff there is no consistent story in which all the premises are
true and the conclusion is false. Quantificational validity is defined for arguments in

429

CHAPTER 9. PRELIMINARY RESULTS 430

a formal language. From QV, an argument is quantificationally valid iff there is no
interpretation on which all the premises are true and the conclusion is not. So our
task is to show how facts about formal expressions and interpretations connect with
ordinary expressions and stories. In particular, where P1 : : :Pn=Q is an ordinary-
language argument, and P 01 : : :P

0
n, Q0 are the formulas of a good translation, we

show that if P 01 : : :P
0
n � Q01, then the ordinary argument P1 : : :Pn=Q is logically

valid. The reasoning itself is straightforward. We will spend a bit more time dis-
cussing the result.

Recall our criterion of goodness for translation CG from chapter 5 (p. 141).
When we identify an interpretation function II (sentential or quantificational), we
thereby identify an intended interpretation II! corresponding to any way ! that the
world can be. For example, corresponding to the interpretation function,

II B: Bill is happy

H : Hill is happy

II! ŒB� D T just in case Bill is happy at !, and similarly for H. Given this, a formal
translation A0 of some ordinary A is good only if at any !, II! ŒA0� has the same truth
value as A at !. Given this, we can show,

T9.1. For any ordinary argument P1 : : :Pn=Q, with good translation consisting of
II and P 01 : : :P

0
n, Q0, if P 01 : : :P

0
n � Q0, then P1 : : :Pn=Q is logically valid.

Suppose P 01 : : :P
0
n � Q0 but P1 : : :Pn=Q is not logically valid. From the

latter, by LV, there is some consistent story where each of P1 : : :Pn is true
but Q is false. Since P1 : : :Pn are true at !, by CG, II! ŒP 01� D T, and . . . and
II! ŒP 0n� D T. And since ! is consistent with Q false at !;Q is not both true
and false at !; so Q is not true at !; so by by CG, II! ŒQ01� ¤ T. So there is
an I that that makes each of IŒP 01� D T, and . . . and IŒP 0n� D T and IŒQ0� ¤ T;
so by QV, P 01 : : :P

0
n 6� Q0. This is impossible; reject the assumption: if

P 01 : : :P
0
n � Q0 then P1 : : :Pn=Q is logically valid.

It is that easy. If there is no interpretation where P 01 : : :P
0
n are true but Q0 is not, then

there is no intended interpretation where P 01 : : :P
0
n are true but Q0 is not; so, by CG,

there is no consistent story where the premises are true and the conclusion is not; so
P1 : : :Pn=Q, is logically valid. So if P 01 : : :P

0
n � Q0 then P1 : : :Pn=Q is logically

valid.
Let us make a couple of observations: First, CG is stronger than is actually re-

quired for our application of semantic to logical validity. CG requires a biconditional
for good translation.

CHAPTER 9. PRELIMINARY RESULTS 431

! � II!

A is true at ! iff II! ŒA0� D T. But our reasoning applies to premises just the left-
to-right portion of this condition: if P is true at ! then II! ŒP 0� D T. And for the
conclusion, the reasoning goes in the opposite direction: if II! ŒQ0� D T then Q is
true at ! (so that if the consequent fails at !, then the antecedent fails at II!). The
biconditional from CG guarantees both. But, strictly, for premises, all we need is
that truth of an ordinary expression at a story guarantees truth for the corresponding
formal one at the intended interpretation. And for a conclusion, all we need is that
truth of the formal expression on the intended interpretation guarantees truth of the
corresponding ordinary expression at the story.

Thus we might use our methods to identify logical validity even where transla-
tions are less than completely good. Consider, for example, the following argument.

(A)
Bob took a shower and got dressed
Bob took a shower

As discussed in chapter 5 (p. 160), where II gives S the same value as “Bob took a
shower” and D the same as “Bob got dressed,” we might agree that there are cases
where II! ŒS^D� D T but “Bob took a shower and got dressed” is false. So we might
agree that the right-to-left conditional is false, and the translation is not good.

However, even if this is so, given our interpretation function, there is no situation
where “Bob took a shower and got dressed” is true but S^D is F at the corresponding
intended interpretation. So the left-to-right conditional is sustained. So, even if the
translation is not good by CG, it remains possible to use our methods to demonstrate
logical validity. Since it remains that if the ordinary premise is true at a story, then
the formal expression is true at the corresponding intended interpretation, semantic
validity implies logical validity. A similar point applies to conclusions. Of course,
we already knew that this argument is logically valid. But the point applies to more
complex arguments as well.

Second, observe that our reasoning does not work in reverse. It might be that
P1 : : :Pn=Q is logically valid, even though P 01 : : :P

0
n ² Q0. Finding a quantifica-

tional interpretation where P 01 : : :P
0
n are true and Q0 is not shows that P 01 : : :P

0
n ²

Q0. However it does not show that P1 : : :Pn=Q is not logically valid. Here is why:
There may be quantificational interpretations which do not correspond to any consis-
tent story. The situation is like this:

CHAPTER 9. PRELIMINARY RESULTS 432

Intended
Interpretations

Quantificational
Interpretations

Intended interpretations correspond to stories. If no interpretation whatsoever has
the premises true and the conclusion not, then no intended interpretation has the
premises true and conclusion not, so no consistent story makes the premises true and
the conclusion not. But it may be that some (unintended) interpretation makes the
premises true and conclusion false, even though no intended interpretation is that
way. Thus, if we were to attempt to run the above reasoning in reverse, a move from
the assumption that P 01 : : :P

0
n ² Q0, to the conclusion that there is a consistent story

where P1 : : :Pn are true but Q is not, would fail.
It is easy to see why there might be unintended interpretations. Consider, first,

this standard argument.

(B)
All humans are mortal
Socrates is human
Socrates is mortal

It is logically valid. But consider what happens when we translate into a sentential
language. We might try an interpretation function as follows.

A: All humans are mortal

H : Socrates is human

M : Socrates is mortal

with translation,A,H=M . But, of course, there is a row of the truth table on whichA
andH are T andM is F. So the argument is not sententially valid. This interpretation
is unintended in the sense that it corresponds to no consistent story whatsoever. Sen-
tential languages are sufficient to identify validity when validity results from truth
functional structure; but this argument is not valid because of truth functional struc-
ture.

We are in a position to expose its validity only in the quantificational case. Thus
we might have,

CHAPTER 9. PRELIMINARY RESULTS 433

s: Socrates

H 1: fo j o is humang

M 1: fo j o is mortalg

with translation8x.Hx !Mx/,Hs=Ms. The argument is quantificationally valid.
And, as above, it follows that the ordinary one is logically valid.

But related problems may arise even for quantificational languages. Thus, con-
sider,

(C)
Socrates is necessarily human
Socrates is human

Again, the argument is logically valid. But now we end up with something like an ad-
ditional relation symbolN 1 for fo jo is necessarily humang, and translationNs=Hs.
And this is not quantificationally valid. Consider, for example, an interpretation with
U D f1g, IŒs� D 1, IŒN � D f1g, and IŒH � D fg. Then the premise is true, but
the conclusion is not. Again, the interpretation corresponds to no consistent story.
And, again, the argument includes structure that our quantificational language fails
to capture. As it turns out, modal logic is precisely an attempt to work with structure
introduced by notions of possibility and necessity. Where ‘�’ represents necessity,
this argument, with translation �Hs=Hs is valid on standard modal systems.

The upshot of this discussion is that our methods are adequate when they work
to identify validity. When an argument is semantically valid, we can be sure that it
is logically valid. But we are not in a position to identify all the arguments that are
logically valid. Thus quantificational invalidity does not imply logical invalidity. We
should not be discouraged by this or somehow put off the logical project. Rather, we
have a rationale for expanding the logical project! In Part I, we set up formal logic as
a “tool” or “machine” to identify logical validity. Beginning with the notion of log-
ical validity, we introduce our formal languages, learn to translate into them, and to
manipulate arguments by semantical and syntactical methods. The sentential notions
have some utility. But when it turns out that sentential languages miss important
structure, we expand the language to include quantificational structure, developing
the semantical and syntactical methods to match. And similarly, if our quantifica-
tional languages should turn out to miss important structure, we expand the language
to capture that structure, and further develop the semantical and syntactical methods.
As it happens, the classical quantificational logic we have so far seen is sufficient to
identify validity in a wide variety of contexts — and, in particular, for arguments in

CHAPTER 9. PRELIMINARY RESULTS 434

mathematics. Also, controversy may be introduced as one expands beyond the clas-
sical quantificational level. So the logical project is a live one. But let us return to
the kinds of validity we have already seen.

E9.1. (i) Recast the above reasoning to show directly a corollary to T9.1: If � Q0,
then Q is necessarily true (that is, true in any consistent story). (ii) Suppose²
Q0; does it follow that Q is not necessary (that is, not true in some consistent
story)? Explain.

9.2 Validity in AD Implies Validity in ND

It is easy to see that if �
ÀD

P , then �
ǸD

P . Roughly, anything we can ac-
complish in AD, we can accomplish in ND as well. If a premise appears in an AD
derivation, that same premise can be used in ND. If an axiom appears in an AD deriva-
tion, that axiom can be derived in ND. And if a line is justified by MP or Gen in AD,
that same line may be justified by rules of ND. So anything that can be derived in AD
can be derived in ND. Officially, this reasoning is by induction on the line numbers
of an AD derivation, and it is appropriate to work out the details more formally. The
argument by mathematical induction is longer than anything we have seen so far, but
the reasoning is straightforward.

T9.2. If �
ÀD

P , then �
ǸD

P .

Suppose �
ÀD

P . Then there is an AD derivation A D hQ1 : : :Qni of P

from premises in � , with Qn D P . We show that there is a corresponding ND
derivation N , such that if Qi appears on line i of A, then Qi appears, under
the scope of the premises alone, on the line numbered ‘i ’ of N . It follows
that �

ǸD
P . For any premises Qa, Qb ,. . . Qj in A, let N begin,

0.a Qa P
0.b Qb P
:::

0.j Qj P

Now we reason by induction on the line numbers in A. The general plan is
to construct a derivation N which accomplishes just what is accomplished in
A. Fractional line numbers, as above, maintain the parallel between the two
derivations.

CHAPTER 9. PRELIMINARY RESULTS 435

Basis: Q1 in A is a premise or an instance of A1, A2, A3, A4, A5, A6, A7 or
A8.

(prem) If Q1 is a premise Qi , continue N as follows,

0.a Qa P
0.b Qb P
:::

0.j Qj P
1 Qi 0.i R

So Q1 appears, under the scope of the premises alone, on the line
numbered ‘1’ of N .

(A1) If Q1 is an instance of A1, then it is of the form, B ! .C ! B/, and
we continue N as follows,

0.a Qa P
0.b Qb P
:::

0.j Qj P
1.1 B A (g,!I)

1.2 C A (g,!I)

1.3 B 1.1 R

1.4 C ! B 1.2-1.3!I

1 B ! .C ! B/ 1.1-1.4!I

So Q1 appears, under the scope of the premises alone, on the line
numbered ‘1’ of N .

(A2) If Q1 is an instance of A2, then it is of the form, .B ! .C ! D//!

..B ! C/! .B ! D// and we continue N as follows,

CHAPTER 9. PRELIMINARY RESULTS 436

0.a Qa P
0.b Qb P
:::

0.j Qj P
1.1 B ! .C ! D/ A (g,!I)

1.2 B ! C A (g,!I)

1.3 B A (g,!I)

1.4 C 1.2,1.3!E
1.5 C ! D 1.1,1.3!E
1.6 D 1.5,1.4!E

1.7 B ! D 1.3-1.6!I

1.8 .B ! C/! .B ! D/ 1.2-1.7!I

1 .B ! .C ! D//! ..B ! C/! .B ! D// 1.1-1.8!I

So Q1 appears, under the scope of the premises alone, on the line
numbered ‘1’ of N .

(A3) Homework.

(A4) If Q1 is an instance of A4, then it is of the form 8xB ! Bx
t for some

variable x and term t that is free for x in B, and we continue N as
follows,

0.a Qa P
0.b Qb P
:::

0.j Qj P
1.1 8xB A (g,!I)

1.2 Bx
t 1.1 8E

1 8xB ! Bx
t 1.1-1.2!I

Since we are given that t is free for x in B, the parallel requirement on
8E is met at line 1.2. So Q1 appears, under the scope of the premises
alone, on the line numbered ‘1’ of N .

(A5) Homework.

(A6) Homework.

(A7) If Q1 is an instance of A7, then it is of the form .xi D y/ !

.hnx1 : : :xi : : :xn D hnx1 : : :y : : :xn/ for some variables x1 : : :xn
and y and function symbol hn; and we continue N as follows,

CHAPTER 9. PRELIMINARY RESULTS 437

0.a Qa P
0.b Qb P
:::

0.j Qj P
1.1 xi D y A (g,!I)

1.2 hnx1 : : :xi : : :xn D hnx1 : : :xi : : :xn =I
1.3 hnx1 : : :xi : : :xn D hnx1 : : :y : : :xn 1.2,1.1 =E

1 .xi D y/! .hnx1 : : :xi : : :xn D hnx1 : : :y : : :xn/ 1.1-1.3!I

So Q1 appears, under the scope of the premises alone, on the line
numbered ‘1’ of N .

(A8) Homework.

Assp: For any i , 1 � i < k, if Qi appears on line i of A, then Qi appears,
under the scope of the premises alone, on the line numbered ‘i ’ of N .

Show: If Qk appears on line k of A, then Qk appears, under the scope of the
premises alone, on the line numbered ‘k’ of N .

Qk in A is a premise, an axiom, or arises from previous lines by MP
or Gen. If Qk is a premise or an axiom then, by reasoning as in the
basis (with line numbers adjusted to k:n) if Qk appears on line k of
A, then Qk appears, under the scope of the premises alone, on the line
numbered ‘k’ of A. So suppose Qk arises by MP or Gen.

(MP) If Qk arises from previous lines by MP, then A is as follows,

i B

:::

j B ! C

:::

k C i; j MP

where i; j < k and Qk is C . By assumption, then, there are lines in
N ,

i B

:::

j B ! C

So we simply continue derivation N ,

CHAPTER 9. PRELIMINARY RESULTS 438

i B

:::

j B ! C

:::

k C i; j !E

So Qk appears under the scope of the premises alone, on the line num-
bered ‘k’ of N .

(Gen) If Qk arises from previous lines by Gen, then A is as follows,

i B

:::

k 8xB i Gen

where i < k, and Qk is 8xB. By assumption N has a line i ,

:::

i B

:::

under the scope of the premises alone. So we continue N as follows,

i B

:::

k 8xB i 8I

Since i is under the scope of the premises alone, x is not free in an
undischarged assumption. Further, since there is no change of vari-
ables, we can be sure that x is free for every free instance of x in B,
and that x is not free in 8xB. So the restrictions are met on 8I. So Qk

appears under the scope of the premises alone, on the line numbered
‘k’ of N .

In any case then, Qk appears under the scope of the premises alone,
on the line numbered ‘k’ of N .

Indct: For any line j ofA, Qj appears under the scope of the premises alone,
on the line numbered ‘j ’ of N .

So �
ǸD

Qn, where this is just to say �
ǸD

P . So T9.2, if �
ÀD

P , then �
ǸD

P .
Notice the way we use line numbers, i:1, i:2,. . . i:n, i inN to make good on the claim
that for each Qi in A, Qi appears on the line numbered ‘i ’ of N — where the line
numbered ‘i ’ may or may not be the i th line of N . We need this parallel between the

CHAPTER 9. PRELIMINARY RESULTS 439

line numbers when it comes to cases for MP and Gen. With the parallel, we are in a
position to make use of line numbers from justifications in derivation A, directly in
the specification of derivation N .

Given an AD derivation, what we have done shows that there exists an ND deriva-
tion, by showing how to construct it. We can see into how this works, by considering
an application. Thus, for example, consider the derivation of T3.2 on p. 75.

(D)

1. B ! C prem
2. .B ! C/! ŒA! .B ! C/� A1
3. A! .B ! C/ 1,2 MP
4. ŒA! .B ! C/�! Œ.A! B/! .A! C/� A2
5. .A! B/! .A! C/ 3,4 MP
6. A! B prem
7. A! C 5,6 MP

Let this be derivation A; we will follow the method of our induction to construct a
corresponding ND derivation N . The first step is to list the premises.

0.1 B ! C P
0.2 A! B P

Now to the induction itself. The first line ofA is a premise. Looking back to the basis
case of the induction, we see that we are instructed to produce the line numbered ‘1’
by reiteration. So that is what we do.

0.1 B ! C P
0.2 A! B P

1 B ! C 0.1 R

This may strike you as somewhat pointless! But, again, we need B ! C on the line
numbered ‘1’ in order to maintain the parallel between the derivations. So our recipe
requires this simple step.

Line 2 of A is an instance of A1, and the induction therefore tells us to get it “by
reasoning as in the basis.” Looking then to the case for A1 in the basis, we continue
on that pattern as follows,

0.1 B ! C P
0.2 A! B P

1 B ! C 0.1 R
2.1 B ! C A (g,!I)

2.2 A A (g,!I)

2.3 B ! C 2.1 R

2.4 A! .B ! C/ 2.2-2.3!I

2 .B ! C/! .A! .B ! C// 2.1-2.4!I

CHAPTER 9. PRELIMINARY RESULTS 440

Notice that this reasoning for the show step now applies to line 2, so that the line
numbers are 2.1, 2.2, 2.3, 2.4, 2 instead of 1.1, 1.2, 1.3, 1.4, 1 as for the basis. Also,
what we have added follows exactly the pattern from the recipe in the induction,
given the relevant instance of A1.

Line 3 is justified by 1,2 MP. Again, by the recipe from the induction, we con-
tinue,

0.1 B ! C P
0.2 A! B P

1 B ! C 0.1 R
2.1 B ! C A (g,!I)

2.2 A A (g,!I)

2.3 B ! C 2.1 R

2.4 A! .B ! C/ 2.2-2.3!I

2 .B ! C/! .A! .B ! C// 2.1-2.4!I
3 A! .B ! C/ 1,2!E

Notice that the line numbers of the justification are identical to those in the justifica-
tion from A. And similarly, we are in a position to generate each line in A. Thus, for
example, line 4 of A is an instance of A2. So we would continue with lines 4.1-4.8
and 4 to generate the appropriate instance of A2. And so forth. As it turns out, the
resultant ND derivation is not very efficient! But it is a derivation, and our point is
merely to show that some ND derivation of the same result exists. So if �

ÀD
P ,

then �
ǸD

P .

*E9.2. Set up the above induction for T9.2, and complete the unfinished cases to
show that if �

ÀD
P , then �

ǸD
P . For cases completed in the text, you

may simply refer to the text, as the text refers cases to homework.

E9.3. (i) Where A is the derivation for T3.2, complete the process of finding the
corresponding derivation N . Hint: if you follow the recipe correctly, the
result should have exactly 21 lines. (ii) This derivationN is not very efficient!
See if you can find an ND derivation to show A! B, B ! C

ǸD
A! C

that takes fewer than 10 lines.

E9.4. Consider the axiomatic system A3 as described for E8.12 on p. 398, and
produce a complete demonstration that if �

À3
P , then �

ǸD
P .

CHAPTER 9. PRELIMINARY RESULTS 441

9.3 Validity in ND Implies Validity in AD

Perhaps the result we have just attained is obvious: if �
ÀD

P , then of course
�

ǸD
P . But the other direction may be less obvious. Insofar as AD may seem

to have fewer resources than ND, one might wonder whether it is the case that if
�

ǸD
P , then �

ÀD
P . But, in fact, it is possible to do in AD whatever can be

done in ND. To show this, we need a couple of preliminary results. I begin with an
important result known as the deduction theorem, turn to some substitution theorems,
and finally to the intended result that whatever is provable in ND is provable in AD.

9.3.1 Deduction Theorem

According to the deduction theorem — subject to an important restriction — if there
is an AD derivation of Q from the members of some set of sentences � plus P , then
there is an AD derivation of P ! Q from the members of� alone: if�[fP g

ÀD
Q

then �
ÀD

P ! Q. In practice, this lets us reason just as we do with!I.

(E)

members of�
a. P

b. Q

c. P ! Q a-b deduction theorem

At (b), there is a derivation of Q from the mbembers of � plus P . At (c), the
assumption is discharged to indicate a derivation of P ! Q from the members of �
alone. By the deduction theorem, if there is a derivation of Q from � plus P , then
there is a derivation of P ! Q from � alone. Here is the restriction: The discharge
of an auxiliary assumption P is legitimate just in case no application of Gen under its
scope generalizes on a variable free in P . The effect is like that of the ND restriction
on 8I — here, though, the restriction is not on Gen, but rather on the discharge of
auxiliary assumptions. In the one case, an assumption available for discharge is one
such that no application of Gen under its scope is to a variable free in the assumption;
in the other, we cannot apply 8I to a variable free in an undischarged assumption (so
that, effectively, every assumption is always available for discharge).

Again, our strategy is to show that given one derivation, it is possible to construct
another. In this case, we begin with an AD derivation (A) as below, with premises
� [fP g. Treating P as an auxiliary premise, with scope as indicated in (B), we set
out to show that there is an AD derivation (C), with premises in � alone, and lines
numbered ‘1’, ‘2’, . . . corresponding to 1, 2, . . . in (A).

CHAPTER 9. PRELIMINARY RESULTS 442

(F)

(A) 1. Q1

2. Q2
:::

P

:::

n. Qn

(B) 1. Q1

2. Q2
:::

P

:::

n. Qn

(C) 1. P ! Q1

2. P ! Q2
:::

P ! P

:::

n. P ! Qn

That is, we construct a derivation with premises in � such that for any formula A

on line i of the first derivation, P ! A appears on the line numbered ‘i ’ of the
constructed derivation. The last line n of the resultant derivation is the desired result,
�

ÀD
P ! Q.

T9.3. (Deduction Theorem) If � [fP g
ÀD

Q, and no application of Gen under
the scope of P is to a variable free in P , then �

ÀD
P ! Q.

Suppose A D hQ1;Q2; : : :Qni is an AD derivation of Q from � [fP g,
where Q is Qn and no application of Gen under the scope of P is to a variable
free in P . By induction on the line numbers in derivation A, we show there
is a derivation C with premises only in �, such that for any line i of A,
P ! Qi appears on the line numbered ‘i ’ of C . The case when i D n gives
the desired result, that �

ÀD
P ! Q.

Basis: Q1 of A is an axiom, a member of �, or P itself.

(i) If Q1 is an axiom or a member of �, then begin C as follows,

1.1 Q1 axiom / premise
1.2 Q1 ! .P ! Q1/ A1

1 P ! Q1 1.1, 1.2 MP

(ii) Q1 is P itself. By T3.1,
ÀD

P ! P ; which is to say P ! Q1; so
begin derivation C ,

1 P ! P T3.1

In either case, P ! Q1 appears on the line numberd ‘1’ of C with
premises in � alone.

Assp: For any i , 1 � i < k, P ! Qi appears on the line numbered ‘i ’ of
C , with premises in � alone.

Show: P ! Qk appears on the line numbered ‘k’ of C , with premises in �
alone.

CHAPTER 9. PRELIMINARY RESULTS 443

Qk of A is a member of�, an axiom, P itself, or arises from previous
lines by MP or Gen. If Qk is a member of�, an axiom or P itself then,
by reasoning as in the basis, P ! Qk appears on the line numbered
‘k’ of C from premises in � alone. So two cases remain.

(MP) If Qk arises from previous lines by MP, then there are lines in deriva-
tion A of the sort,

i B

:::

j B ! C

:::

k C i,j MP

where i; j < k and Qk is C . By assumption, there are lines in C ,

i P ! B

:::

j P ! .B ! C/

So continue derivation C as follows,

i P ! B

:::

j P ! .B ! C/

:::

k.1 ŒP ! .B ! C/�! Œ.P ! B/! .P ! C/� A2
k.2 .P ! B/! .P ! C/ j, k.1 MP

k P ! C i, k.2 MP

So P ! Qk appears on the line numbered ‘k’ of C , with premises in
� alone.

(Gen) If Qk arises from a previous line by Gen, then there are lines in deriva-
tion A of the sort,

i B

:::

k 8xB

where i < k and Qk is 8xB. Either line k is under the scope of P in
derivation A or not.

CHAPTER 9. PRELIMINARY RESULTS 444

(i) If line k is not under the scope of P , then 8xB in A follows from �

alone. So continue C as follows,

k.1 Q1 exactly as in A but with prefix
k.2 Q2 ‘k.’ for numeric references

:::

k.k 8xB

k.k+1 8xB ! .P ! 8xB/ A1
k P ! 8xB k.k+1, k.k MP

Since each of the lines in A up to k is derived from � alone, we have
P ! Qk on the line numbered ‘k’ of C , from premises in � alone.

(ii) If line k is under the scope of P , we depend on the assumption, and
continue C as follows,

i P ! B (by inductive assumption)
:::

k P ! 8xB i T3.28

If line k is under the scope of P then, since no application of Gen
under the scope of P is to a variable free in P , x is not free in P ; so
k meets the restriction on T3.28. So we have P ! Qk on the line
numbered ‘k’ of C , from premises in � alone.

Indct: For for any i , P ! Qk appears on the line numbered ‘i ’ of C , from
premises in � alone.

So given an AD derivation of Q from�[fP g, where no application of Gen under the
scope of assumption P is to a variable free in P , there is sure to be an AD derivation
of P ! Q from � alone. Notice that T3.28 and T3.30 abbreviate sequences which
include applications of Gen. So the restriction on Gen for the deduction theorem
applies to applications of these results as well.

As a sample application of the deduction theorem (DT), let us consider another
derivation of T3.2. In tis case, � D fA! B;B ! Cg, and we argue as follows,

(G)

1. A! B prem
2. B ! C prem
3. A assp (g, DT)

4. B 1,3 MP
5. C 2,4 MP

6. A! C 3-5 DT

CHAPTER 9. PRELIMINARY RESULTS 445

At line (5) we have established that � [fAg
ÀD

C ; it follows from the deduction
theorem that �

ÀD
A! C . But we should be careful: this is not an AD derivation

of A ! C from A ! B and B ! C . And it is not an abbreviation in the sense
that we have seen so far — we do not appeal to a result whose derivation could be
inserted at that very stage. Rather, what we have is a demonstration, via the deduction
theorem, that there exists an AD derivation of A ! C from the premises. If there
is any abbreviating, the entire derivation abbreviates, or indicates the existence of,
another. Our proof of the deduction theorem shows us that, given a derivation of
� [fP g

ÀD
Q, it is possible to construct a derivation for �

ÀD
P ! Q.

Let us see how this works in the example. Lines 1-5 become our derivation A,
with � D fA ! B;B ! Cg. For each Qi in derivation A, the induction tells us
how to derive A ! Qi from � alone. Thus Qi on the first line is a member of �:
reasoning from the basis tells us to use A1 as follows,

1.1 A! B prem
1.2 .A! B/! .A! .A! B// A1

1 A! .A! B/ 1.2,1.1 MP

to get A arrow the form on line 1 of A. Notice that we are again using fractional
line numbers to make lines in derivation A correspond to lines in the constructed
derivation. One may wonder why we bother getting A ! Q1. And again, the
answer is that our “recipe” calls for this ingredient at stages connected to MP and
Gen. Similarly, we can use A1 to get A arrow the form on line (2).

1.1 A! B prem
1.2 .A! B/! .A! .A! B// A1

1 A! .A! B/ 1.2,1.1 MP
2.1 B ! C prem
2.2 .B ! C/! .A! .B ! C// A1

2 A! .B ! C/ 2.2,2.1 MP

The form on line (3) is A itself. If we wanted a derivation in the primitive system,
we could repeat the steps in our derivation of T3.1. But we will simply continue, as
in the induction,

1.1 A! B prem
1.2 .A! B/! .A! .A! B// A1

1 A! .A! B 1.2,1.2 MP
2.1 B ! C/ prem
2.2 .B ! C/! .A! .B ! C// A1

2 A! .B ! C/ 2.2,2.1 MP
3 A! A T3.1

CHAPTER 9. PRELIMINARY RESULTS 446

to get A arrow the form on line (3) of A. The form on line (4) arises from lines (1)
and (3) by MP; reasoning in our show step tells us to continue,

1.1 A! B prem
1.2 .A! B/! .A! .A! B// A1

1 A! .A! B/ 1.2,1.1 MP
2.1 B ! C prem
2.2 .B ! C/! .A! .B ! C// A1

2 A! .B ! C/ 2.2,2.1 MP
3 A! A T3.1

4.1 .A! .A! B//! ..A! A/! .A! B// A2
4.2 .A! A/! .A! B/ 4.1,1 MP

4 A! B 4.2,3 MP

using A2 to get A! B. Notice that the original justification from lines (1) and (3)
dictates the appeal to (1) at line (4.2) and to (3) at line (4). The form on line (5) arises
from lines (2) and (4) by MP; so, finally, we continue,

1.1 A! B prem
1.2 .A! B/! .A! .A! B// A1

1 A! .A! B/ 1.2,1.1 MP
2.1 B ! C prem
2.2 .B ! C/! .A! .B ! C// A1

2 A! .B ! C/ 2.2,2.1 MP
3 A! A T3.1

4.1 .A! .A! B//! ..A! A/! .A! B// A2
4.2 .A! A/! .A! B/ 4.1,1 MP

4 A! B 4.2,3 MP
5.1 .A! .B ! C//! ..A! B/! .A! C// A2
5.2 .A! B/! .A! C/ 5.1,2 MP

5 A! C 5.2,4 MP

And we have the AD derivation which our proof of the deduction theorem told us
there would be. Notice that this derivation is not very efficient! We did it in seven
lines (without appeal to T3.1) in chapter 3. What our proof of the deduction theorem
tells us is that there is sure to be some derivation — where there is no expectation
that the guaranteed derivation is particularly elegant or efficient.

Here is a last example which makes use of the deduction theorem. First, an
alternate derivation of T3.3.

CHAPTER 9. PRELIMINARY RESULTS 447

(H)

1. A! .B ! C/ prem
2. B assp (g, DT)

3. A assp (g, DT)

4. B ! C 1,3 MP
5. C 4,2 MP

6. A! C 3-5 DT

7. B ! .A! C/ 2-6 DT

In chapter 3 we proved T3.3 in five lines (with an appeal to T3.2). But perhaps this
version is relatively intuitive, coinciding as it does, with strategies from ND. In this
case, there are two applications of DT, and reasoning from the induction therefore
applies twice. First, at line (5), there is an AD derivation of C from fA ! .B !

C/;Bg[fAg. By reasoning from the induction, then, there is an AD derivation from
just fA ! .B ! C/;Bg with A arrow each of the forms on lines 1-5. So there
is a derivation of A ! C from fA ! .B ! C/;Bg. But then reasoning from
the induction applies again. By reasoning from the induction applied to this new
derivation, there is a derivation from just A ! .B ! C/ with B arrow each of the
forms in it. So there is a derivation of B ! .A ! C/ from just A ! .B ! C/.
So the first derivation, lines 1-5 above, is replaced by another, by the reasoning from
DT. Then it is replaced by another, again given the reasoning from DT. The result is
an AD derivation of the desired result.

Here are a couple more cases, where the latter at least, may inspire a certain
affection for the deduction theorem.

T9.4.
ÀD

A! .B ! .A ^B//

T9.5.
ÀD
.A! C/! Œ.B ! C/! ..A _B/! C/�

E9.5. Making use of the deduction theorem, prove T9.4 and T9.5. Having done so,
see if you can prove them in the style of chapter 3, without any appeal to DT.

E9.6. By the method of our proof of the deduction theorem, convert the above
derivation (H) for T3.3 into an official AD derivation. Hint: As described
above, the method of the induction applies twice: first to lines 1-5, and then
to the new derivation. The result should be derivations with 13, and then 37
lines.

CHAPTER 9. PRELIMINARY RESULTS 448

E9.7. Consider the axiomatic system A2 from E3.4 on p. 81, and produce a demon-
stration of the deduction theorem for it. That is, show that if �[fP g

À2
Q,

then �
À2

P ! Q. You may appeal to any of the A2 theorems listed on 81.

9.3.2 Substitution Theorems

Recall what we are after. Our goal is to show that if �
ǸD

P , then �
ÀD

P . Toward
this end, the deduction theorem lets AD mimic rules in ND which require subderiva-
tions. For equality, we turn to some substitution results. Say a complex term r is
free in an expression P just in case no variable in r is bound. Then where T is any
term or formula, let T r==s be T where at most one free instance of r is replaced
by term s. Having shown in T3.37, that

ÀD
.qi D s/ ! .Rnq1 : : :qi : : :qn !

Rnq1 : : :s : : :qn/, one might think we have proved that
ÀD

.r D s/ ! .A !

Ar==s/ for any atomic formula A and any terms r and s. But this is not so. Similarly,
having proved in T3.36 that

ÀD
.qi D s/! .hnq1 : : :qi : : :qn D hnq1 : : :s : : :qn/,

one might think we have proved that
ÀD

.r D s/ ! .t ! tr==s/ for any terms r,
s and t. But this is not so. In each case, the difficulty is that the replaced term
r might be a component of the other terms q1 : : :qn, and so might not be any of
q1 : : :qn. What we have shown is only that it is possible to replace any of the whole
terms, q1 : : :qn. Thus, .x D y/ ! .f 1g1x D f 1g1y/ is not an instance of T3.36
because we do not replace g1x but rather a component of it.

However, as one might expect, it is possible to replace terms in basic parts; use
the result to make replacements in terms of which they are parts; and so forth, all
the way up to wholes. Both .x D y/ ! .g1x D g1y/ and .g1x D g1y/ !

.f 1g1x D f 1g1y/ are instances of T3.36. (Be clear about these examples in your
mind.) From these, with T3.2 it follows that .x D y/ ! .f 1g1x D f 1g1y/. This
example suggests a method for obtaining the more general results: Using T3.36, we
work from equalities at the level of the parts, to equalities at the level of the whole.
For the case of terms, the proof is by induction on the number of function symbols in
an arbitrary term t.

T9.6. For arbitrary terms r, s and t,
ÀD
.r D s/! .t D tr==s/.

Basis: If t has no function symbols, then t is a variable or a constant. In
this case, either (i) r ¤ t and tr==s D t (nothing is replaced) or (ii)
r D t and tr==s D s (all of t is replaced). (i) In this case, by T3.32,

ÀD
t D t; which is to say,

ÀD
.t D tr==s/; so with A1,

ÀD
.r D

s/! .t D tr==s/. (ii) In this case, .r D s/! .t D tr==s/ is the same
as .r D s/! .r D s/; so by T3.1,

ÀD
.r D s/! .t D tr==s/.

CHAPTER 9. PRELIMINARY RESULTS 449

Assp: For any i , 0 � i < k, if t has i function symbols, then
ÀD

.r D

s/! .t D tr==s/.

Show: If t has k function symbols, then
ÀD
.r D s/! .t D tr==s/.

If t has k function symbols, then t is of the form hnq1 : : :qn for terms
q1 : : :qn with < k function symbols. If all of t is replaced, or no part
of t is replaced, then reason as in the basis. So suppose r is some sub-
component of t; then for some qi , tr==s is hnq1 : : :qi

r==s : : :qn. By
assumption,

ÀD
.r D s/! .qi D qi

r==s/; and by T3.36,
ÀD
.qi D

qi
r==s/! .hnq1 : : :qi : : :qn D hnq1 : : :qi

r==s : : :qn/; so by T3.2,

ÀD
.r D s/ ! .hnq1 : : :qi : : :qn D hnq1 : : :qi

r==s : : :qn/; but
this is to say,

ÀD
.r D s/! .t D tr==s/.

Indct: For any terms r, s and t,
ÀD
.r D s/! .t D tr==s/.

We might think of this result as a further strengthened or generalized version of
the AD axiom A7. Where A7 lets us replace just variables in terms of the sort
hnx1 : : : xn, we are now in a position to replace in arbitrary terms with arbitrary
terms.

Now we can go after a similarly strengthened version of A8. We show that for
any formula A, if s is free for the replaced instance of r in Ar==s, then

ÀD
.r D

s/! .A! Ar==s/. The argument is by induction on the number of operators in A.

T9.7. For any formula A and terms r and s, if s is free for the replaced instance of
r in A, then

ÀD
.r D s/! .A! Ar==s/.

Consider an arbitrary r, s and A, and suppose s is free for the replaced
instance of r in Ar==s.

Basis: If A is atomic then (i) Ar==s D A (nothing is replaced) or (ii) A is an
atomic of the form Rnt1 : : : ti : : : tn and Ar==s is Rnt1 : : : ti

r==s : : : tn.
(i) In this case, by T3.1,

ÀD
A! A, which is to say

ÀD
A! Ar==s;

so with A1,
ÀD

r D s ! .A ! Ar==s/. (ii) In this case, by
T9.6,

ÀD
.r D s/ ! .ti D ti

r==s/; and by T3.37,
ÀD

.ti D

ti
r==s/ ! .Rnt1 : : : ti : : : tn ! Rnt1 : : : ti

r==s : : : tn/; so by T3.2,

ÀD
.r D s/ ! .Rnt1 : : : ti : : : tn ! Rnt1 : : : ti

r==s : : : tn/; and
this is just to say,

ÀD
.r D s/! .A! Ar==s/.

Assp: For any i , 0 � i < k, if A has i operator symbols and s is free for the
replaced instance of r in A, then

ÀD
.r D s/! .A! Ar==s/.

CHAPTER 9. PRELIMINARY RESULTS 450

Corollary to the assumption. If A has < k operators, then Ar==s
has < k operators; and since s replaces only a free instance of r

in A, r is free for the replacing instance of s in Ar==s; so where
the outer substitution is made to sustain ŒAr==s�

s==r D A, we have

ÀD
.s D r/! .Ar==s ! ŒAr==s�

s==r/ as an instance of the inductive
assumption, which is just,

ÀD
.s D r/ ! .Ar==s ! A/. And by

T3.33,
ÀD

.r D s/ ! .s D r/; so with T3.2,
ÀD

.r D s/ !

.Ar==s ! A/.

Show: If A has k operator symbols and s is free for the replaced instance of
r in A, then

ÀD
.r D s/! .A! Ar==s/.

If A has k operator symbols, then A is of the form, �P , P ! Q or
8xP for variable x and formulas P and Q with< k operator symbols.
Suppose s is free for any replaced instance of r in A.

(�) Suppose A is �P . Then Ar==s is Œ�P �r==s which is the same as
�ŒP r==s�. Since s is free for a replaced instance of r in A, it is free
for that instance of r in P ; so by the corollary to the assumption,

ÀD
.r D s/ ! .P r==s ! P /. But by T3.13,

ÀD
.P r==s ! P / !

.�P ! �ŒP r==s�/; so by T3.2,
ÀD
.r D s/! .�P ! �ŒP r==s�/;

which is to say,
ÀD
.r D s/! .A! Ar==s/.

(!) Suppose A is P ! Q. Then Ar==s is P r==s ! Q or P ! Qr==s. (i)
In the former case, since s is free for a replaced instance of r in A, it is
free for that instance of r in P ; so by the corollary to the assumption,

ÀD
.r D s/! .P r==s ! P /; so we may reason as follows,

1. .r D s/! .P r==s ! P / prem
2. r D s assp (g, DT)

3. P ! Q assp (g, DT)

4. P r==s assp (g, DT)

5. P r==s ! P 1,2 MP
6. P 5,4 MP
7. Q 3,6 MP

8. P r==s ! Q 4-7 DT

9. .P ! Q/! .P r==s ! Q/ 3-8 DT

10. .r D s/! Œ.P ! Q/! .P r==s ! Q/� 2-9 DT

So
ÀD

.r D s/ ! Œ.P ! Q/ ! .P r==s ! Q/�; which is to say,

ÀD
.r D s/ ! .A ! Ar==s/. (ii) And similarly in the other case

CHAPTER 9. PRELIMINARY RESULTS 451

[by homework],
ÀD
.r D s/! Œ.P ! Q/! .P ! Qr==s/�. So in

either case,
ÀD
.r D s/! .A! Ar==s/.

(8) Suppose A is 8xP . Then a free instance of r in A remains free in
P and Ar==s is 8xŒP r==s�. Since s is free for r in A, s is free for r

in P ; so by assumption,
ÀD

.r D s/ ! .P ! P r==s/; so we may
reason as follows,

1. .r D s/! .P ! P r==s/ prem
2. r D s assp (g, DT)

3. 8xP ! P A4
4. P ! P r==s 1,2 MP
5. 8xP ! P r==s 3,4 T3.2
6. 8xP ! 8xP r==s 5 T3.28

7. .r D s/! .8xP ! 8xP r==s/ 2-6 DT

Notice that x is sure to be free for itself in P , so that (3) is an instance
of A4. And x is bound in 8xP , so (6) is an instance of T3.28. And
because r is free in A, and s is free for r in A, x cannot be a variable
in r or s; so the restriction on DT is met at (7). So

ÀD
.r D s/ !

.8xP ! 8xP r==s/; which is to say,
ÀD
.r D s/! .A! Ar==s/.

So for any A with k operator symbols,
ÀD
.r D s/! .A! Ar==s/.

Indct: For any A,
ÀD
.r D s/! .A! Ar==s/.

So T9.7, for any formula A, and terms r and s, if s is free for a replaced instance of
r in A, then

ÀD
.r D s/! .A! Ar==s/.

It is a short step from T9.7, which allows substitution of just a single term, to
T9.8 which allows substitution of arbitrarily many. Where, as in chapter 6, P t=s is
P with some, but not necessarily all, free instances of term t replaced by term s,

T9.8. For any formula A and terms r and s, if s is free for the replaced instances
of r in A, then

ÀD
.r D s/! .A! Ar=s/.

By induction on the number of instances of r that are replaced by s in A.
Say Ai is A with i free instances of r replaced by s. Suppose s is free for
the replaced instances of r in A. We show that for any i ,

ÀD
.r D s/ !

.A! Ai /.

Basis: If no instances of r are replaced by s then A0 D A. But by T3.1,

ÀD
A! A, and by A1,

ÀD
.A! A/! Œ.r D s/! .A! A/�;

CHAPTER 9. PRELIMINARY RESULTS 452

so by MP,
ÀD

.r D s/ ! .A ! A/; which is to say,
ÀD

.r D

s/! .A! A0/.
Assp: For any i , 0 � i < k,

ÀD
.r D s/! .A! Ai /.

Show:
ÀD
.r D s/! .A! Ak/.

Ak is of the sort Ai
r==s for i < k. By assumption, then,

ÀD
.r D

s/ ! .A ! Ai /, and by T9.7,
ÀD

.r D s/ ! .Ai ! Ai
r==s/,

which is the same as
ÀD

.r D s/ ! .Ai ! Ak/. So reason as
follows,

1. .r D s/! .A! Ai / by assumption
2. .r D s/! .Ai ! Ak/ T9.7
3. r D s assp (g, DT)

4. A! Ai 1,3 MP
5. Ai ! Ak 2,3 MP
6. A! Ak 4,5 T3.2

7. .r D s/! .A! Ak/ 3-6 DT

Since s is free for the replaced instances of r in A, (2) is an instance
of T9.7. So

ÀD
.r D s/! .A! Ak/.

Indct: For any i ,
ÀD
.r D s/! .A! Ai /.

In effect, the result is by multiple applications of T9.7. No matter how many instances
of r have been replaced by s, we may use T9.7 to replace another!

Some final substitution results allow substitution of formulas rather than terms.
We have the result in syntactic and semantic forms. Where AB==C is A with exactly
one instance of a subformula B replaced by formula C ,

T9.9. For any formulas A, B and C , if
ÀD

B $ C , then
ÀD

A$ AB==C .

The proof is by induction on the number of operators in A. If you have
understood the previous two inductions, this one should be straightforward.
Observe that, in the basis, when A is atomic, B can only be all of A, and
AB==C is C . For the show, either B is all of A or it is not. If it is, then the
result holds by reasoning as in the basis. If B is a proper part of A, then the
assumption applies.

T9.10. For any formulas A, B and C , if for any d, IdŒB� D S iff IdŒC � D S, then
IdŒA� D S iff IdŒAB

C
� D S.

CHAPTER 9. PRELIMINARY RESULTS 453

*E9.8. Set up the above demonstration for T9.7 and complete the unfinished case to
provide a complete demonstration that for any formula A, and terms r and s,
if s is free for the replaced instance of r in A, then

ÀD
.r D s/ ! .A !

Ar==s/.

E9.9. Suppose our primitive operators are �, ^ and 9 rather than �, ! and 8.
Modify your argument for T9.7 to show that for any formula A, and terms r

and s, if s is free for the replaced instance of r in A, then
ÀD

.r D s/ !

.A! Ar==s/. Hint: Do not forget that you may appeal to T9.4.

*E9.10. Prove T9.9, to show that for any formulas A, B and C , if
ÀD

B $ C , then

ÀD
A$ AB==C . Hint: Where P $ Q abbreviates .P ! Q/ ^ .Q! P /,

you can use (abv) along with T3.19, T3.20 and T9.4 to manipulate formulas
of the sort P $ Q.

E9.11. Where AB=C replaces some, but not necessarily all, instances of formula B

with formula C , use your result from E9.10 to show that if
ÀD

B $ C , then

ÀD
A$ AB=C .

9.3.3 Intended Result

We are finally ready to show that if �
ǸD

P then �
ÀD

P . As usual, the idea is
that the existence of one derivation guarantees the existence of another. In this case,
we begin with a derivation in ND, and move to the existence of one in AD. Suppose
�

ǸD
P . Then there is an ND derivation N of P from premises in � , with lines

hQ1 : : :Qni and Qn D P . We show that there is an AD derivation A of the same
result (with possible appeal to DT). Say derivation A matches N iff any Qi from N

appears at the same scope on the line numbered ‘i ’ of A; and say derivation A is
good iff it has no application of Gen to a variable free in an undischarged auxiliary
assumption. Then, given derivation N , we show that there is a good derivation A
that matches N . The reason for the restriction on free variables is to be sure that
DT is available at any stage in derivation A. The argument is by induction on the
line number of N , where we show that for any i , there is a good derivation Ai that
matches N through line i . The case when i D n is an AD derivation of P under the
scope of the premises alone, and so a demonstration of the desired result.

CHAPTER 9. PRELIMINARY RESULTS 454

T9.11. If �
ǸD

P , then �
ÀD

P .

Suppose �
ǸD

P ; then there is an ND derivation N of P from premises in
� . We show that for any i , there is a good AD derivation Ai that matches N
through line i .

Basis: The first line of N is a premise or an assumption. Let A1 be the same.
Then A1 matches N ; and since there is no application of Gen, A1 is
good.

Assp: For any i , 1 � i < k, there is a good derivation Ai that matches N
through line i .

Show: There is a good derivation Ak that matches N through line k.
Either Qk is a premise or assumption, or arises from previous lines by
R, ^E, ^I,!E,!I, �E, �I, _E, _I,$E,$I, 8E, 8I, 9E, 9I, =E or
=I.

(p/a) If Qk is a premise or an assumption, let Ak continue in the same way.
Then, by reasoning as in the basis, Ak matches N and is good.

(R) If Qk arises from previous lines by R, then N looks something like
this,

i B

k B i R

where i < k, B is accessible at line k, and Qk D B. By assumption
Ak�1 matches N through line k � 1 and is good. So B appears at
the same scope on the line numbered ‘i ’ of Ak�1 and is accessible in
Ak�1. So let Ak continue as follows,

i B

:::

k:1 B ! B T3.1
k B k:1,i MP

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. And since there is no new application
of Gen, Ak is good.

(^E) If Qk arises by ^E, then N is something like this,

i B ^ C

k B i ^E
or

i B ^ C

k C i ^E

CHAPTER 9. PRELIMINARY RESULTS 455

where i < k and B ^ C is accessible at line k. In the first case,
Qk D B. By assumption Ak�1 matches N through line k � 1 and is
good. So B ^ C appears at the same scope on the line numbered ‘i ’
of Ak�1 and is accessible in Ak�1. So let Ak continue as follows,

i B ^ C

k:1 .B ^ C/! B T3.20
k B k:1,i MP

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. And since there is no new application
of Gen, Ak is good. And similarly in the other case, by application of
T3.19.

(^I) If Qk arises from previous lines by ^I, then N is something like this,

i B

j C

k B ^ C i ,j ^I

where i; j < k, B and C are accessible at line k, and Qk D B ^ C .
By assumption Ak�1 matches N through line k � 1 and is good. So
B and C appear at the same scope on the lines numbered ‘i ’ and ‘j ’
of Ak�1 and are accessible in Ak�1. So let Ak continue as follows,

i B

j C

k:1 B ! .C ! .B ^ C// T9.4
k:2 C ! .B ^ C/ k:1,i MP
k B ^ C k:2,j MP

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. And since there is no new application
of Gen, Ak is good.

(!E) If Qk arises from previous lines by!E, thenN is something like this,

i B ! C

j B

k C i ,j !E

where i; j < k, B ! C and B are accessible at line k, and Qk D C .
By assumption Ak�1 matches N through line k � 1 and is good. So

CHAPTER 9. PRELIMINARY RESULTS 456

B ! C and B appear at the same scope on the lines numbered ‘i ’
and ‘j ’ of Ak�1 and are accessible in Ak�1. So let Ak continue as
follows,

i B ! C

j B

k C i ,j MP

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. And since there is no new application
of Gen, Ak is good.

(!I) If Qk arises by!I, then N is something like this,

i B

j C

k B ! C i -j !I

where i; j < k, the subderivation is accessible at line k and Qk D

B ! C . By assumption Ak�1 matches N through line k � 1 and is
good. So B and C appear at the same scope on the lines numbered
‘i ’ and ‘j ’ of Ak�1; since they appear at the same scope, the parallel
subderivation is accessible in Ak�1; since Ak�1 is good, no applica-
tion of Gen under the scope of B is to a variable free in B. So let Ak
continue as follows,

i B

j C

k B ! C i -j DT

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. And since there is no new application
of Gen, Ak is good.

(�E) If Qk arises by �E , then N is something like this (reverting to the
unabbreviated form),

i �B

j C ^�C

k B i -j �E

CHAPTER 9. PRELIMINARY RESULTS 457

where i; j < k, the subderivation is accessible at line k, and Qk D B.
By assumption Ak�1 matches N through line k � 1 and is good. So
�B and C ^ �C appear at the same scope on the lines numbered ‘i ’
and ‘j ’ of Ak�1; since they appear at the same scope, the parallel sub-
derivation is accessible in Ak�1; since Ak�1 is good, no application
of Gen under the scope of �B is to a variable free in �B. So let Ak
continue as follows,

i �B

j C ^�C

k:1 �B ! .C ^�C/ i -j DT
k:2 .C ^�C/! C T3.20
k:3 .C ^�C/! �C T3.19
k:4 �B ! C k:1,k:2 T3.2
k:5 �B ! �C k:1,k:3 T3.2
k:6 .�B ! �C/! ..�B ! C/! B/ A3
k:7 .�B ! C/! B k:6,k:5 MP
k B k:7,k:4 MP

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. And since there is no new application
of Gen, Ak is good.

(�I) Homework.

(_E) If Qk arises by _E, then N is something like this,

f B _ C

g B

h D

i C

j D

k D f ,g-h,i -j _E

where f; g; h; i; j < k, B _C and the two subderivations are accessi-
ble at line k and Qk D D . By assumption Ak�1 matches N through
line k � 1 and is good. So the formulas at lines f; g; h; i; j appear at
the same scope on corresponding lines in Ak�1; since they appear at
the same scope, B _ C and corresponding subderivations are acces-
sible in Ak�1; since Ak�1 is good, no application of Gen under the

CHAPTER 9. PRELIMINARY RESULTS 458

scope of B is to a variable free in B, and no application of Gen under
the scope of C is to a variable free in C . So let Ak continue as follows,

f B _ C

g B

h D

i C

j D

k:1 B ! D g-h DT
k:2 C ! D i -j DT
k:3 .B ! D/! Œ.C ! D/! ..B _ C/! D/� T9.5
k:4 .C ! D/! ..B _ C/! D/ k:3,k:1 MP
k:5 .B _ C/! D k:4,k:2 MP
k D k:5,f MP

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. And since there is no new application
of Gen, Ak is good.

(_I) Homework.

($E) Homework.

($I) Homework.

(8E) Homework.

(8I) If Qk arises by 8I, then N looks something like this,

i Bx
v

k 8xB i 8I

where i < k, Bx
v is accessible at line k, and Qk D 8xB; further the

ND restrictions on 8I are met: (i) v is free for x in B, (ii) v is not
free in any undischarged auxiliary assumption, and (iii) v is not free
in 8xB. By assumption Ak�1 matches N through line k � 1 and is
good. So Bx

v appears at the same scope on the line numbered ‘i ’ of
Ak�1 and is accessible in Ak�1. So let Ak continue as follows,

i Bx
v

k:1 8vBx
v i Gen

k:2 8vBx
v ! 8xB T3.27

k 8xB k:1,k:2 MP

CHAPTER 9. PRELIMINARY RESULTS 459

If v is x, we have the desired result already at k:1. So suppose x ¤ v .
On its face, k:2 does not look like T3.27 according to which 8xA!

8yAx
y with y free for x in A but not free in 8xA. To see that we

have it right, consider first, 8vBx
v ! 8xŒBx

v �
v
x ; this is an instance

of T3.27 so long as x is not free in 8vBx
v but free for v in Bx

v .
First, since Bx

v has all its free instances of x replaced by v , x is not
free in 8vBx

v . Second, since v ¤ x, with the constraint (iii), that
v is not free in 8xB, v is not free in B; so every free instance of
v in Bx

v replaces a free instance of x; so x is free for v in Bx
v . So

8vBx
v ! 8xŒBx

v �
v
x is an instance of T3.27. But since v is not free

in B, and by constraint (i), v is free for x in B, by T8.2, ŒBx
v �

v
x D B.

So k:2 is a version of T3.27.

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. This time, there is an application of
Gen at k:1. But Ak�1 is good and since Ak matches N and, by (ii), v

is free in no undischarged auxiliary assumption of N , v is not free in
any undischarged auxiliary assumption of Ak; so Ak is good. (Notice
that, in this reasoning, we appeal to each of the restrictions that apply
to 8I in N).

(9E) If Qk arises by 9E, then N looks something like this,

h 9xB

i Bx
v

j C

k C h,i -j 9E

where h; i; j < k, 9xB and the subderivation are accessible at line k,
and Qk D C ; further, the ND restrictions on 9E are met: (i) v is free
for x in B, (ii) v is not free in any undischarged auxiliary assumption,
and (iii) v is not free in 9xB or in C . By assumption Ak�1 matches
N through line k � 1 and is good. So the formulas at lines h, i and j
appear at the same scope on corresponding lines in Ak�1; since they
appear at the same scope, 9xB and the corresponding subderivation
are accessible in Ak�1. Since Ak�1 is good, no application of Gen
under the scope of Bx

v is to a variable free in Bx
v . So let Ak continue

as follows,

CHAPTER 9. PRELIMINARY RESULTS 460

h 9xB

i Bx
v

j C

k:1 Bx
v ! C i -j DT

k:2 9vBx
v ! C k:1 T3.31

k:3 8v�Bx
v ! 8x�B T3.27

k:4 .8v�Bx
v ! 8x�B/! .�8x�B ! �8v�Bx

v / T3.13
k:5 �8x�B ! �8v�Bx

v k:4,k:3 MP
k:6 9xB ! 9vBx

v k:5 abv
k:7 9vBx

v h,k:6 MP
k C k:2,k:7 MP

From constraint (iii), that v is not free in C , k:2 meets the restriction
on T3.31. If v D x we can go directly from h and k:2 to k. So suppose
v ¤ x. Then by [homework] 8v�Bx

v ! 8x�B at k:3 is an instance
of T3.27. So Qk appears at the same scope on the line numbered ‘k’ of
Ak; so Ak matches N through line k. There is an application of Gen
in T3.31 at k:2. But Ak�1 is good and since Ak matches N and, by
(ii), v is free in no undischarged auxiliary assumption of N , v is not
free in any undischarged auxiliary assumption of Ak; so Ak is good.
(Notice again that we appeal to each of the restrictions that apply to
9E in N).

(9I) Homework.
(=E) Homework.
(=I) Homework.

In any case, Ak matches N through line k and is good.

Indct: Derivation A matches N and is good.

So if there is an ND derivation to show �
ǸD

P , then there is a matching AD
derivation to show the same; so T9.11, if �

ǸD
P , then �

ÀD
P . So with T9.2,

AD and ND are equivalent; that is, �
ǸD

P iff �
ÀD

P . Given this, we will often
ignore the difference between AD and ND and simply write � ` P when there is a(n
AD or ND) derivation of P from premises in � . Also given the equivalence between
the systems, we are in a position to transfer results from one system to the other
without demonstrating them directly for both. We will come to appreciate this, and
especially the relative simplicity of AD, as time goes by.

As before, given any ND derivation, we can use the method of our induction to
find a corresponding AD derivation. For a simple example, consider the following
demonstration that �A! .A ^ B/

ǸD
A.

CHAPTER 9. PRELIMINARY RESULTS 461

(I)

1. �A! .A ^ B/ P

2. �A A (c, �E)

3. A ^ B 1,2!E
4. A 3 ^E
5. A ^�A 4,2 ^I

6. A 2-4 �E

Given relevant cases from the induction, the corresponding AD derivation is as fol-
lows,

1 �A! .A ^ B/ prem
2 �A assp
3 A ^ B 1,2 MP

4.1 .A ^ B/! A T3.20
4 A 4.1,3 MP

5.1 A! .�A! .A ^�A// T9.4
5.2 �A! .A ^�A/ 4,5.1 MP

5 A ^�A 5.2,2 MP

6.1 �A! .A ^�A/ 2-5 DT
6.2 .A ^�A/! A T3.20
6.3 .A ^�A/! �A T3.19
6.4 �A! A 6.1,6.2 T3.2
6.5 �A! �A 6.1,6.3 T3.2
6.6 .�A! �A/! ..�A! A/! A/ A3
6.7 .�A! A/! A 6.6,6.5 MP

6 A 6.7,6.4 MP

For the first two lines, we simply take over the premise and assumption from the ND
derivation. For (3), the induction uses MP in AD where!E appears in ND; so that is
what we do. For (4), our induction shows that we can get the effect of ^E by appeal
to T3.20 with MP. (5) in the ND derivation is by ^I, and, as above, we get the same
effect by T9.4 with MP. (6) in the ND derivation is by �E. Following the strategy
from the induction, we set up for application of A3 by getting the conditional by DT.
As usual, the constructed derivation is not very efficient! You should be able to get
the same result in just five lines by appeal to T3.20, T3.2 and then T3.7 (try it). But,
again, the point is just to show that there always is a corresponding derivation.

*E9.12. Set up the above induction for T9.11 and complete the unfinished cases
(including the case for 9E) to show that if �

ǸD
P , then �

ÀD
P . For cases

completed in the text, you may simply refer to the text, as the text refers cases
to homework.

CHAPTER 9. PRELIMINARY RESULTS 462

E9.13. Consider a system N2 which is like ND except that its only rules are ^E,
^I, �E and �I, along with the system A2 from E3.4 on p. 81. Produce a
complete demonstration that if �

Ǹ2
P , then �

À2
P . You may use any of

the theorems for A2 from E3.4, along with DT from E9.7.

E9.14. Consider the following ND derivation and, using the method from the induc-
tion, construct a derivation to show 9x.C ^ Bx/

ÀD
C .

1. 9x.C ^ Bx/ P

2. C ^ By A (g, 19E)

3. C 2 ^E

4. C 1,2-3 9E

Hint: your derivation should have 12 lines.

9.4 Extending to ND+

ND+ adds sixteen rules to ND: the four inference rules, MT, HS, DS and NB and the
twelve replacement rules, DN, Com, Assoc, Idem, Impl, Trans, DeM, Exp, Equiv,
Dist, QN and BQN — where some of these have multiple forms. It might seem
tedious to go through all the cases but, as it happens, we have already done most of
the work. First, it is easy to see that,

T9.12. If �
ǸD

P then �
ǸDC

P .

Suppose �
ǸD

P . Then there is an ND derivation N of P from premises in
� . But since every rule of ND is a rule of ND+, N is a derivation in ND+ as
well. So �

ǸDC
P .

From T9.2 and T9.12, then, the situation is as follows,

�
ÀD

P
9:2
999999� �

ǸD
P

9:12
999999� �

ǸDC
P

If an argument is valid in AD, it is valid in ND, and in ND+. From T9.11, the
leftmost arrow is a biconditional. Again, however, one might think that ND+ has
more resources than ND, so that more could be derived in ND+ than ND. But this is
not so. To see this, we might begin with the closer systems ND and ND+, and attempt
to show that anything derivable in ND+ is derivable in ND. Alternatively, we choose
simply to expand the induction of the previous section to include cases for all the

CHAPTER 9. PRELIMINARY RESULTS 463

rules of ND+. The result is a demonstration that if �
ǸDC

P , then �
ÀD

P . Given
this, the three systems are connected in a “loop” — so that if there is a derivation in
any one of the systems, there is a derivation in the others as well.

T9.13. If �
ǸDC

P , then �
ÀD

P .

Suppose �
ǸDC

P ; then there is an ND+ derivation N of P from premises
in � . We show that for any i , there is a good AD derivation Ai that matches
N through line i .

Basis: The first line of N is a premise or an assumption. Let A1 be the same.
Then A1 matches N ; and since there is no application of Gen, A1 is
good.

Assp: For any i , 0 � i < k, there is a good derivation Ai that matches N
through line i .

Show: There is a good derivation of Ak that matches N through line k.

Either Qk is a premise or assumption, arises by a rule of ND, or by
the ND+ derivation rules, MT, HS, DS, NB or replacement rules, DN,
Com, Assoc, Idem, Impl, Trans, DeM, Exp, Equiv, Dist, QN or BQN.
If Qk is a premise or assumption or arises by a rule of ND, then by
reasoning as for T9.11, there is a good derivation Ak that matches N
through line k. So suppose Qk arises by one of the ND+ rules.

(MT) If Qk arises from previous lines by MT, then N is something like this,

i B ! C

j �C

k �B i ,j MT

where i; j < k, B ! C and �C are accessible at line k, and Qk D

�B. By assumption Ak�1 matches N through line k � 1 and is good.
So B ! C and �C appear at the same scope on the lines numbered
‘i ’ and ‘j ’ of Ak�1 and are accessible in Ak�1. So let Ak continue as
follows,

i B ! C

j �C

k:1 .B ! C/! .�C ! �B/ T3.13
k:2 �C ! �B k:1,i MP
k �B k:2,j MP

CHAPTER 9. PRELIMINARY RESULTS 464

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. And since there is no new application
of Gen, Ak is good.

(HS) Homework.

(DS) Homework.

(NB) Homework.

(rep) If If Qk arises from a replacement rule rep of the form C GF D , then
N is something like this,

i B

k BC==D i rep
or

i B

k BD==C i rep

where i < k, B is accessible at line k and, in the first case, Qk D

BC==D . By assumption Ak�1 matches N through line k � 1 and is
good. But by T6.11 - T6.28, T6.31, T6.32, and T6.70,

ǸD
C $ D ;

so with T9.11,
ÀD

C $ D ; so by T9.9,
ÀD

B $ BC==D . Call an
arbitrary particular result of this sort, Tx, and augment Ak as follows,

0:k B $ BC==D Tx

i B

k:1 .B ! BC==D / ^ .B
C==D ! B/ 0:k abv

k:2 Œ.B ! BC==D / ^ .B
C==D ! B/�! .B ! BC==D / T3.20

k:3 B ! BC==D k:2,k:1 MP
k BC==D k:3,i MP

So Qk appears at the same scope on the line numbered ‘k’ of Ak;
so Ak matches N through line k. There may be applications of Gen
in the derivation of Tx; but that derivation is under the scope of no
undischarged assumption. And under the scope of any undischarged
assumptions, there is no new application of Gen. So Ak is good. And
similarly in the other case, with some work to flip the biconditional

ÀD
C $ D to

ÀD
D $ C .

In any case, Ak matches N through line k and is good.

Indct: Derivation A matches N and is good.

That is it! The key is that work we have already done collapses cases for all the
replacement rules into one. So each of the derivation systems, AD, ND, and ND+ is

CHAPTER 9. PRELIMINARY RESULTS 465

Theorems of Chapter 9

T9.1 For any ordinary argument P1 : : :Pn=Q, with good translation consisting of II and
P 01 : : :P

0
n, Q0, if P 01 : : :P

0
n � Q0, then P1 : : :Pn=Q is logically valid.

T9.2 If �
ÀD

P , then �
ǸD

P .

T9.3 (Deduction Theorem) If � [fP g
ÀD

Q, and no application of Gen under the
scope of P is to a variable free in P , then �

ÀD
P ! Q.

T9.4
ÀD

A! .B ! .A ^B//

T9.5
ÀD
.A! C/! Œ.B ! C/! ..A _B/! C/�

T9.6 For arbitrary terms r, s and t,
ÀD
.r D s/! .t D tr==s/.

T9.7 For any formula A and terms r and s, if s is free for the replaced instance of r in
A, then

ÀD
.r D s/! .A! Ar==s/.

T9.8 For any formula A and terms r and s, if s is free for the replaced instances of r

in A, then
ÀD
.r D s/! .A! Ar=s/.

T9.9 For any formulas A, B and C , if
ÀD

B $ C , then
ÀD

A$ AB==C .

T9.11 If �
ǸD

P , then �
ÀD

P .

T9.12 If �
ǸD

P then �
ǸDC

P .

T9.13 If �
ǸDC

P , then �
ÀD

P .

equivalent to the others. That is, �
ÀD

P iff �
ǸD

P iff �
ǸDC

P . And that is
what we set out to show.

*E9.15. Set up the above induction and complete the unfinished cases to show that if
�

ǸDC
P , then �

ÀD
P . For cases completed in the text, you may simply

refer to the text, as the text refers cases to homework.

E9.16. Consider a sentential language with � and ^ primitive, along with systems
N2 with rules ^E, ^I, �E and �I from E9.13, and A2 from E3.4 on p. 81.
Suppose N2 is augmented to a system N2+ that includes rules MT and Com
(for ^). Augment your argument from E9.13 to produce a complete demon-
stration that if �

Ǹ2C
P then �

À2
P . Hint: You will have to prove some

CHAPTER 9. PRELIMINARY RESULTS 466

A2 results parallel to ones for which we have merely appealed to theorems
above. Do not forget that you have DT from E9.7.

E9.17. For each of the following concepts, explain in an essay of about two pages, so
that (college freshman) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples (iii) where the concept applies,
and (iv) where it does not. Your essay should exhibit an understanding of
methods from the text.

a. The reason semantic validity implies logical validity, but not the other way
around.

b. The notion of a constructive proof by mathematical induction.

Chapter 10

Main Results

We have introduced four notions of validity, and started to think about their interre-
lations. In chapter 9, we showed that if an argument is semantically valid, then it is
logically valid, and that an argument is valid in AD iff it is valid in ND. We turn now
to the relation between these derivation systems and semantic validity. This com-
pletes the project of demonstrating that the different notions of validity are related as
follows.

Logical
Validity

Semantic
Validity

Validity in ND

Validity in AD

� �
�
����
�
��	
@
@
@@R@
@
@@I

6

?

Since AD and ND are equivalent, it is not necessary separately to establish the re-
lations between AD and semantic validity, and between ND and semantic validity.
Because it is relatively easy to reason about AD, we mostly reason about a system
like AD to establish that an argument is valid in AD iff it is semantically valid. From
the equivalence between AD and ND it then follows that an argument is valid in ND
iff it is semantically valid.

The project divides into two parts. First, we take up the arrows from right to
left, and show that if an argument is valid in AD, then it is semantically valid: if
�

ÀD
P , then � � P . Thus our derivation system is sound. If a derivation system is

sound, it never leads from premises that are true on an interpretation, to a conclusion

467

CHAPTER 10. MAIN RESULTS 468

that is not. Second, moving in the other direction, we show that if an argument is
semantically valid, then it is valid in AD: if � � P , then �

ÀD
P . Thus our

derivation system is adequate. If a derivation system is adequate, there is a derivation
from the premises to the conclusion for every argument that is semantically valid.

10.1 Soundness

It is easy to construct derivation systems that are not sound. Thus, for example,
consider a derivation system like AD but without the restriction on A4 that the sub-
stituted term t be free for the variable x in formula P . Given this, we might reason
as follows,

(A)
1. 8x9y�.x D y/ prem
2. 8x9y�.x D y/! 9y�.y D y/ “A4”
3. 9y�.y D y/ 1,2 MP

y is not free for x in 9y�.x D y/; so line (2) is not an instance of A4. And it is
a good thing: Consider any interpretation with at least two elements in U. Then it is
true that for every x there is some y not identical to it. So the premise is true. But
there is no y in U that is not identical to itself. So the conclusion is not true. So the
true premise leads to a conclusion that is not true. So the derivation system is not
sound.

We would like to show that AD is sound — that there is no sequence of moves,
no matter how complex or clever, that would lead from premises that are true to a
conclusion that is not true. The argument itself is straightforward: suppose �

ÀD
P ;

then there is an AD derivation A D hQ1 : : :Qni of P with Qn D P . By induction
on line numbers in A, we show that for any i , � � Qi . The case when i D n is the
desired result. So if �

ÀD
P , then � � P . This general strategy should by now

be familiar. However, for the case involving A4, it will be helpful to obtain a pair of
preliminary results.

10.1.1 Switching Theorems

In this section, we develop a couple theorems which link substitutions into formulas
and terms with substitutions in variable assignments. As we have seen before, the
results are a matched pair, with a first result for terms, that feeds into the basis clause
for a result about formulas. Perhaps the hardest part is not so much the proofs of the
theorems, as understanding what the theorems say. So let us turn to the first.

Suppose we have some terms t and r with interpretation I and variable assign-
ment d. Say IdŒr� D o. Then the first proposition is this: term t is assigned the same

CHAPTER 10. MAIN RESULTS 469

object on Id.xjo/, as tx
r is assigned on Id. Intuitively, this is because the same object

is fed into the x-place of the term in each case. With t and d.xjo/,

(B)
t: hn . . . x . . .

|
d.xjo/: . . . o . . .

object o is the input to the “slot” occupied by x. But we are given that IdŒr� D o. So
with tx

r and d,

(C)
tx

r : hn . . . r . . .
|

d: . . . o . . .

object o is the input into the “slot” that was occupied by x. So if IdŒr� D o, then
Id.xjo/Œt� D IdŒtx

r�. In the one case, we guarantee that object o goes into the x-place
by meddling with the variable assignment. In the other, we get the same result by
meddling with the term. Be sure you are clear about this in your own mind. This will
be our first result.

T10.1. For any interpretation I, variable assignment d, with terms t and r, if IdŒr� D
o, then Id.xjo/Œt� D IdŒtx

r�.

For arbitrary terms t and r, with interpretation I and variable assignment d,
suppose IdŒr� D o. By induction on the number of function symbols in t,
Id.xjo/Œt� D IdŒtx

r�.

Basis: If t has no function symbols, then it is a constant or a variable. Either
t is the variable x or it is not. (i) Suppose t is a constant or variable
other than x; then tx

r D t (no replacement is made); but d and d.xjo/
assign just the same things to variables other than x; so they assign
just the same things to any variable in t; so by T8.3, IdŒt� D Id.xjo/Œt�.
So IdŒtxr � D Id.xjo/Œt�. (ii) If t is x, then tx

r is r (all of t is replaced by
r); so IdŒtx

r� D IdŒr� D o. But t is x; so Id.xjo/Œt� D Id.xjo/Œx�; and by
TA(v), Id.xjo/Œx� D d.xjo/Œx� D o. So IdŒtxr � D Id.xjo/Œt�.

Assp: For any i , 0 � i < k, for t with i function symbols, IdŒtxr � D Id.xjo/Œt�.
Show: If t has k function symbols, then IdŒtxr � D Id.xjo/Œt�.

If t has k function symbols, then it is of the form, hns1 : : :sn where
s1 : : :sn have< k function symbols. In this case, tx

r D Œh
ns1 : : :sn�

x
r

D hns1
x
r : : :sn

x
r. So IdŒtx

r� D IdŒhns1
x
r : : :sn

x
r�; by TA(f), this is

IŒhn�hIdŒs1 x
r� : : : IdŒsn

x
r�i. Similarly, Id.xjo/Œt� D Id.xjo/Œhns1 : : :sn�;

and by TA(f), this is IŒhn�hId.xjo/Œs1� : : : Id.xjo/Œsn�i. But by assump-
tion, IdŒs1 x

r� D Id.xjo/Œs1�, and . . . and IdŒsn x
r� D Id.xjo/Œsn�; so

CHAPTER 10. MAIN RESULTS 470

hIdŒs1 x
r� : : : IdŒsn

x
r�i D hId.xjo/Œs1� : : : Id.xjo/Œsn�i; so IŒhn�hIdŒs1 x

r�

: : : IdŒsn x
r�i D IŒhn�hId.xjo/Œs1� : : : Id.xjo/Œsn�i; so IdŒtxr � D Id.xjo/Œt�.

Indct: For any t, IdŒtxr � D Id.xjo/Œt�.

Since the “switching” leaves assignments to the parts the same, assignments to the
whole remains the same as well.

Similarly, suppose we have we have term r with interpretation I and variable
assignment d, where IdŒr� D o as before. Suppose r is free for variable x in formula
Q. Then the second proposition is that a formula Q is satisfied on Id.xjo/ iff Qx

r

is satisfied on Id. Again, intuitively, this is because the same object is fed into the
x-place of the formula in each case. With Q and d.xjo/,

(D)
Q: Q . . . x . . .

|
d.xjo/: . . . o . . .

object o is the input to the “slot” occupied by x. But IdŒr� D o. So with Qx
r and d,

(E)
Qx

r: Q . . . r . . .
|

d: . . . o . . .

object o is the input into the “slot” that was occupied by x. So if IdŒr� D o (and r is
free for x in Q), then Id.xjo/ŒQ� D S iff IdŒQx

r� D S. In the one case, we guarantee
that object o goes into the x-place by meddling with the variable assignment. In the
other, we get the same result by meddling with the formula. This is our second result,
which draws directly upon the first.

T10.2. For any interpretation I, variable assignment d, term r, and formula Q, if
IdŒr� D o, and r is free for x in Q, then IdŒQx

r� D S iff Id.xjo/ŒQ� D S.

For arbitrary formula Q, term r and interpretation I, suppose r is free for x

in Q. By induction on the number of operator symbols in Q,

Basis: Suppose IdŒr� D o. If Q has no operator symbols, then it is a sentence
letter S or an atomic of the form Rnt1 : : : tn. In the first case, Qx

r D

Sx
r D S . So IdŒQx

r� D S iff IdŒS � D S; by SF(s), iff IŒS � D T;
by SF(s) again, iff Id.xjo/ŒS � D S; iff Id.xjo/ŒQ� D S. In the second
case, Qx

r D ŒRnt1 : : : tn�
x
r D Rnt1

x
r : : : tn

x
r. So IdŒQx

r� D S iff
IdŒRnt1

x
r : : : tn

x
r� D S; by SF(r), iff hIdŒt1 x

r� : : : IdŒtn
x
r�i 2 IŒRn�;

since IdŒr� D o, by T10.1, iff hId.xjo/Œt1� : : : Id.xjo/Œtn�i 2 IŒRn�; by
SF(r), iff Id.xjo/ŒRnt1 : : : tn� D S; iff Id.xjo/ŒQ� D S.

CHAPTER 10. MAIN RESULTS 471

Assp: For any i , 0 � i < k, if Q has i operator symbols, r is free for x in Q

and IdŒr� D o, then IdŒQx
r� D S iff Id.xjo/ŒQ� D S.

Show: If Q has k operator symbols, r is free for x in Q and IdŒr� D o, then
IdŒQx

r� D S iff Id.xjo/ŒQ� D S.

Suppose IdŒr� D o. If Q has k operator symbols, then Q is of the form
�B, B ! C , or 8vB for variable v and formulas B and C with
< k operator symbols.

(�) Suppose Q is �B. Then Qx
r D Œ�B�xr D �ŒB

x
r �. Since r is free for

x in Q, r is free for x in B; so the assumption applies to B. IdŒQx
r� D

S iff IdŒ�Bx
r � D S; by SF(�), iff IdŒBx

r � ¤ S; by assumption iff
Id.xjo/ŒB� ¤ S; by SF(�), iff Id.xjo/Œ�B� D S; iff Id.xjo/ŒQ� D S.

(!) Homework.

(8) Suppose Q is 8vB. Either there are free occurrences of x in Q or not.

(i) Suppose there are no free occurrences of x in Q. Then Qx
r is just

Q (no replacement is made). But since d and d.xjo/ make just the
same assignments to variables other than x, they make just the same
assignments to all the variables free in Q; so by T8.4, IdŒQ� D S iff
Id.xjo/ŒQ� D S. So IdŒQx

r� D S iff Id.xjo/ŒQ� D S.

(ii) Suppose there are free occurrences of x in Q. Then x is some
variable other than v , and Qx

r D Œ8vB�xr D 8vŒB
x
r �.

First, since r is free for x in Q, r is free for x in B, and v is not a
variable in r; from this, for any m 2 U, the variable assignments d and
d.vjm/ agree on assignments to variables in r; so by T8.3, IdŒr� D
Id.vjm/Œr�; so Id.vjm/Œr� D o; so the requirement of the assumption is
met for the assignment d.vjm/ and, as an instance of the assumption,
for any m 2 U, we have, Id.vjm/ŒBx

r � D S iff Id.vjm;xjo/ŒB� D S.

Now suppose Id.xjo/ŒQ� D S but IdŒQx
r� ¤ S; then Id.xjo/Œ8vB� D S

but IdŒ8vBx
r � ¤ S. From the latter, by SF(8), there is some m 2 U

such that Id.vjm/ŒBx
r � ¤ S; so by the above result, Id.vjm;xjo/ŒB� ¤ S;

so by SF(8), Id.xjo/Œ8vB� ¤ S; this is impossible. And similarly [by
homework] in the other direction. So Id.xjo/ŒQ� D S iff IdŒQx

r� D S.

If Q has k operator symbols, if r is free for x in Q and IdŒr� D o, then
IdŒQx

r� D S iff Id.xjo/ŒQ� D S.

Indct: For any Q, if r is free for x in Q and IdŒr� D o, then IdŒQx
r� D S iff

Id.xjo/ŒQ� D S.

CHAPTER 10. MAIN RESULTS 472

Perhaps the quantifier case looks more difficult than it is. The key point is that since
r is free for x in Q, changes in the assignment to v do not affect the assignment
to r. Thus the assumption applies to B for variable assignments that differ in their
assignments to v . This lets us “take the quantifier off,” apply the assumption, and
then “put the quantifier back on” in the usual way. Another way to make this point
is to see how the argument fails when r is not free for x in Q. If r is not free for x

in Q, then a change in the assignment to v may affect the assignment to r. In this
case, although IdŒr� D o, Id.vjm/Œr� might be something else. So there is no reason
to think that substituting r for x will have the same effect as assigning x to o. As we
shall see, this restriction corresponds directly to the one on axiom A4. An example
of failure for the axiom is the one (A) with which we began the chapter.

*E10.1. Complete the cases for (!) and (8) to complete the demonstration of T10.2.
You should set up the complete demonstration, but for cases completed in the
text, you may simply refer to the text, as the text refers cases to homework.

10.1.2 Soundness

We are now ready for our main proof of soundness for AD. Actually, all the parts are
already on the table. It is simply a matter of pulling them together into a complete
demonstration.

T10.3. If �
ÀD

P , then � � P . (Soundness)

Suppose �
ÀD

P . Then there is an AD derivation A D hQ1 : : :Qni of P

from premises in � , with Qn D P . By induction on the line numbers in A,
we show that for any i , � � Qi . The case when i D n is the desired result.

Basis: The first line of A is a premise or an axiom. So Q1 is either a member
of � or an instance of A1, A2, A3, A4, A5, A6 A7 or A8. The cases
for A1, A2, A3, A5, A6, A7 and A8 are parallel.

(prem) If Q1 is a member of � , then there is no interpretation where all the
members of � are true and Q1 is not; so by QV, � � Q1.

(Ax) Suppose Q1 is an instance of A1, A2, A3, A5, A6, A7 or A8 and � ²
Q1. Then by QV, there is some I such that IŒ�� D T but IŒQ1� ¤ T.
But by T7.2, T7.3, T7.4, T7.6, T7.8, T7.9, and T7.10, � Q1; so by
QV, IŒQ1� D T. This is impossible, reject the assumption: � � Q1.

(A4) If Q1 is an instance of A4, then it is of the form 8xB ! Bx
r where

term r is free for variable x in formula B. Suppose � ² Q1. Then by

CHAPTER 10. MAIN RESULTS 473

QV, there is an I such that IŒ�� D T, but IŒ8xB ! Bx
r � ¤ T. From

the latter, by TI, there is some d such that IdŒ8xB ! Bx
r � ¤ S; so

by SF(!), IdŒ8xB� D S but IdŒBx
r � ¤ S; from the first of these, by

SF(8), for any m 2 U, Id.xjm/ŒB� D S; in particular, where for some
object o, IdŒr� D o, Id.xjo/ŒB� D S; so, with r free for x in formula
B, by T10.2, IdŒBx

r � D S. This is impossible; reject the assumption:
� � Q1.

Assp: For any i , 1 � i < k, � � Qi .

Show: � � Qk .

Qk is either a premise, an axiom, or arises from previous lines by MP
or Gen. If Qk is a premise or an axiom then, as in the basis, � � Qk .
So suppose Qk arises by MP or Gen.

(MP) Homework.

(Gen) If Qk arises by Gen, then A is something like this,

i B

:::

k 8xB i Gen

where i < k and Qk D 8xB. Suppose � ² Qk; then � ² 8xB;
so by QV, there is some I such that IŒ�� D T but IŒ8xB� ¤ T; from
the latter, by TI, there is a d such that IdŒ8xB� ¤ S; so by SF(8),
there is some o 2 U, such that Id.xjo/ŒB� ¤ S. But IŒ�� D T, and by
assumption, � � B; so by QV, IŒB� D T; so by TI, for any variable
assignment h, IhŒB� D S; in particular, then, Id.xjo/ŒB� D S. This is
impossible; reject the assumption: � � Qk .

� � Qk .

Indct: For any n, � � Qn.

So if �
ÀD

P , then � � P . So AD is sound. And since AD is sound, with theorems
T9.2, T9.12 and T9.13 it follows that ND and ND+ are sound as well.

*E10.2. Complete the case for (MP) to round out the demonstration that AD is sound.
You should set up the complete demonstration, but for cases completed in the
text, you may simply refer to the text, as the text refers cases to homework.

E10.3. Consider a derivation system A4 which has axioms and rules,

CHAPTER 10. MAIN RESULTS 474

A4 A1. Any sentential form P such that � P .

A2. ` P x
t ! 9xP — where t is free for x in P

MP. Q follows from P ! Q and P

9E. 9xP ! Q follows from P ! Q — where x is not free in Q

Provide a complete demonstration that A4 is sound. You may appeal to sub-
stitution results from the text as appropriate. Hint: By the soundness of AD,
if P is a sentential form and

ÀD
P then P is among axioms of the sort (A1).

10.1.3 Consistency

The proof of soundness is the main result we set out to achieve in this section. But
before we go on, it is worth pausing to make an application to consistency. Say a set
† (Sigma) of formulas is consistent iff there is no formula A such that † ` A and
† ` �A. Consistency is thus defined in terms of derivations rather than semantic
notions. But we show,

T10.4. If there is an interpretation M such that MŒ�� D T (a model for �), then � is
consistent.

Suppose there is an interpretation M such that MŒ�� D T but � is inconsistent.
From the latter, there is a formula A such that � ` A and � ` �A; so by
T10.3, � � A and � � �A. But MŒ�� D T; so by QV, MŒA� D T and
MŒ�A� D T; so by TI, for any d, MdŒA� D S and MdŒ�A� D S; from
the second of these, by SF(�), MdŒA� ¤ S. This is impossible; reject the
assumption: if there is an interpretation M such that MŒ�� D T, then � is
consistent.

This is an interesting and important theorem. Suppose we want to show that some
set of formulas is inconsistent. For this, it is enough to derive a contradiction from
the set. But suppose we want to show that there is no way to derive a contradiction.
Merely failing to find a derivation does not show that there is not one! But, with
soundness, we can demonstrate that there is no such derivation by finding a model
for the set.

Similarly, if we want to show that � ` A, it is enough to produce the derivation.
But suppose we want to show that � ° A. Merely failing to find a derivation does
not show that there is not one! Still, as above, given soundness, we can demonstrate
that there is no derivation by finding a model on which the premises are true, with
the negation of the conclusion.

CHAPTER 10. MAIN RESULTS 475

T10.5. If there is an interpretation M such that MŒ� [f�Ag� D T, then � ° A.

The reasoning is left for homework. But the idea is very much as above. With
soundness, it is impossible to have both MŒ� [f�Ag� D T and � ` A.

Again, the result is useful. Suppose, for example, we want to show that �8xAx °
�Aa. You may be unable to find a derivation, and be able to point out flaws in
a friend’s attempt. But we show that there is no derivation by finding a model on
which both �8xAx and ��Aa are true. And this is easy. Let U D f1; 2g with
MŒa� D 1 and MŒA� D f1g.

(i) Suppose MŒ�8xAx� ¤ T; then by TI, there is some d such that MdŒ�8xAx� ¤ S;
so by SF(�), MdŒ8xAx� D S; so by SF(8), for any o 2 U, Md.xjo/ŒAx� D S; so
Md.xj2/ŒAx� D S. But d.xj2/Œx� D 2; so by TA(v), Md.xj2/Œx� D 2; so by SF(r),
2 2 MŒA�; but 2 62 MŒA�. This is impossible; reject the assumption: MŒ�8xAx� D T.
(ii) Suppose MŒ��Aa� ¤ T; then by TI, there is some d such that MdŒ��Aa� ¤ S;
so by SF(�), MdŒ�Aa� D S; and by SF(�) again, MdŒAa� ¤ S. But MŒa� D 1; so by
TA(c), MdŒa� D 1; so by SF(r), 1 62 MŒA�; but 1 2 MŒA�. This is impossible; reject the
assumption: MŒ��Aa� D T. So MŒ�8xAx� D T and MŒ��Aa� D T. So by T10.5,
�8xAx ° �Aa.

If there is a model on which all the members of � are true and �A is true, then it
is not the case that every model with � true has A true. So, with soundness, there
cannot be a derivation of A from � .

*E10.4. Provide an argument to show T10.5. Hint: The reasoning is very much as
for T10.4.

E10.5. (a) Show that f9xAx; �Aag is consistent. (b) Show that 8x.Ax ! Bx/;

�Ba ° �9xAx.

10.2 Sentential Adequacy

The proof of soundness is straightforward given methods we have used before. But
the proof of adequacy was revolutionary when Gödel first produced it in 1930. It
is easy to construct derivation systems that are not adequate. Thus, for example,
consider a system like the sentential part of AD but without A1. It is easy to see that
such a system is sound, and so that derivations without A1 do not go astray. (All
we have to do is leave the case for A1 out of the proof for soundness.) But, by our

CHAPTER 10. MAIN RESULTS 476

discussion of independence from section 11.3 (see also E8.14), there is no derivation
of A1 from A2 and A3 alone. So there are sentential expressions P such that � P ,
but for which there is no derivation. So the resultant derivation system would not be
adequate. We turn now to showing that our derivation systems are in fact adequate:
if � � P , then � ` P . Given this, with soundness, we have � � P iff � ` P , so
that our derivation systems deliver just the results they are supposed to.

Adequacy for a system like AD was first proved by Kurt Gödel in his 1930 doc-
toral dissertation. The version of the proof that we will consider is the standard one,
essentially due to L. Henkin.1 An interesting feature of these proofs is that they are
not constructive. So far, in proving the equivalence of deductive systems, we have
been able to show that there are certain derivations, by showing how to construct
them. In this case, we show that there are derivations, but without showing how to
construct them. As we shall see in Part IV, a constructive proof of adequacy for our
full predicate logic is impossible. So this is the only way to go.

The proof of adequacy is more involved than any we have encountered so far.
Each of the parts is comparable to what has gone before, and all the parts are straight-
forward. But there are enough parts that it is possible to lose the forest for the trees.
I thus propose to do the proof three times. In this section, we will prove sentential
adequacy — that for expressions in a sentential language, if � � P , then � ` P .
This should enable us to grasp the overall shape of the argument without interference
from too many details. We will then consider a basic version of the quantificational
argument and, after addressing a few complications, put it all together for the full
version. Notation and theorem numbers are organized to preserve parallels between
the cases.

10.2.1 Basic Idea

The basic idea is straightforward: Let us restrict ourselves to an arbitrary sentential
language Ls and to sentential semantic rules. Derivations are automatically restricted
to sentential rules by the restricted language. So derivations and semantics are par-
ticularly simple. For formulas in this language, our goal is to show that if � �

s
P ,

then � ` P . We can see how this works with just a couple of preliminaries.
We begin with a definition and a theorem. As before, let us say,

Con A set † of formulas is consistent iff there is no formula A such that † ` A

and † ` �A.
1Henkin, “Completeness of the First-Order Calculus.” Kurt Gödel, “Die Vollständigkeit der Ax-

iome des Logischen Funktionenkalküls.” English translation in From Frege to Gödel, reprint in Gödel’s
Collected Works.

CHAPTER 10. MAIN RESULTS 477

So consistency is a syntactical notion. A set of formulas is consistent just in case
there is no way to derive a contradiction from it. Now for the theorem,

T10.6s. For any set of formulas † and sentence P , if † ° �P , then † [fP g is
consistent.

Suppose † ° �P , but † [fP g is not consistent. From the latter, there is
some A such that†[fP g ` A and†[fP g ` �A. So by DT,† ` P ! A

and † ` P ! �A; by T3.10, ` ��P ! P ; so by T3.2, † ` ��P ! A,
and † ` ��P ! �A; but by A3, ` .��P ! �A/! Œ.��P ! A/!

�P �; so by two instances of MP, † ` �P . But this is impossible; reject the
assumption: if † ° �P , then † [fP g is consistent.

The idea is simple: if � [fP g is inconsistent, then by reasoning as for �I in ND,
�P follows from � alone; so if �P cannot be derived from � alone, then � [fP g
is consistent. Notice that, insofar as the language is sentential, the derivation does
not include any applications of Gen, so the applications of DT are sure to meet the
restriction on Gen.

In the last section, we saw that any set with a model is consistent. Now suppose
we knew the converse, that any consistent set has a model.

.�/ For any consistent set of formulas †0, there is an interpretation M0 such that
M0Œ†0� D T.

This sets up the key connection between syntactic and semantic notions, between
consistency on the one hand, and truth on the other, that we will need for adequacy.
Schematically, then, with .�/ we have the following,

1. � [f�P g has a model � � 6�
s

P

2. � [f�P g is consistent � � [f�P g has a model .�/

3. � [f�P g is not consistent � � ` P

(2) is just .�/. (1) is by simple semantic reasoning: Suppose � [f�P g has a model;
then there is some M such that MŒ� [f�P g� D T; so MŒ�� D T and MŒ�P � D T;
from the latter, by ST(�), MŒP � ¤ T; so MŒ�� D T and MŒP � ¤ T; so by SV, � 6�

s
P .

(3) is by straightforward syntactic reasoning: Suppose � [f�P g is not consistent;
then by an application of T10.6s , � ` ��P ; but by T3.10, ` ��P ! P ; so by
MP, � ` P . Now suppose � �

s
P ; then by (1), reading from right to left, � [f�P g

does not have a model; so by (2), again from right to left, �[f�P g is not consistent;

CHAPTER 10. MAIN RESULTS 478

so by (3), � ` P . So if � �
s

P , then � ` P , which was to be shown. Of course,
knowing that there is some way to derive P is not the same as knowing what that way
is. All the same, .�/ tells us that there must exist a model of a certain sort, from which
it follows that there must exist a derivation. And the work of our demonstration of
adequacy reduces to a demonstration of .�/.

So we need to show that every consistent set of formulas†0 has an interpretation
M0 such that M0Œ†0� D T. Here is the basic idea: We show that any consistent †0 is
a subset of a corresponding “big” set †00 specified in such a way that it must have a
model M0 — which in turn is a model for the smaller †0. Following the arrows,

†0

6

†00
Z
Z~

M0
�
�=

Given a consistent †0, we show that there is the big set †00. From this we show that
there must be an M0 that is a model not only for †00 but for †0 as well. So if †0 is
consistent, then it has a model. We proceed through a series of theorems to show that
this can be done.

10.2.2 Gödel Numbering

In constructing our big sets, we will want to consider formulas, for inclusion or
exclusion, serially — one after another. For this, we need to “line them up” for
consideration. Thus, in this section we show,

T10.7s. There is an enumeration Q1;Q2 : : : of all formulas in Ls .

The proof is by construction. We develop a method by which the formulas
can be lined up. The method is interesting in its own right, and foreshadows
methods from Gödel’s Incompleteness Theorem for arithmetic.

In subsection 2.2.1, we required that any sentential language Ls has countably many
sentence letters, which can be ordered into a series, S0, S1. . . . Assume some such
series. We want to show that the formulas of Ls can be so ordered as well. Begin by
assigning to each symbol ˛ (alpha) in the language an integer gŒ˛�, called its Gödel
Number.

a. gŒ.� D 3

CHAPTER 10. MAIN RESULTS 479

b. gŒ/� D 5

c. gŒ�� D 7

d. gŒ!� D 9

e. gŒSn� D 11C 2n

So, for example, gŒS0� D 11 and gŒS4� D 11C2�4 D 19. Clearly each symbol gets
a unique Gödel number, and Gödel numbers for individual symbols are odd positive
integers.

Now we are in a position to assign a Gödel number to each formula as follows:
Where ˛0; ˛1 : : : ˛n are the symbols, in order from left to right, in some expression
Q,

gŒQ� D 2gŒ˛0� � 3gŒ˛1� � 5gŒ˛2� � : : : � n
gŒ˛n�

where 2, 3, 5. . . n are the first n prime numbers. So, for example, gŒ��S0� D

27 � 37 � 511; similarly, gŒ�.S0 ! S4/� D 27 � 33 � 511 � 79 � 1119 � 135 D

15463; 36193; 79608; 90364; 71042; 41201; 87066; 87500; 00000 — a very big inte-
ger! All the same, it is an integer, and it is clear that every expression is assigned to
some integer.

Further, different expressions get different Gödel numbers. It is a theorem of
arithmetic that every integer is uniquely factored into primes (see the arithmetic for
Gödel numbering and more arithmetic for Gödel numbering references). So a given
integer can correspond to at most one formula: Given a Gödel number, we can find
its unique prime factorization; then if there are seven 2s in the factorization, the first
symbol is �; if there are seven 3s, the second symbol is �; if there are eleven 5s,
the third symbol is S0; and so forth. Notice that numbers for individual symbols are
odd, where numbers for expressions are even (where the number for an atomic comes
out odd when it is thought of as a symbol, but then even when it is thought of as a
formula).

The point is not that this is a practical, or a fun, procedure. Rather, the point is
that we have integers associated with each expression of the language. Given this,
we can take the set of all formulas, and order its members according to their Gödel
numbers — so that there is an enumeration Q1, Q2. . . of all formulas. And this is
what was to be shown.

E10.6. Find Gödel numbers for the following sentences (for the last, you need not
do the calculation).

S7 �S0 S0 ! �.S1 ! �S0/

CHAPTER 10. MAIN RESULTS 480

Some Arithmetic Relevant to Gödel Numbering
Say an integer i has a “representation as a product of primes” if there are some
primes pa; pb : : : pj such that pa � pb � : : : � pj D i . We understand a single
prime p to be its own representation.

G1. Every integer > 1 has at least one representation as a product of primes.

Basis: 2 is prime and so is its own representation; so the first integer > 1 has
a representation as a product of primes.

Assp: For any i , 1 < i < k, i has a representation as a product of primes.
Show: k has a representation as a product of primes.

If k is prime, the result is immediate; so suppose there are some i; j <
k such that k D i � j ; by assumption i has a representation as a
product of primes pa�: : :�pb and j has a representation as a product
of primes qa � : : :�qb; so k D i � j D pa � : : :�pb �qa � : : :�qb
has a representation as a product of primes.

Indct: Any i > 1 has a representation as a product of primes.

Corollary: any integer > 1 is divided by at least one prime.

G2. There are infinitely many prime numbers.

Suppose the number of primes is finite; then there is some list p1, p2. . .pn of
all the primes; consider q D p1�p2� : : :�pnC1; no pi in the list p1 : : : pn
divides q evenly, since each leaves remainder 1; but by the corollary to (G1),
q is divided by some prime; so some prime is not on the list; reject the
assumption: there are infinitely many primes.

Note: Sometimes q, calculated this way, is itself prime: when the list is f2g,
q D 2C1 D 3, and 3 is prime. Similarly, 2�3C1 D 7, 2�3�5C1 D 31,
2�3�5�7C1 D 211, and 2�3�5�7�11C1 D 2311, where 7, 31, 211,
and 2311 are all prime. But 2�3�5�7�11�13C1 D 30031 D 59�509.
So we are not always finding a prime not on the list, but rather only showing
that there is a prime not on it.

G3. For any i > 1, if i is the product of the primes p1, p2 : : : pa, then no distinct
collection of primes q1, q2 : : : qb is such that i is the product of them. (The
Fundamental Theorem of Arithmetic)

For a proof, see the more arithmetic for Gödel numbering reference in the
corresponding part of the next section.

CHAPTER 10. MAIN RESULTS 481

E10.7. Determine the expressions that have the following Gödel numbers.

49 1944 27 � 33 � 511 � 79 � 117 � 1313 � 175

E10.8. Which would come first in the official enumeration of formulas, S1 ! �S2
or S2 ! �S2? Explain. Hint: you should be able to do this without actually
calculating the Gödel numbers.

10.2.3 The Big Set

Recall that a set† is consistent iff there is no A such that† implies both A and�A.
Now, a set † is maximal iff for any A the set implies one or the other.

Max A set † of formulas is maximal iff for any sentence A, † ` A or † ` �A.

Again, this is a syntactical notion. If a set is maximal, then it implies A or �A for
any sentence A; if it is consistent, then it does not imply both. We set out to construct
a big set †00 from †0, and show that †00 is both maximal and consistent.

Cns†00 Construct †00 from †0 as follows: By T10.7s , there is an enumeration,
Q1, Q2. . . of all the formulas in Ls . Consider this enumeration, and let �0
(Omega0) be the same as †0. Then for any i > 0, let

�i D �i�1 if �i�1 ` �Qi

else,
�i D �i�1 [fQig if �i�1 ° �Qi

then,
†00 D

S
i�0�i — that is, †00 is the union of all the �i s

Beginning with set †0 (D �0), we consider the formulas in the enumeration Q1,
Q2. . . one-by-one, adding a formula to the set just in case its negation is not already
derivable. †00 contains all the members of †0 together with all the formulas added
this way. Observe that †0 � †00. One might think of the �i s as constituting a big
“sack” of formulas, and the Qi s as coming along on a conveyor belt: for a given Qi ,
if there is no way to derive its negation from formulas already in the sack, we throw
the Qi in; otherwise, we let it go on by. Of course, this is not a procedure we could
complete in finite time. Rather, we give a logical condition which specifies, for any
Qi in the language, whether it is to be included in †00 or not. The important point is
that some †00 meeting these conditions exists.

CHAPTER 10. MAIN RESULTS 482

As an example, suppose †0 D f�A ! Bg and consider an enumeration which
begins A, �A, B , �B Then,

(F)

�0 D †
0; so �0 D f�A! Bg.

Q1 D A, and �0 ° �A; so �1 D f�A! Bg [fAg D f�A! B;Ag.

Q2 D �A, and �1 ` ��A; and �2 is unchanged; so �2 D f�A! B;Ag.

Q3 D B , and �2 ° �B; so �3 D f�A! B;Ag [fBg D f�A! B;A;Bg.

Q4 D �B , and�3 ` ��B; and�4 is unchanged; so�4 D f�A! B;A;Bg.

So we include Qi each time its negation is not implied. Ultimately, we will use this
set to construct a model. For now, though, the point is simply to understand the
condition under which a formula is included or excluded from the set.

We now show that if†0 is consistent, then†00 is maximal and consistent. Perhaps
the first is obvious: We guarantee that †00 is maximal by including Qi as a member
whenever �Qi is not already a consequence.

T10.8s. If †0 is consistent, then †00 is maximal and consistent.

The proof comes to the demonstration of three results. Given the assumption
that †0 is consistent, we show, (a) †00 is maximal; (b) each �i is consistent;
and use this to show (c), †00 is consistent. Suppose †0 is consistent.

(a) †00 is maximal. Suppose otherwise. Then there is some Qi such that
both †00 ° Qi and †00 ° �Qi . For this i , by construction, each member
of �i�1 is in †00; so if �i�1 ` �Qi then †00 ` �Qi ; but †00 ° �Qi ; so
�i�1 ° �Qi ; so by construction, �i D �i�1 [fQig; and by construction
again, Qi 2 †

00; so †00 ` Qi . This is impossible; reject the assumption: †00

is maximal.

(b) Each �i is consistent. By induction on the series of �i s.

Basis: �0 D †0 and †0 is consistent; so �0 is consistent.
Assp: For any i , 0 � i < k, �i is consistent.

Show: �k is consistent.
�k is either �k�1 or �k�1 [fQkg. Suppose the former; by assump-
tion, �k�1 is consistent; so �k is consistent. Suppose the latter; then
by construction, �k�1 ° �Qk; so by T10.6s , �k�1 [fQkg is con-
sistent; so �k is consistent. So, either way, �k is consistent.

Indct: For any i , �i is consistent.

CHAPTER 10. MAIN RESULTS 483

(c) †00 is consistent. Suppose†00 is not consistent; then there is some A such
that†00 ` A and†00 ` �A. Consider derivations D1 and D2 of these results,
and the premises Qi : : :Qj of these derivations. Where Qj is the last of these
premises in the enumeration of formulas, by the construction of †00, each of
Qi : : :Qj must be a member of �j ; so D1 and D2 are derivations from �j ;
so �j is inconsistent. But by the previous result, �j is consistent. This is
impossible; reject the assumption: †00 is consistent.

Because derivations of A and�A have only finitely many premises, all the premises
in a derivation of a contradiction must show up in some �j ; so if †00 is inconsistent,
then some �j is inconsistent. But no �j is inconsistent. So †00 is consistent. So
we have what we set out to show. †0 � †00, and if †0 is consistent, then †00 is both
maximal and consistent.

E10.9. (i) Suppose †0 D fA ! �Bg and the enumeration of formulas begins A,
�A, B , �B What are �0, �1, �2, �3, and �4? (ii) What are they
when the enumeration begins B , �B , A, �A. . . ? In each case, produce a
(sentential) model to show that the resultant �4 is consistent.

10.2.4 The Model

We now construct a model M0 for †0. In this sentential case, the specification is
particularly simple.

CnsM0 For any atomic S , let M0ŒS � D T iff †00 ` S .

Notice that there clearly exists some such interpretation M0: We assign T to every
sentence letter that can be derived from †00, and F to the others. It will not be the
case that we are in a position to do all the derivations, and so to know what are all
the assignments to the atomics. Still, it must be that any atomic either is or is not
a consequence of †0, and so that there exists a corresponding interpretation M0 on
which those sentence letters either are or are not assigned T.

We now want to show that if †0 is consistent, then M0 is a model for †0 — that if
†0 is consistent then M0Œ†0� D T. As we shall see, this results immediately from the
following theorem.

T10.9s. If †0 is consistent, then for any sentence B, of Ls , M0ŒB� D T iff †00 ` B.

Suppose †0 is consistent. Then by T10.8s , †00 is maximal and consistent.
Now by induction on the number of operators in B,

CHAPTER 10. MAIN RESULTS 484

Basis: If B has no operators, then it is an atomic of the sort S . But by the
construction of M0, M0ŒS � D T iff †00 ` S ; so M0ŒB� D T iff †00 ` B.

Assp: For any i , 0 � i < k, if B has i operator symbols, then M0ŒB� D T iff
†00 ` B.

Show: If B has k operator symbols, then M0ŒB� D T iff †00 ` B.
If B has k operator symbols, then it is of the form �P or P ! Q

where P and Q have < k operator symbols.
(�/ Suppose B is �P . (i) Suppose M0ŒB� D T; then M0Œ�P � D T; so

by ST(�), M0ŒP � ¤ T; so by assumption, †00 ° P ; so by maximality,
†00 ` �P ; which is to say,†00 ` B. (ii) Suppose†00 ` B; then†00 `
�P ; so by consistency, †00 ° P ; so by assumption, M0ŒP � ¤ T; so
by ST(�), M0Œ�P � D T; which is to say, M0ŒB� D T. So M0ŒB� D T
iff †00 ` B.

(!) Suppose B is P ! Q. (i) Suppose M0ŒB� D T; then M0ŒP ! Q� D

T; so by ST(!), M0ŒP � ¤ T or M0ŒQ� D T; so by assumption,†00 ° P

or †00 ` Q. Suppose the latter; by A1, ` Q ! .P ! Q/; so by MP,
†00 ` P ! Q. Suppose the former; then by maximality, †00 ` �P ;
but by T3.9, ` �P ! .P ! Q/; so by MP, †00 ` P ! Q. So in
either case, †00 ` P ! Q; where this is to say, †00 ` B. (ii) Suppose
†00 ` B but M0ŒB� ¤ T; by [homework], this is impossible: so if
†00 ` B, then M0ŒB� D T. So M0ŒB� D T iff †00 ` B.

If B has k operator symbols, then M0ŒB� D T iff †00 ` B.

Indct: For any B, M0ŒB� D T iff †00 ` B.

So if †0 is consistent, then for any B 2 †00, M0ŒB� D T iff †00 ` B.
The key to this is that †00 is both maximal and consistent. In (F), for example,

�0 D f�A ! Bg; so �0 ° A and �0 ° B; if we were simply to follow our
construction procedure as applied to this set, the result would have M0ŒA� ¤ T and
M0ŒB� ¤ T; but then M0Œ�A ! B� ¤ T and there is no model for �0. But �4 has
A and B as members; so �4 ` A and �4 ` B . So by the construction procedure,
M0ŒA� D T and M0ŒB� D T; so M0Œ�A ! B� D T. Thus it is the construction
with maximality and consistency of †00 that puts us in a position to draw the parallel
between the implications of†00 and what is true on M0. It is now a short step to seeing
that we have a model for †0 and so .�/ that we have been after.

*E10.10. Complete the second half of the conditional case to complete the proof of
T10.9s . You should set up the entire induction, but may refer to the text for

CHAPTER 10. MAIN RESULTS 485

parts completed there, as the text refers to homework.

E10.11. (i) Where †0 D fA! �Bg, and the enumeration of formulas are as in the
first part of E10.9, what assignments does M0 make to A and B? (ii) What
assignments does it make on the second enumeration? Use a truth table to
show, for each case, that the assignments result in a model for †0. Explain.

10.2.5 Final Result

The proof of sentential adequacy is now a simple matter of pulling together what we
have done. First, it is a simple matter to show,

T10.10s. If †0 is consistent, then M0Œ†0� D T. .�/

Suppose †0 is consistent but M0Œ†0� ¤ T. From the latter, there is some
formula B 2 †0 such that M0ŒB� ¤ T. Since B 2 †0, by construction,
B 2 †00; so †00 ` B; so, since †0 is consistent, by T10.9s , M0ŒB� D T. This
is impossible; reject the assumption: if †0 is consistent, then M0Œ†0� D T.

That is it! Going back to the beginning of our discussion of sentential adequacy, all
we needed was .�/, and now we have it. So the final argument is as sketched before:

T10.11s. If � �
s

P , then � ` P . (sentential adequacy)

Suppose � �
s

P but � ° P . Say, for the moment, that � ` ��P ; by T3.10,
` ��P ! P ; so by MP, � ` P ; but this is impossible; so � ° ��P .
Given this, by T10.6s , �[f�P g is consistent; so by T10.10s , there is a model
M0 such that M0Œ� [f�P g� D T; so M0Œ�P � D T; so by ST(�), M0ŒP � ¤ T;
so M0Œ�� D T but M0ŒP � ¤ T; so by SV, � 6�

s
P . This is impossible; reject

the assumption: if � �
s

P , then � ` P .

Try again to get the complete picture in your mind: The key is that consistent sets
always have models. If there is no derivation of P from � , then � [f�P g is consis-
tent; and if � [f�P g is consistent, then it has a model — so that � 6�

s
P . Thus, put

the other way around, if � �
s

P , then there is a derivation of P from � . We get the
key point, that consistent sets have models, by finding a relation between consistent,
and maximal consistent sets. If a set is both maximal and consistent, then it contains
enough information about its atomics that a model for its atomics is a model for the
whole.

CHAPTER 10. MAIN RESULTS 486

It is obvious that the argument is not constructive — we do not see how to show
that � ` P whenever � �

s
P . But it is interesting to see why. The argument turns

on the existence of our big sets under certain conditions, and so on the existence of
models. We show that the sets must exist and have certain properties, though we are
not in a position to find all their members. This puts us in a position to know the
existence of derivations, though we do not say what they are.2

E10.12. Suppose our primitive operators are� and^ and the derivation system is A2
from E3.4 on p. 81. Present a complete demonstration of adequacy for this
derivation system — with all the definitions and theorems. You may simply
appeal to the text for results that require no change.

10.3 Quantificational Adequacy: Basic Version

As promised, the demonstration of quantificational adequacy is parallel to what we
have seen. Return to a quantificational language and to our regular quantificational
semantic and derivation notions. The goal is to show that if � � P , then � ` P . Cer-
tain complications are avoided if we suppose that the language L0 includes infinitely
many constants not in � , and does not include the ‘D’ symbol for equality. The con-
stants not already in � are required for the construction of our big sets. And without
D in the language, the model specification is simplified. We will work through the
basic argument in this section and, dropping constraints on the language, return to
the general case in the next. If you are confused at any stage, it may help to refer
back to the parallel section for the sentential case.

Before launching into the main argument, it will be helpful to have a preliminary
theorem. Where D D hB1 : : :Bni is an AD derivation, and †0 D fC1 : : :Cng is a
set of formulas, for some constant a and variable x, say Da

x D hB1
a
x : : :Bn

a
xi and

†0 ax D fC1
a
x : : :Cn

a
xg. By induction on the line numbers in D, we show,

T10.12. If D is a derivation from †0, and x is a variable that does not appear in D,
then for any constant a, Da

x is a derivation from †0 ax .

Basis: B1 is either a member of †0 or an axiom.

(prem) If B1 is a member of†0, then B1
a
x is a member of†0 ax ; so hB1

a
xi is

a derivation from †0 ax .

2In fact, there are constructive approaches to sentential adequacy. See, for example, Lemma 1.13
and Proposition 1.14 of Mendelson, Introduction to Mathematical Logic. Our primary purpose, how-
ever, is to set up the argument for the quantificational case, where such methods do not apply.

CHAPTER 10. MAIN RESULTS 487

(eq) If B1 is an equality axiom, A6, A7 or A8, then it includes no con-
stants; so B1 D B1

a
x ; so B1

a
x is an equality axiom, and hB1

a
xi is a

derivation from †0 ax .
(A1) If B1 is an instance of A1, then it is of the form, P ! .Q ! P /; so

B1
a
x is P a

x ! .Qa
x ! P a

x /; but this is an instance of A1; so if B1

is an instance of A1, then B1
a
x is an instance of A1, and hB1

a
xi is a

derivation from †0 ax .
(A2) Homework.
(A3) Homework.
(A4) If B1 is an instance of A4, then it is of the form, 8vP ! P v

t , for
some variable v and term t that is free for v in P . So B1

a
x D

Œ8vP ! P v
t �

a
x D Œ8vP �ax ! ŒP v

t �
a
x . But since x does not ap-

pear in D, x ¤ v; so Œ8vP �ax D 8vŒP a
x �. And by T8.7, ŒP v

t �
a
x D

ŒP a
x �

v
ta

x
. So B1

a
x D 8vŒP a

x �! ŒP a
x �

v
ta

x
; and since x is new toD and

t is free for v in P , ta
x is free for v in P a

x ; so 8vŒP a
x � ! ŒP a

x �
v
ta

x

is an instance of A4; so if B1 is an instance of A4, then B1
a
x is an

instance of A4, and hB1
a
xi is a derivation from †0 ax .

(A5) Homework.
Assp: For any i , 1 � i < k, hB1

a
x : : :Bi

a
xi is a derivation from †0 ax .

Show: hB1
a
x : : :Bk

a
xi is a derivation from †0 ax .

Bk is a member of †0, an axiom, or arises from previous lines by MP
or Gen. If Bk is a member of †0 or an axiom then, by reasoning as in
the basis, hB1 : : :Bki is a derivation from †0 ax . So two cases remain.

(MP) Homework.
(Gen) If Bk arises by Gen, then there are some lines in D,

i P

:::

k 8vQ i Gen

where i < k and Bk D 8vP . By assumption P a
x is a member of

the derivation hB1
a
x : : :Bk�1

a
xi from †0 ax ; so 8vP a

x follows in this
new derivation by Gen. So hB1

a
x : : :Bk

a
xi is a derivation from †0 ax .

So hB1
a
x : : :Bk

a
xi is a derivation from †0 ax .

Indct: For any n, hB1
a
x : : :Bn

a
xi is a derivation from †0 ax .

The reason this works is that none of the justifications change: switching x for a

leaves each line justified for the same reasons as before. The only sticking point

CHAPTER 10. MAIN RESULTS 488

may be the case for A4. But we did the real work for this by induction in T8.7.
And that result should be intuitive, once we see what it says. Given this, the rest is
straightforward.

*E10.13. Finish the cases for A2, A3, A5 and MP to complete the proof of T10.12.
You should set up the complete demonstration, but may refer to the text for
cases completed there, as the text refers cases to homework.

E10.14. Where †0 D fAbg and D is as follows,

1. 8x�Ax ! �Ab A4
2. .8x�Ax ! �Ab/! .��Ab ! �8x�Ax/ T3.13
3. ��Ab ! �8x�Ax 2,1 MP
4. Ab ! ��Ab T3.11
5. Ab ! �8x�Ax 4,3 T3.2
6. Ab prem
7. �8x�Ax 5,6 MP
8. 9xAx 7 abv

apply T10.12 to show that Dby is a derivation from †0 by . Do any of the justi-
fications change? Explain.

10.3.1 Basic Idea

As before, our main argument turns on the idea that every consistent set has a model.
Thus we begin with a definition and a theorem.

Con A set † of formulas is consistent iff there is no formula A such that † ` A

and † ` �A.

So a set of formulas is consistent just in case there is no way to derive a contradiction
from it. Of course, now we are working with full quantificational languages, and so
with our complete quantificational derivation systems.

For the following theorem, notice that † is a set of formulas, and P a sentence
(a distinction without a difference in the sentential case). Again as before,

T10.6. For any set of formulas † and sentence P , if † ° �P , then † [fP g is
consistent.

For some sentence P , suppose† ° �P but†[fP g is not consistent. From
the latter, there is some formula A such that † [fP g ` A and † [fP g `

CHAPTER 10. MAIN RESULTS 489

�A; since P is a sentence, it has no free variables; so by DT, † ` P ! A

and † ` P ! �A; by T3.10, ` ��P ! P ; so by T3.2, † ` ��P ! A

and † ` ��P ! �A; but by A3, ` .��P ! �A/! Œ.��P ! A/!

�P �; so by two instances of MP, † ` �P . This is impossible; reject the
assumption: if † ° �P , then † [fP g is consistent.

Insofar as P is required to be a sentence, the restriction on applications of DT is sure
to be met: since P has no free variables, no application of Gen is to a variable free
in P . So T10.6 does not apply to arbitrary formulas.

To the extent that T10.6 plays a direct role in our basic argument for adequacy,
this point that it does not apply to arbitrary formulas might seem to present a problem
about reaching our general result, that if � � P then � ` P , which is supposed to
apply in the arbitrary case. But there is a way around the problem. For any formula
P , let its (universal) closure P c be P prefixed by a universal quantifier for every
variable free in P . To make P c unique, for some enumeration of variables, x1;x2 : : :

let the quantifiers be in order of ascending subscripts. So if P has no free variables,
P c D P ; if x1 is free in P , then P c D 8x1P ; if x1 and x3 are free in P , then
P c D 8x18x3P ; and so forth. So for any formula P , P c is a sentence. As it turns
out, we will be able to argue about arbitrary formulas P , by using their closures P c

as intermediaries.
Suppose that the members of � [f�P cg D †0 are formulas of L0. Then it will

be sufficient for us to show that any consistent set of this sort has a model.

.?/ For any consistent set †0 of formulas in L0, there is an interpretation M0 such
that M0Œ†0� D T.

Again, this sets up the key connection between syntactic and semantic notions —
between consistency on the one hand, and truth on the other — that we will need for
adequacy. Supposing .?/ we have the following,

1. � [f�P cg has a model � � 6� P

2. � [f�P cg is consistent � � [f�P cg has a model .?/

3. � [f�P cg is not consistent � � ` P

(2) is just .?/. Observe that (1) and (3) switch between P c and P . (1) is by semantic
reasoning: Suppose � [f�P cg has a model; then there is some M such that MŒ� [
f�P cg� D T; so MŒ�� D T and MŒ�P c� D T; from the latter, by TI, for arbitrary
d, MdŒ�P c� D S; so by SF(�), MdŒP

c� ¤ S; so by TI, MŒP c� ¤ T; so by repeated

CHAPTER 10. MAIN RESULTS 490

applications of T7.7 on page 371, MŒP � ¤ T; so MŒ�� D T and MŒP � ¤ T; so by
QV, � 6� P . (3) is by syntactic reasoning: Suppose � [f�P cg is not consistent;
then since P c is a sentence, by an application of T10.6, � ` ��P c ; but by T3.10,
` ��P c ! P c ; so by MP, � ` P c ; and by repeated applications of A4 and MP,
� ` P .

Now suppose � � P ; then from (1), � [f�P cg does not have a model; so by
(2), � [f�P cg is not consistent; so by (3), � ` P . So if � � P , then � ` P ,
and this is the result we want. T7.7, according to which MŒP � D T iff MŒ8xP � D T,
along with A4 and Gen, which let us derive P from 8xP and vice versa, bridge
between P and P c so that our suppositions about formulas can be converted into
claims about sentences and then back again.

Again, it remains to show .?/, that every consistent set †0 of formulas has a
model. And, again, our strategy is to find a “big” set related to †0 which can be used
to specify a model for †0.

10.3.2 Gödel Numbering

As before, in constructing our big sets, we will want to line up expressions serially —
one after another. The method merely expands our approach for the sentential case.

T10.7. There is an enumeration Q1, Q2 : : : of all the formulas, terms, and the like,
in L0.

The proof is again by construction: We develop a method by which all the
expressions of L0 can be lined up. Then the collection of all formulas, taken
in that order, is an an enumeration of all formulas; the collection of all terms,
taken in that order, is an enumeration of all terms; and so forth.

Insofar as the collections of variable symbols, constant symbols, function symbols,
sentence letters, and relation symbols in any quantificational language are count-
able, they are capable of being sorted into series, x0, x1 : : : and a0, a1 : : : and hn0 ,
hn1 : : : and Rn

0 , Rn
1 : : : for variables, constants, function symbols and relation sym-

bols, respectively (where we think of sentence letters as 0-place relation symbols).
Supposing that they are sorted into such series, begin by assigning to each symbol ˛
in L0 an integer gŒ˛� called its Gödel Number.

a. gŒ.� D 3 f. gŒ8� D 13

b. gŒ/� D 5 g. gŒxi � D 15C 10i

c. gŒ�� D 7 h. gŒai � D 17C 10i

d. gŒ!� D 9 i. gŒhni � D 19C 10.2
n � 3i /

CHAPTER 10. MAIN RESULTS 491

*e. gŒD� D 11 j. gŒRn
i � D 21C 10.2

n � 3i /

Officially, we do not yet have ‘D’ in the language, but it is easy enough to leave
it out for now. So, for example, gŒx0� D 15, gŒx1� D 15 C 10 � 1 D 25, and
gŒR2

1� D 21C 10.2
2 � 31/ D 141.

To see that each symbol gets a distinct Gödel number, first notice th at numbers
in different categories cannot overlap: Each of (a) - (f) is obviously distinct and
� 13. But (g) - (j) are all greater than 13, and when divided by 10, the remainder is
5 for variables, 7 for constants 9 for function symbols, and 1 for relation symbols;
so variables, constants, and function symbols all get different numbers. Second,
different symbols get different numbers within the categories. This is obvious except
in cases (i) and (j). For these we need to see that each n=i combination results in a
different multiplier.

Suppose this is not so, that there are some combinations n; i and m; j such that 2n �
3i D 2m � 3j but n ¤ m or i ¤ j . If n D m then, dividing both sides by 2n, we
get 3i D 3j , so that i D j . So suppose n ¤ m and, without loss of generality, that
n > m. Dividing each side by 2m and 3i , we get 2n�m D 3j�i ; since n > m, n�m is
a positive integer; so 2n�m is > 1 and even. But 3i�j is either < 1 or odd. Reject the
assumption: if 2n � 3i D 2m � 3j , then n D m and i D j .

So each n=i combination gets a different multiplier, and we conclude that each sym-
bol gets a different Gödel number. (This result is a special case of the Fundamental
theorem of Arithmetic treated in the arithmetic fore Gödel numbering and more arith-
metic for Gödel numbering references.)

Now, as before, assign Gödel numbers to expressions as follows: Where ˛0; ˛1
: : : ˛n are the symbols, in order from left to right, in some expression Q,

gŒQ� D 2gŒ˛0� � 3gŒ˛1� � 5gŒ˛2� � : : : � n
gŒ˛n�

where 2, 3, 5. . . n are the first n prime numbers. So, for example, gŒ��R2
1x0x1� D

27 � 37 � 5141 � 715 � 1125 — a relatively large integer (one with over 130 digits)!
All the same, it is an integer, and different expressions get different Gödel numbers.
Given a Gödel number, we can find the corresponding expression by finding its prime
factorization; then if there are seven 2s in the factorization, the first symbol is �; if
there are seven 3s, the second symbol is �; if there are one hundred forty one 5s,
the third symbol is R2

1; and so forth. Notice that numbers for individual symbols are
odd, where numbers for expressions are even.

So we can take the set of all formulas, the set of all terms, or whatever, and order
their members according to their Gödel numbers — so that there is an enumeration
Q1, Q2 : : : of all formulas, terms, and so forth. And this is what was to be shown.

CHAPTER 10. MAIN RESULTS 492

More Arithmetic Relevant to Gödel Numbering

G3. For any i > 1, if i is the product of the primes p1, p2 : : : pa, then no distinct collec-
tion of primes q1, q2 : : : qb is such that i is the product of them. (The Fundamental
Theorem of Arithmetic)

Basis: The first integer � 1 D 2; but the only collection of primes such that their
product is equal to 2 is the collection containing just 2 itself; so no distinct
collection of primes is such that 2 is the product of them.

Assp: For any i , 1 � i < k, if i is the product of primes p1 : : : pa, then no distinct
collection of primes q1 : : : qb is such that i is the product of them.

Show: k is such that if it is the product of the primes p1 : : : pa, then no distinct
collection of primes q1 : : : qb is such that k is the product of them.

Suppose there are distinct collections of primes p1 : : : pa and q1 : : : qb such
that k D p1� : : :�pa D q1� : : :�qb; divide out terms common to both lists
of primes; then for some subclasses of the original lists, n D p1 � : : :�pc D
q1 � : : : � qd , where no member of p1 : : : pc is a member of q1 : : : qd and
vice versa (of course this p1 may be distinct from the one in the original list,
and so forth). So p1 ¤ q1; suppose, without loss of generality, that p1 > q1;
and let m D q1.n=q1 � n=p1/ D n � .q1=p1/n D n � q1 � p2 � : : : � pc .

Some preliminary results: (i) m < n � k; so m < k. Further, n=q1 and
n=p1 are integers, with the first greater than the second; so the difference is
an integer > 0; any prime is > 1; so q1 is > 1; so the product of q1 and
.n=q1 � n=p1/ is > 1; so m > 1. So the inductive assumption applies to m.
(ii) q1 divides n and q1 divides q1�p2�: : :�pc ; so Œn�q1�p2�: : :�pc �=q1
is an integer; so m=q1 is an integer, and q1 divides m. (iii) .p1 � q1/=q1 D
p1=q1�1; since p1 is prime, this is no integer; so q1 does not divide .p1�q1/.

Notice that m D .p1 � q1/.n=p1/; either p1 � q1 D 1 or it has some prime
factorization, and n=p1 has a prime factorization, p2 � : : : � pc ; the product
of the factorization(s) is a prime factorization of m. Given the cancellation of
common terms to get n, q1 is not a member of p2 � : : : � pc ; by (iii), q1 is
not a member of the factorization of p1 � q1; so q1 is not a member of this
factorization ofm. By (ii), q1 dividesm, and however many times it goes into
m, by (G1), that number has a prime factorization; the product of q1 and this
factorization is a prime factorization of m; so q1 is a member of some prime
factorization of m. But by (i), the inductive assumption applies to m; so m
has only one prime factorization. Reject the assumption: there are no distinct
collections of primes, p1 : : : pa and q1 : : : qb such that k D p1 � : : : � pa D
q1 � : : : � qb .

Indct: For any i > 1, if i is the product of the primes p1, p2 : : : pa, then no distinct
collection of primes q1, q2 : : : qb is such that i is the product of them.

CHAPTER 10. MAIN RESULTS 493

E10.15. Find Gödel numbers for each of the following. Treat the first as a simple
symbol. (For the last, you need not do the calculation!)

R2
3 h11x1 8x2R

2
1a2x2

E10.16. Determine the objects that have the following Gödel numbers.

61 213 � 315 � 53 � 715 � 1111 � 1315 � 175

10.3.3 The Big Set

This section, along with the next, constitutes the heart of our demonstration of ade-
quacy. Last time, to build our big set we added formulas to †0 to form a †00 that was
both maximal and consistent. A set of formulas is consistent just in case there is no
formula A such that both A and�A are consequences. To accommodate restrictions
from T10.6, maximality is defined in terms of sentences.

Max A set † of formulas is maximal iff for any sentence A, † ` A or † ` �A.

This time, however, we need an additional property for our big sets. If a maximal
and consistent set has 8xP as a member, then it has P x

a as a consequence for every
constant a. (Be clear about why this is so.) But in a maximal and consistent set, the
status of a universal 8xP is not always reflected at the level of its instances. Thus,
for example, though a set has P x

a as a consequence for every constant a, it may
consistently include �8xP as well — for it may be that a universal is falsified by
some individual to which no constant is assigned. But when we come to showing by
induction that there is a model for our big set, it will be important that the status of a
universal is reflected at the level of its instances. We guarantee this by building the
set to satisfy the following condition.

Scgt A set † of formulas is a scapegoat set iff for any sentence �8xP , if † `
�8xP , then there is some constant a such that † ` �P x

a .

Equivalently, † is a scapegoat set just in case any sentence 9xP is such that if † `
9xP , then there is some constant a such that † ` P x

a . In a scapegoat set, we assert
the existence of a particular individual (a scapegoat) corresponding to any existential
claim. Notice that, since �8xP is a sentence, �P x

a is a sentence too.
So we set out to construct from †0 a maximal, consistent, scapegoat set. As

before, the idea is to line the formulas up, and consider them for inclusion one-by-
one. In addition, this time, we consider an enumeration of constants c1, c2 : : : and

CHAPTER 10. MAIN RESULTS 494

for any included sentence of the form�8xP , we include�P x
c where c is a constant

that does not so far appear in the construction. Notice that if, as we have assumed,
L0 includes infinitely many constants not in � , there are sure to be infinitely many
constants not already in a †0 built on � .

Cns†00 Construct †00 from †0 as follows: By T10.7, there is an enumeration, Q1,
Q2. . . of all the sentences in L0 and also an enumeration c1, c2 : : : of con-
stants not in †0. Let �0 D †0. Then for any i > 0, let

�i D �i�1 if �i�1 ` �Qi

else,
�i� D �i�1 [fQig if �i�1 ° �Qi

and,
�i D �i� if Qi is not of the form �8xP

�i D �i� [f�P x
c g if Qi is of the form �8xP ; c the first

constant not in �i�
then,

†00 D
S
i�0�i — that is, †00 is the union of all the �i s

Beginning with set †0 (D �0), we consider the sentences in the enumeration Q1,
Q2 : : : one-by-one, adding a sentence just in case its negation is not already derivable.
In addition, if Qi is of the sort�8xP , we add an instance of it, using a new constant.
This time, �i� functions as an intermediate set. Observe that if c is not in �i� , then
c is not in�8xP . †00 contains all the members of†0, together with all the formulas
added this way.

It remains to show that if †0 is consistent, then †00 is a maximal, consistent,
scapegoat set.

T10.8. If †0 is consistent, then †00 is a maximal, consistent, scapegoat set.

The proof comes to showing (a) †00 is maximal. (b) If †0 is consistent then
each �i is consistent. From this, (c) if †0 is consistent then †00 is consis-
tent. And (d) if †0 is consistent, then †00 is a scapegoat set. Suppose †0 is
consistent.

(a) †00 is maximal. Suppose †00 is not maximal. Then there is some sentence
Qi such that both †00 ° Qi and †00 ° �Qi . For this i , by construction,
each member of �i�1 is in †00; so if �i�1 ` �Qi then †00 ` �Qi ; but
†00 ° �Qi ; so �i�1 ° �Qi ; so by construction, �i� D �i�1 [fQig; and

CHAPTER 10. MAIN RESULTS 495

by construction again, Qi 2 †
00; so †00 ` Qi . This is impossible; reject the

assumption: †00 is maximal.

(b) Each �i is consistent. By induction on the series of �i s.

Basis: �0 D †0 and †0 is consistent; so �0 is consistent.
Assp: For any i , 0 � i < k, �i is consistent.

Show: �k is consistent.
�k is either (i)�k�1, (ii)�k� D �k�1[fQkg, or (iii)�k�[f�P x

c g.
(i) Suppose �k is �k�1. By assumption, �k�1 is consistent; so �k is

consistent.
(ii) Suppose �k is �k� D �k�1 [fQkg. Then by construction, �k�1 °
�Qk; so, since Qk is a sentence, by T10.6,�k�1[fQkg is consistent;
so �k� is consistent, and �k is consistent.

(iii) Suppose �k is �k� [f�P x
c g for c not in �k� or in �8xP . In this

case, as in (ii) above,�k� is consistent; and, by construction�8xP 2

�k� ; so �k� ` �8xP . Suppose �k is inconsistent; then there are
formulas A and �A such that �k ` A and �k ` �A; so �k� [
f�P x

c g ` A and�k� [f�P x
c g ` �A. But since�P x

c is a sentence,
the restriction on DT is met, and both �k� ` �P x

c ! A and �k� `
�P x

c ! �A; by A3, ` .�P x
c ! �A/ ! Œ.�P x

c ! A/ ! P x
c �;

so by two instances of MP, �k� ` P x
c .

Consider some derivation of this result; by T10.12, we can switch c

for some variable v that does not occur in �k� or in the derivation,
and the result is a derivation; so �k� c

v ` ŒP
x
c �

c
v ; but since c does

not occur in �k� or in �8xP , this is to say, �k� ` P x
v ; so by Gen,

�k� ` 8vP x
v ; but x is not free in 8vP x

v and x is free for v in P x
v ,

so by T3.27, ` 8vP x
v ! 8xŒP x

v �
v
x ; so by MP, �k� ` 8xŒP x

v �
v
x ;

and since v is not a variable in P , it is not free in P and free for x in
P ; so by T8.2, ŒP x

v �
v
x D P ; so �k� ` 8xP .

But �k� ` �8xP . So �k� is inconsistent. This is impossible; reject
the assumption: �k is consistent.

�k is consistent

Indct: For any i , �i is consistent.

(c) †00 is consistent. Suppose†00 is not consistent; then there is some A such
that†00 ` A and†00 ` �A. Consider derivations D1 and D2 of these results,

CHAPTER 10. MAIN RESULTS 496

and the premises Qi : : :Qj of these derivations. Where Qj is the last of these
premises in the enumeration of formulas, by the construction of †00, each of
Qi : : :Qj must be a member of �j ; so D1 and D2 are derivations from �j ;
so �j is inconsistent. But by the previous result, �j is consistent. This is
impossible; reject the assumption: †00 is consistent.

(d) †00 is a scapegoat set. Suppose †00 ` Qi , for Qi of the form �8xP .
By (c), †00 is consistent; so †00 ° ��8xP ; which is to say, †00 ° �Qi ;
so, �i�1 ° �Qi ; so by construction, �i� D �i�1 [f�8xP g and �i D
�i� [f�P x

c g; so by construction, �P x
c 2 †00; so †00 ` �P x

c . So if
†00 ` �8xP , then †00 ` �P x

c , and †00 is a scapegoat set.

In a pattern that should be familiar by now, we guarantee maximal scapegoat sets,
by including instances as required. The most difficult case is (iii) for consistency.
Having shown that �k� ` P x

c for c not in �k� or in P , we want to generalize to
show that�k� ` 8xP . But, in our derivation systems, generalization is on variables,
not constants. To get the generalization we want, we first use T10.12 to replace c with
an arbitrary variable v . From this, we might have moved immediately to 8xP by
the ND rule 8I. However, in the above reasoning, we stick with the pattern of AD
rules, applying Gen, and then T3.27 to switch bound variables, for the desired result,
that contradicts �8xP .

E10.17. Let †0 D f8x�Bx;Cag and consider enumerations of sentences and extra
constants in L0 that begin, Aa, Ba, �8xCx : : : and c1, c2 : : :. What are �0,
�1� , �1, �2� , �2, �3� , �3? Produce a model to show that the resultant set
�3 is consistent.

E10.18. Suppose some �i�1 D fAc2;8x.Ax ! Bx/g. Show that �i� is consis-
tent, but�i is not, if Qi D �8xBx, and we add�8xBx with�Bc2 to form
�i� and �i . Why cannot this happen in the construction of †00?

10.3.4 The Model

We turn now to constructing the model M0 for †0. As it turns out, the construction is
simplified by our assumption that ‘D’ does not appear in the language. A quantifica-
tional interpretation has a universe, with assignments to sentence letters, constants,
function symbols, and relation symbols.

CHAPTER 10. MAIN RESULTS 497

CnsM0 Let the universe U be the set of positive integers, f1; 2 : : :g. Then, where a
variable-free term consists just of function symbols and constants, consider
an enumeration t1, t2 : : : of all the variable-free terms in L0. If tz is a con-
stant, set M0Œtz� D z. If tz D hnta : : : tb for some function symbol hn and
n variable-free terms ta : : : tb , then let hha : : : bi; zi 2 M0Œhn�. For a sen-
tence letter S , let M0ŒS � D T iff †00 ` S . And for a relation symbol Rn, let
ha : : : bi 2 M0ŒRn� iff †00 ` Rnta : : : tb .3

Thus, for example, where t1 and t3 from the enumeration of terms are constants and
†00 ` Rt1t3, then M0Œt1� D 1, M0Œt3� D 3 and h1; 3i 2 M0ŒR�. Given this, it should
be clear why Rt1t3 comes out satisfied on M0: Put generally, where ta : : : tb are
constants, we set M0Œta� D a, and . . . and M0Œtb� D b; so by TA(c), for any variable
assignment d, M0dŒta� D a, and . . . and M0dŒtb� D b. So by SF(r), M0dŒR

nta : : : tb� D

S iff ha : : : bi 2 M0ŒRn�; by construction, iff †00 ` Rnta : : : tb . Just as in the
sentential case, our idea is to make atomic sentences true on M0 just in case they are
proved by †00.

Our aim has been to show that if †0 is consistent, then †0 has a model. We have
constructed an interpretation M0, and now show what sentences are true on it. As in
the sentential case, the main weight is carried by a preliminary theorem. And, as in
the sentential case, the key is that we can appeal to special features of †00, this time
that it is a maximal, consistent, scapegoat set. Notice that B is a sentence.

T10.9. If †0 is consistent, then for any sentence B of L0, M0ŒB� D T iff †00 ` B.

Suppose †0 is consistent and B is a sentence of L0. By T10.8, †00 is a max-
imal, consistent, scapegoat set. We begin with a preliminary result, which
connects arbitrary variable-free terms to our treatment of constants in the
example above: for any variable-free term tz and variable assignment d,
M0dŒtz� D z.

Suppose tz is a variable-free term and d is an arbitrary variable assignment.
By induction on the number of function symbols in tz , M0dŒtz� D z.

Basis: If tz has no function symbols, then it is a constant. In this case, by
construction, M0Œtz� D z; so by TA(c), M0dŒtz� D z.

Assp: For any i , 0 � i < k, if tz has i function symbols, then M0dŒtz� D z.

3It is common to let U just be the set of variable-free terms in L0, and the interpretation of a term be
itself. There is nothing the matter with this. However, working with the integers emphasizes continuity
with other models we have seen, and positions us for further results.

CHAPTER 10. MAIN RESULTS 498

Show: If tz has k function symbols, then M0dŒtz� D z.
If tz has k function symbols, then it is of the form hnta : : : tb for func-
tion symbol hn and variable-free terms ta : : : tb each with < k func-
tion symbols. By TA(f), M0dŒtz� D M0dŒh

nta : : : tb� D M0Œhn�hM0dŒta�
: : :M0dŒtb�i; but by assumption, M0dŒta� D a, and . . . and M0dŒtb� D
b; so M0dŒtz� D M0Œhn�ha : : : bi. But since tz D hnta : : : tb is a
variable-free term, by construction, hha : : : bi; zi 2 M0Œhn�; so we have
M0dŒtz� D M0Œhn�ha : : : bi D z.

Indct: For any tz , M0dŒtz� D z.

Given this, we are ready to show, by induction on the number of operators in
B, that M0ŒB� D T iff †00 ` B. Suppose B is a sentence.

Basis: If B is a sentence with no operators, then it is a sentence letter S ,
or an atomic Rnta : : : tb for relation symbol Rn and variable-free
terms ta. . . tb . In the first case, by construction, M0ŒS � D T iff †00 `
S . In the second case, by TI, M0ŒRnta : : : tb� D T iff for arbi-
trary d, M0dŒR

nta : : : tb� D S; by SF(r), iff hM0dŒta� : : :M
0
dŒtb�i 2

M0ŒRn�; since ta. . . tb are variable-free terms, by the above result, iff
ha : : : bi 2 M0ŒRn�; by construction, iff †00 ` Rnta : : : tb . In either
case, then, M0ŒB� D T iff †00 ` B.

Assp: For any i , 0 � i < k if a sentence B has i operator symbols, then
M0ŒB� D T iff †00 ` B.

Show: If a sentence B has k operator symbols, then M0ŒB� D T iff †00 ` B.
If B has k operator symbols, then it is of the form, �P , P ! Q or
8xP , for variable x and P and Q with < k operator symbols.

(�) Suppose B is�P . Homework. Hint: given T8.6, your reasoning may
be very much as in the sentential case.

(!) Suppose B is P ! Q. Homework.
(8) Suppose B is 8xP . Then since B is a sentence, x is the only variable

that could be free in P .
(i) Suppose M0ŒB� D T but †00 ° B; from the latter, †00 ° 8xP ;
since †00 is maximal, †00 ` �8xP ; and since †00 is a scapegoat set,
for some constant c, †00 ` �P x

c ; so by consistency, †00 ° P x
c ; but

P x
c is a sentence; so by assumption, M0ŒP x

c � ¤ T; so by TI, for some
d, M0dŒP

x
c � ¤ S; but, where c is some ta, by construction, M0Œc� D a;

so by TA(c), M0dŒc� D a; so, since c is free for x in P , by T10.2,

CHAPTER 10. MAIN RESULTS 499

M0d.xja/ŒP � ¤ S; so by SF(8), M0dŒ8xP � ¤ S; so by TI, M0Œ8xP � ¤

T; and this is just to say, M0ŒB� ¤ T. But this is impossible; reject the
assumption: if M0ŒB� D T, then †00 ` B.

(ii) Suppose †00 ` B but M0ŒB� ¤ T; from the latter, M0Œ8xP � ¤ T;
so by TI, there is some d such that M0dŒ8xP � ¤ S; so by SF(8), there
is some a 2 U such that M0d.xja/ŒP � ¤ S; but for variable-free term ta,
by our above result, M0dŒta� D a, and since ta is variable-free, it is free
for x in P , so by T10.2, M0dŒP

x
ta
� ¤ S; so by TI, M0ŒP x

ta
� ¤ T; but P x

ta

is a sentence; so by assumption, †00 ° P x
ta

; so by the maximality of
†00, †00 ` �P x

ta
; but ta is free for x in P , so by A4, ` 8xP ! P x

ta
;

and by T3.13, ` .8xP ! P x
ta
/ ! .�P x

ta
! �8xP /; so by a

couple instances of MP, †00 ` �8xP ; so by the consistency of †00,
†00 ° 8xP ; which is to say, †00 ° B. This is impossible; reject the
assumption: if †00 ` B, then M0ŒB� D T.

If B has k operator symbols, then M0ŒB� D T iff †00 ` B.

Indct: For any sentence B, M0ŒB� D T iff †00 ` B.

So if †0 is consistent, then for any sentence B of L0, M0ŒB� D T iff †00 ` B. We
are now just one step away from .?/. It will be easy to see that M0Œ†0� D T, and so
to reach the final result.

E10.19. Complete the � and! cases to complete the demonstration of T10.9. You
should set up the complete demonstration, but may refer to the text for cases
completed there, as the text refers cases to homework.

10.3.5 Final Result

And now we are in a position to get the final result. This works just as before. First,

T10.10. If †0 is consistent, then M0Œ†0� D T. .?/

Suppose †0 is consistent, but M0Œ†0� ¤ T. From the latter, there is some
formula B 2 †0 such that M0ŒB� ¤ T. Since B 2 †0, by construction, B 2

†00, so†00 ` B; so, where Bc is the universal closure of B, by application of
Gen as necessary,†00 ` Bc ; so since†0 is consistent, by T10.9, M0ŒBc� D T;
so by applications of T7.7 as necessary, M0ŒB� D T. This is impossible; reject
the assumption: if †0 is consistent, then M0Œ†0� D T.

CHAPTER 10. MAIN RESULTS 500

Notice that this result applies to arbitrary sets of formulas. We are able to bridge
between formulas and sentences by T10.7 and Gen. But now we have the .?/ that we
have needed for adequacy.

So that is it! All we needed for the proof of adequacy was .?/. And we have it.
So here is the final argument. Suppose the members of � and P are formulas of L0.

T10.11. If � � P , then � ` P . (quantificational adequacy)

Suppose � � P but � ° P . Say, for the moment that � ` ��P c ; by
T3.10, ` ��P c ! P c ; so by MP, � ` P c ; so by repeated applications of
A4 and MP, � ` P ; but this is impossible; so � ° ��P c . Given this, since
��P c is a sentence, by T10.6, �[f�P cg D †0 is consistent; so by T10.10,
there is a model M0 constructed as above such that M0Œ†0� D T. So M0Œ�� D T
and M0Œ�P c� D T; from the latter, by T8.6, M0ŒP c� ¤ T; so by repeated
applications of T7.7, M0ŒP � ¤ T; so by QV, � ² P . This is impossible;
reject the assumption: if � � P then � ` P .

Again, you should try to get the complete picture in your mind: The key is that
consistent sets always have models. If � [f�P g is not consistent, then there is a
derivation of P from � . So if there is no derivation of P from � , � [f�P g is
consistent and so must have a model — with the result that � ² P . We get the
key point, that consistent sets have models, by finding a relation between consistent,
and maximal, consistent, scapegoat sets. If a set is maximal and consistent and a
scapegoat set, then it contains enough information to specify a model for the whole.
The model for the big set then guarantees the existence of a model M for the original
� . All of this is very much parallel to the sentential case.

E10.20. Consider a quantificational language L which has function symbols as usual
but with ^, �, and 9 as primitive operators. Suppose axioms and rules are as
in A4 of E10.3 on p. 473. You may suppose there is no symbol for equality,
and there are infinitely many constants not in � . Provide a complete demon-
stration that A4 is adequate. You may appeal to any results from the text
whose demonstration remains unchanged, but should recreate parts whose
demonstration is not the same.

Hints: As preliminaries you will need revised versions of DT and T10.12. In
addition, a few quick theorems for derivations, along with an analog to one
side of T7.7 might be helpful,

(a) ` 9yP x
y ! 9xP y free for x in P and not free in 9xP

CHAPTER 10. MAIN RESULTS 501

(b) ` �9xP ! �9yP x
y y free for x in P and not free in 9xP

(c) �P x
v ` �9xP use 9E with Q someX ^�X ; note that � �.X ^�X/

(7.6*) If IŒ�9xP � D T then IŒ�P � D T

Then redefine key notions (such as ‘scapegoat set’) in terms of the existential
quantifier, so that you can work cases directly within the new system. Say
P e is the existential closure of P . Note that �.�P /e is equivalent to P c

(imagine replacing all the added universal quantifiers in P c with �9x� and
using DN on inner double tildes). This will help with T10.10 and T10.11.

10.4 Quantificational Adequacy: Full Version

So far, we have shown that if � � P , then � ` P where the members of � and P

are formulas of L0. Now allow that the members of � and P are in an arbitrary quan-
tificational language L. Then we we shall require require not .?/ with application
just to L0, but the more general,

.??/ For any consistent set of formulas †, there is an interpretation M such that
MŒ†� D T.

Given this, reasoning is exactly as before.

1. � [f�P cg has a model � � 6� P

2. � [f�P cg is consistent � � [f�P cg has a model .??/

3. � [f�P cg is not consistent � � ` P

Reasoning for (1) and (3) remains the same. (2) is .??/. Now suppose � � P ;
then from (1), � [f�P cg does not have a model; so by (2), � [f�P cg is not
consistent; so by (3), � ` P . So if � � P , then � ` P . Supposing that .??/
has application to arbitrary sets of formulas, the result has application to arbitrary
premises and conclusion. So we are left with two issues relative to our reasoning
from before: L might lack the infinitely many constants not in the premises, and L

might include equality.

CHAPTER 10. MAIN RESULTS 502

10.4.1 Adding Constants

Suppose L does not have infinitely many constants not in � . This can happen in dif-
ferent ways. Perhaps L simply does not have infinitely many constants. Or perhaps
the constants of L are a1, a2 : : : and � D fRa1;Ra2 : : :g; then L has infinitely
many constants, but there are not any constants in L that do not appear in � . And
we need the extra constants for construction of the maximal, consistent, scapegoat
set. To avoid this sort of worry, we simply add infinitely many constants to form a
language L0 out of L.

CnsL0 Where L is a language whose constants are some of a1, a2 : : : let L0 be like
L but with the addition of new constants c1, c2 : : :

By reasoning as in the countability reference on p. 36, insofar as they can be lined up,
a1, c1, a2, c2 : : : the collection of constants remains countable, so that L0 remains
a perfectly legitimate quantificational language. Clearly, every formula of L remains
a formula of L0. Thus, where † is a set of formulas in language L, let †0 be like †
except that its members are formulas of language L0.

Our reasoning for .?/ has application to sets of the sort†0. That is, where L0 has
infinitely many constants not in †0, we have been able to find a maximal, consistent,
scapegoat set †00, and from this a model M0 for †0. But, give an arbitrary † of
formulas in L, we need that it has a model M. That is, we shall have to establish a
bridge between † and †0, and between M0 and M. Thus, to obtain .??/, we show,

2a. † is consistent � †0 is consistent
2b. †0 is consistent � †0 has a model M0

2c. †0 has a model M0 � † has a model M

(2b) is just .?/ from before. And by a sort of hypothethical syllogism, together these
yield .??/.

For the first result, we need that if † is consistent, then †0 is consistent. Of
course, † and †0 contain just the same formulas, only sentences of the one are in a
language with extra constants. But there might be derivations in L0 from †0 that are
not derivations in L from †. So we need to show that these extra derivations do not
result in contradiction. For this, the overall idea is simple: If we can derive a con-
tradiction from †0 in the enriched language then, by a modified version of that very
derivation, we can derive a contradiction from† in the reduced language. So if there
is no contradiction in the reduced language L, then there can be no contradiction in
the enriched language L0. The argument is straightforward, given the preliminary

CHAPTER 10. MAIN RESULTS 503

result T10.12. Let † be a set of formulas in L, and †0 those same formulas in L0.
We show,

T10.13. If † is consistent, then †0 is consistent.

Suppose † is consistent. If †0 is not consistent, then there is a formula A in
L0 such that†0 ` A and†0 ` �A; but by T9.4, ` A! Œ�A! .A^�A/�;
so by two instances of MP, †0 ` A ^�A. So if †0 is not consistent, there is
a derivation of a contradiction from †0. By induction on the number of new
constants which appear in a derivation D D hB1;B2 : : :i, we show that no
such D is a derivation of a contradiction from †0.

Basis: Suppose D contains no new constants and D is a derivation of some
contradiction A ^ �A from †0. Since D contains no new constants,
every member of D is also a formula of L, so D D hB1;B2 : : :i is
a derivation of A ^ �A from †; so by T3.19 and T3.20 with MP,
† ` A and† ` �A; so† is not consistent. This is impossible; reject
the assumption: D is not a derivation of a contradiction from †0.

Assp: For any i , 0 � i < k, if D contains i new constants, then it is not a
derivation of a contradiction from †0.

Show: If D contains k new constants, then it is not a derivation of a contra-
diction from †0.

SupposeD contains k new constants and is a derivation of a contradic-
tion A ^ �A from †0. Where c is one of the new constants in D and
x is a variable not in D, by T10.12, Dc

x is a derivation of ŒA ^ �A�cx
from †0 cx. But all the members of †0 are in L; so c does not appear
in any member of†0; so†0 cx D †

0. And ŒA^�A�cx D Ac
x^�ŒA

c
x�.

So Dc
x is a derivation of a contradiction from †0. But Dc

x has k � 1
new constants and so, by assumption, is not a derivation of a contra-
diction from †0. This is impossible; reject the assumption: D is not a
derivation of a contradiction from †0.

Indct: No derivation D is a derivation of a contradiction from †0.

So if† is consistent, then†0 is consistent. So if we have a consistent set of sentences
in L, and convert to L0 with additional constants, we can be sure that the converted
set is consistent as well.

With the extra constants in-hand, all our reasoning goes through as before to
show that there is a model M0 for †0. Officially, though, an interpretation for some

CHAPTER 10. MAIN RESULTS 504

sentences in L0 is not a model for some sentences in L: a model for sentences in
L has assignments for its constants, function symbols and relation symbols, where a
model for L0 has assignments for its constants, function symbols and relation sym-
bols. A model M0 for †0, then, is not the same as a model M for †. But it is a short
step to a solution.

CnsM Let M be like M0 but without assignments to constants not in L.

M is an interpretation for language L. M and M0 have exactly the same universe of
discourse, and exactly the same interpretations for all the symbols that are in L. It
turns out that the evaluation of any formula in L is therefore the same on M as on
M0 — that is, for any P in L, MŒP � D T iff M0ŒP � D T. Perhaps this is obvious.
However, it is worthwhile to consider a proof. Thus we need the following matched
pair of theorems (in fact, we show somewhat more than is necessary, as M and M0

differ only by assignments to constants). The proofs are straightforward, and mostly
left as an exercise. I do just enough to get you started.

Suppose L0 extends L and M0 is like M except that it makes assignments to
constants, functions symbols and relation symbols in L0 but not in L.

T10.14. For any variable assignment d, and for any term t in L, MdŒt� D M0dŒt�.

The argument is by induction on the number of function symbols in t. Let d
be a variable assignment, and t a term in L.

Basis: Homework
Assp: For any i , 0 � i < k, if t has i function symbols, then MdŒt� D M0dŒt�.

Show: If t has k function symbols, then MdŒt� D M0dŒt�.
If t has k function symbols, then it is of the form, hnt1 : : : tn for
function symbol hn and terms t1 : : : tn with < k function symbols.
By TA(f), MdŒt� D MdŒh

nt1 : : : tn� D MŒhn�hMdŒt1� : : :MdŒtn�i; sim-
ilarly, M0dŒt� D M0dŒh

nt1 : : : tn� D M0Œhn�hM0dŒt1� : : :M
0
dŒtn�i. But

by assumption, MdŒt1� D M0dŒt1�, and . . . and MdŒtn� D M0dŒtn�; and
by construction, MŒhn� D M0Œhn�; so MŒhn�hMdŒt1� : : :MdŒtn�i D

M0Œhn�hM0dŒt1� : : :M
0
dŒtn�i; so MdŒt� D M0dŒt�.

Indct: For any t in L, MdŒt� D M0dŒt�.

T10.15. For any variable assignment d, and for any formula P in L, MdŒP � D S iff
M0dŒP � D S.

CHAPTER 10. MAIN RESULTS 505

The argument is by induction on the number of operator symbols in P . Let d
be a variable assignment, and P a formula in L.

Basis: If P has no operator symbols, then it is a sentence letter S or an atomic
Rnt1 : : : tn for relation symbol Rn and terms t1 : : : tn in L. In the
first case, by SF(s), MdŒS � D S iff MŒS � D T; by construction, iff
M0ŒS � D T; by SF(s), iff M0dŒS � D S. In the second case, by SF(r),
MdŒP � D S iff MdŒR

nt1 : : : tn� D S; iff hMdŒt1� : : :MdŒtn�i 2 MŒRn�;
similarly, M0dŒP � D S iff M0dŒR

nt1 : : : tn� D S; iff hM0dŒt1� : : :M
0
dŒtn�i

2 M0ŒRn�. But by T10.14, MdŒt1� D M0dŒt1�, and . . . and MdŒtn� D

M0dŒtn�; and by construction, MŒRn� D M0ŒRn�; so hMdŒt1� : : :MdŒtn�i

2 MŒRn� iff hM0dŒt1� : : :M
0
dŒtn�i 2 M0ŒRn�; so MdŒP � D S iff M0dŒP � D

S.
Assp: For any i , 0 � i < k, and any variable assignment d, if P has i

operator symbols, MdŒP � D S iff M0dŒP � D S.
Show: Homework

Indct: For any formula P of L, MdŒP � D S iff M0dŒP � D S.

And now we are in a position to show that M is indeed a model for †. In particular,
it is easy to show,

T10.16. If M0Œ†0� D T, then MŒ†� D T.

Suppose M0Œ†0� D T, but MŒ†� ¤ T. From the latter, there is some formula
B 2 † such that MŒB� ¤ T; so by TI, for some d, MdŒB� ¤ S; so by T10.15,
M0dŒB� ¤ S; so by TI, M0ŒB� ¤ T; and since B 2 †, we have B 2 †0; so
M0Œ†0� ¤ T. This is impossible; reject the assumption: if M0Œ†0� D T, then
MŒ†� D T.

T10.13, T10.10, and T10.16 together yield,

T10.17. L, if † is consistent, then † has a model M (L without equality).

Suppose † is consistent; then by T10.13, †0 is consistent; so by T10.10, †0

has a model M0; so by T10.16, † has a model M.

And that is what we needed to recover the adequacy result for L without the con-
straint on constants. Where L does not include infinitely many constants not in � ,
we simply add them to form L0. Our theorems from this section ensure that the
results go through as before.

CHAPTER 10. MAIN RESULTS 506

*E10.21. Complete the proof of T10.14. You should set up the complete induction,
but may refer to the text, as the text refers to homework.

*E10.22. Complete the proof of T10.15. As usual, you should set up the complete
induction, but may refer to the text for cases completed there, as the text refers
to homework.

E10.23. Adapt the demonstration of T10.11 for the supposition that L need not be
the same as L0. You may appeal to theorems from this section.

10.4.2 Accommodating Equality

Dropping the assumption that language L lacks the symbol ‘D’ for equality re-
sults in another sort of complication. In constructing our models, where t1 and t3
from the enumeration of variable-free terms are constants and †00 ` Rt1t3, we set
M0Œt1� D 1, M0Œt3� D 3 and h1; 3i 2 M0ŒR�. But suppose R is the equal sign, ‘D’;
then by our procedure, h1; 3i 2 M0ŒD�. But this is wrong! Where U D f1; 2 : : :g,
the proper interpretation of ‘D’ is fh1; 1i; h2; 2i : : :g, and h1; 3i is not a member of
this set at all. So our procedure does not result in the specification of a legitimate
model. The procedure works fine for relation symbols other than equality. There are
no restrictions on assignments to other relation symbols, so nothing stops us from
specifying interpretations as above. But there is a restriction on the interpretation of
‘D’. So we cannot proceed blindly this way.

Here is the nub of a solution: Say †00 ` a1 D a3; then let the set f1; 3g be
an element of U, and let M0Œa1� D M0Œa3� D f1; 3g. Similarly, if a2 D a4 and
a4 D a5 are consequences of †00, let f2; 4; 5g be a member of U, and M0Œa2� D
M0Œa4� D M0Œa5� D f2; 4; 5g. That is, let U consist of certain sets of integers —
where these sets are specified by atomic equalities that are consequences of†00. Then
let M0Œaz� be the set of which z is a member. Given this, if †00 ` Rnta : : : tb , then
include the tuple consisting of the set assigned to ta, and . . . and the set assigned
to tb , in the interpretation of Rn. So on the above interpretation of the constants,
if †00 ` Ra1a4, then hf1; 3g; f2; 4; 5gi 2 M0ŒR�. And if †00 ` a1 D a3, then
hf1; 3g; f1; 3gi 2 M0ŒD�. You should see why this is so. And it is just right! If
f1; 3g 2 U, then hf1; 3g; f1; 3gi should be in M0ŒD�. So we respond to the problem
by a revision of the specification for CnsM0.

Let us now turn to the details. Put abstractly, the reason the argument in the basis
of T10.9 works is that our model M0 assigns each t in the enumeration of variable-
free terms an object m such that whenever †00 ` Rt then m 2 M0ŒR�; and for the

CHAPTER 10. MAIN RESULTS 507

universal case, it is important that for each object there is a constant to which it is
assigned. We want an interpretation that preserves these features. And it will be
important to demonstrate that our specifications are coherent. A model consists of a
universe U, along with assignments to constants, function symbols, sentence letters,
and relation symbols. We take up these elements, one after another.

The universe. The elements of our universe U are to be certain sets of integers.4

Consider an enumeration t1, t2 : : : of all the variable-free terms in L0, and let there
be a relation ' on the set f1; 2 : : :g of positive integers such that i ' j iff †00 `
ti D tj . Let n be the set of integers which stand in the ' relation to n — that is,
n D fz j z ' ng. So whenever z ' n, then z 2 n. The universe U of M0 is then the
collection of all these sets — that is,

CnsM0 For each integer greater than or equal to one, the universe includes the class
corresponding to it. U D fn j n � 1g.

The way this works is really quite simple. If according to †00, t1 equals only itself,
then the only z such that z ' 1 is 1; so 1 D f1g, and this is a member of U. If,
according to †00, t1 equals just itself and t2, then 1 ' 2 so that 1 D 2 D f1; 2g,
and this set is a member of U. If, according to †00, t1 equals itself, t2 and t3, then
1 ' 2 ' 3 so that 1 D 2 D 3 D f1; 2; 3g, and this set is a member of U. And so
forth.

In order to make progress, it will be convenient to establish some facts about the
' relation, and about the sets in U. Recall that ' is a relation on the integers which
is specified relative to expressions in †00, so that i ' j iff †00 ` ti D tj . First we
show that' is reflexive, symmetric, and transitive.

Reflexivity. For any i, i ' i. By T3.32, ` ti D ti ; so †00 ` ti D ti ; so by
construction, i ' i.

Symmetry. For any i and j, if i ' j, then j ' i. Suppose i ' j; then by
construction, †00 ` ti D tj ; but by T3.33, ` ti D tj ! tj D ti ; so by MP,
†00 ` tj D ti ; so by construction, j ' i.

Transitivity. For any i, j and k, if i ' j and j ' k, then i ' k. Suppose i ' j
and j ' k; then by construction, †00 ` ti D tj and †00 ` tj D tk; but by

4Again, it is common to let the universe be sets of terms in L0. There is nothing the matter with
this. However, working with the integers emphasizes continuity with other models we have seen, and
positions us for further results.

CHAPTER 10. MAIN RESULTS 508

T3.34, ` ti D tj ! .tj D tk ! ti D tk/; so by two instances of MP,
†00 ` ti D tk; so by construction, i ' k.

A relation which is reflexive, symmetric and transitive is called an equivalence re-
lation. As an equivalence relation, it divides or partitions the members of f1; 2 : : :g
into mutually exclusive classes such that each member of a class bears ' to each
of the others in its partition, but not to integers outside the partition. More particu-
larly, because ' is an equivalence relation, the collections n D fz j z ' ng in U are
characterized as follows.

Self-membership. For any n, n 2 n. By reflexivity, n ' n; so by construction,
n 2 n. Corollary: Every integer i is a member of at least one class.

Uniqueness. For any i, i is an an element of at most one class. Suppose i is an
element of more than one class; then there are some m and n such that i 2 m
and i 2 n but m ¤ n. Since m ¤ n there is some j such that j 2 m and j 62 n,
or j 2 n and j 62 m; without loss of generality, suppose j 2 m and j 62 n. Since
j 2 m, by construction, j ' m; and since i 2 m, by construction i ' m; so by
symmetry, m ' i; so by transitivity, j ' i. Since i 2 n, by construction i ' n;
so by transitivity again, j ' n; so by construction, j 2 n. This is impossible;
reject the assumption: i is an element of at most one class.

Equality. For any m and n, m ' n iff m D n. (i) Suppose m ' n. Then
by construction, m 2 n; but by self-membership, m 2 m; so by uniqueness,
n D m. Suppose m D n; by self-membership, m 2 m; so m 2 n; so by
construction, m ' n.

Corresponding to the relations by which they are formed, classes characterized by
self-membership, uniqueness and equality are equivalence classes. From self-mem-
bership and uniqueness, every n is a member of exactly one such class. And from
equality, m ' n just when m is the very same thing as n. So, for example, if 1 ' 1
and 2 ' 1 (and nothing else), then 1 D 2 D f1; 2g. You should be able to see that
these formal specifications develop just the informal picture with which we began.

Terms. The specification for constants is simple.

CnsM0 If tz in the enumeration of variable-free terms t1, t2 : : : is a constant, then
M0Œtz� D z.

CHAPTER 10. MAIN RESULTS 509

Thus, with self-membership, any constant tz designates the equivalence class of
which z is a member. In this case, we need to be sure that the specification picks
out exactly one member of U for each constant. The specification would fail if the
relation ' generated classes such that some integer was an element of no class, or
some integer was an element of more than one. But, as we have just seen, by self-
membership and uniqueness, every z is a member of exactly one class. So far, so
good!

CnsM0 If tz in the enumeration of variable-free terms t1, t2 : : : is hnta : : : tb for
function symbol hn and variable-free terms ta : : : tb , then hha : : : bi; zi 2
M0Œhn�.

Thus when the input to hn is ha : : : bi, the output is z. This time, we must be sure
that the result is a function — that (i) there is a defined output object for every input
n-tuple, and (ii) there is at most one output object associated with any one input n-
tuple. The former worry is easily dispatched. The second concern is that there might
be some tm D hta and tn D htb in the list of variable-free terms, where a D b.
Then ha;mi; hb; ni 2 M0Œh�, and we fail to specify a function.

(i) There is at least one output object. Corresponding to any ha : : : bi where
a : : : b are members of U, there is some variable-free tz D h

nta : : : tb in the
sequence t1, t2 : : :; so by construction, hha : : : bi; zi 2 M0Œhn�. So M0Œhn�
has a defined output object when the input is ha : : : bi.

(ii) There is at most one output object. Suppose hha : : : ci;mi 2 M0Œhn�
and hhd : : : fi; ni 2 M0Œhn�, where ha : : : ci D hd : : : fi, but m ¤ n. Since
ha : : : ci D hd : : : fi, a D d, and . . . and c D f; so by equality, a ' d, and
. . . and c ' f; so by construction, †00 ` ta D td , and . . . and †00 ` tc D tf .
Since hha : : : ci;mi 2 M0Œhn� and hhd : : : fi; ni 2 M0Œhn�, by construction,
there are some variable-free terms, tm D hnta : : : tc and tn D hntd : : : tf
in the enumeration; but by T3.36, ` tb D te ! hnta : : : tb : : : tc D

hnta : : : te : : : tc , and so forth; so collecting repeated applications of this
theorem with MP and T3.35, †00 ` hnta : : : tc D hntd : : : tf ; but this is to
say, †00 ` tm D tn; so by construction, m ' n; so by equality, m D n.
This is impossible; reject the assumption: if hha : : : ci;mi 2 M0Œhn� and
hhd : : : fi; ni 2 M0Œhn�, where ha : : : ci D hd : : : fi, then m D n.

So, as they should be, functions are well-defined.

CHAPTER 10. MAIN RESULTS 510

We are now in a position to recover an analogue to the preliminary result for
demonstration of T10.9: for any variable-free term tz and variable assignment d,
M0dŒtz� D z. The argument is very much as before. Suppose tz is a variable-free
term. By induction on the number of function symbols in tz .

Basis: If tz has no function symbols, then it is a constant. In this case, by construc-
tion, M0Œtz� D z; so by TA(c), M0dŒtz� D z.

Assp: For any i , 0 � i < k, if tz has i function symbols, then M0dŒtz� D z.

Show: If tz has k function symbols, then M0dŒtz� D z.

If tz has k function symbols, then it is of the form, hnta : : : tb where ta : : : tb
have < k function symbols. By TA(f) we have, M0dŒtz� D M0dŒh

nta : : : tb� D

M0Œhn�hM0dŒta� : : :M
0
dŒtb�i; but by assumption, M0dŒta� D a, and . . . and M0dŒtb�

D b; so M0dŒtz� D M0Œhn�ha : : : bi. But since tz D hnta : : : tb is a variable-
free term, hha : : : bi; zi 2 M0Œhn�; so M0Œhn�ha : : : bi D z; so M0dŒtz� D z.

Indct: For any variable-free term tz , M0dŒtz� D z.

So the interepretation of any variable-free term is the equivalence class corresponding
to its position in the enumeration of terms.

Atomics. The result we have just seen for terms makes the specification for atomics
seem particularly natural. Sentence letters are easy. As before,

CnsM0 For a sentence letter S , M0ŒS � D T iff †00 ` S .

Then for relation symbols, the idea is as sketched above. We simply let the assign-
ment be such as to make a variable-free atomic come out true iff it is a consequence
of †00.

CnsM0 For a relation symbol Rn, where ta : : : tb are n members of the enumeration
of variable-free terms, let ha : : : bi 2 M0ŒRn� iff †00 ` Rnta : : : tb .

To see that the specification for relation symbols is legitimate, we need to be clear
that the specification is consistent — that we do not both assert and deny that some
tuple is in the extension of Rn, and we need to be sure that M0ŒD� is as it should be
— that it is fhn; ni j n 2 Ug. The case for equality is easy. The former concern is that
we might have some a 2 M0ŒR� and b 62 M0ŒR� but a D b.

CHAPTER 10. MAIN RESULTS 511

(i) The specification is consistent. Suppose otherwise. Then there is some
ha : : : ci 2 M0ŒRn� and hd : : : fi 62 M0ŒRn�, where ha : : : ci D hd : : : fi. From
the latter, a D d, and . . . and c D f; so by equality, a ' d, and . . . and c ' f;
so by construction, †00 ` ta D td , and . . . and †00 ` tc D tf . But since
ha : : : ci 2 M0ŒRn� and hd : : : fi 62 M0ŒRn�, by construction,†00 ` Rnta : : : tc
and †00 ° Rntd : : : tf ; and by T3.37, ` tb D te ! .Rnta : : : tb : : : tc !

Rnta : : : te : : : tc/, and so forth; so by repeated applications of this theorem
with MP, †00 ` Rntd : : : tf . This is impossible; reject the assumption: if
ha : : : ci 2 M0ŒRn� and hd : : : fi 62 M0ŒRn�, then ha : : : ci ¤ hd : : : fi.

(ii) The case for equality is easy. By equality, m D n iff m ' n; by construc-
tion iff †00 ` tm D tn; by construction iff hm; ni 2 M0ŒD�.

This completes the specification of M0. The specification is more complex than for
the basic version, and we have had to work to demonstrate its consistency. Still,
the result is a perfectly ordinary model M0, with a domain, assignments to constants,
assignments to function symbols, and assignments to relation symbols.

With this revised specification for M0, the demonstration of T10.9 proceeds as
before. Here is the key portion of the basis. We are showing that M0ŒB� D T iff
†00 ` B.

Suppose B is an atomic Rnta : : : tb; then by TI, M0ŒRnta : : : tb� D T iff for
arbitrary d, M0dŒR

nta : : : tb� D S; by SF(r), iff hM0dŒta� : : :M
0
dŒtb�i 2 M0ŒRn�;

since ta. . . tb are variable-free terms, as we have just seen, iff ha : : : bi 2
M0ŒRn�; by construction, iff †00 ` Rnta : : : tb . So M0ŒB� D T iff †00 ` B.

So all that happens is that we depend on the conversion from individuals to sets
of individuals for both assignments to terms, and assignments to relation symbols.
Given this, the argument is exactly parallel to the one from before.

E10.24. Suppose the enumeration of variable-free terms begins, a, b, f 1a, f 1b : : :
(so these are t1 : : : t4) and, for these terms, †00 ` just a D a, b D b, f 1a D
f 1a, f 1b D f 1b, a D f 1a, and f 1a D a. What objects stand in the '
relation? What are 1, 2, 3, and 4? Which corresponding sets are members of
U?

E10.25. Return to the case from E10.24. Explain how ' satisfies reflexivity, sym-
metry and transitivity. Explain how U satisfies self-membership, uniqueness
and equality.

CHAPTER 10. MAIN RESULTS 512

E10.26. Where †00 and U are as in the previous two exercises, what are M0Œa�, M0Œb�
and M0Œf �? Supposing that †00 ` R1a, R1f 1a and R1f 1b, but †00 ° R1b,
what is M0ŒR1�? According to the method, what is M0ŒD�? Is this as it should
be? Explain.

10.4.3 The Final Result

We are really done with the demonstration of adequacy. Perhaps, though, it will be
helpful to draw some parts together. Begin with the basic definitions.

Con A set † of formulas is consistent iff there is no formula A such that † ` A

and † ` �A.

Max A set † of formulas is maximal iff for any sentence A, † ` A or † ` �A.

Scgt A set † of formulas is a scapegoat set iff for any sentence �8xP , if † `
�8xP , then there is some constant a such that † ` �P x

a .

Then we proceed in language L0, for a maximal, consistent, scapegoat set †00 con-
structed from any consistent †0.

T10.6 For any set of formulas † and sentence P , if † ° �P , then † [fP g is
consistent.

T10.7 There is an enumeration Q1, Q2 : : : of all the formulas, terms, and the like,
in L0.

Cns†00 Construct †00 from †0 as follows: By T10.7, there is an enumeration, Q1,
Q2. . . of all the sentences in L0 and also an enumeration c1, c2 : : : of con-
stants not in †0. Let �0 D †0. Then for any i > 0, let �i D �i�1 if
�i�1 ` �Qi . Otherwise, �i� D �i�1 [fQig if �i�1 ° �Qi . Then
�i D �i� if Qi is not of the form �8xP , and �i D �i� [f�P x

c g if
Qi is of the form �8xP , where c is the first constant not in �i� . Then
†00 D

S
i�0�i .

T10.8 If †0 is consistent, then †00 is a maximal, consistent, scapegoat set.

Given the maximal, consistent, scapegoat set †00, there are results and a definition
for a model M0 such that M0Œ†0� D T.

CHAPTER 10. MAIN RESULTS 513

CnsM0 U D fn j n � 1g. If tz in an enumeration of variable-free terms t1, t2 : : :

is a constant, then M0Œtz� D z. If tz is hnta : : : tb for function symbol hn

and variable-free terms ta : : : tb , then hha : : : bi; zi 2 M0Œhn�. For a sentence
letter S , M0ŒS � D T iff†00 ` S . For a relation symbol Rn, where ta : : : tb are
n members of the enumeration of variable-free terms, let ha : : : bi 2 M0ŒRn�

iff †00 ` Rnta : : : tb .

This modifies the relatively simple version where U D f1; 2 : : :g. And for an
enumeration of variable-free terms, if tz is a constant, M0Œtz� D z. If tz D

hnta : : : tb for some relation symbol hn and n variable-free terms ta : : : tb ,
hha : : : bi; zi 2 M0Œhn�. For a sentence letter S , M0ŒS � D T iff †00 ` S . And
for a relation symbol Rn, ha : : : bi 2 M0ŒRn� iff †00 ` Rnta : : : tb .

T10.9 If †0 is consistent, then for any sentence B of L0, M0ŒB� D T iff †00 ` B.

T10.10 If †0 is consistent, then M0Œ†0� D T. .?/

Then we have had to connect results for †0 in L0 to an arbitrary † in language L.

T10.13 If † is consistent, then †0 is consistent.

This is supported by T10.12 on which ifD is a derivation from†0, and x is a
variable that does not appear inD, then for any constant a,Da

x is a derivation
from †0 ax .

T10.16 If M0Œ†0� D T, then MŒ†� D T.

This is supported by the matched pair of theorems, T10.14 on which, if d is a
variable assignment, then for any term t in L, MdŒt� D M0dŒt�, and T10.15 on
which, if d is a variable assignment, then for any formula P in L, MdŒP � D S
iff M0dŒP � D S.

These theorems together yield,

T10.17. If † is consistent, then † has a model M. (L unconstrained) .??/

This puts us in a position to recover the main result. Recall that our argument runs
through P c the universal closure of P .

T10.11. If � � P , then � ` P . (quantificational adequacy)

Suppose � � P but � ° P . Say, for the moment that � ` ��P c ; by
T3.10, ` ��P c ! P c ; so by MP, � ` P c ; so by repeated applications

CHAPTER 10. MAIN RESULTS 514

of A4 and MP, � ` P ; but this is impossible; so � ° ��P c . Given
this, since ��P c is a sentence, by T10.6, � [f�P cg is consistent. Since
† D � [f�P cg is consistent, by T10.17, there is a model M constructed
as above such that MŒ†� D T. So MŒ�� D T and MŒ�P c� D T; from the
latter, by T8.6, MŒP c� ¤ T; so by repeated applications of T7.7, MŒP � ¤ T;
so by QV, � ² P . This is impossible; reject the assumption: if � � P then
� ` P .

The sentential version had parallels to Con, Max, Cns†00 and CnsM0 along with theo-
rems T10.6s - T10.11s . (The distinction between .?/ and .??/ is a distinction without
a difference in the sentential case.) The basic quantificational version requires these
along with Sgt, T10.12 and the simple version of CnsM0. For the full version, we
have had to appeal also to T10.13 and T10.16 (and so T10.17), and use the relatively
complex specification for CnsM0.

Again, you should try to get the complete picture in your mind: As always, the
key is that consistent sets have models. If � [f�P g is not consistent, then there is
a derivation of P from � . So if there is no derivation of P from � , then � [f�P g

is consistent, and so has a model — and the existence of a model for � [f�P g is
sufficient to show that � ² P . Put the other way around, if � � P , then there is a
derivation of P from � . We get the key point, that consistent sets have models, by
finding a relation between consistent, and maximal consistent scapegoat sets. If a set
is a maximal consistent scapegoat set, then it contains enough information to specify
a model for the whole. The model for the big set then guarantees the existence of a
model M for the original � .

E10.27. Return to the case from E10.20 on p. 500, but dropping the assumptions
that there is no symbol for equality, and that L is identical to L0. Add to the
derivation system axioms,

A3 ` t D t

A4 ` r D s! .P ! P r=s/ — where s is free for replaced instances of r in P

Provide a complete demonstration that this version of A4 is adequate. You
may appeal to any results from the text whose demonstration remains un-
changed, but should recreate parts whose demonstration is not the same. Hint:
You may find it helpful to demonstrate a relation to T8.5 as follows,

CHAPTER 10. MAIN RESULTS 515

T8.5* For any formula P , terms s and t, constant c, and variable x, ŒP s=t�
c
x

is the same formula as ŒP c
x �

sc
x=tc

x
— where the same instance(s) of s

are replaced in each case.

E10.28. We have shown from T10.4 that if a set of formulas has a model, then it is
consistent; and now that if an arbitrary set of formulas is consistent, then it has
a model — and one whose U is this set of sets of positive integers. Notice that
any such U is countable insofar as its members can be put into correspondence
with the integers (we might, say, order the members by their least elements).
Considering what we showed in the more on countability reference on p. 50,
how might this be a problem for the logic of real numbers? Hint: Think about
the consequences sentences in an arbitrary � may have about the number of
elements in U.

E10.29. For each of the following concepts, explain in an essay of about two pages,
so that (college freshman) Hannah could understand. In your essay, you
should (i) identify the objects to which the concept applies, (ii) give and ex-
plain the definition, and give and explicate examples (iii) where the concept
applies, and (iv) where it does not. Your essay should exhibit an understand-
ing of methods from the text.

a. The soundness of a derivation system, and its demonstration by mathematical
induction.

b. The adequacy of a derivation system, and the basic strategy for its demon-
stration.

c. Maximality and consistency, and the reasons for them.

d. Scapegoat sets, and the reasons for them.

CHAPTER 10. MAIN RESULTS 516

Theorems of Chapter 10

T10.1 For any interpretation I, variable assignment d, with terms t and r, if IdŒr� D o,
then Id.xjo/Œt� D IdŒtx

r�.

T10.2 For any interpretation I, variable assignment d, term r, and formula Q, if IdŒr� D
o, and r is free for x in Q, then IdŒQx

r� D S iff Id.xjo/ŒQ� D S.

T10.3 If �
ÀD

P , then � � P . (Soundness)

T10.4 If there is an interpretation M such that MŒ�� D T (a model for �), then � is
consistent.

T10.5 If there is an interpretation M such that MŒ� [f�Ag� D T, then � ° A.

T10.6s For any set of formulas† and sentence P , if† ° �P , then†[fP g is consistent.

T10.6 For any set of formulas† and sentence P , if† ° �P , then†[fP g is consistent.

T10.7s There is an enumeration Q1;Q2 : : : of all formulas in Ls .

T10.7 There is an enumeration Q1, Q2 : : : of all the formulas, terms, and the like, in L0.

T10.8s If †0 is consistent, then †00 is maximal and consistent.

T10.8 If †0 is consistent, then †00 is a maximal, consistent, scapegoat set.

T10.9s If †0 is consistent, then for any sentence B, of Ls , M0ŒB� D T iff †00 ` B.

T10.9 If †0 is consistent, then for any sentence B of L0, M0ŒB� D T iff †00 ` B.

T10.10s If †0 is consistent, then M0Œ†0� D T. .�/

T10.10 If †0 is consistent, then M0Œ†0� D T. .?/

T10.11s If � �
s

P , then � ` P . (sentential adequacy)

T10.11 If � � P , then � ` P . (quantificational adequacy)

T10.12 If D is a derivation from †0, and x is a variable that does not appear in D, then
for any constant a, Da

x is a derivation from †0 ax .

T10.13 If † is consistent, then †0 is consistent.

T10.14 For any variable assignment d, and for any term t in L, MdŒt� D M0dŒt�.

T10.15 For any variable assignment d, and for any formula P in L, MdŒP � D S iff
M0dŒP � D S.

T10.16 If M0Œ†0� D T, then MŒ†� D T.

T10.17a If † is consistent, then † has a model M. (L without equality)

T10.17 If † is consistent, then † has a model M. (L unconstrained) .??/

Chapter 11

More Main Results

In this chapter, we take up results which deepen our understanding of the power and
limits of logic. The first sections restrict discussion to sentential forms, for discussion
of expressive completenes, unique readability and independence. Then we turn to
discussion of the conditions under which models are isomorphic, and transition to
a discussion of submodels, and especially the Löwenheim-Skolem theorems, which
help us see some conditions under which models are not isomorphic.1

11.1 Expressive Completeness

In chapter 5 on translation, we introduced the idea of a truth functional operator,
where the truth value of the whole is a function of the truth values of the parts. We
exhibited operators as truth functional by tables. Thus, if some ordinary expression
P with components A and B has table,

(A)

A B P

T T T
T F F
F T F
F F F

then it is truth functional. And we translate by an equivalent formal operator: in this
case A ^B does fine. Of course, not every such table, or truth function, is directly
represented by one of our operators. Thus, if P is ‘neither A nor B’ we have the
table,

1This chapter is not in finished form. It contains some parts which I’ve had occasion to write up
and found useful from time to time. But it’s not worked into a fully-formed textbook chapter. Take it
in the spirit with which it’s provided!

517

CHAPTER 11. MORE MAIN RESULTS 518

(B)

A B P

T T F
T F F
F T F
F F T

where none of our operators is equivalent to this. But it takes only a little ingenuity
to see that, say, .�A ^ �B/ or �.A _ B/ have the same table, and so result in a
good translation. In chapter 5 (p. ??), we claimed that for any table a truth functional
operator may have, there is always some way to generate that table by means of our
formal operators — and, in fact, by means of just the operators � and ^, or just the
operators � and _, or just the operators � and!. As it turns out, it is also possible
to express any truth function by means of just the operator Í. In this section, we prove
these results. First,

T11.1. It is possible to represent any truth function by means of an expression with
just the operators �, ^, and _.

The proof of this result is simple. Given an arbitrary truth function, we provide a
recipe for constructing an expression with the same table. Insofar as for any truth
function it is always possible to construct an expression with the same table, there
must always be a formal expression with the same table.

Suppose we are given an arbitrary truth function, in this case with four basic
sentences as on the left.

(C)

S1 S2 S3 S4 P

1 T T T T F C1 = S1 ^ S2 ^ S3 ^ S4
2 T T T F F C2 = S1 ^ S2 ^ S3�^ S4
3 T T F T T C3 = S1 ^ S2 ^�S3 ^ S4
4 T T F F F C4 = S1 ^ S2 ^�S3 ^�S4

5 T F T T T C5 = S1 ^�S2 ^ S3 ^ S4
6 T F T F F C6 = S1 ^�S2 ^ S3 ^�S4
7 T F F T F C7 = S1 ^�S2 ^�S3 ^ S4
8 T F F F F C8 = S1 ^�S2 ^�S3 ^�S4

9 F T T T F C9 = �S1 ^ S2 ^ S3 ^ S4
10 F T T F F C10 = �S1 ^ S2 ^ S3 ^�S4
11 F T F T F C11 = �S1 ^ S2 ^�S3 ^ S4
12 F T F F T C12 = �S1 ^ S2 ^�S3 ^�S4

13 F F T T T C13 = �S1 ^�S2 ^ S3 ^ S4
14 F F T F F C14 = �S1 ^�S2 ^ S3 ^�S4
15 F F F T F C15 = �S1 ^�S2 ^�S3 ^ S4
16 F F F F F C16 = �S1 ^�S2 ^�S3 ^�S4

For this sentence P with basic sentences S1 : : :Sn, begin by constructing the charac-
teristic sentence Cj corresponding to each row: If the interpretation Ij corresponding

CHAPTER 11. MORE MAIN RESULTS 519

to row j has Ij ŒSi � D T, then let S 0i D Si . If Ij ŒSi � D F, let S 0i D �Si . Then the
characteristic sentence Cj corresponding to Ij is the conjunction of each S 0i . So
Cj D S 01 ^ : : : ^ S 0n (with appropriate parentheses). These sentences are exhibited
above. The characteristic sentences are true only on their corresponding rows. Thus
C4 above is true only when IŒS1� D T, IŒS2� D T, IŒS3� D F, and IŒS4� D F.

Then, given the characteristic sentences, if P is F on every row, S1 ^ �S1 has
the same table as P . Otherwise, where P is T on rows a, b. . .d , Ca _ Cb _ : : :Cd
(with appropriate parentheses) has the same table as P . Thus, for example, C3 _

C5 _ C12 _ C13, that is,
.S1 ^ S2 ^�S3 ^ S4/_ .S1 ^�S2 ^ S3 ^ S4/_ .�S1 ^ S2 ^�S3 ^�S4/_ .�S1 ^�S2 ^ S3 ^ S4/

has the same table as P . Inserting parentheses, the resultant table is,

(D)

S1 S2 S3 S4 .C3 _ C5/ _ .C12 _ C13/ P

1 T T T T F F F F F F F F
2 T T T F F F F F F F F F
3 T T F T T T F T F F F T
4 T T F F F F F F F F F F

5 T F T T F T T T F F F T
6 T F T F F F F F F F F F
7 T F F T F F F F F F F F
8 T F F F F F F F F F F F

9 F T T T F F F F F F F F
10 F T T F F F F F F F F F
11 F T F T F F F F F F F F
12 F T F F F F F T T T F T

13 F F T T F F F T F T T T
14 F F T F F F F F F F F F
15 F F F T F F F F F F F F
16 F F F F F F F F F F F F

And we have constructed an expression with the same table as P . And similarly for
any truth function with which we are confronted. So given any truth function, there
is a formal expression with the same table.

In a by-now familiar pattern, the expressions produced by this method are not
particularly elegant or efficient. Thus for the table,

(E)

A B P

T T T
T F F
F T T
F F T

by our method we get the expression .A ^B/ _ .�A ^B/ _ .�A ^ �B/. It has
the right table. But, of course, A ! B is much simpler! The point is not that the

CHAPTER 11. MORE MAIN RESULTS 520

resultant expressions are elegant or efficient, but that for any truth function, there
exists a formal expression that works the same way.

We have shown that we can represent any truth function by an expression with
operators�, ^, and _. But any such expression is an abbreviation of one whose only
operators are� and!. So we can represent any truth function by an expression with
just operators � and!. And we can argue for other cases. Thus, for example,

T11.2. It is possible to represent any truth function by means of an expression with
just the operators � and ^.

Again, the proof is simple. Given T11.1, if we can show that any P whose
operators are �, ^ and _ corresponds to a P � whose operators are just � and ^,
such that P and P � have the same table — such that IŒP � D IŒP �� for any I — we
will have shown that any truth function can be represented by an expression with just
� and ^. To see that this is so, where P is an atomic S , set P � D S ; where P is
�A, set P � D �A�; where P is A ^ B, set P � D A� ^ B�; and where P is
A _B, set P � D �.�A� ^�B�/. Suppose the only operators in P are �, ^, and
_, and consider an arbitrary interpretation I.

Basis: Where P is a sentence letter S , then P � is S . So IŒP � D IŒP ��.

Assp: For any i , 0 � i < k, if P has i operator symbols, then IŒP � D IŒP ��.

Show: If P has k operator symbols, then IŒP � D IŒP ��.

If P has k operator symbols, then it is of the form �A, A ^ B, or A _ B

where A and B have < k operator symbols.

(�) Suppose P is �A; then P � is �A�. IŒP � D T iff IŒ�A� D T; by ST(�),
iff IŒA� D F; by assumption iff IŒA�� D F; by ST(�), iff IŒ�A�� D T; iff
IŒP �� D T.

(^) Suppose P is A ^ B; then P � is A� ^ B�. IŒP � D T iff IŒA ^ B� D T;
by ST0(^), iff IŒA� D T and IŒB� D T; by assumption iff IŒA�� D T and
IŒB�� D T; by ST0(^), iff IŒA� ^B�� D T; iff IŒP �� D T.

(_) Suppose P is A _ B; then P � is �.�A� ^ �B�/. IŒP � D T iff IŒA _
B� D T; by ST0(_), iff IŒA� D T or IŒB� D T; by assumption iff IŒA�� D T
or IŒB�� D T; by ST(�), iff IŒ�A�� D F or IŒ�B�� D F; by ST0(^), iff
IŒ�A� ^�B�� D F; by ST(�), iff IŒ�.�A� ^�B�/� D T; iff IŒP �� D T.

If P has k operator symbols then IŒP � D IŒP ��.

CHAPTER 11. MORE MAIN RESULTS 521

Indct: For any P , IŒP � D IŒP ��.

So if the operators in P are�,^ and_, there is a P � with just operators� and^ that
has the same table. Perhaps this was obvious as soon as we saw that �.�A ^ �B/

has the same table as A _ B. Since we can represent any truth function by an
expression whose only operators are �, ^ and _, and we can represent any such
P by a P � whose only operators are � and ^, we can represent any truth function
by an expression with just operators � and ^. And, by similar reasoning, we can
represent any truth function by expressions whose only operators are � and _, and
by expressions whose only operator is Í. This is left for homework.

In E8.11, we showed that if the operators in P are limited to!, ^, _, and$
then when the interpretation of every atomic is T, the interpretation of P is T. Perhaps
this is obvious by consideration of the tables. It follows that not every truth function
can be represented by expressions whose only operators are !, ^, _, and $; for
there is no way to represent a function that is F on the top row, when all the atomics
are T. Though it is much more difficult to establish, we showed in E8.20 that any
expression whose only operators are � and $ (with at least four rows in its truth
table) has an even number of Ts and Fs under its main operator. It follows that not
every truth function can be represented by expressions whose only operators are �
and$.

E11.1. Use the method of this section to find expressions with tables corresponding
to P1, P2, and P3. Then show on a table that your expression for P1 in fact
has the same truth function as P1.

A B C P1 P2 P3

T T T F T F
T T F T T F
T F T T F T
T F F F F F

F T T F F T
F T F T F F
F F T F F T
F F F T F T

E11.2. (i) Show that we can represent any truth function by expressions whose only
operators are � and _. (ii) Show that we can represent any truth function
by expressions whose only operator is Í. Hint: Given what we have shown
above, it is enough to show that you can represent expressions whose only
operators are � and!, or � and ^.

CHAPTER 11. MORE MAIN RESULTS 522

E11.3. Show that it is not possible to represent arbitrary truth functions by expres-
sions whose only operator is �. Hint: it is easy to show by induction that any
such expression has at least one T and one F under its main operator.

11.2 Unique Readability

Unique readability is a result like our first case from chapter 8 (p. 387) where the
conclusion may seem to obvious to merit argument. We show that every formula of
Ls is parsed uniquely. Things are set up so that this is so. But suppose instead of
FR(!) we had,

(�) If P and Q are formulas, then P ! Q is a formula.

without parentheses. Then, for atomics A, B and C , say, A! B is a formula so that
A ! B ! C is a formula. But again, B ! C is a formula so that A ! B ! C

is a formula. So there are different ways to understand the parts of A ! B ! C .
Suppose IŒA� D IŒB� D IŒC � D F. Then on the first account, IŒA ! B� D T so
that IŒA ! B ! C � D F. But on the second account, IŒB ! C � D T so that
IŒA ! B ! C � D T. Thus it is important for our definitions that there is just one
way to understand P ! Q. And we can demonstrate the result. According to unique
readability,

T11.3. For any formula P of Ls, exactly one of the following holds.

(s) P is a sentence letter.

(�) There is a unique formula A such that P is �A.

(!) There are unique formulas A and B such that P is .A! B/.

We build to this result by some preliminary theorems.

First, ignoring uniqueness,

T11.4. For any formula P of Ls, at least one of the following holds: (i) P is a
sentence letter; (ii) there is a formula A such that P is �A; (iii) there are
formulas A and B such that P is .A! B/.

This is a (trivial) induction on the number of operators in P .

CHAPTER 11. MORE MAIN RESULTS 523

T11.5. For any formula P of Ls, at most one of the following holds: (i) P is a
sentence letter; (ii) there is a formula A such that P is �A; (iii) there are
formulas A and B such that P is .A! B/.

If P is a sentence letter it begins with a sentence letter; if P is �A it begins
with ‘�’; and if P is .A! B/ it begins with ‘.’. (i) Suppose P is a sentence
letter; then it does not begin with ‘�’ or ‘.’; so not (ii) and not (iii). Suppose
P is�A; then it does not begin with a sentence letter or ‘.’; so not (i) or (iii).
Suppose P is .A! B/; then it does not begin with a sentence letter or ‘�’
so not (i) or (ii).

By T11.4 and T11.5 together, For any formula P of Ls, exactly one of, (i) P is a
sentence letter; (ii) there is a formula A such that P is �A; (iii) there are formulas
A and B such that P is .A! B/.

For some expression A say B is an initial segment of A just in case there is
some C such that A D BC — just in case A is the concatenation of B and C .
If C is a non-empty sequence so that B is not all of A, then B is a proper initial
segment of A. So ‘AB’ is a proper initial segment of ‘ABC ’. To make progress on
the uniqueness conditions, we show the following.

T11.6. No proper initial segment of a formula A is a formula. Suppose A is a
formula.

Basis: If A is atomic, then A D BC only if A D C and B is empty. But
from T11.4 no empty sequence is a formula. So no proper initial seg-
ment of A is a formula.

Assp: For any i , 0 � i < k, if A has i operator symbols, then no proper
initial segment of A is a formula.

Show: If A has k operator symbols, then no proper initial segment of A is a
formula. If A has k operator symbols then it is �P or .P ^ Q/ for
formulas P and Q with < k operator symbols.

(�) A is �P for some formula P . Suppose some proper initial segment
of A is a formula; then for some formula B, A D BC . B is either
empty or starts with ‘�’; so with T11.4 and T11.5, B is �D for some
formula D . So A D �P D �DC ; so P D DC ; so D is a proper
initial segment of P ; so by assumption, D is not a formula. Reject the
assumption: no proper initial segment of A is a formula.

(!) A is .P ! Q/. Suppose some proper initial segment of A is a for-
mula; then for some formula B, A D BC . B is either empty or

CHAPTER 11. MORE MAIN RESULTS 524

starts with ‘.’; so with with T11.4 and T11.5, B is .D ! E/ for
some formulas D and E; so A = .P ! Q/ D .D ! E/C ; so
P ! Q/ D D ! E/C ; so either P D D or one is a proper initial
segment of the other; suppose one is a proper initial segment of the
other; then by assumption one or the other is not a formula; this is im-
possible. So P D D ; so Q/ D E/C ; so E is a proper initial segment
of Q; so by assumption E is not a formula. Reject the assumption, no
proper initial segment of A is a formula.

Indct: For any formula A, no proper initial segment of A is a formula.

Observe that we “add” and “subtract” from sequences so that, for example �P D

�Q iff P D Q.
And now we are ready to establish T11.3 for unique readability. For any formula

P of Ls, by T11.4 and T11.5, exactly one of,

(i) P is a sentence letter.

(ii) There is a formula A such that P is �A.

Uniqueness: Suppose there is a formula B such that�A D �B; then A D B.
So there is a unique formula A such that P D �A.

(iii) There are formulas A and B such that P is .A! B/.

Uniqueness: Suppose there are formulas C and D such that .A ! B/ D

.C ! D/; then A ! B/ D C ! D/; so either A D C or one is a proper
initial segment of the other; but by T11.6, neither is a proper initial segment of
the other; so A D C ; so B/ D D/; so B D D . So there are unique formulas
A and B such that P D .A! B/.

Thus T11.3 is established.

E11.4. Demonstrate T11.4 by induction on the length of P .

E11.5. Show unique readability for the terms of Lq, that for every term t of Lq,
exactly one of the following holds,

(v) t is a variable.

(c) t is a constant.

CHAPTER 11. MORE MAIN RESULTS 525

(f) There are unique function symbol hn and terms t1 : : : tn such that t D

hnt1 : : : tn.

Hint: The argument is based on TR; you will want to show that no proper
initial segment of a term is a term.

E11.6. Show unique readability for the formulas of Lq, that for every formula P of
Lq, exactly one of the following holds,

(s) P is a sentence letter.

(r) There are unique relation symbol Rn and terms t1 : : : tn such that P D

Rnt1 : : : tn.

(�) There is a unique formula A such that P D �A.

(!) There are unique formulas A and B such that P D .A! B/.

(8) There are unique variable x and formula A such that P D 8xA.

Hint: This time the argument is based on FR.

11.3 Independence

As we have seen, axiomatic systems are convenient insofar as their compact form
makes reasoning about them relatively easy. Also, theoretically, axiomatic systems
are attractive insofar as they expose what is at the base or foundation of logical sys-
tems. Given this latter aim, it is natural to wonder whether we could get the same
results without one or more of our axioms. Say an axiom or rule is independent in a
derivation system just in case its omission matters for what can be derived. In par-
ticular, then, an axiom is independent in a derivation system if it cannot be derived
from the other axioms and rules. For suppose otherwise: that it can be derived from
the other axioms and rules; then it is a theorem of the derivation system without the
axiom, and any result of the system with the axiom can be derived using the theorem
in place of the axiom; so the omission of the axiom does not matter for what can be
derived, and the axiom is not independent. In this section, we show that A1, A2 and
A3 of the sentential fragment of AD are independent of one another.

Say we want to show that A1 is independent of A2 and A3. When we showed,
in chapter 8, that the sentential part of AD is weakly sound, we showed that A1, A2,
A3 and their consequences have a certain feature — that there is no interpretation
where a consequence is false. The basic idea here is to find a sort of “interpretation”

CHAPTER 11. MORE MAIN RESULTS 526

on which A2, A3 and their consequences are sustained, but A1 is not. It follows that
A1 is not among the consequences of A2 and A3, and so is independent of A2 and
A3. Here is the key point: Any “interpretation” will do. In particular, consider the
following tables which define a sort of numerical property for forms involving� and
!.

A1(�)

P �P

0 1
1 1
2 0

A1(!)

P Q P ! Q

0 0 0
0 1 2
0 2 2

1 0 2
1 1 2
1 2 0

2 0 0
2 1 0
2 2 0

Do not worry about what these tables “say”; it is sufficient that, given a numerical
interpretation of the parts, we can always calculate the numerical value N of the
whole. Thus, for example,

(F)

A.0/ B.2/

�
�
�
�
�
��

�A.1/ By A1(�) row 1

@
@
@

�A! B.0/ By A1(!) row 6

if NŒA� D 0 and NŒB� D 2, then NŒ�A ! B� D 0. The calculation is straightfor-
ward, based on the tables. And similarly for sentential forms of arbitrary complexity.
Say a form is select iff it takes the value 0 on every numerical interpretation of its
parts. (Compare the notion of semantic validity on which a form is valid iff it is T
on every interpretation of its parts.) Again, do not worry about what the tables mean.
They are constructed for the special purpose of demonstrating independence: We
show that every consequence of A2 and A3 is select, but A1 is not. It follows that A1
is not a consequence of A2 and A3.

To see that A3 is select, and that A1 is not, all we have to do is complete the
tables.

CHAPTER 11. MORE MAIN RESULTS 527

(G)

A B A ! .B ! A/ .�B ! �A/ ! Œ.�B ! A/ ! B�

0 0 0 0 1 2 1 0 1 2 0
0 1 2 2 1 2 1 0 1 2 0
0 2 0 0 0 2 1 0 0 0 2

1 0 0 2 1 2 1 0 1 2 0
1 1 0 2 1 2 1 0 1 2 0
1 2 2 0 0 2 1 0 0 2 0

2 0 0 2 1 2 0 0 1 0 0
2 1 0 0 1 2 0 0 1 0 2
2 2 0 0 0 0 0 0 0 2 0

Since A1 has twos in the second and sixth rows, A1 is not select. Since A3 has zeros
in every row, it is select. Alternatively, for A1, we might have reasoned as follows,

Suppose NŒA� D 0 and NŒB� D 1. Then by A1(!), NŒB ! A� D 2; so by A1(!)
again, NŒA! .B ! A/� D 2. Since there is such an assignment, A! .B ! A/ is
not select.

And the result is the same. To see that A2 is select, again, it is enough to complete
the table — it is painful, but we can do it:

CHAPTER 11. MORE MAIN RESULTS 528

(H)

A B C .A ! .B ! C// ! ..A ! B/ ! .A ! C//

0 0 0 0 0 0 0 0 0
0 0 1 2 2 0 0 2 2
0 0 2 2 2 0 0 2 2
0 1 0 2 2 0 2 0 0
0 1 1 2 2 0 2 0 2
0 1 2 0 0 0 2 0 2
0 2 0 0 0 0 2 0 0
0 2 1 0 0 0 2 0 2
0 2 2 0 0 0 2 0 2

1 0 0 2 0 0 2 0 2
1 0 1 0 2 0 2 0 2
1 0 2 0 2 0 2 0 0
1 1 0 0 2 0 2 0 2
1 1 1 0 2 0 2 0 2
1 1 2 2 0 0 2 0 0
1 2 0 2 0 0 0 2 2
1 2 1 2 0 0 0 2 2
1 2 2 2 0 0 0 0 0

2 0 0 0 0 0 0 0 0
2 0 1 0 2 0 0 0 0
2 0 2 0 2 0 0 0 0
2 1 0 0 2 0 0 0 0
2 1 1 0 2 0 0 0 0
2 1 2 0 0 0 0 0 0
2 2 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0

So both A2 and A3 are select. But now we are in a position to show,

T11.7. A1 is independent of A2 and A3.

Consider any derivation hQ1;Q2 : : :Qni where there are no premises, and
the only axioms are instances of A2 and A3. By induction on line number,
for any i , Qi is select.

Basis: Q1 is an instance of A2 or A3, and as we have just seen, instances of
A2 and A3 are select. So Q1 is select.

Assp: For any i , 0 � i < k, Qi is select.
Show: Qk is select.

Qk is an instance of A2 or A3 or arises from previous lines by MP. If
Qk is an instance of A2 or A3, then by reasoning as in the basis, Qk

is select. If Qk arises from previous lines by MP, then the derivation
has some lines,

CHAPTER 11. MORE MAIN RESULTS 529

a. B

b. B ! C

k. C a,b MP

where a; b < k and C is Qk . By assumption, B and B ! C are
select. But by A1(!), both B and B ! C evaluate to 0 only in the
case when C also evaluates to 0; so if both B and B ! C are select,
then C is select as well. So Qk is select.

Indct: For any n, Qn is select.

So A1 cannot be derived from A2 and A3 — which is to say, A1 is indepen-
dent of A2 and A3.

E11.7. Use the following tables to show that A2 is independent of A1 and A3.

A2(�)

P �P

0 1
1 0
2 1

A2(!)

P Q P ! Q

0 0 0
0 1 2
0 2 1

1 0 0
1 1 2
1 2 0

2 0 0
2 1 0
2 2 0

E11.8. Use the table method to show that A3 is independent of A1 and A2. That
is, (i) find appropriate tables for � and!, and (ii) use your tables to show
by induction that A3 is independent of A1 and A2. Hint: You do not need
three-valued interpretations, and have already done the work in E8.14.

11.4 Isomorphic Models

Interpretations are isomorphic when they are structurally similar. Say a function f
from rn to s is onto set s just in case for each o 2 s there is some hm1 : : :mni 2
rn such that hhm1 : : :mni; oi 2 f; a function is onto set s when it “reaches” every
member of s. Then,

CHAPTER 11. MORE MAIN RESULTS 530

IS For some language L, interpretation I is isomorphic to interpretation I0 iff there
is a 1:1 function � (iota) from the universe of I onto the universe of I0 where:
for any sentence letter S , IŒS � D I0ŒS �; for any constant c, IŒc� D m iff I0Œc� D
�.m/; for any relation symbol Rn, hma : : :mbi 2 IŒRn� iff h�.ma/ : : : �.mb/i 2
I0.Rn/; and for any function symbol hn, hhma : : :mbi; oi 2 IŒhn� iff hh�.ma/ : : :
�.mb/i; �.o/i 2 I0Œhn�.

If I is isomorphic to I0, we write, I Š I0. Notice that the condition on constants requires
just that �.IŒc�/ D I0Œc�; applying � to the thing assigned to c by I, results in the thing
assigned to c by I0. And similarly, the condition on function symbols requires that
�.IŒhn�hma : : :mbi/ D I0Œhn�h�.ma/ : : : �.mb/i; for we have IŒhn�hma : : :mbi D o,
and �.o/ D I0Œhn�h�.ma/ : : : �.mb/i. We might think of the two interpretations as
already existing, and finding a function � to exhibit them as isomorphic. Alternatively,
given an interpretation I, and function � from the universe of I onto some set U0, we
might think of I0 as resulting from application of � to I.

Here are some examples. In the first, it is perhaps particularly obvious that I and
I0 have the required structural similarity.

(I)
U W Rover Fido Morris Sylvester

#

U0 W Ralph Fredo Manny Salvador

U D fRover, Fido, Morris, Sylvesterg. As represented by the arrows, function �maps
these onto a disjoint set U0. Then given I as below on the left, the corresponding
isomorphic interpretation is I0 as on the right.

IŒr� D Rover

IŒm� DMorris

IŒD� D fRover, Fidog

IŒC � D fMorris, Sylvesterg

IŒP � D fhRover, Morrisi; hFido, Sylvesterig

I0Œr� D Ralph

I0Œm� DManny

I0ŒD� D fRalph, Fredog

I0ŒC � D fManny, Salvadorg

I0ŒP � D fhRalph, Mannyi; hFredo, Salvadorig

On interpretation I, where Rover and Fido are dogs, and Morris and Sylvester are
cats, we have that every dog pursues at least one cat. And, supposing that Ralph and
Fredo are dogs, and Manny and Salvador are cats, the same properties and relations
are preserved on I0 — with only the particular individuals changed.

For a second case, let U be the same, but U0 the very same set, only permuted or
shuffled so that each object in U has a mate in U0.

(J)
U W Rover Fido Morris Sylvester

#

U0 W Rover Morris Fido Sylvester

CHAPTER 11. MORE MAIN RESULTS 531

So � maps members of U to members of the very same set. Then given I as before,
the corresponding isomorphic interpretation is I0 is as follows.

IŒr� D Rover

IŒm� DMorris

IŒD� D fRover, Fidog

IŒC � D fMorris, Sylvesterg

IŒP � D fhRover, Morrisi; hFido, Sylvesterig

I0Œr� D Rover

I0Œm� D Fido

I0ŒD� D fRover, Morrisg

I0ŒC � D fFido, Sylvesterg

I0ŒP � D fhRover, Fidoi; hMorris, Sylvesterig

This time, there is no simple way to understand I0ŒD� as the set of all dogs, and I0ŒC �
as the set of all cats. And we cannot say that the interpretation of P reflects dogs
pursuing cats. But Morris plays the same role in I0 as Fido in I; and similarly Fido
plays the same role in I0 as Morris in I. Thus, on I0, each thing in the interpretation of
D is such that it stands in the relation P to at least one thing in the interpretation of
C — and this is just as in interpretation I.

A final example switches to LNT
< and has an infinite U. We let U be the set N of

natural numbers, U0 be the set P of positive integers, and � be the function nC 1.

(K)
U W 0 1 2 3 . . .

#

U0 W 1 2 3 4 . . .

Then where N is the standard interpretation for symbols of LNT
<,

NŒ;� D 0

NŒ<� D fhm; ni jm; n 2 N , and m is less than ng

NŒS� D fhm; ni jm; n 2 N , and n is the successor of mg

NŒC� D fhhm; ni; oi jm; n; o 2 N , and m plus n equals og

we obtain N0 as follows,

N0Œ;� D 1

N0Œ<� D fhmC 1; nC 1i jm; n 2 N , and m is less than ng

N0ŒS� D fhmC 1; nC 1i jm; n 2 N , and n is the successor of mg

N0ŒC� D fhhmC 1; nC 1i; oC 1i jm; n; o 2 N , and m plus n equals og

Observe that anything in N0 is taken from P . In this case, we build N0 explicitly by
the rule for isomorphisms — simply finding �.m/ D mC 1 from the corresponding
element of N.

CHAPTER 11. MORE MAIN RESULTS 532

11.4.1 Isomorphism implies Equivalence

Given these examples, perhaps it is obvious that when interpretations are isomorphic,
they make all the same formulas true.2 Say,

EE For some language L, interpretations I and I0 are elementarily equivalent iff for
any formula P , IŒP � D T iff I0ŒP � D T.

If I is elementarily equivalent to I0, write I � I0. We show that isomorphic interpre-
tations are elementarily equivalent. This is straightforward given a matched pair of
results, of the sort we have often seen before.

T11.8. For some language L, if interpretations D Š H, and assignments d for D
and h for H are such that for any x, �.dŒx�/ D hŒx�, then for any term t,
�.DdŒt�/ D HhŒt�.

Suppose D Š H, and corresponding assignments d and h are such that for any
x, �.d.x// D h.x/. By induction on the number of operator symbols in t.

Basis: If t has no function symbols, then it is a variable or a constant. If t is
a variable x, then by TA(v), DdŒx� D d.x/; so �.DdŒx�/ D �.dŒx�/; but
we have supposed �.dŒx�/ D hŒx�; and by TA(v) again, hŒx� D HhŒx�;
so �.DdŒx�/ D HhŒx�. If t is a constant c, then by TA(c), DdŒc� D DŒc�;
so �.DdŒc�/ D �.DŒc�/; but since D Š H, �.DŒc�/ D HŒc�; and by TA(c)
again, HŒc� D HhŒc�; so �.DdŒc�/ D HhŒc�.

Assp: For any i , 0 � i < k if t has i function symbols, then �.DdŒt�/ D

HhŒt�.
Show: If t has k function symbols, then �.DdŒt�/ D HhŒt�.

If t has k function symbols, then it is of the form hnt1 : : : tn for rela-
tion symbol hn and terms t1 : : : tn with < k function symbols. Then
DdŒt� D DdŒh

nt1 : : : tn�; by TA(f), DdŒh
nt1 : : : tn� D DŒhn�hDdŒt1�

: : :DdŒtn�i. So �.DdŒt�/ D �.DŒhn�hDdŒt1� : : :DdŒtn�i/; but since D Š
H, �.DŒhn�hDdŒt1� : : :DdŒtn�i/ D HŒhn�h�.DdŒt1�/ : : : �.DdŒtn�/i; and by
assumption, �.DdŒt1�/ D HhŒt1�, and . . . and �.DdŒtn�/ D HhŒtn�;
so HŒhn�h�.DdŒt1�/ : : : �.DdŒtn�/i D HŒhn�hHhŒt1� : : :HhŒtn�i; and by
TA(f), HŒhn�hHhŒt1� : : :HhŒtn�i D HhŒh

nt1 : : : tn�; which is just HhŒt�;
so �.DdŒt�/ D HhŒt�.

2In Reason, Truth and History, Hilary Putnam makes this point to show that truth values of sen-
tences are not sufficient to fix the interpretation of a language. As we shall see in this section, the
technical point is clear enough. It is another matter whether it bears the philosophical weight he means
for it to bear!

CHAPTER 11. MORE MAIN RESULTS 533

Indct: For any t, �.DdŒt�/ D HhŒt�.

So when D and H are isomorphic, and for any variable x, � maps dŒx� to hŒx�, then
for any term t, � maps DdŒt� to HhŒt�.

Now we are in a position to extend the result to one for satisfaction of formulas.
If D and H are isomorphic, and for any variable x, �maps dŒx� to hŒx�, then a formula
P will be satisfied on D with d just in case it is satisfied on H with h.

T11.9. For some language L, if interpretations D Š H, and assignments d for D
and h for H are such that for any x, �.dŒx�/ D hŒx�, then for any formula P ,
DdŒP � D S iff HhŒP � D S.

By induction on the number of operators in P . Suppose D Š H.

Basis: Suppose P has no operator symbols and d and h are such that for any
x, �.dŒx�/ D hŒx�. If P has no operator symbols, then it is sentence
letter S or an atomic Rnt1 : : : tn for relation symbol Rn and terms
t1 : : : tn. Suppose the former; then by SF(s), DdŒS � D S iff DŒS � D T;
since D Š H iff HŒS � D T; by SF(s), iff HhŒS � D S. Suppose the
latter; by SF(r), DdŒR

nt1 : : : tn� D S iff hDdŒt1� : : :DdŒtn�i 2 DŒRn�;
since D Š H, iff h�.DdŒt1�/ : : : �.DdŒtn�/i 2 HŒRn�; since D Š H and
�.dŒx�/ D hŒx�, by T11.8, iff hHhŒt1� : : :HhŒtn�/i 2 HŒRn�; by SF(r),
iff HhŒR

nt1 : : : tn� D S.

Assp: For any i , 0 � i < k, for d and h such that for any x, �.dŒx�/ D hŒx�
and P with i operator symbols, DdŒP � D S iff HhŒP � D S.

Show: For d and h such that for any x, �.dŒx�/ D hŒx� and P with k operator
symbols, DdŒP � D S iff HhŒP � D S.

If P has k operator symbols, then it is of the form �A, A ! B, or
8xA for variable x and formulas A and B with< k operator symbols.
Suppose for any x, �.dŒx�/ D hŒx�.

(�) Suppose P is of the form �A. Then DdŒP � D S iff DdŒ�A� D S; by
SF(�), iff DdŒA� ¤ S; by assumption, iff HhŒA� ¤ S; by SF(�), iff
HhŒ�A� D S; iff HhŒP � D S.

(!) Homework.

(8) Suppose P is of the form 8xA. Then DdŒP � D S iff DdŒ8xA� D S;
by SF(8), iff for any m 2 UD, Dd.xjm/ŒA� D S. Similarly, HhŒP � D S
iff HhŒ8xA� D S; by SF(8), iff for any n 2 UH, Hh.xjn/ŒA� D S. (i)

CHAPTER 11. MORE MAIN RESULTS 534

Suppose HhŒP � D S but DdŒP � ¤ S; then any n 2 UH is such that
Hh.xjn/ŒA� D S, but there is some m 2 UD such that Dd.xjm/ŒA� ¤ S.
From the latter, insofar as d.xjm/ and h.xj�.m// have each member
related by �, the assumption applies and, Hh.xj�.m//ŒA� ¤ S; so there
is an n 2 UH such that Hh.xjn/ŒA� ¤ S; this is impossible; reject
the assumption: if HhŒP � D S, then DdŒP � D S. (ii) Similarly, [by
homework] if DdŒP � D S, then HhŒP � D S. Hint: given h.xjn/, there
must be an m such that �.m/ D n; then d.xjm/ and h.xjn/ are related
so that the assumption applies.

For d and h such that for any x, �.dŒx�/ D hŒx� and P with k operator
symbols, DdŒP � D S iff HhŒP � D S.

Indct: For d and h such that for any x, �.dŒx�/ D hŒx�, and any P , DdŒP � D S
iff HhŒP � D S.

As often occurs, the most difficult case is for the quantifier. The key is that the
assumption applies to DdŒP � and HhŒP � for any assignments d and h related so that
for any x, �.dŒx�/ D hŒx�. Supposing that d and h are so related, there is no reason
to think that d.xjm/ and h remain in that relation. The problem is solved with a
corresponding modification to h: with d.xjm/; we modify h so that the assignment
to x simply is �.m/. Thus d.xjm/ and h.xj�.m// are related so that the assumption
applies.

Now it is a simple matter to show that isomorphic models are elementarily equiv-
alent.

T11.10. If D Š H, then D � H.

Suppose D Š H. By TI, DŒP � ¤ T iff there is some assignment d such
that DdŒP � ¤ S; since D Š H, where d and h are related as in T11.9, iff
HhŒP � ¤ S; by TI, iff HŒP � ¤ T. So DŒP � D T iff HŒP � D T; and D � H.

Thus it is only the structures of interpretations up to isomorphism that matter for the
truth values of formulas. And such structures are completely sufficient to determine
truth values of formulas. It is another question whether truth values of formulas are
sufficient to determine models, even up to isomorphism.

*E11.9. Complete the proof of T11.9. You should set up the complete induction, but
may refer to the text, as the text refers to homework.

CHAPTER 11. MORE MAIN RESULTS 535

E11.10. (i) Explain what truth value the sentence 8x.Dx ! 9y.Cy ^ Pxy// has
on interpretation I and then I0 in example (I). Explain what truth values it
has on I and then I0 in example (J). (ii) Explain what truth value the sentence
S; C S; D SS; has on interpretations N and N0 in example (K). Are these
results as you expect? Explain.

11.4.2 When Equivalence implies Isomorphism

It turns out that when the universe of discourse is finite, elementary equivalence is
sufficient to show isomorphism. Suppose UD is finite and interpretations D and H are
elementarily equivalent, so that every formula has the same truth value on the two
interpretations. We find a sequence of formulas which contain sufficient information
to show that D and H are isomorphic.

For some language L, suppose D � H and UD D fm1;m2 : : :mng. For an enu-
meration x1, x2 : : : of the variables, consider some assignment d such that dŒx1� D
m1, dŒx2� D m2, and . . . and dŒxn� D mn, and let C0 be the open formula,

Œ.x1 ¤ x2 ^ x1 ¤ x3 ^ : : : ^ x1 ¤ xn/ ^ .x2 ¤ x3 ^ : : : ^ x2 ¤ xn/ ^ .xn�1 ¤ xn/� ^

8v.v D x1 _ v D x2 _ : : : _ v D xn/

with appropriate parentheses. You should see this expression on analogy with quan-
tity expressions from chapter 5 on translation. Its existential closure, that is, 9x19x2
: : :xnC0 is true just when there are exactly n things.

Now consider an enumeration, A1, A2 : : : of those atomic formulas in L whose
only variables are x1 : : :xn. And set Ci D Ci�1^Ai if DdŒAi � D S, and otherwise,
Ci D Ci�1 ^ �Ai . It is easy to see that for any i , DdŒCi � D S. The argument is by
induction on i .

T11.11. For any i , DdŒCi � D S.

Basis: For any a and b such that 1 � a; b � n and a ¤ b, since xa and xb
are assigned distinct members of UD, DdŒxa D xb� ¤ S; so by SF(�),
DdŒxa ¤ xb� D S; so by repeated applications of SF(^), DdŒ.x1 ¤

x2^x1 ¤ x3^: : :^x1 ¤ xn/^.x2 ¤ x3^: : :^x2 ¤ xn/^.xn�1 ¤

xn/� D S. And since each member of UD is assigned to some variable
in x1 : : :xn, for any m 2 UD, there is some a, 1 � a � n such that
Dd.vjm/Œv D xa� D S. So by repeated applications of SF(_), for any
m 2 UD, Dd.vjm/Œv D x1 _ v D x2 _ : : :v D xn� D S; so by
SF(8), DdŒ8v.v D x1 _ v D x2 _ : : :v D xn/� D S; so by SF(^),
DdŒC0� D S.

CHAPTER 11. MORE MAIN RESULTS 536

Assp: For any i , 0 � i < k, DdŒCi � D S.

Show: DdŒCk� D S.

Ck is of the form Ck�1 ^ Ak or Ck�1 ^ �Ak . In the first case, by
assumption, DdŒCk�1� D S, and by construction, DdŒAk� D S; so by
SF(^), DdŒCk�1 ^ Ak� D S; which is to say, DdŒCk� D S. In the
second case, again DdŒCk�1� D S; and by construction, DdŒAk� ¤ S;
so by SF(�), DdŒ�Ak� D S; so by SF(^), DdŒCk�1 ^ �Ak� D S;
which is to say, DdŒCk� D S.

Indct: For any i , DdŒCi � D S.

So these formulas, though increasingly long, are all satisfied on assignment d.
Now, for the specification of an isomorphism between the interpretations, we set

out to show there is a corresponding assignment h on which all the same expressions
are satisfied. First, for any Ci , consider its existential closure, 9x1 : : : 9xnCi . It is
easy to see that for any Ci , HŒ9x1 : : : 9xnCi � D T. Suppose otherwise; then since
D � H, DŒ9x1 : : : 9xnCi � ¤ T; so by TI, there is some assignment d0 such that
Dd0 Œ9x1 : : : 9xnCi � ¤ S; so, since the closure of Ci has no free variables, by T8.4,
DdŒ9x1 : : : 9xnCi � ¤ S; so by repeated application of SF(9), DdŒCi � ¤ S; but by
T11.11, this is impossible; reject the assumption: HŒ9x1 : : : 9xnCi � D T. When
the existential is not satisfied on d, as we remove the quantifiers, in each case, the
resultant formula without a quantifier is unsatisfied on d.xjm/ for any m 2 UD; so
it is unsatisfied when m D dŒx� — so that the formula without the quantifier is
unsatisfied on the original d. Observe that there are thus exactly n members of UH:
HŒ9x1 : : : 9xnC0� D T; and, as we have already noted, this can be the case iff there
are exactly n members of UH.

Now for some assignment h0, let h range over assignments that differ from h0 at
most in assignment to x1 : : :xn. Set �i D fh j HhŒCi � D Sg, and � D

T
i�0�i .

Observe: (i) No�i is empty. Since HŒ9x1 : : : 9xnCi � D T, by TI, for any assignment
h�, Hh� Œ9x1 : : : 9xnCi � D S; so Hh0 Œ9x1 : : : 9xnCi � D S; so by repeated applications
of SF(9), there is some h such that HhŒCi � D S. When the quantifiers come off, the
result is some assignment that differs at most in assignments to x1 : : :xn and so
some assignment in �i . (ii) For any j � i , �j � �i . Suppose otherwise; then
there is some h such that h 2 �j but h 62 �i ; so by construction, HhŒCj � D S but
HhŒCi � ¤ S; if j D i this is impossible; so suppose j > i ; then Cj is of the sort,
Ci ^ BiC1 ^ BiC2 ^ : : : ^ Bj where BiC1 : : :Bj are either atomics or negated
atomics; so by repeated application of SF(^), HhŒCi � D S; this is impossible; reject
the assumption: �j � �i . (iii) Finally, there are at most finitely many assignments

CHAPTER 11. MORE MAIN RESULTS 537

of the sort h. Since any h differs from h0 at most in assignments to x1 : : :xn, and
there are just n members of UH, there are nn assignments of the sort h.

From these results it follows that � is non-empty. Suppose otherwise. Then
for any h, there is some �i such that h 62 �i . But there are only finitely many
assignments of the sort h. So we may consider finitely many �a : : : �b from which
for any h there is some �i such that h 62 �i . But where each subscript in a : : : b is
� b, for each �i , �b � �i ; and since each h is missing from at least one �i , we
have that�b is therefore empty. �b must lack each of the assignments missing from
prior members of the sequence. But this is impossible; reject the assumption: � is
not empty. So we have what we wanted: any h in � is an assignment that satisfies
every Ci .

Now we are ready to specify a mapping for our isomorphism! Indeed, we are
ready to show,

T11.12. If D � H and UD is finite, then D Š H.

Suppose D � H and UD is finite. Then there are � and formulas Ci as above.
For some particular h 2 �, for any i , 1 � i � n, let �.dŒxi �/ D hŒxi �. Since
h 2 �, for any Ci , HhŒCi � D S. So HhŒC0� D S. So h assigns each xi to a
different member of UH, and � is onto UH, as it should be. We now set out to
show that the other conditions for isomorphism are met.

Sentence letters. Since D � H, for any sentence letter S , DŒS � D T; iff HŒS � D T;
so DŒS � D HŒS �.

Constants. We require that for any constant c, DŒc� D mi iff HŒc� D �.mi /. (i)
For some constant c, suppose DŒc� D mi . Since dŒxi � D mi , �.mi / D
�.dŒxi �/ D hŒxi �. By TA(c), DdŒc� D DŒc� D mi ; and by TA(v), DdŒxi � D

dŒxi � D mi ; so DdŒc� D DdŒxi �; so hDdŒc�;DdŒxi �i 2 DŒD�; so by SF(r),
DdŒc D xi � D S; so c D xi is a conjunct in some Cn; but HhŒCn� D

S; so by repeated applications of SF(^), HhŒc D xi � D S; so by SF(r),
hHhŒc�;HhŒxi �i 2 HŒD�; so HhŒc� D HhŒxi �; but by TA(c), HhŒc� D HŒc�, and
by TA(v), HhŒxi � D hŒxi �; so HŒc� D hŒxi �; so HŒc� D �.mi /.

(ii) Suppose DŒc� ¤ mi . As before, �.mi / D hŒxi �; and DdŒxi � D mi .
But by TA(c), DdŒc� D DŒc�; so DdŒc� ¤ mi ; so DdŒc� ¤ DdŒxi �; so
hDdŒc�;DdŒxi �i 62 DŒD�; so by SF(r), DdŒc D xi � ¤ S; so c ¤ xi is a
conjunct in some Cn; but HhŒCn� D S; so by repeated applications of SF(^),
HhŒc ¤ xi � D S; so by SF(�), and SF(r), hHhŒc�;HhŒxi �i 62 HŒD�; so
HhŒc� ¤ HhŒxi �; but by TA(c), HhŒc� D HŒc�, and by TA(v), HhŒxi � D hŒxi �;
so HŒc� ¤ hŒxi �; so HŒc� ¤ �.mi /.

CHAPTER 11. MORE MAIN RESULTS 538

Relation Symbols. We require that for any relation symbol Rn, hma : : :mbi 2 DŒRn�

iff h�.ma/ : : : �.mb/i 2 H.Rn/. (i) Suppose hma : : :mbi 2 DŒRn�. Since
dŒxa� D ma, and . . . and dŒxb� D mb we have, �.ma/ D �.dŒxa�/ D hŒxa�,
and . . . and �.mb/ D �.dŒxb�/ D hŒxb�, and also by TA(v), DdŒxa� D ma,
and . . . and DdŒxb� D mb; so hDdŒxa�; : : :DdŒxb�i 2 DŒRn�; so by SF(r),
DdŒR

nxa : : :xb� D S; so Rnxa : : :xb is a conjunct of some Cn; but HhŒCn� D

S; so by repeated applications of SF(^), HhŒR
nxa : : :xb� D S; so by SF(r),

hHhŒxa�; : : :HhŒxb�i 2 HŒRn�; but by TA(v), HhŒxa� D hŒxa� D �.ma/, and
. . . and HhŒxb� D hŒxb� D �.mb/; so h�.ma/ : : : �.mb/i 2 HŒRn�.

(ii) Suppose hma : : :mbi 62 DŒRn�. As before, �.ma/ D hŒxa�, and . . . and
�.mb/ D hŒxb�; similarly, DdŒxa� D ma, and . . . and DdŒxb� D mb; so
hDdŒxa�; : : :DdŒxb�i 62 DŒRn�; so by SF(r), DdŒR

nxa : : :xb� ¤ S; and
�Rnxa : : :xb is a conjunct of some Cn; but HhŒCn� D S; so by repeated
applications of SF(^), HhŒ�Rnxa : : :xb� D S; so by SF(�) and SF(r),
hHhŒxa�; : : :HhŒxb�i 62 HŒRn�; but as before, HhŒxa� D �.ma/, and . . . and
HhŒxb� D �.mb/; so h�.ma/ : : : �.mb/i 62 HŒRn�.

Function symbols. We require that for any function symbol hn, hhma : : :mbi;mci 2
DŒhn� iff hh�.ma/ : : : �.mb/i; �.mc/i 2 HŒhn�. (i) Suppose hhma : : :mbi;mci 2
DŒhn�. Since dŒxa� D ma, and . . . and dŒxb� D mb , and dŒxc� D mc , we
have, �.ma/ D �.dŒxa�/ D hŒxa�, and . . . and �.mb/ D �.dŒxb�/ D hŒxb�, and
�.mc/ D �.dŒxc�/ D hŒxc�; and also by TA(v), DdŒxa� D ma, and . . . and
DdŒxb� D mb , and DdŒxc� D mc ; so hhDdŒxa� : : :DdŒxb�i;DdŒxc�i 2 DŒhn�;
so DŒhn�hDdŒxa� : : :DdŒxb�i D DdŒxc�; so by TA(f), DdŒh

nxa : : :xb� D

DdŒxc�; so hDdŒh
nxa : : :xb�;DdŒxc�i 2 DŒD�; so by SF(r), DdŒh

nxa : : :xb D

xc� D S; so hnxa : : :xb D xc is a conjunct of some Cn; but HhŒCn� D S;
so by repeated applications of SF(^), HhŒh

nxa : : :xb D xc� D S; so by
SF(r), hHhŒh

nxa : : :xb�;HhŒxc�i 2 HŒD�; so HhŒh
nxa : : :xb� D HhŒxc�; but

by TA(f), HhŒh
nxa : : :xb� D HŒhn�hHhŒxa� : : :HhŒxb�i; so HŒhn�hHhŒxa� : : :

HhŒxb�i D HhŒxc�; so hhHhŒxa� : : :HhŒxb�i;HhŒxc�i 2 HŒhn�; but by TA(v),
HhŒxa� D hŒxa� D �.ma/, and . . . HhŒxb� D hŒxb� D �.mb/, and HhŒxc� D

hŒxc� D �.mc/; so hh�.ma/ : : : �.mb/i; �.mc/i 2 HŒhn�.

(ii) Suppose hhma : : :mbi;mci 62 DŒhn�. As before, �.ma/ D hŒxa�, and
. . . and �.mb/ D hŒxb�, and �.mc/ D hŒxc�; and also DdŒxa� D ma, and
. . . and DdŒxb� D mb , and DdŒxc� D mc ; so hhDdŒxa� : : :DdŒxb�i;DdŒxc�i 62

DŒhn�; so DŒhn�hDdŒxa� : : :DdŒxb�i ¤ DdŒxc�; so by TA(f), DdŒh
nxa : : :xb�

¤ DdŒxc�; so hDdŒh
nxa : : :xb�;DdŒxc�i 62 DŒD�; so by SF(r), DdŒh

nxa : : :xb
D xc� ¤ S; so hnxa : : :xb ¤ xc is a conjunct of some Cn; but HhŒCn� D S;

CHAPTER 11. MORE MAIN RESULTS 539

so by repeated applications of SF(^), HhŒh
nxa : : :xb ¤ xc� D S; so by

SF(�) and SF(r), hHhŒh
nxa : : :xb�;HhŒxc�i 62 HŒD�; so HhŒh

nxa : : :xb� ¤

HhŒxc�; but by TA(f), HhŒh
nxa : : :xb� D HŒhn�hHhŒxa� : : :HhŒxb�i; and

HŒhn�hHhŒxa� : : :HhŒxb�i ¤ HhŒxc�; so hhHhŒxa� : : :HhŒxb�i;HhŒxc�i 62 HŒhn�;
but as before, HhŒxa� D �.ma/, and . . . HhŒxb� D �.mb/, and HhŒxc� D �.mc/;
so hh�.ma/ : : : �.mb/i; �.mc/i 62 HŒhn�.

Thus elementary equivalence is sufficient for isomorphism in the case where the uni-
verse of discourse is finite. This is an interesting result! Consider any interpretation
D with a finite UD, and the set of formulas � (Delta) true on D. By our result, any
other model H that makes all the formulas in � true — any H such that D � H —
is such that D is isomorphic to H. As we shall shortly see, the situation is not so
straightforward when UD is infinite.

11.5 Compactness and Isomorphism

Compactness takes the link between syntax and semantics from adequacy, and com-
bines it with the finite length of derivations. The result is simple enough, and puts us
in a position to obtain a range of further conclusions.

ST A set † of formulas is satisfiable iff it has a model. † is finitely satisfiable iff
every finite subset of it has a model.

Now compactness draws a connection between satisfiability, and finite satisfiability,

T11.13. A set of formulas† is satisfiable iff it is finitely satisfiable. (compactness)

(i) Suppose † is satisfiable, but not finitely satisfiable. Then there is some
M such that MŒ†� D T; but there is a finite †0 � † such that any M0 has
M0Œ†0� ¤ T; so MŒ†0� ¤ T; so there is a formula P 2 †0 such that MŒP � ¤ T;
but since †0 � †, P 2 †; so MŒ†� ¤ T. This is impossible; reject the
assumption: if † is satisfiable, then it is finitely satisfiable.

(ii) Suppose † is finitely satisfiable, but not satisfiable. By T10.17, if †
is consistent, then it has a model M. But since † is not satisfiable, it has no
model; so it is not consistent; so there is some formula A such that† ` A and
† ` �A; consider derivations of these results, and the set †� of premises
of these derivations; since derivations are finite, †� is finite; and since †�

includes all the premises, †� ` A and †� ` �A; so by soundness, †� � A

and †� � �A; since † is finitely satisfiable, there must be some model M�

CHAPTER 11. MORE MAIN RESULTS 540

such that M�Œ†�� D T; then by QV, M�ŒA� D T and M�Œ�A� D T. But
by T7.5, there is no M� and A such that M�ŒA� D T and M�Œ�A� D T.
This is impossible; reject the assumption: if † is finitely satisfiable, then it is
satisfiable.

This theorem puts us in a position to reason from finite satisfiability to satisfiabil-
ity. And the results of such reasoning may be startling. Consider again the standard
interpretation N1 for LNT

<,

NŒ;� D 0

NŒ<� D fhm; ni jm; n 2 N , and m is less than ng

NŒS� D fhm; ni jm; n 2 N , and n is the successor of mg

NŒC� D fhhm; ni; oi jm; n; o 2 N , and m plus n equals og

NŒ�� D fhhm; ni; oi jm; n; o 2 N , and m times n equals og

Let † include all the sentences true on N. Now consider a language L0 like LNT
< but

with the addition of a single constant c. And consider a set of sentences,

†0 D † [f; < c; S; < c; SS; < c; SSS; < c; SSSS; < c : : :g

that is like † but with the addition of sentences asserting that c is greater than each
integer. Clearly there is no such individual on the standard interpretation N. A finite
subset of †0 can have at most finitely many of these sentences as members. Thus a
finite subset of †0 is a subset of,,

† [f; < c; S; < c; SS; < c : : :

nS’s‚ …„ ƒ
SS : : : S ; < cg

for some n. But any such set is finitely satisfiable: Simply let the interpretation N0 be
like N but with NŒc� D nC 1. It follows from T11.13 that †0 has a model M0. But,
further, by reasoning as for T10.16, a model M like M0 but without the assignment to
c is a model of LNT

< for all the sentences in†. So N � M. But N 6Š M. For there must
be a member of UM with infinitely many members of UM that stand in the < relation
to it. [Clean this up.]

It is worth observing that we have demonstrated the existence of a model for the
completely nonstandard M by appeal to the more standard models M0 for finite subsets
of †0, through the compactness theorem. Also, it is now clear that there can be no
analog to the result of the previous section for models with an infinite domain: For
models with an infinite domain, elementary equivalence does not in general imply
isomorphism. In the next section, we begin to see just how general this phenomenon
is.

CHAPTER 11. MORE MAIN RESULTS 541

11.6 Submodels and Löwenheim-Skolem

The construction for the adequacy theorem gives us a countable model for any con-
sistent set of sentences. Already, this suggests that sentences for some models do not
always have the same size domain. Suppose † has a model I. Then by T10.4, † is
consistent; so by T10.17, † has a model M — where the universe of this latter model
is constructed of disjoint sets of integers. But this means that if † has a model at all,
then it has a countable model, for we might order the members of UM by, say, their
least elements into a countable series. In fact, we might set up a function � from each
set in UM to its least element, to establish an isomorphic interpretation M� whose uni-
verse just is a set of integers. Then by T11.10, M�Œ†� D T. So consider any model
whose universe is not countable; it must be elementarily equivalent to one whose
universe is a countable set of integers. But, of course, there is no one-to-one map
from an uncountable universe to a countable one, so the models are not isomorphic.

This sort of result is strengthened in an interesting way by the Löwenheim-
Skolem theorems. In the first form, we show that every model has a submodel with a
countable domain.

11.6.1 Submodels

SM A model M of a language L is a submodel of model N (M � N/ iff

1. UM � UN,

2. For any sentence letter S , MŒS � D NŒS �,

3. For any constant c of L, M.c/ D N.c/,

4. For any function symbol hn of L and any ha1 : : : ani from the members
of UM, hha1 : : : ani; bi 2 M.hn/ iff hha1 : : : ani; bi 2 N.hn/,

5. For any relation symbol Rn of L and any ha1 : : : ani from the members
of UM, ha1 : : : ani 2 M.Rn/ iff ha1 : : : ani 2 N.Rn/.

The interpretation of hn and of Rn on M are the restrictions of their respective inter-
pretations on N. Observe that a submodel is completely determined, once its domain
is given. A submodel is not well defined if it does not include objects for the inter-
pretation of the constants, and the closure of its functions.

ES Say d is a variable assignment into the members of UM. Then M is an elemen-
tary submodel of N iff M � N and for any formula P of L and any such d,
MdŒP � D S iff NdŒP � D S.

CHAPTER 11. MORE MAIN RESULTS 542

If M is an elementary submodel of N, we write, M � N. First,

T11.14. If M � N then for any sentence P of L, MŒP � D T iff NŒP � D T.

Suppose M � N and consider some sentence P . By TI, MŒP � D T iff
MdŒP � D S for every assignment d into UM; since P is a sentence, by T8.4, iff
for some particular assignment h, MhŒP � D S; since M � N, iff NhŒP � D S;
since P is a sentence, by T8.4, iff NdŒP � D S for every d into UN; by TI, iff
NŒP � D T. So MŒP � D T iff NŒP � D T.

This much is clear. It is not so easy demonstrate the conditions under which a sub-
model is an elementary submodel. We make a beginning with the following theo-
rems.

T11.15. Suppose M � N and d is a variable assignment into UM. Then for any term
t, MdŒt� D NdŒt�.

By induction on the number of function symbols in t. Suppose M � N and d
is a variable assignment into UM.

Basis: Suppose t has no function symbols. Then t is a variable x or a con-
stant c. (i) Suppose t is a constant c. Then MdŒt� is MdŒc�; by TA(c)
this is MŒc�; and since M � N, this is NŒc�; by TA(c) again, this is
NdŒc�; which is just NdŒt�. (ii) Suppose t is a variable x. Then MdŒt�

is MdŒx�; by TA(v), this is dŒx� and by TA(v) again, this is NdŒx�;
which is just NdŒt�.

Assp: For any i , 0 � i < k, if t has i function symbols, then MdŒt� D NdŒt�.

Show: If t has k function symbols, MdŒt� D NdŒt�.

If t has k function symbols, then it is of the form hnt1 : : : tn for some
terms t1 : : : tn with< k function symbols. So MdŒt� is MdŒh

nt1 : : : tn�;
by TA(f) this is MŒhn�hMdŒt1�; : : :MdŒtn�i; since M � N, with the as-
sumption, this is NŒhn�hNdŒt1�; : : :NdŒtn�i; by TA(f), this is NdŒh

nt1
: : : tn�; which is just NdŒt�.

Indct: For any term t, MdŒt� D NdŒt�.

T11.16. Suppose that M � N and that for any formula P and every variable assign-
ment d such that NdŒ9xP � D S there is an m 2 UM such that Nd.xjm/ŒP � D S.
Then M � N.

CHAPTER 11. MORE MAIN RESULTS 543

Suppose M � N and that for any formula P and every variable assignment d
such that NdŒ9xP � D S there is an m 2 UM such that Nd.xjm/ŒP � D S. We
show by induction on the number of operators in P , that for d any assignment
into the members of UM, MdŒP � D S iff NdŒP � D S.

Basis: If P is atomic then it is either a sentence letter S or an atomic of the
form Rnt1 : : : tn for some relation symbol Rn and terms t1 : : : tn.
(i) Suppose P is S . Then MdŒP � D S iff MdŒS � D S; by SF(s), iff
MŒS � D T; since M � N, iff NŒS � D T; by SF(s), iff NdŒS � D S;
iff NdŒP � D S. (ii) Suppose P is Rnt1 : : : tn. Then MdŒP � D S
iff MdŒR

nt1 : : : tn� D S; by SF(r) iff hMdŒt1�; : : :MdŒtn�i 2 MŒRn�;
since M � N with T11.15 iff hNdŒt1�; : : :NdŒtn�i 2 NŒRn�; by SF(r)
iff NdŒR

nt1 : : : tn� D S; iff NdŒP � D S.
Assp: For any i , 0 � i < k, for d any assignment into the members of UM,

if P has i operator symbols, then MdŒP � D S iff NdŒP � D S.
Show: If P has k operator symbols, then for d any assignment into the mem-

bers of UM, MdŒP � D S iff NdŒP � D S.
If P has k operator symbols, then it is of the form �A, A ! B or
9xA for variable x and formulas A and B with < k operator symbols
(treating universally quantified expressions as equivalent to existen-
tially quantified ones). Let d be an assignment into the members of
UM.

(�) Suppose P is �A. MdŒP � D S iff MdŒ�A� D S; by SF(�) iff
MdŒA� ¤ S; by assumption iff NdŒA� ¤ S; by SF(�) iff NdŒ�A� D S;
iff NdŒP � D S.

(!) Homework.
(9) Suppose P is 9xA. (i) Suppose MdŒP � D S; then MdŒ9xA� D S;

so by SF(9), there is some o 2 UM such that Md.xjo/ŒA� D S; so
since d.xjo/ is an assignment into the members of UM, by assump-
tion, Nd.xjo/ŒA� D S; so by SF(9), NdŒ9xA� D S; so NdŒP � D S.
(ii) Suppose NdŒP � D S; then NdŒ9xA� D S; so by the assump-
tion of the theorem, there is an m 2 UM such that Nd.xjm/ŒA� D S;
since d.xjm/ is an assignment into the members of UM, by assumption
Md.xjm/ŒA� D S; so by SF(9), MdŒ9xA� D S; so MdŒP � D S. So
MdŒP � D S iff NdŒP � D S.

In any case, if P has k operator symbols, MdŒP � D S iff NdŒP � D S.

Indct: For any P , MdŒP � D S iff NdŒP � D S.

CHAPTER 11. MORE MAIN RESULTS 544

So the result works, only so long as the quantifier case is guaranteed by “witnesses”
for each existential claim in the universe of the submodel. The Löwenheim Skolem
Theorem takes advantage of what we have done by producing a model in which these
witnesses are present.

11.6.2 Downward Löwenheim-Skolem

The Löwenheim Skolem Theorem takes advantage of what we have just done by
producing a model in which the required witnesses are present.

UM Consider some model N and suppose a well-ordering of the objects of UN. We
construct a countable submodel M as follows. Let A0 be a countable subset
of UN. We construct a series A0, A1, A2 For a formula of the form 9xP

in the language L, and a variable assignment d into Ai , let d0 be like d for
the initial segment that assigns to variables free in P , and after assigns to a
constant object m0 in A0. Then for any P and d such that NdŒ9xP � D S,
find the first object o in the well-ordering of UN such that Nd0.xjo/ŒP � D S.
To form AiC1, augment Ai with all the objects obtained this way. Because
there are countably many formulas, and countably many initial segments of
the variable assignments, countably many objects are added to form AiC1,
and if Ai is countable, AiC1 is countable. Let UM be

S
i�0 Ai . Again, if each

Ai is countable, UM is countable.

There may be uncountably many variable assignments into a given Ai . However,
for a given formula P , no matter how may assignments there may be on which it is
satisfied, there can be at most countably many initial segments of the sort d0. So at
most countably many objects are added. The functions from formulas and variable
assignments to individuals are Skolem functions, and we consider the closure of A
under the set of all Skolem functions.

T11.17. With UM constructed as above, a submodel M of N is well-defined.

Clearly UM � UN. For constants, consider the case when 9xP is 9x.x D c/;
then at any stage i , Md0.xjo/Œx D c� D S iff o D MŒc�. So MŒc� is a
member of AiC1 and so of UM. Similarly, for functions, consider the case
when 9xP is 9x.hnv1 : : :vn D x/ for some function symbol hn and vari-
ables v1 : : :vn and x. For any d, consider some d0 which assigns objects
to each of the variables v1 : : :vn; then there there is some Ai such that
d0 is an assignment into it; so by construction, AiC1 includes an object o

CHAPTER 11. MORE MAIN RESULTS 545

such that Nd0.xjo/Œh
nv1 : : :vn D x� D S. But this must be the object

NŒhn�hNd0 Œv1�; : : :Nd0 Œv1�i.

T11.18. For any model N there is an M � N such that M has a countable domain.
(Löwenheim-Skolem)

To show M � N by T11.16, it remains to show that for any formula P and
every variable assignment d such that NdŒ9xP � D S there is an m 2 UM

such that Nd.xjm/ŒP � D S. But this is easy. Suppose NdŒ9xP � D S; then
where d and d0 agree on assignments to all the free variables in P , by T8.4,
Nd0 Œ9xP � D S. But all assignments from d0 are elements of some Ai ; so by
construction there is object m such that Nd0.xjm/ŒP � D S in AiC1 and so in
UM; and since d and d0 agree on their assignments to all the free variables in
P , by T8.4, Nd.xjm/ŒP � D S.

[applications]

11.6.3 Upward Löwenheim-Skolem

Part IV

Logic and Arithmetic:
Incompleteness and

Computability

546

Introductory

In Part III we showed that our semantical and syntactical logical notions are related
as we want them to be: exactly the same arguments are semantically valid as are
provable. So,

(A) � ` P iff � � P

Thus our derivation system is both sound and adequate, as it should be. In this part,
however, we encounter a series of limiting results — with particular application to
arithmetic and computing.

First, it is natural to think mathematics is characterized by proofs and derivations.
Thus, one might anticipate that there would be some system of premises � such that
for any P in LNT, we would have,

(B) � ` P iff NŒP � D T

where N is the standard interpretation of number theory. Note the difference between
our claims. In (A) derivations are matched to entailments; in (B) derivations (and
so entailments) are matched to truths on an interpretation. Perhaps inspired by sus-
picions about the existence or nature of numbers, one might expect that derivations
would even entirely replace the notion of mathematical truth. And Q or PA may
already seem to be deductive systems as in (B). But we shall see that there can be
no such deductive system. From Gödel’s first incompleteness theorem, under certain
constraints, no consistent deductive system has as consequences either P or �P for
every P of LNT; any such theory is (negation) incomplete. But then, subject to those
constraints, any consistent deductive system must omit some truths of arithmetic
from among its consequences.3

Suppose there is no one-to-one map between truths of arithmetic and conse-
quences of our theories. Rather, we propose a theory R(eal) whose consequences

3Gödel’s groundbreaking paper is “On the Formally Undecidable Propositions of Principia Math-
ematica and Related Systems.”

547

PART IV. LOGIC AND ARITHMETIC 548

are unproblematically true, and another theory I (deal) whose consequences outrun
those of R and whose literal truth is therefore somehow suspect. Perhaps R is suffi-
cient only for something like basic arithmetic, whereas I seems to quantify over all
members of a far-flung infinite domain. Even though not itself a vehicle for truth,
theory I may be useful under certain circumstances. Suppose,

(a) For any P in the scope of R, if P is not true, then R ` �P

(b) I extends R: If R ` P then I ` P

(c) I is consistent: There is no P such that I ` P and I ` �P

Then theory I may be treated as a tool for achieving results in the scope of R: Sup-
pose P is a result in the scope of R, and I ` P ; then by consistency, I 6` �P ;
and because I extends R, R 6` �P ; so by (a), P is true. This is (a sketch of) the
famous ‘Hilbert program’ for mathematics, which aims to make sense of infinitary
mathematics based not on the truth but rather the consistency of theory I .

Because consistency is a syntactical result about proof systems, not itself about
far-flung mathematical structures, one might have hoped for proofs of consistency
from real, rather than ideal, theories. But Gödel’s second incompleteness theorem
tells us that derivation systems extending PA cannot prove even their own consis-
tency. So a weaker “real” theory will not be able to prove the consistency of PA and
its extensions. But this seems to remove a demonstration of (c) and so to doom the
Hilbert strategy.4

Even though no one derivation system has as consequences every mathematical
truth, derivations remain useful, and mathematicians continue to do proofs! Given
that we care about them, there is a question about the automation of proofs. Say a
property or relation is effectively decidable iff there is an algorithm or program that
for any given case, decides in a finite number of steps whether the property or relation
applies. Abstracting from the limitations of particular computing devices, we shall

4We are familiar with the Pythagorean Theorem according to which the hypotenuse and sides of
a right triangle are such that a2 D b2 C c2. In the 1600s Fermat famously proposed that there are
no integers a; b; c such that an D bn C cn for n > 2; so, for example, there are no a; b; c such
that a3 D b3 C c3. In 1995 Andrew Wiles proved that this is so. But Wiles’s proof requires some
fantastically abstract (and difficult) mathematics. Even if Wiles’s abstract theory (I) is not true Hilbert
could still accept the demonstration of Fermat’s (real) theorem so long as I is shown to be consistent.
Gödel’s result seems to doom this strategy. Of course, one might simply accept Wiles’s proof on the
ground that his advanced mathematics is true so that its consequences are true as well. But this is a
topic in philosophy of mathematics, not logic! See, for example, Shapiro, Thinking About Mathematics
for an introduction to options in the philosophy of mathematics. Our limiting results may very well
stimulate interest in that field!

PART IV. LOGIC AND ARITHMETIC 549

identify a class of relations which are decidable. A corollary of Gödel’s first theorem
is that validity in systems like ND and AD is not among the decidable relations. Thus
there are interesting limits on the decidable relations — where it is possible also to
look back through this lense at Gödel’s first theorem.

Chapter 12 lays down background required for chapters that follow. It begins
with a discussion of recursive functions, and concludes with a few essential results,
including a demonstration of the incompleteness of arithmetic. Chapters 13 and 14
deepen and extend those results in different ways. Chapter 13 includes Gödel’s own
argument for incompleteness from the construction of a sentence such that neither
it nor its negation is provable, along with demonstration of the second incomplete-
ness theorem. Chapter 14 again shows that there must exist a sentence such that
neither it nor its negation is provable, but this time in association with an account of
computability. Chapter 12 is required for either chapter 13 or chapter 14; but those
chapters may be taken in either order.

Chapter 12

Recursive Functions and Q

A formal theory consists of a language, with some axioms and proof system. Q and
PA are example theories. A theory T is (negation) complete iff for any sentence P in
its language L, either T ` P or T ` �P . Observe again that a derivation system is
adequate when it proves every entailment of some premises. Our standard logic does
that. Granting then, the adequacy of the logic, negation completeness is a matter of
premises proving a sufficiently robust set of consequences — proving consequences
which include P or �P for every P in the language.

Let us pause to consider why completeness matters. From E8.27, as soon as a
language L has an interpretation I, for any sentence P in L, either IŒP � D T or
IŒ�P � D T. So if we set out to characterize by means of a theory the sentences that
are true on some interpretation, our theory is bound to omit some sentences unless
it is such that for any P , either T ` P or T ` �P . To the extent that we desire
a characterization of all true sentences in some domain, of arithmetic or whatever, a
complete theory is a desirable theory.1

By itself negation completeness is no extraordinary thing. Consider a theory
whose language has just two sentence lettersA andB , along with the usual sentential
operators and rules. The axioms of our theory are just A and �B . On a truth table,
there is just one row were these axioms are both true, and on that row, any P in the
language is either T or F, so that one of P or �P is T.

1We thus restrict ourselves to consideration of sentences as theorems — or, equivalently treat open
formulas as equivalent to their universal closures (see p. 489)

550

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 551

(A)

A B A �B / P �P

T T T F � �

T F T T T /F F /T
F T F F � �

F F F T � �

So for any P , either A;�B � P or A;�B � �P . But from the adequacy of the
derivation system if � � P , then � ` P (T10.11, p. 485); so for any P , either
A;�B ` P or A;�B ` �P . So our little theory with its restricted language is
negation complete. Contrast this with a theory that has the same language and rules,
but A as its only axiom. In this case, it is easy to see from truth tables that, say,
A 6� B and A 6� �B . But by soundness, if � ` P then � � P (T10.3, p. 472); it
follows that A 6` B and A 6` �B . So this theory is not negation complete.

These theories are not very interesting. However, let L
SC
NT be a language like LNT

whose only function symbols are S andC (without �), and let L
�
NT be a language like

LNT whose only function symbol is � (without S and C). Then there is a complete
theory for the arithmetic of L

SC
NT (Presburger Arithmetic), and a complete theory

for the arithmetic of L
�
NT (Skolem Arithmetic).2 These are interesting and powerful

theories. So, again, by itself negation completeness is not so extraordinary.
However there is no complete theory for the arithmetic of LNT which includes

all of S , C and �. It turns out that theories are something like superheros. In the
ordinary case, a complete, and so a “happy” life is at least within reach. However,
as theories acquire certain powers, they take on a “fatal flaw” just because of their
powers — where this flaw makes completeness unattainable. On its face, theory Q
does not appear particularly heroic. We have seen already in E7.21 that Q 6` x�y D
y � x and Q 6` �.x � y D y � x/. So Q is negation incomplete. PA which does
prove x � y D y � x along with other standard results in arithmetic might seem
a more likely candidate for heroism. But Q includes already features sufficient to
generate the flaw which appears also in any theories, like PA, which have at least all
the powers of Q. It is our task to identify this flaw.

It turns out that a system with the powers of Q including S ,C and � can express
and capture all the recursive functions — and a system with these powers must have
the fatal flaw. Thus, in this chapter we focus on the recursive functions, and associate
them with powers of our formal systems. We begin in 12.1 saying what recursive
functions are; then in 12.2 and 12.3 we show that Q expresses and captures the re-
cursive functions; 12.4 extends the range of recursive functions to include a function

2For demonstration of completeness for Presburger Arithmetic, see Fisher, Formal Number Theory
and Computability chapter 7 along with Boolos, Burgess and Jeffrey, Computability and Logic chapter
24.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 552

that identifies proofs. Finally, from these results, section 12.5 concludes with some
applications, including the incompleteness of arithmetic.

12.1 Recursive Functions

In chapter 6 (p. 318) for Q and PA we had axioms of the sort,

a: x C ; D x

b: x C Sy D S.x C y/
and

c: x � ; D ;

d: x � Sy D .x � y/C x

These enable us to derive x C y and x � y for arbitrary values of x and y. Thus, by
(a) 2C 0 D 2; so by (b) 2C 1 D 3; and by (b) again, 2C 2 D 4; and so forth. From
the values at any one stage, we are in a position to calculate values at the next. And
similarly for multiplication. From E6.35 on p. 319, all this should be familiar.

While axioms thus supply effective means for calculating the values of these
functions, the functions themselves might be similarly identified or specified. So,
given a successor function suc.x/, we may identify the functions plus.x; y/:

a: plus.x; 0/ D x
b: plus.x; suc.y// D suc.plus.x; y//

and times.x; y/:

c: times.x; 0/ D 0
d: times.x; suc.y// D plus.times.x; y/; x/

For ease of reading, let us typically revert to the more ordinary notation S, C and
� for these functions, though we stick with the (emphasized) sans serif font. We
have been thinking of functions as certain complex sets. Thus the plus function is a
set with elements f: : : hh2; 0i; 2i; hh2; 1i; 3i; hh2; 2i; 4i : : :g. Our specification picks
out this set. From the first clause, plus.x; y/ has hh2; 0i; 2i as a member; given this,
hh2; 1i; 3i is a member; and so forth. So the two clauses work together to specify the
plus function. And similarly for times.

But these are not the only sets which may be specified this way. Thus the standard
factorial fact.x/:

e: fact.0/ D S0
f: fact.Sy/ D fact.y/ � Sy

Again, we will often revert to the more typical xŠ notation. Zero factorial is one. And
the factorial of Sy multiplies 1 � 2 � : : : � y by Sy. Similarly power.x; y/:

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 553

g: power.x; 0/ D S0
h: power.x;Sy/ D power.x; y/ � x

Any number to the power of zero is one (x0 D 1). And then xSy multiplies xy D

x � x : : : � x (y times) by another x.
We shall be interested in a class of functions, the recursive functions, which may

be specified (in part) by this strategy. To make progress, we turn to a general account
in five stages.

12.1.1 Initial Functions

Our examples have simply taken suc.x/ as given. Similarly, we shall require a stock
of initial functions. There are initial functions of three different types.

First, we shall continue to include suc.x/ among the initial functions. So suc.x/ D
fh0; 1i; h1; 2i; h2; 3i : : :g.

Second, zero.x/ is a function which returns zero for any input value. So zero.x/ D
fh0; 0i; h1; 0i; h2; 0i : : :g.

Finally, for any 1 � k � j, we require a collection of identity functions idntjk.x1

: : : xj/. Each idntjk function has j places and simply returns the value from the kth

place. Thus idnt32.4; 5; 6/ D 5. So, idnt32 D f: : : hh1; 2; 3i; 2i : : : hh4; 5; 6i; 5i : : :g.
And in the simplest case, idnt11.x/ D x.

12.1.2 Composition

In our examples, we have let one function be composed from others — as when
we consider times.x; suc.y// or the like. Say Ex, Ey and Ez represent (possibly empty)
sequences of variables x1 : : : xn, y1 : : : yn and z1 : : : zn.

CM Let g.Ey/ and h.Ex;w; Ez/ be any functions. Then f.Ex; Ey; Ez/ is defined by composi-
tion from g.Ey/ and h.Ex;w; Ez/ iff f.Ex; Ey; Ez/ D h.Ex; g.Ey/; Ez/.

So h.Ex;w; Ez/ gets its value in the w-place from g.Ey/. Here is a simple example:
f.y; z/ D zero.y/Cz results by composition from substitution of zero.y/ into plus.w; z/;
so plus.w; z/ gets its value in the w-place from zero.y/. The result is the set with
members, f: : : hh2; 0i; 0i; hh2; 1i; 1i; hh2; 2i; 2i : : :g. Given, say, input h2; 2i, zero.y/
takes the input 2 and supplies a zero to the first place of the plus.x; y/ function; then
from plus.x; y/ the result is a sum of 0 and 2 which is 2. And similarly in other cases.
In contrast, zero.xC y/ has members f: : : hh2; 0i; 0i; hh2; 1i; 0i; hh2; 2i; 0i : : :g. You
should see how this works.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 554

12.1.3 Recursion

For each of our examples, plus.x; y/, times.x; y/, fact.y/, and power.x; y/, the value
of the function is set for y D 0 and then for suc.y/ given its value for y. These
illustrate the method of recursion. Put generally,

RC Given some functions g.Ex/ and h.Ex; y; u/, f.Ex; y/ is defined by recursion when,

f.Ex; 0/ D g.Ex/
f.Ex;Sy/ D h.Ex; y; f.Ex; y//

We adopt the general scheme so that we can operate on recursive functions in a
consistent way. However the general scheme includes flexibility that is not always
required. In the cases of plus, times and power, Ex reduces to a simple variable x; for
fact, Ex disappears altogether, so that the function g.Ex/ reduces to a constant. And, as
we shall see, the function h.Ex; y; u/ need not depend on each of its variables x, y and
u.

However, by clever use of our initial functions, it is possible to see each of our
sample functions on this pattern. Thus for plus.x; y/, set gplus.x/ D idnt11.x/ and
hplus.x; y; u/ D suc.idnt33.x; y; u//. Then,

a0 plus.x; 0/ D idnt11.x/
b0 plus.x;Sy/ D suc.idnt33.x; y; plus.x; y///

plus.x; 0/ is set to gplus.x/ and plus.x;Sy/ to hplus.Ex; y; plus.x; y//. And these
work as they should: idnt11.x/ D x and suc.idnt33.x; y; plus.x; y/// is the same as
suc.plus.x; y//. So we recover the conditions (a) and (b) from above.

Similarly, for times.x; y/, we can let gtimes.x/ D zero.x/ and htimes.x; y; u/ D
plus.idnt33.x; y; u/; x/. Then,

c0 times.x; 0/ D zero.x/
d0 times.x;Sy/ D plus.idnt33.x; y; times.x; y//; x/

So times.x; 0/ D 0 and times.x;Sy/ D plus.times.x; y/; x//, and all is well. Observe
that we would obtain the same result with htimes.x; y; u/ D plus.u; idnt31.x; y; u// or
perhaps, plus.idnt33.x; y; u/; idnt31.x; y; u//. The role of the identity functions in these
formulations is to preserve h as a function of x, y and u, even where not each place
is required — as the y-place is not required for times, and so to adhere to the official
form which makes h.x; y; u/ a function of variables in each place. And there are these
different ways to produce a function of all the variables to achieve the desired result.

In the case of fact.y/, there are no places to the Ex vector. So gfact is reduced
to a zero-place function, that is, to a constant, and hfact to a function of y and u.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 555

In contrast, for times.x; y/, Ex retains one place, so gtimes.x/ is not reduced to a
constant; rather gtimes.x/ D zero.x/ remains a full-fledged function — only one
which returns the same value for every value of x. For fact.y/, set gfact D suc.0/
and hfact.y; u/ D times.u; suc.y//. Again, identity functions work to preserve h as a
function y, and u, even where not each place is required, in order to adhere to the offi-
cial form. However, there is no requirement that the places be picked out by identity
functions! In this case, each variable is used in a natural way, so identity functions
are not required. It is left as an exercise to show that gfact and hfact identify the same
function as constraints (e), (f), and to then to find gpower.x/ and hpower.x; y; u/.

12.1.4 Regular Minimization

So far, the method of our examples is easily matched to the capacities of computing
devices. To find the value of a recursive function, begin by finding values for y D 0,
and then calculate other values, from one stage to the next. But this is just what
computing devices do well. So, for example, in the syntax of the Ruby language,3

given some functions g(x) and h(x,y,u),

(B)

1. def recfunc(a,b)
2. k = g(a)
3. for y in 0..b-1
4. k = h(a,y,k)
5. end
6. return k
7. end

Using g(a) this program calculates the value of k for input (a,0). And then, given
the current value of y, and of k for input (a,y), repeatedly uses h to calculate k for
the next value of y, until it finally reaches and returns the value of k for input (a,b).
Observe that the calculation of recfunc(a,b) requires exactly b iterations before it
completes.

But there is a different repetitive mechanism available for computing devices —
where this mechanism does not begin with a fixed number of iterations. Suppose
we have some function g(a,b) with values g(a,0), g(a,1), g(a,2). . . where for
each a there are at least some values of b such that g(a,b) = 0. For any value of a,
suppose we want the least b such that g(a,b) = 0. Then we might reason as follows.

3Ruby is convenient insofar as it is interpreted and so easy to run, and available at no cost on
multiple platforms (see http://www.ruby-lang.org/en/downloads/). We depend only on very
basic features familiar from most any exposure to computing.

http://www.ruby-lang.org/en/downloads/

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 556

The Recursion Theorem
One may wonder whether our specification f.x; y/ by recursion from g.Ex/ and h.Ex; y; u/
results in a unique function. However it is possible to show that it does.

RT Suppose g.Ex/ and h.Ex; y; u/ are total functions onN ; then there exists a unique func-
tion f.Ex; y/ such that,
(r) For any Ex and y 2 !,

a. f.Ex; 0/ D g.Ex/

b. f.Ex; suc.y// D h.Ex; y; f.Ex; y//

We identify this function as a union of functions which may be constructed by means of g
and h. The domain of a total function from rn to s is always rn; for a partial function, the
domain of the function is that subset of rn whose members are matched by the function to
members of s (for background see the set theory reference p. 117). Say a (maybe partial)
function s.Ex; y/ is acceptable iff,

i. If hEx; 0i 2 dom.s/, then s.Ex; 0/ D g.Ex/

ii. If hEx; suc.n/i 2 dom.s/, then hEx; ni 2 dom.s/ and s.Ex; suc.n// D h.Ex; n; s.Ex; n//

A function with members fhhEx; 0i; g.Ex/i; hhEx; 1i; h.Ex; 0; g.Ex//ig would satisfy (i) and (ii).
A function which satisfies (r) is acceptable, though not every function which is acceptable
satisfies (r); we show that exactly one acceptable function satisfies (r). Let F be the col-
lection of all acceptable functions, and f be

S
F. Thus hhEx; ni; ai 2 f iff hhEx; ni; ai is a

member of some acceptable s; iff s.Ex; n/ D a for some acceptable s. We sketch reasoning
to show that f has the right features.

I. For any acceptable s and s0, if hhEx; ni; ai 2 s and hhEx; ni; bi 2 s0, then a D b. By
induction on n: Suppose hhEx; 0i; ai 2 s and hhEx; 0i; bi 2 s0; then by (i), a D b D
g.Ex/. Assume that if hhEx; ki; ai 2 s and hhEx; ki; bi 2 s0 then a D b. Show that if
hhEx; suc.k/i; ci 2 s and hhEx; suc.k/i; di 2 s0 then c D d. Suppose hhEx; suc.k/i; ci 2
s and hhEx; suc.k/i; di 2 s0. Then by (ii) c D h.Ex; k; s.Ex; k// and d D h.Ex; k; s0.Ex; k//.
But by by assumption s.Ex; k/ D s0.Ex; k/; so c D d.

II. dom.f/ includes every hEx; ni. By induction on n: For any Ex, fhhEx; 0i; g.Ex/ig is it-
self an acceptable function. Assume that for any Ex, hEx; ki 2 dom.f/. Show that
for any Ex, hEx; suc.k/i 2 dom.f/. Suppose otherwise, and consider a function, s D
f [fhhEx; suc.k/i; h.Ex; k; f.Ex; k//ig. But we may show that s so defined is an accept-
able function; and since s is acceptable, it is a subset of f; so hEx; suc.k/i 2 dom.f/.
Reject the assumption.

III. Now by (I), if hhEx; ni; ai 2 f and hhEx; ni; bi 2 f, then a D b; so f is a function; and
by (II) the domain of f includes every hEx; ni; by construction it is easy to see that f is
itself acceptable. From these, f satisfies (r). Suppose some f0 also satisfies (r); then
f0 is acceptable; so by construction, f0 is a subset of f; but since f0 satisfies (r), it’s
domain includes every hEx; ni; so f0 D f. So (r) is uniquely satisfied.

*We employ weak induction from the induction schemes reference p. 388. Enderton, Elements of
Set Theory, and Drake and Singh, Intermediate Set Theory, include nice discussions of this result.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 557

(C)

1. def minfunc(a)
2. y = 0
3. until g(a,y) == 0
4. y = y+1
5. end
7. return y
8. end

This program begins with y = 0 and tests each value of g(a,y) until it returns a
value of 0. Once it finds this value, minfunc(a) is set equal to y. Given g(a,b),
then, minfunc(a) calculates a function which returns some value of y for any input
value a.

But, as before, we might reason similarly to specify functions so calculated. For
this, recall that a function is total iff it is defined on all members of its domain. Say
a function g.Ex; y/ is regular iff it is total and for all values of Ex there is at least one y
such that g.Ex; y/ D 0. Then,

RM If g.Ex; y/ is a regular function, the function f.Ex/ D �yŒg.Ex; y/� which for each
Ex takes as its value the least y such that g.Ex; y/ D 0 is defined by regular
minimization from g.Ex; y/.

For a simple example, consider a domain which consists of nonempty sets of integers
with g.x; y/ such that g.x; y/ D 0 if y 2 x and otherwise g.x; y/ D 1. Then for any
set x, f.x/ D �yŒg.x; y/� is the least element of x.

12.1.5 Final Definition

Finally, our sample functions are cumulative. Thus plus.x; y/ depends on suc.x/;
times.x; y/, on plus.x; y/, and so forth. We are thus led to our final account.

RF A function fk is recursive iff there is a series of functions f0, f1. . . fk such that
for any i � k,

(i) fi is an initial function suc.x/, zero.x/ or idntjk.x1 : : : xj/.

(c) There are a; b < i such that fi.Ex; Ey; Ez/ results by composition from fa.Ey/
and fb.Ex;w; Ez/.

(r) There are a; b < i such that fi.Ex; y/ results by recursion from fa.Ex/ and
fb.Ex; y; u/.

(m) There is some a < i such that fi.Ex/ results by regular minimization from
fa.Ex; y/.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 558

If there is a series of functions f0, f1. . . fk such that for any i � k, just (i), (c) or (r),
then (PR) fk is primitive recursive.

So any recursive function results from a series of functions each of which sat-
isfies one of these conditions. And such a series demonstrates that its members are
recursive. For a simple example, plus is primitive recursive.

(D)

1. idnt11.x/ initial function
2. idnt33.x; y; u/ initial function
3. suc.w/ initial function
4. suc.idnt33.x; y; u// 2,3 composition
5. plus.x; y/ 1,4 recursion

From this list by itself, one might reasonably wonder whether plus.x; y/, so defined,
is the addition function we know and love. What follows, given primitive recursive
functions idnt11.x/ and suc.idnt33.x; y; u// is that a primitive recursive function results
by recursion from them. It turns out that this is the addition function. It is left as an
exercise to exhibit times.x; y/, fact.x/ and power.x; y/ as primitive recursive as well.

*E12.1. (a) Show that the proposed gfact and hfact.y; u/ result in conditions (e)
and (f). Then (b) produce a defininition for power.x; y/ by finding functions
gpower.x/, and hpower.x; y; u/ and then show that they have the same result
as conditions (g) and (h).

E12.2. Generate a sequence of functions sufficient to show that power.x; y/ is prim-
itive recursive.

E12.3. Install some convenient version of Ruby on your computing platform (see
http://www.ruby-lang.org/en/downloads/) and open recursive1.rb
from the text website (http://rocket.csusb.edu/~troy/int-ml.html).
Extend the sequence of functions started there to include fact(x) and power(x,y).
Calculate some values of these functions and print the results, along with your
program (do not worry if these latter functions run slowly for even moderate
values of x and y). This assignment does not require any particular com-
puting expertise — especially, there should be no appeal to functions except
from earlier in the chain. (This exercise suggests a point, to be developed in
chapter 14, that recursive functions are computable.)

http://www.ruby-lang.org/en/downloads/
http://rocket.csusb.edu/~troy/int-ml.html

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 559

12.2 Expressing Recursive Functions

Having identified the recursive functions, we turn now to the first of two powers to
be associated with theory incompleteness. In this case, it is an expressive power.
Say a theory is sound iff its axioms are true and its proof system is sound. So all
the theorems of a sound theory are true. Then we shall be able to show that if a
theory is sound and its interpreted language expresses all the recursive functions, it
must be negation incomplete. In this section, then, we show that LNT, on its standard
interpretation, expresses the recursive functions.

12.2.1 Definition and Basic Results

For a language L and interpretation I, suppose that for each m 2 U, a variable-
free term m is such that, in the sense of definition AI, I.m/ D m — so for any
variable assignment d, IdŒm� D m. The simplest way for this to happen is if each
m 2 U has exactly one constant assigned to it; then for any m, m is the constant to
which m is assigned. But the standard interpretation for number theory N also has
the special feature that variable-free terms are assigned to each member of U. On
this interpretation different variable-free terms may be assigned the same object (as
SS; and S; C S; are each assigned 2). However, on the standard interpretation
for number theory, for any n, we simply take as n, S : : : S; with n repetitions of the
successor operator. So 0 abbreviates the term ;, 1 the term S;, etc.

Given this, we shall say that a formula R.x/ expresses a relation R.x/ on inter-
pretation I, just in case if m 2 R then IŒR.m/� D T and if m 62 R then IŒ�R.m/� D T.
So the formula is true when the individual is a member of the relation and false when
it is not. To express a relation on an interpretation, a formula must “say” which
individuals fall under the relation. Expressing a relation is closely related to trans-
lation. A formula R.x/ expresses a relation R.x/ when every sentence R.m/ is a
good translation of the sentence m 2 R on the single intended interpretation I (com-
pare chapter 5). So there is a single intended interpretation I, and a corresponding
class of good translations when R.x/ expresses R.x/ on the interpretation I. Thus,
generalizing,

EXr For any language L, interpretation I, and objects m1 : : :mn 2 U, relation
R.x1 : : : xn/ is expressed by formula R.x1 : : : xn/ iff,

(i) If hm1 : : :mni 2 R then IŒR.m1 : : :mn/� D T

(ii) If hm1 : : :mni 62 R then IŒ�R.m1 : : :mn/� D T

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 560

Similarly, a one-place function f.x/ has members of the sort hx; vi and so is really
a kind of two-place relation. Thus to express a function f.x/, we require a formula
F .x; v/ where if hm; ai 2 f, then IŒF .m; a/� D T. It would be natural to go on to
require that if hm; ai 62 f then IŒ�F .m; a/� D T. However this is not necessary once
we build in another feature of functions — that they have a unique output for each
input value. Thus we shall require,

EXf For any language L, interpretation I, and objects m1 : : :mn; a 2 U, function
f.x1 : : : xn/ is expressed by formula F .x1 : : : xn; v/ iff,

if hhm1 : : :mni; ai 2 f then

(i) IŒF .m1 : : :mn; a/� D T

(ii) IŒ8z.F .m1 : : :mn; z/! z D a/� D T

From (i), F is true for a; from (ii) any z for for which it is true is identical to a.
Let us illustrate these definitions with some first applications. First, on any in-

terpretation with the required variable-free terms, the formula x D y expresses the
equality relation EQ.x; y/. For if hm; ni 2 EQ then IŒm� D IŒn� so that IŒm D n� D T;
and if hm; ni 62 EQ then IŒm� ¤ IŒn� so that IŒm ¤ n� D T. This works because IŒD�
just is the equality relation EQ.4 Similarly, on the standard interpretation N for number
theory, suc.x/ is expressed by Sx D v, plus.x; y/ by x C y D v, and times.x; y/ by
x�y D v. Taking just the addition case, suppose hhm; ni; ai 2 plus; then NŒmCn D
a� D T. And because addition is a function, NŒ8z..m C n D z/ ! z D a/� D T.
Again, this works because NŒC� just is the plus function. And similarly in the other
cases. Put more generally,

T12.1. For an interpretation with the required variable-free terms assigned to mem-
bers of the universe: (a) If R is a relation symbol and R is a relation, and
IŒR� D R.x1 : : : xn/, then R.x1 : : : xn/ is expressed by Rx1 : : : xn. And (b)
if h is a function symbol and h is a function and IŒh� D h.x1 : : : xn/ then
h.x1 : : : xn/ is expressed by hx1 : : : xn D v.

It is possible to argue semantically for these claims. However, as for transla-
tion, we take the project of demonstrating expression to be one of providing
or supplying relevant formulas. So the theorem is immediate.

4Observe that inside the square brackets ‘=’ is a relation symbol of the object language whose
interpretation is built into I; outside square brackets ‘=’ is a metalinguistic symbol used to indicate
equality.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 561

Also, as we have suggested, (i) and (ii) of condition EXf taken together are suf-
ficient to generate a condition like EXr(ii). Recall from the set theory reference (p.
117) that a function is total just in case it has an output for any input.

T12.2. Suppose total function f.x1 : : : xn/ is expressed by formula F .x1 : : : xn; y/;
then if hhm1 : : :mni; ai 62 f, IŒ�F .m1 : : :mn; a/� D T.

For simplicity, consider just a one-place function f.x/. Suppose f.x/ is ex-
pressed by F .x; y/ and hm; ai 62 f. Then since f is total, there is some b such
that hm; bi 2 f for a ¤ b and so ha; bi 62 EQ. Suppose IŒ�F .m; a/� ¤ T; then
by TI, for some d, IdŒ�F .m; a/� ¤ S; let h be a particular assignment of this
sort; so IhŒ�F .m; a/� ¤ S; so by SF(�), IhŒF .m; a/� D S.

But since hm; bi 2 f by EXf(ii), IŒ8z.F .m; z/! z D b/� D T; so by TI, for
any d, IdŒ8z.F .m; z/ ! z D b/� D S; so IhŒ8z.F .m; z/ ! z D b/� D S;
so by SF(8), Ih.zja/ŒF .m; z/ ! z D b� D S; so since IhŒa� D a, by T10.2,
IhŒF .m; a/! a D b� D S; so by SF(!), IhŒF .m; a/� ¤ S or IhŒa D b� D S;
so IhŒa D b� D S; but IhŒa� D a and IhŒb� D b; so by SF(r), ha; bi 2 IŒD�; so
ha; bi 2 EQ. This is impossible; reject the assumption: If f.x/ is expressed by
F .x; y/ and hm; ai 62 f, then IŒ�F .m; a/� D T.

So if both hm; ai 62 f and IŒ�F .m; a/� ¤ T, with condition EXf(i), we end up with an
assignment where both IhŒF .m; a/� D S and IhŒF .m; b/� D S. But this violates the
uniqueness constraint EXf(ii). So if hm; ai 62 f then IŒ�F .m; a/� D T. So this gives
us the same kind of constraint for functions as for relations.

E12.4. Provide semantic arguments to prove both parts of T12.1. So, for the first part
assume that IŒR.x1 : : : xn/� D R.x1 : : : xn/. Then show (i) if hm1 : : :mni 2 R

then IŒR.m1 : : :mn/� D T; and (ii) if hm1 : : :mni 62 R then IŒ�R.m1 : : :mn/� D

T. And similarly for the second part based on EXf, where you may treat
hhm1 : : :mni; ai as the same object as hm1 : : :mn; ai.

12.2.2 Core Result

So far, on interpretation N, we have been able to express the relation eq, and the func-
tions, suc, plus, and times. But our aim is to show that, on the standard interpretation
N of LNT, every recursive function f.Ex/ is expressed by some formula F .Ex;v/.

But it is not obvious that this can be done. At least some functions must remain
inexpressible in any language that has a countable vocabulary, and so in LNT. We
shall see a concrete example later in the chapter. For now, consider a straightforward

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 562

diagonal argument. By reasoning as from T10.7 (p. 478) there is an enumeration
of all the formulas in a countable language. Isolate just formulas P0, P1, P2. . . that
express functions of one variable, and consider the functions f0.x/, f1.x/, f2.x/. . . so
expressed. These are all the expressible functions of one variable. Consider a grid
with the functions listed down the left-hand column, and their values for each integer
from left-to-right.

0 1 2 : : :

f0.x/ f0.0/ f0.1/ f0.2/
f1.x/ f1.0/ f1.1/ f1.2/
f2.x/ f2.0/ f2.1/ f2.2/
:::

Moving along the diagonal, consider a function fd.x/ such that for any n, fd.n/ D
fn.n/ C 1. So fd.x/ is fh0; f0.0/C 1i; h1; f1.1/C 1i; h2; f2.2/C 1i; : : :g. So for any
integer n, this function finds the value of fn along the diagonal, and adds one. But
fd.x/ cannot be any of the expressible functions. It differs from f0.x/ insofar as
fd.0/ ¤ f0.0/; it differs from f1.x/ insofar as fd.1/ ¤ f1.1/; and so forth. So fd.x/ is
an inexpressible function. Though it has a unique output for every input value, there
is no finite formula sufficient to express it.

We have already seen that plus.x; y/ and times.x; y/ are expressible in LNT. But
there is no obvious mechanism in LNT to express, say, fact.x/. Given that not all
functions are expressible, it is a significant matter, then, to see that all the recursive
functions are expressible with interpretation N in LNT. Our main argument shall be
an induction on the sequence of recursive functions. For one key case, we defer
discussion into the next section.

T12.3. On the standard interpretation N of LNT, each recursive function f.Ex/ is ex-
pressed by some formula F .Ex;v/.

For any recursive function fa there is a sequence of functions f0, f1. . . fa such
that each member is an initial function or arises from previous members by
composition, recursion or regular minimization. By induction on functions in
this sequence.

Basis: f0 is an initial function suc.x/, zero.x/, or idntjk.x1 : : : xj/.

(s) f0 is suc.x/. Then by T12.1, f0 is expressed by F .x; v/ Ddef Sx D v.

(z) f0 is zero.x/. Then f0 is expressed by F .x; v/ Ddef x D x ^ v D ;.
Suppose hm; ai 2 zero. Then since a is zero, NŒm D m^ a D ;� D T.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 563

And any z that is zero is equal to a — so that NŒ8z.m D m ^ z D
; ! z D a/� D T.

(i) f0 is idntjk.x1 : : : xj/. Then f0 is expressed by F .x1 : : : xj ; v/Ddef .x1 D

x1 ^ : : : ^ xj D xj / ^ xk D v.5 Suppose hhm1 : : :mji; ai 2 idntjk.
Then since a D mk, NŒ.m1 D m1 ^ : : : ^ mj D mj/ ^ mk D a� D T.
And any z D mk is equal to a — so that NŒ8z..m1 D m1^ : : :^mj D

mj ^mk D z/! z D a/� D T.

Assp: For any i , 0 � i < k, fi.Ex/ is expressed by some F .Ex;v/

Show: fk.x/ is expressed by some F .Ex;v/.

fk is either an initial function or arises from previous members by com-
position, recursion or regular minimization. If it is an initial function
then as in the basis. So suppose fk arises from previous members.

(c) fk.Ex; Ey; Ez/ arises by composition from g.Ey/ and h.Ex;w; Ez/. By assump-
tion g.Ey/ is expressed by some G . Ey;w/ and h.Ex;w; Ez/ by H .Ex;w; Ez; v/;
then their composition f.Ex; Ey; Ez/ is expressed by F .Ex; Ey; Ez; v/ Ddef

9wŒG . Ey;w/ ^H .Ex;w; Ez; v/�. For simplicity, consider a case where Ex
and Ez drop out and Ey is a single variable y; so F .y; v/Ddef 9wŒG .y; w/^

H .w; v/�. Suppose hm; ai 2 fk; then by composition there is some b
such that hm; bi 2 g and hb; ai 2 h. Because G and H express g and
h, NŒG .m; b/� D T and NŒH .b; a/� D T; so NŒG .m; b/ ^H .b; a/� D
T, and NŒ9w.G .m; w/ ^ H .w; a//� D T. Further, by expression,
NŒ8z.G .m; z/ ! z D b/� D T and NŒ8z.H .b; z/ ! z D a/� D T;
so that for a given m, there is just one w D b and so one z D a to sat-
isfy G .m; w/ ^H .w; z/ and NŒ8z.9w.G .m; w/ ^H .w; z// ! z D

a/� D T.

(r) fk.Ex; y/ arises by recursion from g.Ex/ and h.Ex; y; u/. By assumption
g.Ex/ is expressed by some G .Ex; v/ and h.Ex; y; u/ is expressed by H .Ex;

y; u; v/. And the expression of fk.Ex; y/ in terms of G and H utilizes
Gödel’s ˇ-function, as developed in the next section.

(m) fk.Ex/ arises by regular minimization from g.Ex; y/. By assumption,
g.Ex; y/ is expressed by some G .Ex; y; z/. Then fk.Ex/ is expressed by
F .Ex; v/ Ddef G .Ex; v;;/ ^ .8y < v/�G .Ex; y;;/. Suppose Ex reduces
to a single variable and hm; ai 2 f; then hhm; ai; 0i 2 g and for any

5Perhaps it will have occurred to the reader that idnt32.x; y; z/, say, is expressed by x D x ^ z D

z^y D v as well as x D x^y D y ^ z D z^y D v — where the first is relatively “efficient” insofar
as it saves a conjunct. But we are after a different “efficiency” of notation and demonstration, where
the formulation above serves our purposes nicely.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 564

n < a, hhm; ni; 0i 62 g. So because G expresses g, NŒG .m; a;;/ ^
.8y < a/�G .m; y;;/� D T. And the result is unique: for any
k < a, NŒG .m; k;;/� ¤ T; so when z < a, the value of the con-
junction NŒG .m; z;;/ ^ .8y < z/�G .m; y;;/� ¤ T. And since
NŒG .m; a;;/� D T, NŒ�G .m; a;;/� ¤ T, and any case where k > a
has NŒ.8y < k/�G .m; y;;/� ¤ T; so the conjunction NŒG .m; z;;/ ^
.8y < z/�G .m; y;;/� ¤ T. So the only case in which F .m; z/ D
G .m; z;;/ ^ .8y < z/�G .m; y;;/ is satisfied when z is a, and
NŒ8z.F .m; z/! z D a/� D T.

Indct: Any recursive f.Ex/ is expressed by some F .Ex; v/

Some of the reasoning is merely sketched — however, the general idea should be
clear. There might be formulas other than the stated F .Ex; v/ to express a recursive
f.Ex/ — for example, if F .Ex; v/ expresses f.Ex/, then so does F .Ex; v/ ^ A for any
logical truth A. We shall see an important alternative in the following. Let us say that
F .Ex; v/ so-described is the original formula by which f.Ex/ is expressed. It remains
to fill out the case for the recursion clause. This is the task of the next section.

*E12.5. From T13.3 there is some formula to express any recursive function: the
argument by induction works by showing how to construct a formula for
each recursive function. Following the method of our induction, write down
formulas to express the following recursive functions.

a. suc.zero.x//

b. idnt32.x; suc.zero.x//; z/

Hint: As setup for the compositions, give each function a different output
variable, where the output to one is the input to the next.

*E12.6. Fill out semantic reasoning to demonstrate that proposed (original) formu-
las satisfy the conditions for expression for the (z), (i), (c) and (m) clauses
to T12.3. For case (m), rather than go to the unabbreviated form for the
bounded quantifier it will be fine to anticipate T12.6 to apply the (obvious)
semantic clause directly. Hints: So, for example, for (c) you will apply se-
mantic definitions to show that NŒ9w.G .m; w/ ^ H .w; a//� D T and that
NŒ8z.9w.G .m; w/ ^H .w; z//! z D a/� D T; in places you may find that
T10.2 will smooth the result; and for (m) at one stage it will be helpful to
observe that for any n, n < a_ n D a_ n > a and reason separately for each
case.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 565

12.2.3 The ˇ-Function

Suppose a recursive function f.m; n/ D a. Then for the given value of m, there is a
sequence k0; k1 : : : kn with kn D a, such that k0 takes some initial value, and each of
the other members is specially related to the one before. Thus, in the simple case of
plus.m; n/, if m D 2 then k0 D 2, and each ki is the successor of the one before. So
corresponding to 2C 5 D 7 is the sequence,

2 3 4 5 6 7

whose first member is set by gplus.2/, where subsequent members result from the
one before by plus.2;Sy/ D hplus.2; y; plus.2; y//, whose last member is 7. And,
generalizing, we shall be in a position to express recursive functions if we can express
the existence of sequences of integers so defined. We shall be able to say f.m; n/ D a
if we can say “there is a sequence whose first member is g.m/, with members related
one to another by f.m;Sy/ D h.m; y; f.m; y//, whose nth member is a.” This is
a mouthful. And LNT is not obviously equipped to do it. In, particular, LNT has
straightforward mechanisms for asserting the existence of integers — but on its face,
it is not clear how to assert the existence of the arbitrary sequences which result from
the recursion clause.

But Gödel shows a way out. We have already seen an instance of the general
strategy we shall require in our discussion of Gödel numbering from chapter 10 (p.
478). In that case, we took a sequence of integers (keyed to vocabulary), g0; g1 : : : gn
and collected them into a single Gödel number G D 2g0 � 3g1 � : : :�

gn
n where 2,

3. . . n are the first n primes. By the fundamental theorem of arithmetic, any number
has a unique prime factorization, so the original sequence is recovered from G by
factoring to find the power of 2, the power of 3 and so forth. So the single integer G
represents the original sequence. And LNT has no problem expressing the existence
of a single integer! Unfortunately, however, this particular way out is unavailable to
us insofar as it involves exponentiation, and the resources of LNT so-far include only
S ,C and �.6

All the same, within the resources of LNT, by the Chinese remainder theorem
(whose history reaches to ancient China), there must be pairs of integers sufficient to
represent any sequence. Consider the remainder function rm.x; y/ which returns the
remainder after x is divided by y. The remainder of x divided by y equals z just in
case z < y and for some w, x D .y � w/C z. Then let,

6Some treatments begin with a language including exponentiation precisely in order to smooth the
exposition at this stage. But our results are all the more interesting insofar as even the relatively weak
LNT retains powers sufficient for the fatal flaw.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 566

ˇ.p; q; i/ Ddef rmŒp;S.q � S.i//�

So for some fixed values of p and q the ˇ function yields different remainders for
different values of i. By the Chinese remainder theorem, for any sequence k0, k1 : : : kn

there are some p and q such that for i � n, ˇ.p; q; i/ D ki. So p and q together code the
sequence, and the ˇ-function returns member ki as a function of p, q and i. Intuitively,
when we divide p by S.q � S.i//, for i � n, the result is a series of nC 1 remainders.
The theorem tells us that any series k0, k1 : : : kn may be so represented (see the beta
function reference).

Here is a simple example. Suppose k0, k1 and k2 are 5, 2, 3. So the last subscript
in the series n D 2. As developed in the beta function reference, the proof of the
remainder theorem asks us first to find s D max.n; 5; 2; 3/ D 5, and then to set
q D sŠ D 120. So ˇ.p; q; i/ D rmŒp;S.120 � S.i//�. So as i ranges between 0 and
n D 2, we are looking at,

rm.p; 121/ rm.p; 241/ rm.p; 361/

But 121, 241 and 361 so constructed must have no common factor other than 1; and
the remainder theorem then tells us that as p varies between 0 and 121�241�361�
1 D 10527120 the remainders take on every possible sequence of remainder values.
But the remainders will be values up to 120, 240 and 360, which is to say, q D sŠ is
large enough that our simple sequence must therefore appear among the sequences
of remainders. In this case, p D 5219340 gives rm.p; 121/ D 5, rm.p; 241/ D 3 and
rm.p; 361/ D 2. There may be easier ways to generate this sequence. But there is
no shortage of integers (!) so there are no worries about using large ones, and by this
method Gödel gives a perfectly general way to represent the arbitrary finite sequence.

And we can express the ˇ-function with the resources of LNT. Thus, for ˇ.p; q; i/,

B.p; q; i; v/ Ddef .9w � p/Œp D .S.q � Si/ � w/C v ^ v < S.q � Si/�

So v is the remainder after p is divided by S.q � Si/. And for appropriate choice of
p and q, the variable v takes on the values k0 through kn as i runs through the values
; to n.

Now return to our claim that when a recursive function f.m; n/ D a there is a
sequence k0; k1 : : : kn with kn D a such that k0 takes some initial value, and each
of the other members is related to the one before according to some other recursive
function. More officially, a function f.Ex; y/ D z just in case there is a sequence
k0; k1 : : : ky with,

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 567

Arithmetic for the Beta Function
Say rm.c; d/ is the remainder of c=d. For a sequence, d0, d1 . . . dn, let jDj be the
product d0 � d1 � : : : � dn. We say d0, d1 . . . dn are relatively prime if no two
members have a common factor other than 1. Then,

I. For any relatively prime sequence d0, d1 . . . dn, the sequences of remainders
rm.c; d0/, rm.c; d1/. . . rm.c; dn/ as c runs from 0 to jDj � 1 are all different
from each other.

Suppose otherwise. Then there are c1 and c2, 0 � c1 < c2 < jDj
such that rm.c1; d0/, rm.c1; d1/. . . rm.c1; dn/ is the same as rm.c2; d0/,
rm.c2; d1/. . . rm.c2; dn/. So for each di, rm.c1; di/ D rm.c2; di/; say
c1 D adi C r and c2 D bdi C r; then since the remainders are equal,
c2 � c1 D bdi � adi; so each di divides c1 � c2 evenly. So each di col-
lects a distinct set of prime factors of c2 � c1; and since c2 � c1 is divided by
any product of its primes, c2 � c1 is divided by jDj. So jDj � c2 � c1. But
0 � c1 < c2 < jDj so c2 � c1 < jDj. Reject the assumption: The sequences
of remainders as c runs from 0 to jDj � 1 are distinct.

II. The sequences of remainders rm.c; d0/, rm.c; d1/. . . rm.c; dn/ as c runs from
0 to jDj � 1 are all the possible sequences of remainders.

There are di possible remainders a number might have when divided by di,
(0; 1; : : : di � 1). But if rm.c; d0/ takes d0 possible values, rm.c; d1/may take
its d1 values for each value of rm.c; d0/; etc. So the there are jDj possible
sequences of remainders. But as c runs from 0 to jDj � 1, by (I), there are
jDj different sequences. So there are all the possible sequences.

III. Let s be the maximum of n; k0; k1 : : : kn. Then for 0 � i < n, the numbers
di D sŠ.iC 1/C 1 are each greater than any kj and are relatively prime.

Since s is the the maximum of n; k0; k1 : : : kn, the first is obvious. To see that
the di are relatively prime, suppose otherwise. Then for some j; k, 1 � j <
k � nC 1, sŠjC 1 and sŠkC 1 have a common factor p. But any number up
to s leaves remainder 1 when dividing sŠjC 1; so p > s. And since p divides
sŠjC 1 and sŠkC 1 it divides their difference, sŠ.k � j/; but if p divides sŠ,
then it does not evenly divide sŠjC 1; so p does not divide sŠ; so p divides
k � j. But 1 � j < k � nC 1; so k � j � n; so p � n; so p � s. Reject the
assumption: the di are relatively prime.

IV. For any k0; k1 : : : kn, we can find a pair of numbers p; q such that for i � n,
ˇ.p; q; i/ D ki.

With s as above, set q D sŠ, and let ˇ.p; q; i/ D rm.p; q.iC 1/C 1/. By
(III), for 0 � i � n the numbers qi D q.iC 1/C 1 are relatively prime. So
by (II), there are all the possible sequences of remainders as p ranges from 0
to jDj�1. And since by (III) each of the qi is greater than any ki, the sequence
k0; k1 : : : kn is among the possible sequences of remainders. So there is some
p such that the ki are rm.p; q.iC 1/C 1/.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 568

(i) k0 D g.Ex/

(ii) if i < y, then kSi D h.Ex; i; ki/

(iii) ky D z

Put in terms of the ˇ-function, this requires, f.Ex; y/ D z just in case there are some p,
q such that,

(i) ˇ.p; q; 0/ D g.Ex/

(ii) if i < y, then ˇ.p; q;Si/ D h.Ex; i; ˇ.p; q; i//

(iii) ˇ.p; q; y/ D z

By assumption, g.Ex/ is expressed by some G .Ex; v/ and h.Ex; y; u/ by some H .Ex; y; u; v/.
So we can express the combination of these conditions as follows. f.Ex; y/ is expressed
by F .Ex; y; z/Ddef

9p9qf9vŒB.p; q;;; v/ ^ G .Ex; v/�^

.8i < y/9u9vŒB.p; q; i; u/ ^B.p; q; Si; v/ ^H .Ex; i; u; v/�^

B.p; q; y; z/g

So G is satisfied by the first member; then for any i < y, H is satisfied by the i th

member and and its successor; and the yth member of the series is z.
In the case of factorial, we have G .v/ Ddef .v D S;/ and H .y; u; v/ Ddef .v D

Sy � u/. So the factorial function is expressed by F .y; z/Ddef

9p9qf9vŒB.p; q;;; v/ ^ v D S;�^

.8i < y/9u9vŒB.p; q; i; u/ ^B.p; q; Si; v/ ^ v D Si � u�^

B.p; q; y; z/g

This expression is long — particularly if expanded to unabbreviate the ˇ-function,
but it is just right. If hn; ai 2 fac, then NŒF .n; a/� D T and the expression satisfies
uniqueness as well. And similarly in the general case. So with LNT we satisfy the re-
cursive clause for T12.3. So its demonstration is complete, and LNT has the resources
to express any recursive function.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 569

E12.7. Suppose k0, k1, k2 and k3 are 3, 4, 0, 2. By the method of the text, find values
of p and q so that ˇ.i/ D ki. Use your values of p and q to calculate ˇ.p; q; 0/,
ˇ.p; q; 1/, ˇ.p; q; 2/ and ˇ.p; q; 3/. You will need some programmable de-
vice to search for the value of p. In Ruby, a routine along the following lines,
with numerical values for a, b, c and d should suffice.
1. def loop
2. p = 0
3. until p % a == 3 and p % b == 4 and p % c == 0 and p % d == 2
4. p = p+1
5. puts "p = #{p}"
6. end
7. return p
8. end
9. puts "p = #{loop}"

In Ruby x % y returns the remainder of x divided by y. So, for this routine,
you insert the denominators and then search (by brute force) for the value of
p that returns the right remainders. Be prepared for it to take a while!

E12.8. Produce a formula to show that LNT expresses the plus function by the initial
functions with the beta function. You need not reduce the beta form to its
primitive expression!

E12.9. Say a function fk is simple iff there is a series of functions f0, f1. . . fk such that
for any i � k,

(b) f0 is plus.x; y/

(r) There are a; b < i such that fi.Ex; Ey/ is plus.fa.Ex/; fb.Ey//

Show that on the standard interpretation N of LNT each simple f.Ex/ is expressed
by some formula F .Ex; v/. You may appeal to T10.2 as appropriate — and
your reasoning may have the “quick” character of T12.3. Hint: (r) yields
functions by a sort of “double” composition.

12.3 Capturing Recursive Functions

The second of the powers to be associated with theory incompleteness has to do with
the theory’s proof system. In section 12.5 we shall be able to show that if a theory
is consistent and captures recursive functions, then it is negation incomplete. In this

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 570

section, we show that Q, and so any theory that includes Q, captures the recursive
functions.

12.3.1 Definition and Basic Results

Where expression requires that if objects stand in a given relation, then a corre-
sponding formula be true, capture requires that when objects stand in a relation, a
corresponding formula be provable in the theory.

CP For any language L, interpretation I, objects m1 : : :mn; a 2 U and theory T ,

(r) Relation R.x1 : : : xn/ is captured by formula R.x1 : : : xn; y/ in T just in case,

(i) If hm1 : : :mni 2 R then T ` R.m1 : : :mn/

(ii) If hm1 : : :mni 62 R then T ` �R.m1 : : :mn/

(f) Function f.x1 : : : xn/ is captured by formula F .x1 : : : xn; y/ in T just in case,

if hhm1 : : :mni; ai 2 f then

(i) T ` F .m1 : : :mn; a/

(ii) T ` 8z.F .m1 : : :mn; z/! z D a/

As a first result, and to see how these definitions work, it is easy to see that in a
theory at least as strong as Q, conditions (f.i) and (f.ii) combine to yield a result like
(r.ii).

T12.4. If T includes Q and total function f.x1 : : : xn/ is captured by formula F .x1
: : : xn; y/ so that conditions (f.i) and (f.ii) hold, then if hhm1 : : :mni; ai 62 f
then T ` �F .m1 : : :mn; a/.

Suppose f.x1 : : : xn/ is captured by F .x1 : : : xn; y/ and hhm1 : : :mni; ai 62 f.
Then, since f is total, there is some b ¤ a such that hhm1 : : :mni; bi 2 f; so
by (f.i), T ` F .m1 : : :mn; b/; and instantiating (f.ii) to a, T ` F .m1 : : :mn;

a/ ! a D b. But since a ¤ b, and T includes Q, by T8.14, T ` a ¤ b; so
by MT, T ` �F .m1 : : :mn; a/.

Our aim is to show that recursive functions are captured in Q. In chapter 8,
we showed that Q correctly decides atomic sentences of LNT. As a preliminary to
showing that Q captures the recursive functions, in this section we extend that result
to show that Q correctly decides a broadened range of sentences.

To understand the result to which we build in this section, we need to identify
some important subclasses of formulas in LNT: the �0, †1 and …1 formulas.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 571

�0 (b) If P is of the form s D t, s < t or s � t for terms s and t, then P is a
�0 formula.

(s) If P and Q are �0 formulas, then so are �P , and .P ! Q/.

(q) If P is a �0 formula, then so are .8x � t/P and .8x < t/P where x

does not appear in t.

(c) Nothing else is a �0 formula.

†1 A formula is strictly †1 iff it is of the form 9x19x2 : : : 9xnP for �0 P . A
formula is †1 iff it is equivalent to a strictly †1 formula.

…1 A formula is strictly …1 iff it is of the form 8x18x2 : : :8xnP for �0 P . A
formula is …1 iff it is equivalent to a strictly …1 formula.

Given the soundness and adequacy of our derivation systems, we may understand
equivalence in either the semantic or syntactical sense so that P and Q are equivalent
just in case � P $ Q or ` P $ Q. A �0 formula is (trivially) both †1 and …1
insofar as it is preceeded by a block of zero unbounded quantifiers. We allow the
usual abbreviations and so ^, _ and$ and bounded existential quantifiers. So, for
example, n ¤ ; ^ .9v � n/.SS; � v D n/ is �0 by a tree that works like ones we
have seen many times before.

; < n

\
\
\
\
\
\\

SS; � v D n By �0(b)

.9v � n/.SS; � v D n/
��

����

By �0(q)

; < n ^ .9v � n/.SS; � v D n/ By �0(s)

It turns out that this formula is true just in case n is an even number other than zero.
For a �0 formula, all is as usual, except quantifiers are bounded. Its existential
quantification,

(E) 9nŒ; < n ^ .9v � n/.SS; � v D n/�

is strictly†1, for it consists of an (in this case single) unbounded existential quantifier
followed by a �0 formula. This sentence asserts the existence of an even number
other than zero. Observe that,

(F) k D k ^ 9nŒ; < n ^ .9v � n/.SS; � v D n/�

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 572

is not strictly †1. For it does not have the existential quantifier attached as main
operator to a �0 formula. However, by standard quantifier placement rules, the un-
bounded existential quantifier can be pulled out to the front to form an equivalent
strictly †1 sentence. Because (F) is equivalent to a sentence that is strictly †1, it
too is †1. Finally, by reasoning as for QN in ND, observe that the negation of a †1
formula is not †1 — rather it is …1, and the negation of a …1 formula is †1.

We shall show that Q correctly decides �0 sentences: if P is �0 and NŒP � D T
then Q

ǸD
P , and if NŒP � ¤ T then Q

ǸD
�P . Further, Q proves true †1

sentences: if P is †1 and NŒP � D T, then Q
ǸD

P . Observe that for a †1 formula
P , if NŒP � ¤ T, then NŒ�P � D T — but �P is not †1. So, though we show
Q correctly decides �0 sentences and proves true †1 sentences, we will not have
shown that Q proves �P when NŒP � ¤ T and so not have shown that Q decides all
†1 sentences.

We begin with some preliminary theorems to set up the main result. These are not
hard, but need to be wrapped up before we can attack the main problem. First some
semantic theorems that work like derived clauses to SF for inequalities and bounded
quantifiers. We could not obtain these in chapter 7 because they rely on theorems
from chapter 8 (and since they are not inductions, they did not belong in chapter 8).
However, we introduce them now in order to make progress.

T12.5. On the standard interpretation N for LNT, (i) NdŒs � t� D S iff NdŒs� � NdŒt�,
and (ii) NdŒs < t� D S iff NdŒs� < NdŒt�.

(i) By abv NdŒs � t� D S iff NdŒ9v.vCs D t/� D S, where v is not free in s

or t; by SF(9), iff there is some m 2 U such that Nd.vjm/ŒvCs D t� D S. But
d.vjm/Œv� D m; so by TA(v), Nd.vjm/Œv� D m; so by TA(f), Nd.vjm/ŒvC s� D

NŒC�hm;Nd.vjm/Œs�i D mCNd.vjm/Œs�. So by SF(r), Nd.vjm/ŒvCs D t� D S
iff hm C Nd.vjm/Œs�;Nd.vjm/Œt�i 2 NŒD�; iff m C Nd.vjm/Œs� D Nd.vjm/Œt�.
But since v is not free in s or t, d and d.vjm/ make the same assignments
to variables free in s and t; so by T8.3, NdŒs� D Nd.vjm/Œs� and NdŒt� D

Nd.vjm/Œt�; so m C Nd.vjm/Œs� D Nd.vjm/Œt� iff m C NdŒs� D NdŒt�; and
there exists such an m just in case NdŒs� � NdŒt�. So NdŒs � t� D S iff
NdŒs� � NdŒt�.

(ii) is homework.

As an immediate corollary, NdŒs � t� ¤ S just in case NdŒs� > NdŒt�; and similarly
for >.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 573

T12.6. On the standard interpretation N for LNT, (i) NdŒ.8x � t /P � D S iff for
every m � NdŒt�, Nd.xjm/ŒP � D S and (ii), NdŒ.8x < t/P � D S iff for every
m < NdŒt�, Nd.xjm/ŒP � D S.

(i) By abv NdŒ.8x � t /P � D S iff NdŒ8x.x � t ! P /� D S where x does
not appear in t; by SF(8), iff for any m 2 U, Nd.xjm/Œx � t ! P � D S; by
SF(!), iff for any m 2 U, Nd.xjm/Œx � t� ¤ S or Nd.xjm/ŒP � D S; which is
to say, iff for any m 2 U, if Nd.xjm/Œx � t� D S, then Nd.xjm/ŒP � D S. But
d.xjm/Œx� D m; so Nd.xjm/Œx� D m; and since x is not free in t, d and d.xjm/
agree on assignments to variables free in t; so by T8.3, Nd.xjm/Œt� D NdŒt�;
so with T12.5, Nd.xjm/Œx � t� D S iff m � NdŒt�; so NdŒ.8x � t /P � D S iff
for any m, if m � NdŒt�, then Nd.xjm/ŒP � D S.

(ii) is homework.

T12.7. On the standard interpretation N for LNT, (i) NdŒ.9x � t /P � D S iff for
some m � NdŒt�, Nd.xjm/ŒP � D S and (ii), NdŒ.9x < t/P � D S iff for some
m < NdŒt�, Nd.xjm/ŒP � D S.

Homework

We are finally ready for the results to which we have been building: First, Q
correctly decides �0 sentences of LNT.

T12.8. For any �0 sentence P , if NŒP � D T, then Q
ǸD

P , and if NŒP � ¤ T, then
Q

ǸD
�P .

By induction on the number of operators in P .

Basis: If P is an an atomic �0 sentence it is t D s, t � s or t < s. So by T8.14, if
NŒP � D T, Q

ǸD
P , and if NŒP � ¤ T, Q

ǸD
�P .

Assp: For any i; 0 � i < k, if a �0 setntence P has i operator symbols, then if
NŒP � D T, Q

ǸD
P and if NŒP � ¤ T, Q

ǸD
�P .

Show: If a �0 sentence P has k operator symbols, then if NŒP � D T, Q
ǸD

P and
if NŒP � ¤ T, Q

ǸD
�P .

If a �0 sentence P has k operator symbols, then it is of the form �A, A !

B, .8x � t/A or .8x < t/A where A, B have < k operator symbols and x

does not appear in t.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 574

(�) P is �A. (i) Suppose NŒP � D T; then NŒ�A� D T; so by T8.6, NŒA� ¤ T;
so by assumption, Q

ǸD
�A; so Q

ǸD
P . (ii) Suppose NŒP � ¤ T; then

NŒ�A� ¤ T; so by T8.6, NŒA� D T; so by assumption Q
ǸD

A; so by DN,
Q

ǸD
��A; so Q

ǸD
�P .

(!) P is A ! B. (i) Suppose NŒA ! B� D T; then by T8.6, NŒA� ¤ T or
NŒB� D T. So by assumption, Q

ǸD
�A or Q

ǸD
B. So by _I twice

Q
ǸD
�A _ B or Q

ǸD
�A _ B; so Q

ǸD
�A _ B; so by Impl,

Q
ǸD

A! B. Part (ii) is homework.

(8 �) P is .8x � t/A.x/. Since P is a sentence, x is the only variable free in
A; in particular, since x does not appear in t, t must be variable-free; so
NdŒt� D NŒt� and where NŒt� D n, by T8.13, Q

ǸD
t D n; so by DE,

Q
ǸD

P just in case Q
ǸD

.8x � n/A.x/.

(i) Suppose NŒP � D T; then NŒ.8x � t/A.x/� D T; so by TI, for any d,
NdŒ.8x � t/A.x/� D S; so by T12.6, for any m � NdŒt�, Nd.xjm/ŒA.x/� D

S; so where NdŒt� D NŒt� D n, for any m � n, Nd.xjm/ŒA.x/� D S; but
NdŒm� D m, so with T10.2, for any m � n, NdŒA.m/� D S; since x is the
only variable free in A, A.m/ is a sentence; so with T8.5, for any m � n,
NŒA.m/� D T; so NŒA.;/� D T and NŒA.1/� D T and . . . and NŒA.n/� D T;
so by assumption, Q

ǸD
A.;/ and Q

ǸD
A.1/ and . . . and Q

ǸD
A.n/; so

by T8.21, Q
ǸD

.8x � n/A.x/; so with our preliminary result, Q
ǸD

P .

(ii) Suppose NŒP � ¤ T; then NŒ.8x � t/A.x/� ¤ T; so by TI, for some d,
NdŒ.8x � t/A.x/� ¤ S; so by T12.6, for some m � NdŒt�, Nd.xjm/ŒA.x/� ¤

S; so where NdŒt� D NŒt� D n, for some m � n, Nd.xjm/ŒA.x/� ¤ S; but
NdŒm� D m, so with T10.2, for some m � n, NdŒA.m/� ¤ S; so by TI, for
some m � n, NŒA.m/� ¤ T; so by assumption for some m � n, Q

ǸD

�A.m/; so by T8.20, Q
ǸD

.9x � n/�A.x/; so by bounded quantifier
negation (BQN), Q

ǸD
�.8x � n/A.x/; so with our preliminary result,

Q
ǸD
�P .

(8 <) homework.

Indct: So for any �0 sentence P , if NŒP � D T, then Q
ǸD

P , and if NŒP � ¤ T,
then Q

ǸD
�P .

And now, Q proves true †1 sentences.

T12.9. For any (strict) †1 sentence P if NŒP � D T, then Q
ǸD

P .

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 575

This is a simple induction on the number of unbounded existential quantifiers
in P . Hint: If P has no unbounded existential quantifiers, then it is �0.
Otherwise, if 9xP is true, it will be easy to show that for some m, P .m/ is
true; you can then apply your assumption, and 9I.

Corollary: For any †1 sentence P , if NŒP � D T, then Q
ǸD

P . Suppose
a †1 P is such that NŒP � D T; then by equivalence there is some strict
†1 P � such that NŒP �� D T; so by the main theorem, Q

ǸD
P �; and by

equivalence again, Q
ǸD

P .

This completes what we set out to show in this subsection. These results should seem
intuitive: Q proves results about particular numbers, 1C 1 D 2 and the like. But �0
sentences assert (potentially complex) particular facts about numbers — and we show
that Q proves any �0 sentence. Similarly, any †1 sentence is true because of some
particular fact about numbers; since Q proves that particular fact, it is sufficient to
prove the †1 sentence.

E12.10. Complete the demonstration of T12.5 - T12.7 by showing the remaining
parts. These should be straightforward, given parts worked in the text.

*E12.11. (i) Complete the demonstration of T12.8 by finishing the remaining cases.
You should set up the entire argument, but may appeal to the text for parts
already completed, as the text appeals to homework. (ii) Show directly cases
(9 �) and (9 <).

E12.12. Provide an argument to demonstrate T12.9.

12.3.2 Basic Result

We now set out to show that Q captures all the recursive functions. We begin showing
that the original formulas by which we have expressed recursive functions are †1.
After that, we get our result in in two forms. First a straightforward basic version.
However, this version gets a result slightly weaker than the one we would like. But
it is easily strengthened to the final form.

First, then, an argument that the original formulas by which we have expressed
recursive functions are †1. This argument merely reviews the strategy from T12.3
for expression to show that each formula is equivalent to a strictly †1 formula and
so is †1.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 576

T12.10. The original formula by which any recursive function is expressed is †1.

By induction on the sequence of recursive functions.

Basis: From T12.3, suc.x/ is originally expressed by Sx D v; zero.x/ by
x D x ^ v D ; and idntjk.x1 : : : xj/ by .x1 D x1 ^ : : : ^ xj D

xj / ^ xk D v. These are all �0, and therefore †1.

Assp: For any any i , 0 � i < k, the original formula F .Ex;v/ by which fi.Ex/
is expressed is †1

Show: The original formula F .Ex;v/ by which fk.Ex/ is expressed is †1
fk is either an initial function or arises from previous members by com-
position, recursion or regular minimization. If it is an initial function,
then as in the basis. So suppose fk arises from previous members.

(c) fk.Ex; Ey; Ez/ arises by composition from g.Ey/ and h.Ex;w; Ez/. By assump-
tion g.Ey/ is expressed by some †1 formula equivalent to 9 EjG . Ey;w/

and h.Ex;w; Ez/ by a†1 formula equivalent to 9EkH .Ex;w; Ez; v/ where G

and H are individually�0. Then their original composition F .Ex; Ey; Ez; v/

is equivalent to 9wŒ9 EjG . Ey;w/ ^ 9EkH .Ex;w; Ez; v/�; and by standard
quantifier placement rules, this is equivalent to 9w9 Ej9EkŒG . Ey;w/ ^
H .Ex;w; Ez; v/�, where this is †1.

(r) fk.Ex; y/ arises by recursion from g.Ex/ and h.Ex; y; u/. By assumption
g.Ex/ is expressed by some †1 formula 9 EjG .Ex; v/ and h.Ex; y; u/ by
9EkH .Ex; y; u; v/. And, as before, the ˇ-function B.p; q; i; v/ is ex-
pressed by,

.9w � p/Œp D .S.q � Si/ � w/C v ^ v < S.q � Si/�

where this is �0. Then the original formula F .Ex; y; z/ by which
fk.Ex; y/ is expressed is equivalent to,

9p9qf9vŒB.p; q;;; v/ ^ 9 EjG .Ex; v/� ^

.8i < y/9u9vŒB.p; q; i; u/ ^B.p; q; Si; v/ ^ 9EkH .Ex; i; u; v/� ^B.p; q; y; z/g

This time, standard quantifier placement rules are not enough to iden-
tify the formula as †1. We can pull the initial v and Ej quantifiers
out. And the Ek quantifiers come out with the u and v quantifiers. The
problem is getting these past the bounded universal i quantifier.

For this, we use a sort of trick: For a simplified case, consider .8i <
y/9vP .i; v/; this requires that for each i < y there is at least one v

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 577

that makes P .i; v/ true; for each i < y consider the least such v, and
let a be the greatest member of this collection. Then .8i < y/.9v <

a/P .i; v/ is equivalent to the original expression — for there is an i <
a to satisfy P just in case there is some i to satisfy P . And therefore,
no matter what y may be, 9j.8i < y/.9v < j /P .i; v/ is true iff
the original expression is true. So the existential quantifier comes past
the bounded universal, leaving behind a bounded existential “shadow.”
Thus the existential u, v and Ek quantifiers come to the front, and the
result is †1.

(m) fk.Ex/ arises by regular minimization from g.Ex; y/. By assumption,
g.Ex; y/ is expressed by some 9 EjG .Ex; y; z/. Then the original expres-
sion by which fk.Ex/ is expressed is equivalent to 9 EjG .Ex; v;;/^.8y <

v/�9 EjG .Ex; y;;/; but since G expresses a function, �9 EjG .Ex; y;;/

just when 9zŒ9 EjG .Ex; y; z/ ^ z ¤ ;�; so the original expression is
equivalent to, 9 EjG .Ex; v;;/ ^ .8y < v/9zŒ9 EjG .Ex; y; z/ ^ z ¤ ;�.
The first set of j quantifiers come directly to the front, and the second
set, together with the z quantifier come out, as in the previous case,
leaving bounded existential quantifiers behind. So the result is †1.

Indct: The original formula by which any recursive function is expressed is
†1.

It is not proper to drag an existential quantifier out past a universal quantifier; how-
ever, it is legitimate to drag an existential past a bounded universal, with a bounded
existential quantifier left behind as “shadow” or “witness.”

Now for our main result. Here is the sense in which our result is weaker than
we might like: Rather than Q, let us suppose we are in a system Qs, strengthened Q,
which has (as an axiom or) a theorem uniqueness of remainder as follows,

8yŒ..9w � m/Œm D Sn � w C a ^ a < Sn� ^ .9w � m/Œm D Sn � w C y ^ y < Sn�/! a D y�

If a is the remainder ofm=.nC1/ and y is the remainder ofm=.nC1/ then a D y. As
we shall see, PA is a system of this sort (see Def [rm] in chapter 13) though, insofar
as m and n are free variables rather than numerals, Q is not. Notice that m and n are
free in this formulation; if they are instantiated to p and q � Si respectively, from
uniqueness for remainder there immediately follows a parallel uniqueness result for
the ˇ-function.

8yŒ.B.p; q; i; a/ ^B.p; q; i; y//! a D y�

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 578

Further, if hhp; q; ii; ai 2 ˇ then since B expresses the ˇ-function, NŒB.p; q; i ; a/� D
T; and since B is �0, by T12.8, Q

ǸD
B.p; q; i ; a/. From this, with uniqueness, it

is immediate that Qs ǸD
8yŒB.p; q; i ; y/! y D a�. So B captures ˇ in Qs.

Now we are positioned to offer a perfectly straightforward argument for capture
of the recursive functions in Qs. Again our main argument is an induction on the
sequence of recursive functions. We show that Qs captures the initial functions, and
then that it captures functions from composition, recursion and regular minimization.

T12.11. On the standard interpretation N for LNT, any recursive function is captured
in Qs by the original formula by which it is expressed.

By induction on the sequence of recursive functions.

Basis: f0 is an initial function suc.x/, zero.x/, or idntjk.x1 : : : xj/.
(s) The original formula F .x; v/ by which suc.x/ is expressed is Sx D v.

Suppose hm; ai 2 suc.
(i) Since Sx D v expresses suc.x/, NŒSm D a� D T; so, since it is
�0, by T12.8, Q

ǸD
Sm D a; so Qs ǸD

F .m; a/.
(ii) Reason as follows,

1. Sm D a from (i)

2. Sm D j A (g,!I)

3. j D a 1,2 =E

4. Sm D j ! j D a 2-3!I
5. 8z.Sm D z ! z D a/ 4 8I

So Qs ǸD
8zŒF .m; z/! z D a�.

(oth) It is left as homework to show that zero.x/ is captured by x D x^v D
; and idntjk.x1 : : : xj/ by .x1 D x1 ^ : : : ^ xj D xj / ^ xk D v.

Assp: For any i , 0 � i < k, fi.Ex/ is captured in Qs by the original formula
by which it is expressed.

Show: fk.Ex/ is captured in Qs by the original formula by which it is expressed.
fk is either an initial function or arises from previous members by com-
position, recursion or regular minimization. If it is an initial function,
then as in the basis. So suppose fk arises from previous members.

(c) fk.Ex; Ey; Ez/ arises by composition from g.Ey/ and h.Ex;w; Ez/. By assump-
tion g.Ey/ is captured by some G . Ey;w/ and h.Ex;w; Ez/ by H .Ex;w; Ez; v/;
the original formula F .Ex; Ey; Ez; v/ by which the composition f.Ex; Ey; Ez/

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 579

is expressed is 9wŒG . Ey;w/ ^H .Ex;w; Ez; v/�. For simplicity, consider
a case where Ex and Ez drop out and Ey is a single variable y. Suppose
hm; ai 2 fk; then by composition there is some b such that hm; bi 2 g
and hb; ai 2 h.

(i) Since hm; ai 2 fk, and F .y; v/ expresses f, NŒF .m; a/� D T; so,
since F .y; v/ is †1, by T12.9, Qs ǸD

F .m; a/.

(ii) Since G .y; w/ captures g.y/ and H .w; v/ captures h.w/, by as-
sumption Qs ǸD

8z.G .m; z/ ! z D b/ and Qs ǸD
8z.H .b; z/ !

z D a/. It is then a simple derivation for you to show that Qs ǸD

8z.9wŒG .m; w/ ^H .w; z/�! z D a/.

(r) fk.Ex; y/ arises by recursion from g.Ex/ and h.Ex; y; u/. By assumption
g.Ex/ is captured by some G .Ex; v/ and h.Ex; y; u/ by H .Ex; y; u; v/; the
original formula F .Ex; y; z/ by which fk.Ex; y/ is expressed is,

9p9qf9vŒB.p; q;;; v/^G .Ex; v/�^.8i < y/9u9vŒB.p; q; i; u/^B.p; q; Si; v/^H.Ex; i; u; v/�^

B.p; q; y; z/g

Suppose Ex reduces to a single variable and hm; n; ai 2 fk. (i) Then
since F .x; y; z/ expresses f, NŒF .m; n; a/� D T; so, since F .x; y; z/

is †1, by T12.9, Qs ǸD
F .m; n; a/. And (ii) by T12.12, immediately

following, Qs ǸD
8wŒF .m; n; w/! w D a�.

(m) fk.Ex/ arises by regular minimization from g.Ex; y/. By assumption,
g.Ex; y/ is captured by some G .Ex; y; z/; the original formula by F .Ex; v/

by which fk.Ex/ is expressed is G .Ex; v;;/^.8y < v/�G .Ex; y;;/. Sup-
pose Ex reduces to a single variable and hm; ai 2 fk.

(i) Since hm; ai 2 fk, and F .x; v/ expresses f, NŒF .m; a/� D T; so
since F .x; v/ is †1, by T12.9, Qs ǸD

F .m; a/.

(ii) Reason as follows,

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 580

1. G .m; a;;/ ^ .8y < a/�G .m; y;;/ from (i)
2. j < a _ j D a _ a < j T8.19

3. G .m; j;;/ ^ .8y < j /�G .m; y;;/ A (g,!I)

4. j < a A (c, �I)

5. G .m; j;;/ 3 ^E
6. .8y < a/�G .m; y;;/ 1 ^E
7. �G .m; j;;/ 6,4 (8E)
8. ? 5,7 ?I

9. j 6< a 4-8 �I
10. a < j A (c, �I)

11. G .m; a;;/ 1 ^E
12. .8y < j /�G .m; y;;/ 3 ^E
13. �G .m; a;;/ 12,10 (8E)
14. ? 11,13 ?I

15. a 6< j 10-14 �I
16. j D a 2,9,15 DS

17. ŒG .m; j;;/ ^ .8y < j /�G .m; y;;/�! j D a 3-16!I
18. 8z.ŒG .m; z;;/ ^ .8y < z/�G .m; y;;/�! z D a/ 17 8I

So Qs ǸD
8z.ŒG .m; z;;/ ^ .8y < z/�G .m; y;;/�! z D a/.

Indct: Any recursive f.Ex/ is captured by the original formula by which it is
expressed in Qs.

For this argument, we simply rely on the ability of Q to prove particular truths, and
so the †1 sentences that express recursive functions. The uniqueness clauses are not
†1, so we have to show them directly. The case for recursion remains outstanding,
and is addressed in the theorem immediately following.

T12.12. Suppose f.Ex; y/ results by recursion from functions g.Ex/ and h.Ex; y; u/where
g.Ex/ is captured by some G .Ex; v/ and h.Ex; y; u/ by H .Ex; y; u; v/. Then for
the original expression F .Ex; y; z/ of f.Ex; y/, if hhm1 : : :mb; ni; ai 2 f, Qs `

8wŒF .m1 : : :mb; n; w/! w D a�.

Suppose Ex reduces to a single variable and hm; n; ai 2 f. When hm; n; ai 2 f, there
are k0 : : : kn such that kn D a; k0 D g.m/; for 0 � i < n, there are p; q such that
ˇ.p; q; i/ D ki; ˇ.p; q;Si/ D kSi; and h.m; i; ki/ D kSi. The argument is by induction
on the value of n from f.m; n/ D a. Observe that F is long, and we shall better be
able to manage the formulas given its general form 9p9qŒP ^Q ^B�. Also, given
the structure of the definition for this recursion clause, it will be convenient to lapse

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 581

into induction scheme III from the induction schemes reference on p. 388, making
the assumption for a single member of the series n, and then showing that it holds for
the next. Thus, beginning with the basis, we then assume Qs ` 8wŒF .m; n; w/ !
w D kn�, and show Qs ` 8wŒF .m; Sn; w/! w D kSn�.

Basis: Suppose n D 0. From capture, Qs ǸD
8zŒG .m; z/ ! z D k0�. By unique-

ness of remainder (and generalizing on p and q), Qs ǸD
8p8q8yŒ.B.p;

q;;; k0/^B.p; q;;; y//! k0 D y�. F is of the sort, 9p9qf9vŒB.p; q;;; v/^
G .Ex; v/�^Q^B.p; q;;; z/g. You need to show Qs ` 8wŒ9p9qf9vŒB.p; q;

;; v/ ^ G .m; v/� ^ Q ^B.p; q;;; w/g ! w D k0�. This is straightforward.
So Qs ` 8wŒF .m;;; w/! w D k0�.

Assp: Qs ` 8wŒF .m; n; w/! w D kn�

Show: Qs ` 8wŒF .m; Sn; w/! w D kSn�

From capture, Qs ǸD
8wŒH .m; n; kn; w/! w D kSn�. And again we make

an appeal to uniqueness:

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 582

1. 8wŒF .m; n; w/! w D kn� by assumption
2. 8wŒH .m; n; kn; w/! w D kSn� by capture
3. 8p8q8yŒ.B.p; q; Sn; kSn/ ^B.p; q; Sn; y//! kSn D y� uniqueness

4. F .m; Sn; j / A (g,!I)

5. 9p9qŒP .p; q;m/ ^Q.p; q;m; Sn/ ^B.p; q; Sn; j /� 4 abv
6. 9qŒP .p; q;m/ ^Q.p; q;m; Sn/ ^B.p; q; Sn; j /� A (g, 59E)

7. P .p; q;m/ ^Q.p; q;m; Sn/ ^B.p; q; Sn; j / A (g, 69E)

8. 9vŒB.p; q;;; v/ ^ G .m; v/� 7 ^E (P)
9. .8i < Sn/9u9vŒB.p; q; i; u/ ^B.p; q; Si; v/ ^H .m; i; u; v/� 7 ^E (Q)

10. B.p; q; Sn; j / 7 ^E
11. n < Sn T8.14
12. 9u9vŒB.p; q; n; u/ ^B.p; q; Sn; v/ ^H .m; n; u; v/� 9,11 (8E)
13. 9vŒB.p; q; n; u/ ^B.p; q; Sn; v/ ^H .m; n; u; v/� A (g, 129E)

14. B.p; q; n; u/ ^B.p; q; Sn; v/ ^H .m; n; u; v/ A (g, 139E)

15. B.p; q; n; u/ 14 ^E
16. .8i < n/9u9vŒB.p; q; i; u/ ^B.p; q; Si; v/ ^H .m; i; u; v/� 9 with T8.21
17. F .m; n; u/ 8,16,15 with 9I
18. u D kn 1,17 with 8E
19. H .m; n; u; v/ 14 ^E
20. H .m; n; kn; v/ 19,18 =E
21. v D kSn 2,20 with 8E
22. B.p; q; Sn; v/ 14 ^E
23. B.p; q; Sn; kSn/ 22,21 =E
24. j D kSn 3,10,23 with 8E

25. j D kSn 13,14-24 9E

26. j D kSn 12,13-25 9E

27. j D kSn 6,7-26 9E

28. j D kSn 5,6-27 9E

29. F .m; Sn; j /! j D kSn 4-28!I
30. 8wŒF .m; Sn; w/! w D kSn� 29 8I

Lines 8 - 10 of show the content of the assumptions on 4 - 7 which are too long
to display in expanded form. Once we are able to show F .m; n; u/ at (17), the
inductive assumption lets us “pin” u onto kn. Then uniqueness conditions for
H and B allow us to move to unique outputs for H and B and so for F . Line
16 perhaps obviously follows from (9), but its derivation may be obscure: by
T8.14, Q ` 0 < Sn and . . . and Q ` n � 1 < Sn; so where A is the formula
quantified on (9) by (8E), Q ` A.0/ and . . . and Q ` A.n � 1/; then with

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 583

T8.21 it follows that Q ` .8i < n/A.i/.

Indct: For any n, Qs ǸD
8wŒF .m; n; w/! w D kn�.

Observe that in both the basis and show clauses we require the generalized unique-
ness for B: this is because it is being applied inside assumptions for 9E, where p
and q are arbitrary variables, not numerals p and q, to which the ordinary notion of
capture for B would apply. So 8wŒF .m; n; w/! w D a�. So we satisfy the recur-
sive clause for T12.11. So the theorem is proved. And we have shown that Qs has
the resources to capture any recursive function.

This theorem has a number of attractive features: We show that recursive func-
tions are captured directly by the original formulas by which they are expressed. A
byproduct is that recursive functions are captured by †1 formulas. The argument is
a straightforward induction on the sequence of recursive functions, of a type we have
seen before. But we do not show that recursive functions are captured in Q. It is that
to which we now turn.

*E12.13. Complete the demonstration of T12.11 by completing the remaining cases,
including the basis and part (ii) of the case for composition.

*E12.14. Produce a derivation to show the basis of T12.12.

E12.15. Return to the simple functions from from E12.9. Show that on the standard
interpretation N of LNT each simple function f.Ex/ is captured in Qs by the
formula used to express it. Restrict appeal to external theorems just to your
result from E12.9 and T8.14 as appropriate.

12.3.3 The result strengthened

T12.11 shows that the recursive functions are captured in Qs by their †1 original
expressers. As we have suggested, this argument is easily strengthened to show that
the recursive functions are captured in Q. To do so, we give up the capture by original
expressers, though we retain the result that the recursive functions are captured by
†1 formulas.

In the previous section, we appealed to uniqueness of remainder for the ˇ-function.
In Qs, the original formula B captures the ˇ-function, and gives a strengthened
uniqueness result important for T12.12. But we can simulate this effect by some
easy theorems. Recall that the ˇ-function is originally expressed by a �0 formula
B.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 584

T12.13. If a total function f.Ex/ is expressed by a�0 formula F .Ex; v/, then F 0.Ex; v/Ddef

F .Ex; v/ ^ .8z � v/ŒF .Ex; z/! z D v� is �0 and captures f in Q.

Suppose a total f.Ex/ is expressed by a�0 formula F .Ex; v/. Suppose Ex reduces
to a single variable and hm; ai 2 f. (a) Then, NŒF .m; a/� D T; and since F

is �0, by T12.8, Q
ǸD

F .m; a/. (b) Suppose n ¤ a; then hm; ni 62 f; so
with T12.2, NŒ�F .m; n/� D T and NŒF .m; n/� ¤ T; so by T12.8, Q

ǸD

�F .m; n/.

(i) From (a), Q ` F .m; a/. And ` a D a, so ` F .m; a/! a D a; and from
(b), for q < a, Q ` �F .m; q/; so trivially, Q ` F .m; q/ ! q D a; so for
any p � a, Q ` F .m; p/! p D a; so by T8.21, Q ` .8z � a/.F .m; z/!
z D a/. So with ^I, Q ` F .m; a/ ^ .8z � a/.F .m; z/! z D a/; which is
to say, Q ` F 0.m; a/.

(ii) Hint: You need to show Q ` 8w.ŒF .m; w/^.8z � w/.F .m; z/! z D

w/� ! w D a/. Take as premises F .m; a/ ^ .8z � a/.F .m; z/ ! z D a/
from (i), along with j � a _ a � j from T8.19.

So if conditions (a) and (b) are met, F 0 captures f. F 0 is not the same as the orig-
inal F to express the function. Still, since the �0 B expresses the ˇ-function, B0

captures it in Q.
Intuitively, the second conjunct of F 0 asserts explicitly that at most one v satisfies

F 0. Thus it is not surprising that formulas of the sort F 0 yield a uniqueness result.

T12.14. For F 0.Ex; v/ Ddef F .Ex; v/^ .8z � v/ŒF .Ex; z/! z D v� as above, for any
n, Q ` 8Ex8yŒ.F 0.Ex; n/ ^ F 0.Ex; y//! y D n�.

Suppose Ex reduces to a single variable and reason as follows,

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 585

1. 8x.x � n _ n � x/ T8.19

2. F 0.j; n/ ^ F 0.j; k/ A (g!I)

3. F .j; n/ ^ .8z � n/.F .j; z/! z D n/ 2 ^E (unabv)
4. F .j; k/ ^ .8z � k/.F .j; z/! z D k/ 2 ^E (unabv)
5. k � n _ n � k 1 8E
6. k � n A (g 5_E)

7. .8z � n/.F .j; z/! z D n/ 3 ^E
8. F .j; k/! k D n 7,6 (8E)
9. F .j; k/ 4 ^E

10. k D n 8,9!E

11. n � k A (g 5_E)

:::

12. k D n

13. k D n 5,6-10,11-12 _E

14. .F 0.j; n/ ^ F 0.j; k//! k D n 2-13!I
15. 8yŒ.F 0.j; n/ ^ F 0.j; y//! y D n� 14 8I
16. 8x8yŒ.F 0.x; n/ ^ F 0.x; y//! y D n� 15 8I

Reasoning for the second subderivation is similar to the first.

So where p, q and v are universally quantified we shall have, Q ` 8p8q8vŒ.B0.p; q;
m; n/ ^B0.p; q;m; v//! v D n�. This is what we had before except applied to B0

rather than B.
Observe also that insofar as F 0.Ex; v/ is built on an F .Ex; v/ that expresses f.Ex/,

F 0.Ex; v/ continues to expresses f.Ex/. Perhaps this is obvious given what F 0 says.
However, we can argue for the result directly.

T12.15. If F .Ex; v/ expresses a total f.Ex/, then F 0.Ex; v/ D F .Ex; v/^.8z � v/ŒF .Ex; z/

! z D v� expresses f.Ex/.

Suppose Ex reduces to a single variable and total f.x/ is expressed by F .x; v/.
Suppose hm; ai 2 f. (a) By expression, NŒF .m; a/� D T. (b) Suppose n ¤ a;
then hm; ni 62 f; so with T12.2, NŒ�F .m; n/� D T.

(i) Suppose NŒF 0.m; a/� ¤ T. This is impossible. You will need applications
of T12.6 and T10.2; observe that for n � a either n D a or n < a (so that
n ¤ a).

(ii) Suppose NŒ8w.ŒF .m; w/ ^ .8z � w/.F .m; z/ ! z D w/� ! w D

a/� ¤ T. This is impossible. This time, you will be able to reason that for any
n either n D a or n ¤ a.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 586

And now we are in a position to recover the main result, except that the recursive
functions are captured in Q rather than Qs.

T12.16. Any recursive function is captured by a †1 formula in Q

The ˇ-function is total and expressed by a �0 formula B.p; q; i; v/; so by
T12.15 and T12.13 there is a �0 formula B0.p; q; i; v/ that expresses and
captures it in Q. For any f.Ex/ originally expressed by F .Ex; v/, let F � be like
F except that instances of B are replaced by B0. Since B0 is�0, F � remains
†1.

The argument is now a matter of showing that demonstrations of T12.3,
T12.11 and T12.12 go through with application to these formulas and in Q.
But the argument is nearly trivial: everything is the same as before with for-
mulas of the sort F � replacing F .

Be clear that expressions of the sort F � might appear all along in the show part
of T12.3, T12.11 and T12.12. Expressions from the basis do not involve B. It is
included by recursion; after that, composition and regular minimization might be
applied to expressions of any sort, and so to ones which involve B as well.

As in for the case of expression, formulas other than F �.Ex; v/ might capture the
recursive functions — for example, if F �.Ex; v/ captures f.Ex/, then so does F �.Ex; v/^

A for any theorem A. Let us say that F �.Ex; v/ is the canonical formula that captures
f.Ex/ in Q. Of course, the canonical formula which captures f.Ex/ need not be the
same as the corresponding original formula — for the ˇ-function is not captured
by its original formula (and so any formula which includes a ˇ-function fails to be
original). Because the ˇ-function is captured by a�0 formula we do, however, retain
the result that every recursive function is captured in Q by some †1 formula.

For the rest of this chapter, unless otherwise noted, when we assert the existence
of a formula to express or some capture recursive function, we shall have in mind the
canonical formula. Thus a function is expressed and captured by the same formula.

E12.16. Provide an argument to demonstrate (ii) of T12.13.

E12.17. Finish the derivation for T12.14 by completing the second subderivation.

E12.18. Complete the demonstration of T12.15.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 587

*E12.19. Work carefully through the demonstration of T12.16 by setting up revised
arguments T12.3�, T12.11� and T12.12�. As feasible, you may simply explain
how parts differ from the originals.

12.4 More Recursive Functions

Now that we have seen what the recursive functions are, and the powers of our logical
systems to express and capture recursive functions, we turn to extending their range.
In fact, in this section, we shall generate a series of functions that are primitive re-
cursive. In addition to the initial functions, so far, we have seen that plus, times, fact
and power are primitive recursive. As we increase the range of (primitive) recursive
functions, it immediately follows that our logical systems have the power to express
and capture all the same functions.

12.4.1 Preliminary Functions

We begin with some simple primitive recursive functions that will serve as a founda-
tion for things to come.

Predecessor with cutoff. Set the predecessor of zero to zero itself, and for any
other value to the one before. Since pred.y/ is a one-place function, gpred is a
constant, in this case, gpred D 0. And hpred D idnt21.y; u/. So, as we expect for
pred.y/,

pred.0/ D 0
pred.suc.y// D y

So predecessor is a primitive recursive function.

Subtraction with cutoff. When y � x, subc.x; y/ D 0. Otherwise subc.x; y/ D
x�y. For subc.x; y/, set gsubc.x/ D idnt11.x/. And hsubc.x; y; u/ D pred.idnt33.x; y; u//.
So,

subc.x; 0/ D x
subc.x; suc.y// D pred.subc.x; y//

So as y increases by one, the difference decreases by one. Informally, indicate
subc.x; y/ D .x :

� y/.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 588

Absolute value. absval.x - y/ D .x :
� y/C .y :

� x/. So we find the absolute value
of the difference between x and y by doing the subtraction with cutoff both ways.
One direction yields zero. The other yields the value we want. So the sum comes out
to the absolute value. This is a function with two arguments (only separated by ‘-’
rather than comma to remind us of the nature of the function). This function results
entirely by composition, without a recursion clause. Informally, we indicate absolute
value in the usual way, absval.x - y/ D jx - yj.

Sign. The function sg.y/ is zero when y is zero and otherwise one. For sg.y/, set
gsg D 0. And hsg.y; u/ D suc.zero.idnt21.y; u///. So,

sg.0/ D 0
sg.suc.y// D suc.zero.y//

So the sign of any successor is just the successor of zero, which is one.

Converse sign. The function csg.y/ is one when y is zero and otherwise zero. So it
inverts sg. For csg.y/, set gcsg D suc.0/. And hcsg.y; u/ D zero.idnt21.y; u//. So,

csg.0/ D suc.0/
csg.suc.y// D zero.y/

So the converse sign of any successor is just zero. Informally, we indicate the con-
verse sign with a bar, sg.y/.

E12.20. Consider again your file recursive1.rb from E12.3. Extend your se-
quence of functions to include pred(x), subc(x,y), absval(x - y), sg(x),
and csg(x). Calculate some values of these functions and print the results,
along with your program. Again, there should be no appeal to functions ex-
cept from earlier in the chain.

12.4.2 Characteristic Functions

The characteristic function chR.Ex/ of a relation R takes the value 0 when Ex 2 R and 1
when Ex 62 R.

(CF) For any function p.Ex/, sg.p.Ex// is the characteristic function of the relation R

such that Ex 2 R iff sg.p.Ex// D 0.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 589

So a characteristic function for relation R takes the value 0 if R.Ex/ is true, and 1 if R.Ex/
is not true.7 A (primitive) recursive property or relation is one that has a (primitive)
recursive characteristic function. When a function p already takes just the values 0
and 1 so that sg.p.Ex// D p.Ex/, we generally omit sg from our specifications.

These definitions immediately result in corollaries to T12.3 and T12.16.

T12.3 (corollary). On the standard interpretation N of LNT, each recursive relation
R.Ex/ is expressed by some formula R.Ex/.

Suppose R.Ex/ is a recursive relation; then has a recursive and so total charac-
teristic function chR.Ex/; so by T12.3 there is some formula R.Ex; y/ that ex-
presses chR.Ex/. So in the case where Ex reduces to a single variable, if m 2 R,
then hm; 0i 2 chR; and by expression, IŒR.m;;/� D T; and if m 62 R, then
hm; 0i 62 chR, so that with T12.2, IŒ�R.m;;/� D T. So, generally, R.Ex;;/

expresses R.Ex/.

T12.16 (corollary). Any recursive relation is captured by a †1 formula in Q.

Suppose R.Ex/ is a recursive relation; then it has a recursive and so total char-
acteristic function chR.Ex/; so by T12.16 there is some †1 formula R.Ex; y/

that captures chR.Ex/. So in the case where Ex reduces to a single variable, if
m 2 R, then hm; 0i 2 chR; and by capture T ` R.m;;/; and if m 62 R,
then hm; 0i 62 chR; so by capture with T12.4, T ` �R.m;;/. So, generally
R.Ex;;/ captures R.Ex/.

So our results for the expression and capture of recursive functions extend directly to
the expression and capture of recursive relations: a recursive relation has a recursive
characteristic function; as such, the function is expressed and captured; so, as we
have just seen, the corresponding relation is expressed and captured.

Equality. Say t.Ex/ is a recursive term just in case it is a variable, constant, or a
recursive function. Then for any recursive terms s.Ex/ and t.Ey/, EQ.s.Ex/; t.Ey// —
typically rendered s.Ex/ D t.Ey/, is a recursive relation with characteristic function
chEQ.Ex; Ey/ D sgjs.Ex/ - t.Ey/j. When s.Ex/ is equal to t.Ey/, the absolute value of the
difference is zero so the value of sg is zero. But when s.Ex/ is other than t.Ey/, the
absolute value of the difference is other than zero, so value of sg is one. And, sup-
posing that s.Ex/ and t.Ex/ are recursive, this characteristic function is a composition of
recursive functions. So the result is recursive. So s.Ex/ D t.Ey/ is a recursive relation.

7It is perhaps more common to reverse the values of zero and one for the characteristic function.
However, the choice is arbitrary, and this choice is technically convenient.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 590

A couple of observations: First, be clear that EQ is the standard relation we all
know and love. The trick is to show that it is recursive. We are not given that EQ is a
recursive relation — so we demonstrate that it is, by showing that it has a recursive
characteristic function. Second, one might think that we could express f.Ex/ D g.Ey/ by
some relatively simple expression that would compose expressions for the functions
with equality as, 9u9vŒF .Ex; u/ ^ G . Ey; v/ ^ u D v�. This would be fine. However
we have offered a general account which, as is often the case for these things, need
not be the most efficient. Where sgjf.Ex/ - g.Ey/j is expressed and captured by some
S.Ex; Ey; v/ our approach, which works by modification of the characteristic function,
generates the relatively complex, E.Ex; Ey/ Ddef S.Ex; Ey;;/.

Inequality. The relation LEQ.s.Ex/; t.Ey// has characteristic function sg.s.Ex/ :
� t.Ey//.

When s.Ex/ � t.Ey/, s.Ex/ :
� t.Ey/ D 0; so sg D 0; Otherwise the value is 1. The relation

LESS.s.Ex/; t.Ey// has characteristic function sg.suc.s.Ex// :
� t.Ey//. When s.Ex/ < t.Ey/,

suc.s.Ex// :
� t.Ey/ D 0; so sg D 0. Otherwise the value is 1. These are typically

represented s.Ex/ � t.Ey/ and s.Ex/ < t.Ey/.

With equality and inequality, we have atomic recursive relations. And we set out
to exhibit ones that are more complex in the usual way.

Truth functions. Suppose P.Ex/ and Q.Ex/ are recursive relations. Then NEG.P.Ex//
and DSJ.P.Ex/; Q.Ex// are recursive relations. Suppose chP.Ex/ and chQ.Ex/ are the char-
acteristic functions of P.Ex/ and Q.Ex/.

NEG.P.Ex// (typically �P.Ex/) has characteristic function sg.chP.Ex//. When P.Ex/
does not obtain, the characteristic function of P.Ex/ takes value one, so the converse
sign goes to zero. And when when P.Ex/ does obtain, its characteristic function is
zero, so the converse sign is one — which is as it should be.

DSJ.P.Ex/; Q.Ey// (typically P.Ex/_Q.Ey/) has characteristic function chP.Ex/ � chQ.Ey/.
When one of P.Ex/ or Q.Ey/ is true, the disjunction is true; but in this case, at least one
characteristic function, and so the product of functions goes to zero. If neither P.Ex/
nor Q.Ey/ is true, the disjunction is not true; in this case, both characteristic functions,
and so the product of functions take the value one.

Other truth functions are definable in the same terms as for negation and disjunc-
tion. So, for example, IMP.P.Ex/; Q.Ey// that is, P.Ex/! Q.Ey/ is just �P.Ex/ _ Q.Ey/.

Bounded quantifiers: Consider a relation S.Ex; z/ D .9y � z/P.Ex; z; y/ which ob-
tains when there is a y less than or equal to z such that P.Ex; z; y/. As usual, y is
distinct from the bound z (compare the language of arithmetic reference). But z may

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 591

appear as a variable of the relation P (as for factor or prime number just below); so
we give it a place in our general form. Given chP.Ex; z; y/, consider a further relation
R.Ex; z; v/ corresponding to .9y � v/P.Ex; z; y/. So R treats the bound as a separate vari-
able, and will let us reason by induction as the bound ranges from 0 to z. If we can
find chR.Ex; z; v/ then chS.Ex; z/ is automatic as chR.Ex; z; z/. For this chR.Ex; z; v/ set,

gchR.Ex; z/ D chP.Ex; z; 0/
hchR.Ex; z; v; u/ D u � chP.Ex; z;Sv/

In the simple case where Ex drops out, chR.z; 0/ D chP.z; 0/. And chR.z;Sv/ D
chR.z; v/ � chP.z;Sv/. In the case where v is a successor, the result is,

chR.z; v/ D chP.z; 0/ � chP.z; 1/ � : : : � chP.z; v/

Think of these as grouped to the left. So the result has chR.z; n/ D 1 unless and
until one of the members is zero, and then stays zero. So the function for R.z; n/
goes to zero just in case P.z; v/ is true for some value between 0 and n. So set
chS.Ex; z/ D chR.Ex; z; z/ — so the characteristic function for the bounded quantifier
runs the R function up to the bound z.

For .9y < z/P.Ex; z; y/, it simplest simply to take .9y � z/.y ¤ z ^ P.Ex; z; y//. For
.8z � y/P.Ex; z/ and .8z < y/P.Ex; z/, we may consider �.9z � y/�P.Ex; z/; and simi-
larly in the other case. And we are done by previous results.

Least element: Let m.Ex; z/ D .�y � z/P.Ex; z; y/ be the least y � z such that
P.Ex; z; y/ if one exists, and otherwise z. Again, the bound may be a variable free
in P. Then if P.Ex; z; y/ is a recursive relation, .�y � z/P.Ex; z; y/ is a recursive func-
tion. First take R.Ex; z; v/ for .9y � v/P.Ex; z; y/ and chR.Ex; z; v/ as described above. So
chR.Ex; z; v/ goes to 0 when P is true for some j � v. Then, second, we introduce a
function q.Ex; z; v/ whose output is the value of .�y � v/P.Ex; z; y/. Given this, very
much as before, m.Ex; z/ is automatic as q.Ex; z; z/. For q.Ex; z; v/ set,

gq.Ex; z/ D zero.chR.Ex; z; 0//
hq.Ex; z; v; u/ D uC chR.Ex; z; v/

So in the simple case where Ex drops out, q.z; 0/ D 0; for the least y � 0 that satisfies
any P.z; y/ can only be 0. And then q.z;Sv/ D q.z; v/C chR.z; v/. The result is,

q.z;Sn/ D 0C chR.z; 0/C : : :C chR.z; n/

where chR is 1 until it hits a member that is P and then goes to 0 and stays there. Set
the first member to the side. Then since this series starts with v D 0 and ends with
v D n it has Sn members. So if all the values are 1 it evaluates to Sn. If there is some
a such that chR.z; a/ is zero, then all the members prior to it are 1 and the sum is a.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 592

So set m.Ex; z/ D q.Ex; z; z/, so that we take the sum up to the limit z. Observe that
.�y � z/P.Ex; z; y/ D z does not require that P.Ex; z; z/ — only that no a < z is such
that P.Ex; z; a/.

Selection by cases. Suppose f0.Ex/ : : : fk.Ex/ are recursive functions and C0.Ex/ : : : Ck.Ex/
are mutually exclusive recursive relations. Then f.Ex/=C0 : : : Ck defined as follows is
recursive.

f.Ex/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

f0.Ex/ if C0.Ex/
f1.Ex/ if C1.Ex/

:::

fk.Ex/ if Ck.Ex/
and otherwise a

Observe that, f.Ex/ D

Œsg.chC0.Ex// � f0.Ex/C sg.chC1.Ex// � f1.Ex/C : : :C sg.chCk.Ex// � fk.Ex/�C

ŒchC0.Ex/ � chC1.Ex/ � : : : � chCk.Ex/ � a�

works as we want. Each of the first terms in this sum is 0 unless the Ci is met in which
case sg.chCi.Ex// is 1 and the term goes to fi.Ex/. The final term is 0 unless no condition
Ci is met, in which case it is a. So f.Ex/ is a composition of recursive functions, and
itself recursive.

We turn now to some applications that will be particularly useful for things to
come. In many ways, the project is like a cool translation exercise — pitched at the
level of functions.

Factor. Let FCTR.m; n/ be the relation that obtains between m and n when m C 1
evenly divides n (typically, m j n). Division is by m C 1 to avoid worries about
division by zero.8 Then m j n is recursive. This relation is defined as follows.

.9y � n/.Sm � y D n/

Observe that this makes (the predecessor of) both 1 and n factors of n, and any
number a factor of zero. Since each part is recursive, the whole is recursive. The
argument is from the parts to the whole: Sm � y D n has a recursive characteristic

8In fact, this is a (minor) complication at this stage, but it will be helpful down the road. See p.
644n11.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 593

function; so the bounded quantification has a recursive characteristic function; so the
factor relation is recursive.

Prime number. Say PRIME.n/ is true just when n is a prime number. This property
is defined as follows.

n > 1 ^ .8j < n/Œj j n! .Sj D 1 _ Sj D n/�

So n is greater than 1 and the successor of any number that divides it is either 1 or n
itself.

Prime sequence. Say the primes are 0, 1. . . . Let the value of the function pi.n/
(usually .n/) be n. Then .n/ is defined by recursion as follows.

gpi D suc.suc.0//
hpi.y; u/ D .�y � uŠC 1/.u < y ^ PRIME.y//

So the first prime, .0/ D 2. And .Sn/ D .�y � .n/ŠC 1/. .n/ < y ^ PRIME.y//.
So at any stage, the next prime is the least prime which is greater than .n/. This
depends on the point that all the primes � n are included in the product .n/Š Let
p.n/ D 0 � 1 � : : : � n. By a standard argument (see G2 in the arithmetic for
Gödel numbering reference, p. 480), p.n/ C 1 is not divisible by any of the primes
up to n; so either p.n/C1 is itself prime, or there is some prime greater than n but
less than p.n/ C 1. But since .n/Š is a product including all the primes up to n,
p.n/ � .n/Š; so either .n/ŠC1 is prime or there is a prime greater than n but less
than .n/ŠC 1 — and the next prime is sure to appear in the specified range.

Prime exponent. Let exp.n; i/ be the (possibly 0) exponent of i in the unique
prime factorization of n. Then exp.n; i/ is recursive. This function may be defined as
follows.

.�x � n/Œpred. x
i / j n ^ pred. xC1

i / − n�

And, of course, i is just .i/. Observe that no exponent in the prime factorization
of n is greater than n itself — for any x � 2, xn � n — so the bound is safe. This
function returns the first x such that x

i divides n but xC1
i does not.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 594

Prime length. Say a prime a is included in the factorization of n just in case there
is some b � a and e > 0 such that (the predecessor of) e

b is a factor of n. So we
think of a prime factorization as,

e0
0 �

e1
1 � : : : �

eb
b

where eb > 0, but exponents for prior members of the series may be zero or not.
Then len.n/ is the number of primes included in the prime factorization of n; so
len.0/ D len.1/ D 0 and otherwise, since the series of primes begins with zero,
len.n/ D bC 1. For this set,

len.n/ Ddef .�y � n/.8z W y � z � n/exp.n; z/ D 0

Officially: .�y � n/.8z � n/Œz � y ! exp.n; z/ D 0�. So we find the least y such
that none of the primes between y and n are part of the factorization of n; but then
all of the primes prior to it are members of the factorization so that y numbers the
length of the factorization. This depends on its being the case that n < n so that
primes greater than or equal n are never included in the factorization of n.

E12.21. Returning to your file recursive1.rb from E12.3 and E12.20, extend the
sequence of functions to include the characteristic function for FCTR.m; n/.
You will need to begin with cheq(a,b) for the characteristic function of
a D b and then the characteristic function of Sm � y D n. Then you will
require a function like chR.m; n; v/ corresponding to .9y � v/.Sm � y D n/.
Calculate some values of these functions and print the results, along with your
program.

E12.22. Continue in your file recursive1.rb to build the characteristic function for
PRIME.n/. You will have to build gradually to this result (where the universal
quantifier appears as �.9j � n/.j ¤ n ^�P). You will need chless(a,b)
and then chneg(a), chdsj(a,b), chimp(a,b), and chand(a,b) for the rel-
evant truth functions. With these in hand, you can build a function chp(n,j)
corresponding to j ¤ n _ �.j j n! .Sj D 0 _ Sj D n//. And with that, you
can obtain a function like R.n; j; v/ and then the characteristic function of the
bounded existential. Then, finally, build prime(n). Calculate some values of
these functions and print the results, along with your program.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 595

E12.23. Continue in your file recursive1.rb to generate lcm.m; n/ the least com-
mon multiple of Sm and Sn — that is, .�y � Sm�Sn/Œy > 0^m j y^n j y�.
For this you will need the characteristic function of y > 0^m j y^n j y; and
then one like chR.m; n; v/ corresponding to .9y � v/Œy > 0 ^ m j y ^ n j y�.
Then you will be able to find the function like q.m; n; v/ corresponding to
.�y � v/Œy > 0 ^m j y ^ n j y� and finally the lcm.

E12.24. Provide definitions for the recursive functions rm.m; n/ and qt.m; n/ for the
remainder and quotient of m=nC 1.

*E12.25. Functions f1.Ex; y/ and f2.Ex; y/ are defined by simultaneous (mutual) recur-
sion just in case,

f1.Ex; 0/ D g1.Ex/

f2.Ex; 0/ D g2.Ex/

f1.Ex;Sy/ D h1.Ex; y; f1.Ex; y/; f2.Ex; y//

f2.Ex;Sy/ D h2.Ex; y; f1.Ex; y/; f2.Ex; y//

Show that f1 and f2 so defined are recursive. Hint: Let F.Ex; y/ D
f1.Ex;y/
0 �

f2.Ex;y/
1 ; then find G.Ex/ in terms of g1 and g2, and H.Ex; y; u/ in terms of h1

and h2 so that F.Ex; 0/ D G.Ex/ and F.Ex;Sy/ D H.Ex; y;F.Ex; y//. So F.Ex; y/ is
recursive. Then f1.Ex; y/ D exp.F.Ex; y/; 0/ and f2.Ex; y/ D exp.F.Ex; y/; 1/; so f1
and f2 are recursive.

12.4.3 Arithmetization

Our aim in this section is to assign numbers to to expressions and sequences of ex-
pressions in LNT and build a (primitive) recursive property PRFQ.m; n/ which is true
just in case m numbers a sequence of expressions that is a proof of the expression
numbered by n. This requires a number of steps. In this part, we develop at least the
notion of a sentential proof which should be sufficient for the general idea. The next
section develops details for the the full quantificational case.

Gödel numbers. We begin with a strategy familiar from 10.2.2 and 10.3.2 (to
which you may find it helpful to refer), now adapted to LNT. The idea is to as-
sign numbers to symbols and expressions of LNT. Then we shall be able to operate
on the associated numbers by means of ordinary numerical functions. Insofar as the

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 596

variable symbols in any quantificational language are countable, they are capable of
being sorted into series, x0, x1 : : : Supposing that this is done, begin by assigning to
each symbol ˛ in LNT an integer gŒ˛� called its Gödel Number.

a. gŒ.� D 3 f. gŒ8� D 13

b. gŒ/� D 5 g. gŒ;� D 15

c. gŒ�� D 7 h. gŒS� D 17

d. gŒ!� D 9 i. gŒC� D 19

e. gŒD� D 11 j. gŒ�� D 21

k. gŒxi � D 23C 2i

So, for example, gŒx5� D 23C2�5 D 33. Clearly each symbol gets a unique Gödel
number, and Gödel numbers for individual symbols are odd positive integers.9

Now we are in a position to assign a Gödel number to each formula as follows:
Where ˛0; ˛1 : : : ˛n are the symbols, in order from left to right, in some expression
Q,

gŒQ� D 2gŒ˛0� � 3gŒ˛1� � 5gŒ˛2� � : : : � n
gŒ˛n�

where 2, 3, 5. . . n are the first n prime numbers. So, for example, gŒx0 � x5� D
223 � 321 � 533. This is a big integer. But it is an integer, and different expressions
get different Gödel numbers. Given a Gödel number, we can find the corresponding
expression by finding its prime factorization; then if there are twenty-three 2s in the
factorization, the first symbol is x0; if there are twenty-one 3s, the second symbol is
�; and so forth. Notice that numbers for individual symbols are odd, where numbers
for expressions are even.

Now consider a sequence of expressions, Q0, Q1. . . Qn (as in an axiomatic
derivation). These expressions have Gödel numbers g0, g1. . . , gn. Then,

g0

0 �
g1

1 ;�
g2

2 � : : : � gn
n

is the super Gödel number for the sequence Q0, Q1. . . Qn. Again, given a super
Gödel number, we can find the corresponding expressions by finding its prime fac-
torization; then, if there are g0 2s, we can proceed to the prime factorization of g0, to
discover the symbols of the first expression; and so forth. Observe that super Gödel
numbers are even, but are distinct from Gödel numbers for expressions, insofar as
the exponent of 2 in the factorization of any expression is odd (the first element of
any expression is a symbol and so has an odd number); and the exponent of 2 in the

9There are many ways to do this, we pick just one.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 597

factorization of any super Gödel number is even (the first element of a sequence is
an expression and so has an even number).

Recall that exp.n; i/ returns the exponent of i in the prime factorization of n. So
for a Gödel number n, exp.n; i/ returns the code of ˛i ; and for a super Gödel number
n, exp.n; i/ returns the code of Qi .

Where P is any expression, let pPq be its Gödel number; and pPq the standard
numeral for its Gödel number. Indicate individual symbol codes with angle quotes
around the symbol. So h;i D 15 but p;q D 215 — for we take the number of the
bracketed expression.

Concatenation. Suppose m and n number expressions or sequences of expressions.
Then the function cncat.m; n/— ordinarily indicated m?n, returns the Gödel number
of the expression or sequence with Gödel number m followed by the expression or
sequence with Gödel number n. So px � yq ? pD zq D px � y D zq, for some
numbered variables x, y and z. This function is (primitive) recursive. Recall that
len.n/ is recursive and returns the number of distinct prime factors of n. Set m?n to,

.�x � Bm;n/Œx � 1 ^ .8i < len.m//fexp.x; i/ D exp.m; i/g ^ .8i < len.n//fexp.x; iC len.m// D exp.n; i/g�

We search for the least number x (greater than or equal to one) such that exponents of
initial primes in its factorization match the exponents of primes in m and exponents of
primes later match eponents of primes in n. The bounded quantifiers take i < len.m/
and i < len.n/ insofar as len returns the number of primes, but exp.x; i/ starts the list
of primes at 0; so if len.m/ D 3, its primes are 0, 1 and 2. So the first len.m/
exponents of x are the same as the exponents in m, and the next len.n/ exponents of
x are the same as the exponents in n.

To ensure that the function is recursive, we use the bounded least element quan-
tifier as main operator, where Bm;n is the bound under which we search for x. In this
case it is sufficient to set

Bm;n D
�
 mCn

len.m/Clen.n/

�len.m/Clen.n/

The idea is that all the primes in x will be � len.m/Clen.n/. And any exponent in the
factorization of m must be � m and any exponent for n must be � n; so that mC n
is greater than any exponent in the factorization of x. So B results from multiplying
a prime larger than any in x to a power greater than that of any in x together as many
times as there are primes in x; so x must be smaller than B.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 598

Observe that corresponding to association for multiplication .m ? n/ ? o D m ?

.n ? o/; so we often drop parentheses for the concatenation operation. Also the
requirement that m ? n � 1 does not usually matter since we will be interested
in cases with m; n > 1; it does, however have the advantage that m ? n is always
equivalent to the product of its primes — where this will smooth results down the
road (see, for example T13.47i,m).

Terms and Atomics. TERM.n/ is true iff n is the Gödel number of a term. Think of
the trees on which we show that an expression is a term. Put formally, for any term
tn, there is a term sequence t0, t1. . . tn such that each expression is either,

a. ;

b. a variable

c. Stj where tj occurs earlier in the sequence

d. Ctitj where ti and tj occur earlier in the sequence

e. �titj where ti and tj occur earlier in the sequence

where we represent terms in unabbreviated form. A term is the last element of such
a sequence. Let us try to say this.

First, VAR.n/ is true just in case n is the Gödel number of a variable — conceived
as an expression, rather than a symbol. Then VAR is (primitive) recursive. Set,

VAR.n/ Ddef .9x � n/.n D 223C2x/

If there is such an x, then n must be the Gödel number of a variable. And it is clear
that this x is less than n itself. So the result is recursive.

Now TERMSEQ.m; n/ is true when m is the super Gödel number of a sequence of
terms whose last member has Gödel number n. For TERMSEQ.m; n/ set,

exp.m; len.m/ :
� 1/ D n ^m > 1 ^ .8k < len.m//f

exp.m; k/ D p;q _ VAR.exp.m; k//_

.9j < k/Œexp.m; k/ D pSq ? exp.m; j/�_

.9i < k/.9j < k/Œexp.m; k/ D pCq ? exp.m; i/ ? exp.m; j/�_

.9i < k/.9j < k/Œexp.m; k/ D p�q ? exp.m; i/ ? exp.m; j/�g

Recall that len.m/ returns the number of primes in the prime factorization of m; so
supposing that m is other than zero or one, len.m/ � 1 and if there is one prime it

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 599

is �0, if there are two primes they are �0 and �1, etc. So the last member of the
sequence has Gödel number n and any member of the sequence is a constant or a
variable, or made up in the usual way by prior members.

Then set TERM.n/ as follows,

TERM.n/ Ddef .9x � Bn/TERMSEQ.x; n/

If some x numbers a term sequence for n, then n is a term. In this case, Gödel numbers
of all prior members in a standard sequence ending in n are less than n. Further, the
number of members in the sequence is the same as the number of variables and
constants together with the number of function symbols in the term (one member for
each variable and constant, and another corresponding to each function symbol); so
the number of members in the sequence is the same as len.n/; so all the primes in
the sequence are < len.n/. So multiply n

len.n/ together len.n/ times and set Bn D�
 n

len.n/
�len.n/. We take a prime len.n/ greater than all the primes in the sequence,

to a power n greater than all the powers in the sequence, and multiply it together as
many times as there are members of the sequence. The result must be greater than x,
the number of the term sequence.

Finally ATOMIC.n/ is true iff n is the number of an atomic formula. The only
atomic formulas of LNT are of the formDt1t2. So it is sufficient to set,

ATOMIC.n/ Ddef .9x � n/.9y � n/ŒTERM.x/ ^ TERM.y/ ^ n D pDq ? x ? y�

Clearly the numbers of t1 and t2 are � n itself.

Formulas. WFF.n/ is to be true iff n is the number of a (well-formed) formula.
Again, think of the tree by which a formula is formed. There is a sequence of which
each member is,

a. an atomic

b. �P for some previous member of the sequence P

c. .P ! Q/ for previous members of the sequence P and Q

d. 8xP for some previous member of the sequence P and variable x

So, on the model of what has gone before, we let FORMSEQ.m; n/ be true when m is
the super Gödel number of a sequence of formulas whose last member has Gödel
number n. For FORMSEQ.m; n/ set,

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 600

exp.m; len.m/ :
� 1/ D n ^m > 1 ^ .8k < len.m//f

ATOMIC.exp.m; k//_

.9j < k/Œexp.m; k/ D p�q ? exp.m; j/�_

.9i < k/.9j < k/Œexp.m; k/ D p.q ? exp.m; i/ ? p!q ? exp.m; j/ ? p/q�_

.9i < k/.9j < n/ŒVAR.j/ ^ exp.m; k/ D p8q ? j ? exp.m; i/�g

So a formula is the last member of a sequence each member of which is an atomic,
or formed from previous members in the usual way. Clearly the number of a variable
in an expression with number n is itself � n. Then,

WFF.n/ Ddef .9x � Bn/FORMSEQ.x; n/

An expression is a formula iff there is a formula sequence of which it is the last
member. Again, Gödel numbers of prior formulas in a standard sequence are � n.
And there are as many members of the sequence as there are atomics and operator
symbols in the formula numbered n. So all the primes are � len.n/; so multiply

 n
len.n/ together len.n/ times and set Bn D

�
 n

len.n/
�len.n/.

Sentential Proof. PRFADS.m; n/ is to be true iff m is the super Gödel number of a
sequence of formulas that is a (sentential) proof of the formula with Gödel number
n. We revert to the relatively simple axiomatic system of chapter 3. So, for example,
A1 is of the sort, .P ! .Q ! P //, and the only rule is MP. For the sentential case
we need, AXIOMADS.n/ true when n is the number of an axiom. For this,

AXIOMAD1.n/Ddef .9x � n/.9y � n/ŒWFF.x/ ^ WFF.y/ ^ n D p.q ? x ? p!q ? p.q ? y ? p!q ? x ? p//q�

AXIOMAD2.n/Ddef Homework.

AXIOMAD3.n/Ddef Homework.

Then,

AXIOMADS.n/ Ddef AXIOMAD1.n/ _ AXIOMAD2.n/ _ AXIOMAD3.n/

In the next section, we will add all the logical axioms plus the axioms for Q. But this
is all that is required for proofs of theorems of sentential logic.

Now cnd.n; o/ D m when n D pP q, o D pQq and m D p.P ! Q/q; for good
measure we include neg.n/ and unv.v; n/. And MP.m; n; o/ is true when the formula
with Gödel number o follows from ones with numbers m and n.

cnd.n; o/ D p.q ? n ? p!q ? o ? p/q

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 601

neg.n/ D p�q ? n

unv.v; n/ D p8q ? v ? n

MP.m; n; o/ Ddef cnd.n; o/ D m

So for MP, m numbers the conditional, n its antecedent, and o the consequent.
And PRFADS.m; n/when m is the super Gödel number of a sequence that is a proof

whose last member has Gödel number n. This works like TERMSEQ and FORMSEQ. For
PRFADS set,

exp.m; len.m/ :
� 1/ D n ^m > 1 ^ .8k < len.m//f

AXIOMADS.exp.m; k//_

.9i < k/.9j < k/MP.exp.m; i/; exp.m; j/; exp.m; k//g

So every formula is either an axiom or follows from previous members by MP. It is
a significant matter to have shown that there is such a function! Again, in the next
section, we will extend this notion to include the rule Gen.

This construction for PRFADS exhibits the essential steps that are required for the
parallel relation PRFQ.m; n/ for theorems of Q. That discussion is taken up in the
following section, and adds considerable detail. It is not clear that the detail is re-
quired for understanding results to follow — though of course, to the extent that those
results rely on the recursive PRFQ relation, the detail underlies proof of the results!

E12.26. Find Gödel numbers for each of the following. Treat the first as an expres-
sion, rather than as simple symbol; the last is a sequence of expressions. For
the latter two, you need not do the calculation!

x2 x0 D x1 x0 D x1;; D x0;; D x1

E12.27. Complete the cases for AXIOMAD2.n/ and AXIOMAD3.n/.

E12.28. In chapter 8 we define the notion of a normal sentential form (p. 393).
Supposing that our numbering system is modified to include p_q and p^q
and using ATOMIC from above, define a recursive relation NORM.n/ for LNT.
Hint: You will need a formula sequence to do this.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 602

12.4.4 Completing the Construction

Quantifier rules for derivations include axioms like (A4), .8vP ! P v
s / where term

s is free for variable v in P . This is easy enough to apply in practice. But it takes
some work to represent. We tackle the problem piece-by-piece.

Substitution in terms. Say t D ptq, v D pvq, and s D psq for some terms s, t,
and variable v . Then TERMSUB.t; v; s; u/ is true when u is the Gödel number of tv

s .
For this, we begin with a term sequence (with Gödel number m) for t, and consider
a parallel sequence, not necessarily a term sequence (with Gödel number n), that
includes modified versions of the terms in the sequence with Gödel number m. For
TSUBSEQ.m; n; t; v; s; u/ set,

TERMSEQ.m; t/ ^ len.m/ D len.n/ ^ exp.n; len.n/ :
� 1/ D u ^ .8k < len.m//f

Œexp.m; k/ D p;q ^ exp.n; k/ D p;q�_

ŒVAR.exp.m; k// ^ exp.m; k/ ¤ v ^ exp.n; k/ D exp.m; k/�_

ŒVAR.exp.m; k// ^ exp.m; k/ D v ^ exp.n; k/ D s�_

.9i < k/Œexp.m; k/ D pSq ? exp.m; i/ ^ exp.n; k/ D pSq ? exp.n; i/�_

.9i < k/.9j < k/Œexp.m; k/ D pCq ? exp.m; i/ ? exp.m; j/ ^ exp.n; k/ D pCq ? exp.n; i/ ? exp.n; j/�_

.9i < k/.9j < k/Œexp.m; k/ D p�q ? exp.m; i/ ? exp.m; j/ ^ exp.n; k/ D p�q ? exp.n; i/ ? exp.n; j/�g

So the sequence for tv
s (numbered by n) is like one of our “unabbreviating trees”

from chapter 2. In any place where the sequence for t (numbered by m) numbers ;,
the sequence for tv

s numbers ;. Where the sequence for t numbers a variable other
than v , the sequence for tv

s numbers the same variable. But where the sequence for
t numbers variable v , the sequence for tv

s numbers s. Then later parts are built out
of prior in parallel. The second sequence may not itself be a term sequence, insofar
as it need not include all the antecedents to s (just as an unabbreviating tree would
not include all the parts of a resultant term or formula).

Now set TERMSUB.t; v; s; u/ as follows,

TERMSUB.t; v; s; u/ Ddef .9x � X/.9y � Y/TSUBSEQ.x; y; t; v; s; u/

In this case, reasoning as for WFF, the Gödel numbers in a standard sequence with
number m are less than t and numbers in the sequence with number n less than u. And

primes in the sequence range up to len.t/. So it is sufficient to set X D
�
 t

len.t/

�len.t/

and Y D
�
 u

len.t/
�len.t/.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 603

Substitution in atomics. Say p D pP q, v D pvq, and s D psq for some
atomic formula P , variable v and term s. Then ATOMSUB.p; v; s; q/ is true when
q is the Gödel number of P v

s . The condition is straightforward given TERMSUB. For
ATOMSUB.p; v; s; q/,

.9a � p/.9b � p/.9a0 � q/.9b0 � q/ŒTERM.a/^ TERM.b/^ p D pDq ? a ? b^ TERMSUB.a; v; s; a0/^ TERMSUB.b; v; s; b0/^ q D pDq ? a0 ? b0�

P v
s simply substitutes into the terms on either side of the equal sign.

Substitution into formulas. Where p D pPq, v D pvq, and s D psq for an
arbitrary formula P , variable v and term s, FORMSUB.p; v; s; q/ is true when q is the
Gödel number of P v

s . In the general case, P v
s is complicated insofar as s replaces

only free instances of v . Again, we build a parallel sequence with number n. No
replacements are carried forward in subformulas beginning with a quantifier binding
instances of variable v . For FSUBSEQ.m; n; p; v; s; q/ set,

FORMSEQ.m; p/ ^ len.m/ D len.n/ ^ exp.n; len.n/ :
� 1/ D q ^ .8k < len.m//f

ŒATOMIC.exp.m; k// ^ ATOMSUB.exp.m; k/; v; s; exp.n; k//�_

.9i < k/Œexp.m; k/ D neg.exp.m; i// ^ exp.n; k/ D neg.exp.n; i//�_

.9i < k/.9j < k/Œexp.m; k/ D cnd.exp.m; i/; exp.m; j// ^ exp.n; k/ D cnd.exp.n; i/; exp.n; j//�_

.9i < k/.9j < p/ŒVAR.j/ ^ j ¤ v ^ exp.m; k/ D unv.j; exp.m; i// ^ exp.n; k/ D unv.j; exp.n; i//�_

.9i < k/.9j < p/ŒVAR.j/ ^ j D v ^ exp.m; k/ D unv.j; exp.m; i// ^ exp.n; k/ D exp.m; k/�g

So substitutions are made in atomics, and carried forward in the parallel sequence —
so long as no quantifier binds variable v , at which stage, the sequence reverts to the
form without substitution.

And FORMSUB.p; v; s; q/ is,

FORMSUB.p; v; s; q/ Ddef .9x � X/.9y � Y/FSUBSEQ.x; y; p; v; s; q/

Again, set X D
�

p
len.p/

�len.p/
and Y D

�

q
len.p/

�len.p/
.

Given FORMSUB.p; v; s; q/, there is a corresponding function formusb.p; v; s/ D
.�q � Z/FORMSUB.p; v; s; q/. In this case, the number of symbols in P v

s is sure to
be no greater than the number of symbols in P times the number of symbols in s.
And any symbol is s or an element of P ; so the Gödel number of each symbol is
no greater than the maximum of p and s and thus p C s. So it is sufficient to set

Z D
�

pCs
len.p/�len.s/

�len.p/�len.s/
. Again, we take a prime at least great as that of any

symbol, to a power greater than that of any exponent, and multiply it as many times
as there are symbols.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 604

Free and bound variables. FREE.p; v/ is true when v is the Gödel number of a
variable that is free in a term or formula with Gödel number p. For a given variable
xi initially assigned number 23C 2i, pxiq D 223C2i ; and pxiC1q� 22 D 223C2iC2

is the number of the next variable. In particular then, for v the number of a variable,
v � 22 (that is v � 4) numbers a different variable. The idea is that if there is some
change in an expression upon substitution of a variable different from v , then v must
have been free in the original expression. For terms and formulas respectively,

FREEt.t; v/ Ddef�TERMSUB.t; v; v � 4; t/

FREEf.p; v/ Ddef�FORMSUB.p; v; v � 4; p/

So v is free if the result upon substitution is other than the original expression.
Given FREEf.p; v/, it is a simple matter to specify SENT.n/ true when n numbers a

sentence.

SENT.n/ Ddef WFF.n/ ^ .8x < n/ŒVAR.x/! �FREEf.n; x/�

So n numbers a sentence if it numbers a formula and nothing is a number of a variable
free in the formula numbered by n.

Finally, suppose s D psq and v D pvq; then FREEFOR.s; v; u/ is true iff s is
free for v in the formula numbered by u. For this, we set up a modified formula
sequence, that identifies just “admissable” subformulas — ones where s is free for
v in the formula numbered by u. For FFSEQ.m; s; v; u/ set,

exp.m; len.m/ :
� 1/ D u ^m > 1 ^ .8k < len.m//f

ATOMIC.exp.m; k//_

.9j < k/Œexp.m; k/ D neg.exp.m; j//�_

.9i < k/.9j < k/Œexp.m; k/ D cnd.exp.m; i/; exp.m; j//�_

.9p � u/ŒWFF.p/ ^ exp.m; k/ D unv.v; p/�_

.9i < k/.9j � u/ŒVAR.j/ ^ j ¤ v ^ .�FREEt.s; j/ _�FREEf.exp.m; i/; v// ^ exp.m; k/ D unv.j; exp.m; i//�g

If the main operator of a subformula Q binds variable v , then no variables in s are
bound upon substitution, because there are no substitutions — as only free instances
of v are replaced; observe that this Q need not appear earlier in the sequence, as
any formula with the v quantifier satisfies the condition. Alternatively, if the main
operator binds a different variable, we require either that the variable is not free in s

(so that no instances are bound upon substitution) or that v is not free in Q (so that
there are no substitutions). Given this,

FREEFOR.s; v; u/ Ddef .9x � Bu/FFSEQ.x; s; v; u/

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 605

In this case, every member of the sequence for FFSEQ is a member of the FORMSEQ for
u so Bu may be set as before.

Proofs. After all this work, we are finally ready for all the axioms of AD and of Q.
AXIOMAD4.n/ obtains when n is the Gödel number of an instance of A4. Intuitively,
AXIOMAD4.n/ just in case there is an s such that,

.9p � n/.9v � n/ŒWFF.p/ ^ VAR.v/ ^ TERM.s/ ^ FREEFOR.s; v; p/ ^ n D cnd.unv.v; p/; formsub.p; v; s//�

So there is a formula P , variable v and term s where s is free for v in P ; and the
axiom is of the form, .8vP ! P v

s /. Unfortunately, our statement is inadequate
insofar as s is left free. We cannot simply supply a prefix 9s as the result would not
be recursively specified. It is tempting to add a bounded .9s � n/ with the idea that
the number of s must be smaller than the number of P v

s . This almost works. The
difficulty is the (rarely encountered) situation where the quantified variable v is not
free in P (as when a quantifier is added to some P that is already a sentence); in this
case, P v

s is just P , and there is nothing to say that s is less than n. Here is a way to
do the job. Set AXIOMAD4.n/ as,

.9p � n/.9v � n/fWFF.p/ ^ VAR.v/ ^ Œ

.�FREE.v; p/ ^ n D cnd.unv.v; p/; p//_

.9s � n/.FREE.v; p/ ^ TERM.s/ ^ FREEFOR.s; v; p/ ^ n D cnd.unv.v; p/; formsub.p; v; s//�g

When �FREE.v; p/, p D formsub.p; v; s/; and when FREE.v; p/, s � formsub.p; v; s/.
Either way, n is set to cnd.unv.v; p/; formsub.p; v; s//. The result, then is primitive
recursive and equivalent to our original intuitive specification.

Given what we have done, AXIOMAD5.n/ is straightforward. GEN.m; n/ holds when
n is the Gödel number of a formula that follows by Gen from a formula with Gödel
number m. And axioms for equality are not hard. A couple are worked as examples.
For AXIOMAD6.n/,

AXIOMAD6.n/ Ddef .9v � n/ŒVAR.v/ ^ n D v ? pDq ? v�

For “simplicity” I drop the unabbreviated style of the original formulas. Axiom seven
is of the sort, .xi D y/ ! .hnx1 : : :xi : : :xn D hnx1 : : :y : : :xn/ for relation
symbol h and variables x1. . . xn and y. In LNT the function symbol is S , C or �.
Because just a single replacement is made, we do not want to use TERMSUB. However,
we are in a position simply to list all the combinations in which one variable is
replaced. So, for AXIOMAD7.n/,

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 606

.9s � n/.9t � n/.9x � n/.9y � n/fVAR.x/ ^ VAR.y/ ^ n D p.Dq ? x ? y ? p! Dq ? s ? t ? p/q^

.Œs D pSq ? x ^ t D pSq ? y�_

.9z < n/ŒVAR.z/ ^ ..s D pCq ? x ? z ^ t D pCq ? y ? z/ _ .s D pCq ? z ? x ^ t D pCq ? z ? y//�_

.9z < n/ŒVAR.z/ ^ ..s D p�q ? x ? z ^ t D p�q ? y ? z/ _ .s D p�q ? z ? x ^ t D p�q ? z ? y//�/g

So there is a term s and a term t which replaces one instance of x in s with y. Then
the axiom is of the sort Dxy ! Dst. Axiom eight is similar. It is stated in terms
of atomics of the sort Rnx1 : : :xn for relation symbol R and variables x1. . . xn. In
LNT the relation symbol is the equals sign, so these atomics are of the form, x D y.
Again, because just a single replacement is made, we do not want to use FORMSUB.
However, we may proceed by analogy with AXIOMAD7. This is left as an exercise. Thus
we have a complete AXIOMAD and with that PRFAD. For the latter, it is convenient to
introduce a relation ICON.m; n; o/ true when the formula with Gödel number o is an
immediate consequence of ones numbered m and n

ICON.m; n; o/ Ddef MP.m; n; o/ _ .m D n ^ GEN.n; o//

The axioms of Q are particular sentences. So, for example, axiom Q2 is of the
sort, .Sx D Sy/! .x D y/. Let x and y be x0 and x1 respectively. Then,

AXIOMQ2.n/ Ddef n D p.Sx D Sy/! .x D y/q

For “ease of reading,” I do not reduce it to unabbreviated form. Other axioms of Q
may be treated in the same way. And now it is straightforward to produce AXIOMQ.n/
and PRFQ.m; n/.

It is worth noting that with AXIOMPA7.n/,

.9p � n/.9v � n/ŒWFF.p/ ^ VAR.v/ ^ n D

cnd.neg.cnd.formsub.p; v; p;q/; neg.unv.v; cnd.p; formsub.p; v; pSq?v//////; unv.v; p//�

we have also AXIOMPA.n/ and PRFPA.m; n/ for PA.10

It is a significant matter to have found these functions. Now we put them to work.

*E12.29. (i) Complete the construction with recursive relations for AXIOMAD5.n/, GEN.m; n/,
AXIOMAD8.n/, and so AXIOMAD.n/ and PRFAD.m; n/. (ii) Complete the remaining
axioms for Robinson arithmetic, and then AXIOMQ.n/ and PRFQ.m; n/. (iii)
Construct also AXIOMQP.n/, like AXIOMQ less AXIOMQ7, and then AXIOMPA.n/ and
PRFPA.m; n/.

10If you follow it out, the last line above unpacks to,

p.�.q � formsub.p; v; p;q/ � p!�8q � v � p.q � p � p!q � formsub.p; v; pSq ? v/ � p//!8q � v � p � p/q

which numbers instances of PA7 (where the conjunction is unpacked to its primitive form).

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 607

E12.30. Supposing now that our numbering system is modified to include p_q, p^q
and p9q, and with the obvious modification of FORMSEQ to accommodate
the new operators and with functions dsj, cnj and exs, construct function
UNABBSEQ.m; n; p; q/ such that m numbers a formula sequence for p (which
may contain abbreviations) and n numbers a sequence whose last member is
the unabbreviated version of p. Then construct UNABB.p; q/ where q is the
number of the unabbreviation of p. Hint you may want to think again about
“unabbreviating trees” from chapter 2 along with FSUBSEQ as a model.

12.5 Essential Results

In this section, we develop some first fruits of our labor. We shall need some initial
theorems, important in their own right. With these theorems in hand, our results
follow in short order. The results are developed and extended in later chapters. But it
is worth putting them on the table at the start. (And some results at this stage provide
a fitting cap to our labors.) We have expended a great deal of energy showing that,
under appropriate conditons, recursive functions can be expressed and captured, and
then that there exist certain recursive functions and relations including PRFQ. Now
we put these results to work.

12.5.1 Preliminary Theorems

A couple of definitions: If f is a function from (an initial segment of)N onto some set
— so that the objects in the set are f.0/, f.1/. . . say f enumerates the members of the
set. A set is recursively enumerable if there is a recursive function that enumerates it.
Also, say T is a recursively axiomatized formal theory if there is a recursive relation
PRFT.m; n/which holds just in case m is the super Gödel number of a proof in T of the
formula with Gödel number n. We have seen that Q is recursively axiomatized; but
so is PA and any reasonable theory whose axioms and rules are recursively described.

T12.17. If T is a recursively axiomatized formal theory then the set of theorems of
T is recursively enumerable.

Consider pairs hp; tiwhere p numbers a proof of the theorem numbered t, each
such pair itself associated with a number, 2p � 3t. Then there is a recursive
function from the integers to these codes as follows.

code.0/ D �z.9p < z/.9t < z/Œz D 2p � 3t ^ PRFT.p; t/�

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 608

First Results of Chapter 12

T12.1 For an interpretation with the required variable-free terms: (a) If R is a relation
symbol and R is a relation, and IŒR� D R.x1 : : : xn/, then R.x1 : : : xn/ is expressed
by Rx1 : : : xn. And (b) if h is a function symbol and h is a function and IŒh� D
h.x1 : : : xn/ then h.x1 : : : xn/ is expressed by hx1 : : : xn D v.

T12.2 Suppose total function f.x1 : : : xn/ is expressed by formula F .x1 : : : xn; y/; then
if hhm1 : : :mni; ai 62 f, IŒ�F .m1 : : :mn; a/� D T.

T12.3 On the standard interpretation N of LNT, each recursive function f.Ex/ is expressed
by some formula F .Ex;v/. Corollary: On the standard interpretation N of LNT,
each recursive relation R.Ex/ is expressed by some formula R.Ex/.

T12.4 If T includes Q and total function f.x1 : : : xn/ is captured by formula F .x1 : : :

xn; y/ so that conditions (f.i) and (f.ii) hold, then if hhm1 : : :mni; ai 62 f then T `
�F .m1 : : :mn; a/.

T12.5 On the standard interpretation N for LNT, (i) NdŒs � t� D S iff NdŒs� � NdŒt�, and
(ii) NdŒs < t� D S iff NdŒs� < NdŒt�.

T12.6 On the standard interpretation N for LNT, (i) NdŒ.8x � t /P � D S iff for every
m � NdŒt�, Nd.xjm/ŒP � D S and (ii), NdŒ.8x < t/P � D S iff for every m < NdŒt�,
Nd.xjm/ŒP � D S.

T12.7 On the standard interpretation N for LNT, (i) NdŒ.9x � t /P � D S iff for some
m � NdŒt�, Nd.xjm/ŒP � D S and (ii), NdŒ.9x < t/P � D S iff for some m < NdŒt�,
Nd.xjm/ŒP � D S.

T12.8 For any �0 sentence P , if NŒP � D T, then Q
ǸD

P , and if NŒP � ¤ T, then
Q

ǸD
�P .

T12.9 For any †1 sentence P if NŒP � D T, then Q
ǸD

P .

T12.10 The original formula by which any recursive function is expressed is †1.

T12.11 On the standard interpretation N for LNT, any recursive formula is captured by the
original formula by which it is expressed in Qs.

T12.12 Suppose f.Ex; y/ results by recursion from functions g.Ex/ and h.Ex; y; u/ where
g.Ex/ is captured by some G .Ex; z/ and h.Ex; y; u/ by H .Ex; y; u; z/. Then for
the original expression F .Ex; y; z/ of f.Ex; y/, if hhm1 : : :mb; ni; ai 2 f, Qs `

8wŒF .m1 : : :mb; n; w/! w D a�.

T12.13 If a total function f.x1 : : : xn/ is expressed by a �0 formula F .x1 : : : xn; y/, then
there is a �0 formula F 0 that captures f in Q.

T12.14 For F 0.Ex; y/ Ddef F .Ex; y/ ^ .8z � y/ŒF .Ex; z/ ! z D y�, and for any n,
Q ` 8Ex8yŒ.F 0.Ex; n/ ^ F 0.Ex; y//! y D n�.

T12.15 If F .Ex; y/ expresses a total f.Ex/, then F 0.Ex; y/ D F .Ex; y/ ^ .8z <

y/ŒF .Ex; z/! z D y� expresses f.Ex/.

T12.16 Any recursive function is captured by a †1 formula in Q. Corollary: Any recur-
sive relation is captured by a †1 formula in Q.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 609

code.Sn/ D �z.9p < z/.9t < z/Œz > code.n/ ^ z D 2p � 3t ^ PRFT.p; t/�

So 0 is associated with the least integer that codes a proof of a sentence, 1
with the next, and so forth. Then,

enum.n/ D exp.code.n/; 1/

returns the Gödel number of theorem n in this ordering.

Recall that 1 is 3; so exp.code.n/; 1/ returns the number of the proved formula.
A given theorem might appear more than once in the enumeration, corresponding to
codes with different proofs of it, but this is no problem, as each theorem appears in
some position(s) of the list. Observe that we have, for the first time, made use of
regular minimization — so that this function is recursive but not primitive recursive.
Supposing that T has an infinite number of theorems, there is always some z at which
the characteristic function upon which the minimization operates returns zero — so
that the function is well-defined. So the theorems of a recursively axiomatized formal
theory T are recursively enumerable.

Suppose we add that T is consistent and negation complete. Then there is a
recursive relation THRMT.p/ true just of numbers for theorems of T : Intuitively, we
can enumerate the theorems; then if T is consistent and negation complete, for any
sentence P , exactly one of P or �P must show up in the enumeration. So we can
search through the list until we find either P or �P — and if the one we find is P ,
then P is a theorem. In particular, we find P or �P at the position, �nŒenum.n/ D
pPq _ enum.n/ D p�P q�. Recall that if p is the number of a formula P , neg.p/ is
the number of �P . Then,

T12.18. For any recursively axiomatized, consistent, negation complete formal the-
ory T there is a recursive relation THRMT.p/ true just in case p numbers a
theorem of T . Set,

pos.p/ D �n.Œ�SENT.p/ ^ n D 0� _ ŒSENT.p/ ^ .enum.n/ D p _ enum.n/ D neg.p//�/

THRMT.p/ Ddef enum.pos.p// D p

First, pos.p/ takes one of three values: if p does not number a sentence it is just 0; if
p appears in the enumeration of theorems it is the position of p; and if neg.p/ appears
in the enumeration of theorems, it is the position of neg.p/. Then THRMT.p/ is true

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 610

just in case pos takes the second option — just in case p numbers a sentence and
p rather than neg.p/ appears in the enumeration of theorems. Observe that pos.p/
returns 0 both when p does not number a sentence, and when p is the number of
the first theorem in the enumeration. But when pos.p/ D 0, enum.pos.p// always
numbers the first theorem of the enumeration — so that if p is not the number of a
sentence THRMT.p/ is false, and when p is the number of the first theorem it is true
(as it should be). Again, we appeal to regular minimization. It is only because T
is negation complete that the function to which the minimization operator applies is
regular. So long as p numbers a sentence, the characteristic function for the second
square brackets is sure to go to zero for one disjunct or the other, and when p does
not number a sentence, the function for the first square brackets goes to zero. So the
function is well-defined.

Now consider a formula P .x/ with free variable x. The diagonalization of P is
the formula 9x.x D pP q ^P .x//. So the diagonalization of P is true just when P

applies to its own Gödel number. To understand this nomenclature, consider a grid
with formulas listed down the left in order of their Gödel numbers and the integer
Gödel numbers across the top.

a b c : : :

Pa.x/ P a.a/ Pa.b/ Pa.c/
Pb.x/ Pb.a/ P b.b/ Pb.c/
Pc.x/ Pc.a/ Pc.b/ P c.c/
:::

So, going down the main diagonal, formulas are of the sort Pn.n/ where the formula
numbered n is applied to its Gödel number n.

Let num.n/ be the Gödel number of the standard numeral for n. So,

num.0/ D p;q
num.Sy/ D pSq ? num.y/

So num is (primitive) recursive. Now diag.n/ is the Gödel number of the diagonal-
ization of the formula with Gödel number n.

diag.n/ Ddef p9x.x Dq ? num.n/ ? p^q ? n ? p/q

It should be clear enough how to unabbreviate p9q and p^q. Since diag.n/ is recur-
sive, for any theory T extending Q there is a formula Diag.x; y/ that captures it. So
if diag.m/ D n, then T ` Diag.m; n/ and T ` 8zŒDiag.m; z/! z D n� .

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 611

T12.19. Let T be any theory that extends Q. Then for any formula F .y/ containing
just the variable y free, there is a sentence H such that T ` H $ F .pHq/.
The Diagonal Lemma.

Suppose T extends Q; since diag.n/ is recursive, there is a formula Diag.x; y/
that captures diag. Let A.x/ Ddef 9yŒF .y/ ^ Diag.x; y/� and a D pAq, the
Gödel number of A. Intuitively, A says F applies to the diagonalization of
x. Then set H Ddef 9x.x D a ^ 9yŒF .y/ ^ Diag.x; y/�/ and h D pHq,
the Gödel number of H . H is the diagonalization of A; so diag.a/ D h.
Intuitively, then H says that F applies to the diagonalization of A, which is
just to say that according to H , F .pHq/. Reason as follows.

1. H $ 9x.x D a ^ 9yŒF .y/ ^ Diag.x; y/�/ from def H

2. Diag.a; h/ from capture
3. 8z.Diag.a; z/! z D h/ from capture

4. H A (g$I)

5. 9x.x D a ^ 9yŒF .y/ ^ Diag.x; y/�/ 1,4$E
6. j D a ^ 9yŒF .y/ ^ Diag.j; y/� A (g 59E)

7. j D a 6 ^E
8. 9yŒF .y/ ^ Diag.j; y/� 6 ^E
9. F .k/ ^ Diag.j; k/ A (g 89E)

10. F .k/ 9 ^E
11. Diag.j; k/ 9 ^E
12. Diag.a; k/ 11,7DE
13. Diag.a; k/! k D h 3 8E
14. k D h 13,12!E
15. F .h/ 10,14DE

16. F .h/ 8,9-15 9E

17. F .h/ 5,6-16 9E

18. F .h/ A g$I

19. F .h/ ^ Diag.a; h/ 18,2 ^I
20. 9yŒF .y/ ^ Diag.a; y/� 19 9I
21. a D a DI
22. a D a ^ 9yŒF .y/ ^ Diag.a; y/� 21,20 ^I
23. 9x.x D a ^ 9yŒF .y/ ^ Diag.x; y/�/ 22 9I
24. H 1,23$E

25. H $ F .h/ 4-17,18-24$I
26. H $ F .pHq/ 25 abv

So T ` H $ F .pHq/.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 612

If n is such that f.n/ D n, then n is said to be a fixed point for f. And by a (possibly
strained) analogy, H is said to be a “fixed point” for F .y/.

Now we are very close to the incompleteness of arithmetic. As a final prelimi-
nary,

T12.20. For no consistent theory T that extends Q is there a recursive relation THRMT.n/
that is true just in case n is a Gödel number of a theorem of T .

Consider a consistent theory extending Q; and suppose there is a recursive
relation THRMT.n/ true just in case n numbers a theorem of T . Since T extends
Q and THRMT is recursive, with T12.16 there is some formula Thrmt.y/ that
captures THRMT, and so a formula �Thrmt.y/. And again since T extends
Q, by the diagonal lemma T12.19, there is a formula H with Gödel number
pHq D h such that,

T ` H $ �Thrmt.pHq/

Suppose T 6` H ; then H is not a theorem of T so that h 62 THRMT; so by
capture, T ` �Thrmt.pHq/; so by$E, T ` H . This is impossible; reject
the assumption: T ` H . But then H is a theorem of T ; so h 2 THRMT; so
by capture, T ` Thrmt.pHq/; so by NB, T ` �H , and T is inconsistent;
but by hypothesis, T is consistent. Reject the original assumption: there is no
recursive relation THRMT.

Given a recursive THRMT there is �Thrmt; but we show there is no such THRMT; so we
have not yet found a sentence G such that PA ` G $ �Thrmt.pGq/. That waits
for the next chapter. From T12.18 any recursively axiomatized, consistent, negation
complete formal theory has a recursive relation THRMT.n/ true just in case n numbers
a theorem. But from T12.20 for no consistent theory extending Q is there such a
relation. This already suggests results to follow.

E12.31. Let T be any theory extending Q and SBTHT.n/ a recursive function such that
if SBTHT.n/ then n numbers a theorem of T (one such function is sure to be
THRMADS.n/ for the theorems of sentential logic). Use the diagonal lemma to
find a sentence H such that T ` H but pHq 62 SBTHT. Demonstrate your
results.

*E12.32. Let T be any theory that extends Q. For any formulas F1.y/ and F2.y/,
generalize the diagonal lemma to find sentences H1 and H2 such that,

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 613

T ` H1 $ F1.pH2q/

T ` H2 $ F2.pH1q/

Demonstrate your result. Hint: You will want to generalize the notion of
diagonalization so that the alternation of formulas F1.z/, F2.z/, with a for-
mula P is 9w9x9y.w D pP q^ x D pF2q^ y D pF1q^ 9z.F1.z/^P //.
Then you can find a recursive function alt.p; f1; f2/ whose output is the num-
ber of the alternation of formulas numbered p, f1 and f2, where this function
is captured by some formula Alt.w; x; y; z/ that itself has Gödel number a.
Then alt.a; f 1; f 2/ and alt.a; f 2; f 1/ number the formulas you need for H1

and H2.

E12.33. Use your version of the diagonal lemma from E12.32 to provide an alternate
demonstration of T12.20. Hint: You will be able to set up sentences such that
the first says the second is not a theorem, while the second says the first is a
theorem.

12.5.2 First Applications

Here are three quick results from our theorems. Do not let the simplicity of their proof
(if the proof can seem simple after all we have done) distract from the significance
of their content!

The Incompleteness of Arithmetic.

We are finally ready for the incompleteness of arithmetic.

T12.21. No consistent, recursively axiomatizable theory extending Q is negation
complete.

Consider a theory T that is a consistent, recursively axiomatizable extension
of Q. Then since T consistent and extends Q, by T12.20, there is no recursive
relation THRMT.n/ true iff n is the Gödel number of a theorem. Suppose T is
negation complete; then since T is also consistent and recursively axioma-
tized, by T12.18 there is a recursive relation THRMT.n/ true iff n is the Gödel
number of a theorem. This is impossible, reject the assumption: T is not
negation complete.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 614

It immediately follows that Q and PA are not negation complete. But similarly for
any consistent recursively axiomatizable theory that extends Q. We already knew that
there were formulas P such that Q 6` P and Q 6` �P . But we did not already have
this result for PA; and we certainly did not have the result generally for recursively
axiomatizable theories extending Q.

There are other ways to obtain this result. We explore Gödel’s own strategy in
the next chapter. And we shall see an approach from computability in chapter 14.
However, this first argument is sufficient to establish the point.

The Decision Problem

It is a short step from the result that if Q is consistent, then no recursive relation
identifies the theorems of Q, to the result that if Q is consistent, then no recursive
relation identifies the theorems of predicate logic.

T12.22. If Q is consistent, then no recursive relation THRMPL.n/ is true iff n numbers
a theorem of predicate logic.

Suppose otherwise, that Q is consistent and some recursive relation THRMPL.n/
is true iff n numbers a theorem of predicate logic. Let Q be the conjunction
of the axioms of Q; then P is a theorem of Q iff ` Q ! P . Let q D pQq;
then,

THRMQ.n/ Ddef THRMPL.cnd.q; n//

defines a recursive function true iff n numbers a theorem of Q. But, given
the consistency of Q, by T12.20, there is no function THRMQ.n/. Reject the
assumption, if Q is consistent, then there is no recursive relation THRMPL.n/
true iff n numbers a theorem of predicate logic.

And, of course, given that Q is consistent, it follows that no recursive relation num-
bers the theorems of predicate logic. From T12.20 no recursive relation numbers the
theorems of Q. Now we see that this result extends to the theorems of predicate logic.
At at this stage, these results may seem to be a sort of curiosity about what recursive
functions do. They gain significance when, as we have already hinted can be done,
we identify the recursive functions with the computable functions in chapter 14.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 615

Tarski’s Theorems

A couple of related theorems fall under this heading. Say TRUE.n/ is true iff n numbers
a true sentence of some language L. We do not assume that TRUE.n/ is recursive —
only that, by definition, it applies to numbers of true sentences. Suppose True.x/
expresses TRUE.n/. Then by expression, IŒTrue.pP q/� D T iff pPq 2 TRUE; and this
iff IŒP � D T. So, with some manipulation,

IŒTrue.pP q/$ P � D T

Let us say T is a truth theory for language L, iff for any sentence of L, T proves
this result.

T ` True.pP q/$ P

Nothing prevents theories of this sort. However, a first theorem is to the effect that
theories in our range cannot be theories of truth for their own language L.

T12.23. No recursively axiomatized consistent theory extending Q is a theory of
truth for its own language L.

Suppose otherwise, that a recursively axiomatized consistent T extending Q
is a theory of truth for its own L. Since T extends Q, by the diagonal lemma,
there is a sentence F (a false or liar sentence) such that

T ` F $ �True.pF q/

But since T is a truth theory, T ` True.pF q/ $ F ; so T ` True.pF q/ $
�True.pF q/; so T is inconsistent. Reject the assumption: T is not a truth
theory for its language L.

This theorem explains our standard jump to the metalanguage when we give con-
ditions like ST and SF. Nothing prevents stating truth conditions — trouble results
when a theory purports to give conditions for all the sentences in its own language.

A second theorem takes on the slightly stronger (but still plausible) assumption
that Q is a sound theory, so that all of its theorems are true. Under this condition,
there is trouble even expressing a truth predicate for language L in that language L.

T12.24. If Q is sound, and L includes LNT then there is no True to express TRUE in
L.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 616

Suppose otherwise, that Q is sound and some formula True.x/ expresses
TRUE.n/ in L; since Q is a theory that extends Q, by the diagonal lemma,
there is a sentence F such that Q ` F $ �True.pF q/; since the theorems
of Q are true, NŒF $ �True.pF q/� D T; so with a bit of manipulation,

NŒF � D T iff NŒ�True.pF q/� D T; iff NŒTrue.pF q/� ¤ T

(i) Suppose NŒTrue.pF q/� ¤ T; then by expression, pF q 62 TRUE, so that
NŒF � ¤ T; so by the above equivalence, NŒTrue.pF q/� D T; reject the as-
sumption. (ii) So NŒTrue.pF q/� D T; but then by the equivalence, NŒF � ¤ T;
so pF q 62 TRUE; so by expression, NŒ�True.pF q/� D T; so NŒTrue.pF q/� ¤
T; this is impossible.

Reject the original assumption: no formula True.x/ expresses TRUE.n/.

Observe that some numerical properties are both expressed and captured — as the
recursive relations. And if a property can be captured by a recursively axiomatized
consistent theory extending Q, then it can be expressed.11 As we have seen, even
though THRMQ.n/ is a relation on the integers, it is not not a recursive relation. It can
however be expressed by the formula, 9xPrfq.x; n/. In the following (T14.10) we
show that that every function captured by a consistent recursively axiomatized theory
extending Q is recursive; it follows that THRMQ.n/ is expressed but not captured. And
now we have seen a relation TRUE.n/ not even expressed in LNT.

This is a decent start into the results of Part IV of the text. In the following, we
turn to deepening and extending them in different directions.

E12.34. Use the alternate version of the diagonal lemma from E12.32 to provide
alternate demonstrations of T12.23 and T12.24. Include the “bit of minipula-
tion” left out of the text for T12.24.

E12.35. For each of the following concepts, explain in an essay of about two pages,
so that (college freshman) Hannah could understand. In your essay, you
should (i) identify the objects to which the concept applies, (ii) give and ex-
plain the definition, and give and explicate examples (iii) where the concept
applies, and (iv) where it does not. Your essay should exhibit an understand-
ing of methods from the text.

11Since we use the same canonical formulas for expression and capture, it is perhaps obvious that
canonical capture in a sound theory implies expression. Further, from T14.10 if a function can be
captured by a consistent recursively axiomatized theory extending Q it is recursive; so by T12.3 it is
expressed on the standard interpretation N for LNT.

CHAPTER 12. RECURSIVE FUNCTIONS AND Q 617

Final Results of Chapter 12

T12.17 If T is a recursively axiomatized formal theory then the set of theorems of T is
recursively enumerable.

T12.18 For any recursively axiomatized, consistent, negation complete formal theory T
there is a recursive relation THRMT.n/ true just in case n numbers a theorem of T .

T12.19 Let T be any theory that extends Q. Then for any formula F .y/ containing just
the variable y free, there is a sentence H such that T ` H $ F .pHq/. The
Diagonal Lemma.

T12.20 For no consistent theory T that extends Q is there a recursive relation THRMT.n/
that is true just in case n is a Gödel number of a theorem of T .

T12.21 No consistent, recursively axiomatizable extension of Q is negation complete.
The incompleteness of arithmetic.

T12.22 If Q is consistent, then no recursive relation THRMPL.n/ is true iff n numbers a
theorem of predicate logic

T12.23 No recursively axiomatized consistent theory extending Q is a theory of truth for
its own language L.

T12.24 If Q is sound, and L includes LNT then there is no True to express TRUE in L.

a. The recursive functions and the role of the beta function in their expression
and capture.

b. The essential elements from this chapter contributing to the proof of the in-
completeness of arithmetic.

c. The essential elements from this chapter contributing to the proof of that no
recursive relation identifies the theorems of predicate logic

d. The essential elements from this chapter contributing to the proof of Tarski’s
theorem.

Chapter 13

Gödel’s Theorems

We have seen a demonstration of the incompleteness of arithmetic. In this chapter,
we take another run at that result, this time by Gödel’s original strategy of producing
sentences that are true iff not provable. This enables us to extend and deepen the
incompleteness result, and puts us in a position to take up Gödel’s second incom-
pleteness theorem, according to which theories (of a certain sort) are not sufficient
for demonstrations of consistency.

13.1 Gödel’s First Theorem

Recall that the diagonalization of a formula P .x/ is 9x.x D pPq ^ P .x//. In
addition, there is a recursive function diag.n/ which numbers the diagonalization of
the formula with number n and, if T is recursively axiomatized, a recursive relation
PRFT.m; n/ true when m numbers a proof of the formula with number n. Our previous
argument for incompleteness required PRFT.m; n/ for T12.17, and a Diag.x; y/ to
capture diag.n/ for the diagonal lemma. Under the assumption that there is a THRMT

and so a formula �Thrmt, we applied the diagonal lemma to obtain an H such that
T ` H $ �Thrmt.pHq/; but this is impossible — so that there is no THRMT.
And from this we argued that there must be a sentence such that neither it nor its
negation is provable — without any suggestion what that sentence might be. This
time, by related methods, we construct a particular sentence such that neither it nor
its negation is provable.

618

CHAPTER 13. GÖDEL’S THEOREMS 619

13.1.1 Semantic Version

Consider some recursively axiomatized theory T whose language includes LNT. Since
PRFT.m; n/ and diag.n/ are recursive, they are expressed by some formulas Prft.x; y/
and Diag.x; y/. Let A.z/ Ddef �9x9y.Prft.x; y/ ^ Diag.z; y//, and a D pAq. So
A says nothing numbers a proof of the diagonalization of a formula with number z.
Then,

G Ddef 9z.z D a ^�9x9y.Prft.x; y/ ^ Diag.z; y///

So G is the diagonalization of A, and intuitively G “says” that nothing numbers a
proof of it. Let g D pGq. Observe that G is defined relative to Prft for T ; so each
T yields its own Gödel sentence (if it were not ugly, we might sensibly introduce
subscripts GT). Thus,

T13.1. For any recursively axiomatized theory T whose language includes LNT, G is
true iff it is unprovable in T (NŒG � D T iff T ° G).

Consider a recursively axiomatized theory T whose language includes LNT

and the formula G as described above. Skipping some steps, (i) Suppose
NŒG � D T; then for any d, NdŒG � D S; so with T10.2, NdŒ�9x9y.Prft.x; y/^
Diag.a; y//� D S; so there are no m; n such that NŒPrft.m; n/� D T and
NŒDiag.a; n/� D T; so by expression, there are no m; n such that hm; ni 2
PRFT and ha; ni 2 diag; but diag.a/ D g; so no m numbers a proof of G ,
which is to say T 6` G . (ii) Suppose NŒG � ¤ T; then there is some d such
that NdŒG � ¤ S and for any n 2 N , Nd.zjn/Œz D a ^ �9x9y.Prft.x; y/ ^
Diag.z; y//� ¤ S; so Nd.zja/Œz D a^�9x9y.Prft.x; y/^Diag.z; y//� ¤ S;
so by T10.2, NdŒ�9x9y.Prft.x; y/^Diag.a; y//� ¤ S; so NdŒ9x9y.Prft.x; y/
^ Diag.a; y//� D S; so there are m and n such that both Prft.m; n/ and
Diag.a; n/ are S on N with d; so NŒ�Prft.m; n/� ¤ T and NŒ�Diag.a; n/� ¤
T; and by expression hm; ni 2 PRFT and ha; ni 2 diag; but again, diag.a/ D g;
so hm; gi 2 PRFT; so T ` G ; so by transposition, if T 6` G , then NŒG � D T.

It is not a difficult exercise to fill in the details. Intuitively this result should seem
right. Suppose G “says” that it is unprovable: then if it is true it is unprovable; and if
it is unprovable it is true; so it is true iff it is unprovable.

Now suppose that T is a recursively axiomatized, and sound theory (so that its
theorems are true), whose language includes LNT. Then T is negation incomplete.

T13.2. If T is a recursively axiomatized sound theory whose language includes LNT,
then T is negation incomplete.

CHAPTER 13. GÖDEL’S THEOREMS 620

Suppose T is a recursively axiomatized theory whose language includes LNT;
then there is a sentence G to which the conditions for T13.1 apply. (i) Suppose
T ` G ; then, since T is sound, G is true; so by T13.1, T 6` G ; reject the
assumption, T 6` G . Suppose T ` �G ; then since T is sound, �G is true; so
G is not true; so by T13.1, T ` G ; so by soundness again, G is true; reject
the assumption: T 6` �G .

So G is a sentence such that if T is a recursively axiomatized sound theory whose
language includes LNT, neither G nor its negation is a theorem. And, from T13.1,
given that G is unprovable, if T is a recursively axiomatized theory whose language
includes LNT, then G is a true non-theorem. This version of the incompleteness result
depends on the ability to express G , together with the soundness of theory T .

13.1.2 Syntactic Version

Gödel’s first theorem is usually presented with the capture and consistency, rather
than the expression and soundness constraints. We turn now to a version of this first
sort which, again, builds a particular sentence such that neither it nor its negation is
provable.

Since PRFT.m; n/ and diag.n/ are recursive, in theories extending Q they are cap-
tured by canonical formulas Prft.x; y/ and Diag.x; y/. As before, let A.z/ Ddef

�9x9y.Prft.x; y/^Diag.z; y//, and a D pAq. So A says nothing numbers a proof
of the diagonalization of a formula with number z. Then,

G Ddef 9z.z D a ^�9x9y.Prft.x; y/ ^ Diag.z; y///

So G is the diagonalization of A; let g be the Gödel number of G . This time, we shall
be able to establish in T the relation between G and its proof. Reasoning as for the
diagonal lemma,

T13.3. Let T be any recursively axiomatized theory extending Q; then T ` G $

�9xPrft.x; pGq/.

Since T is recursively axiomatized, there is a recursive PRFT and since T ex-
tends Q there are Prft and Diag that capture PRFT and diag. From the definition
of G , T ` G $ 9z.z D a ^ �9x9yŒPrft.x; y/ ^ Diag.z; y/�/; from capture
T ` Diag.a; g/; and T ` 8z.Diag.a; z/ ! z D g/. From these it follows
that T ` G $ �9xPrft.x; g/; which is to say, T ` G $ �9xPrft.x; pGq/
(homework).

CHAPTER 13. GÖDEL’S THEOREMS 621

From the diagonal lemma, under appropriate conditions, given a formula F .y/, there
is some H such that T ` H $ F .pHq/. Under the assumption that there is THRMT,
we applied this to show there would be some H such that T ` H $ �Thrmt.pHq/.
This led to contradiction. In this case, however, we show that there really is a partic-
ular sentence G such that T ` G $ �9xPrft.x; pGq/.

Our idea is to show that if T is a consistent, recursively axiomatized theory ex-
tending Q, then T 6` G and T 6` �G . The first is easy enough.

T13.4. If T is a consistent, recursively axiomatized theory extending Q, then T 6` G .

Suppose T is a consistent recursively axiomatized theory extending Q. Sup-
pose T ` G ; then since T is recursively axiomatized, for some m, PRFT.m; g/;
and since T extends Q, by capture, T ` Prft.m; g/; so by 9I, T ` 9xPrft.x; g/,
which is to say, T ` 9xPrft.x; pGq/. But since T ` G , by T13.3, T `
�9xPrft.x; pGq/. So T is inconsistent; reject the assumption: T 6` G .

That is the first half of what we are after. But we can’t quite get that if T is a con-
sistent, recursively axiomatized theory extending Q, then T 6` �G . Rather, we need
a strengthened notion of consistency. Say a theory T is !-incomplete iff for some
P .x/, T can prove each P .m/ but T cannot go on to prove8xP .x/. Equivalently, T
is !-incomplete iff for every m, it can prove each T ` �P .m/ but T 6` �9xP .x/.
We have seen that Q is !-incomplete: we can prove, say n � m D m � n for ev-
ery m and n, but cannot go on to prove the corresponding universal generalization
8x8y.x � y D y � x/. Say T is !-inconsistent iff for some P .x/, T proves each
P .m/ but also proves �8xP .x/. Equivalently, T is !-inconsistent iff for every m,
it can prove each T ` �P .m/ and T ` 9xP .x/. !-incompleteness is a theoretical
weakness — there are some things true but not provable. But !-inconsistency is a
theoretical disaster: It is not possible for the theorems of an !-inconsistent theory all
to be true on any interpretation (assuming some m for each m 2 U). !-inconsistency
is not itself inconsistency — for we do not have any sentence such that T ` P and
T ` �P . But inconsistent theories are automatically !-inconsistent — for from
contradiction all consequences follow (including each P .m/ and also �8xP .x/);
transposing, !-consistent theories are consistent. Now we show,

T13.5. If T is an !-consistent, recursively axiomatized theory extending Q, then
T 6` �G .

Suppose T is an !-consistent recursively axiomatized theory extending Q.
Suppose T ` �G ; since T is !-consistent, it is consistent, so T 6` G ; so since
T is recursively axiomatized, for all m, hm; gi 62 PRFT; and since T extends Q,

CHAPTER 13. GÖDEL’S THEOREMS 622

by capture, T ` �Prft.m; g/; and since T is !-consistent, T 6` 9xPrft.x; g/;
which is to say, T 6` 9xPrft.x; pGq/. But since T ` �G , by T13.3 with NB,
T ` 9xPrft.x; pGq/. This is impossible; reject the assumption: T 6` �G .

So if a recursively axiomatized theory extending Q has the relevant consistency prop-
erties, then it is negation incomplete. Further, insofar as T canonically captures the
recursive functions, it expresses the recursive functions; so by T13.1, G is true iff
T ° G . So if T is a consistent recursively axiomatized theory extending Q, then G

is both unprovable and true.
This is roughly the form in which Gödel proved the incompleteness of arithmetic

in 1931: If T is a consistent, recursively axiomatized theory extending Q, then T 6`
G ; and if T is an !-consistent, recursively axiomatized theory extending Q, then
T 6` �G . Since we believe that standard theories including Q and PA are consistent
and !-consistent, this sufficient for the incompleteness of arithmetic.

E13.1. Fill in the details for the argument of T13.1.

*E13.2. Complete the demonstration of T13.3 by providing a derivation to show
T ` G $ �9xPrft.x; pGq/. The demonstration for the diagonal lemma is a
model, though steps will be adapted to the particular form of these sentences.

13.1.3 Rosser’s Sentence

But it is possible to drop the special assumption of !-consistency by means of a
sentence somewhat different from G .1 Recall that neg.n/ is the Gödel number of the
negation of the sentence with number n. So PRFT.m; n/ Ddef PRFT.m; neg.n// obtains
when m numbers a proof of the negation of the sentence numbered n. Since it is
recursive, it is captured by some Prft.x; y/. Set,

RPrft.x; y/ Ddef Prft.x; y/ ^ .8w � x/�Prft.w; y/

So RPrft.x; y/ just in case x numbers a proof of the sentence numbered y and no
number less than or equal to x is a proof of the negation of that sentence. Now,
working as before, set A0.z/ Ddef �9x9y.RPrft.x; y/^Diag.z; y//, and a D pA0q.
So A0 says nothing numbers an R-proof of the diagonalization of a formula with
number z. Then,

1Barkley Rosser, “Extensions of Some Theorems of Gödel and Church.”

CHAPTER 13. GÖDEL’S THEOREMS 623

R Ddef 9z.z D a ^�9x9y.RPrft.x; y/ ^ Diag.z; y///

So R is the diagonalization of A0; let r be the Gödel number of R. And R has
the key syntactic property just like G . Again, reasoning as we did for the diagonal
lemma,

T13.6. Let T be any recursively axiomatized theory extending Q; then T ` R $

�9xRPrft.x; pRq/.

You can show this just as for T13.3.

Now the first half of the incompleteness result is straightforward.

T13.7. If T is a consistent, recursively axiomatized theory extending Q, then T 6` R.

Suppose T is a consistent recursively axiomatized theory extending Q. Sup-
pose T ` R; then since T is recursively axiomatized, for some m, PRFT.m; r/;
and since T extends Q, by capture, T ` Prft.m; r/. But by consistency,
T 6` �R; so for all n, and in particular all n � m, hn; ri 62 PRFT; so by
capture, T ` �Prft.n; r/; so by T8.21, T ` .8w � m/�Prft.w; r/; so
T ` Prft.m; r/ ^ .8w � m/�Prft.w; r/; so T ` RPrft.m; r/; so T `
9xRPrft.x; r/, which is to say, T ` 9xRPrft.x; pRq/. But since T ` R,
by T13.6, T ` �9xRPrft.x; pRq/; so T is inconsistent. This is impossible;
reject the assumption: T 6` R.

So, with consistency, it is not much harder to prove T ` 9xRPrft.x; pRq/ from the
assumption that T ` R than to prove T ` 9xPrft.x; pGq/ from the assumption that
T ` G .

Reasoning for the other direction is somewhat more involved, but still straight-
forward.

T13.8. If T is a consistent, recursively axiomatized theory extending Q, then T 6`
�R.

Suppose T is a consistent recursively axiomatized theory extending Q. Sup-
pose T ` �R. Then since T is recursively axiomatized, for some m, hm; ri 2
PRFT; and since T extends Q, by capture, T ` Prft.m; r/. By consistency,
T 6` R; so for any n, and in particular, any n � m, hn; ri 62 PRFT; so by
capture, T ` �Prft.n; r/; and by T8.21, T ` .8w � m/�Prft.w; r/. Now
reason as follows.

CHAPTER 13. GÖDEL’S THEOREMS 624

1. �R from T

2. Prft.m; r/ capture
3. .8w � m/�Prft.w; r/ capture and T8.21
4. R$ �9xRPrft.x; r/ from T13.6

5. 9xRPrft.x; r/ 1,4 NB
6. 9xŒPrft.x; r/ ^ .8w � x/�Prft.w; r/� 5 abv
7. Prft.j; r/ ^ .8w � j /�Prft.w; r/� A (g, 69E)

8. j � m _m � j T8.19
9. j � m A (g 8_E)

10. Prft.j; r/ 7 ^ E
11. �Prft.j; r/ 3,9 (8E)
12. ? 10,11 ?I

13. m � j A (g, 8_E)

14. .8w � j /�Prft.w; r/� 7 ^E
15. �Prft.m; r/ 14,13 (8E)
16. ? 2,15 ?I

17. ? 8,9-12,13-16 _E

18. ? 6,7-17 9E

So T `?, that is T ` Z ^�Z and T is inconsistent. Reject the assumption,
T 6` �R.

In the previous case, with G , we had no way to convert 9xPrft.x; g/ to a contradic-
tion with �Prft.0; g/, �Prft.1; g/. . . ; that is why we needed !-consistency. We can,
however, move from �Prft.0; r/, �Prft.1; r/ . . .�Prft.m; r/ to a bounded quantifica-
tion .8w � m/�Prft.w; r/ or equivalently �.9w � m/Prft.w; r/. Then the special
nature of R aids the argument: From RPrft.j; r/ suppose j � m; then Prft.j; r/
and we contradict the bounded quantification in the usual way. Suppose j � m;
then RPrft is designed so that nothing less than j (including m) numbers a proof of
neg.r/; but we have Prft.m; r/ from the assumption. So T 6` R and T 6` �R

Let us close this section with some reflections on what we have shown. First,

Q is sound� Q is !-consistent� Q is consistent

So our results are progressively stronger, as the assumptions have become corre-
spondingly weaker. But,

capture� expression

So the second requirement is increased as we move from expression to capture.

CHAPTER 13. GÖDEL’S THEOREMS 625

Second, we have not shown that there are truths of LNT not provable in any re-
cursively axiomatizable, consistent theory extending Q. Rather, what we have shown
is that for any recursively axiomatizable consistent theory extending Q, there are
some truths of LNT not provable in that theory. For a given recursively axiomatiz-
able theory, there will be a given relation PRFT.m; n/ and Prft.x; y/ depending on the
particular axioms of that theory — and so unique sentences G and R constructed as
above. In particular, given that a theory cannot prove, say, R, we might simply add
R to its axioms; then of course there is a derivation of R from the axioms of the
revised theory! But then the new theory will generate a new relation PRFT.m; n/ and
a new Prft.x; y/ and so a new unprovable sentence R0. So any theory extending Q
is negation incomplete.

But it is worth a word about what are theories extending Q. Any such theory
should build in equivalents of the LNT vocabulary ;, S ,C, and �— and should have
a predicate Nat.x/ to identify a class of objects to count as the numbers. Then if the
theory makes the axioms of Q true on these objects, it is incomplete. Straightforward
extensions of Q are ones like PA which simply add to its axioms. But ordinary ZF set
theory also falls into this category — for it is possible to define a class of sets, say,
˛, f˛g, f˛; f˛gg, f˛; f˛g; f˛; f˛ggg. . . where any n is the set of all the numbers
prior to it, along with operations on sets which obey the axioms of Q.2 It follows
that ZF is negation incomplete. In contrast, the domain for the standard theory of
real numbers has all the entities required to do arithmetic. However that theory does
not have a predicate Nat.x/ to pick out the natural numbers, and cannot recapitulate
the theory of natural numbers on any subclass of its domain. So our incompleteness
theorem does not get a grip, and in fact the theory of real numbers is demonstrably
complete. Observe, though, that it is a weakness in this theory of real numbers, its
inability to specify a certain class that makes room for its completeness.3

E13.3. Demonstrate T13.6.

2For discussion, see any introduction to set theory, for example, Enderton, Elements of Set Theory,
chapter 4.

3There are real numbers 0 and 1; so it is natural to identify the integers with 0, 0C 1, 0C 1C 1
and so forth. The difficulty is to define a property within the theory of real numbers that picks out just
the members of this series, as we have been able to define infinite recursive properties in LNT. The
completeness of the theory of real numbers was originally proved by Tarski, and is discussed in books
on model theory, for example, Hodges A Shorter Model Theory, theorems 2.7.2 and 7.4.4.

CHAPTER 13. GÖDEL’S THEOREMS 626

13.2 Gödel’s Second Theorem: Overview

We turn now to Gödel’s second incompleteness theorem on the unprovability of con-
sistency. The discussion is divided into four main parts. First, in this section, Gödel’s
second theorem is proved subject to three derivability conditions. Then we turn to the
derivability conditions themselves. The first is easy. But the second and third require
extended discussion. There is some background (section 13.3). Then discussion
of the second condition (section 13.4), and the third condition (section 13.5). This
completes the proof. We conclude with some reflections and consequences from
our results (section 13.6). There are alternative approaches to the second theorem
(for references see section 3 of Raatikainen, “Gödel’s Incompleteness Theorems”).
Our’s is a straight-ahead development of the standard approach based on the deriv-
ability conditions. This is, surely, a natural place to start. Textbooks ordinarily end
their discussion of the second theorem with the demonstration from the derivability
conditions, offering just some general perspective on how the conditions are to be
obtained.4 However, even if you decide to bypass the details, this general perspec-
tive will be enhanced if you have some object at which to “wave” as you pass them
by.

For this discussion we switch to theories including PA. The result is that that
PA and its its extensions cannot prove their own consistency. The reason for this
switch will become vivid in demonstration of the derivability conditions — as many
arguments that would have been by induction are forced into the theory and so are
by IN. Coinciding with the move to PA we revert to considering original rather than
canonical formulas to capture recursive functions: this avoids some complication,
and since PA has all the resources of Qs, all our incompleteness results are preserved.5

Main argument. We have seen that for recursively axiomatized theories there is
a recursive relation PRFT.m; n/. Since it is recursive, in theories extending Q, this
relation is captured by a corresponding Prft.x; y/. Let

4So, for example, “the details of this are long and tedious, and will not be discussed here” (George
and Velleman, Philosophies of Mathematics, 201; and “the proofs of the [second and third derivability
conditions] are omitted from virtually all books on the level of this one, not because they involve any
terribly difficult new ideas, but because the innumerable routine verifications they — and especially the
last — require would take up too much time and patience” (Boolos, Burgess and Jeffrey, Computability
and Logic, 234.) The only other (relatively) complete development in English that I have been able to
track down is Tourlakis, Lectures in Logic and Set Theory: I.

5But the argument goes through for certain theories weaker than PA. Of relevance to Hilbert, it
goes through for primitive recursive arithmetic (PRA) — whose theorems are like those of PA with
application of the induction schema restricted to only …1 formulas. Though he is not entirely clear,
arguably, PRA is Hilbert’s real theory R (see p. 547). We set aside such details.

CHAPTER 13. GÖDEL’S THEOREMS 627

Prvt.y/ Ddef 9xPrft.x; y/

So Prvt.y/ just when something numbers a proof of the formula numbered y —
when the formula numbered by y is provable. Insofar as the quantifier is unbounded,
there is no suggestion that there is a corresponding recursive relation — in fact, we
have seen in T12.20 that no recursive relation is true just of numbers for the theorems
of Q. Let,

Cont Ddef �Prvt.p; D S;q/

So Cont is true just in case there is no proof of 0 D 1. There are different ways to
express consistency, but for theories extending Q this does as well as any other. Let
T extend Q. Suppose T is inconsistent; then it proves anything; so T ` 0 D 1.
Suppose T ` 0 D 1; since T extends Q, T ` 0 ¤ 1; so T proves a contradiction and
is inconsistent. So T is inconsistent iff T ` 0 D 1; and, transposing, T is consistent
iff T 6` 0 D 1 (for further discussion see 13.6.1).

The second theorem is this simple result: Under certain conditions, if T is con-
sistent, then T 6` Cont. If it is consistent, then T cannot prove its own consistency.
Suppose the first theorem applies to T , and suppose we could show,

.��/ T ` Cont! �Prvt.pGq/

Then, given what has gone before, we could make the following very simple argu-
ment. Suppose T is a recursively axiomatized theory extending Q.

By T13.3, T ` G $ �9xPrft.x; pGq/, which is to say, T ` G $ �Prvt.pGq/;
from this and (��), T ` Cont ! G ; so if T ` Cont then T ` G ; but from
the first theorem (T13.4), if T is consistent, then T 6` G ; so if T is consistent,
T 6` Cont.

So the argument reduces to showing (��). Observe that, in reasoning for T13.4 we
have already shown,

T is consistent� T 6` G

So the argument reduces to showing that T proves what we have already seen is so.
There is nothing mysterious about this: Cont, Prvt and the like are formulas, and so
just the sort of thing to which our proof apparatus applies.

Let us abbreviate Prvt.pPq/ by �P . Observe that this obscures the corner
quotes. Still, we shall find it useful. So we need T ` Cont ! ��G , which is

CHAPTER 13. GÖDEL’S THEOREMS 628

just to say, T ` ��.0 D 1/! ��G . Suppose T satisfies the following derivability
conditions.

D1. If T ` P then T ` �P

D2. T ` �.P ! Q/! .�P ! �Q/

D3. T ` �P ! ��P

Then we shall be able to show T ` Cont! ��G .
The utility of � in this context is that D1 - D3 are exactly the conditions that

define a standard modal logic, K4 — and it is not surprising that provability should
correspond to a kind of necessity.6 There is an elegant natural derivation system for
this modal logic. For this you might check out Roy, Natural Derivations for Priest §2
(but in the nomenclature there borrowed from Priest, the system is NK�). However
rather than explain and introduce a new derivation system, we obtain a version of K4
simply by adding A1 - A3 and MP from ADs to D1 - D3. So K4 has D1 as a new
rule, and D2 and D3 as new axioms. Since A1 - A3 and MP remain, we have all the
theorems from before. Thus, as a simple example,

(A)

1. �P ! .P ! Q/ T3.9
2. �Œ�P ! .P ! Q/� 1 D1
3. �Œ�P ! .P ! Q/�! Œ��P ! �.P ! Q/� D2
4. ��P ! �.P ! Q/ 3,2 MP

So in this system ` ��P ! �.P ! Q/.
Now, given that T ` G ! �9xPrft.x; pGq/ from T13.3 we shall be able to

show that T ` Cont! ��G .

T13.9. Let T be a recursively axiomatized theory extending Q. Then supposing T
satisfies the derivability conditions and so the K4 logic of provability, T `
Cont! �Prvt.pGq/.

6While K4 correctly represents these principles, it is not a complete logic of provability. We get
a complete system if we add to K4 a rule according to which from �P ! P we may infer P . For
discussion see subsection 13.6.2 and Boolos, The Logic of Provability.

CHAPTER 13. GÖDEL’S THEOREMS 629

1. G ! ��G from T13.3
2. �.G ! ��G / 1 D1
3. �.G ! ��G /! .�G ! ���G / D2
4. �G ! ���G 3,2 MP
5. ���G ! �.�G ! 0 D 1/ (A)
6. �G ! �.�G ! 0 D 1/ 4,5 T3.2
7. �.�G ! 0 D 1/! .��G ! �.0 D 1// D2
8. �G ! .��G ! �.0 D 1// 6,7 T3.2
9. Œ�G ! .��G ! �.0 D 1//�! Œ.�G ! ��G /! .�G ! �.0 D 1//� A2

10. .�G ! ��G /! .�G ! �.0 D 1// 9,8 MP
11. �G ! ��G D3
12. �G ! �.0 D 1/ 10,11 MP
13. Œ�G ! �.0 D 1/�! Œ��.0 D 1/! ��G � T3.13
14. ��.0 D 1/! ��G 13,12 MP

Which is to say, T ` Cont! �Prvt.pGq/.

As usual for an axiomatic derivation, the reasoning is not entirely transparent. How-
ever we are at the stage where, given the derivability conditions, T proves the result.
Given this, reason as before,

T13.10. Let T be a recursively axiomatized theory extending Q. Then supposing T
satisfies the derivability conditions, if T is consistent, T 6` Cont.

Suppose T is a recursively axiomatized theory extending Q that satisfies the
derivability conditions. Then by T13.9, T ` Cont ! �Prvt.pGq/; and by
T13.3, T ` G $ �Prvt.pGq/; so T ` Cont ! G ; so if T ` Cont then
T ` G ; but from the first incompleteness theorem (T13.4), if T is consistent,
then T 6` G ; so if T is consistent, T 6` Cont.

One might wonder about the significance of this theorem: If T were inconsistent,
it would prove Cont. So a failure to prove Cont is no reason to think that T is
inconsistent. And a proof of Cont might itself be an indication of inconsistency!
The interesting point here results from using one theory to prove the consistency of
another. Recall the main Hilbert strategy as outlined in the introduction to Part IV;
a key component is the demonstration by means of some real theory R that an ideal
theory I is consistent. But, supposing that PA cannot prove its own consistency, we
can be sure that no weaker theory can prove the consistecy of PA. And if PA cannot
prove even the consistency of PA, then PA and theories weaker than PA cannot be
used to prove the consistency of theories stronger than PA.7 So a leg of the Hilbert

7And the same goes for Hilbert’s PRA (see note 5).

CHAPTER 13. GÖDEL’S THEOREMS 630

strategy seems to be removed. Observe, however, that the theorem does not show
that the consistency of PA is unprovable: a theory stronger than PA at least in some
respects might still prove the consistency of PA.8 This may be a straightforward
theorem of the second theory. Of course, as a means of demonstrating consistency
such an argument may seem problematic insofar as one requires some reason for
thinking the second theory sound which does not already attach to the first, and so
already show that the first theory is consistent.

Another theorem is easy to show, and left as an exercise.

T13.11. Let T be a recursively axiomatized theory extending Q. Then supposing T
satisfies the derivability conditions and so the K4 logic of provability, T `
Cont$ �Prvt.pContq/.

Hints: (i) Show that T ` Cont ! ��Cont; you can do this starting with
Cont ! ��G from T13.9 and ��G ! G from T13.3. Then (ii) show T `

��Cont! Cont; for this, use T3.39 with T3.9 to show T ` 0 D 1! Cont;
then you should be able to obtain ��Cont ! ��.0 D 1/ which is to say
��Cont! Cont. Together these give the desired result.

From this theorem, supposing the derivability conditions, Cont is another P which,
like G , is such that T ` P $ �Prvt.pP q/; so Cont is another fixed point for
�Prvt.x/. It follows that Cont is another sentence such that both it and its negation
are unprovable. Interestingly, Cont uses the notion of provability, but is not con-
structed so as to say anything about its own provability — and so this instance of
incompleteness does not depend on self-reference for the unprovable sentence.

We have shown that the second theorem holds for a theory if it meets the deriv-
ability conditions. But this is not to show that the theorem holds for any theories! In
order to tie the result to something concrete, we turn now to showing that PA meets
the derivability conditions, and so that PA, and theories extending PA, satisfy the
theorem.

Demonstration of the first condition is simple.

T13.12. Suppose T is a recursively axiomatized theory extending Q. Then if T ` P ,
then T ` �P .

8G. Gentzen shows this very thing, “The Consistency of Elementary Number Theory,” and “New
Version of the Consistency Proof for Elementary Number Theory,” both in The Collected Papers of
Gehard Gentzen, ed. Szabo. See also Gentzen, “The Concept of Infinite in Mathematics” also in
Szabo, along with Pohlers, Proof Theory, chpater 1, and Takeuti, Proof Theory, §12.

CHAPTER 13. GÖDEL’S THEOREMS 631

Suppose T ` P ; then since T is recursively axiomatized, for some m,
PRFT.m; pP q/; and since T extends Q, there is a Prft that captures PRFT; so
T ` Prft.m; pPq/; so by 9I, T ` 9xPrft.x; pPq/; so T ` Prvt.pPq/; so
T ` �P .

The next conditions are considerably more difficult. We build gradually to the re-
quired results in PA.

E13.4. (i) Produce derivations to show both parts of T13.11. (ii) Use your result to
demonstrate that T is negation incomplete — that if T is recursively axiom-
atized theory extending Q that satisfies the derivability conditions, then if T
is consistent, T ° Cont, and if T is !-consistent, T ° �Cont.

13.3 The Derivability Conditions: Background

In this section we develop some results required for demonstration of derivability
conditions two and three. We proceed by introducing functions and relations into PA
by definition, and then proving some results about them.

13.3.1 Remarks on Definition

So far, we have taken a language, as Lq or LNT as basic, and introduced any additional
symbols, for example �, as means of abbreviation for expressions in the original
language. But in more complex contexts — especially involving function symbols,
it will be convenient to extend the language by the definition of new symbols. Thus
given a theory T in language L, we might introduce symbols and corresponding
axioms to obtain T 0 and L0 as follows,

Symbol Axiom Condition

9 9xP $ �8x�P

� x � y $ 9z.z C x D y/

˛ y D ˛$ 8x.x 62 y/ T ` 9Šy8x.x 62 y/

S y D Sx $ 8zŒz 2 y $.z 2 x _ z D x/� T ` 9Šy8zŒz 2 y $.z 2 x _ z D x/�

We are familiar with the first two cases. Strictly, the first lists an axiom schema,
representing different axioms for different instances of P . So far, we have thought of

CHAPTER 13. GÖDEL’S THEOREMS 632

Additional Theorems of PA
*T13.13. The following are theorems of PA:

(a) PA ` .r � s ^ s � t/! r � t

(b) PA ` .r < s ^ s < t/! r < t

(c) PA ` .r � s ^ s < t/! r < t

(d) PA ` ; � t

(e) PA ` ; < St

(f) PA ` t ¤ ; $; < t

(g) PA ` t > ; ! 9y.t D Sy/ y not in t.

(h) PA ` t < St

(i) PA ` St D s! t < s

(j) PA ` s � t $ Ss � St

(k) PA ` s < t $ Ss < St

(l) PA ` s < t $ Ss � t

(m) PA ` s � t $ s < t _ s D t

(n) PA ` s < St $ s < t _ s D t

(o) PA ` s � St $ s � t _ s D St

(p) PA ` s < t _ s D t _ t < s

(q) PA ` s � t _ t < s

(r) PA ` s � t $ t – s

(s) PA ` t < s! t ¤ s

(t) PA ` .s � t ^ t � s/! s D t

(u) PA ` s � sC t

(v) PA ` r � s$ rC t � sC t

(w) PA ` r < s$ rC t < sC t

(x) PA ` .r � s ^ t � u/! rC t � sC u

(y) PA ` .r < s ^ t � u/! rC t < sC u

(z) PA ` ; < t ! s � s � t

(aa) PA ` r � s! r � t � s � t

(ab) PA ` r � s > ; ! s > ;

(ac) PA ` .r > 1 ^ s > ;/! r � s > s

(ad) PA ` .t > ; ^ r < s/! r � t < s � t

(ae) PA ` .r < s ^ t < u/! r � t < s � u

(af) PA ` 8xŒ.8: < x/P x
: ! P �! 8xP strong induction (a)

(ag) PA ` P x
;
^ 8xŒ.8: � x/P x

: ! P x
Sx
�! 8xP strong induction (b)

(ah) PA ` 9xP ! 9xŒP ^ .8: < x/�P x
: � least number principle

Some of these are related to results we obtained in chapter 8 for Q. But there results were of the
sort, for any n, Q ` t < n _ t D n _ n < t; with PA, the induction is in the logic rather than in
the metalanguage, and we obtain the universal quantifier (or rather, an arbitrary term which may be
a free variable) in the object formula.

CHAPTER 13. GÖDEL’S THEOREMS 633

these as abbreviations — and as such the listed axioms are of the sort Q $ Q with
the abbreviated form on one side, and the unabbreviated on the other. A theory is not
extended by the addition of an “axiom” of this sort. But is possible to see the symbols
as new vocabulary. In all four cases T 0 includes a new axiom. The last two require
also a uniqueness condition in the original T . For these, let 9ŠyP .y/ abbreviate
9yŒP .y/^8z.P .z/! z D y/� or equivalently 9yP .y/^8y8zŒ.P .y/^P .z//!

y D z� so that exactly one thing is P . Then the cases for a constant and function
symbol are standard examples from set theory, where zero and successor are defined
(the condition for successor sets Sx D x [fxg so that the members of Sx are x and
all the members of x). The details of the examples are not important; we illustrate
only the idea of definition. We begin with a formal account, and extend it in different
directions.

Basic Account

Consider some theory T and language L. We will consider a language L0 extended
with some new symbol and theory T 0 extended with the corresponding axiom. There
are separate cases for a relation symbol, operator symbol, constant symbol and func-
tion symbol.

Relation symbol. To introduce a new relation symbol REx we require an axiom in
the extended theory such that,

T 0 ` R.Ex/$ Q.Ex/

where Q.Ex/ is in L. Then for a formula F 0 including the new symbol, there should
be a conversion C such that CŒF 0� D F for F in the original L, and

T 0 ` F 0 iff T ` CŒF 0�

So CŒF 0� is like our unabbreviated formula, always available in the original T when
F 0 is a theorem of T 0. The conversion for a relation REs is straightforward. Make
sure the bound variables of Q do not overlap the variables of Es. Then CŒF 0� D

F 0
REs

Q.Es/
. So, from the example above,

T 0 ` x � y $ 9z.z C x D y/.

So R.x; y/ D x � y and Q.x; y/ D 9z.z C x D y/. Suppose F 0 D 8z.a � z/.
Then we want to instantiate x and y from the axiom to a and z. But z is not free
for y in the axiom. We solve the problem by revising bound variables; so T 0 ` x �

CHAPTER 13. GÖDEL’S THEOREMS 634

y $ 9w.w C x D y/ and then T 0 ` a � z $ 9w.w C a D z/. So CŒF 0� replaces
.a � z/ in F 0 with 9w.w C a D z/ to obtain 8z9w.w C a D z/.

Operator symbol. Extend notation in the obvious way so that OŒ EP � indicates
that operator symbol O operates on formulas P1 : : :Pn. To introduce a new operator
symbol OŒ EP � we require axioms in the extended theory such that,

T 0 ` OŒ EP �$ QŒ EP �

where QŒ EP � is an expression in L. Again for F 0 including the new symbol, there
should be a conversion C such that CŒF 0� D F for F in the original L and T 0 ` F 0

iff T ` CŒF 0�. This time set CŒF 0� D F 0
OŒ EP �

QŒ EP �
. Thus, from example above, we

are given T 0 ` 9zRxz $ �8z�Rxz. Suppose F 0 D 8x9zRxz. Then CŒF 0� D

8x�8z�Rxz.

Constant symbol. To introduce a new constant symbol we require an axiom in
the extended theory, along with a condition in the original theory such that,

T 0 ` y D c$ Q.y/ and T ` 9ŠyQ.y/

Again for a formula F 0 including the new symbol, we expect a conversion C such
that CŒF 0� D F , where T 0 ` F 0 iff T ` CŒF �. Let z be a variable that does not
appear in F 0 or Q. Then

CŒF 0� D 9z.Q.z/ ^ F 0
c
z/

So, from the example above, we are given T 0 ` y D ˛ $ 8x.x 62 y/; suppose
F 0 D 9x.˛ 2 x/. Then z is a variable that does not appear in F 0 or Q — in
9x.˛ 2 x/ or 8x.x 62 y/. So CŒF 0� D 9zŒ8x.x 62 z/ ^ 9x.z 2 x/�.

Function symbol. To introduce a function symbol, there is an axiom and condi-
tion,

T 0 ` y D hEx $ Q.Ex; y/ and T ` 9ŠyQ.Ex; y/

The conversion for a function symbol works like that for constants when a single
instance of hEs appears in F 0. Again, make sure the bound variables of Q do not
overlap the variables of Es and let z be a variable that does not appear in F 0 or in
Q. Then it is sufficient to set CŒF 0� D 9z.Q.Es; z/ ^ F 0

hEs
z /. In general, however,

F 0 may include multiple instances of h, including one in the scope of another. For
the general case, begin where F 0 is an atomic R0 D Rt1 : : : tn and t1 : : : tn may
involve instances of hEs. Order instances of hEs in R0 from the left (or, on a chapter 2
tree, from the bottom) into a list hEs1;hEs2; : : :hEsm, so that when i < j , no hEsi

CHAPTER 13. GÖDEL’S THEOREMS 635

appears in the scope of hEsj . Then set R0 D R0, and for i � 1, Ri D 9z.Q.Esi ; z/^

.Ri�1/
hEsi
z /. Then CŒR0� D Rm and for an arbitrary F 0, CŒF 0� D F 0

R0

Rm
. So, for

example, if R0 D R0 D Rh
2h2xyh2yz, the tree is as follows,

(B)

x

@
@
@

y

�
�
�

y

@
@
@

z

�
�
�

h2xy

@
@
@

h2yz

�
�
�

h2h2xyh2yz

. .

Rh2h2xyh2yz

So instances of hqr are ordered hh2h2xyh2yz; h2xy; h2yzi. Then we use Q to
replace instances of h, working our way up through the tree. So,

R0 D Rh
2h2xyh2yz

R1 D 9uŒQh
2xyh2yzu ^Ru�

R2 D 9v.Qxyv ^ 9uŒQvh
2yzu ^Ru�/

R3 D 9wŒQyzw ^ 9v.Qxyv ^ 9uŒQvwu ^Ru�/�

R1 uses Q to replace all of h2h2xyh2yz, operating on the terms h2xy and h2yz.
R2 uses Q to replace h2xy in R1, and R3 uses Q to replace h2yz in R2. Observe
that free variables are the same as in R0.

To show that this works, that T 0 ` F 0 iff T ` F we need a couple of theorems.
The idea is to show that T 0 ` F 0 $ F and then that T 0 ` F iff T ` F . Together,
these give the result we want. First,

T13.14. For a defined symbol, with its associated axiom and conversion procedure,
T 0 ` F 0 $ F .

(r) For a relation symbol, we are given T 0 ` REx $ Q.Ex/; then so long as the
bound variables of Q do not overlap the variables of REs (which we guarantee
by reasoning as for T3.27) Es is free for Ex in Q, so T 0 ` REs$ Q.Es/; so by
T9.9, T 0 ` F 0 $ F 0

REs

Q.Es/
; so T 0 ` F 0 $ F .

(o) For an operator symbol, we are given T 0 ` OŒ EP � $ QŒ EP �; so by T9.9,
T 0 ` F 0 $ F 0

OŒ EP �

QŒ EP �
; so T 0 ` F 0 $ F .

CHAPTER 13. GÖDEL’S THEOREMS 636

(c) The case for constants is left as an exercise.

(f) For a function symbol h, begin with a derivation to show T 0 ` Ri�1 $

Ri . Given Ri�1Œh.Es/�, Ri .Es/ is 9z.Q.Es; z/ ^ Ri�1Œz�/. We have as an
axiom that T 0 ` y D hEx $ Q.Ex; y/.

1. Ri�1Œh.Es/� A (g$I)

2. h.Es/ D h.Es/$ Q.Es;h.Es// from T 0

3. hEs D hEs DI
4. Q.Es;h.Es// 2,3$E
5. Q.Es;h.Es// ^Ri�1Œh.Es/� 1,4 ^I
6. 9z.Q.Es; z/ ^Ri�1Œz�/ 5 9I

7. 9z.Q.Es; z/ ^Ri�1Œz�/ A (g$I)

8. Q.Es; j / ^Ri�1Œj � A (g 79E)

9. Q.Es; j / 8 ^E
10. j D h.Es/$ Q.Es; j / from T 0

11. j D h.Es/ 10,9$E
12. Ri�1Œj � 8 ^E
13. Ri�1Œh.Es/� 11,12DE

14. Ri�1Œh.Es/� 7,8-13 9E

15. Ri�1Œh.Es/�$ 9z.Q.Es; z/ ^Ri�1Œz�/ 1-6,7-14$I

Things are arranged so that the variables of Es are not bound upon substitution
into Q. So instances of the axiom at (2) and (10) and 9I at (6) satisfy con-
straints. So T 0 ` Ri�1 $ Ri ; and by repeated applications of this theorem,
T 0 ` R0 $ Rm; so by T9.9, T 0 ` F 0 $ F 0

R0

Rm
; so T 0 ` F 0 $ F .

So far, so good, but this only says what the extended T 0 proves — that the richer
T 0 proves F 0 iff it proves F . But we want to see that T 0 proves F 0 iff the original T
proves F . We bridge the gap between T and T 0 by an additional theorem.

T13.15. For a T and L, given a defined symbol with its associated axiom, and for
any formula F in the original L, T 0 ` F iff T ` F .

Since T 0 proves everything T proves, the direction from right to left is obvi-
ous. So suppose T 0 ` F ; by soundness, T 0 � F ; we show T � F ; so that,
by adequacy, T ` F . To show T � F , suppose there is a model M such that
MŒT � D T; our aim is to show MŒF � D T.

(r) Relation symbol. Extend M to a model M0 like M except that for arbitrary d,
hdŒx1� : : : dŒxn�i 2 M0ŒR� iff MdŒQ.x1 : : : xn/� D S; iff M0dŒQ.x1 : : : xn/� D
S (the latter by T10.15 since M and M0 agree on assignments to symbols

CHAPTER 13. GÖDEL’S THEOREMS 637

in Q). Since M0 and M agree on assignments to symbols other than R, by
T10.15 M0ŒT � D T. And M0ŒREx $ Q.Ex/� D T: suppose otherwise; then
by TI there is some d such that M0dŒRx1 : : : xn $ Q.x1 : : : xn/� ¤ S; so
by SF($), M0dŒRx1 : : : xn� ¤ S and M0dŒQ.x1 : : : xn/� D S (or the other
way around); so hdŒx1� : : : dŒxn�i 62 M0ŒR� and M0dŒQ.x1 : : : xn/� D S; but
by construction, this is impossible; and similarly in the other case; reject
the assumption, M0ŒREx $ Q.Ex/� D T. So M0ŒT 0� D T; so since T 0 � F ,
M0ŒF � D T; and by T10.15 again, MŒF � D T; and since this reasoning applies
for arbitrary M, T � F .

(o) Operator symbol. We we do not usually think of the specification for an
operator as part of an interpretation and, so long as this is so, cannot extend
an interpretation for operator symbols as above. Still, it is possible to pro-
vide an equivalent to the usual formulation on which operator symbols are
interpreted. For any P and M, let jP jM be the set of all variable assignments
on which P is satisfied. So P is T when jP jM is the set of all assignments,
and P is F when jP jM is the empty set. We have understood the interpre-
tation of a relation symbol as a set of tuples — and so as a specification of
the set of interpretations on which the relation symbol is satisfied. After that,
for an n-place operator O, MŒO� is a function with members hhV1 : : : Vni; V i
where V1 : : : Vn and V are sets of assignments; and OŒP1 : : :Pn� is satisfied
on d just in case d 2 MŒO�hjP1jM : : : jPnjMi. So, for example, conjunction
is a function that takes jP1jM and jP2jM to jP1jM \ jP2jM — a conjunction
P1 ^ P2 is satisfied on d just in case d is among the assignments that satisfy
both P1 and P2. And an existential x-quantifier takes jP jM to the set of all
assignments that have an x-variant in jP jM.9

Now extend M to a model M0 like M except that d 2 M0ŒO�hjP1jM : : : jPnjMi
iff MdŒQ.P1 : : :Pn/� D S; iff M0dŒQ.P1 : : :Pn/� D S (this by a simple ex-
tension of T10.15). Again since M0 and M agree on assignments to symbols
other than O, with T10.15, M0ŒT � D T. And M0ŒO. EP / $ Q. EP /� D T: sup-
pose otherwise; then by TI there is some d such that M0dŒO. EP /$ Q. EP /� ¤

S; so by SF($), M0dŒO. EP /� ¤ S and M0dŒQ. EP /� D S (or the other way
around); from the second, by construction, d 2 M0ŒO�hjP1jM : : : jPnjMi; so
M0dŒO. EP /� D S; this is impossible; and similarly in the other direction; reject
the assumption: M0ŒO. EP /$ Q. EP /� D T. So M0ŒT 0� D T; so since T 0 � F ,

9These examples are illustrative. For the primitive operators, let jP jM be the complement of jP jM.
Then j�P jM D jP jM, jP ! QjM D jP jM [jQjM, and d 2 j8xP jM just in case all of its x-variants
are in jP jM.

CHAPTER 13. GÖDEL’S THEOREMS 638

M0ŒF � D T; and by T10.15 again, MŒF � D T; and since this reasoning applies
for arbitrary M, T � F .

(c) The case for constants is left as an exercise.

(f) Function symbol. Since T ` 9ŠyQ.Ex; y/, by soundness T � 9ŠyQ.Ex; y/;
so since MŒT � D T, MŒ9ŠyQ.Ex; y/� D T; so by TI, for any d, MdŒ9ŠyQ.Ex; y/�

D S, and there is exactly one m 2 U such that Md.yjm/ŒQ.Ex; y/� D S. Extend
M to a model M0 like M except that for arbitrary d, hhdŒx1� : : : dŒxn�i;mi 2
M0Œh� iff Md.yjm/ŒQ.x1 : : : xn; y/� D S; by T10.15 iff M0d.yjm/ŒQ.x1 : : : xn; y/�
D S. Since M0 and M agree on assignments to symbols other than h, by
T10.15 M0ŒT � D T. And M0Œy D hEx $ Q.Ex; y/� D T: suppose otherwise;
then by TI there is some h such that M0hŒy D hEx $ Q.Ex; y/� ¤ S; so by
SF($), M0hŒy D hEx� ¤ S and M0hŒQ.Ex; y/� D S (or the other way around).
Where for some a, h.y/ D a, h D h.yja/, and M0h.yja/ŒQ.x1 : : : xn; y/� D S;
so by construction with TA(f), M0hŒhx1 : : : xn� D a; and since h.y/ D a,
M0hŒy� D a; so M0hŒy D hx1 : : : xn� D S; this is impossible; and similarly
in the other case; reject the assumption, M0Œy D hEx $ Q.Ex; y/� D T. So
M0ŒT 0� D T; so since T 0 � F , M0ŒF � D T; and by T10.15 again, MŒF � D T;
and since this reasoning applies for arbitrary M, T � F .

These reasonings work insofar as M and M0 give the same results for a Q in the
original L. It is, in fact, important to show that the specifications are consistent —
that we do not both assert and deny that some objects are in the interpretation of a
symbol. But this is easily done. Here one case and the start for another.

(r) The specification for a relation symbol is consistent: Suppose otherwise;
that is, suppose there are some assignments d and h such that hhdŒx1� : : :
dŒxn�i;mi 2 M0Œh� and hhhŒx1� : : : hŒxn�i;mi 62 M0Œh� but dŒx1� D hŒx1� and
. . . and dŒxn� D hŒxn�. From the first, Md.yjm/ŒQ.x1 : : : xn; y/� D S; from the
second, Mh.yjm/ŒQ.x1 : : : xn; y/� ¤ S; but d.yjm/ and h.yjm/ make the same
assignments to variables free in Q.Ex; y/; so by T8.4, Md.yjm/ŒQ.Ex; y/� D

Mh.yjm/ŒQ.Ex; y/�; so Mh.yjm/ŒQ.Ex; y/� D S; reject the assumption: if dŒx1� D
hŒx1� and . . . and dŒxn� D hŒxn� and hhdŒx1� : : : dŒxn�i;mi 2 M0Œh� then
hhhŒx1� : : : hŒxn�i;mi 2 M0Œh�.

(o) The specification for an operator symbol is consistent: Suppose other-
wise; that is, suppose d 2 M0ŒO�hjA1jM0 : : : jAnjM0i and d 62 M0ŒO�hjB1jM0 : : :

jBnjM0i but jA1jM0 D jB1jM0 and . . . and jAnjM0 D jBnjM0 . From the first,
M0dŒQ.A1 : : :An/� D S and from the second, M0dŒQ.B1 : : :Bn/� ¤ S. Now
reasoning is similar except with T9.10 instead of T8.4.

CHAPTER 13. GÖDEL’S THEOREMS 639

And now our desired result is simple. The basic idea is that for some T and
L with a defined constant, relation symbol or function symbol, from T13.14 T 0 `
F 0 $ F and from T13.15 T 0 ` F iff T ` F ; so that T 0 ` F 0 iff T ` F . Put more
generally,

T13.16. For some defined symbols, with their associated axioms and conversion pro-
cedures, T 0 ` F 0 iff T ` F .

Consider a sequence of formulas F0 : : :Fn and theories T0 : : : Tn ordered
according to the number of new symbols where for any i , Fi D CŒFiC1�. By
our results, TiC1 ` FiC1 $ Fi , and TiC1 ` Fi iff Ti ` Fi . It follows that
TiC1 ` FiC1 iff Ti ` Fi . And by a simple induction, Tn ` Fn iff T0 ` F0,
which is to say T 0 ` F 0 iff T ` F .

In the following, we will be clear about when new symbols and associated axioms
are introduced, and about the conditions under which this may be done. In light of
the results we have achieved however, we will not generally distinguish between a
theory and its definitional extensions.

It is worth remarking on the increased requirement for definition relative to cap-
ture. In particular, for a function, capture requires T ` 8zŒF .m1 : : :mn; z/ ! z D

a�. For definition, from uniqueness, the comparable condition is T ` 8y8zŒ.F .Ex; y/
^ F .Ex; z// ! y D z�. So definition builds in a sort of generality not required in
the other case. Q is great about proving particular facts — but not so great when it
comes to generality (this was a sticking point about the shift between Q and Qs in
chapter 12 (p. 577 and below). But this is just the sort of thing PA is fitted to do.10

E13.5. Supposing that T 0 ` y D h2uv $ Q.u; v; y/ use the method of the text to
find CŒA ^ Bh2h2xy�.

E13.6. (i) From the definitions in p. 637n9 and the standard abbreviations, show that
the conditions in the main text for ^ and 9 obtain. (ii) What is the condition
for _? Hint: it should not involve complement.

*E13.7. Show T13.13af and T13.13ah. Hard core: show each of the results in
T13.13.

10Is definition so described necessary for reasoning to follow? We might continue to think in terms
of abbreviation — or even unabbreviated formulas themselves, so that there are no new symbols. Even
so, the conditions on such formulas would be like those for definition, so that the overall argument
would remain the same.

CHAPTER 13. GÖDEL’S THEOREMS 640

E13.8. (i) Complete the unfinished cases for constants in T13.14 and T13.15. (ii)
Show consistency results for operator, relation and constant symbols.

First applications

Here are a couple of quick results that will be helpful as we move forward. First,
if PA defines some functions h.Ex;w; Ez/ and g. Ey/, then PA defines their composi-
tion f .Ex; Ey; Ez/ D h.Ex; g. Ey/; Ez/. We introduce a definition and then show that the
condition is met. This pattern will repeat many times.

T13.17. If PA defines some h.Ex;w; Ez/ and g. Ey/, then PA defines f .Ex; Ey; Ez/ D
h.Ex; g. Ey/; Ez/. Suppose PA defines some h.Ex;w; Ez/ and g. Ey/. Let,

Def [f .Ex; Ey; Ez/] PA ` v D f .Ex; Ey; Ez/$ v D h.Ex; g. Ey/; Ez/. Then,

(i) PA ` 9vŒv D h.Ex; g. Ey/; Ez/�

1. h.Ex; g. Ey/; Ez/ D h.Ex; g. Ey/; Ez/ DI
2. 9vŒv D h.Ex; g. Ey/; Ez/� 1 9I

(ii) PA ` 8u8vŒ.u D h.Ex; g. Ey/; Ez/ ^ v D h.Ex; g. Ey/; Ez//! u D v�

1. j D h.Ex; g. Ey/; Ez/ ^ k D h.Ex; g. Ey/; Ez/ A (g!I)

2. j D h.Ex; g. Ey/; Ez/ 1 ^E
3. k D h.Ex; g. Ey/; Ez/ 1 ^E
4. j D k 2,3DE

5. .j D h.Ex; g. Ey/; Ez/ ^ k D h.Ex; g. Ey/; Ez//! j D k 1-4!I
6. 8vŒ.j D h.Ex; g. Ey/; Ez/ ^ v D h.Ex; g. Ey/; Ez//! j D v� 5 8I
7. 8u8vŒ.u D h.Ex; g. Ey/; Ez/ ^ v D h.Ex; g. Ey/; Ez//! u D v� 6 8I

So PA ` 9ŠvŒv D h.Ex; g. Ey/; Ez/� and PA defines f .Ex; Ey; Ez/.

In addition, we can introduce a function for minimization. The idea is to set
v D �yQ.Ex; y/ $ ŒQ.Ex; v/ ^ .8z < v/�Q.Ex; z/�. In the ordinary case, a new
function symbol h is introduced with an axiom of the sort v D hEx $ Q.Ex; v/ under
the condition T ` 9ŠvQ.Ex; v/. But, in this case, the situation is simplified by the
following theorem.

T13.18. If PA ` 9vQ.Ex; v/, then PA ` 9ŠvŒQ.Ex; v/ ^ .8z < v/�Q.Ex; v/�.

(i) Suppose PA ` 9vQ.Ex; v/. Then by the least number principle T13.13ah,
PA ` 9vŒQ.Ex; v/ ^ .8z < v/�Q.Ex; v/�.

CHAPTER 13. GÖDEL’S THEOREMS 641

(ii) Further, PA ` 8u8vŒ.Q.Ex; u/ ^ .8z < u/�Q.Ex; z/ ^Q.Ex; v/ ^ .8z <

v/�Q.Ex; z//! u D v�.

1. Q.Ex; j / ^ .8z < j /�Q.Ex; z/ ^Q.Ex; k/ ^ .8z < k/�Q.Ex; z/ A (g!I)

2. j < k _ j D k _ k < j T13.13p
3. j < k A (c �I)

4. .8z < k/�Q.Ex; z/ 1 ^E
5. �Q.Ex; j / 4,3 (8E)
6. Q.Ex; j / 1 ^E
7. ? 6,5 ?I

8. �.j < k/ 3-7 �I
9. k < j A (c �I)

10. .8z < j /�Q.Ex; z/ 1 ^E
11. �Q.Ex; k/ 10,9 (8E)
12. Q.Ex; k/ 1 ^E
13. ? 12,11, ?I

14. �.k < j / 9-13 �I
15. j D k 2,8,14 DS

16. .Q.Ex; j / ^ .8z < j /�Q.Ex; z/ ^Q.Ex; k/ ^ .8z < k/�Q.Ex; z//! j D k 1-15!I
17. 8vŒ.Q.Ex; j / ^ .8z < j /�Q.Ex; z/ ^Q.Ex; v/ ^ .8z < v/�Q.Ex; z//! j D v� 16 8I
18. 8u8vŒ.Q.Ex; u/ ^ .8z < u/�Q.Ex; z/ ^Q.Ex; v/ ^ .8z < v/�Q.Ex; z//! u D v� 17 8I

So under the condition 9vQ.Ex; v/, we have 9ŠvŒQ.Ex; v/ ^ .8z < v/�Q.Ex; v/�. As
from the strengthened capture result (chapter 12, p. 583) this is because the bounded
quantifier builds in that at most one thing satisfies the expression. Thus we may define
functions for minimization and bounded minimization under revised conditions. Let,

Def [�vQ.Ex; v/] PA ` v D �vQ.Ex; v/$ ŒQ.Ex; v/ ^ .8z < v/�Q.Ex; v/�

(i) PA ` 9vŒQ.Ex; v/ ^ .8z < v/�Q.Ex; v/�.

(ii) 8u8vŒ.Q.Ex; u/^.8z < u/�Q.Ex; z/^Q.Ex; v/^.8z < v/�Q.Ex; z//!

u D v�

But given T13.18, these conditions are met so long as PA ` 9vQ.Ex; v/.

And,

Def [.�y � z/Q.Ex; z; y/] PA ` v D .�y � z/Q.Ex; z; y/ $ v D �yŒy D z _

Q.Ex; z; y/�

Let m.Ex; z/ D �yŒy D z _Q.Ex; z; y/� then we require,

CHAPTER 13. GÖDEL’S THEOREMS 642

(i) PA ` 9v.v D m.Ex; z//

(ii) PA ` 8u8v.Œu D m.Ex; z/ ^ v D m.Ex; z/�! u D v/

These conditions are trivially met so long as m.Ex; z/ is defined; and for this,
the existential condition PA ` 9yŒy D z _ Q.Ex; z; y/� follows immediately
from PA ` z D z; so the conditions for bounded minimization are automati-
cally satisfied.

Given these notions, we may write down some immediate, simple results.

*T13.19. Let m.Ex/ D �vQ.Ex; v/; then,

(a) PA ` Q.Ex;m.Ex// ^ .8z < m.Ex//�Q.Ex; z/

(b) PA ` Q.Ex;m.Ex//

(c) PA ` .8z < m.Ex//�Q.Ex; z/

(d) PA ` Q.Ex; v/!m.Ex/ � v

Because it is always possible to switch bound variables so that Q is con-
verted to an equivalent Q0 whose bound variables do not overlap with vari-
ables free in m.Ex/, we simply assume m.Ex/ is free for v in Q.Ex; v/ (and
we will generally make this move). Thus (a) follows from the definition
v D m.Ex/ $ ŒQ.Ex; v/ ^ .8z < v/�Q.Ex; v/� with v instantiated to m.Ex/

together with m.Ex/ D m.Ex/. Both conjuncts, and so (b) and (c) follow from
(a). And (d) can be done in eight or nine lines with (c).

Of these, (a) - (c) simply observe that the definition applies to the function defined.
From (d), the least v such that Q.Ex; v/ is always � an arbitrary v such that Q.Ex; v/.

In addition, a couple of results for bounded minimization.

T13.20. The following result in PA,

(a) PA ` .�y � ;/Q.Ex;;; y/ D ;

(b) If PA ` .9v � t.u//Q.Ex; u; v/ then (i) PA defines �vQ.Ex; u; v/ and (ii)
PA ` .�v � t.u//Q.Ex; u; v/ D �vQ.Ex; u; v/.

Hints: (a) follows easily from the definition. For (b), the existential for (i)
follows simply from .9v � t.u//Q.Ex; u; v/. For (ii),

CHAPTER 13. GÖDEL’S THEOREMS 643

1. .9v � t.u//Q.Ex; u; v/ P

2. n.Ex; u/ D .�v � t.u//Q.Ex; u; v/ abv
3. n.Ex; u/ D �vŒv D t.u/ _Q.Ex; u; v/� 2 def
4. n.Ex; u/ D t.u/ _Q.Ex; u;n.Ex; u// 3 T13.19b
5. Q.Ex; u; j / A (g 1(9E))
6. j � t.u/

7. j < t.u/ _ j D t.u/ 6 T13.13m
8. j D t.u/ A (g 7_E)

9. t.u/ D n.Ex; u/ _ t.u/ ¤ n.Ex; u/ T3.1
10. t.u/ D n.Ex; u/ A (g 9_E)

11. Q.Ex; u; t.u// 5,8DE
12. Q.Ex; u;n.Ex; u// 11,10DE

13. t.u/ ¤ n.Ex; u/ A (g 9_E)

14. Q.Ex; u;n.Ex; u// 4,13 DS

15. Q.Ex; u;n.Ex; u// 9,10-12,13-14 _E

16. j < t.u/ A (g 7_E)

17. j D t.u/ _Q.Ex; u; j / 5 _I
18. n.Ex; u/ � j 3,17 T13.19d
19. n.Ex; u/ < t.u/ 18,16 T13.13c
20. n.Ex; u/ ¤ t.u/ 19 T13.13s
21. Q.Ex; u;n.Ex; u// 4,20 DS

22. Q.Ex; u;n.Ex; u// 7,8-15,16-21 _E
23. .8w < n.Ex; u//�Œw D t.u/ _Q.Ex; u;w/� 3 T13.19c
24. l < n.Ex; u/ A (g (8I))

25. �Œl D t.u/ _Q.Ex; u; l/� 23,24 (8E)
26. l ¤ t.u/ ^�Q.Ex; u; l/ 25 DeM
27. �Q.Ex; u; l/ 26 ^E

28. .8w < n.Ex; u//�Q.Ex; u;w/ 24-27 (8I)
29. Q.Ex; u;n.Ex; u// ^ .8w < n.Ex; u//�Q.Ex; u;w/ 22,28 ^I
30. n.Ex; u/ D �vQ.Ex; u; v/ 29 def

31. n.Ex; u/ D �vQ.Ex; u; v/ 1,5-30 (9E)
32. .�v � t.u//Q.Ex; u; v/ D �vQ.Ex; u; v/ 31 abv

t .u/ is the bound, there is a j � t .u/ such that Q.Ex; u; j /, and n.Ex; u/ is the
least v � t .u/ such that Q.Ex; u; v/. Recall that, generally, when n.Ex; u/ D
t .u/, n.Ex; u/ need not be such that Q.Ex; u; n.Ex; u//; but if j D t .u/ D

n.Ex; u/, we have from the premise that Q.Ex; u; n.Ex; u//. And in any case
when n.Ex; u/ is other than the bound, Q.Ex; u; n.Ex; u//. In each case, then,

CHAPTER 13. GÖDEL’S THEOREMS 644

the least v such that Q.Ex; u; v/ is the same as n.Ex; u/.

From T13.20a it does not matter about Q, the least y under the bound ; is always
;. T13.20b converts between a bounded minimization and one without a bound; thus
when T13.20b applies, results from from T13.19 for unbounded minimization apply
to the bounded case.

*E13.9. Produce the quick derivation to show T13.19d.

E13.10. Complete the unfinished parts of T13.20.

13.3.2 Definitions for recursive functions

Our aim is to show T ` Cont! �Prvt.pGq/ — where this corresponds to our pre-
vious result that if T is consistent, then T ° G . For this it is no surprise that we shall
want to define and manipulate functions corresponding to the recursive functions of
chapter 12. Thus we begin by showing that PA defines relations and functions corre-
sponding to recursive relations and functions.

Insofar as we understand what a theorem of PA is, not all of the demonstrations
are required to understand the argument — and some may obscure the overall flow.
Thus, for our main argument, we often list results (with hints), shifting demonstra-
tions into exercises and answers to exercises. To retain demonstration of results, a
great many exercises are in fact worked in the answers section. Also since the only
constant in LNT is ;, there is no need to reserve letters for constants. Thus it is con-
venient to suppose that all of a : : : z are variables of the language.

The core result

The main argument is an induction on the sequence of recursive functions. However,
with an eye to the ˇ-function, we begin showing that PA defines remainder rm.m; n/
and quotient qt.m; n/ functions corresponding to m=.nC 1/. Division is by nC 1 to
avoid the possibility of division by zero.11

*Def [rm] Let PA ` v D rm.m; n/$.9w � m/Œm D Sn � w C v ^ v < Sn�.

11A choice is made: Another option is define the functions so that an arbitrary value is assigned
for division by zero (as for example Boolos, The Logic of Provability, p. 27). Our selection makes
for somewhat unintuitive statements of that which is intuitively true — rather than (relatively) intuitive
statements including that which is intuitively undefined or false.

CHAPTER 13. GÖDEL’S THEOREMS 645

(i) PA ` 9x.9w � m/Œm D Sn�wCx^x < Sn�. Hint: This is an argument
by IN onm. It is easy to show 9x.9w � ;/Œ; D Sn�wCx^x < Sn�, from
; D Sn�;C;^; < Sn with (9I) and 9I. Then you want to show that if the
result holds for j , it holds for Sj . For remainder k, k < n _ k D n. In the
first case Sj is divided by leaving the quotient l the same, and incrementing
k; in the second case Sj is divided by Sl with remainder zero.

(ii) PA ` 8x8yŒ..9w � m/Œm D Sn�wC x ^ x < Sn�^ .9w � m/Œm D
Sn � w C y ^ y < Sn�/ ! x D y�. Hint: This does not require IN,
but is an involved derivation all the same. Once you instantiate the bounded
existential quantifiers to quotients p with remainder j and q with remainder
k, you have p < q _ p D q _ q < p. When p D q, j D k follows easily
with cancellation for addition. And the other cases contradict. So, if p < q,
you will be able to set up an l such that Sl Cp D q, and show j 6< Sn. And
similarly in the other case.

Def [qt] Let PA ` v D qt.m; n/$ m D Sn � v C rm.m; n/.

(i) PA ` 9xŒm D Sn � x C rm.m; n/�. Hint: By DI, rm.m; n/ D rm.m; n/;
so with Def [rm], .9w � m/Œm D Sn � w C rm.m; n/ ^ rm.m; n/ < Sn�;
and the result follows easily.

(ii) PA ` 8x8yŒ.m D Sn�xCrm.m; n/^m D Sn�yCrm.m; n//! x D

y�. Hint: This is easy with cancellation laws for addition and multiplication.

Def [ˇ] PA ` ˇ.p; q; i/ D rm.p; q � Si/.

Since this is a composition of functions, immediate from T13.17.

Observe that, from the definition, PA ` v D ˇ.p; q; i/ $.9w � p/Œp D S.q �

Si/�wCv^v < S.q�Si/�, which is to say PA ` v D ˇ.p; q; i/$ B.p; q; i; v/,
where B is the original formula to express the beta function.

And now our main argument that PA defines relations and functions correspond-
ing to recursive relations and functions. The main result is for functions; relations
follow as an easy corollary. But we shall not be able to show that PA defines relations
and functions corresponding to all the recursive relations and functions: Say an ap-
plication of regular minimization to generate f.Ex/ from g.Ex; y/ is (PA) friendly just in
case PA ` 9yG .Ex; y;;/ where G .Ex; y; v/ is the original formula that expresses and
captures g.Ex; y/; and a recursive function is (PA) friendly just in case it is an initial

CHAPTER 13. GÖDEL’S THEOREMS 646

function or arises by applications of composition, recursion or friendly regular min-
imization. Observe that all primitive recursive functions are automatically friendly
insofar as they involve no applications of minimization at all.

*T13.21. For any friendly recursive function r.Ex/ and original formula R.Ex; v/ by
which it is expressed and captured, PA defines a function r.Ex/ such that PA `
v D r.Ex/$ R.Ex; v/.

By induction on the sequence of recursive functions.

Basis: r0.Ex/ is an initial function suc.x/, zero.x/ or idntjk.x1 : : : xj/.

(s) r0.Ex/ is suc.x/. Let PA ` v D suc.x/$ Sx D v. But Sx D v is the
original formula Suc.x; v/ by which suc.x/ is expressed and captured;
so PA ` v D suc.x/$ Suc.x; v/. And by reasoning as follows,

1. Sx D Sx DI
2. 9y.Sx D y/ 1 9I

1. Sx D j ^ Sx D k A (g!I)

2. Sx D j 1 ^E
3. Sx D k 1 ^E
4. j D k 2,3DE

5. .Sx D j ^ Sx D k/! j D k 1-4!I
6. 8zŒ.Sx D j ^ Sx D z/! j D z� 5 8I
7. 8y8zŒ.Sx D y ^ Sx D z/! y D z� 6 8I

PA ` 9Šy.Sx D y/. So PA defines suc.x/.

(z) r0.Ex/ is zero.x/. Let PA ` v D zero.x/ $ x D x ^ v D ;. Then
PA ` v D zero.x/ $ Zero.x; v/. And by (homework) PA defines
zero.x/.

(i) r0.Ex/ is idntjk.x1 : : : xj/. Let PA ` v D idntj
k.x1 : : : xj / $.x1 D

x1 ^ : : : ^ xj D xj / ^ xk D v. Then PA ` v D idntj
k.x1 : : : xj / $

Idntj
k
.x1 : : : xj ; v/. And by (homework) PA defines idntj

k.x1 : : : xj /.

Assp: For any i , 0 � i < k, and ri.Ex/ with Ri .Ex; v/, PA defines ri.Ex/ such
that PA ` v D ri.Ex/$ Ri .Ex; v/.

Show: PA defines rk.Ex/ such that PA ` v D rk.Ex/$ Rk.Ex; v/.

rk.Ex/ is either an initial function or arises by composition, recursion or
PA friendly regular minimization. If rk.Ex/ is an initial function, then
reason as in the basis. So suppose one of the other cases.

(c) rk.Ex; Ey; Ez/ is h.Ex; g.Ey/; Ez/ for some hi.Ex;w; Ez/ and gj.Ey/ where i; j < k.
By assumption PA defines h.Ex;w; Ez/ such that PA ` v D h.Ex;w; Ez/
$ H .Ex;w; Ez; v/ and PA defines g. Ey/ such that PA ` w D g. Ey/ $

CHAPTER 13. GÖDEL’S THEOREMS 647

G . Ey;w/. Let PA ` rk.Ex; Ey; Ez/ D h.Ex;g. Ey/; Ez/. Then by T13.17 PA
defines rk. And, where the original Rk is of the sort 9wŒG . Ey;w/ ^
H .Ex;w; Ez; v/�, PA ` v D rk.Ex; Ey; Ez/ $ Rk.Ex; Ey; Ez; v/. Thus, drop-
ping Ex and Ez and reducing Ey to a single variable,

1. r.y/ D h.g.y// def
2. v D h.w/$ H .w; v/ by assp
3. w D g.y/$ G .y; w/ by assp

4. v D r.y/ A (g$I)

5. v D h.g.y// 1,4DE
6. g.y/ D g.y/ DI
7. g.y/ D g.y/$ G .y;g.y// 3 8E
8. G .y;g.y// 7,6$E
9. h.g.y// D h.g.y// DI

10. h.g.y// D h.g.y//$ H .g.y/;h.g.y/// 2 8E
11. H .g.y/;h.g.y/// 10,9$E
12. H .g.y/; v/ 11,5DE
13. G .y;g.y// ^H .g.y/; v/ 8,12 ^I
14. 9wŒG .y; w/ ^H .w; v/� 13 9I

15. 9wŒG .y; w/ ^H .w; v/� A (g$I)

16. G .y; j / ^H .j; v/ A (g 159E)

17. j D g.y/$ G .y; j / 3 8E
18. G .y; j / 16 ^E
19. j D g.y/ 17,18$E
20. v D h.j /$ H .j; v/ 2 8E
21. H .j; v/ 16 ^E
22. v D h.j / 20,21$E
23. v D h.g.y// 22,19DE
24. v D r.y/ 1,23DE

25. v D r.y/ 15,16-24 9E

26. v D r.y/$ 9wŒG .y; w/ ^H .w; v/� 4-14,15-25$I

In the first subderivation, as usual, we suppose that quantifiers are ar-
ranged so that substitutions are allowed — and in particular so that
g.y/ is free for w in H .w; v/ and G .y; w/. And with dropped vari-
ables restored we have that PA ` v D rk.Ex; Ey; Ez/ $ 9wŒG . Ey;w/ ^
H .Ex;w; Ez; v/� which is to say, PA ` v D rk.Ex/$ Rk.Ex; v/.

(r) rk.Ex; y/ arises by recursion from some gi.Ex/ and hj.Ex; y; u/ where i; j <
k. By assumption PA defines g.Ex/ such that PA ` v D g.Ex/ $

G .Ex; v/ and PA defines h.Ex; y; u/ such that PA ` v D h.Ex; y; u/ $

CHAPTER 13. GÖDEL’S THEOREMS 648

H .Ex; y; u; v/. Let PA ` z D rk.Ex; y/$
9p9qŒˇ.p; q;;/ D g.Ex/^ .8i < y/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/^ ˇ.p; q; y/ D z�

By the argument of the next section, PA defines r.Ex; y/. And where
the original R.Ex; y; z/ D

9p9qf9vŒB.p; q;;; v/^G .Ex; v/�^.8i < y/9u9vŒB.p; q; i; u/^B.p; q; Si; v/^H.Ex; i; u; v/�^

B.p; q; y; z/g

we require PA ` z D rk.Ex; y/ $ Rk.Ex; y; z/. Here is the argument
from left to right.

1. v D ˇ.p; q; i/$ B.p; q; i; v/ def ˇ
2. v D g.Ex/$ G .Ex; v/ assp
3. v D h.Ex; y; u/$H.Ex; y; u; v/ assp

4. z D r.Ex; y/ A (g!I)

5. 9p9qŒˇ.p; q;;/ D g.Ex/^ .8i < y/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/^ ˇ.p; q; y/ D z� 4 def r
6. ˇ.a; b;;/ D g.Ex/^ .8i < y/h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/^ ˇ.a; b; y/ D z A (g 59E)

7. ˇ.a; b;;/ D g.Ex/ 6 ^E
8. G .Ex;g.Ex// from 2
9. B.a; b;;; ˇ.a; b;;// from 1

10. B.a; b;;;g.Ex// 7,9DE
11. B.a; b;;;g.Ex//^ G .Ex;g.Ex// 10,8 ^I
12. 9vŒB.a; b;;; v/^ G .Ex; v/� 11 9I
13. .8i < y/h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/ 6 ^E
14. l < y A (g (8I))

15. h.Ex; l; ˇ.a; b; l// D ˇ.a; b; Sl/ 13,14 (8E)
16. B.a; b; l; ˇ.a; b; l// from 1
17. B.a; b; Sl; ˇ.a; b; Sl// from 1
18. H.Ex; l; ˇ.a; b; l/;h.Ex; l; ˇ.a; b; l/// from 3
19. H.Ex; l; ˇ.a; b; l/; ˇ.a; b; Sl// 18,15DE
20. B.a; b; l; ˇ.a; b; l//^B.a; b; Sl; ˇ.a; b; Sl//^H.Ex; l; ˇ.a; b; l/; ˇ.a; b; Sl// 16,17,19 ^I
21. 9u9vŒB.a; b; l; u/^B.a; b; Sl; v/^H.Ex; l; u; v/� 20 9I

22. .8i < y/9u9vŒB.a; b; i; u/^B.a; b; Si; v/^H.Ex; i; u; v/� 14-21 (8I)
22. ˇ.a; b; y/ D z 6 ^E
23. B.a; b; y; ˇ.a; b; y// from 1
24. B.a; b; y; z/ 23,22DE
25. 9vŒB.a; b;;; v/^ G .Ex; v/�^

.8i < y/9u9vŒB.a; b; i; u/^B.a; b; Si; v/^H.Ex; i; u; v/�^B.a; b; y; z/ 12,22,24 ^I
26. 9p9qf9vŒB.p; q;;; v/^ G .Ex; v/�^

.8i < y/9u9vŒB.p; q; i; u/^B.p; q; Si; v/^H.Ex; i; u; v/�^B.p; q; y; z/g 25 9I
27. R.Ex; y; z/ 26 def

28. R.Ex; y; z/ 5,6-27 9E

29. z D r.Ex; y/!R.Ex; y; z/ 4-28!I

The other direction is left as an exercise.

CHAPTER 13. GÖDEL’S THEOREMS 649

(m) fk.Ex/ arises by friendly regular minimization from g.Ex; y/. By assump-
tion PA defines g.Ex; y/ such that PA ` v D g.Ex; y/ $ G .Ex; y; v/

where G is the original formula to express and capture g. Let PA `
rk.Ex/ D �yG .Ex; y;;/. Since the minimization is friendly, PA `
9yG .Ex; y;;/; so by T13.19, PA defines rk.Ex/. And by definition,
PA ` v D rk.Ex/ $ G .Ex; v;;/ ^ .8y < v/�G .Ex; y;;/. So PA `
v D rk.Ex/$ Rk.Ex; v/.

Indct: For any friendly recursive function r.Ex/ and the original formula R.Ex; v/

by which it is expressed and captured, PA defines a function r.Ex/ such
that PA ` v D r.Ex/$ R.Ex; v/ (subject to the recursion clause) .

*E13.11. Complete the justifications for Def [rm] and Def [qt].

*E13.12. Complete the unfinished cases to T13.21. You should set up the entire in-
duction, but may refer to the text as the text refers unfinished cases to home-
work.

The Recursion Clause

We turn now to a series of results with the aim of showing that PA defines r in the
case when r arises by recursion. This will require a series of definitions and results
in PA. Some of the functions so defined parallel ones that will result from recursive
functions. However, insofar as we have not yet proved the core result, we cannot use
it! So we are showing directly that PA gives the required results.

Uniqueness. It will be easiest to begin with the uniqueness clause. Where F .Ex; y; v/

is our formula,

9p9qŒˇ.p; q;;/ D g.Ex/ ^ .8i < y/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/ ^ ˇ.p; q; y/ D z�

we want PA ` 8m8nŒ.F .Ex; y;m/ ^ F .Ex; y; n// ! m D n�. The argument is
structured very much as for the parallel uniqueness case in Q (T12.12) except that
the argument is in PA and so by IN, and uniqueness conditions are simplified by the
use of function symbols. The argument is simplified — but that does not mean that
it is simple!

T13.22. With F .Ex; y; v/ as described above, PA ` 8m8nŒ.F .Ex; y;m/^F .Ex; y; n//

! m D n�.

CHAPTER 13. GÖDEL’S THEOREMS 650

First theorems of chapter 13

T13.1 For any recursively axiomatized theory T whose language includes LNT, G is true iff it is
unprovable in T (iff T ° G).

T13.2 If T is a recursively axiomatized sound theory whose language includes LNT, then T is
negation incomplete.

T13.3 Let T be any recursively axiomatized theory extending Q; then T ` G $

�9xPrft.x; pGq/.

T13.4 If T is a consistent, recursively axiomatized theory extending Q, then T 6` G .

T13.5 If T is an !-consistent, recursively axiomatized theory extending Q, then T 6` �G .

T13.6 Let T be any recursively axiomatized theory extending Q; then T ` R $

�9xRPrft.x; pRq/.

T13.7 If T is a consistent, recursively axiomatized theory extending Q, then T 6` R.

T13.8 If T is a consistent, recursively axiomatized theory extending Q, then T 6` �R.

T13.9 Let T be a recursively axiomatized theory extending Q. Then supposing T satisfies the
derivability conditions and so the K4 logic of provability, T ` Cont! �Prvt.pGq/.

T13.10 Let T be a recursively axiomatized theory extending Q. Then supposing T satisfies the
derivability conditions, if T is consistent, T 6` Cont.

T13.11 Let T be a recursively axiomatized theory extending Q. Then supposing T satisfies the
derivability conditions and so the K4 logic of provability, T ` Cont$ �Prvt.pContq/.

T13.12 Suppose T is a recursively axiomatized theory extending Q. Then if T ` P , then T ` �P .

T13.13 This lists a number of straightforward theorems of PA.

T13.14 For a defined symbol, with its associated axiom and conversion procedure, T 0 ` F 0 $ F .

T13.15 For a T and L, given a defined symbol with its associated axiom, and for any formula F

in the original L, T 0 ` F iff T ` F .

T13.16 For some defined symbols, with their associated axioms and conversion procedures, T 0 `
F 0 iff T ` F .

T13.17 If PA defines some h.Ex;w; Ez/ and g. Ey/, then PA defines f .Ex; Ey; Ez/ D h.Ex; g. Ey/; Ez/.

T13.18 If PA ` 9vQ.Ex; v/, then PA ` 9ŠvŒQ.Ex; v/ ^ .8z < v/�Q.Ex; v/�.

T13.19 Where m.Ex/ D �vQ.Ex; v/, (a) PA ` Q.Ex;m.Ex// ^ .8z < m.Ex//�Q.Ex; z/; (b) PA `
Q.Ex;m.Ex//; (c) PA ` .8z < m.Ex//�Q.Ex; z/; (d) PA ` Q.Ex; v/!m.Ex/ � v.

T13.20 (a) PA ` .�y � ;/Q.Ex;;; y/ D ;; (b) if PA ` .9v � t.u//Q.Ex; u; v/ then (i) PA defines
�vQ.Ex; u; v/ and (ii) PA ` .�v � t.u//Q.Ex; u; v/ D �vQ.Ex; u; v/.

CHAPTER 13. GÖDEL’S THEOREMS 651

For the zero case you need to show 8m8nŒ.F .Ex;;; m/ ^ F .Ex;;; n// ! m D n�.
This is simple enough and left as an exercise. Given the zero case, here is the main
argument by IN.

CHAPTER 13. GÖDEL’S THEOREMS 652

1. 8m8nŒ.F .Ex;;;m/^F .Ex;;; n//! m D n� zero case

2. 8m8nŒ.F .Ex; j;m/^F .Ex; j; n//! m D n� A (g!I)

3. F .Ex;Sj; u/^F .Ex;Sj; v/ A (g!I)

4. 9p9qŒˇ.p; q;;/ D g.Ex/^ .8i < Sj /h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/^ ˇ.p; q; Sj / D u� 3 ^E
5. 9p9qŒˇ.p; q;;/ D g.Ex/^ .8i < Sj /h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/^ ˇ.p; q; Sj / D v� 3 ^E
6. ˇ.a; b;;/ D g.Ex/^ .8i < Sj /h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/^ ˇ.a; b; Sj / D u A (g 49E)

7. ˇ.a; b;;/ D g.Ex/ 6 ^E
8. .8i < Sj /h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/ 6 ^E
9. ˇ.a; b; Sj / D u 6 ^E

10. ˇ.c; d;;/ D g.Ex/^ .8i < Sj /h.Ex; i; ˇ.c; d; i// D ˇ.c; d; Si/^ ˇ.c; d; Sj / D v A (g 59E)

11. ˇ.c; d;;/ D g.Ex/ 10 ^E
12. .8i < Sj /h.Ex; i; ˇ.c; d; i// D ˇ.c; d; Si/ 10 ^E
13. ˇ.c; d; Sj / D v 10 ^E
14. j < Sj T13.13h
15. h.Ex; j; ˇ.a; b; j // D ˇ.a; b; Sj / 8,14 (8E)
16. h.Ex; j; ˇ.c; d; j // D ˇ.c; d; Sj / 12,14 (8E)
17. k < j A (g (8I))

18. k < Sj 17, T13.13n
19. h.Ex; k; ˇ.a; b; k// D ˇ.a; b; Sk/ 8,18 (8E)

20. .8i < j /h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/ 17-19 (8I)
21. ˇ.a; b; j / D ˇ.a; b; j / DI
22. ˇ.a; b;;/ D g.Ex/^ .8i < j /h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/^ ˇ.a; b; j / D ˇ.a; b; j / 7,20,21 ^I
23. 9p9qŒˇ.p; q;;/ D g.Ex/^ .8i < j /h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/^ ˇ.p; q; j / D ˇ.a; b; j /� 22 9I
24. F .Ex; j; ˇ.a; b; j // 23 abv
25. k < j A (g (8I))

26. k < Sj 25, T13.13n
27. h.Ex; k; ˇ.c; d; k// D ˇ.c; d; Sk/ 12,26 (8E)

28. .8i < j /h.Ex; i; ˇ.c; d; i// D ˇ.c; d; Si/ 25-27 (8I)
29. ˇ.c; d; j / D ˇ.c; d; j / DI
30. ˇ.c; d;;/ D g.Ex/^ .8i < j /h.Ex; i; ˇ.c; d; i// D ˇ.c; d; Si/^ ˇ.c; d; j / D ˇ.c; d; j / 11,28,29 ^I
31. 9p9qŒˇ.p; q;;/ D g.Ex/^ .8i < j /h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/^ ˇ.p; q; j / D ˇ.c; d; j /� 30 9I
32. F .Ex; j; ˇ.c; d; j // 31 abv
33. ˇ.a; b; j / D ˇ.c; d; j / 2,24,32 8E
34. h.Ex; j; ˇ.c; d; j // D ˇ.a; b; Sj / 15,33DE
35. ˇ.a; b; Sj / D ˇ.c; d; Sj / 34,16DE
36. u D v 9,13,35DE

37. u D v 5,10-36 9E

38. u D v 4,6-37 9E

39. .F .Ex;Sj; u/^F .Ex;Sj; v//! u D v 3-38!I
40. 8m8nŒ.F .Ex;Sj;m/^F .Ex;Sj; n//! m D n� 39 8I

41. 8m8nŒ.F .Ex; j;m/^F .Ex; j; n//! m D n�!8m8nŒ.F .Ex;Sj;m/^F .Ex;Sj; n//! m D n� 2-40!I
42. 8yf8m8nŒ.F .Ex; y;m/^F .Ex; y; n//! m D n�!8m8nŒ.F .Ex;Sy;m/^F .Ex;Sy; n//! m D n�g 41 8I
43. 8y8m8nŒ.F .Ex; y;m/^F .Ex; y; n//! m D n� 1,42 IN
44. 8m8nŒ.F .Ex; y;m/^F .Ex; y; n//! m D n� 43 8E

CHAPTER 13. GÖDEL’S THEOREMS 653

As before, the key to this argument is attaining F .Ex; j; ˇ.a; b; j // and F .Ex; j; ˇ.c;

d; j // on lines (24) and (32). From these the assumption on (2) comes into play, and
the result follows with other equalities.

*E13.13. Complete the demonstration for T13.22 by completing the demonstration
of the zero case.

Existence. Considerably more difficult is the existential condition. To show this,
we must show the Chinese remainder theorem in PA. Though we have resources to
state the ˇ-function, we do not yet have all that is required to duplicate reasoning
from the beta function reference (for example, factorial). Thus we shall have to
proceed in a different way. In particular, we specially depend on the least common
multiple of a sequence of values. Again, we build by a series of results.

First, subtraction with cutoff. The definition is not recursive as before. However
the effect is the same: x :

� y works like subtraction when x � y, and otherwise goes
to ;.

*Def [:
�] PA ` v D x :

� y $ x D y C v _ .x < y ^ v D ;/

(i) PA ` 9vŒx D y C v _ .x < y ^ v D ;/�

(ii) PA ` 8m8nŒ.Œx D yCm_.x < y^m D ;/�^Œx D yCn_.x < y^n D ;/�/! m D n�

The proof of (i) and (ii) is left as an exercise. So PA defines (:
�). And it proves a

series of intuitive results.

*T13.23. The following result in PA:

(a) PA ` a � b ! a D b C .a
:
� b/

(b) PA ` b � a! a
:
� b D ;

(c) PA ` a :
� b � a

(d) PA ` .a � r ^ r � s/! r
:
� a � s

:
� a

(e) PA ` .a � r ^ r < s/! r
:
� a < s

:
� a

*(f) PA ` a > b ! a
:
� b > ;

(g) PA ` a :
� ; D a

(h) PA ` Sa :
� a D 1

CHAPTER 13. GÖDEL’S THEOREMS 654

(i) PA ` a > ; ! a
:
� 1 < a

(j) PA ` a � Sb ! a
:
� b D S.a

:
� Sb/

(k) PA ` a D Sa :
� 1

*(l) PA ` a � c ! .a
:
� c/C b D .aC b/

:
� c

(m) PA ` .a � b ^ b � c/! a
:
� .b

:
� c/ D .a

:
� b/C c

*(n) PA ` .a :
� b/

:
� c D a

:
� .b C c/

(o) PA ` .aC c/ :
� .b C c/ D a

:
� b

*(p) PA ` a � .b :
� c/ D a � b

:
� a � c

Hints. (f): with the assumption you can get both a D SjCb and a D bC.a :
�

b/; then you have what you need with T6.68. (l): with the assumption a � c
you have also a C b � c; so that both a D c C .a

:
� c/ and a C b D

c C Œ.a C b/
:
� c�; then DE and T6.68 do the work. (m): You can get this

with a couple applications of (l). (n): First, a � b C c _ a < b C c; in the
second case, a � b _ a < b; in each of these cases, both sides equal ;; for
the first main option, you will be able to show that .bCc/C Œ.a :

� b/
:
� c� D

.b C c/C Œa
:
� .b C c/� and apply T6.68. (p): First a D ; _ a > ;; in the

first case, both sides equal ;; then in the second case, b � c _ b < c; again
in the first of these cases, both sides equal ;; in the last case, you will be able
to show ac C a.b

:
� c/ D ac C .ab

:
� ac/ and apply T6.68.

Many of these state standard results for subtraction — except where the inequalities
are required to protect against cases when a :

� b goes to ;. (a) and (b) extract
basic information from the definition upon which rest depend. (c) - (k) are simple
subtraction facts. And (l) - (p) are some results for association and distribution.

Next factor. Again, consistent with remainder and quotient, we say mjn when
mC 1 divides n.

Def [j] PA ` mjn$ 9q.Sm � q D n/

Since factor is a relation, no condition is required over and above the axiom so that
the definition is good as it stands. And, again, PA proves a series of results. These
are reasonably intuitive. Observe, however that our choice to divide bymC 1 means
that, as in T13.24a below, ;ja.

CHAPTER 13. GÖDEL’S THEOREMS 655

*T13.24. The following result in PA:

(a) PA ` ;ja

(b) PA ` ajSa

(c) PA ` aj;

(d) PA ` ajb ! aj.b � c/

(e) PA ` .a > ; ^ b > ;/! Œ.a
:
� 1/jc ^ .b :

� 1/jd ! .ab
:
� 1/jcd �

(f) PA ` .ajSb ^ bjc/! ajc

*(g) PA ` ajb ! Œaj.b C c/$ ajc�

(h) PA ` .b � c ^ ajb/! Œaj.b
:
� c/$ ajc�

(i) PA ` b > a! b − Sa

(j) PA ` ajb $ rm.b; a/ D ;

*(k) PA ` rmŒaC .y � Sd/; d � D rm.a; d/

*(l) PA ` Sd � z � a! z � qt.a; d/

*(m) PA ` a � y � Sd ! rmŒa :
� .y � Sd/; d � D rm.a; d/

Hints. (g): The assumption ajb gives Sa � j D b; then aj.b C c/ gives
Sa�k D bC c; you will have to show j � k so that lC j D k; ajc follows
with these; then ajc gives Sa � k D c and you will be able to substitute for
both b and c to get .Sa � j / C .Sa � k/ D b C c; the result follows with
this. (k): From the assumption you have a D .Sd � j /C r ^ r < Sd ; and if
you assert aC .y � Sd/ D aC .y � Sd/ byDI you should be able to show
aC.y�Sd/ D Sd�.jCy/Cr^r < Sd ; then with jCy � aC.y�Sd/ you
can apply (9I) and the definition. (l): With r D rm.a; d/ and q D qt.a; d/
by Def [qt] you have a D Sd � qC r ^ r < Sd ; assume Sd � z � a for!I
and z > q for �I; then you should be able to show a < Sd � z to contradict
the assumption for!I. (m): Again let r D rm.a; d/ and q D qt.a; d/; then
by Def [qt] you have a D Sd � q C r ^ r < Sd ; assume a � y � Sd for
!I; you should be able to show a

:
� .y � Sd/ D Sd.q

:
� y/C r ^ r < Sd

toward .9w < a
:
� .y � Sd//Œa

:
� .y � Sd/ D Sd � w C r ^ r < Sd� by

(9I), to apply Def [rm].

CHAPTER 13. GÖDEL’S THEOREMS 656

So (a) (the successor of) ; divides any number; (b) (the successor of) a divides Sa;
and (c) any number divides into ; zero times. (d) if a divides b then it divides b � c;
(e) where subtraction compensates for successor, if a divides c and b divides d , ab
divides cd ; and (f) if a divides Sb and (the successor of) b divides c, then a divides
c. (g) is like .b C c/=a D b=a C c=a so that dividing the sum breaks into dividing
the members; (h) is the comparable principle for subtraction. From (i) if b > a, then
(the successor of) b does not divide Sa. (j) makes the obvious connection between
reminder and factor. In (k) the remainder of the second part .y � Sd/ is ; so that
the remainder of the sum is just whatever there is from the first rm.a; d/; (m) is the
comparable principle for subtraction. The intervening (l) is required for (m) and tells
us that if z multiples of (the successor of) d come to � a, then z � qt.a; d/— since
the quotient maximizes the multiples of (the successor of) d that are � a.

And now PA defines relations prime and relatively prime. Prime has its usual
sense. And numbers are relatively prime when they have no common divisor other
than one — though they may not therefore individually be prime. Though division is
by successor, these notions are given their usual sense by adjusting the numbers that
are said to “divide.”

Def [Pr] PA ` Pr.n/$ 1 < n ^ 8xŒxjn! .x D ; _ Sx D n/�

Def [Rp] PA ` Rp.a; b/$ 8xŒ.xja ^ xjb/! x D ;�

Since these are relations, no condition is required over and above the axioms. For any
b we get Rp.1; b/ since the only number that divides both 1 and b is (the successor
of) ;. And Rp.;; 1/: anything divides ;, so (the successor of) ; divides ;; and the
only number that divides S; is (the successor of) ;. But for a ¤ ; (and so Sa ¤ 1/,
�Rp.;; Sa/, for when a ¤ ;, both ; and Sa are divided by (the successor of) a and
so by a number other than (the successor of) ;.

It will be helpful to introduce a couple of subsidiary notions. When G.a; b; i/
we say that i is good, and d.a; b/ is (zero or) the least such good when a and b are
greater than zero.

Def [G] PA ` G.a; b; i/$ 9x9y.ax C i D by/

Def [d] PA ` d.a; b/ D �vŒ.a > ; ^ b > ;/! G.a; b; Sv/�

(i) PA ` 9vŒ.a > ; ^ b > ;/! G.a; b; Sv/�

CHAPTER 13. GÖDEL’S THEOREMS 657

Begin with b D ; _ b > ; and go for the existentially quantified goal. In
the second case, there is some l such that b D Sl and it is easy to show
a � ; C b D b � 1 and generalize.

If a or b is not greater than ; then d.a; b/ is just ;. Otherwise, the notion is more
significant.

Again, PA proves a series of results. Observe again that if we are interested in
whether a prime divides some b we are interested in whether Pr.Sa/ ^ ajb since it
is the successor that is divided into b.

*T13.25. The following result in PA:

(a) PA ` �Pr.;/

(b) PA ` �Pr.1/

(c) PA ` Pr.2/

*(d) PA ` 8xŒx > 1! 9z.Pr.Sz/ ^ zjx/�

*(e) PA ` Rp.a; b/$ �9xŒPr.Sx/ ^ xja ^ xjb�

(f) PA ` 8x8yŒG.a; b; x/! G.a; b; x � y/�

*(g) PA ` .a > ; ^ b > ;/ ! 8x8yŒ.G.a; b; x/ ^ G.a; b; y/ ^ x � y/ !

G.a; b; x
:
� y/�

*(h) PA ` ŒRp.a; b/ ^ a > ; ^ b > ;�! G.a; b; 1/

*(i) PA ` ŒPr.Sa/ ^ aj.b � c/�! .ajb _ ajc/

Hints. (c): This is straightforward with T13.24i. (d): You can do this by the
second form of strong induction T13.13ag; the zero case is trivial; to reach
8xf.8y � x/Œy > 1 ! 9z.Pr.Sz/ ^ zjy/� ! ŒSx > 1 ! 9z.Pr.Sz/ ^
zjSx/�g assume .8y � k/Œy > 1 ! 9z.Pr.Sz/ ^ zjy/� and Sk > 1;
then Sk is prime or not; if it is prime, the result is immediate; if it is not,
you will be able to show Sj � k and apply the assumption. (e): From
left to right, under the assumption for$I assume 9xŒPr.Sx/ ^ xja ^ xjb�
and Pr.Sj / ^ j ja ^ j jb for �I and 9E; then you should be able to show
that 1 < Sj and 1 – Sj ; in the other direction, under the assumption for
$I and then j ja ^ j jb for !I, j D ; _ j > ; by T13.13f; the latter is
impossible, which gives the result you want. (g): Under the assumptions

CHAPTER 13. GÖDEL’S THEOREMS 658

a > ; ^ b > ; and then G.a; b; i/ ^ G.a; b; j / ^ i � j for!I and then
ap C i D bq and ar C j D bs for 9E, starting with .bq C bar/C .bsa :

�

bs/ D .bq C bar/C .bsa
:
� bs/ by DI, with some effort, you will be able

to show aŒ.p C bs/C .br
:
� r/�C .i

:
� j / D bŒ.q C ar/C .sa

:
� s/� and

generalize. (i): Under the assumption Pr.Sa/^ aj.b � c/ assume a − b with
the idea of obtaining a − b ! ajc for Impl; set out to show Rp.b; Sa/ for an
application of T13.25h to get 9x9yŒbx C 1 D Sa � y�; with this, you will
have bp C 1 D Sa � q by 9E; and you should be able to show ajcbp and
aj.cbp C c/ for an application of T13.24g.

T13.25h is important. But the argument is relatively complex; it has the fol-
lowing main stages.

1. Œ.a > ; ^ b > ;/! G.a; b; Sd.a; b//� ^ .8y < d.a; b//�Œ.a > ; ^ ^b > ;/! G.a; b; Sy/� def d

2. .a > ; ^ b > ;/! G.a; b; Sd.a; b// 1 ^E
3. Rp.a; b/ ^ a > ; ^ b > ; A (g!I)

4. Rp.a; b/ 3 ^E
5. 8xŒ.xja ^ xjb/! x D ;� 4 def
6. a > ; ^ b > ; 3 ^E
7. G.a; b; Sd.a; b// 2,6!E
8. G.a; b; a/ [a]
9. G.a; b; b/ [b]

10. 8xŒG.a; b; x/! d.a; b/jx� [c]
11. d.a; b/ja 8,10 8E
12. d.a; b/jb 9,10 8E
13. d.a; b/ja ^ d.a; b/jb 11,12 ^I
14. d.a; b/ D ; 5,13 8E
15. G.a; b; 1/ 7,14DE

16. ŒRp.a; b/ ^ a > ; ^ b > ;�! G.a; b; 1/ 3-15!I

Hint. For (c) let q D qt.i; d.a; b// and r D rm.i; d.a; b// then from the def-
initions you have i D .Sd.a; b/ � q/C r and r < Sd.a; b/ and from (1) of
the main argument .8y < d.a; b//�Œ.a > ; ^ b > ;/ ! G.a; b; Sy/�;
then under the assumption G.a; b; i/ for !I you should be able to show
G.a; b; i

:
� .Sd.a; b/ � q// using (6) from the main argument with (f) and

(g); but also i :
� .Sd.a; b/ � q/ D r so that G.a; b; r/. Now the assumption

that r is a successor leads to contradiction; so r D ; and d.a; b/ji .

T13.25(a) - (c) are simple particular facts. From (d) every number greater than one
is divided by some prime (which may or may not be itself). From (e), a and b are

CHAPTER 13. GÖDEL’S THEOREMS 659

relatively prime iff there is no prime that divides them both; in one direction this is
obvious — if a prime divides them both, then they are not relatively prime; in the
other direction, if some number other than (the successor of) zero divides them both,
then some prime of it divides them both. (f) and (g) let you manipulate G; they are
required for (h) which is in turn required for (i). (h) is an instance of Bézout’s lemma
according to which there are x and y such that ax C d D by when d is the greatest
common divisor of a and b; if a and b are relatively prime, their greatest common
divisor is one. (i) is sometimes known as Euclid’s lemma: if Sa is prime and Sa
divides b � c then Sa divides b or c; if Sa is prime and divides b � c then it must
appear in the factorization of b or the factorization of c — so that it divides one or
the other.

Now least common multiple. Given a function m.i/, lcmfm.i/ j i < kg is the
least y > ; such that for any i < k, Sm.i/ divides y. We avoid worries about the
case whenm.i/ D ; by our usual account of factor. And since y > ; it is possible to
define a predecessor to the least common multiple, helpful when switching between
the numerator and denominator of fractions.

*Def [lcm] lcmfm.i/ j i < kg D �vŒv > ; ^ .8i < k/m.i/jv�

(i) PA ` 9xŒx > ; ^ .8i < k/m.i/jx�

Hint: This is an argument by IN on k. For the basis, you may assert that 1 >
;; then the argument is trivial. For the main argument, under the assumptions
9xŒx > ;^.8i < j /m.i/jx� for!I and a > ;^.8i < j /m.i/ja for 9E, set
out to show a � Sm.j / > ; ^ .8i < Sj /m.i/j.a � Sm.j // and generalize.

Because lcm is defined by minimization, only the existence condition is required. As
a matter of notation, let l Œm�k D lcmfm.i/ j i < kg and, where m is understood, let
lk D lcmfm.i/ W i < kg.

Def [plm] v D plmfm.i/ j i < kg $ Sv D lcmfm.i/ j i < kg

(i) PA ` 9v.Sv D lk/

(ii) PA ` 8x8yŒ.Sx D lk ^ Sy D lk/! x D y�

Again, let pŒm�k D plmfm.i/ j i < kg and, wherem is understood, pk D plmfm.i/ j
i < kg.

*T13.26. The following result in PA:

CHAPTER 13. GÖDEL’S THEOREMS 660

(a) PA ` l; D 1

(b) PA ` j < k ! m.j /jlk

*(c) PA ` .8i < k/m.i/jx ! pkjx

*(d) PA ` 8nŒ.Pr.Sn/ ^ njlk/! .9i < k/njSm.i/�

Hints. (c): Let q D qt.x; pk/ and r D rm.x; pk/; assume .8i < k/m.i/jx

for!I; you have .8y < lk/�Œy > ; ^ .8i < k/m.i/jy� from def lk with
T13.19c; you should be able to apply this to show that r D ; and so that pkjx.
(d): This is an induction on k. The basis is straightforward given l; D 1 from
T13.26a; for the main argument, you have .8i < j /m.i/jlj from def lj ;
under assumptions 8nŒ.Pr.Sn/ ^ njlj /! .9i < j /njSm.i/� and Pr.Sa/ ^
ajlSj for!I, you should be able to use T13.26c to show pSj j.lj � Sm.j //;
and from this ajlj _ ajSm.j /; in either case, you have your result.

(a) for any function m.i/, the least common multiple for i < 0 defaults to 1. (b)
applies the definition for the result that when j < k,m.j / divides lcmfm.i/ j i < kg.
(c) is perhaps best conceived by prime factorization: the least common multiple of
some collection has all the primes of its members and no more; but any number into
which all the members of the collection divide must include all those primes; so the
least common multiple divides it as well. (d) is the related result that if a prime
divides the least common multiple of some collection, then it divides some member
of the collection.

Finally we arrive at the Chinese Remainder Theorem. Let m.i/ be a function
such that (successors of) its values are relatively prime; h.i/ is a function whose
values are to be matched by remainders. Then the theorem tells us that if for all
i < k, m.i/ > ; and m.i/ � h.i/, and if for all i < j < k, Rp.Sm.i/; Sm.j //,
then 9p.8i < k/rm.p;m.i// D h.i/. So the remainder of p and m.i/ matches the
value of h.i/.

*T13.27. PA ` Œ.8i < k/.m.i/ > ;^m.i/ � h.i//^8i8j.i < j^j < k ! Rp.Sm.i/; Sm.j ///�
! 9p.8i < k/rm.p;m.i// D h.i/. Let,

A.k/Ddef .8i < k/.m.i/ > ;^m.i/ � h.i//^8i8j.i < j ^j < k ! Rp.Sm.i/; Sm.j ///

B.k/ Ddef 9p.8i < k/rm.p;m.i// D h.i/.

So we want PA ` A.k/! B.k/. By induction on n we show 8nŒn � k !
.A.n/ ! B.n//�. The result follows immediately with k � k. Here is the
overall structure of the argument:

CHAPTER 13. GÖDEL’S THEOREMS 661

1. ; � k! .A.;/! B.;// [a]

2. a � k! .A.a/! B.a// A (g!I)

3. Sa � k A (g!I)

4. a < k 3 T13.13l
5. a � k 4 T13.13m
6. A.a/! B.a/ 2,5!E
7. A.Sa/ A (g!I)

8. Œ.8i < a/.m.i/ > ; ^m.i/ � h.i//^8i8j..i < j ^ j < a/! Rp.Sm.i/; Sm.j ///�! 6 abv
9p.8i < a/rm.p;m.i// D h.i/

9. .8i < Sa/.m.i/ > ; ^m.i/ � h.i//^8i8j..i < j ^ j < Sa/! Rp.Sm.i/; Sm.j /// 7 abv
10. .8i < Sa/.m.i/ > ; ^m.i/ � h.i// 9 ^E
11. 8i8j..i < j ^ j < Sa/! Rp.Sm.i/; Sm.j /// 9 ^E
12. 9p.8i < a/rm.p;m.i// D h.i/ [b]
13. .8i < a/rm.r;m.i// D h.i/ A (g 129E)

14. Rp.lŒm�a; Sm.a// [c]
15. Sm.a/ > ; T13.13e
16. la > ; def la
17. G.la; Sm.a/; 1/ 14,15,16 T13.25h
18. G.la; Sm.a/; r C .la

:
� 1/� h.a// 17 T13.25f

19. 9x9y.la � xC Œr C .la
:
� 1/� h.a/� D Sm.a/� y/ 18 defG

20. la � bC Œr C .la
:
� 1/� h.a/� D Sm.a/� c A (g 199E)

21. s D la � .bC h.a//C r def
22. s D Sm.a/� c C h.a/ [d]
23. .8i < Sa/rm.s;m.i// D h.i/ [e]
24. 9p.8i < Sa/rm.p;m.i// D h.i/ 23 9I
25. B.Sa/ 24 abv

26. B.Sa/ 19,20-25 9E

27. B.Sa/ 12,13-26 9E

28. A.Sa/! B.Sa/ 7-27!I

29. Sa � k! .A.Sa/! B.Sa// 3-28!I

30. Œa � k! .A.a/! B.a//�! ŒSa � k! .A.Sa/! B.Sa//� 2-29!I
31. 8n.Œn � k! .A.n/! B.n//�! ŒSn � k! .A.Sn/! B.Sn//�/ 30 8I
32. .8n � k/.A.n/! B.n// 1,31 IN
33. k � k T13.13m
34. A.k/! B.k/ 32,33 (8E)

Hints. (c): Suppose otherwise; with T13.25e there is a u such that Pr.Su/ ^
ujla^ujSm.a/; then with T13.26d there is a v < a such that ujSm.v/ so that
with (11) Rp.Sm.v/; Sm.a//. But this is impossible with ujSm.a/, ujSm.v/
and T13.25e. (d): By Def [lcm], la > ; so that h.a/la > h.a/. Then with
T13.23a and T13.23p you can show s D .la�bCŒrC.la

:
� 1/�h.a/�/Ch.a/

and apply (20). (e): Suppose for (8I) u < Sa; then u < a_u D a. In the first
case, with T13.26b and T13.24d m.u/jla.b C h.a//; so that there is a v such
that Sm.u/v D la.b C h.a//; then using (21) and T13.24k, rm.d;m.u// D

CHAPTER 13. GÖDEL’S THEOREMS 662

rm.s;m.u//; so that you can apply (13). In the second case, with (22) and
T13.24k rm.d;m.u// D rm.h.u/;m.u//; but from (10), m.u/ � h.u/ and
you will be able to show that rm.h.u/;m.u// D h.u/.

The core of this derivation is to obtain (21) and (22) and from them (23). For a claim
about all i < Sa, s appears in the forms from both (21) and (22). For any i < a and
x, m.i/ divides lax evenly; so m.i/ divides the first term from (21) evenly; so the
remainder ofm.i/ and s is the same as the remainder ofm.i/ with r — and with (13)
this is just h.i/. But the multiplier bC h.a/ is chosen so that from (20) and (21), we
get (22); so when i D a, m.i/ divides the first term evenly, and since m.i/ � h.a/
again the remainder ofm.i/ and s is h.i/. Putting these together, for any i < Sa, the
remainder of m.i/ and s is h.i/. The “trick” to this is in the construction of s so that
remainders for i < a stay the same, but the remainder at a is h.a/.12

For our final result in this section, we require a couple notions for maximum
value. First maxp for the greatest of a pair of values, and then maxs for the maximum
from a set.

Def [maxp] PA ` maxp.x; y/ D �vŒv � x ^ v � y�

(i) PA ` 9vŒv � x ^ v � y�

Hint: x � y _ y > x; in either case the result is easy.

Def [maxs] PA ` maxsfm.i/ j i < kg D �vŒ.8i < k/m.i/ � v�

(i) PA ` 9vŒ.8i < k/m.i/ � v�

Hint: First obtain maxp and T13.28a. Then the argument is by IN on k.
For the show you will have assumptions of the sort .8i < j /m.i/ � l and
a < Sj ; then a < j _ a D j ; in either case you will be able to show that
m.a/ � maxp.l; m.j //.

So maxp.x; y/ is the maximum of x and y, and maxsfm.i/ j i < kg is the maximum
from m.i/ with i < k. As a matter of notation, let maxsŒm�k D maxsfm.i/ j i < kg
and where m is understood, maxsk D maxsfm.i/ j i < kg. A couple of results are
immediate with T13.19b.

T13.28. The following result in PA.

12For this construction see Boolos, The Logic of Provability, 30-31.

CHAPTER 13. GÖDEL’S THEOREMS 663

(a) PA ` maxp.x; y/ � x ^ maxp.x; y/ � y

(b) PA ` .8i < k/m.i/ � maxsk

These simply state the obvious: that the maximum is greater than or equal to the
rest. From (a) the maximum is the greater of the the two in the pair; from (b) the
maximum is the greatest of the values of the function.

Now we are in a position to generate some results for the ˇ function. With values
of q and m.i/ as below, we may demonstrate the antecedent to the CRT (T13.27),
and so obtain its consequent — where this is a result for the ˇ-function.

*T13.29. PA ` 9p9q.8i < k/ˇ.p; q; i/ D h.i/.

Let r Ddef maxp.k;maxsŒh�k/;

s Ddef Sr ;

q Ddef lcmfi j i < sg;

m.i/ Ddef q � Si .

Recall from Def [beta] that PA ` ˇ.p; q; i/ D rm.p; q � Si/. And we may
reason,

1. .8i < k/.m.i/ > ; ^m.i/ � h.i// [i]
2. 8i8j Œ.i < j ^ j < k/! Rp.Sm.i/; Sm.j //� [ii]
3. 9p.8i < k/rm.p;m.i// D h.i/ 1,2 T13.27
4. m.i/ D q � Si def
5. 9p.8i < k/rm.p; q � Si/ D h.i/ 3,4DE
6. ˇ.p; q; i/ D rm.p; q � Si/ def
7. 9p.8i < k/ˇ.p; q; i/ D h.i/ 5,6DE
8. .8i < k/ˇ.p; q; i/ D h.i/ A (g 79E)

9. 9q.8i < k/ˇ.p; q; i/ D h.i/ 8 9I
10. 9p9q.8i < k/ˇ.p; q; i/ D h.i/ 9 9I

11. 9p9q.8i < k/ˇ.p; q; i/ D h.i/ 7,8-10 9E

So the demonstration reduces to that of (i) and (ii), the two conjuncts to the
antecedent of CRT (T13.27). (i): Under the assumption j < k for (8I) it
will be easy to show m.j / > ;; then you will be able to use T13.28 to show
h.j / < s; but also with T13.26b that r jq and from this that s � q which
gives s � q�Sj and the result you want. (ii): Here is the main outline of the
argument.

CHAPTER 13. GÖDEL’S THEOREMS 664

1. i < j ^ j < k A g!I

2. i < j 1 ^E
3. j < k 1 ^E
4. �Rp.Sm.i/; Sm.j // A (c �I)

5. 9xŒPr.Sx/^ xjS.q � Si/^ xjS.q � Sj/� 4 T13.25e
6. Pr.Sa/^ ajS.q � Si/^ ajS.q � Sj/ A (c 59E)

7. Pr.Sa/ 6 ^E
8. ajS.q � Si/ 6 ^E
9. ajS.q � Sj/ 6 ^E

10. ajq.j
:
� i/ [a]

11. ajq _ aj.j
:
� i/ 7,10 T13.25i

12. ajq A (g 11_E)

13. ajq 12 R

14. aj.j
:
� i/ A (g 11_E)

15. ajq [b]

16. ajq 11,12-13,14-15 _E
17. aj.q � Si/ 16 T13.24d
18. S.q � Si/ > q � Si T13.13h
19. S.q � Si/ � q � Si 18 T13.13m
20. aj.S.q � Si/

:
� .q � Si// 19,8,17 T13.24h

21. aj1 20 T13.23h
22. S; < Sa def Pr
23. ; < a 22 T13.13k
24. a − 1 23 T13.24i
25. ? 21,24?I

26. ? 5,6-25 9E

27. Rp.Sm.i/; Sm.j // 4-26�E

28. .i < j ^ j < k/! Rp.Sm.i/; Sm.j //� 1-27!I
29. 8i8j Œ.i < j ^ j < k/! Rp.Sm.i/; Sm.j //� 28 8I

Hints. (a): With i < j you will be able to show aj.S.q � Sj /
:
� S.q � Si//;

and with some work that S.q � Sj / :
� S.q � Si/ D q.j

:
� i/. (b): With

i < j , you have j :
� i > ;; so there is an l such that Sl C ; D j

:
� i ; you

will be able to show ajSl and with T13.26b, l jq so with T13.24f, ajq.

Now a theorem that uses this result to show that a ˇ-function for values < k can
always be extended to another like it but with an arbitrary kth value. We show that
given ˇ.a; b; i/ there are sure to be p and q such that ˇ.p; q; i/ is like ˇ.a; b; i/ for
i < k and for arbitrary n, ˇ.p; q; k/ D n. This is because we may define a function h
which is like ˇ.a; b; i/ for i < k and otherwise n— and find p; q such that ˇ.p; q; i/
matches it. As a preliminary,

Def [h.i/] PA ` v D h.i/$ Œ.i < k ^ v D ˇ.a; b; i// _ .i � k ^ v D n/�

CHAPTER 13. GÖDEL’S THEOREMS 665

(i) PA ` 9vŒ.i < k ^ v D ˇ.a; b; i// _ .i � k ^ v D n/�

(ii) PA ` 8x8yŒ.Œ.i < k ^ x D ˇ.a; b; i//_ .i � k ^ x D n/�^ Œ.i < k ^ y D
ˇ.a; b; i// _ .i � k ^ y D n/�/! x D y�

Then,

*T13.30. PA ` 9p9qŒ.8i < k/ˇ.p; q; i/ D ˇ.a; b; i/ ^ ˇ.p; q; k/ D n�.

Hints: From Def [h.i/] you have .k < k ^ h.k/ D ˇ.a; b; k// _ .k � k ^

h.k/ D n/ and .l < k ^ h.l/ D ˇ.a; b; l// _ .l � k ^ h.l/ D n/; and from
T13.29 applied to Sk, 9p9q.8i < Sk/ˇ.p; q; i/ D h.i/; then with .8i <
Sk/ˇ.c; d; i/ D h.i/ for 9E, you will be able to show that ˇ.c; d; k/ D n

and under l < k for (8I) that ˇ.c; d; l/ D ˇ.a; b; l/.

For application of this theorem, it is important that free variables are universally
quantified. So the theorem is effectively 8k8n8a8b9p9qŒ.8i < k/ˇ.p; q; i/ D

ˇ.a; b; i/ ^ ˇ.p; q; k/ D n�

And finally the result we have been after in this section: As before, let F .Ex; y; v/

be our formula,

9p9qŒˇ.p; q;;/ D g.Ex/ ^ .8i < y/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/ ^ ˇ.p; q; y/ D v�

Then we want, PA ` 9vF .Ex; y; v/.

*T13.31. For F as above, PA ` 9vF .Ex; y; v/.

Let F .Ex; y; v/ be as above; the argument is by IN on y. The zero case is left
as an exercise. Here is the main argument.

CHAPTER 13. GÖDEL’S THEOREMS 666

1. 9vF .Ex;;; v/ zero case

2. 9vF .Ex; j; v/ A (g!I)

3. 9v9p9qŒˇ.p; q;;/ D g.Ex/^ .8i < j /h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/^ ˇ.p; q; j / D v� 2 abv
4. ˇ.a; b;;/ D g.Ex/^ .8i < j /h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/^ ˇ.a; b; j / D z A (g 39E)

5. ˇ.a; b;;/ D g.Ex/ 4 ^E
6. .8i < j /h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/ 4 ^E
7. 9p9qŒ.8i < Sj /ˇ.p; q; i/ D ˇ.a; b; i/^ ˇ.p; q; Sj / D h.Ex; j; ˇ.a; b; j //� T13.30 8E
8. .8i < Sj /ˇ.c; d; i/ D ˇ.a; b; i/^ ˇ.c; d; Sj / D h.Ex; j; ˇ.a; b; j // A (g 79E)

9. .8i < Sj /ˇ.c; d; i/ D ˇ.a; b; i/ 8 ^E
10. ˇ.c; d; Sj / D h.Ex; j; ˇ.a; b; j // 8 ^E
11. ; < Sj T13.13e
12. ˇ.c; d;;/ D ˇ.a; b;;/ 9,11 (8E)
13. ˇ.c; d;;/ D g.Ex/ 5,12DE
14. l < Sj A (g (8I))

15. ˇ.c; d; l/ D ˇ.a; b; l/ 9,14 (8E)
16. l < j _ l D j 14 T13.13n
17. l < j A (g 16_E)

18. h.Ex; l; ˇ.a; b; l// D ˇ.a; b; Sl/ 6,17 (8E)
19. Sl < Sj 17 T13.13k
20. ˇ.c; d; Sl/ D ˇ.a; b; Sl/ 9,19 8E
21. h.Ex; l; ˇ.a; b; l// D ˇ.c; d; Sl/ 18,20DE

22. l D j A (g 16_E)

23. h.Ex; l; ˇ.a; b; l// D ˇ.c; d; Sl/ 10,22DE
24. h.Ex; l; ˇ.c; d; l// D ˇ.c; d; Sl/ 15,23DE

25. h.Ex; l; ˇ.c; d; l// D ˇ.c; d; Sl/ 16,17-21,22-24 _E

26. .8i < Sj /h.Ex; i; ˇ.c; d; i// D ˇ.c; d; Si/ 14-25 (8I)
27. ˇ.c; d; Sj / D ˇ.c; d; Sj / DI
28. ˇ.c; d;;/ D g.Ex/^ .8i < Sj /h.Ex; i; ˇ.c; d; i// D ˇ.c; d; Si/^ ˇ.c; d; Sj / D ˇ.c; d; Sj / 13,26,27 ^I
29. 9v9p9qŒˇ.p; q;;/ D g.Ex/^ .8i < Sj /h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/^ ˇ.p; q; Sj / D v� 28 9I
30. 9vF .Ex;Sj; v/ 29 abv

31. 9vF .Ex;Sj; v/ 7,8-30 9E

32. 9vF .Ex;Sj; v/ 3,4-31 9E

33. 9vF .Ex; j; v/! 9vF .Ex;Sj; v/ 2-32!I
34. 8yŒ9vF .Ex; y; v/! 9vF .Ex;Sy; v/� 33 8I
35. 9vF .Ex; y; v/ 1,34 IN

From the assumption, there are a, b such that the ˇ-function has the right features
for every i < j . With T13.30 there are c, d such that the ˇ-function has the right
features for i < Sj . The derivation establishes that this is so and generalizes.

This completes the demonstration of T13.21! So for any friendly recursive func-
tion r.Ex/ and original formula R.Ex; v/ by which it is expressed and captured, PA
defines a function r.Ex/ such that PA ` v D r.Ex/$ R.Ex; v/. In particular, then, PA

CHAPTER 13. GÖDEL’S THEOREMS 667

defines functions corresponding to all the primitive recursive functions from chap-
ter 12.

In addition, say a recursive relation is friendly iff it has a friendly characteristic
function. Then as a simple corollary, PA defines relations corresponding to each
friendly recursive relation, equivalent to the original formulas used to express them.

T13.32. For any friendly recursive relation R.Ex/ with characteristic function chR.Ex/,
PA defines a relation R.Ex/ such that PA ` R.Ex/ $ chR.Ex/ D ;. As a
simple corollary, where R.Ex/ is originally captured by R.Ex;;/, PA ` R.Ex/$
R.Ex;;/.

Suppose a friendly recursive relation R has recursive characteristic function
chR.Ex/. Since R is friendly, it has a friendly characteristic function that is
defined in PA. Set,

PA ` R.Ex/$ chR.Ex/ D ;

Then PA definesR.Ex/. In fact, however, for relations defined in chapter 12 we
will want to define relations whose structure matches the structure of func-
tions there defined. For this, it will be helpful to obtain the same result by an
(informal) induction.

(a) Say an atomic recursive relation is one like EQ, LEQ or LESS whose characteris-
tic function does not depend on the characteristic functions of other recursive
relations. Then let,

PA ` R.Ex/$ chR.Ex/ D ;

(b) Now suppose PA ` P1.Ex/ $ chP1
.Ex/ D ; and . . . and PA ` Pn.Ex/ $

chPn
.Ex/ D ;. And consider a recursive operator OP.P1.Ex/ : : : Pn.Ex// with

characteristic function f.chP1.Ex/ : : : chPn.Ex//. Since f.chP1.Ex/ : : : chPn.Ex// is
friendly, PA defines f.Ex/. Let cP.Ex/ D �vŒ.P.Ex/^ v D ;/_ .�P.Ex/^ v D
1/� and set,

PA ` Op.P1.Ex/ : : :Pn.Ex//$ f.cP1
.Ex/ : : : cPn

.Ex// D ;

From this axiom,Op is defined by an expression including cP1
: : : cPn

of which
P1 : : :Pn are parts. So it works like the axiom from 13.3.1. But by T13.38
(which we shall see shortly), PA ` chP.Ex/ D ; _ chP.Ex/ D 1; and it is
easy to see, PA ` cP.Ex/ D chP.Ex/; so that PA ` Op.P1.Ex/ : : :Pn.Ex// $
f.chP1

.Ex/ : : : chPn
.Ex// D ;. Now for any R.Ex/ D OP.P1.Ex/ : : : Pn.Ex// set,

CHAPTER 13. GÖDEL’S THEOREMS 668

PA ` R.Ex/$ Op.P1.Ex/ : : :Pn.Ex//

Then PA ` R.Ex/ $ f.chP1
.Ex/ : : : chPn

.Ex// D ;; which is to say, PA `
R.Ex/$ chR.Ex/ D ;.

(d) So for any primitive recursive relation defined in chapter 12, PA ` R.Ex/ $
chR.Ex/ D ;. Further, with T13.21, PA ` v D chR.Ex/ $ R.Ex; v/; so PA `
; D chR.Ex/$ R.Ex;;/; so PA ` R.Ex/$ R.Ex;;/.

So for example, from part (a) we have, say, PA ` Eq.Ex/ $ chEQ.Ex/ D ;. For part
(b), DSJ.P.Ex/; Q.Ex// has characteristic function times.chP.Ex/; chQ.Ex//; so we set PA `
Dsj.P.Ex/;Q.Ex// $ times.chP.Ex/; chQ.Ex// D ;; then where R.Ex/ D DSJ.P.Ex/; Q.Ex//,
PA ` R.Ex/$ Dsj.P.Ex/;Q.Ex//. Thus PA defines both functions and relations corre-
sponding to the friendly recursive functions and relations, equivalent to the original
formulas used to express and capture them.

*E13.14. Show (i) and (ii) for Def [:
�]. Then show T13.23 (a) and (o). Hard core:

show all of the results in T13.23.

*E13.15. Show T13.24d and T13.24i. Hard core: show all of the results in T13.24.

*E13.16. Provide a complete demonstration of T13.25h including the justification
for d . Hard core: Show all of the results from T13.25.

*E13.17. Show the condition for Def [lcm] and provide a demonstration for T13.26d.
Hard core: show all of the results for Def [lcm], Def [plm] and T13.26.

*E13.18. Provide derivations to show each of [a] - [e] to complete the derivation for
T13.27.

E13.19. Provide a derivation to show the condition of Def [maxs]. Hard core: Pro-
vide justifications for Def [maxs] and Def [maxp]; and show the results in
T13.28.

*E13.20. Complete the demonstration for T13.29.

CHAPTER 13. GÖDEL’S THEOREMS 669

Font conventions
At different stages, we employ different fonts for items of different sorts. For the
most part, this is straightforward. Here we collect our conventions together.

1. Expressions of symbolic object languages are given in italics; these include
the function (lowercase) and relation (first letter uppercase) symbols abbre-
viated or defined in Q and PA.

function, Relation

2. Objects from the semantic account are indicated by a sans-serif font; these in-
clude recursive functions (lowercase) and relations (small-caps) — and bold
when special symbols are used.

function, RELATION,

3. The language for description of expressions in the formal object language
uses script variables,

P ;p

4. The language for description of metalinguistic expressions uses Fraktur vari-
ables,

A; a

5. Function and relation symbols introduced into PA from recursive functions
and relations by T13.21 and T13.32 have their first character in a “hollow”
blackboard bold font — these are not automatically equivalent to ones that
may be described in (1), though we may set out to demonstrate equivalence.

function, Relation

6. Object expressions for computer languages are given in a typewriter font,

Expression

7. In addition, for informal inductions italic i; j generally index objects ar-
ranged in series, but i; j when the objects are specifically the members of N.

CHAPTER 13. GÖDEL’S THEOREMS 670

*E13.21. Show T13.30. Hard core: show the conditions for Def [h.i/].

*E13.22. Complete the demonstration of T13.31 by showing the zero case.

E13.23. Give the demonstration to show PA ` Op.P1.Ex/ : : :Pn.Ex// $ f.chP1
.Ex/

: : : chPn
.Ex// D ; from (b) of T13.32.

13.4 The Second Condition: �.P ! Q/! .�P ! �Q/

We turn now to demonstration of the second derivability condition. Again there is
some background — after which demonstration of the condition itself is straightfor-
ward. The overall idea is simple: Suppose both �.P ! Q/ and �P . Then there are j
and k such that PRFT.j; pP ! Qq/ and PRFT.k; pP q/. Intuitively, then, l D j?k?2pQq

numbers a proof of Q — for we prove P ! Q and P , so that Q follows immediately
as the last line by MP. So PRFT.l; pQq/, and �Q follows from the assumptions. The
task is to prove all of this in PA.

13.4.1 Some Applications

Having shown that PA defines recursive functions, we require some results about
them. To start, observe that plus.x; y/, say, is defined by a complex expression
through recursion, and so is not the same expression as our old friend x C y. Thus
it is not obvious that our standard means for manipulation of C apply to plus. We
could recover our ordinary results if we could show PA ` x C y D plus.x; y/. And
similar comments apply to other ordinary functions and relations. Thus initially we
seek to show that defined relations functions are equivalent to ones with which we
are familiar. Again many details are shifted to exercises and/or answers to exercises.

Equivalencies. We begin with equivalences between functions and relations al-
ready defined in PA, and ones that result by T13.21 and T13.32. So we begin with
functions and relations from LNT including S ,C, �,D, �, <, truth functional opera-
tors, bounded quantifiers and bounded minimization.

As a preliminary, we require a result that is fundamental to every case where a
function is defined by recursion. As above let F .Ex; y; v/ be,

9p9qŒˇ.p; q;;/ D g.Ex/ ^ .8i < y/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/ ^ ˇ.p; q; y/ D v�

CHAPTER 13. GÖDEL’S THEOREMS 671

and suppose PA ` v D f.Ex; y/ $ F .Ex; y; v/ so that f.Ex; y/ is defined by recur-
sion. Then the standard recursive conditions apply. That is,

T13.33. Suppose f.Ex; y/ is defined by g.Ex/ and h.Ex; y; u/ so that PA ` v D

f.Ex; y/$ F .Ex; y; v/. Then,

(a) PA ` f.Ex;;/ D g.Ex/

(b) PA ` f.Ex; S.y// D h.Ex; y;f.Ex; y//

Hint: (a) follows easily in 6 lines with 9p9qŒˇ.p; q;;/ D g.Ex/ ^ .8i <
;/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/ ^ ˇ.p; q;;/ D f.Ex;;/�. For (b),

1. 9p9qŒˇ.p; q;;/ D g.Ex/^ .8i < Sy/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/^ ˇ.p; q; Sy/ D f.Ex;Sy/� def

2. ˇ.a; b;;/ D g.Ex/^ .8i < Sy/h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/^ ˇ.a; b; Sy/ D f.Ex;Sy/ A (g 19E)

3. .8i < Sy/h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/ 2 ^E
4. y < Sy T13.13h
5. h.Ex; y; ˇ.a; b; y// D ˇ.a; b; Sy/ 3,4 (8E)
6. ˇ.a; b; Sy/ D f.Ex;Sy/ 2 ^E
7. f.Ex;Sy/ D h.Ex; y; ˇ.a; b; y// 5,6DE
8. ˇ.a; b;;/ D g.Ex/ 2 ^E
9. j < y A (g (8I))

10. j < Sy 9 and T13.13h
11. h.Ex; j; ˇ.a; b; j // D ˇ.a; b; Sj / 3,10 (8E)

12. .8i < y/h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/ 9-11 (8I)
13. ˇ.a; b; y/ D ˇ.a; b; y/ DI
14. ˇ.a; b;;/ D g.Ex/^ .8i < y/h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/^ ˇ.a; b; y/ D ˇ.a; b; y/ 8,12,13 ^I
15. 9p9qŒˇ.p; q;;/ D g.Ex/^ .8i < y/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/^ ˇ.p; q; y/ D ˇ.a; b; y/� 14 9I
16. f.Ex; y/ D ˇ.a; b; y/ 15 def
17. f.Ex;Sy/ D h.Ex; y;f.Ex; y// 7,16DE

18. f.Ex;S.y// D h.Ex; y;f.Ex; y// 1,2-17 9E

The key stages of this argument are at (7) which has the result with ˇ.a; b; y/
where we want f.Ex; y/ and then (16) which shows they are one and the same.

From this theorem, our defined functions behave like ones we have seen before, with
clauses for the basis and then for successor. This lets us manipulate the functions
very much as before. The importance of this point will emerge shortly, in application
to recursive cases.

With this theorem we are in a position to show that definitions of functions and
relations from chapter 12 are “coordinate” with definitions in PA.

CF The definition of a recursive function is coordinate with its definition in PA iff,

CHAPTER 13. GÖDEL’S THEOREMS 672

(i) f.Ex/ is an initial function init.Ex/ and f.Ex/ is init.Ex/

(c) f.Ex; Ey; Ez/ is defined from g.Ey/ and h.Ex;w; Ez/ by composition so that f.Ex; Ey; Ez/
D h.Ex; g.Ey/; Ez/, and for coordinate g.Ex/ and h.Ex;w; Ez/, PA ` f.Ex; Ey; Ez/
$ h.Ex;g. Ey/; Ez/.

(r) f.Ex; y/ is defined from g.Ex/ and h.Ex; y; u/ by recursion so that f.Ex; 0/ D
g.Ex/ and f.Ex;Sy/ D h.Ex; y; f.Ex; y// and for coordinate g.Ex/ and h.Ex; y; u/,
PA ` f.Ex;;/ D g.Ex/ and PA ` f.Ex; Sy/ D h.Ex; y;f.Ex; y//.

(m) f.Ex; y/ is defined from g.Ex; y/ by friendly regular minimization so that
f.Ex/ D �yŒg.Ex; y/� and for coordinate g.Ex; y/, PA ` f.Ex/ D �yŒg.Ex; y/�.

CR The definition of a recursive relation is coordinate with its definition in PA iff,

(a) R.Ex/ is an atomic ATOM.Ex/ and R.Ex/ is Atom.Ex/.

(o) R.Ex/ is defined from an operator OP and relations P1.Ex/. . . Pn.Ex/ so that
R.Ex/ is OP.P1.Ex/ : : : Pn.Ex// and for coordinateP1.Ex/ : : :Pn.Ex/, PA ` R.Ex/
$ Op.P1.Ex/ : : :Pn.Ex//.

T13.34. (a) For any friendly recursive function r.Ex/ and original formula R.Ex; v/ by
which it is expressed and captured, PA defines a coordinate function r.Ex/ such
that PA ` v D r.Ex/ $ R.Ex; v/. And (b) for any friendly recursive relation
R.Ex/with characteristic function chR.Ex/, PA defines a coordinate relationR.Ex/
such that PA ` R.Ex/$ chR.Ex/ D ;.

The argument is by simple review of arguments for T13.21 and T13.32 to-
gether with T13.33.

From this theorem we simply “write down” claims for defined functions and re-
leations directly from the recursive definitions. So, for example from the definition
for plus.x; y/ on p. 554, PA ` plus.x;;/ D idnt1

1.x/ and PA ` plus.x; Sy/ D
suc.idnt3

3.x; y;plus.x; y///. Again, the defined symbol plus is not the same as the
primitive symbol C. But now we are in a position to show that the functions are
equivalent.

T13.35. The following result in PA.

(a) PA ` suc.x/ D Sx
1. v D suc.x/$ Sx D v def suc
2. suc.x/ D suc.x/$ Sx D suc.x/ 1 8E
3. suc.x/ D suc.x/ DI
4. suc.x/ D Sx 2,3DE

CHAPTER 13. GÖDEL’S THEOREMS 673

(b) PA ` zero.x/ D ;

(c) PA ` idntj
k
.x1 : : : xj / D xk

(d) PA ` plus.x; y/ D x C y

(e) PA ` times.x; y/ D x � y

The first line of (a) is from T13.21. Arguments for (a) - (c) are very much the
same and nearly trivial. Arguments for (d) and (e) are by IN. Here is the case
for (d) as an example.

1. gplus.x/ D idnt11.x/ def from plus, T13.34
2. gplus.x/ D x 1 with T13.35c
3. plus.x;;/ D gplus.x/ T13.34
4. plus.x;;/ D x 3,2DE
5. xC; D x T6.41
6. plus.x;;/ D xC; 4,5DE
7. plus.x; j / D xC j A (g!I)

8. plus.x; Sj / D hplus.x; j;plus.x; j // T13.34
9. hplus.x; j; u/ D suc.idnt33.x; j; u// def from plus, T13.34

10. hplus.x; j; u/ D Su 9 with T13.35a,c
11. hplus.x; j;plus.x; j // D Splus.x; j / 10 8E
12. plus.x; Sj / D Splus.x; j / 8,11DE
13. plus.x; Sj / D S.xC j / 12,7DE
14. S.xC j / D xC Sj T6.42
15. plus.x; Sj / D xC Sj 13,14DE

16. Œplus.x; j / D xC j �! Œplus.x; Sj / D xC Sj � 7-15!I
17. 8y.Œplus.x; y/ D xC y�! Œplus.x; Sy/ D xC Sy�/ 16 8I
18. plus.x; y/ D xC y 6,17 IN

Again, we simply write down the expressions on (1) and (9) with T13.34; and
on (3) and (8) T13.34 makes the conditions for plus.x; y/ work like the ones
for xC y — so that with zero and inductive cases, the equivalence results by
IN.

So this theorem establishes the equivalences we expect for the defined symbols suc,
zero, idnt, plus and times. Again, C, � and the like are primitive symbols of LNT

where plus and times are defined according to our induction from the corresponding
recursive functions. Having shown that the functions are equivalent, however, we
may manipulate the one with all the results we have achieved for the other.

Some additional results will be facilitated by a couple of auxiliary definitions.
pred.y/, sg.y/ and csg.y/ are defined directly, without appeal to recursive functions
— but still behave as we expect.

CHAPTER 13. GÖDEL’S THEOREMS 674

Def [pred] PA ` pred.y/ D y :
� 1

Since this is a composition of functions, immediate by T13.17.

Def [sg] PA ` v D sg.y/$.y D ; ^ v D ;/ _ .y > ; ^ v D S;/

(i) PA ` 9vŒ.y D ; ^ v D ;/ _ .y > ; ^ v D 1/�

(ii) PA ` 8u8vfŒ..y D ; ^ u D ;/ _ .y > ; ^ u D 1// ^ ..y D ; ^ v D
;/ _ .y > ; ^ v D 1//�! u D vg

Def [csg] PA ` v D csg.y/$.y D ; ^ v D 1/ _ .y > ; ^ v D ;/

(i) PA ` 9vŒ.y D ; ^ v D 1/ _ .y > ; ^ v D ;/�

(ii) PA ` 8u8vfŒ..y D ; ^ u D 1/ _ .y > ; ^ u D ;// ^ ..y D ; ^ v D
1/ _ .y > ; ^ v D ;//�! u D vg

And some basic results on these notions,

T13.36. The following result in PA.

(a) PA ` pred.;/ D ;

(b) PA ` pred.1/ D ;

(c) PA ` y > ; ! Spred.y/ D y

(d) PA ` pred.Sy/ D y

(e) PA ` y D ; $ sg.y/ D ;

(f) PA ` y > ; $ sg.y/ D 1

(g) PA ` y D ; $ csg.y/ D 1

(h) PA ` y > ; $ csg.y/ D ;

(a) - (d) recover from the definition some basic results for pred. (e) and (f) extract
basic information for the behavior of sg; and then (g) and (h) for csg.

And given these notions in PA, we can build on them for another set of equiva-
lents.

CHAPTER 13. GÖDEL’S THEOREMS 675

*T13.37. The following result in PA.

(a) PA ` pred.y/ D pred.y/

*(b) PA ` subc.x; y/ D x :
� y

(c) PA ` absval.x - y/ D .x :
� y/C .y

:
� x/

(d) PA ` sg.y/ D sg.y/

(e) PA ` csg.y/ D csg.y/

*(f) PA ` Eq.x; y/$ x D y

(g) PA ` Leq.x; y/$ x � y

(h) PA ` Less.x; y/$ x < y

*(i) PA ` Neg.P.Ex//$ �P.Ex/

(j) PA ` Dsj.P.Ex/;Q. Ey//$ P.Ex/ _Q. Ey/

Hints. (b): This works in the usual way up to the point in the show stage
where you get subc.x; Sj / D pred.x :

� j /; then it will take some work to
show x :

� Sj D pred.x :
� j /; for this begin with x � j _x > j by T13.13q;

the first case is straightforward; for the second, you will be able to show
S.x

:
� Sj / D Spred.x :

� j / and apply T6.40. (f): For this relation, you have
Eq.x; y/ $ sg.absval.x - y// D ; from the def EQ and T13.34; this gives
Eq.x; y/$ Œ.x

:
� y/C .y

:
� x/� D ;; now for$I, the case from x D y is

easy; from Eq.x; y/, you have x � y _ x < y from T13.13q; the cases are
not hard and similar (since x < y gives y � x). (i): This is straightforward
with P.Ex/$ chP.Ex/ D ; and Neg.P.Ex//$ csg.chP.Ex// D ; from NEG with
T13.34.

So this theorem delivers the equivalences we expect for pred, subc, absval, sg, csg,
Eq, Leq, Less, Neg, and Dsj. Given this, we will typically move without comment
from some PA ` Dsj.A;B/ given from T13.34 to PA ` A_ B. And similarly in
other cases.

We pause to remark on a on a simple consequence for characteristic functions.
Recall from (CF) that a characteristic function is (officially) of the sort sg.p.Ex// so
that,

CHAPTER 13. GÖDEL’S THEOREMS 676

T13.38. For any recursive characteristic function chR.Ex/, PA ` chR.Ex/ D ; _

chR.Ex/ D 1.

From (CF), chR.Ex/ is of the sort sg.p.Ex//; so with T13.34, PA ` chR.Ex/ D

sg.p.Ex//. The result is nearly immediate with PA ` p.Ex/ D ; _ p.Ex/ > ;
and results for sg.

It is worth observing that this theorem, which depends on results for functions through
T13.37d, is independent of any applications of T13.32 or T13.34b for relations.
There is therefore no problem about appeal to T13.38 in the demonstration of T13.32.

Now reasoning for the bounded quantifiers, bounded minimization and a couple
relations built on them.

*T13.39. The following result in PA.

*(a) PA ` .9 y � z/P.Ex; z; y/$.9y � z/P.Ex; z; y/

(b) PA ` .9 y < z/P.Ex; z; y/$.9y < z/P.Ex; z; y/

(c) PA ` .8y � z/P.Ex; z; y/$.8y � z/P.Ex; z; y/

(d) PA ` .8y < z/P.Ex; z; y/$.8y < z/P.Ex; z; y/

*(e) PA ` .�y � z/P.Ex; z; y/$.�y � z/P.Ex; z; y/

(f) PA ` Fctr.m; n/$ mjn

*(g) PA ` Prime.n/$ Pr.n/

Hints. (a): Recall from chapter 12 that s.Ex; z/ D .9y � z/P.Ex; z; y/ is defined
by means of a R.Ex; z; n/ corresponding to .9y � n/P.Ex; z; y/; the main argu-
ment is to show by IN that PA ` chR.Ex; z; n/ D ; $.9y � n/P.Ex; z; y/.
You have P.Ex; z; y/ $ chP.Ex; z; y/ D ; from T13.32. For the zero case,
you have chR.Ex; z;;/ D gchR.Ex; z/, and gchR.Ex; z/ D chP.Ex; z;;/ from the
definitions with T13.34; for the main reasoning, you have chR.Ex; z; Sj / D

hchR.Ex; z; j; chR.x; z; j //, and hchR.Ex; z; j; u/ D timesŒu; chP.Ex; z; suc.j //�
from the definitions with T13.34; once you have finished the induction, it
is a simple matter of applying chS.Ex; z/ D chR.Ex; z; z/ from the definition,
and where where S.Ex; z/ just abbreviates .9 y � z/P.Ex; z; y/, applying
S.Ex; z/$ chS.Ex; z/ D ; to get .9 y � z/P.Ex; z; y/$.9y � z/P.Ex; z; y/.
(f) and (g): Given previous results, the left and right sides have nearly match-
ing definitions except that the recursive side includes a bounded quantifier —

CHAPTER 13. GÖDEL’S THEOREMS 677

so that you have to work to show the bound obtains for one direction of the
biconditional.

The argument for T13.39e is particularly involved. Recall from chapter 12
that m.Ex; z/ D .�y � z/P.Ex; z; y/ is defined by means of R.Ex; z; n/ corre-
sponding to .9y � n/P.Ex; z; y/ and q.Ex; z; n/ corresponding to .�y � n/P.Ex; z; y/.
The main reasoning is by IN to show q.Ex; z; n/ D .�y � n/P.Ex; z; y/; here
are the main outlines of that part.

1. q.Ex; z;;/ D .�y � ;/P.Ex; z; y/ [a]
2. chR.Ex; z; j / D ;_ chR.Ex; z; j / D 1 T13.38
3. chR.Ex; z; j / D ;$.9y � j /P.x; z; y/ from T13.39a
4. q.Ex; z; Sj / D hq.Ex; z; j;q.Ex; z; j // T13.33b
5. hq.Ex; z; j; u/ D plus.u; chR.Ex; z; j // def from least, T13.34

6. hq.Ex; z; j; u/ D uC chR.Ex; z; j / 5 T13.35d
7. hq.Ex; z; j;q.Ex; z; j // D q.Ex; z; j /C chR.Ex; z; j / 6 8E
8. q.Ex; z; Sj / D q.Ex; z; j /C chR.Ex; z; j / 4,7DE
9. q.Ex; z; j / D .�y � j /P.Ex; z; y/ A (g!I)

10. a D q.Ex; z; j / abv
11. b D q.Ex; z; Sj / abv
12. b D aC chR.Ex; z; j / 8,10,11DE
13. a D .�y � j /P.Ex; z; y/ 9,10DE
14. a D �yŒy D j _P.Ex; z; y/� 13 def
15. .8w < a/Œw ¤ j ^�P.Ex; z;w/� 14 T13.19c
16. a D j _P.Ex; z; a/ 14 T13.19b
17. a D j A (g 16_E)

18. �P.Ex; z; j /_P.Ex; z; j / T3.1
19. �P.Ex; z; j / A (g 18_E)

20. Œb D Sj _P.Ex; z; b/�^ .8w < b/.w ¤ Sj ^�P.Ex; z;w// [b]

21. P.Ex; z; j / A (g18_E)

22. Œb D Sj _P.Ex; z; b/�^ .8w < b/.w ¤ Sj ^�P.Ex; z;w// [c]

23. Œb D Sj _P.Ex; z; b/�^ .8w < b/.w ¤ Sj ^�P.Ex; z;w// 18,19-20,21-22 _E

24. P.Ex; z; a/ A (g 16_E)

25. Œb D Sj _P.Ex; z; b/�^ .8w < b/.w ¤ Sj ^�P.Ex; z;w// [d]

26. Œb D Sj _P.Ex; z; b/�^ .8w < b/.w ¤ Sj ^�P.Ex; z;w// 16,17-23,24-25 _E
27. b D �yŒy D Sj _P.Ex; z; j /� 26 def �
28. b D .�y � Sj/P.Ex; z; y/ 27 def
29. q.Ex; z; Sj / D .�y � Sj/P.Ex; z; y/ 28 abv

30. Œq.Ex; z; j / D .�y � j /P.Ex; z; y/�! Œq.Ex; z; Sj / D .�y � Sj/P.Ex; z; y/� 9-29!I
31. 8n.Œq.Ex; z; n/ D .�y � n/P.Ex; z; y/�! Œq.Ex; z; Sn/ D .�y � Sn/P.Ex; z; y/�/ 30 8I
32. q.Ex; z; n/ D .�y � n/P.Ex; z; y/ 1,31 IN

Hints: The zero case (a) is straightforward with T13.20a; for (b) you will be

CHAPTER 13. GÖDEL’S THEOREMS 678

able to show that b D Sj ; for (c) and (d) you will be able to show b D a.
And the final result is nearly automatic from this.

T13.39 delivers the equivalences we expect for the bounded quantifiers, bounded
minimization, factor and prime.

At this stage, we have defined in PA functions, relations and operators corre-
sponding to all the recursive functions, relations and operators. And in simple cases
we have established equivalences to functions, relations and operators already de-
fined. Thus supposing T is a theory including PA, we are in a position simply to
write down the following.

T13.40. The following are theorems of PA:

(a) PA ` Axiomad1.n/$.9p � n/.9q � n/ŒW ff .p/ ^W ff .q/ ^ n D cnd.p; cnd.q; p/�

and similarly for the other axioms

(b) PA ` Axiompa.n/$ Axiomad1.n/ _ : : : _Axiomq1.n/ _ : : : _Axiompa7.n/

(c) PA `Mp.m; n; o/$ cnd.n; o/ D m

(d) PA ` Gen.m; n/$.9v � n/ŒVar.v/ ^ n D unv.v;m/�

(e) PA ` Icon.m; n; o/$Mp.m; n; o/ _ .m D n ^Gen.n; o//

(f) PA ` Prft.m; n/$ exp.m; len.m/ :
� 1/ D n^m > 1^.8k < len.m//ŒAxiomt.exp.m; k//_

.9i < k/.9j < k/Icon.exp.m; i/; exp.m; j /; exp.m; k//�

These follow directly from our results with recursive definitions. So for ex-
ample, the definition MP, with T13.34 gives us, say, PA ` Mp.m; n; o/ $
Eq.cnd.n; o/;m/; then with T13.37f, we arrive at (c). And similarly in other
cases.

WhereMp, cnd and the like are defined relative to corresponding recursive functions,
it is important that the operators in expressions above are the ordinary operators of
LNT. Thus we shall be able to manipulate the expressions in the usual ways. We shall
find these results useful for the following!

E13.24. Produce derivations to show T13.33a and T13.35e. Hard core: show the
remaining cases from T13.35.

E13.25. Show (i) of the condition for Def [pred] and then T13.36c. Hard core: Show
each of the conditions for Def [pred], Def [sg] and Def [csg] and all of the
results in T13.36.

CHAPTER 13. GÖDEL’S THEOREMS 679

*E13.26. Show a, g and j from T13.37. Hard core: Demonstrate each of the results
in T13.37.

*E13.27. Show T13.39a. Hard core: show T13.38 along with each of the results in
T13.39.

Further results. T13.40 gives us functions in PA corresponding to all the ones
from chapter 12. Now we require the ability to manipulate them. Thus we begin
with some results for exponentiation, factorial and the like, and continue through to
complex notions includingW ff and formsub. At this stage, we are acquiring results,
not by demonstrating equivalence to expressions already defined (since there are no
such expressions already defined), but by showing them directly for symbols defined
for the recursive functions.

*T13.41. The following are theorems of PA.

(a) (i) PA ` m; D 1

(ii) PA ` mSn D mn �m

(b) PA ` m1 D m

(c) PA ` 2
2
D 4

(d) PA ` a > ; ! ;a D ;

(e) PA ` ma �mb D maCb

(f) PA ` m � n! ma � na

(g) PA ` pred.mb/jmaCb

(h) PA ` .a > ; ^m > 1/! pred.maCb/ − mb

(i) PA ` m > ; ! ma > ;

(j) PA ` .m > ; ^ a � b/! ma � mb

(k) PA ` .m > 1 ^ a > b/! ma > mb

(l) PA ` a > ; ! ma � m

*(m) PA ` m > 1! a < ma

CHAPTER 13. GÖDEL’S THEOREMS 680

(n) PA ` m > 1! .ma D mb ! a D b/

Hints: (a) is from the the definition of power and prior results. For (c) take
a look at E6.35e. (e) uses IN on the value of b and (f) uses IN on a. (g) is
straightforward with cases for mb D ; and mb > ;. (i), (j), (k) and (m) are
by IN. For (n), a < b _ a D b _ b < a; but the first and last are impossible.

(a) gives the recursive conditions from which the rest follow. Then (b) - (n) are basic
results that should be accessible from ordinary arithmetic.

*T13.42. The following are theorems of PA.

(a) (i) PA ` fact.;/ D 1

(ii) PA ` fact.Sn/ D fact.n/ � Sn

(b) PA ` fact.1/ D 1

(c) PA ` fact.n/ > ;

(d) PA ` .8y < n/yjfact.n/

*(e) .9y � fact.n/C 1/Œn < y ^ Pr.y/�

Hints: (a) is from the definition of fact and prior results. (c) and (d) are
straightforward by IN. Reasoning for (e) is like (G2) in the arithmetic for
Gödel numbering reference once you realize that all the primes less than n
are included in fact.n/.

These are some basic results for factorial. Again (a) gives the recursive conditions
from which the rest follow. (b) is a simple particular fact; and the result from (c) is
obvious. (d) is a consequence of the way the factorial includes successors of all the
numbers less than it. We will be able to take advantage of (e) immediately below.

*T13.43. The following are theorems of PA.

(a) (i) PA ` pi.;/ D 2

(ii) PA ` pi.Sn/ D .�y � fact.pi.n//C 1/Œpi.n/ < y ^ Pr.y/�

(b) .9y � fact.pi.n//C 1/Œpi.n/ < y ^ Pr.y/�

(c) PA ` pi.Sn/ D �yŒpi.n/ < y ^ Pr.y/�

(d) PA ` pi.n/ < pi.Sn/ ^ Pr.pi.Sn//

CHAPTER 13. GÖDEL’S THEOREMS 681

(e) PA ` .8w < pi.Sn//�Œpi.n/ < w ^ Pr.w/�

(f) PA ` Pr.pi.n//

(g) PA ` pi.n/ > 1

(h) PA ` pi.n/a > ;

(i) PA ` a > ; ! pi.n/a > 1

(j) PA ` Spred.pi.n/a/ D pi.n/a

(k) PA ` .8m < n/pi.m/ < pi.n/

(l) PA ` .8m � n/Sm < pi.n/

*(m) PA ` 8yŒPr.y/! 9jpi.j / D y�

*(n) PA ` m ¤ n! pred.pi.m// − pi.n/a

(o) PA ` m ¤ n! pred.pi.m/Sb/ − pi.n/a

*(p) PA ` Œm ¤ n ^ pred.pi.m/b/j.s � pi.n/a/�! pred.pi.m/b/js

Hints: (a) is from definition pi and prior results. (b) is from T13.42e; (c) ap-
plies T13.20.b; and then (d) and (e) are by T13.19(b) and (c). (f), (k) and (l)
are simple inductions. (m) is by using IN on i to show .8y � pi.i//ŒPr.y/!
9jpi.j / D y�; the result then follows easily with (l). Under the assump-
tion for !I, (n) is by IN on a. For (o) you will be able to show that if
pred.pi.m/Sb/jpi.n/a then pred.pi.m//jpi.n/a and use (n). For (p) under
the assumption for!I you will be able to show i � b ! pred.pi.m/i /js by
induction on i ; the result then follows easily with b � b.

These are some basic results from prime sequences. (a) gives the basic recursive
conditions. (b) is an existential result; then (c) extracts the successor condition from
bounded to unbounded minimization; this allows application of the definition in (d)
and (e). (f) - (j) are some simple consequences of the fact that pi.n/ is prime. Then
the primes are ordered (k). And (l) each prime is greater than the successor of its
index. (m) every prime appears as some pi.j /. And (n) - (p) echo results for factor
except combined with primes and exponentiation.

(b) and then (c) - (e) are a first instance of a pattern we shall see repeatedly: Given
a bounded condition aD .�x � t /P .x/ of the sort that arises from a recursive def-
inition, we show there exists some P .x/ less than or equal to the bound; this allows

CHAPTER 13. GÖDEL’S THEOREMS 682

application of T13.20.b to “extract” the bounded to an unbounded minimization, and
then T13.19 to obtain P .a/; this forms the basis for further results.

In order to manipulate exp, it will be convenient to introduce a function ex, that
finds the least exponent x such that pi.i/x does not divide Sn.

Def [ex] ex.n; i/ D �xŒpred.pi.i/x/ − Sn�

(i) PA ` 9xŒpred.pi.i/x/ − Sn�
1. pi.i/ > 1 T13.43g
2. Sn < pi.i/Sn 1 T13.41m
3. Spred.pi.i/Sn/ D pi.i/Sn T13.43j
4. Sn < Spred.pi.i/Sn/ 2,3DE
5. n < pred.pi.i/Sn/ 4 T13.13k
6. pred.pi.i/Sn/ − Sn 5 T13.24i
7. 9xŒpred.pi.i/x/ − Sn� 6 9I

*T13.44. The following are theorems of PA.

(a) PA ` exp.n; i/ D .�x � n/Œpred.pi.i/x/jn ^ pred.pi.i/xC1/ − n�

(b) PA ` exp.;; i/ D ;

*(c) PA ` exp.Sn; i/ D �xŒpred.pi.i/x/jSn ^ pred.pi.i/xC1/ − Sn�

(d) PA ` pred.pi.i/exp.Sn;i//jSn ^ pred.pi.i/exp.Sn;i/C1/ − Sn

(e) PA ` .8w < exp.Sn; i//�Œpred.pi.i/w/jSn ^ pred.pi.i/wC1/ − Sn�

(f) PA ` Œpred.pi.i/ajSn ^ pred.pi.i/aC1 − Sn�! exp.Sn; i/ D a

(g) PA ` exp.m; j / � m

(h) PA ` j � n! exp.Sn; j / D ;

(i) PA ` exp.pi.i/p; i/ D p

(j) PA ` i ¤ j ! exp.pi.i/p; j / D ;

(k) PA ` pred.pi.i//jSm$ exp.Sm; i/ � 1

*(l) PA ` 9qŒpi.i/exp.Sn;i/�q D Sn^pred.pi.i// − q^8y.y ¤ i ! exp.q; y/
D exp.Sn; y//�

CHAPTER 13. GÖDEL’S THEOREMS 683

*(m) PA ` exp.Sm � Sn; i/ D exp.Sm; i/C exp.Sn; i/

Hints: (a) is from definition exp and prior results. (c) is by PA ` .9x �
Sn/Œpred.pi.i/x/jSn ^ pred.pi.i/xC1/ − Sn� and then T13.20b; ex.n; i/ D
; _ ex.n; i/ > ;; in the latter case, the trick is to generalize on the num-
ber prior to ex.n; i/. (f) is by showing that a D �xŒpred.pi.i/x/jSn ^
pred.pi.i/xC1/ − Sn�. (l): from pred.pi.i/exp.Sn;i//jSn there is a j such
that pi.i/exp.Sn;i/ � j D Sn; the hard part is to show k ¤ i ! exp.j; k/ D
exp.Sn; k/ — for this, it will be helpful to establish that j is a succes-
sor. (m): toward an application of T13.44f it will be easy to establish that
pred.pi.i/exp.Sm;i/Cexp.Sn;i//j.Sm � Sn/; for the other conjunct, it will be
helpful to begin with a couple applications of T13.44l.

(a) is from the definition. (b) is the standard result with bound ;. (c) extracts the suc-
cessor case from the bounded to an unbounded minimization; this allows application
of the definition in (d) and (e). From (f) the reasoning goes the other way around: not
only does the condition apply to the exponent, but if the condition applies to some a,
then a is the exponent. Then (g) the exponent of some prime in the factorization of
m cannot be greater than m; and (h) a prime whose index is greater than or equal to
n does not divide into Sn. (i) and (j) make an obvious connection for the exponent
of a prime, and (k) between exponent and factor. According (l) once you divide Sn
by pi.i/ exp.Sn; i/ times you are left with a q such that pi.i/ does not divide into it
any more, and such that the exponents of all the other primes remain the same as in
Sn. From (m) the i th exponent of a product sums the i th exponents of its factors.

*T13.45. The following are theorems of PA.

(a) PA ` len.n/ D .�y � n/.8z � n/Œz � y ! exp.n; z/ D ;�

(b) PA ` len.;/ D ;

(c) PA ` len.Sn/ D �y.8z � Sn/Œz � y ! exp.Sn; z/ D ;�

(d) PA ` .8z � Sn/Œz � len.Sn/! exp.Sn; z/ D ;�

(e) PA ` .8w < len.Sn//�.8z � Sn/Œz � w ! exp.Sn; z/ D ;�

(f) PA ` len.1/ D ;

(g) PA ` len.m/ > ; ! m > 1

*(h) PA ` exp.m; l/ > ; ! len.m/ > l

CHAPTER 13. GÖDEL’S THEOREMS 684

(i) PA ` .8k > l/exp.Sm; k/ D ; ! len.Sm/ � Sl

(j) PA ` m > 1! len.m/ > ;

*(k) PA ` p > ; ! len.pi.i/p/ D Si

(l) PA ` .8z � len.n//exp.n; z/ D ;

*(m) PA ` len.n/ D Sl ! exp.n; l/ � 1

Hints: (a) is from definition length and prior results. (c) follows with T13.44h
and existentially generalizing on Sn itself. (f) is by application of (c). Under
the assumption for!I, (h) divides into cases for m D ; and m > ;; for the
latter, suppose len.m/ � i ; then you will be able to make use of (d). (j) is
straightforward with T13.25d and ultimately (h) above. For (k), begin with
len.pi.i/p/ < Si_len.pi.i/p/ D Si_len.pi.i/p/ > Si by T13.13p; the first
is easily eliminated with T13.45h; then, supposing len.pi.i/p/ > Si , you will
be able to obtain a contradiction using T13.45e. (l): under the assumption
a � len.n/ for (8I), either n D ; or n > ;; the first case is easy; for the
second, there is some m such that n D Sm; your main reasoning will be to
show exp.Sm; a/ D ;. (m): under the assumption for !I, the case when
n D ; is impossible; so there is some m such that n D Sm; with this,
suppose exp.Sm; l/ � 1; then you you will be able to show, contrary to your
assumption that len.Sm/ D l .

Again (a) is from the definition and (b) gives the standard result for bound ;. (c)
extracts the successor case from bounded to unbounded minimization; (d) and (e)
then apply the definition. (f) is a simple particular result; and then (g) is an immediate
consequence of (b) and (f). From (h) if an exponent of some prime in the factorization
of m is greater than zero, that prime is involved in the factorization of m; (j) gives
the biconditional from (g); (k) gives the length for a prime to any power; and from (l)
primes � the length of n must all have exponent ;. Length is set up so that it finds
the first prime such that it and all the ones after have exponent zero; so (m) the prime
prior to the length has exponent � 1.

For the rest of this section including results for concatenation to follow, it will
be helpful to introduce a couple of auxiliary notions. First, exc.m; n; i/ which (indi-
rectly) takes the value of the i th exponent in the concatenation of m and n.

PA ` exc.m; n; i/ D .�y � exp.m; i/C exp.n; i :
� len.m///

.Œi < len.m/ ^ y D exp.m; i/� _ Œi � len.m/ ^ y D exp.n; i :
� len.m//�/

CHAPTER 13. GÖDEL’S THEOREMS 685

Since the definition is by bounded minimization, no condition is required. The idea
is simply to set y to one or the other of exp.m; i/ or exp.n; i :

� len.m// so that y
takes the value of the i th exponent in the concatenation of m and n. Then val.n; i/
returns the product of the first i primes in the factorization of n.

PA ` val.n;;/ D 1
PA ` val.n; Sy/ D val.n; y/ � pi.y/exp.n;y/

Similarly val�.m; n; i/ is defined by recursion as follows.

PA ` val�.m; n;;/ D 1
PA ` val�.m; n; Sy/ D val�.m; n; y/ � pi.y/exc.m;n;y/

So val�.m; n; i/ returns the product of the first i primes in the factorization of the
concatenation ofm and n. Here are some results for these notions. Let l D len.m/C
len.n/.

*T13.46. The following are theorems of PA.

(a) PA ` exc.m; n; i/ D �y.Œi < len.m/^ y D exp.m; i/�_ Œi � len.m/^ y D
exp.n; i :

� len.m//�/

(b) PA ` i < len.m/! exc.m; n; i/ D exp.m; i/

(c) PA ` i � len.m/! exc.m; n; i/ D exp.n; i :
� len.m//

(d) PA ` val�.m; n; i/ > ;

*(e) PA ` .8i � a/pred.pi.i// − val�.m; n; a/

*(f) PA ` .8j < i/exp.val�.m; n; i/; j / D exc.m; n; j /

*(g) PA ` .8i < len.m//Œexp.val�.m; n; l/; i/ D exp.m; i/�^

.8i < len.n//Œexp.val�.m; n; l/; i C len.m// D exp.n; i/�

*(h) PA ` Œpi.l/mCn�l � val�.m; n; l/

(i) PA ` val.m; i/ > ;

(j) PA ` len.val.a; j // � j

(k) PA ` len.val.a; j // � len.a/

(l) PA ` .8i < k/exp.m; i/ D exp.val.m; k/; i/

(m) PA ` .8i < k/exp.a; i/ D exp.b; i/! val.a; k/ D val.b; k/

CHAPTER 13. GÖDEL’S THEOREMS 686

*(n) x � len.Sn/! val.Sn; x/ D Sn

corollary: PA ` val.Sn; len.Sn// D Sn

*(o) PA ` Œlen.n/ � q^.8k < len.n//exp.n; k/ � r�! Œpi.q/r �q � val.n; len.n//

Hints: (e) is by IN on a. (f) is by IN on i ; in the show under .8j <

i/exp.val�.m; n; i/; j / D exc.m; n; j / and a < Si you will have separate
cases for a < i and a D i . (g) is straightforward with applications of (f),
(b) and (c). For (h) you may obtain i � l ! Œpi.l/mCn�i � val�.m; n; i/ by
induction on i ; in the show, the main task is to obtain exc.m; n; i/ � mC n;
the result then follows with previously established inequalities. (j) is easy
with a result like (e). For (n) you will be able to show 8x8nŒlen.Sn/ �
x ! val.Sn; x/ D Sn� by induction on x: the ;-case is straightforward;
then under the inductive assumption with len.Sa/ � Sx for !I you have
len.Sa/ � x _ len.Sa/ D Sx; the first case is straightforward; the sec-
ond is an extended argument — you will be able to apply T13.44l to ob-
tain an Sr whose prime factorization is like that of Sa but without pi.x/;
show that len.Sr/ � x so that from the assumption, val.Sr; x/ D Sr ; then
val.Sa; Sx/ D Sa is straightforward. For (o) under the assumption for!I,
you will be able to get i � q ! Œpi.q/r �i � val.n; i/ by IN.

(a) extracts exc from the bounded to unbounded minimization; (b) and (c) apply the
definition. (d) is obvious. (e) results because val�.m; n; a/ is a product of primes
prior to pi.a/ so that greater primes do not divide it. Then (f) the exponents in in val�

are like the exponents in exc. This gives us (g) that the exponents in val� are like
the exponents in m and n. But (h) val� is constructed so that an induction enables a
natural comparison of exponents. Then (m) - (o) are related results for val.

In cases to follow, the comparison of exponents from (h) and the closely related
(o) will be crucial for finding bounds and so extracting results from bounded mini-
mization.

We are now ready for some results about concatenation. Saym � n is the defined
correlate to m ? n and as above l D len.m/C len.n/.

*T13.47. The following are theorems of PA.

(a) (i) PA ` m � n D .�x � Bm;n/Œx � 1 ^ .8i < len.m//fexp.x; i/ D
exp.m; i/g ^ .8i < len.n//fexp.x; i C len.m// D exp.n; i/g�

(ii) PA ` Bm;n D Œpi.l/mCn�l

CHAPTER 13. GÖDEL’S THEOREMS 687

(b) PA ` m � n D �xŒx � 1 ^ .8i < len.m//fexp.x; i/ D exp.m; i/g ^ .8i <
len.n//fexp.x; i C len.m// D exp.n; i/g�

(c) PA ` m � n � 1 ^ .8i < len.m//fexp.m � n; i/ D exp.m; i/g ^ .8i <
len.n//fexp.m � n; i C len.m// D exp.n; i/g

(d) PA ` .8w < m � n/�Œw � 1 ^ .8i < len.m//fexp.w; i/ D exp.m; i/g ^
.8i < len.n//fexp.w; i C len.m// D exp.n; i/g�

*(e) PA ` len.m � n/ � l

*(f) PA ` len.m � n/ D l

(g) PA ` exp.m � n; i C len.m// D exp.n; i/

(h) PA ` .a � b/ � c D a � .b � c/

(i) PA ` n � 1! Sm � n D Sm

(j) PA ` n � 1! n � Sm D Sm

(k) PA ` .len.c/ D len.d/ ^ Sa � c D Sb � d/! Sa D Sb

corollary: PA ` Sa � c D Sb � c ! Sa D Sb

(l) PA ` .len.c/ D len.d/ ^ c � Sa D d � Sb/! Sa D Sb

corolary: PA ` c � Sa D c � Sb ! Sa D Sb

*(m) PA ` val.Sm � Sn; a/ D val.Sm; a/ � val.Sn; a :
� len.Sm//

(n) PA ` .8y � len.n//Œval.m � n; y C len.m// � val.m; len.m//�

corollary: PA ` m � n � m

(o) PA ` .8y � len.n//Œval.m � n; y C len.m// � val.n; y/�

corollary: PA ` m � n � n

Hints: (a) is from the definition concatenation with prior results. (b) uses
T13.46h. (e) divides into cases for len.n/ D ; and len.n/ > ;; and within
the first, again, cases for len.m/ D ; and len.m/ > ;. For (f) show len.m �
n/ � l and apply (e); for the main argument (which will be long!) assume
len.m�n/ — l ; then you will be able to apply T13.44l and show that the q so
obtained contradicts T13.47d. (h) where l D len.a/C len.b/C len.c/, you
will be able to show .8i < l/exp..a � b/ � c/; i/ D exp.a � .b � c/; i/. (k)

CHAPTER 13. GÖDEL’S THEOREMS 688

and (l) are straightforward with T13.47c. For (m) you will be able to show
.8i < a/exp.Sm�Sn; i/ D exp.val.Sm; a/� val.Sn; a :

� len.Sm//; i/ and
so val.Sm�Sn; a/ D val.val.Sm; a/� val.Sn; a :

� len.Sm//; a/; and from
this the result you want. (n) and (o) are by induction on y (with the bounded
quantifier unabbreviated to the associated conditional).

(a) is from the definition. T13.46h enables us to extract m � n from bounded to un-
bounded minimization to get (b) and then (c) and (d). (e) and (f) establish that the
length of m � n sums the lengths of m and n. (h) is an association result — and
with this, we typically ignore parentheses in concatenations much as we have done
for association with addition. (k) and (l) enable a sort of cancellation law for con-
catenation. (n) and (o) apply results from T13.46m and T13.46n for relative values
of m � n.

The idea for application of T13.46h to get (b) is the same as behind the intu-
itive account of the bound from chapter 12: pi.l/mCn is greater than every term in
the factorization of m � n; so Œpi.l/mCn�i remains greater than val�.m; n; i/; and
val�.m; n; l/ is therefore both under the bound and satisfies the condition for m � n
— so that the existential condition is satisfied, and we may extract the bounded to an
unbounded minimization. Once this is accomplished, we are most of the way home.

To manipulate Termseq it will be convenient to let,

A.s; x/ D exp.s; x/ D p;q _ Var.exp.s; x//
B.s; x/ D .9j < x/exp.s; x/ D pSq � exp.s; j /
C.s; x/ D .9i < x/.9j < x/exp.s; x/ D pCq � exp.s; i/ � exp.s; j /
D.s; x/ D .9i < x/.9j < x/exp.s; x/ D p�q � exp.s; i/ � exp.s; j /

*T13.48. The following are theorems of PA.

(a) PA ` Termseq.m; t/ $ exp.m; len.m/ :
� 1/ D t ^ m > 1 ^ .8k <

len.m//ŒA.m; k/ _ B.m; k/ _ C.m; k/ _D.m; k/�

(b) (i) PA ` Term.t/$.9x � Bt /Termseq.x; t/

(ii) PA ` Bt D Œpi.len.t//t �len.t/

(c) PA ` Var.t/$.9x � t /.t D 2
23C2x

/

(d) PA ` Var.t/! len.t/ D 1

(e) PA ` Termseq.m; t/! .8k < len.m//exp.m; k/ > 1

(f) PA ` Term.t/! t > 1

CHAPTER 13. GÖDEL’S THEOREMS 689

(g) PA ` t D p;q! Termseq.2
t
; t /

(h) PA ` Var.t/! Termseq.2
t
; t /

*(i) PA ` Termseq.m; t/! Termseq.m � 2
pSq�t

; pSq � t /

(j) PA ` ŒTermseq.m; t/^Termseq.n; q/�! Termseq.m�n�2
pCq�t�q

; pCq�
t � q/

(k) PA ` ŒTermseq.m; t/^Termseq.n; q/�! Termseq.m�n�2
p�q�t�q

; p�q�
t � q/

*(l) PA ` Termseq.m; t/! 8x.8k < len.m//flen.exp.m; k// � x ! 9nŒTermseq.n;
exp.m; k//^.8i < len.n//exp.n; i/ � exp.m; k/^len.n/ � len.exp.m; k//�g

(m) PA ` Termseq.m; t/! Term.t/

*(n) PA ` Termseq.m; t/! .8i < len.m//Term.exp.m; i//

(o) PA ` Term.p;q/

(p) PA ` Var.v/! ŒTerm.v/ ^ Term.pSq � v/�

Hints: (e) is straightforward by an extended _E. (g) - (k) are disjunctive but
straightforward. (l) is by induction on x: under the assumption Termseq.m; t/
the basis is straightforward; then, under the inductive assumption along with
a < len.m/ for .8/I and len.exp.m; a// � Sx for!I, apply (a); the deriva-
tion is then a (long!) argument by cases where you will be able to apply
(g)-(k). (m) follows easily with T13.46o. For (n) under the assumption for
!I, you will be able to show 8kŒk < len.m/! 9x.Termseq.x; exp.m; k//�
by strong induction; the result follows easily.

(a), (b) and (c) are from the definitions term sequence and term and variable with
prior results. (d), (e) and (f) are simple results. (g) - (k) generate term sequences. (l)
yields (m), that anything with a term sequence is a term; the rest follow from that.

From its definition, Term.t/ does not immediately follow from Termseq.m; t/
insofar as the sequence might build in extraneous terms not required for t — with the
result that m is not less than Bn. The general idea for these theorems is that given
a term sequence, there is a standard term sequence containing just the elements you
would have included in a chapter 4 tree, adequate to yield Term.t/. Thus we move
from the existence of a term sequence through (l) to a term sequence of the right sort,

CHAPTER 13. GÖDEL’S THEOREMS 690

and so to (m). Something new happens in (l) insofar as the induction is not on the
length of m but on the length of its exponents.

We continue with some results for Formseq and W ff that are closely related to
T13.48. Let,

E.s; x/ D Atomic.exp.s; x//
F.s; x/ D .9j < x/Œexp.s; x/ D neg.exp.s; j //�
G.s; x/ D .9i < x/.9j < x/Œexp.s; x/ D cnd.exp.s; i/; exp.s; j //�
H.p; s; x/ D .9i < x/.9j < p/ŒVar.j / ^ exp.s; x/ D unv.j; exp.s; i//�

*T13.49. The following are theorems of PA.

(a) PA ` Formseq.m; p/ $ exp.m; len.m/ :
� 1/ D p ^ m > 1 ^ .8k <

len.m//ŒE.m; k/ _ F.m; k/ _G.m; k/ _H.p;m; k/�

(b) (i) PA ` W ff .p/$.9x � Bp/Formseq.x; p/

(ii) PA ` Bp D Œpi.len.p//p�len.p/

(c) PA ` Atomic.p/$.9x � p/.9y � p/ŒTerm.x/ ^ Term.y/ ^ p D pDq �
x � y

(d) PA ` Formseq.m; p/! .8k < len.m//exp.m; k/ > 1

(e) PA ` W ff .p/! p > 1

(f) PA ` Atomic.p/! Formseq.2
p
; p/

(g) PA ` Formseq.m; p/! Formseq.m � 2
neg.p/

;neg.p//

(h) PA ` ŒFormseq.m; p/ ^ Formseq.n; q/�! Formseq.m � n � 2
cnd.p;q/

/

(i) PA ` ŒFormseq.m; p/ ^ var.v/�! Formseq.m � 2
unv.v;p/

;unv.v; p//

(j) PA ` Formseq.m; p/! 8x.8k < len.m//flen.exp.m; k// � x ! 9nŒFormseq.n;
exp.m; k//^.8i < len.n//exp.n; i/ � exp.m; k/^len.n/ � len.exp.m; k//�g

(k) PA ` Formseq.m; p/! W ff .p/

(l) PA ` Formseq.m; p/! .8i < len.m//W ff .exp.m; i//

(m) PA ` Atomic.p/! W ff .p/

(n) PA ` W ff .p/! W ff .neg.p//

CHAPTER 13. GÖDEL’S THEOREMS 691

(o) PA ` ŒW ff .p/ ^W ff .q/�! W ff .cnd.p; q//

(p) PA ` ŒW ff .p/ ^ Var.v/�! W ff .unv.v; p//

Hints: For each of (a) - (l), see the parallel theorems for T13.48. The others
are nearly trivial.

Again, from its definition,W ff .p/ does not immediately follow fromFormseq.m; p/
insofar as the sequence might build in extraneous elements not required for p —
with the result that m is not less than Bp. And again the general idea is that given a
formula sequence, there is a standard formula sequence containing just the elements
you would have included in a chapter 4 tree, adequate to yield W ff .n/. Thus we
move from the existence of a formula sequence through (j) to a formula sequence of
the required sort.

Continuing roughly in the order of chapter 12 we move on to some substitution
results for terms and atomics. Let,

I.m; n; k/ D exp.m; k/ D p;q ^ exp.n; k/ D p;q
J.v;m; n; k/ D Var.exp.m; k// ^ exp.m; k/ ¤ v ^ exp.n; k/ D exp.m; k/
K.v; s;m; n; k/ D Var.exp.m; k// ^ exp.m; k/ D v ^ exp.n; k/ D s
L.m; n; k/ D .9i < k/Œexp.m; k/ D pSq � exp.m; i/ ^ exp.n; k/ D pSq � exp.n; i/�
M.m; n; k/ D .9i < k/.9j < k/Œexp.m; k/ D pCq � exp.m; i/ � exp.m; j /^

exp.n; k/ D pCq � exp.n; i/ � exp.n; j /�
N.m; n; k/ D .9i < k/.9j < k/Œexp.m; k/ D p�q � exp.m; i/ � exp.m; j /^

exp.n; k/ D p�q � exp.n; i/ � exp.n; j /�

*T13.50. The following are theorems of PA.

(a) PA ` Tsubseq.m; n; t; v; s; u/ $ Termseq.m; t/ ^ len.m/ D len.n/ ^
exp.n; len.n/ :

� 1/ D u ^ .8k < len.m//.I.m; n; k/ _ J.v;m; n; k/ _
K.v; s;m; n; k/ _ L.m; n; k/ _M.m; n; k/ _N.m; n; k//

(b) (i) PA ` Termsub.t; v; s; u/$.9x � Xt /.9y � Yt;u/Tsubseq.x; y; t; v; s; u/

(ii) PA ` Xt D Œpi.len.t//t �len.t/

(iii) PA ` Yt;u D Œpi.len.t//u�len.t/

(c) PA ` Atomsub.p; v; s; q/$.9a � p/.9b � p/.9a0 � q/.9b0 � q/ŒTerm.a/^
Term.b/^p D pDq�a�b^Termsub.a; v; s; a0/^Termsub.b; v; s; b0/^q D
pDq � a0 � b0�

(d) PA ` ŒTerm.s/^Tsubseq.m; n; t; v; s; u/�! .8j < len.n//Term.exp.n; j //

corollary: PA ` ŒTerm.s/ ^ Termsub.t; v; s; u/�! Term.u/

CHAPTER 13. GÖDEL’S THEOREMS 692

(e) PA ` ŒTerm.s/ ^Atomsub.p; v; s; q/�! Atomic.q/

(f) PA ` t D p;q! Tsubseq.2
t
; 2
t
; t; v; s; t/

(g) PA ` .Var.t/ ^ t ¤ v/! Tsubseq.2
t
; 2
t
; t; v; s; t/

(h) PA ` .Var.t/ ^ t D v/! Tsubseq.2
t
; 2
s
; t; v; s; s/

*(i) PA ` Tsubseq.m; n; t; v; s; u/ ! Tsubseq.m � 2
pSq�t

; n � 2
pSq�u

; pSq �
t; v; s; pSq � u/

(j) PA ` ŒTsubseq.m; n; t; v; s; u/^Tsubseq.m0; n0; t 0; v; s; u0/�! Tsubseq.m�

m0 � 2
pCq�t�t 0

; n � n0 � 2
pCq�u�u0

; pCq � t � t 0; v; s; pCq � u � u0/

(k) PA ` ŒTsubseq.m; n; t; v; s; u/^Tsubseq.m0; n0; t 0; v; s; u0/�! Tsubseq.m�

m0 � 2
p�q�t�t 0

; n � n0 � 2
p�q�u�u0

; p�q � t � t 0; v; s; p�q � u � u0/

*(l) PA ` Tsubseq.m; n; t; v; s; u/! Termsub.t; v; s; u/

*(m) PA ` ŒTerm.t/ ^ Term.s/� ! 9uŒTermsub.t; v; s; u/ ^ len.u/ � len.t/ �
len.s/ ^ .8k < len.u//exp.u; k/ � t C s�

*(n) PA ` ŒAtomic.p/^Term.s/�! 9qŒAtomsub.p; v; s; q/^ len.q/ � len.p/�
len.s/ ^ .8k < len.q//exp.q; k/ � p C s�

Hints: For (l) let P .m;n; v; s; k/ D 9a9bŒTsubseq.a; b;exp.m; k/; v; s;exp.n; k//^len.a/ � len.exp.m; k//^

.8i < len.a//.exp.a; i/ � exp.m; k/ ^ exp.b; i/ � exp.n; k//�; then under the assumption for
!I, show 8x.8k < len.m//Œlen.exp.m; k/ � x ! P � by IN; the re-
sult follows from this. Similarly, for (m) let P .m; i; v; s/ D 9x9y9uŒTsubseq.x; y;

exp.m; i/; v; s; u/^len.u/ � len.exp.m; i//�len.s/^.8k < len.u//exp.u; k/ � exp.m; i/Cs�; under the
assumption Term.t/^Term.s/ given Termseq.m; t/ you will be able to show
8i Œi < len.m/! P � by strong induction on i (with extended disjunctions in
both the basis and show); the result follows easily from this.

Some substitution results for formulas are closely related to the previous theorem.
Let,

CHAPTER 13. GÖDEL’S THEOREMS 693

O.v; s;m; n; k/ D Atomic.exp.m; k// ^Atomsub.exp.m; k/; v; s; exp.n; k//
P.m; n; k/ D .9i < k/Œexp.m; k/ D neg.exp.m; i// ^ exp.n; k/ D neg.exp.n; i//�
Q.m; n; k/ D .9i < k/.9j < k/Œexp.m; k/ D cnd.exp.m; i/; exp.m; j //^

exp.n; k/ D cnd.exp.n; i/; exp.n; j //�
R.v; p;m; n; k/ D .9i < k/.9j < p/ŒVar.j / ^ j ¤ v ^ exp.m; k/ D unv.j; exp.m; i//^

exp.n; k/ D unv.j; exp.n; i/�
S.v; p;m; n; k/ D .9i < k/.9j < p/ŒVar.j / ^ j D v ^ exp.m; k/ D unv.j; exp.m; i//^

exp.n; k/ D exp.m; k/�

*T13.51. The following are theorems of PA.

(a) PA ` Fsubseq.m; n; p; v; s; q/ $ ŒFormseq.m; p/ ^ len.m/ D len.n/ ^
exp.n; len.n/ :

� 1/ D q ^ .8k < len.m//.O.v; s;m; n; k/ _ P.m; n; k/ _
Q.m; n; k/ _R.p;m; n; k/ _ S.p;m; n; k//�

(b) (i) PA ` Formsub.p; v; s; q/$.9x � Xp/.9y � Yp;q/Fsubseq.x; y; p; v; s; q/

(ii) PA ` Xp D Œpi.len.p//p�len.p/

(iii) PA ` Yp;q D Œpi.len.p//q�len.p/

(c) (i) PA ` formusb.p; v; s/ D .�q � Zp;s/Formsub.p; v; s; q/

(ii) PA ` Zp;s D Œpi.len.p/ � len.s//pCs�len.p/�len.s/

(d) PA ` ŒTerm.s/^Fsubseq.m; n; p; v; s; q/�! .8j < len.n//W ff .exp.n; j //

corollary: PA ` ŒTerm.s/ ^ Formsub.p; v; s; q/�! W ff .q/

(e) PA ` ŒAtomic.p/ ^Atomsub.p; v; s; q/�! Fsubseq.2
p
; 2
q
; p; v; s; q/

(f) PA ` Fsubseq.m; n; p; v; s; q/! Fsubseq.m�2
neg.p/

; n�2
neg.q/

;neg.p/; v; s;neg.q//

(g) PA ` ŒFsubseq.m; n; p; v; s; q/^Fsubseq.m0; n0; p0; v; s; q0/�! Fsubseq.m�
m0 � 2

cnd.p;p0/
; n � n0 � 2

cnd.q;q0/
; cnd.p; p0/; v; s; cnd.q; q0//

(h) PA ` ŒFsubseq.m; n; p; v; s; q/^Var.u/^u ¤ v�! Fsubseq.m�2
unv.u;p/

; n�

2
unv.u;q/

;unv.u; p/; v; s;unv.u; q//

(i) PA ` ŒFsubseq.m; n; p; v; s; q/^Var.u/^u D v�! Fsubseq.m�2
unv.u;p/

; n�

2
unv.u;p/

;unv.u; p/; v; s;unv.u; p//

(j) PA ` Fsubseq.m; n; p; v; s; q/! Formsub.p; v; s; q/

(k) PA ` ŒW ff .p/ ^ Term.s/� ! 9qŒFormsub.p; v; s; q/ ^ len.q/ � len.p/ �
len.s/ ^ .8k < len.q//exp.q; k/ � p C s�

CHAPTER 13. GÖDEL’S THEOREMS 694

(l) PA ` ŒW ff .p/ ^ Term.s/�! Formsub.p; v; s;formsub.p; v; s//

(m) PA ` ŒW ff .p/ ^ Term.s/�! W ff .formsub.p; v; s//

Hints: For (a) - (k) see the parallel results from T13.50. (l) follows easily
with (k).

Finally we extend our results by means of a pair of matched theorems whose
results are related to unique readability for terms and then formulas (see chapter 11,
p. 522).

*T13.52. The following result in PA.

First, as a preliminary to T13.52f and then T13.53g it will be helpful to show
the following. We are thinking of c � a � c1 � b � c2 as for example, p.q� a �
p!q � b � p/q. Let,

l1 D len.c/
l2 D len.c/C len.a/
l3 D len.c/C len.a/C len.c1/

l4 D len.c/C len.a/C len.c1/C len.b/
l D len.c/C len.a/C len.c1/C len.b/C len.c2/

*(a) a. 8uŒ.P .u/^ len.u/ � x/! .8k < len.u/�P .val.u; k/� P
b. val.c; j / � val.a; j

:
� l1/ � val.c1; j

:
� l2/ � val.b; j

:
� l3/ � val.c2; j

:
� l4/ D c � d � c1 � e � c2 P

c. P .a/^P .b/^P .d/^P .e/ P
d. 8v.P .v/! v > 1/ P
e. len.c/ D 1^ c1 > ; ^ c2 > ; ^ len.c1/ � 1^ len.c2/ � 1 P
f. j < l ^ Sx � l P

:
:
:

g. ?

So these premises are inconsistent. As a corollary, when c1 D c2 D 1 their
lengths go to zero and by T13.46n for any x, val.c1; x/ D val.c2; x/ D 1 so
that these terms drop out of the concatenations and the theorem reduces to a
version where (b) is val.c; j / � val.a; j :

� l1/ � val.b; j :
� l3/ D c � d � e,

and the only substantive conjunct of (e) is the first.

(b) PA ` ŒTerm.a/ ^ Term.b/�! ŒpSq � a D pSq � b ! a D b�

(c) PA ` Term.pSq � a/! 9rŒpSq � a D pSq � r ^ Term.r/�

(d) PA ` Term.pCq�a/! 9r9sŒpCq�a D pCq� r � s^Term.r/^Term.s/�

(e) PA ` Term.p�q � a/! 9r9sŒp�q � a D p�q � r � s ^Term.r/^Term.s/�

*(f) PA ` Term.t/! .8k < len.t//�Term.val.t; k//

CHAPTER 13. GÖDEL’S THEOREMS 695

(g) PA ` ŒTerm.a/ ^ Term.b/ ^ Term.c/ ^ Term.d/� ! ŒpCq � a � b D
pCq � c � d ! .a D c ^ b D d/�

(h) PA ` ŒTerm.a/ ^ Term.b/ ^ Term.c/ ^ Term.d/� ! Œp�q � a � b D
p�q � c � d ! .a D c ^ b D d/�

(i) PA ` ŒTerm.a/ ^ Term.b/ ^ Term.c/ ^ Term.d/� ! ŒpDq � a � b D
pDq � c � d ! .a D c ^ b D d/�

Hints: For (a) suppose j � l1, this leads to contradiction so that j � l1 and
you can “pick off” the first conjunct from premise (b) to get val.a; j :

� l1/ �

val.c1; j
:
� l2/�val.b; j :

� l3/�val.c2; j
:
� l4/ D d�c1�e�c2; suppose j <

l2, again this leads to contradiction so that j � l2; either len.d/ < len.a/ _
len.d/ D len.a/_len.d/ > len.a/; the first and last lead to contradiction and
with the other you will be able to pick off another conjunct; continue to j � l ,
which contradicts the last premise. For (f) show 8t Œ.Term.t/ ^ len.t/ �
x/ ! .8k < len.t//�Term.val.t; k//� by induction on x; the zero case is
easy; then under the inductive assumption with Term.a/ ^ len.a/ � Sx for
!I and j < len.a/ for (8I) you will be able to show j > ;; then with
Termseq.m; a/ the argument is an extended disjunction from A.m; len.m/ :

�

1/ _ B.m; len.m/ :
� 1/ _ C.m; len.m/ :

� 1/ _D.m; len.m/ :
� 1/; you can

assume Term.val.a; j // and reach contradiction in each case.

Returning to our original results for unique readability, reasoning for (c) - (e) is like
that for T11.3 - T11.5. Then (f) is like T11.6. And there are the parallel results for
formulas.

*T13.53. The following are theorems of PA.

(a) PA ` ŒW ff .p/ ^W ff .q/�! Œneg.p/ D neg.q/! p D q�

(b) PA ` ŒW ff .p// ^ Var.u/ ^W ff .q/ ^ Var.v/�! Œunv.u; p/ D unv.v; q/!
.u D v ^ p D q/�

(c) PA ` W ff .pDq � a/! 9r9sŒpDq � a D pDq � r � s ^ Term.r/^ Term.s/�

(d) PA ` W ff .p�q � p/! 9rŒp�q � p D neg.r/ ^W ff .r/�

(e) PA ` W ff .p.q � p/! 9r9sŒp.q � p D cnd.r; s/ ^W ff .r/ ^W ff .s/�

(f) PA ` W ff .p8q � p/! 9w9rŒp8q � p D unv.w; r/ ^ Var.w/ ^W ff .r/�

CHAPTER 13. GÖDEL’S THEOREMS 696

(g) PA ` W ff .p/! .8k < len.p//�W ff .val.p; k//

*(h) PA ` ŒW ff .p// ^W ff .q/ ^W ff .a/ ^W ff .b/�! Œcnd.p; q/ D cnd.a; b/!
.p D a ^ q D b/�

(i) PA ` ŒW ff .cnd.p; q// ^W ff .p/�! W ff .q/

*(j) PA ` Axiompa.p/! W ff .p/

(k) PA ` Prvpa.p/! W ff .p/

Hint: Reasoning for (g) is like T13.52f. Reasoning for (i) is like the final
uniqueness part of T11.3; the result is straightforward, starting with (e) —
though with p!q � q D p!q � s, for an application of T13.47l, you will
need to worry about the case q D ;. Beginning with T13.40, (j) and (k) are
not hard.

In the following we shall assume results like (j) - (k) for theories extending PA —
though, of course, our prime example just is PA. Insofar as theories are recursively
defined, some such results should be in the offing.

*E13.28. Show (e) and (j) from T13.41. Hard core: show each of the results from
T13.41.

*E13.29. Show (d) and (e) from T13.42. Hard core: show each of the results from
T13.42.

*E13.30. Show (k) and (l) from T13.43. Hard core: show each of the results from
T13.43.

*E13.31. Show (c) and (f) from T13.44. Hard core: show each of the results from
T13.44.

*E13.32. Show (f) and (l) from T13.45. Hard core: show each of the results from
T13.45.

*E13.33. Show (a) and (b) from T13.46. Hard core: show each of the results from
T13.46.

CHAPTER 13. GÖDEL’S THEOREMS 697

*E13.34. Show (b) and (e) from T13.47. Hard core: show each of the results from
T13.47.

*E13.35. Show (j) and the unfinished cases for the C disjunct in (l) and (n). Hard
core: show each of the results from T13.48.

E13.36. Work (g) from T13.49 including at least the A and B cases. Hard core:
show each of the results from T13.49.

*E13.37. Work the K and M cases from T13.50l. Hard core: show each of the
results from T13.50.

E13.38. Work j from T13.51 including at least the O case. Hard core: show each of
the results from T13.51.

*E13.39. Work the case marked “similarly” on line 115 of T13.52a and the D case
from T13.52f. Hard core: show each of the results from T13.52.

*E13.40. Show (g) including at least the A case, and (k) from T13.53. Hard core:
show each of the results from T13.53.

13.4.2 The result

After all our preparation, we are ready to turn to the second condition, that PA `
�.P ! Q/! .�P ! �Q/. Again, given both �.P ! Q/ and �P the idea is that
there are j and k such that PRFT.j; pP ! Qq/ and PRFT.k; pPq/ so that l D j?k?2pQq

numbers a proof of Q. As it turns out, it will be convenient to have the result in a
form with free variables, PA ` Prvt.cnd.p; q//! .Prvt.p/! Prvt.q//; the second
condition then follows as an immediate corollary.

Observe that we have on the table expressions of the sort, C, Plus and plus —
where the first is a primitive symbol of LNT, the second the original relation to cap-
ture the recursive function plus, and the last a function symbol defined from the
recursive function. In view of demonstrated equivalences, we will tend to slide be-
tween them without notice. So, for example, given that hh2; 2i; 4i 2 plus, by cap-
ture PA ` Plus.2; 2; 4/; and by demonstrated equivalences, PA ` 2 C 2 D 4 and
PA ` plus.2; 2/ D 4.

CHAPTER 13. GÖDEL’S THEOREMS 698

*T13.54. PA ` Prvt.cnd.p; q//! .Prvt.p/! Prvt.q//. Corollary: PA ` �.P !
Q/! .�P ! �Q/.

CHAPTER 13. GÖDEL’S THEOREMS 699

1. Prvt.cnd.p; q// A (g!I)

2. W ff .cnd.p; q// 1 T13.53k
3. Prvt.p/ A (g!I)

4. W ff .p/ 3 T13.53k
5. W ff .q/ 2,4 T13.53i
6. Icon.cnd.p; q/; p; q/ T13.40c,e
7. 9vPrft.v; cnd.p; q// 1 abv
8. 9vPrft.v; p/ 3 abv
9. Prft.j; cnd.p; q// A (g 79E)

10. Prft.k;p/ A (g 89E)

11. l D j � k � 2
q def

12. exp.j; len.j / :
� 1/ D cnd.p; q/ 9 T13.40f

13. exp.k; len.k/ :
� 1/ D p 10 T13.40f

14. exp.l; len.j /C len.k// D q 11 T13.47c,f
15a IconŒexp.j; len.j / :

� 1/;exp.k; len.k/ :
� 1/;exp.l; len.j /C len.k//� 6,12,13,14DE

16. .8i < len.j //Œexp.l; i/ D exp.j; i/� 11 T13.47c
17. .8i < len.k//Œexp.l; len.j /C i/ D exp.k; i/� 11 T13.47c
18. exp.l; len.j / :

� 1/ D exp.j; len.j / :
� 1/ 16 T13.45h (8E)

19. exp.l; len.j /C len.k/ :
� 1/ D exp.k; len.k/ :

� 1/ 17 T13.45h (8E)
20b IconŒexp.l; len.j / :

� 1/;exp.l; len.j /C len.k/ :
� 1/;exp.l; len.j /C len.k//� 15,18,19DE

21. .8i < len.j //ŒAxiom.exp.l; i//_ .9m < i/.9n < i/Icon.exp.l;m/;exp.l; n/;exp.l; i//� 9,16 T13.40f
22. .8i < len.k//ŒAxiom.exp.l; len.j /C i// _

.9m < i/.9n < i/Icon.exp.l; len.j /Cm/;exp.l; len.j /C n/;exp.l; len.j /C i//� 10,17 T13.40f
23c .8i W len.j / � i < len.j /C len.k//ŒAxiom.exp.l; i// _

.9m < i/.9n < i/Icon.exp.l;m/;exp.l; n/;exp.l; i//� from 22
24. x < len.l/ A (g (8I))

25. x < len.j /_ len.j / � x < len.j /C len.k/_ x D len.j /C len.k/ 11,24 T13.47f
26. x < len.j / A (g 25_E)

27. Axiom.exp.l; x//_ .9m < x/.9n < x/Icon.exp.l;m/;exp.l; n/;exp.l; x// 21,26 (8E)

28. len.j / � x < len.j /C len.k/ A (g 25_E)

29. Axiom.exp.l; x//_ .9m < x/.9n < x/Icon.exp.l;m/;exp.l; n/;exp.l; x// 23,28 (8E)

30. x D len.j /C len.k/ A (g 25_E)

31. .9m < x/.9n < x/Icon.exp.l;m/;exp.l; n/;exp.l; x// 20,30
32. Axiom.exp.l; x//_ .9m < x/.9n < x/Icon.exp.l;m/;exp.l; n/;exp.l; x// 31 _I

33. Axiom.exp.l; x//_ .9m < x/.9n < x/Icon.exp.l;m/;exp.l; n/;exp.l; x// 25,26-31 _E

34d .8x < len.l//ŒAxiom.exp.l; x//_ .9m < x/.9n < x/Icon.exp.l;m/;exp.l; n/;exp.l; x//� 24-33 (8I)
35. q > ; 5 T13.49e
36. len.2q

/ D 1 35 T13.45k
37. len.l/ � 1 11,36 T13.47f
38. l > 1 37 T13.45g
39. exp.l; len.l/ :

� 1/ D q 14 T13.47f
40. exp.l; len.l/ :

� 1/ D q ^ l > 1^
.8x < len.l//ŒAxiom.exp.l; x//_ .9m < x/.9n < x/Icon.exp.l;m/;exp.l; n/;exp.l; x//� 39,38,34 ^I

41. Prft.l; q/ 40 T13.40f
42. Prvt.q/ 41 9I

43. Prvt.q/ 8,10-42 9E

44. Prvt.q/ 7,9-43 9E

45. Prvt.p/! Prvt.q/ 3-44!I

46e Prvt.cnd.p; q//! ŒPrvt.p/! Prvt.q/� 1-45!I

CHAPTER 13. GÖDEL’S THEOREMS 700

This derivation is long, and skips steps; but it should be enough for you to see how
the argument works — and to fill in the details if you choose. First, at (a), under
assumptions for !I, there are derivations numbered j , k and a longer sequence
numbered l . And the the last member of this longer sequence is an immediate con-
sequence of last members from the derivations numbered j and k. At (b) the results
from (12) are all applied to the sequence numbered l ; so the last sentence in the
longer sequence is an immediate consequence of its earlier members. At (c), the
different fragments of the longer sequence have the character of a proof. And at
(d), the whole sequence numbered l has the character of a proof. Finally, at (e)
we observe that this longer sequence yields Prvt.q/ and discharge the assumptions
for the result that Prvt.cnd.p; q// ! ŒPrvt.p/ ! Prvt.q/� so that with T13.34
PA ` Prvt.cnd.p; q//! .Prvt.p/! Prvt.q//.

But then we have Prvt.cnd.pPq; pQq// ! ŒPrvt.pP q/ ! Prvt.pQq/� as an
instance, and by capture, Prvt.pP ! Qq/ ! ŒPrvt.pP q/ ! Prvt.pQq/� so that
PA ` �.P ! Q/ ! .�P ! �Q/. Thus the second derivability condition is
established.

*E13.41. As a start to a complete demonstration of T13.54, provide a demonstration
through part (c) that does not skip any steps. You may find it helpful to divide
your demonstration into separate parts for (a), (b) and then for lines (21), (22)
and (23). Hard core: complete the entire derivation.

13.5 The Third Condition: �P ! ��P

To show the third condition, that PA ` �P ! ��P , it is sufficient to show PA `
Q ! �Q. For when Q is �P , the result is immediate. Further, �P is Prvt.pP q/
and Prvt.pP q/ is †1. So it is sufficient to show that for any †1 sentence Q, PA `
Q! �Q.

We begin with some additional applications. Then we focus what needs to be
shown by an alternate characterization of†1 formulas, along with some results about
substitutions. Finally we will be in a position to show the third condition.

13.5.1 More applications

Recall that where p D pP q, v D pvq, and s D psq, formsub.p; v; s/ returns the
Gödel number of P v

s . In addition, num.n/ returns the Gödel number of the standard

CHAPTER 13. GÖDEL’S THEOREMS 701

Second theorems of chapter 13

T13.21. For any friendly recursive function r.Ex/ and original formula R.Ex; v/ by which it is ex-
pressed and captured, PA defines a function r.Ex/ such that PA ` v D r.Ex/ $ R.Ex; v/.
This theorem depends on conditions for the recursion clause and so on T13.22 and T13.31.

T13.22. Where F .Ex; y; v/ is the formula for recursion, PA ` 8m8nŒ.F .Ex; y;m/ ^ F .Ex; y; n//

! m D n�.

T13.23 - T13.26. T13.23 Results for a :
� b. T13.24 results for ajb. T13.25 results for Pr.a/ and

Rp.a/. T13.26 results for lcm.a/.

T13.27. PA ` Œ.8i < k/.m.i/ > ; ^ m.i/ > h.i// ^ 8i8j.i < j ^ j < k ! Rp.Sm.i/;
Sm.j ///�! 9p.8i < k/rm.p;m.i// D h.i/ (CRT).

T13.28 - T13.30. T13.28 results for maxp and maxs. T13.29 PA ` 9p9q.8i < k/ˇ.p; q; i/ D

h.i/. T13.30 PA ` 9p9qŒ.8i < k/ˇ.p; q; i/ D ˇ.r; s; i/ ^ ˇ.p; q; k/ D n�.

T13.31. PA ` 9v9p9qŒˇ.p; q;;/ D g.Ex/^ .8i < y/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/^ˇ.p; q; y/
D v�.

T13.32. For any friendly recursive relation R.Ex/ with characteristic function chR.Ex/, PA ` R.Ex/$
chR.Ex/ D ;. And for a recursive operator OP.P1.Ex/ : : : Pn.Ex// with characteristic function
f.chP1.Ex/ : : : chPn.Ex//, PA ` Op.P1.Ex/ : : :Pn.Ex// $ f.chP1

.Ex/ : : : chPn.Ex// D ;. Corol-
lary: where R.Ex/ is originally captured by R.Ex;;/, PA ` R.Ex/$ R.Ex;;/.

T13.33. Suppose f.Ex; y/ is defined by g.Ex/ and h.Ex; y; u/ so that PA ` v D f.Ex; y/ $

F .Ex; y; v/; then, (i) f.Ex;;/ D g.Ex/ and (ii) f.Ex; S.y// D h.Ex; y;f.Ex; y//.

T13.34. (a) For any friendly recursive function r.Ex/ and original formula R.Ex; v/ by which it
is expressed and captured, PA defines a coordinate function r.Ex/ such that PA ` v D

r.Ex/$ R.Ex; v/. And (b) for any friendly recursive relation R.Ex/ with characteristic func-
tion chR.Ex/, PA defines a coordinate relation R.Ex/ such that PA ` R.Ex/$ chR.Ex/ D ;.

T13.35 - T13.37. T13.35 equivalences for suc, zero, idntj
k

, plus and times. T13.36 results for pred,
sg and csg. T13.37 Equivalences for pred, subc, absval, sg, csg, Eq, Leq, Less, Neg, and
Dsj.

T13.38. PA proves a characteristic function takes the value ; or 1.

T13.39. Equivalences for .9 y � z/, .9 y < z/, .8y � z/, .8y < z/, .�y � z/, Fctr, and Prime.

T13.40 - T13.44. T13.40 first applications to recursive functions. T13.41 Results for ma. T13.42
results for fact. T13.43 results for pi. T13.44 results for exp.

T13.45 - T13.51. T13.45 results for len. T13.46 results for val. T13.47 results for m � n. T13.48
results for Termseq. T13.49 results for Formseq. T13.50 results for Tsubseq. T13.51
results for Fsubseq.

T13.52 - T13.53. T13.52 on unique readability. T13.53 results forW ff and Prvpa.

T13.54. PA ` �.P ! Q/! .�P ! �Q/. — D2

CHAPTER 13. GÖDEL’S THEOREMS 702

numeral for n, and gvar.n/ is the Gödel number of variable xn. So formsub.p; gvar.n/;
num.y// is a function which returns the number of the formula that substitutes a nu-
meral for the value (number) assigned to y into the place of xn. So, for example, if y
is assigned the value of 2, then formsub.p; gvar.n/; num.y// returns pP xn

2
q. And PA

defines formsub.p;gvar.n/;num.y//. We require some results for these notions.

First, a pair of theorems with some results for substitutions into terms and then
formulas.

T13.55. The following are theorems of PA.

(a) PA ` Freet.t; v/$ �Termsub.t; v; v � 4; t /

(b) PA ` Var.v/! Term.v � 4/ ^ v � 4 ¤ v

(c) PA ` exp.m; k/ D p;q! �ŒJ.v;m; n; k/_K.v; s;m; n; k/_L.m; n; k/_
M.m; n; k/ _N.m; n; k/�

(d) PA ` ŒVar.exp.m; k//^exp.m; k/ ¤ v�! �ŒI.m; n; k/_K.v; s;m; n; k/_
L.m; n; k/ _M.m; n; k/ _N.m; n; k/�

(e) PA ` ŒVar.exp.m; k// ^ exp.m; k/ D v� ! �ŒI.m; n; k/ _ J.v;m; n; k/ _

L.m; n; k/ _M.m; n; k/ _N.m; n; k/�

(f) PA ` exp.m; k/ D pSq�a! �ŒI.m; n; k/_J.v;m; n; k/_K.v; s;m; n; k/_
M.m; n; k/ _N.m; n; k/�

(g) PA ` exp.m; k/ D pCq�a! �ŒI.m; n; k/_J.v;m; n; k/_K.v; s;m; n; k/_
L.m; n; k/ _N.m; n; k/�

(h) PA ` exp.m; k/ D p�q�a! �ŒI.m; n; k/_J.v;m; n; k/_K.v; s;m; n; k/_
L.m; n; k/ _M.m; n; k/�

*(i) PA ` ŒTermsub.t; v; s; q/ ^ Termsub.t; v; s; r/�! q D r

(j) PA ` ŒAtomsub.p; v; s; q/ ^Atomsub.p; v; s; r/�! q D r

(k) PA ` ŒTerm.t/ ^ Term.s/�! Œ�Freet.t; v/! Termsub.t; v; s; t/�

(l) PA ` Term.s/! ŒAtomsub.p; v; v � 4; p/! Atomsub.p; v; s; p/�

(m) PA ` ŒTerm.t/ ^ Var.v/�! Œ.Freet.t; v/ ^ Termsub.t; v; s; u//! s � u�

CHAPTER 13. GÖDEL’S THEOREMS 703

*(n) PA ` Var.v/! Œ.�Atomsub.p; v; v�4; p/^Atomsub.p; v; s; q//! s � q�

Hints: (i) Under assumptions for!I and (9E) you have Tsubseq.m; n; t; v;
s; q/ and Tsubseq.m0; n0; t; v; s; r/; with this show 8kŒk < len.m/! .8x <

len.m0//.exp.m; k/ D exp.m0; x/ ! exp.n; k/ D exp.n0; x//� by strong in-
duction; the result follows easily from this. (k) Under assumptions for!I and
then 9E, you have both Tsubseq.m; n; t; v; v � 4; t / and Tsubseq.m0; n0; t; v;
s; u/ with goal t D u; by strong induction show 8kŒk < len.m/ ! .8x <

len.m0//.exp.m; k/ D exp.m0; k/! .exp.m; k/ D exp.n; k/! exp.m0; x/ D
exp.n0; x///�; then the result follows easily. (m) Under assumptions for !I
and 9E you have Termsub.m; n; t; v; v � 4; r/ and Termsub.m0; n0; t; v; s; u/
where r ¤ t with goal s � u; by strong induction show 8k.k < len.m/ !
.8x < len.m0//Œexp.m; k/ D exp.m0; x/ ! .exp.m; k/ ¤ exp.n; k/ ! s �

exp.n0x//�; the result follows.

T13.56. The following are theorems of PA.

(a) PA ` Freef .p; v/$ �Formsub.p; v; v � 4; p/

(b) PA ` Atomic.exp.m; k/! �ŒP.m; n; k/_Q.m; n; k/_R.v; p;m; n; k/_
S.v; p;m; n; k/�

(c) PA ` exp.m; k/ D p�q�a! �ŒO.v; s;m; n; k/_Q.m; n; k/_R.v; p;m; n; k/_
S.v; p;m; n; k/�

(d) PA ` exp.m; k/ D p.q�a! �ŒO.v; s;m; n; k/_P.m; n; k/_R.v; p;m; n; k/_
S.v; p;m; n; k/�

(e) PA ` ŒVar.j /^ exp.m; k/ D p8q � j � a ^ j ¤ v�! �ŒO.v; s;m; n; k/_
P.m; n; k/ _Q.m; n; k/ _ S.v; p;m; n; k/�

(f) PA ` ŒVar.j /^ exp.m; k/ D p8q � j � a ^ j D v�! �ŒO.v; s;m; n; k/_
P.m; n; k/ _Q.m; n; k/ _R.v; p;m; n; k/�

(g) PA ` ŒFormsub.p; v; s; q/ ^ Formsub.p; v; s; r/�! q D r

(h) PA ` ŒW ff .p/ ^ Term.s/� ! ŒFormsub.p; v; s; q/ ! formusb.p; v; s/ D
q�

(i) PA ` ŒW ff .p/ ^ Term.s/�! Œ�Freef .p; v/! formsub.p; v; s/ D p�

corollary: If x is not free in P , then PA ` formsub.pPq; pxq; y/ D pP q

CHAPTER 13. GÖDEL’S THEOREMS 704

(j) PA ` ŒW ff .p/^Term.s/^Var.v/�! ŒFreef .p; v/! s � formsub.p; v; s/�

Hint: See the corresponding members of T13.55.

We are now positioned for some results related to Gen and A4. Let gvar.n/
Ddef 223C2n be the Gödel number of variable xn, and numseq.n/ be as follows.

PA ` numseq.;/ D pi.;/num.;/

PA ` numseq.Sy/ D numseq.y/ � pi.Sy/num.Sy/

We shall be able to show that numseq.n/ numbers a term sequence for num.n/. In
addition let,

T .m; k/ D Atomic.exp.m; k//
U.m; k/ D .9j < k/Œexp.m; k/ D neg.exp.m; j //�
V .m; k/ D .9i < k/.9j < k/Œexp.m; k/ D cnd.exp.m; i/; exp.m; j //�
W.u; v;m; k/ D .9p � u/ŒW ff .p/ ^ exp.m; k/ D unv.v; p/�
X.u; v; s;m; k/ D .9i < k/.9j � u/ŒVar.j / ^ j ¤ v ^ .�Freet.s; j / _�Freef .exp.m; i/; v//^

exp.m; k/ D unv.j; exp.m; i//�

T13.57. The following are theorems of PA.

(a) PA ` Ffseq.m; s; v; u/ $ Œexp.m; len.m/ :
� 1/ D u ^ m > 1 ^ .8k <

len.m//.T .m; k/ _ U.m; k/ _ V.m; k/ _W.u; v;m; k/ _X.u; v; s;m; k//�

(b) (i) PA ` Freefor.s; v; u/$.9x � Bu/Ffseq.x; s; v; u/

(ii) PA ` Bu D Œpi.len.u//u�len.u/

(c) PA ` Axiomad4.n/$.9p � n/.9v � n/fW ff .p/ ^ Var.v/ ^ Œ

.�Freef .v; p/ ^ n D cnd.unv.v; p/; p//_

.9s � n/.Freef .v; p/^Term.s/^Freefor.s; v; p/^n D cnd.unv.v; p/;formsub.p; v; s//�g

(d) (i) PA ` num.;/ D p;q

(ii) PA ` num.Sy/ D pSq � num.y/

(e) PA ` gvar.n/ D 2
23C2�n

(f) PA ` Var.gvar.n//

(g) PA ` gvar.m/ D gvar.n/! m D n

*(h) PA ` ŒPrvt.p/ ^ Var.v/�! Prvt.unv.v; p//

(i) PA ` Axiom.n/! Prvt.n/

CHAPTER 13. GÖDEL’S THEOREMS 705

*(j) PA ` ŒW ff .p/ ^ Var.v/�! Freefor.v; v; p/

*(k) PA ` Axiomad4.n/$ 9s.9p � n/.9v � n/ŒW ff .p/ ^ Var.v/^

Term.s/ ^ Freefor.s; v; p/ ^ n D cnd.unv.v; p/;formsub.p; v; s//�

(l) PA ` num.x/ > ;

(m) PA ` numseq.x/ > 1

(n) PA ` len.num.x// D Sx

*(o) PA ` len.numseq.x// D Sx

(p) PA ` 8yŒy � x ! exp.numseq.x/; y/ D num.y/�

(q) PA ` Var.v/! v ¤ num.y/

(r) PA ` Termseq.numseq.x/;num.x//

corollary: PA ` Term.num.x//

(s) PA ` Termsub.num.n/; v; s;num.n//

corollary: PA ` �Freet.num.n/; v/

*(t) PA ` ŒW ff .p/ ^ Var.v/�! Freefor.num.x/; v; p/

(u) PA ` W ff .p/! Prvt.cnd.unv.gvar.n/; p/;formsub.p;gvar.n/;num.x////

Hint: (p) is by induction on the value of x. For (q) it may help to think about
the length of v and num.y/. For (r) to show the bounded quantification for
Termseq.numseq.x/;num.x// you assume j < len.numseq.x//; then j D
; _ j > ; and the cases are easy. (s) again, in the argument for the bounded
quantifier, j D ; _ j > ;.

Effectively, (h) is like Gen. (k) is like the intuitive version of A4 from p. 605. And (u)
results with A4 when the substituted term is a numeral (so that associated restrictions
are automatically met).

Finally, a theorem with results first for substitution into a conditional, and then for
substitution into other substitutions. The latter include matched results for Termsub,
Atomsub and then Formsub. Suppose x D xi and y D xj .

T13.58. The following are theorems of PA.

CHAPTER 13. GÖDEL’S THEOREMS 706

(a) PA ` ŒW ff .p/ ^W ff .q/ ^ Term.s/�! formsub.cnd.p; q/; v; s/ D

cnd.formsub.p; v; s/;formsub.q; v; s//

*(b) PA ` ŒTerm.p/ ^ v ¤ w�! 9q9t9t 0ŒTermsub.p; v;num.y/; t/^

Termsub.p;w;num.z/; t 0/^Termsub.t; w;num.z/; q/^Termsub.t 0; v;num.y/; q/�

(c) PA ` ŒAtomic.p/^v ¤ w�! 9q9t9t 0ŒAtomsub.p; v;num.y/; t/^Atomsub.p;w;num.z/; t 0/^

Atomsub.t; w;num.z/; q/ ^Atomsub.t 0; v;num.y/; q/�

*(d) PA ` ŒW ff .p/^v ¤ w�! formsub.formsub.p; v;num.y//; w;num.z// D

formsub.formsub.p;w;num.z//; v;num.y//

(e) PA ` ŒTerm.p/^Var.w/�! 9q9t9t 0ŒTermsub.p; v; w; t/^Termsub.p; v;num.y/; t 0/^

Termsub.t; w;num.y/; q/ ^ Termsub.t 0; w;num.y/; q/�

(f) PA ` ŒAtomic.p/^Var.w/�! 9q9t9t 0ŒAtomsub.p; v; w; t/^Atomsub.p; v;num.y/; t 0/^

Atomsub.t; w;num.y/; q/ ^Atomsub.t 0; w;num.y/; q/�

(g) PA ` ŒW ff .p/ ^ Var.w/�! formsub.formsub.p; v; w/; w;num.y// D

formsub.formsub.p; v;num.y//; w;num.y//

(h) PA ` ŒTerm.p/ ^ Var.w/�! 9q9t9t 0ŒTermsub.p; v; pSq � w; t/^

Termsub.p; v;num.Sy/; t 0/^Termsub.t; w;num.y/; q/^Termsub.t 0; w;num.y/; q/�

(i) PA ` ŒAtomic.p/ ^ Var.w/�! 9q9t9t 0ŒAtomsub.p; v; pSq � w; t/

^Atomsub.p; v;num.Sy/; t 0/^Atomsub.t; w;num.y/; q/^Atomsub.t 0; w;num.y/; q/�

(j) PA ` ŒW ff .p/^Var.w/�! formsub.formsub.p; v; pSq � w/;w;num.y//

D formsub.formsub.p; v;num.Sy//; w;num.y//.

Hints: (b) Let P D 9q9a9b9c9dŒTsubseq.a; b;exp.n; k/;w;num.z/; q/^Tsubseq.c; d;exp.n0; k0/; v;

num.y/; q/�; show 8x.8k < len.m//.8k0 < len.m0//Œlen.exp.m; k// � x! .exp.m; k/ D exp.m0; k0/!

P /� by IN; the result follows. (c) Under the assumption for!I, apply T13.49c
and then (b). For (e) let P D 9q9a9b9c9dŒTsubseq.a; b;exp.n; k/;w;num.y/; q/^Tsubseq.c; d;

exp.n0; k0/;w;num.y/; q/�; show 8x.8k < len.m//.8k0 < len.m0//Œlen.exp.m; k// � x! .exp.m; k/ D

exp.m0; k0/! P /� by IN.

CHAPTER 13. GÖDEL’S THEOREMS 707

Speaking loosely: From (a), .P ! Q/
v
s D P v

s ! Qvs . From theorems leading up to (d),
if v ¤ w then .P v

num.y//
w
num.z/ D .P

w
num.z//

v
num.y/. From ones leading to (g), .P v

w /
w
num.y/ D

.P v
num.y//

w
num.y/. And from ones leading to (j), .P v

Sw
/w
num.y/ D .P v

num.Sy//
w
num.y/. For

these is important that num.y/ is a numeral and so has no variables to be replaced.
Arguments combine methods we have seen before; reasoning is straightforward but
long.

*E13.42. Set up the argument for T13.55k including assertion of the main proposi-
tion to be shown by induction; then set up the show part working just the L
case. Hard core: finish T13.55k and the rest of the results in T13.55.

*E13.43. Set up the argument for T13.56i including assertion of the main proposi-
tion to be shown by induction; then set up the show part working just the P
case. Hard core: finish T13.56c and the rest of the results in T13.56.

*E13.44. Show (s) and (u) from T13.57. Hard core: show the rest of the results from
T13.57.

*E13.45. Show T13.58a; then set up the argument for T13.58g including assertion
of the main proposition to be shown by induction; then set up the show part
working just the P case. Hard core: finish T13.58g and the rest of the results
in T13.58.

13.5.2 Sigma star.

Our aim is to show PA ` Q ! �Q for any †1 sentence Q. Given our minimal
resources, the task is simplified if we can give a minimal specification of the †1
formulas themselves. Toward this end, we introduce a special class of formulas, the
†? formulas; and show that every †1 formula is a †? formula. †? formulas are as
follows.

(†?) For any variables x, y and :,

(a) ; D :, y D :, Sy D :, xC y D : and x � y D : are strictly †?.

(s) If P and Q are strictly †?, then so are .P _Q/, and .P ^Q/.

(8) If P is strictly †?, then so is .8x � y/P where y does not occur in P .

CHAPTER 13. GÖDEL’S THEOREMS 708

(9) If P is strictly †?, then so is 9xP .

(c) Nothing else is strictly †?.

A formula is †? iff it is equivalent to a strictly †? formula.

Given that the existential quantifier comes to the front (as for T12.10), it is perhaps
obvious that every†? formula is†1. At any rate, we aim to show the other direction:
that every†1 formula is provably equivalent a†? formula. Then results which apply
to all the †? formulas immediately transfer to the †1 formulas. We begin showing
that there are †? formulas equivalent to atomic equalities of the sort t D x. Then
(depending on an extended notion of normal form and a result result according to
which�0 formulas always have equivalent normal forms) we show that there are†?

formulas equivalent to�0 formulas. From this it is a short step to the result that there
are †? formulas equivalent to all the †1 formulas. First, then, the result for atomic
equalities,

T13.59. For any P of the form t D x, there is a †? formula P ? such that PA `
P $ P ?.

By induction on the function symbols in t.

Basis: If t has no function symbols, then it is the constant ; or a variable
y, so P is of the form ; D x or y D x; but these are already †?

formulas. So let P ? be the same as P . Then PA ` P $ P ?.

Assp: For any i , 0 � i < k, if t has i function symbols, there is a P ? such
that PA ` P $ P ?.

Show: If t has k function symbols, there is a P ? such that PA ` P $ P ?.

If t has k function symbols, then it is of the form Sr, rC s or r � s

for r and s with < k function symbols.

(S) t is Sr, so that P is Sr D x. Set P ? D 9zŒ.r D z/? ^ Sz D x�;
then by assumption, PA ` r D z $.r D z/?. So reason as follows,

CHAPTER 13. GÖDEL’S THEOREMS 709

1. r D z $.r D z/? assp

2. Sr D x A (g$I)

3. r D r ^ Sr D x from 2
4. 9zŒr D z ^ Sz D x� 3 9I
5. 9zŒ.r D z/? ^ Sz D x� 1,4 with T9.9

6. 9zŒ.r D z/? ^ Sz D x� A (g$I)

7. .r D z/? ^ Sz D x A (g 69E)

8. r D z 1,7$E
9. Sr D x from 7,8

10. Sr D x 6,7-9 9E

11. Sr D x $ 9zŒ.r D z/? ^ Sz D x� 2-5,6-10$I

So PA ` P $ P ?.

(+) t D sCr, so that P is sCr D x. Set P ? D 9u9vŒ.s D u/?^ .r D

v/? ^ uC v D x�. Then PA ` P $ P ?.

(�) Similarly.

Indct: For any P of the form t D x, there is a P ? such that PA ` P $ P ?.

Now generalize some operations from T8.1. There we said a formula is in normal
form iff its only operators are _, ^, and �, and the only instances of � are imme-
diately prefixed to atomics. Now a formula is in (extended) normal form iff its only
operators are _, ^, �, or a bounded quantifier, and the only instances of � are im-
mediately prefixed to atomics (which may include inequalities). Again, generalizing
from before, where P is a normal form, let P 0 be like P except that _ and ^, uni-
versal and existential quantifiers and, for an atomic A, A and �A are interchanged.
So, for example, .9x � p/.x D p _ x 6> p/0 D .8x � p/.x ¤ p ^ x > p/. Still
generalizing, for any �0 formula whose operators are �,! and the bounded quan-
tifiers, for atomic A, let A� = A; and Œ�P �� D ŒP ��0; .P ! Q/� D .ŒP ��0 _Q�/;
Œ.9x � t/P �� D .9x � t/P � and Œ.8x � t/P �� D .8x � t/P � (and similarly for
.9x < t/ and .8x < t/). Then as a simple extension to the result from E8.10,

T13.60. For any�0 formula P , there is a normal formula P � such that ` P $ P �.

The demonstration is straightforward extension of the reasoning from E8.9
and E8.10.

We show our result as applied to these normal forms. Thus,

CHAPTER 13. GÖDEL’S THEOREMS 710

*T13.61. For any�0 formula P there is a†? formula P ? such that PA ` P $ P ?.

From T13.60, for any �0 formula P , there is a normal P � such that ` P $

P �. Now by induction on the number of operators in P �, we show there is a
P ? such that PA ` P � $ P ?.

Basis: If P � has no operators, then it is an atomic of the sort s D t, s � t

or s < t.

(D) P � is s D t. Set P ? D 9zŒ.s D z/? ^ .t D z/?�. By T13.59,
PA ` s D z $.s D z/? and PA ` t D z $.t D z/?; so
PA ` P � $ P ?.

(�) P � is s � t, which is to say 9z.zCs D t/. By the case immediately
above, PA ` .zCs D t/$.zCs D t/?. Set P ? D 9z.zCs D t/?.
Then PA ` P � $ P ?. And similarly for <.

Assp: For any i , 0 � i < k, if a normal P � has i operator symbols, then
there is a †? formula P ? such that PA ` P � $ P ?.

Show: If a normal P � has k operator symbols, then there is a†? formula P ?

such that PA ` P � $ P ?.

If P � has k operator symbols, then it is of the form �A, B ^ C ,
B _ C , .9x � t/B, .9x < t/B, .8x � t/B or .8x < t/B, where
A is atomic and B and C are normal with < k operator symbols.

(�) P � is �A. (i) P � is s ¤ t. Set P ? D .s < t/? _ .t < s/?; then by
assumption, PA ` s < t $.s < t/? and PA ` t < s$.t < s/?;
and with T13.13p, PA ` P � $ P ?.

(ii) P � is s – t; set P ? D .t � s/?; then by assumption, PA ` t �

s $.t � s/?; and with T13.13r, PA ` P � $ P ?. And similarly
for P ? D s — t.

(^) P � is B ^ C . Set P ? D B? ^ C?; since B and C are normal, by
assumption PA ` B $ B? and PA ` C $ C?; so PA ` P � $ P ?.
And similarly for _.

(8) P � is .8x � t/B. Set P ? D 9zŒ.t D z/? ^ .8x � z/B?�; by
T13.59 PA ` t D z $.t D z/? and by assumption, PA ` B $ B?

so PA ` P � $ P ?. And, by a related construction, similarly for
.8x < t/B.

(9) P � is .9x � t/B. Set P ? D 9xŒ.x � t/?^B?�; then by assumption
PA ` x � t $.x � t/? and PA ` B $ B?; so PA ` P � $ P ?.
And similarly for .9x < t/B.

CHAPTER 13. GÖDEL’S THEOREMS 711

Indct: For any normal P � there is a P ? such that PA ` P � $ P ?.

So from T13.60 for any �0 formula P , there is a P � such that ` P $ P �

and by the above reasoning, PA ` P � $ P ?. So PA ` P $ P ?.

Now it is immediate that for any †1 formula P there is a †? formula P ? such that
PA ` P $ P ?.

T13.62. For any †1 formula P there is a †? formula P ? such that PA ` P $ P ?.

Consider any †1 formula P . This formula is of the form 9x1 : : : 9xnA for
�0 formula A. But by T13.61, there is an A? such that PA ` A$ A?. Let
P ? be 9x1 : : : 9xnA?. Then PA ` P $ P ?.

E13.46. Povide a demonstration to show T13.60.

*E13.47. Fill in the parts of T13.59 and T13.61 that are left as “similarly” to to show
that PA ` P $ P ?.

E13.48. Show that for any †? formula P ? there is a †1 formula P such that PA `
P $ P ? and so that the †? formulas are the same as the †1 formulas.

13.5.3 Substitutions

We now define a sub.pPq; Ey/ which substitutes numerals for all the variables free in
P . Where Ey is a (possibly empty) sequence of distinct variables, including at least all
variables free in P , consider an enumeration enum.i/ of variable subscripts in Ey so
that enum.i/ D yi is the subscript of the i th variable and yi the numeral corresponding
to that subscript; so the variables of Ey are xy1 : : : xyn (perhaps the enumeration is by
list where enum.i/ D enum.n/ when i > n). Then,

PA ` sub0.pP q; Ey/ D pP q

PA ` subSi .pPq; Ey/ D formsub.subi .pP q; Ey/;gvar.ySi/;num.xySi//

CHAPTER 13. GÖDEL’S THEOREMS 712

And PA ` sub.pP q; Ey/ D subn.pP q; Ey/. Observe that enum does not appear in
the LNT expression; rather we use the function to make the specification in which
there appears a certain variable xySi and numeral ySi. Also, sub.pPq; Ey/ still has
as free variables each xySi free in P but returns the Gödel number of a sentence —
the sentence which substitutes into places for free variables numerals for the values
assigned to those variables.

From a few quick theorems, so long as Ey and Ez include all the free variables of
P , sub.pPq; Ey/ D sub.pP q; Ez/.

T13.63. PA ` W ff .subi .pPq; Ey//. Corollary: PA ` W ff .sub.pPq; Ey//.

By an easy induction.

T13.64. For arbitrary Eu, Ev, subi .pP q; xx1 : : : xxi ; Eu/ D subi .pP q; xx1 : : : xxi ; Ev/

By an easy induction.

*T13.65. For any i , PA ` subiC1.pPq; xa; xy1 : : : xyn/ D subiC1.pPq; xy1 : : : xyi ;

xa; xy.iC1/
: : : xyn/

The argument is an induction on the value of i . For the show, you need PA `
subiC2.pP q; xa; xy1 : : : xyn/ D subiC2.pP q; xy1 : : : xyiC1 ; xa; xyiC2 : : : xyn/. The
key to this is that subiC2.pPq; xy1 : : : xyiC1 ; xa; xyiC2 : : : xyn/ is,

formsubŒformsub.subi.pPq; xy1 : : : xyiC1 ; xa; xyiC2 : : : xyn /;gvar.yiC1/;num.xyiC1 //;gvar.ya/;num.xya /�

You will be able to use T13.64 and T13.58d. As a preliminary it will be
useful to show that if PA ` W ff .p/, then PA ` formsub.formsub.p;
gvar.a/;num.xa//;gvar.b/;num.xb// D formsub.formsub.p;gvar.b/;num.xb//;

gvar.a/;num.xa//.

T13.65 effectively gives the ability to sort variables from one order into another.
Suppose the variables of Ex are the same as the variables of Ey. To convert Ey to Ex, a
straightforward approach is to switch members into the first position in the reverse of
their order in Ex — so for n members, at stage i , the result is xxSn�i : : : xxn ; Ey

0 where
Ey0 is like Ey less the members that precede it. So for a vector with 6members, at stage
0 we begin with some sub.pP q; Ey/; then at stage three PA proves this is equivalent
to sub.pP q; xx4 ; xx5 ; xx6 ; Ey

0/; and at stage 6 that it is equivalent to sub.pPq; Ex/. This
is an induction, but simple enough, so left as an exercise.

CHAPTER 13. GÖDEL’S THEOREMS 713

T13.66. If xa is not free in P , then PA ` subiC1.pPq; xy1 : : : xyi ; xa; xy.iC1/
: : : xyn/

D subi .pP q; xy1 : : : xyi ; xa; xy.iC1/
: : : xyn/

In light of T13.64 and T13.65 it is sufficient to show PA ` subiC1.pP q; xa;

xy1 : : : xyi/ D subi .pP q; xy1 : : : xyi ; xa/. The argument is by induction on i ,
where the basis uses W ff .pPq/ ^ �Freef .pPq;gvar.a// ^ Term.num.xa//

by capture and T13.57r, and then T13.56i to establish that PA ` sub1.pP q;
xa; xy1 : : : xyi/ D sub0.pPq; xy1 : : : xyn ; xa/.

*T13.67. If the variables of Ey and Ez are ordered by their subscripts and Ey and Ez are
the same except that Ez includes some variables not in Ey (and so not free in
P), then PA ` sub.pP q; Ey/ D sub.pP q; Ez/.

Hint: Where the variables of Ey are xy1 : : : xym and of Ez are xz1 : : : xzn , let
S.i:j / D Si:Sj when ySi D zSj and S.i:j / D i:Sj when ySi ¤ zSj. Then i:j
“counts” in the natural way from 0:0 tom:n; and you will be able to show that
for any member of this i:j sequence, PA ` subi .pP q; Ey/ D subj .pP q; Ez/.

And with T13.65 and T13.67, details of the vectors do not matter: Let Ex0 and Ey0 be
like Ex and Ey except that variables are in standard order, and Ez be just the free variables
of P in standard order. Then by T13.65, sub.pP q; Ex/ D sub.pPq; Ex0/; by T13.67,
sub.pP q; Ex0/ D sub.pP q; Ez/; by T13.67 again, sub.pP q; Ez/ D sub.pP q; Ey0/; and
with T13.65, sub.pPq; Ey0/ D sub.pPq; Ey/. So PA ` sub.pP q; Ex/ D sub.pPq; Ey/
and we shall not usually worry about details of the vectors.

Then, introducing double brackets as a special notation,

PrvtŒŒP .Ex/�� Ddef Prvt.sub.pPq; Ex//

Where P has free variables Ex, Prvt.pP q/ asserts the provability of the open for-
mula P .Ex/. But PrvtŒŒP .Ex/�� itself has all the free variables of P and asserts the
provability of whatever sentences have numerals for the variables free in P : so, for
example, 8xPrvtŒŒP .x/�� asserts the provability of P x

;
, P x

S;, and so forth. When
P is a sentence, there are no substitutions to be made, and PrvtŒŒP �� is the same as
Prvt.pP q/. Thus we set out to show PA ` P ! PrvtŒŒP �� for †? formulas. When
P is a sentence, this gives PA ` P ! Prvt.pP q/, which is to be shown.

Finally we shall require also some short theorems in order to manipulate this new
notion. There are analogs to D1 and D2, and results for substitution. Each is by a
short induction. First, for D1.

CHAPTER 13. GÖDEL’S THEOREMS 714

T13.68. If PA ` P , then PA ` PrvtŒŒP ��

Suppose PA ` P . By induction on the value of n, PA ` Prvt.subn.pP q; Ex//;
the case when i D n gives the desired result.

Basis: sub0.pPq; Ex/ D pP q. Since PA ` P , by D1, PA ` Prvt.pP q/; so
PA ` Prvt.sub0.pPq; Ex//.

Assp: PA ` Prvt.subi.pPq; Ex//.
Show: PA ` Prvt.subSi.pPq; Ex//.

1. Prvt.subi .pPq; Ex// assp
2. Var.gvar.xSi// T13.57f
3. W ff .subi .pP q; Ex// T13.63
4. PrvtŒunv.gvar.xSi/; subi .pP q; Ex//� 1,2 T13.57h
5. PrvtŒcnd.unv.gvar.xSi/; subi .pP q; Ex//;

formsub.subi.pPq; Ex/;gvar.xSi/;num.xxSi///� 3 T13.57u
6. PrvtŒunv.gvar.xSi/; subi .pP q; Ex//� !

PrvtŒformsub.subi.pP q; Ex/;gvar.xSi/;num.xxSi//� 5 D2
7. PrvtŒformsub.subi.pP q; Ex/;gvar.xSi/;num.xxSi//� 4,6!E
8. Prvt.subSi.pPq; Ex// 7 def

Indct: For any n, PA ` Prvt.subn.pPq; Ex//

And an analog to D2,

T13.69. PA ` PrvtŒŒP ! Q��! .PrvtŒŒP ��! PrvtŒŒQ��/

We must show PA ` Prvt.sub.pP ! Qq; Ex// ! .Prvt.sub.pPq; Ex// !
Prvt.sub.pQq; Ex///. First, by induction, PA ` subi.cnd.pPq; pQq/; Ex// D
cnd.subi.pP q; Ex/; subi.pQq; Ex//. This leads immediately to the desired re-
sult.

Basis: sub0.cnd.pP q; pQq/; Ex// D cnd.sub0.pP q; Ex/; sub0.pQq; Ex//
1. sub0.cnd.pP q; pQq/; Ex/ D cnd.pP q; pQq/ def
2. sub0.pP q; Ex/ D pP q def
3. sub0.pQq; Ex// D pQq def
4. sub0.cnd.pP q; pQq/; Ex/ D cnd.sub0.pPq; Ex/; sub0.pQq; Ex// 1,2,3DE

Assp: PA ` subi.cnd.pP q; pQq/; Ex// D cnd.subi.pPq; Ex/; subi.pQq; Ex//
Show: PA ` subSi.cnd.pP q; pQq/; Ex// D cnd.subSi.pPq; Ex/; subSi.pQq; Ex//

CHAPTER 13. GÖDEL’S THEOREMS 715

1. W ff .subi.pP q; Ex// ^W ff .subi.pQq; Ex// T13.63
2. Term.num.xxSi// T13.57r
3. subSi.pP q; Ex/ D formsub.subi.pP q; Ex/;gvar.xSi/;num.xxSi// def
4. subSi.pQq; Ex/ D formsub.subi.pQq; Ex/;gvar.xSi/;num.xxSi// def
5. subSi.cnd.pPq; pQq/; Ex/
6. D formsub.subi.cnd.pP q; pQq/; Ex/;gvar.xSi/;num.xxSi// def
7. D formsub.cnd.subi.pP q; Ex/; subi.pQq; Ex//;gvar.xSi/;num.xxSi// assp
8. D cnd.formsub.subi.pP q; Ex/;gvar.xSi/;num.xxSi//;

formsub.subi.pQq; Ex/;gvar.xSi/;num.xxSi/// 1,2 T13.58a
9. D cnd.subSi.pP q; Ex/; subSi.pQq; Ex// 8,3,4DE

Indct: For any i , PA ` subi.cnd.pPq; pQq/; Ex// D cnd.subi.pP q; Ex/; subi.pQq; Ex//

So PA ` sub.cnd.pP q; pQq/; Ex// D cnd.sub.pP q; Ex/; sub.pQq; Ex//. Now,

1. Prvt.sub.pP ! Qq; Ex// A (g!I)

2. Prvt.sub.cnd.pP q; pQq/; Ex// 1 cap
3. Prvt.cnd.sub.pP q; Ex/; sub.pQq; Ex/// 2 above
4. Prvt.sub.pP q; Ex//! Prvt.sub.pQq; Ex// 3 D2

5. Prvt.sub.pP ! Qq; Ex//! ŒPrvt.sub.pP q; Ex//! Prvt.sub.pQq; Ex//� 2-5!I

Finally a result for substitutions into these expressions. Again, let x D xi and y D
xj .

T13.70. If t is one of ;, y or Sy and t is free for x in P , then PA ` PrvtŒŒP x
t �� $

PrvtŒŒP ��xt .

Consider the case t D Sy and take the variables in the order x; y; Ez where
x and y do not appear in Ez. PrvtŒŒP x

Sy �� D Prvt.sub.pP x
Sy
q; x; y; Ez//. And

PrvtŒŒP ��xSy D PrvtŒsub.pPq; x; y; Ez/�xSy D PrvtŒsub.pPq; x; y; Ez/xSy �. Thus

it suffices to show PA ` sub.pP x
Sy
q; x; y; Ez/ D sub.pPq; x; y; Ez/xSy . By in-

duction, PA ` subn.pP x
Sy
q; x; y; Ez/ D subn.pP q; x; y; Ez/xSy .

Basis: PA ` sub2.pP x
Sy
q; x; y; Ez/ D sub2.pP q; x; y; Ez/xSy .

CHAPTER 13. GÖDEL’S THEOREMS 716

1. W ff .pP q/ cap
2. Var.gvar.j // T13.57f
3. sub1.pP x

Sy
q; x; y; Ez/

4. D formsub.pP x
Sy
q;gvar. i /;num.x// def

5. D pP x
Sy
q T13.56i

6. sub2.pP x
Sy
q; x; y; Ez/

7. D formsub.sub1.pP x
Sy
q; x; y; Ez/;gvar. j /;num.y// def

8. D formsub.pP x
Sy
q;gvar. j /;num.y// 3-5DE

9. D formsub.formsub.pP q;gvar. i /; pSq � gvar. j //;gvar. j /;num.y// cap
10. D formsubŒformsub.pP q;gvar. i /;num.Sy//;gvar. j /;num.y/� 1,2 T13.58j
11. sub1.pP q; x; y; Ez/
12. D formsub.pP q;gvar. i /;num.x// def
13. sub2.pP q; x; y; Ez/xSy
14. D formsub.sub1.pP q; x; y; Ez/;gvar. j /;num.y//x

Sy
def

15. D formsub.formsub.pP q;gvar. i /;num.x//;gvar. j /;num.y//x
Sy

11-12DE

16. D formsub.formsub.pP q;gvar. i /;num.Sy//;gvar. j /;num.y// abv
17. sub2.pP x

Sy
q; x; y; Ez/ D sub2.pPq; x; y; Ez/xSy 6-10,13-16DE

Assp: For 2 � i , PA ` subi .pP x
Sy
q; x; y; Ez/ D subi.pP q; x; y; Ez/xSy .

Show: PA ` subSi .pP x
Sy
q; x; y; Ez/ D subSi .pPq; x; y; Ez/xSy .

1. subSi .pP x
Sy
q; x; y; Ez/

2. D formsub.subi .pP x
Sy
q; x; y; Ez/;gvar.zSi�2/;num.xzSi�2// def

3. D formsub.subi .pP q; x; y; Ez/xSy ;gvar.zSi�2/;num.xzSi�2// assp

4. D formsub.subi .pP q; x; y; Ez/;gvar.zSi�2/;num.xzSi�2//
x
Sy

abv

5. D subSi .pP q; x; y; Ez/xSy def

Indct: PA ` subn.pP x
Sy
q; x; y; Ez/ D subn.pP q; x; y; Ez/xSy

Line (4) of the show is justified insofar as x does not appear in Ez.

Other cases are similar and left for homework.

*E13.49. (i) Provide a demonstration for T13.65. (ii) Then provide a demonstration
for the sorting result that is “simple enough” and so left as an exercise.

*E13.50. Provide a demonstration for T13.67

E13.51. Complete the demonstration of T13.70 by completing the remaining cases.

CHAPTER 13. GÖDEL’S THEOREMS 717

13.5.4 The result.

We are finally (!) ready to show that for any†? P , PA ` P ! PrvtŒŒP ��. And this is
the result we need for D3. The argument is by induction on the number of operators
in a †? formula.

Before we launch into the main argument, a word about substitution. From their
original statement, the rules 8I and DE result in formulas of the sort P x

t or P t=s.
So from, say, 8E applied to 8xPrvtŒŒP �� we get something of the sort PrvtŒŒP ��xt . But
we need to be careful about what the substitution comes to. In the simplest case,
PrvtŒŒP .x/�� is of the sort Prvt.formsub.pP .x/q;gvar. i /;num.x///, where there is
a free x to be replaced by t; but this does not automatically convert to PrvtŒŒP .t/��
insofar as pP .x/q is a numeral and so lacks any free x. But we do have a theorem,
T13.70 which tells us that in certain cases PA ` PrvtŒŒP x

t ��$ PrvtŒŒP ��xt , so that the
replacements can be moved across the bracket in the natural way. With this said, we
turn to our theorem.

T13.71. For any †? formula P , PA ` P ! PrvtŒŒP ��.

By induction on the number of operators in P .

Basis: If a †? P has no operator symbols, then it is an atomic of the sort ; D :,
y D :, Sy D :, xC y D : or x � y D :.

(S) Suppose P is Sy D z. Reason as follows,

1. Sy D Sy DI
2. PrvtŒŒSy D Sy�� 1 T13.68
3. Sy D z A (g!I)

4. PrvtŒŒ.Sy D z/z
Sy
�� 2 abv

5. PrvtŒŒSy D z��z
Sy

4 T13.70

6. PrvtŒŒSy D z�� 3,5DE

7. Sy D z ! PrvtŒŒSy D z�� 3-6!I

Observe that T13.68 applies to theorems, and so not to formulas under the
assumption for !I. Thus we take care to restrict its application to formulas
against the main scope line. Also, at (5) we use T13.70 to move the substitu-
tion across the bracket. With this done, the substitution on line (4) applies only
to the free z of PrvtŒŒSy D z��— that is, to the free z of Prvt.sub.pSy D zq; y;
z/; so thatDE applies in a straightforward way to substitute a z back into that
place. The argument is similar for ; D : and y D :.

(+) Suppose P is xCy D z. The proof in PA requires appeal to IN, with induction
on the value of x in 8y8z.x C y D z ! PrvtŒŒx C y D z��/. For the basis,

CHAPTER 13. GÖDEL’S THEOREMS 718

1. ; C y D y T6.51

2. PrvtŒŒ; C y D y�� 1 T13.68
3. .x C y D z/x

;
A (g!I)

4. ; C y D z 3 abv
5. y D z 1,4DE
6. PrvtŒŒ.; C y D z/zy �� 2 abv
7. PrvtŒŒ; C y D z��zy 6 T13.70
8. PrvtŒŒ; C y D z�� 6,5DE
9. PrvtŒŒ.x C y D z/x

;
�� 8 abv

10. PrvtŒŒx C y D z��x
;

9 T13.70

11. .x C y D z/x
;
! PrvtŒŒx C y D z��x

;
3-10!I

12. .x C y D z ! PrvtŒŒx C y D z��/x
;

11 abv
13. 8y8z.x C y D z ! PrvtŒŒx C y D z��/x

;
12 8I

And the inductive stage,

14. x C Sy D z $ Sx C y D z T6.42,T6.53

15. PrvtŒŒx C Sy D z ! Sx C y D z�� 14 T13.68
16. 8y8z.x C y D z ! PrvtŒŒx C y D z��/ A (g!I)

17. .x C y D z/x
Sx

A (g!I)

18. Sx C y D z 17 abv
19. x C Sy D z 14,18$E
20. x C Sy D z ! PrvtŒŒx C y D z��y

Sy
16 8E

21. PrvtŒŒx C y D z��y
Sy

20,19!E

22. PrvtŒŒx C Sy D z�� 21 T13.70
23. PrvtŒŒx C Sy D z��! PrvtŒŒSx C y D z�� 15 T13.69
24. PrvtŒŒSx C y D z�� 23,22!E
25. PrvtŒŒx C y D z��x

Sx
24 T13.70

26. .x C y D z/x
Sx
! PrvtŒŒx C y D z��x

Sx
17-25!I

27. .x C y D z ! PrvtŒŒx C y D z��/x
Sx

26 abv
28. 8y8z.x C y D z ! PrvtŒŒx C y D z��/x

Sx
27 8I

29. 8y8z.x C y D z ! PrvtŒŒx C y D z��/! 8y8z.x C y D z ! PrvtŒŒx C y D z��/x
Sx

16-28!I
30. 8y8z.x C y D z ! PrvtŒŒx C y D z��/ 13,29 IN

We are able to apply the assumption at (16) to get PrvtŒŒx C y D z��
y
Sy and

convert this into the desired result. So PA ` x C y D z ! PrvtŒŒx C y D z��.

(�) Suppose P is x � y D z. The proof in PA requires appeal to IN, on the
value of x in 8y8z.x � y D z ! PrvtŒŒx � y D z��/. The zero case is
straightforward. Then,

CHAPTER 13. GÖDEL’S THEOREMS 719

1. 8y8z.x � y D z ! PrvtŒŒx � y D z��/x
;

zero case
2. Sx � y D z $ x � y C y D z T6.60
3. x � y D v ! .v C y D z ! x � y C y D z/ simple ND

4. PrvtŒŒx � y C y D z ! Sx � y D z�� 2 T13.68
5. PrvtŒŒx � y D v ! .v C y D z ! x � y C y D z/�� 3 T13.68
6. 8y8z.x � y D z ! PrvtŒŒx � y D z��/ A (g!I)

7. .x � y D z/x
Sx

A (g!I)

8. Sx � y D z 7 abv
9. x � y C y D z 2,8$E

10. 9v.x � y D v/ DI,9I
11. x � y D v A (g 109E)

12. v C y D z 9,11DE
13. PrvtŒŒv C y D z�� 12 (+) case
14. PrvtŒŒx � y D z��zv 6,11 8E,!E
15. PrvtŒŒx � y D v�� 14 T13.70
16. PrvtŒŒx � y D v��! PrvtŒŒv C y D z ! x � y C y D v�� 5 T13.69
17. PrvtŒŒv C y D z ! x � y C y D z�� 15,16!E
18. PrvtŒŒv C y D z��! PrvtŒŒx � y C y D z�� 17 T13.69
19. PrvtŒŒx � y C y D z�� 18,13!E
20. PrvtŒŒx � y C y D z��! PrvtŒŒSx � y D z�� 4 T13.69
21. PrvtŒŒSx � y D z�� 19,20!E
22. PrvtŒŒx � y D z��x

Sx
21 T13.70

23. PrvtŒŒx � y D z��x
Sx

10,11-22 9E

24. .x � y D z/x
Sx
! PrvtŒŒx � y D z��x

Sx
7-23!I

25. .x � y D z ! PrvtŒŒx � y D z��/x
Sx

24 abv
26. 8y8z.x � y D z ! PrvtŒŒx � y D z��/x

Sx
25 8I

27. 8y8z.x � y D z ! PrvtŒŒx � y D z��/! 8y8z.x � y D z ! PrvtŒŒx � y D z��/x
Sx

6-26!I
28. 8y8z.x � y D z ! PrvtŒŒx � y D z��/ 1,27 IN

The (+) case does not directly apply to x � y C y D z. However, having
identified x�y with variable v we get PrvtŒŒvCy D z��, and with the inductive
assumption PrvtŒŒx � y D v��. These then unpack into PrvtŒŒSx � y D z��. So
PA ` x � y D z ! PrvtŒŒx � y D z��.

Assp: For any i , 0 � i < k if a †? P has i operator symbols, then PA ` P !

PrvtŒŒP ��.

Show: If a †? P has k operator symbols, then PA ` P ! PrvtŒŒP ��.

If †? P has k operator symbols, then it is of the form, A _ B, A ^ B,
.8x � y/A (y not in A), or 9xA for †? A and B with < k operator
symbols.

CHAPTER 13. GÖDEL’S THEOREMS 720

(^) P is A ^B. Reason as follows.
1. A! PrvtŒŒA�� by assp
2. B ! PrvtŒŒB�� by assp
3. A! .B ! .A ^B// T9.4

4. PrvtŒŒA! .B ! .A ^B//�� 3 T13.68
5. A ^B A (g!I)

6. PrvtŒŒA�� 1,5
7. PrvtŒŒB�� 2,5
8. PrvtŒŒA��! PrvtŒŒB ! .A ^B/�� 4 T13.69
9. PrvtŒŒB ! .A ^B/�� 6,8!E

10. PrvtŒŒB��! PrvtŒŒA ^B�� 9 T13.69
11. PrvtŒŒA ^B�� 7,10!E

12. .A ^B/! PrvtŒŒA ^B�� 5-11!I

And similarly for _.

(9) P is 9xA. Reason as follows.
1. A! PrvtŒŒA�� by assp

2. A! 9xA T3.29
3. PrvtŒŒA! 9xA�� 2 T13.68
4. 9xA A (g!I)

5. A A (g 49E)

6. PrvtŒŒA�� 1,5!E
7. PrvtŒŒA��! PrvtŒŒ9xA�� 3 T13.69
8. PrvtŒŒ9xA�� 7,6!E

9. PrvtŒŒ9xA�� 4,5-8 9E

10. 9xA! PrvtŒŒ9xA�� 5-9!I

A has x free. But 9xA does not, and PrvtŒŒ9xA�� has the same free variables
as 9xA. So the restriction is met for 9E at (9).

(8) P is .8x � y/A. The argument in PA requires appeal to IN, for induction on
the value of y. For the zero case,

CHAPTER 13. GÖDEL’S THEOREMS 721

1. Ax
;
! PrvtŒŒAx

;
�� by assp

2. .8x � ;/A$ Ax
;

thrm (with T8.21)
3. PrvtŒŒAx

;
! .8x � ;/A�� 2 T13.68

4. .8x � y/A
y
;

A (g!I)

5. .8x � ;/A 4 abv
6. Ax

;
2,5$E

7. PrvtŒŒAx
;
�� 1,6!E

8. PrvtŒŒAx
;
��! PrvtŒŒ.8x � ;/A�� 3 T13.69

9. PrvtŒŒ.8x � ;/A�� 8,7!E
10. PrvtŒŒ.8x � y/Ay

;
�� 9 abv

11. PrvtŒŒ.8x � y/A��y
;

10 T13.70

12. .8x � y/A
y
;
! PrvtŒŒ.8x � y/A��y

;
5-11!I

13. ..8x � y/A! PrvtŒŒ.8x � y/A��/y
;

12 abv

For (5) and (10) it is important that y in a bound quantifier of the †? formula
does not appear in A. Now the inductive stage.
14. Ax

Sy
! PrvtŒŒAx

Sy
�� by assp

15. .8x � Sy/A$.8x � y/A ^Ax
Sy

with T13.13o

16. PrvtŒŒ..8x � y/A ^Ax
Sy
/! .8x � Sy/A�� 15 T13.68

17. .8x � y/A! PrvtŒŒ.8x � y/A�� A (g!I)

18. ..8x � y/A ^Ax
Sy
/! PrvtŒŒ.8x � y/A ^Ax

Sy
�� 14,17 as for ^

19. .8x � Sy/A A (g!I)

20. .8x � y/A ^Ax
Sy

15,19$E

21. PrvtŒŒ.8x � y/A ^Ax
Sy
�� 18,20!E

22. PrvtŒŒ.8x � y/A ^Ax
Sy
��! PrvtŒŒ.8x � Sy/A�� 16 T13.69

23. PrvtŒŒ.8x � Sy/A�� 22,21!E
24. PrvtŒŒ.8x � y/A��y

Sy
23, T13.70

25. .8x � Sy/A! PrvtŒŒ.8x � y/A��y
Sy

19-24!I

26. ..8x � y/A! PrvtŒŒ.8x � y/A��/y
Sy

25 abv

27. ..8x � y/A! PrvtŒŒ.8x � y/A��/! ..8x � y/A! PrvtŒŒ.8x � y/A��/y
Sy

17-26!I

28. .8x � y/A! PrvtŒŒ.8x � y/A�� 13,27 IN

So PA ` .8x � y/A! PrvtŒŒ.8x � y/A��.

Indct: For any †? formula P , PA ` P ! PrvtŒŒP ��.

Now it is a simple matter to pull together our results into the third derivability
condition.

T13.72. For any formula P , PA ` �P ! ��P

CHAPTER 13. GÖDEL’S THEOREMS 722

Consider any formula P and the †1 sentence �P . By T13.62, there is a
.�P /? such that PA ` �P $.�P /?. By T13.71, PA ` .�P /? !

PrvtŒŒ.�P /?��. Reason as follows.

1. .�P /? ! PrvtŒŒ.�P /?�� T13.71
2. �P $.�P /? T13.62

3. PrvtŒŒ.�P /? ! �P �� 2 T13.68
4. PrvtŒŒ.�P /?��! PrvtŒŒ�P �� 3 T13.69
5. �P ! PrvtŒŒ�P �� 2,1,4 HS

So PA ` �P ! PrvtŒŒ�P ��; and since �P is a sentence, this is to say,
PA ` �P ! Prvt.p�Pq/; which is to say, PA ` �P ! ��P .

So, at long last, we have a demonstration of D3 and so, given demonstration of the
other conditions, of Gödel’s second incompleteness theorem.

It is worth reflecting a bit on what we have accomplished. Beginning in sec-
tion 13.2 we saw how the second theorem follows from the derivability conditions.
The first is easy, the others not. In section 13.3 we introduced the idea of definition
in PA and demonstrated that PA defines (friendly) recursive functions. 13.4 moves to
demonstration of the second condition. The basic idea is straightforward: To show
�.P ! Q/ ! .�P ! �Q/, suppose �.P ! Q/ and �P ; then there are j and k
such that PRFT.j; pP ! Qq/ and PRFT.k; pPq/; so l D j ? k ? 2pQq numbers a proof
of Q. But considerable effort is expended to show that PA has the resources for the
relevant results. And we have just completed discussion of the third condition. If
you have gotten this far you have seen the theorem proved — or at least how it is
proved. Thus you have progressed considerably beyond the initial argument from
the derivability conditions. One reason why it is typical to bypass the details is that
there are so many details — not all themselves mathematically significant. Still, it
is interesting to see how reasoning from chapter 12 is reflected in PA for the second
theorem.

E13.52. Complete the demonstration of T13.71 by completing the remaining cases.

13.6 Reflections on the theorem

We conclude this chapter with a couple final reflections and consequences on our
results.

CHAPTER 13. GÖDEL’S THEOREMS 723

13.6.1 Consistency sentences

As is typical for demonstrations of Gödel’s second theorem, we have let Cont be
�Prvt.p; D S;q/. But other sentences would do as well. So, where T is any the-
orem of T , we might let Conta be �Prvt.p�T q/. In particular, we might simply
consider the case where �T is (equivalent to) ? and set Conta D �Prvt.p?q/.
Then it is easy to see that PA ` Cont$ Conta.

PA ` ; D S; $?; so with D1, PA ` Prvt.p; D S; $?q/; so with D2,
PA ` Prvt.p; D S;q/$ Prvt.p?q/; and contraposing, PA ` Cont$ Conta.

Again, one might let Contb D �9x.Prvt.x/ ^ Prvt.x//, where Prvt.x// just in
case there is a proof of the negation of the formula with Gödel number x. Then
T is consistent just in case there is no proof of a formula and its negation. Again,
PA ` Cont$ Contb. This time the result requires a bit more work.

We show Prvt.p; D S;q/$ 9x.Prvt.x/^ Prvt.x// and contrapose. First from
left to right: Since a contradiction implies anything, PA ` ; D S; ! A and
PA ` ; D S; ! �A. Reason as follows.

1. ; D S; ! A thrm
2. ; D S; ! �A thrm

3. Prvt.p; D S; ! Aq/ 1 D1
4. Prvt.p; D S; ! �Aq/ 2 D1
5. Prvt.p; D S;q/ A (g!I)

6. Prvt.p; D S;q/! Prvt.pAq/ 3 D2
7. Prvt.p; D S;q/! Prvt.p�Aq/ 4 D2
8. Prvt.pAq/ ^ Prvt.p�Aq/ 5,6,7
9. 9x.Prvt.x/ ^ Prvt.x// 8 9I

10. Prvt.p; D S;q/! 9x.Prvt.x/ ^ Prvt.x// 7-9!I

So PA ` Prvt.p; D S;q/! 9x.Prvt.x/ ^ Prvt.x//.
The other direction is not much more difficult. Insofar as the right-hand side

is existentially quantified we shall not be able to depend on capture for any partic-
ular sentence. However we can reason with free variables. Working up from the
bottom of a tree for P say its (sententially) basic subformulas are the first subfor-
mulas without a truth functional main operator. Then where where P has basic
subformulas A1 : : :An, let A�1 : : : A

�
n be some variables a1 : : : an; �P � is neg.p/;

and .P ! Q/� is cnd.p; q/. Then where
ÀDs

P , we shall be able to show PA `
W ff .a1/ ^ : : : ^ W ff .an/ ! Prvt.P �/. Though we shall not go through all the
details here, it is simple enough to see how the argument goes: The argument is an

CHAPTER 13. GÖDEL’S THEOREMS 724

induction (of a sort we have seen before). Given an ADs derivation of P , under the
assumption W ff .a/ ^ : : : ^W ff .b/, corresponding to any axiom A, we may use the
definition to getAxiom.A�/ and then T13.57i forPrvt.A�/. Corresponding to an ap-
plication of MP to some P and P ! Q, use T13.54 to convert Prvt.cnd.P �;Q�//
to Prvt.P �/ ! Prvt.Q�/ and apply MP. As an example, compare the following
lines of the sort we might have obtained in chapter 3,

1. A! .B ! A/ A1
2. ŒA! .B ! A/�! Œ.A! B/! .A! A/� A2
3. .A! B/! .A! A/ 1,2 MP

and the derived version,

0. W ff .a/ ^W ff .b/ A

1.1. Axiom.cnd.a; cnd.b; a/// 0 def
1. Prvt.cnd.a; cnd.b; a/// 1.1 T13.57i

2.1. Axiom.cnd.cndŒa; cnd.b; a/�; cndŒcnd.a; b/; cnd.a; a/�// 0 def
2. Prvt.cnd.cndŒa; cnd.b; a/�; cndŒcnd.a; b/; cnd.a; a/�// 2.1 T13.57i

3.1. Prvt.cndŒa; cnd.b; a/�/! Prvt.cndŒcnd.a; b/; cnd.a; a/�/ 2 T13.54
3. Prvt.cndŒcnd.a; b/; cnd.a; a/�/ 1,3.1 MP

4. W ff .a/ ^W ff .b/! Prvt.cndŒcnd.a; b/; cnd.a; a/�/ 0 - 3 DT

And similarly we might show the correlate to T3.9, ` �A! .A! B/, which we
record as a theorem.

T13.73. PA ` W ff .a/ ^W ff .b/! Prvt.cndŒneg.a/; cnd.a; b/�/.

But then we may reason as follows.

1. W ff .p; D S;q/ cap
2. 9xŒPrvt.x/ ^ Prvt.x/� A (g!I)

3. Prvt.j / ^ Prvt.j / A (g 29E)

4. W ff .j / 3 T13.53
5. Prvt.cndŒneg.j /; cnd.j; p; D S;q/�/ 1,4 T13.73
6. Prvt.neg.j //! Prvt.cnd.j; p; D S;q// 5 T13.54
7. Prvt.cnd.j; p; D S;q// 3,6 ^E,!E
8. Prvt.j /! Prvt.p; D S;q/ 7 T13.54
9. Prvt.p; D S;q/ 3,8 ^E,!E

10. Prvt.p; D S;q/ 2,3-9 9E

11. 9xŒPrvt.x/ ^ Prvt.x/�! Prvt.p; D S;q/ 2-10!I

So PA ` 9xŒPrvt.x/^Prvt.x/�! Prvt.p; D S;q/. Again note that we reason with
free variables under the assumption for 9E.

CHAPTER 13. GÖDEL’S THEOREMS 725

Putting the parts together, PA ` Prvt.p; D S;q/$ 9x.Prvt.x/^Prvt.x//; and
contraposing, PA ` Cont $ Contb. So, to this extent, it does not matter which ver-
sion of the consistency statement we select. Underlying the point that these different
statements are equivalent is that anything follows from a contradiction — so that the
one follows from the others.13

Having proved PA ° Cont, we therefore have PA ° Conta and PA ° Contb.
These are particular sentences which, like G , are unprovable. And, now that we have
the derivability conditions, with T13.11, neither are their negations provable. They
have special interest because because each “says” that PA is consistent.

Still, it is worth asking whether there is some different sentence to express the
consistency of PA such that it would be provable. Consider, for example a trick
related to the Rosser sentence,

Prftc.x; y/ Ddef Prft.x; y/ ^ .8v � x/�Prft.v; p; D S;q/

So Prftc.x; y/ requires a measure of consistency: it says x numbers a proof of the
formula numbered y and no proof numbered less than or equal to x demonstrates
inconsistency (; D 1). Then so long as PA is consistent Prftc.x; y/ continues to
capture PRFT.x; y/.

(i) Suppose hm; ni 2 PRFT. (a) By capture, PA ` Prft.m; n/. And (b), since
PA is consistent, there is no proof of a contradiction in PA and again by cap-
ture, PA ` �Prft.0; p; D S;q/; PA ` �Prft.1; p; D S;q/ and . . . and PA `
�Prft.m; p; D S;q/; so with T8.21, PA ` .8v � m/�Prft.v; p; D S;q/; so
PA ` Prftc.m; n/.

(ii) Suppose hm; ni 62 PRFT; then by capture, PA ` �Prft.m; n/. So PA ` �ŒPrft.m; n/
^ .8v � m/�Prft.v; p; D S;q/�, which is to say PA ` �Prftc.m; n/.

And, with T12.6, Prftc.x; y/ expresses PRFT.x; y/ as well. Given this, set Prvtc.y/Ddef

9xPrftc.x; y/, and Contc Ddef �Prvtc.p; D S;q/. The idea, then is that Contc just
in case PA is consistent.

But Prvtc is designed so that Prvtc.p; D S;q/ is impossible — Prvtc.p; D S;q/
requires an x that numbers a proof of ; D S; such that no v � x numbers a proof
of ; D S;. This is impossible. So,

13This equivalence breaks down in a non-classical logic which blocks ex falso quodlibet, the prin-
ciple that from a contradiction anything follows. So, for example, in relevant logic, it might be that
there is some A such that T ` A ^ �A but T ° ; D S;. See Priest, Non-Classical Logics for an
introduction to these matters.

CHAPTER 13. GÖDEL’S THEOREMS 726

1. 9xŒPrft.x; p; D S;q/ ^ .8v � x/�Prft.v; p; D S;q/� A (c, �I)

2. Prft.j; p; D S;q/ ^ .8v � j /�Prft.v; p; D S;q/ A (c 19E)

3. Prft.j; p; D S;q/ 2 ^E
4. .8v � j /�Prft.v; p; D S;q/ 2 ^E
5. j � j with T13.13m
6. �Prft.j; p; D S;q/ 4,5 (8E)
7. ? 3,6 ?I

8. ? 1,2-7 9E

9. �9xŒPrft.x; p; D S;q/ ^ .8v � x/�Prft.v; p; D S;q/� 1-8 �I

So PA ` �9xŒPrft.x; p; D S;q/ ^ .8v � x/�Prft.v; p; D S;q/� which is to say
PA ` Contc. This works because Prftc builds in from the start that nothing numbers
a proof of ; D S;.

Intuitively, so long as PA is consistent, Prftc works just fine. But if PA is not
consistent, then it no longer tracks with proof. Similarly, if PA is consistent, Contc
plausibly “says” PA is consistent. But if PA is inconsistent then it no longer tracks
with consistency. So its provability is, in this sense, uninteresting.

Insofar as Contc is provable it must be that Prvtc fails one or more of the deriv-
ability conditions. To see how this might be, suppose PA is inconsistent and proofs
are ordered according to their Gödel numbers as follows,

A! B A ; D S; B

Then PA ` Prvt.pBq/. However we get PA ` Prvtc.pA! Bq/ and PA ` Prvtc.pAq/
but, insofar as the proof of B is numbered greater than the proof of ; D S;,
PA ° Prvtc.pBq/. In this case, D2 fails, so that our main argument to show
PA ° Cont does not apply to Contc.

13.6.2 Löb’s Theorem

If T is a recursively axiomatized theory extending Q, by the diagonal lemma there
is a sentence H , of which G is a sample, such that T ` H $ �Prvt.pHq/ — that
is, T ` H $ ��H . We have seen that such a formula H is not provable. But,
of course, by the diagonal lemma, there is another sentence H such that T ` H $

�H . In a brief note, “A Problem Concerning Provability” L. Henkin asks whether
this H is provable. Supposing the first is analogous to the liar, ‘this sentence is not

CHAPTER 13. GÖDEL’S THEOREMS 727

true’, the latter is like the truth-teller, ‘this sentence is true’. An answer to Henkin’s
question follows immediately from Löb’s theorem.

T13.74. Suppose T is a recursively axiomatized theory for which the derivability
conditions D1 - D3 hold and T ` �P ! P , then T ` P . Löb’s Theorem.

Suppose T is a recursively axiomatized theory for which the derivability con-
ditions hold and T ` �P ! P . Then the diagonal lemma obtains as well.
Consider Prvt.y/ ! P ; this is an expression of the sort F .y/ to which the
diagonal lemma applies; so by the diagonal lemma there is some H such that
T ` H $.Prvt.pHq/ ! P / — that is, T ` H $.�H ! P /. Now
reason as follows.

1. �P ! P P
2. H $.�H ! P / diag lemma
3. ŒH ! .�H ! P /� ^ Œ.�H ! P /! H � 2 abv
4. H ! .�H ! P / 3 with T3.20
5. �ŒH ! .�H ! P /� 4 D1
6. �ŒH ! .�H ! P /�! Œ�H ! �.�H ! P /� D2
7. �H ! �.�H ! P / 6,5 MP
8. �.�H ! P /! .��H ! �P / D2
9. �H ! .��H ! �P / 7,8 T3.2

10. Œ�H ! .��H ! �P /�! Œ.�H ! ��H /! .�H ! �P /� A2
11. .�H ! ��H /! .�H ! �P / 10,9 MP
12. �H ! ��H D3
13. �H ! �P 11,12 MP
14. �H ! P 13,1 T3.2
15. .�H ! P /! H 3 with T3.19
16. H 15,14 MP
17. �H 16 D1
18. P 14,17 MP

So T ` P . Now return to our original question. Suppose T ` H $ �H ; then
T ` �H ! H ; so by Löb’s theorem, T ` H . So if T proves H $ �H , then T
proves H .

Löb’s theorem is at least surprising! From soundness, if P is provable then P ,
so that �P ! P is true. One might think that PA would “believe” in its soundness
so that any such sentence would be provable. But from the theorem, if PA 6` P , then
PA 6` �P ! P . So in any case when PA 6` P , PA does not “know” about its own
souncness with respect to P . Observe that insofar as �P ! P is true, for any case
where PA 6` P we have here another sentence true but not provable.

CHAPTER 13. GÖDEL’S THEOREMS 728

Löb’s theorem depends upon the derivability conditions. Thus perhaps it is not
surprising that Löb’s theorem both results in and results from Gödel’s second theo-
rem: First, the second theorem follows from Löb’s result.

Suppose PA is consistent and PA ` ��.0 D 1/; then with _I and Impl, PA `
�.0 D 1/ ! 0 D 1; so by Löb’s theorem PA ` 0 D 1: but PA ` 0 ¤ 1; so
PA is inconsistent. Reject the assumption, PA ° ��.0 D 1/, which is to say
PA ° Conpa.

And Löb’s theorem follows from the second theorem with consistency.

Suppose PA is consistent and PA ` �P ! P . Let �P be an axiom of an
extended theory PA0. Then PA0 ` �P ! P and PA0 ` �P ; so PA0 ` ��P ;
but since it extends PA, PA0 ` ; ¤ 1, so PA0 ` ; D 1 ! P and by D1 with
D2, PA0 ` �.; D 1/ ! �P , so PA0 ` ��P ! ��.; D 1/, which is to
say PA0 ` ��P ! Cont0; so PA0 ` Cont0. But by the second theorem, if PA0

is consistent, then PA0 ° Cont0; so PA0 is not consistent. But by T10.6 if PA
is consistent and PA ° P then PA [f�P g and so PA0 is consistent; this is
impossible: so PA ` P .

And we are in a position to make some applications to the logic of provability.
With �P for Prvt.pP q/ by the derivability conditions we have shown that K4 is
sound in the sense that if K̀4 P , then PA ` P . It is natural to ask if the converse is
true, whether K4 is complete in the sense that if PA ` P then K̀4 P . But K4 is not
so complete. To see this let K4LR be like K4 but with the addition of the Löb rule,

LR P follows from �P ! P

By Löb’s theorem, K4LR is sound, so that if K̀4LR P , then PA ` P . But by its appeal
to the diagonal lemma, the proof of Löb’s theorem is not entirely contained within
K4. And, in fact, K4LR has theorems that that are not theorems of K4. In particular,

K̀4LR �.�P ! P /! �P ,

1. �Œ�.�P ! P /! �P �! Œ��.�P ! P /! ��P � D2
2. �.�P ! P /! .��P ! �P / D2
3. �.�P ! P /! ��.�P ! P / D3
4. �Œ�.�P ! P /! �P �! Œ�.�P ! P /! �P � 1,2,3 T6.4
5. �.�P ! P /! �P 4 LR

From this, PA ` �.�P ! P / ! �P . But by E13.55 just below, 6�K4 �.�P !

P /! �P so that 6 K̀4 �.�P ! P /! �P . So PA proves something that K4 does

CHAPTER 13. GÖDEL’S THEOREMS 729

not. So K4 is not complete in the sense that if PA ` P then K̀4 P . In fact K4LR
is complete — but that is a discussion for another place (see Boolos, The Logic of
Provability).14

E13.53. Provide the argument to show that if
ÀDs

P , then PA ` W ff .a1/ ^ : : : ^
W ff .an/! Prvt.P �/.

E13.54. In the middle of a restless night dreaming about PA you bolt out of bed.
“Eureka!” you cry, “I have discovered a simple means for proving the con-
sistency of arithmetic.” Your idea is to show PA ` �.0 D 1/! 0 D 1; then
from PA ` 0 ¤ 1 it follows that PA ` ��.0 D 1/ and so that PA ` Conpa.
Explain why this is one of those ideas that seems better at night than in the
cold light of day.

E13.55. For those with some knowledge of semantics for modal logic: K4 is the
normal modal logic with a transitive access relation. Find a K4 interpretation
to show 6�K4 �.�P ! P / ! �P . Hint: Your interpretation will have
infinitely many worlds.

E13.56. Reasoning for Löb’s theorem is closely related to Curry’s paradox. For
this read �P to say that ‘P ’ is true rather than that it is provable. Consider
some false sentence F , as ‘I have two heads’. Let C be the sentence, “If this
sentence is true then F ” — that is, “If ‘C ’ is true then F .” Take as given,

D10. if P , then �P truth analog to D1
D20. �.P ! Q/! .�P ! �Q/ truth analog to D2
D30. �P ! ��P truth analog to D3

And as premises,

10. �F ! F from nature of truth (Tarski’s schema T)
20. C $.�C ! F / from the definition of C

Use these principles to show that you have two heads. Reflect on this result:
When � indicates provability, we are in a position to deny (1) that PA `
�P ! P when PA ` �P . But it may seem less plausible to deny (10).
Supposing you do not have two heads, what do you think is wrong?

14K4LR is equivalent to a logic (GL) like K4 without the Löb rule but with D3 replaced by
�.�P ! P /! �P . This is the usual form for the logic of provability. We have just seen that
K4LR proves anything proved by GL.

CHAPTER 13. GÖDEL’S THEOREMS 730

E13.57. For each of the following concepts, explain in an essay of about two pages,
so that (college freshman) Hannah could understand. In your essay, you
should (i) identify the objects to which the concept applies, (ii) give and ex-
plain the definition, and give and explicate examples (iii) where the concept
applies, and (iv) where it does not. Your essay should exhibit an understand-
ing of methods from the text.

a. The essential elements contributing to the proof (from this chapter) of the
incompleteness of arithmetic.

b. The essential elements contributing to the demonstration that PA does not
prove its own consistency

CHAPTER 13. GÖDEL’S THEOREMS 731

Final theorems of chapter 13

T13.55. Further results for Termsub.

T13.56. Further results for Formsub.

T13.57. Results for Gen and A4.

T13.58. Results for iterated substitutions.

T13.59. For any P of the form t D x, there is a P ? such that PA ` P $ P ?.

T13.60. For any �0 formula P , there is a normal formula P � such that ` P $ P �.

T13.61. For any �0 formula P there is a †? formula P ? such that PA ` P $ P ?.

T13.62 For any †1 formula P there is a †? formula P ? such that PA ` P $ P ?.

T13.63 PA ` W ff .subi .pP q; Ey//.

T13.64 For arbitrary Eu, Ev, subi .pP q; xx1 : : : xxi ; Eu/ D subi .pP q; xx1 : : : xxi ; Ev/.

T13.65 For any i , PA ` subiC1.pP q; xa; xy1 : : : xyn/ D subiC1.pP q; xy1 : : : xyi ; xa;

xy.iC1/
: : : xyn/.

T13.66 If xa is not free in P , then PA ` subiC1.pPq; xy1 : : : xyi ; xa; xy.iC1/
: : : xyn/ D subi .pP q;

xy1 : : : xyi ; xa; xy.iC1/
: : : xyn/

T13.67 If the variables of Ey and Ez are ordered by their subscripts and Ey and Ez are the same except
that Ez includes some variables not in Ey (and so not free in P), then PA ` sub.pP q; Ey/ D
sub.pP q; Ez/.

T13.68 If PA ` P , then PA ` PrvtŒŒP �� — analog to D1

T13.69 PA ` PrvtŒŒP ! Q��! .PrvtŒŒP ��! PrvtŒŒQ��/ — analog to D2

T13.70 If t is one of ;, y or Sy, then PA ` PrvtŒŒP x
t ��$ PrvtŒŒP ��xt .

T13.71 For any †? formula P , PA ` P ! PrvtŒŒP ��.

T13.72 For any formula P , PA ` �P ! ��P — D3

T13.73 PA ` W ff .a/ ^W ff .b/! Prvt.cndŒneg.a/; cnd.a; b/�/.

T13.74 Suppose T is a recursively axiomatized theory for which the derivability conditions D1 -
D3 hold and T ` �P ! P , then T ` P . Löb’s Theorem.

Chapter 14

Logic and Computability

In this chapter, we begin with the notion of a Turing machine, and a Turing com-
putable function. It turns out that the Turing computable functions are the same as
the recursive functions. Once we have seen this, it is a short step from a problem
about computability — the halting problem, to another demonstration of essential
results. Further, according to Church’s thesis, the Turing computable functions, and
so the recursive functions, are all the algorithmically computable functions. This
converts results like T12.22 according to which no recursive relation is true just of
(numbers for) theorems of predicate logic, into ones according to which no algorith-
mically decidable relation is true just of theorems of predicate logic — where this
result is much more than a curiosity about an obscure class of functions.

14.1 Turing Computable Functions

We begin saying what a Turing machine, and the Turing computable functions are.
Then we turn to demonstrations that Turing computable functions are recursive, and
recursive functions are Turing computable.

14.1.1 Turing Machines

A Turing machine is a simple device which, despite its simplicity, is capable of com-
puting any recursive function — and capable of computing whatever is computable
by the more sophisticated computers with which we are familiar.1

1So called after Alan Turing, who originally proposed them hypothetically, prior to the existence
of modern computing devices, for purposes much like our own. Turing went on to develop electro-
mechanical machines for code breaking during World War II, and was involved in development of early

732

CHAPTER 14. LOGIC AND COMPUTABILITY 733

We may think of a Turing machine as consisting of a tape, machine head, and a
finite set of instruction quadruples.2

(A) 1 0 1
N

The tape is a sequence of cells, infinite in two directions, where the cells may be
empty or filled with 0 or 1. The machine head, indicated by arrow, reads or writes
the contents of a given cell, and moves left or right, one cell at a time. The head is
capable of five actions: (L) move left one cell; (R) move right one cell; (B) write a
blank; (0) write a zero; (1) write a one. When the head is over a cell it is capable of
reading or writing the contents of that cell.

Instruction quadruples are of the sort, hq1;C;A; q2i and constitute a function in
the sense that no two quadruples have hq1;Ci the same but hA; q2i different. For an
instruction quadruple: (q1) labels the quadruple; (C) is a possible state or content
of the scanned cell; (A) is one of the five actions; (q2) is a label for some (other)
quadruples. In effect, an instruction quadruple q1 says, “if the current cell has content
C, perform action A and go to instruction q2.” The machine begins at an instruction
with label q1 D 1, and stops after executing an instruction with q2 D 0.

For a simple example, consider the following quadruples, along with the tape (A)
from above.

(B)
h1; 0;R; 1i if 0 move right
h1; 1; 0; 1i if 1 write 0
h1;B; L; 2i end of word, back up and go to instruction 2

h2; 0; L; 2i while value is 0, move left
h2;B;R; 0i end of word, return right and stop

The machine begins at label 1. In this case, the head is over a cell with content 1; so
from the second instruction the machine writes 0 in that cell and returns to instruction
label 1. Because the cell now contains 0, the machine reads 0; so, from instruction 1,
the head moves right one space and returns to instruction 1 again. Now the machine
reads 0; so it moves right again and goes returns to instruction 1. Because it reads 1,
again the machine writes 0 and goes to instruction 1 where it moves right and goes
to 1. Now the head is over a blank; so it moves left one cell, and goes to 2. At
instruction 2, the head moves left so long as the tape reads 0. When the head reaches
a blank, it moves right one space, back over the word, and stops. So the result is,

stored-program computers after the war.
2Specifications of Turing machines differ somewhat. So, for example, some versions allow instruc-

tion quintuples, and allow different symbols on the tape. Nothing about what is computable changes on
the different accounts.

CHAPTER 14. LOGIC AND COMPUTABILITY 734

(C) 0 0 0
N

In the standard case, we begin with a blank tape except for one or more binary
“words” where the words are separated by single blank cells, and the machine head
is over the left-most cell of the left-most block. The above example is a simple case
of this sort, but also,

(D) 1 0 1 1 1 1 0 1 0 1
N

And in the usual case the program halts with the head over the leftmost cell of a single
word on the tape. A total function f.Ex/ is Turing computable when, beginning with
Ex on the tape in binary digits, the result is f.Ex/.3 Thus our little program computes
zero.x/, beginning with any x, and returning the value 0.

It will be convenient to require that programs are dextral (right-handed), in the
sense that (a) in executing a program we never write in a cell to the left of the initial
cell, or scan a cell more than one to the left of the initial cell; and (b) when the
program halts, the head is over the initial cell and the final result begins in the same
cell as the initial scanned cell. This does not affect what can be computed, but aids in
predicting results when Turing programs are combined. Our little program is dextral.

A program to compute suc.x/ is not much more difficult. Let us begin by thinking
about what we want the program to do. With a three-digit input word, the desired
outputs are,

000 � 001 100 � 101
001 � 010 101 � 110
010 � 011 110 � 111
011 � 100 111 � 1000

Moving from the right of the input word, we want to turn any one to a zero until we
can turn a zero (or a blank) to a one. Here is a way to do that.

3A Turing machine might calculate the values a function that is partial in the sense that it does not
return a value for every input string. We are particularly interested in total functions.

CHAPTER 14. LOGIC AND COMPUTABILITY 735

(E)
h1; 0;R; 1i move to end of word
h1; 1;R; 1i
h1;B; L; 5i

h5; 0; 1; 7i flip 1 to 0 then 0 or blank to 1
h5; 1; 0; 6i
h5;B; 1; 7i

h6; 0; L; 5i

h7; 0; L; 7i return to start
h7; 1; L; 7i
h7;B;R; 0i

Do not worry about the gap in instruction labels. Nothing so-far requires instruction
labels be sequential. This program moves the head to the right end of the word; from
the right, flips one to zero until it finds a zero or blank; once it has acted on a zero or
blank, it returns to the start.

So-far, so-good. But there is a problem with this program: In the case when the
input is, say,

(F) 1 1 1
N

the output is,

1 0 0 0
N

with the first symbol one to the left of the initial position. We turn the first blank to
the left of the initial position to a one. So the program is not dextral. The problem is
solved by “shifting” the word in the case when it is all ones.

(G)

if solid ones shift right flip 1 to 0 then 0 to 1
h1; 0;R; 4i h5; 0; 1; 7i
h1; 1;R; 1i h5; 1; 0; 6i
h1;B; 1; 2i h5;B; 1; 7i

h2; 1; L; 2i h6; 0; L; 5i
h2;B;R; 3i

return to start
h3; 1;B; 3i h7; 0; L; 7i
h3;B;R; 4i h7; 1; L; 7i

h7;B;R; 0i
h4; 0;R; 4i
h4; 1;R; 4i
h4;B; L; 5i

CHAPTER 14. LOGIC AND COMPUTABILITY 736

States 5, 6 and 7 are as before. This time we test to see if the word is all ones. If not,
the program jumps to 4 where it goes to the end, and to the routine from before. If it
gets to the end without encountering a zero, it writes a one, returns to the beginning
and deletes the initial symbol — so that the entire word is shifted one to the right.
Then it goes to instruction 4 so that it goes to the right and works entirely as before.
This time the output from (F) is,

1 0 0 0
N

as it should be. It is worthwhile to follow the actual operation of this and the previous
program on one of the many Turing simulators available on the web (see E14.1).

More complex is a copy program to take an input x and return x:x. This program
has four basic elements.

(1) A sort of control section which says what to do, depending on what sort of
character we have in the original word.

(2) A program to copy 0; this will write a blank in the original word to “mark the
spot”; move right to the second blank (across the blank between words, and to
the blank to be filled); write a 0; move left to the original position, and replace
the 0.

(3) Similarly a program to copy 1; this will write a blank in the original word
to mark the spot; move right to the second blank; write a 1; move left to the
original position, and replace the 1.

(4) And a program to move the head back to the original position when we are
done.

Here is a program to do the job.

CHAPTER 14. LOGIC AND COMPUTABILITY 737

(H)

(1) Control (2) Copy 0 (3) Copy 1
h1; 0;B; 10i move from blank move from blank
h1; 1;B; 20i h10;B;R; 11i h20;B;R; 21i
h1;B; L; 30i

right 2 blanks: 0 right 2 blanks: 1
(4) Finish h11; 0;R; 11i h21; 0;R; 21i
start of word h11; 1;R; 11i h21; 1;R; 21i
h30; 0; L; 30i h11;B;R; 12i h21;B;R; 22i
h30; 1; L; 30i
h30;B;R; 0i h12; 0;R; 12i h22; 0;R; 22i

h12; 1;R; 12i h22; 1;R; 22i
h12;B; 0; 13i h22;B; 1; 23i

left 2 blanks: 0 left 2 blanks: 1
h13; 0; L; 13i h23; 0; L; 23i
h13; 1; L; 13i h23; 1; L; 23i
h13;B; L; 14i h23;B; L; 24i

h14; 0; L; 14i h24; 0; L; 24i
h14; 1; L; 14i h24; 1; L; 24i
h14;B; 0; 15i h24;B; 1; 25i

next char: return next char: return
h15; 0;R; 1i h25; 1;R; 1i

You should be able to follow each stage.

E14.1. Study the copy program from the text along with the samples zero and suc
from the text website (http://rocket.csusb.edu/~troy/int-ml.html).
Then, starting with the file blank.rb, create Turing programs to compute the
following. It will be best to submit your programs electronically.

a. copy.n/. Takes input m and returns m:m. This is a simple implementation of
the program from the text.

b. Create a Turing program to compute pred.n/. Hint: Give your function two
separate exit paths: One when the input is a string of 0s, returning with the
input. In any other case, the output for input n is the predecessor of n. The
method simply flips that for successor: From the right, change 0 to 1 until
some 1 can be flipped to 0. There is no need to worry about the addition of a
possible leading 0 to your result.

http://rocket.csusb.edu/~troy/int-ml.html

CHAPTER 14. LOGIC AND COMPUTABILITY 738

c. Create a Turing program to compute ident33.x; y; z/. For x:y:z observe that z
might be longer than x and y put together; but, of course, it is not longer than
x, y and z put together. Here is one way to proceed: Move to the start of the
third word; use copy to generate x:y:z:z then plug spaces so that you have one
long first word, xoyoz:z; you can mark the first position of the long word with
a blank (and similarly, each time you write a character, mark the next position
to the right with a blank so that you are always writing into the second blank
up from the one where the character is read); then it is a simple matter of
running a basic copy routine from right-to-left, and erasing junk when you
are done.

14.1.2 Turing Computable Functions are Recursive

We turn now to showing that the (dextral) Turing computable functions are the same
as the recursive functions. Our first aim is to show that every Turing computable
function is recursive. But we begin with the simpler result that there is a recursive
enumeration of Turing machines. We shall need this as we go forward, and it will let
us compile some important preliminary results along the way.

The method is by now familiar. It will require some work, but we can do it in the
same way as we approached recursive functions before. Begin by assigning to each
symbol a Gödel Number.

a. gŒB� D 3 f. gŒL� D 9
b. gŒ0� D 5 g. gŒR� D 11
c. gŒ1� D 7 h. gŒqi� D 13C 2i

For a quadruple, say, hq1;B; L; q1i, set g D 215�33�59�715. And for a sequence of
quadruples with numbers g0, g1. . .gn the super Gödel number gs D 2g0�3g1�: : :�

gn
n . Again, for convenience we frequently refer to the individual symbol codes with

angle quotes around the symbol, so hBi D 3 where pBq, the number of the expression
is 23.

Now we define a recursive function and some simple recursive relations,

lb.v/ D 13C 2v

LB.n/ Ddef .9v � n/.n D lb.v//

SYM.n/ Ddef n D hBi _ n D h0i _ n D h1i

ACT.n/ Ddef sym.n/ _ n D hLi _ n D hRi

QUAD.n/ Ddef len.n/ D 4 ^ LB.exp.n; 0// ^ SYM.exp.n; 1// ^ ACT.exp.n; 2// ^ LB.exp.n; 3//

CHAPTER 14. LOGIC AND COMPUTABILITY 739

lb.v/ is the Gödel number of instruction v. Then the relations are true when n is the
number for an instruction label, a symbol, an action and a quadruple. In particular, a
code for a quadruple numbers a sequence of four symbols of the appropriate sort.

We are now ready to number the Turing machines. For this, adopt a simple modi-
fication of our original specification: We have so-far supposed that a Turing machine
might lack any given quadruple, say h3; 1; x; yi. In case it lacks this quadruple, if
the machine reads 1 and is sent to state 3 it simply “hangs” with no place to go.
Where q is the largest label in the machine, we now suppose that for any p � q, if
no hp;C; x; yi is a member of the machine, the machine is simply supplemented with
hp;C;C; pi. The effect is as before: In this case, there is a place for the machine to go;
but if the machine goes to hp;C;C; pi, it remains in that state, repeating it over and
over. In the case of label 0, the states are added to the machine, but serve no function,
as the zero label forces halt. Further, we suppose that the quadruples in a Turing ma-
chine are taken in order, h0; 0; x; yi; h0; 1; x; yi; h0;B; x; yi; h1; 0; x; yi; h1; 1; x; yi; : : :
hq; 0; x; yi; hq; 1; x; yi; hq;B; x; yi. So each Turing machine has a unique specifica-
tion. On this account, a Turing machine halts only when it reaches a state of the sort
hx; x; x; 0i. And the ordered specification itself guarantees the functional require-
ment – that there are no two quadruples with the first inputs the same and the latter
different. So for TMACH.n/,

.9w < len.n//.len.n/ D 3 � .wC 2// ^ .8v; 3 � vC 2 < len.n//.8x � n/f

Œx D exp.n; 3 � v/! .QUAD.x/ ^ exp.x; 0/ D lb.v/ ^ exp.x; 1/ D h0i/�^

Œx D exp.n; 3 � vC 1/! .QUAD.x/ ^ exp.x; 0/ D lb.v/ ^ exp.x; 1/ D h1i/�^

Œx D exp.n; 3 � vC 2/! .QUAD.x/ ^ exp.x; 0/ D lb.v/ ^ exp.x; 1/ D hBi/�g

Given our modifications, the length of a Turing machine must be a non-zero multiple
of three including at least the initial labels zero and one. So for some w, len.n/ D
3 � .w C 2/. Then for each initial label v, there are three quadruples; so there are
quadruples 3� v, 3� vC 1 and 3� vC 2, taken in the standard order, and each with
initial label v. Since n is a super Gödel number, and each x the number of a quadruple
it is the exponents of x that reveal the instruction label and cell content.

But now it is easy to see,

T14.1. There is a recursive enumeration of the Turing machines. Set,
mach.0/ D �zŒTMACH.z/�

mach.Sn/ D �zŒz > mach.n/ ^ TMACH.z/�

Since mach.n/ is is a recursive function from the natural numbers onto the Turing
machines, they are recursively enumerable. While this enumeration is recursive, it is
not primitive recursive.

CHAPTER 14. LOGIC AND COMPUTABILITY 740

Now, as we work toward a demonstration that Turing computable functions are
recursive, let us pause for some key ideas. Consider a tape divided as follows,

(I)
left¸

right
»

1 0 1 0 1 1 0
N

We shall code the tape with a pair of numbers. Where at any stage the head divides
the tape into left and right parts, first a standard code for the right hand side, p10110q,
and second, a code for the left side read from the inside out pB01q. Taken as a pair,
these numbers record at once contents of the tape, and the position of the head —
which is always under the first digit of the coded right number.

Say a dextral Turing machine computes a total function f.n/ D m. Let us suppose
that we have functions code.n/ and decode.m/ to move between m and n and their
codes (where this requires moving from the numbers m and n through their binary
representations, and then to the codes). So we concentrate on the machine itself,
and wish to track the status of the Turing machine i given input n for each step j of
its operation. In order to track the status of the machine, we shall require functions
left.i; n; j/, right.i; n; j/ to record codes of the left and right portions of the tape, and
state.i; n; j/ for the current quadruple state of the machine.

First, as we have observed, for any Turing machine, there is a unique quadruple
for any instruction label and tape value. Thus, machs.i;m; n/ numbers a quadruple
as a function of the number of the machine in the enumeration, and Gödel numbers
for initial label and tape value. Thus machs.i;m; n/ is,

.�y � mach.i//.9v < len.mach.i///Œy D exp.mach.i/; v/ ^ exp.y; 0/ D m ^ exp.y; 1/ D n�

So machs.i;m; n/ returns the number of that quadruple in machine i whose initial
label has number m, and initial value number n. Since the machine is a function,
there must be a unique state with those initial values.

In addition, where n D a ? b, let us adopt a sort of converse to concatenation
such that a ı n D b.

a ı n D .�x � n/.8i < len.n/ :
� len.a//.exp.x; i/ D exp.n; len.a/C i//

So we want the least x such that its length is the length of n less the length of a, and
the values of x at any position i are the same as those of n at len.a/C i. Thus a ı n
“lops off” the portion whose length is that of a from the expression numbered n.

CHAPTER 14. LOGIC AND COMPUTABILITY 741

Recall that our Turing machine is to calculate a function f.n/ D m. Initial values
of left.i; n; j/, right.i; n; j/ and state.i; n; j/ are straightforward.

left.i; n; 0/ D pBBq

right.i; n; 0/ D code.n/

state.i; n; 0/ D machs.i; h1i; exp.right.i; n; 0/; 0//

On a dextral machine, the machine never writes to the left of its initial position, and
the head never moves more than one position to the left of its initial position; so we
simply set the value of the left portion to a couple of blanks. This ensures that there
is enough “space” on the left for the machine to operate (and that, for any position
of the machine head, there is always a left portion of the tape). The starting right
number is just the code of the input to the function. And the initial state value is
determined by the input label 1 and the first value on the tape which is coded by the
first exponent of right.i; n; 0/.

For the successor values,

left.i; n;Sj/ D

8<:
left.i; n; j/ if SYM.exp.state.i; n; j/; 2//
2exp.right.i;n;j/;0/ ? left.i; n; j/ if exp.state.i; n; j/; 2/ D hRi

2exp.left.i;n;j/;0/ ı left.i; n; j/ if exp.state.i; n; j/; 2/ D hLi

If a symbol is written in the current cell, there is no change in the left number. If
the head moves to the left or the right, the first value is either appended or deleted,
depending on direction. And similarly for right.i; n;Sj/ but with separate clauses
for each of the symbols that may be written onto the first position. And now the
successor value for state is determined by the Turing machine together with the new
label and the value under the head after the current action has been performed.

state.i; n;Sj/ D machs.i; exp.state.i; n; j/; 3/; exp.right.i; n;Sj/; 0//

The machine jumps to a new state depending on the label and value on the tape.
Observe that we are here proceeding by simultaneous recursion, defining multiple
functions together. It should be clear enough how this works (see E12.25, p. 595).

If the machine enters a zero state then it halts. So set,

stop.i; n; j/ Ddef .�y � len.mach.i///.exp.state.i; n; j/; 0/ D lb.y//

exp.state.i; n; j/; 0/ is the number of of the instruction label. So exp.state.i; n; j/; 0/
D lb.y/when y is the label. Since there always is some such label, exp.state.i; n; j/; 0/
D lb.y// is regular. And stop.i; n; j/ takes the value 0 just in case machine i with input
n is halted at step j. When the first member of state.i; n; j/ codes zero, the machine is

CHAPTER 14. LOGIC AND COMPUTABILITY 742

halted, otherwise it is running. So y takes the value zero just in case the machine is
halted.

T14.2. Every Turing computable function is a recursive function. Supposing Turing
machine i computes a function f.n/,

f.n/ D decode.right.i; n; �jŒstop.i; n; j/ D 0�//

When a dextral Turing machine stops, the value of right is just the code of its output
value m; so if we decode right.i; n; j/ at that stage, we have the value of the function
calculated by the Turing machine. Since the Turing computable function is total,
there must be some j where the machine is stopped; so the minimization operates on
a regular function. Since this function is recursive, the function calculated by Turing
machine i is a recursive function.

E14.2. Find a recursive function to calculate right.i; n; j/. Hint: You might find a
combination of ? and ı useful for the case when a symbol is written into the
first cell.

E14.3. Find a recursive function to calculate decode.n/.

E14.4. Suppose a “dual” Turing machine has two tapes, with a machine head for
each. Instructions are of the sort hqi;Cta ;Atb ; qji where ta and tb indicate the
relevant tape. Show that every function that is dual Turing computable is
recursive.

14.1.3 Recursive Functions are Turing Computable

To show that the recursive functions are identical to the Turing computable functions,
we now show that all recursive functions are Turing computable.

T14.3. Every recursive function is Turing computable.

Suppose f.Ex/ is a recursive function. Then there is a sequence of recursive
functions f0, f1 : : : fn such that fn D f, where each member is either an ini-
tial function or arises from previous members by composition, recursion, or
regular minimization. The argument is by induction on this sequence.

CHAPTER 14. LOGIC AND COMPUTABILITY 743

Basis: We have already seen that the initial functions zero.x/, suc.x/ and idntjk, as
illustrated in E14.1, are Turing computable.

Assp: For any i , 0 � i < k, fi.Ex/ is Turing computable.

Show: fk.Ex/ is Turing computable.

fk is either an initial function or arises from previous members by composition,
recursion, or regular minimization. If an initial function, then as in the basis.
So suppose fk arises from previous members.

(c) fk.Ex; Ey; Ez/ arises by composition from g.Ey/ and h.Ex;w; Ez/. By assumption g.Ey/
and h.Ex;w; Ez/ are Turing computable. For the simplest case, consider h.g.y//:
Chain together Turing programs to calculate g.y/ and then h.w/ — so the
first program operates upon y to calculate g.y/ and the second begins where
the first leaves off, operating on the result to calculate h.g.y//. A case like
h.x; g.y/; z/ is more complex insofar as g.y/ may take up a different number
of cells from y: it is sufficient to run a copy to get x:y:z:y; then g.y/ to get
x:y:z:g.y/; then copy for x:y:z:g.y/:z and a copy that replaces the last two
numbers to get x:g.y/:z. Then you can run h. And similarly in other cases.

(r) fk.Ex; y/ arises by recursion from g.Ex/ and h.Ex; y; u/. By assumption g.Ex/ and
h.Ex; y; u/ are Turing computable. Recall our little programs from chapter 12
which begin by using g.Ex/ to find f.0/ and then use h.Ex; y; u/ repeatedly for
y in 0 to b � 1 to find the value of f.Ex; b/ (see, for example, p. 555). For a
representative case, consider f.m; b/.

a. Produce a sequence,
m:b:m:b � 1:m:b � 2 : : :m:2:m:1:m:0:m

This requires a copypair.x; y/ that takes m:n and returns m:n:m:n and
pred.x/. Given m:b on the tape, run copypair to get m:b:m:b (and mark
the first m with a blank). Then loop as follows: if the final b is 0, delete
it, go to the previous m, and move on to (b); otherwise run pred on the
final b, move to previous m, run copypair, and loop.

b. Run g on the last block of digits m. This gives,
m:b:m:b � 1:m:b � 2 : : :m:2:m:1:m:0:f.m; 0/

c. Back up to the previous m and run h on the concluding three blocks
m:0:f.m; 0/. This gives,

m:b:m:b � 1:m:b � 2 : : :m:2:m:1:f.m; 1/

And so forth. Stop when you reach the m with an extra blank (with
two blanks in a row). At that stage, we have, m�:b:f.m; b/. Fill the first

CHAPTER 14. LOGIC AND COMPUTABILITY 744

blank, run idnt33 and you are done. Observe that the original m:b plays
no role in the calculation other to serve as the initial template for the
series, and then as an end marker on your way back up — there is never
a need to apply h to any value greater than b � 1 in the calculation of
f.m; b/.

(m) fk.Ex/ arises by regular minimization from g.Ex; y/. By assumption, g.Ex; y/ is
Turing computable. For a representative case, suppose we are given m and
want �yŒg.m; y/ D 0�.

a. Given, m, produce m:0:m:0.

b. From a tape of the form m:y:m:y loop as follows: Move to the second
m; run g on m:y; this gives m:y:g.m; y/; check to see if the result is zero;
if it is, run idnt32 and you are done (this is the same as deleting the last
zero and running idnt22); if the result is not zero, delete g.m; y/ to get
m:y; run suc on y; and then a copier to get m:y0:m:y0, and loop. The
loop halts when it reaches the value of y for which g has output 0 — and
there must be some such value if g is regular.

Indct: Any recursive function f.Ex/ is Turing computable.

And from T14.2 together with T14.3, the Turing computable functions are iden-
tical to the recursive functions. It is perhaps an “amazing” coincidence — that func-
tions independently defined in these ways should turn out to be identical. And we
have here the beginnings of an idea behind Church’s thesis which we shall explore in
section 14.3.

E14.5. From exercise E14.1 you should already have Turing programs for suc.x/,
pred.x/, copy.x/ and idnt33.x; y; z/. Now produce each of the following, in
order, leading up to the recursive addition function. When you require one as
part of another simply copy it into the larger file.

a. The function, h.x; y; u/. For addition, h.x; y; u/ is suc.idnt33.x; y; u//. So this
is a simple combination of suc and idnt33. For addition, g.x/ D idnt11.x/ D x,
which requires no action; so we will not worry about that.

b. The function, copypair. Take a:b and return a:b:a:b. One approach is to
produce a simple modification of copy that takes a:b and produces a:b:a.
Run this program starting at a, and then another copy of it starting at b.

CHAPTER 14. LOGIC AND COMPUTABILITY 745

c. The function, cascade. This is the program to produce m:n:m:n � 1:m:n � 2
: : :m:0:m. The key elements are copypair and pred. To prepare for the next
stage, you should begin by running copypair and then “damage” the very first
m by putting a blank in its first cell. Let the program finish with the head on
m at the end.

d. The function, plus.m; n/. g is trivial. So from m at the far right of the se-
quence, back up two words; check to see if there is an extra blank; if so, run
idnt33 and you are done; if not, run h.x; y; u/. Though m:n is part of the “cas-
cade” series, we never run h on m:n:u. In a program we may make use of m:n
as described, but in damaged form — as an end marker for the series.

There are easier ways to do addition on a Turing machine! The obvious
strategy is to put m in a location x and n in a location y; run pred on the
value in location x and then suc on the value in location y; the result appears
in y when pred hits zero. The advantage of our approach is that it illustrates
(an important case of) the demonstration that a Turing machine can compute
any recursive function.

E14.6. Produce each of the following, leading up to a Turing program for the func-
tion �yŒch.x D pred.y// D 0�, that is the function which returns the least y
such that x equals the predecessor of y — such that the characteristic function
of x D pred.y/ returns 0.

a. The function idnt22.x; y/. This can be a simple modification of idnt33.

b. The function ch.x D y/, which returns 0 when x D y and otherwise 1. This
is, of course, a recursive function. But you can get it more efficiently and
more directly. To compare numbers, you have to worry about leading zeros
that might make equivalent numbers physically distinct. Here is one strategy:
From x:y check to see if one or both are all zeros; exit with 1 or 0 in the
different cases; if neither works, apply pred to x and to y and return to the
start; eventually you will come to a stage where the check for zero returns a
result.

c. The function ch.x D pred.y//. This is a simple case of composition.

d. The function �yŒch.x D pred.y// D 0�, by the routine discussed in the text.

Of course, for any number except 0, this is nothing but a long-winded equiv-
alent to suc.x/. The point, however, is to apply the algorithm for regular

CHAPTER 14. LOGIC AND COMPUTABILITY 746

minimization, and so to work through the last stage of the demonstration that
recursive functions are Turing computable.

14.2 Essential Results

In chapter 12 essential results were built on the diagonal lemma (T12.19). This time,
we depend on a halting problem with special application to Turing machines. Once
we have established the halting problem, results like ones from before follow in short
order.

14.2.1 Halting

A Turing machine is a set of quadruples. Things are arranged so that Turing machines
do not “hang” in the sense that they reach a state with no applicable instruction. But
a Turing machine may go into a loop or routine from which it never emerges. That
is, a Turing machine may or may not halt in a finite number of steps. So for example,
this machine never stops.

h1; 0; 0; 1i
h1; 1; 1; 1i
h1;B;B; 1i

For any input it simply repeats forever. This raises the question whether there is a
general way to tell whether Turing machines halt when started on a given input. This
is an issue of significance for computing theory. And, as we shall see, the answer has
consequences beyond computing.

The problem divides into narrower “self-halting” and broader “general halting”
versions. First, the self-halting problem: By T14.1 there is an enumeration of the
Turing machines. Consider an enumeration,…0,…1 : : : of Turing machines for func-
tions with a single free variable and an array as follows,

(J)

0 1 2 : : :

…0 …0.0/ …0.1/ …0.2/
…1 …1.0/ …1.1/ …1.2/
…2 …2.0/ …2.1/ …2.2/
:::

We run …0 on inputs 0, 1. . . ; …1 on 0, 1. . . ; and so forth. Now ask whether there
is a Turing program (that is, a recursive function) to decide in general whether …i

halts when applied to its own number in the enumeration — a program H.i/ such that
H.i/ D 0 if …i.i/ halts, and H.i/ D 1 if …i.i/ does not halt.

CHAPTER 14. LOGIC AND COMPUTABILITY 747

T14.4. There is no Turing machine H.i/ such that H.i/ D 0 if…i.i/ halts and H.i/ D 1
if it does not.

Suppose otherwise. That is, suppose there is a halting machine H.i/ where
for any …i.i/, H.i/ D 0 if …i.i/ halts and H.i/ D 1 if it does not. Chain this
program into a simple looping machine ƒ.j/ defined as follows,

hq; 0; 0; qi
hq; 1; 1; 0i

So when j D 0, ƒ goes into an infinite loop, remaining in state q forever;
when j D 1, ƒ halts gracefully with output 1. Let the combination of H and
ƒ be �.i/; so �.i/ calculates ƒ.H.i//. On our assumption that there is a Tur-
ing machine H.i/, the machine � must appear in the enumeration of Turing
machines with some number d.

But this is impossible. Consider �.d/ and suppose �.d/ halts; since � halts
on input d, the halting machine, H.d/ D 0; and with this input, ƒ goes into
the infinite loop; so the composition ƒ.H.d// does not halt; and this is just
to say �.d/ does not halt. Reject the assumption, �.d/ does not halt. But
since �.d/ does not halt, the halting machine H.d/ D 1; and with this input,
ƒ halts gracefully with output 1; so the composition ƒ.H.d// halts; and this
is just to say �.d/ halts. Reject the original assumption, there is no machine
H.i/ which says whether an arbitrary …i.i/ halts.

For this argument, it is important that H is a component of �. Information about
whether � halts gives information about the behavior of H, and information about
the behavior of H, about whether � halts.

The more general question is whether there is a machine to decide for any …i

and n whether …i.n/ halts. But it is immediate that if there is no Turing machine to
decide the more narrow self-halting problem, there is no Turing machine to decide
this more general version.

T14.5. There is no Turing machine H.i; n/ such that H.i; n/ D 0 if …i.n/ halts and
H.i; n/ D 1 if it does not.

Suppose otherwise. That is, suppose there is a halting machine H.i; n/ where
for any …i.n/, H.i; n/ D 0 if …i.n/ halts and H.i; n/ D 1 if it does not. Chain
this program after a copier K.n/ which takes input n and gives n:n. The
combination H.K.i// decides whether …i.i/ halts. This is impossible; reject
the assumption: There is no such Turing machine H.i; n/.

CHAPTER 14. LOGIC AND COMPUTABILITY 748

And when combined with T14.3 according to which every recursive function is Tur-
ing computable, these theorems which tell us that no Turing program is sufficient to
solve the halting problem, yield the result that no recursive function solves the halt-
ing problem: if a function is recursive, then it is Turing computable; and since it is
Turing computable, it does not solve the halting problem. Observe that we may be
able to decide in particular cases whether a program halts. No doubt you have been
able to do so in particular cases! What we have shown is that there is no perfectly
general recursive method to decide whether …i.n/ halts.

E14.7. Say a function is �-recursive just in case it satisfies the conditions for the
recursive functions but without the regularity requirement for minimization.
So all the recursive functions are �-recursive, but some �-recursive functions
are not recursive. Where every recursive function f.Ex/ is total in the sense that
it returns a value for every Ex, some�-recursive functions are partial insofar as
there may be values of Ex for which they return no value (as occurs when min-
imization is applied to a g.Ex; y/ that never evaluates to zero). Suppose that the
�-recursive functions can be numbered and that there is a �-recursive func-
tion emurec.i/ to enumerate them; so emurec.i/ returns the Gödel number
of the ith function in the enumeration. (You will have occasion to produce
this function in a later exercise.) Show that there is no �-recursive function
def.i/ such that def.i/ D 0 if fi.i/ is defined and def.i/ D 1 if fi.i/ is unde-
fined. Hint: Let your diagonal function diag.i/ D �yŒdef.i/ D y ^ y D 1�.
We might think of this as the definition problem.

14.2.2 The Decision Problem

Recall our demonstration from section 12.5.2 that if Q is consistent then no recursive
relation identifies the theorems of predicate logic. With the identity between the
recursive functions and the Turing computable functions, this is the same as the result
that if Q is consistent then no Turing computable function identifies the theorems
of predicate logic. We are now in a position to obtain a related result directly, by
means of the halting problem. Recall from chapter 13 (p. 621) that a theory T is
!-inconsistent iff for some P .x/, T proves each P .m/ but also proves �8xP .x/.
Equivalently, T is !-inconsistent iff T proves each�P .m/ but also proves 9xP .x/.
We show,

T14.6. If Q is !-consistent, then no Turing computable function thrmpl.n/ is such
that thrmpl.n/ D 0 just in case n numbers a theorem of predicate logic.

CHAPTER 14. LOGIC AND COMPUTABILITY 749

Suppose Q is !-consistent, and suppose some Turing computable thrmpl.n/
D 0 just in case n numbers a theorem of predicate logic. Consider our recur-
sive function stop.i; n; j/ which takes the value 0 iff …i.n/ is halted. Since it
is recursive, stop is captured by some Stop.i; n; j; z/ so that,

(i) If …i.i/ is halted by step j, Q ` Stop. i ; i ; j ;;/

(ii) If …i.i/ never halts, Q ` �Stop. i ; i ; j ;;/ for any j

Let H .i/ D 9zStop.i; i; z;;/. Then if …i.i/ halts, there is some j such that
Q ` Stop. i ; i ; j ;;/; so Q ` H . i /. And if …i.i/ never halts, for every j,
Q ` �Stop. i ; i ; j ;;/; so since Q is !-consistent, Q ° H . i /. So where Q

is a conjunction of the axioms of Q, if …i.i/ halts ` Q ! H . i / and if …i.i/
never halts ° Q! H . i /; so,

` Q! H . i / iff …i.i/ halts

Let q D pQq and h.i/ D formsub.pH .i/q; piq; num.i// — so h.i/ is the
number of H . i /. Then thrmpl.cnd.q; h.i/// takes the value 0 iff Q ! H . i /
is a theorem, iff …i.i/ halts. So thrmpl solves the halting problem. This
is impossible; reject the assumption: If Q is !-consistent, then there is no
Turing computable function that returns the value zero just for numbers of
theorems of predicate logic.

And, of course, this result according to which if Q is !-consistent no Turing com-
putable function returns zero just for theorems of predicate logic is equivalent to
the result that if Q is !-consistent, then no recursive function returns zero just for
theorems of predicate logic.4

E14.8. Return again to the �-recursive functions from E13.7. Suppose that in addi-
tion to emurec.i/ to enumerate the functions there is a�-recursive umurec.i; n/
to return the value of fi.n/ so that umurec.i; n/ D fi.n/; say this function
is captured in Qs by some Umurec.i; n; y/ so that if fi.n/ D a then Q `
Umurec.i; n; a/ and if fi.n/ ¤ a then Q ` �Umurec.i; n; a/. Use your re-
sult from the definition problem in E14.7 to show that if Qs is !-consistent,
then no �-recursive function muthrmpl.n/ is such that muthrmpl.n/ D 0 just
in case n numbers a theorem of predicate logic. Hint: Let Defined. i / Ddef

9zUmurec. i ; i ; z/.
4This argument, and the parallel one in chapter 12 have the advantage of simplicity. However, this

result that no recursive function is true just of the theorems of predicate logic need not be conditional
on the consistency (or !-consistency) of Q. For an illuminating version of the strengthened result from
the halting problem, see chapter 11 of Boolos et al., Computability and Logic.

CHAPTER 14. LOGIC AND COMPUTABILITY 750

14.2.3 Incompleteness Again

In T12.21 we saw that no consistent, recursively axiomatizable theory extending Q
is negation complete. We shall see this again. However, as described in chapter 13,
the incompleteness result comes in different forms. In particular, the one as from
chapter 12 which depends on consistency and capture, and another which depends
on soundness and expression. We are positioned to see the result in both forms.

Semantic Version

A key preliminary to the chapter 12 demonstration of incompleteness is T12.20
which applies the diagonal lemma to show that for no consistent theory T extending
Q is a recursive relation true of (numbers for) its theorems. This time, by means of
the halting result, we show that the truths of LNT are not recursively enumerable.

T14.7. The set of truths of LNT is not recursively enumerable.

Consider again our recursive function stop.i; n; j/; since it is recursive, it is
expressed by some Stop.i; n; j; z/; set H .i/ D 9zStop.i; i; z;;/ and h.i/ D
formsub.pH .i/q; piq; num.i// — so h.i/ is the number of H . i /. Suppose
some…e.i/ enumerates the truths of LNT, halting with output 0 if h.i/ appears
in the enumeration, and with output 1 if neg.h.i// appears. Exactly one of
H . i / or �H . i / is true; so the number for one of them will eventually turn
up insofar as …e enumerates all the truths of LNT.

(i) Suppose NŒH . i /� D T; then for some m, NŒStop. i ; i ;m;;/� D T; so
NŒ�Stop. i ; i ;m;;/� ¤ T; so by expression, hhi; i;mi; 0i 2 stop; so …i.i/
stops.

(ii) Suppose NŒH . i /� ¤ T; then for any m 2 U, NŒStop. i ; i ;m;;/� ¤ T; so
by expression, hhi; i;mi; 0i 62 stop; so …i.i/ never stops.

So NŒH . i /� D T iff …i.i/ halts

Thus by its definition, …e.i/ halts with output 0 iff NŒH . i /� D T; iff …i.i/
halts; so …e.i/ solves the halting problem. This is impossible; there is no
such Turing machine. And since no Turing machine enumerates the truths of
LNT, no recursive function enumerates the truths of LNT.

This theorem, together with T12.17 which tells us that if T is a recursively ax-
iomatized formal theory then the set of theorems of T is recursively enumerable, puts
us in a position to obtain an incompleteness result mirroring T13.2.

CHAPTER 14. LOGIC AND COMPUTABILITY 751

T14.8. If T is a recursively axiomatized sound theory whose language includes LNT,
then T is negation incomplete.

Suppose T is a recursively axiomatized sound theory whose language in-
cludes LNT. By T12.17, there is an enumeration of the theorems of T , and
since T is sound, all of the theorems in the enumeration are true. But by
T14.7, there is no enumeration of all the truths of LNT; so the enumeration of
theorems is not an enumeration of all truths; so some true P is not among the
theorems of of T ; and since P is true, �P is not true; and since T is sound,
neither is �P among the theorems of T . So T ° P and T ° �P .

This incompleteness result requires the soundness of T , where where soundness is
more than mere consistency. But it requires only that the language include LNT and
so have the power to express recursive functions — where this leaves to the side a
requirement that T extends Q, and so be able to capture recursive functions.

Syntactic Version

From the halting problem, we can obtain the other sort of incompleteness result as
well. Thus we have a theorem like the combination of T13.4 and T13.5.

T14.9. If T is a recursively axiomatized theory extending Q, then there is a sentence
P such that if T is consistent T ° P , and if T is !-consistent, T ° �P .

Suppose T is a recursively axiomatized theory extending Q. Once again
consider stop.i; n; j/; since stop is recursive and T extends Q, stop is cap-
tured in T by some Stop.i; n; j; z/; let H .i/ D 9zStop.i; i; z;;/, and h.i/ D
formsub.pH .i/q; piq; num.i//. Consider a Turing machine…s.i/ which tests
whether successive values of m number a proof of �H . i /, halting if some
m numbers a proof and otherwise continuing forever — so …s.i/ evaluates
PRFT.m; neg.h.i/// for successive values of m; since T is a recursively ax-
iomatized theory, this is a recursive relation so that there must be some such
Turing machine. We can think of …s.i/ as seeking a proof that …i.i/ does not
halt.

Suppose …s.s/ halts. By its definition, …s.i/ halts just in case some m
numbers a proof of �H . i /; since …s.s/ halts, then, there is some m such
that PRFT.m; neg.h.s///; so T ` �H .s/. But if …s.s/ halts, for some m,
hhs; s;mi; 0i 2 stop; so by capture, T ` Stop.s; s;m;;/; so T ` 9zStop.s; s;
z;;/, which is to say, T ` H .s/. Reject the assumption: if T is consistent,
…s.s/ does not halt.

CHAPTER 14. LOGIC AND COMPUTABILITY 752

(i) Suppose T is consistent and T ` �H .s/; then for some m, PRFT.m;
neg.h.s///; so by its definition, …s.s/ halts. But since T is consistent, as
we have just seen, …s.s/ does not halt. Reject the assumption: T ° �H .s/.

(ii) Suppose T is !-consistent and T ` ��H .s/; then T ` H .s/; so T `
9zStop.s; s; z;;/. But since T is !-consistent, it is consistent so that …s.s/
does not halt; so for any m, hhs; s;mi; 0i 62 stop; and by capture, for any m,
T ` �Stop.s; s;m;;/; so by !-consistency, T ° 9zStop.s; s; z;;/. This is
impossible, T ° ��H .s/

Again, this is roughly the form in which Gödel first proved the incompleteness of
arithmetic. However, as we have seen it is possible to strengthen this version of the
result to drop the requirement of !-consistency for the simple result that no consis-
tent, recursively axiomatizable theory extending Q is negation complete.

E14.9. Use the definition problem for �-recursive functions to show that there is
no �-recursive enumeration of the set of truths of LNT. Hint: Return to
umurec.i; n/, Umurec.i; n; y/ and Defined. i / — this time supposing that
Umurec expresses umurec so that if fi.n/ D a then NŒUmurec.i; n; a/� D T
and if fi.n/ ¤ a then NŒ�Umurec.i; n; a/� D T. Suppose there is an enu-
meration entruth.n/ of the truths of LNT; then the characteristic function of
entruthf�yŒenthrm.y/ D pDefined. i /q _ enthrm.y/ D p�Defined. i /q�g D
pDefined. i /q is 0 when the minimization finds Defined. i / in the enumera-
tion, and otherwise 1.

E14.10. Use your results for �-recursive functions from other exercises to show that
if T is a recursively axiomatized theory extending Qs, then there is a sentence
P such that if T is consistent T ° P , and if T is !-consistent, T ° �P .

14.3 Church’s Thesis

We have attained a number of negative results, as T14.6 that if Q is !-consistent then
no Turing computable function thrmpl.n/ returns zero just for numbers of theorems
of predicate logic, and from T14.7 that no Turing machine enumerates the truths of
LNT. These are interesting. But, one might very well think, if no Turing machine
computes a function, then we ought simply to compute the function some other way.
So the significance of our negative results is magnified if the Turing computable
functions are, in some sense, the only computable functions. If in some important

CHAPTER 14. LOGIC AND COMPUTABILITY 753

sense the Turing computable functions are the only computable functions, and no
Turing machine computes a function, then in the relevant sense the function is not
computable. Thus Church’s Thesis:

CT The total numerical functions that are effectively computable by some algo-
rithmic method are just the recursive functions.

We want to be clear first, on the content of this thesis, and once we know what it says
on reasons for thinking that it is true.

14.3.1 The content of Church’s thesis

Church’s thesis makes a claim about “total numerical functions that are effectively
computable by an algorithmic method.” Original motivations are from the simple
routines we learn in grade school for addition, multiplication, and the like. These
effectively compute total numerical functions by an algorithmic method. By them-
selves, such methods are of interest. However, we mean to include the sorts of meth-
ods contemporary computing devices can execute. These are of considerable interest
as well. Let us take up the different elements of the proposal in turn.

First, as always, a numerical function is total iff it is defined on the entire nu-
merical domain. Arbitrary functions on a finite domain may be finitely specified by
listing their members, and then computed by simple lookup. This was our approach
with simple, but arbitrary, functions from chapter 4. The question of comuputability
becomes interesting when domains are not finite (and from methods like those in the
countability reference a function on an infinite domain is always comparable to one
that is total). So Church’s thesis is a thesis about the computability of total functions.

A function is effectively computable iff there is a method for finding its value for
any given argument. Correspondingly, a property or relation is effectively decidable
iff its characteristic function is effectively computable. So methods for addition and
multiplication are adequate to calculate the value of the function for any inputs. Or
consider a Turing machine programmed to enumerate the theorems of T , stopping
with output 0 if it reaches (the number for) P , and output 1 if it reaches �P . If T
is a consistent recursively axiomatized and negation complete theory, then this is an
effective method for deciding the theorems of T . If P is a theorem, it eventually
shows up in the enumeration, and the Turing machine stops with output 0. If P is
not a theorem, �P is a theorem, so �P eventually shows up in the enumeration,
and the machine stops with output 1. This was the idea behind T12.18. But if T is
not negation complete, this is not an effective method for deciding theorems of T .
If P is a theorem, it eventually shows up in the enumeration, and the machine stops

CHAPTER 14. LOGIC AND COMPUTABILITY 754

with output 0. But if P is not a theorem and T is not negation complete, �P might
also fail to be a theorem. In this case, the machine continues forever, and does not
stop with output 1; so for some arguments, this method does not find the value of the
characteristic function, and we have not described an effective method for deciding
the theorems of this T .

From the start, we may agree that there is some uncertainty about the notion
of an algorithmic method; so, for example, different texts offer somewhat different
definitions. However, as we did for logical validity and soundness in chapter 1,
we shall take a particular account as a technical definition — partly as clarified in
examples that follow. Difficulties to the side, there does seem to be a relevant core
notion: for our purposes an algorithmic method is a finitely constrained rule-based
procedure (rote, if you will).5

There is some vagueness in how much “processing” is allowed in following a
rule. So, “write down the value of f.n/” will not do a as a rule for arbitrary f.n/; and,
less dramatically, an algorithm for multiplication does not typically include instruc-
tions for required additions. However, we may take it that if some instructions are
sufficient for a computer to calculate a function, then the function is algorithmically
computable. Thus that a function is Turing computable is sufficient to show that it is
algorithmically computable. Again, standard methods for addition and multiplication
are examples of algorithmic procedures. Truth table construction is another example
of a method that proceeds by rote in this way. Given the basic tables for the operators,
one simply follows the rules to complete the tables and determine validity — and one
could program a computer to perform the same task. Thus validity in sentential logic
is effectively decidable by an algorithmic method. In contrast, derivations are not an
algorithmic method. The strategies are helpful! But, at least in complex cases, there
may come a stage where insight or something like lucky guessing is required. And
at such a stage, you are not following any rules by rote, and so not following any
specific algorithm to reach your result.

And algorithmic methods operate under finite constraints. In general, we shall
not worry about how large these constraints may be, so long as they remain finite.
Consider first, truth table construction. If this is to be an effective method for deter-
mining validity, it should return a result for any sentence. But for any n > 0 there
are sentences with that many atomic sentences (for example, A1 ^ A2 ^ : : : ^ An),
so the corresponding table requires 2n rows. This number may be arbitrarily large —
and a table may require more paper or memory than are in the entire universe. But,
in every case, the limit is finite. So, for our purposes, it qualifies as an effective algo-

5We have no intention of engaging Wittgenstenian concerns about following a rule. See, for exam-
ple, Kripke Wittgenstein on Rules and Private Language.

CHAPTER 14. LOGIC AND COMPUTABILITY 755

rithmic method. Contrast this case with a device, which we may call “god’s mind,”
that stores all the theorems of predicate logic sorted in order of their Gödel numbers.
To calculate whether P is a theorem, simply search up to the Gödel number of P to
see if that sentence is in the database: if it is, P is a theorem, if it is not P is not a
theorem. It is not our intent to deny the existence of god, or that one might very well
solve mathematical problems by prayer (though this might not go over very well on
examinations which require that you show your work)! But, insofar as a device re-
quires infinite memory or the like, it will not for our purposes count as an algorithmic
method.

Or consider again a Turing machine programmed to enumerate the theorems of
T , stopping with output 0 if it reaches (the number for) P , but continuing forever
if P does not appear. One might suppose the information that P is not a theorem
is contained already in the fact that the machine never halts, and that god or some
being with an infinite perspective might very well extract this information from the
machine. Perhaps so. But this method is not algorithmic just because it requires the
infinite perspective. Still, there are interesting attempts to attain the effect of this
latter machine without appeals to god. Consider, first, “Zeno’s machine.” As before,
the machine enumerates theorems, this time flashing a light if P appears in the list.
However, for some finite time t (say 60 seconds), this machine takes its first step in
t=2 seconds, its second step in t=4 seconds, and for any n, step n in t=2n seconds.
But the sum of t=2 C t=4 C : : : D t , and the Turing machine runs through all of
infinitely many steps in time t . So start the machine. If the light flashes before t
seconds elapse, P is a theorem. If t elapses, the machine has run through all of
infinitely many steps, so if the light does not flash, P is not a theorem.

One might object this proposal reduces to a tautology of the sort, “If such-and-
such (impossible) circumstances obtain, then the theorems are decidable.” Great, but
who cares? However, we should not reject the general strategy out-of-hand. From
even a very basic introduction to special relativity, one is exposed to time dilation
effects (for a simple case see the time dilation reference). General relativity allows
a related effect. Where special relativity applies just to reference frames moving at
constant velocity relative to one another, general relativity allows accelerated frames.
And it is at least consistent with the laws of general relativity for one frame to have
an infinite elapsed time, while another’s time is finite.6 So, for a Malament-Hogarth
(MH) machine, put a Turing machine in the one frame and an observer in the other.

6Students with the requisite math and physics background might be interested in Hogarth, “Does
General Relativity Allow an Observer To View an Eternity In a Finite Time?” See also Earman and
Norton, “Forever is a Day,” and for the same content, chapter 4 of Earman, Bangs, Crunches, Whimpers,
and Shrieks (but with additional, though still difficult, setup in earlier chapters of the text).

CHAPTER 14. LOGIC AND COMPUTABILITY 756

The Turing machine operates in the usual way in its frame enumerating the theorems
forever. If P is a theorem, it sends a signal back to the observer’s frame that is
received within the finite interval. From the observer’s perspective, this machine runs
through infinitely many operations. So if a signal is received in the finite interval, P

is a theorem. If no signal is received in the finite interval, then P is not a theorem.
(And similarly, the MH machine might search for a counterexample to the Goldbach
conjecture, or the like.) There is considerable room for debate about whether such a
machine is physically possible. But, even if physically realized, it is not algorithmic.
For we require that an algorithmic method terminates in a finite number of steps.

Church’s thesis is thus that the total numerical functions that are effectively com-
putable by some algorithmic method are the the same as the recursive functions.
Suppose we obtain a negative result that some function is not algorithmically com-
putable. Even with the finite limits we have placed on memory, number of instruc-
tions and the like, the negative result remains of considerable interest: So long as a
routine follows definite rules, no (finite) amount of parallel processing, high-speed
memory, nanotechnology, and so forth is going to make a difference — the function
remains uncomputable.

14.3.2 The basis for Church’s thesis

It is widely accepted that Church’s thesis is true, but also that it is not susceptible
to proof. We shall return to the question of proof. There are perhaps three sorts
of reasons that have led philosophers, computer scientists and logicians to think it
is true. (i) A number of independently defined notions plausibly associated with
computability converge on the recursive functions. (ii) No plausible counterexamples
— algorithmically computable functions not recursive, have come to light. And (iii)
there is a sort of rationale from the nature of an algorithm. This last may verge on,
or amount to, demonstration of Church’s thesis.

Independent definitions. We have already seen that the Turing computable func-
tions are the same as the recursive functions. And we are in a position to close another
loop. From T12.16, any recursive function is captured by a recursively axiomatized
consistent theory extending Q. But also,

T14.10. Every (total) function that can be captured by a consistent recursively ax-
iomatized theory is recursive.

Suppose a function f.m/ D n can be captured in a consistent recursively
axiomatized theory T ; then there is some F .x; y/ such that if hm; ni 2 f,

CHAPTER 14. LOGIC AND COMPUTABILITY 757

Simple Time Dilation
It is natural to think that, just as a wave in water approaches a boat faster when
the boat is moving is moving toward it than when the boat is moving away, so
light would approach an observer faster when she is moving toward it, and more
slowly whens she is moving away. But this is not so. The 1887 Michelson-Morley
experiment (and many others) verify that the speed of light has the same value for
all observers. Special relativity takes as foundational:

1. The laws of physics may be expressed in equations having the same form
in all frames of reference moving at constant velocity with respect to one
another.

2. The speed of light in free space has the same value for all observers, regard-
less of their state of motion.

These principles have many counterintuitive consequences. Here is one: Consider
a clock which consists of a pulse of light bouncing between two mirrors separated
by distance L as in (A) below. Where c is the constant speed of light, the time
between ticks is the distance traveled by the pulse divided by its speed L=c.

(A)

6

?

L 6pulse

(B)

�
�
�
�
�
�
�
��3QQ

Q
Q
Q
Q
Q
QQs

-
v

Now consider the same clock as observed from a reference frame relative to which
it is in motion, as in (B). The speed of light remains c (instead of being increased,
as one might expect, by the addition of the horizontal component to its velocity).
But the distance traveled between ticks is greater than L, so the time between
ticks is greater than L=c — which is to say the clock ticks more slowly from the
perspective of the second frame.

One might wonder happens if this clock is rotated 90 degrees so that the pulse is
bouncing parallel to the direction of motion, or what would happen if time were
measured by a pendulum clock. But within a frame, everything is coordinated
according to the usual laws: On special relativity, there are coordinated changes to
length, mass and the like so that the effect is robust. As observed from a reference
frame relative to which the frame is in motion, time, mass, and length are distorted
together. For further discussion, consult any textbook on introductory modern
physics.

CHAPTER 14. LOGIC AND COMPUTABILITY 758

then T ` F .m; n/ and if hm; ni 62 f then T ` �F .m; n/; and from the latter,
since T is consistent, T ° F .m; n/. But since f is a function, if hm; ni 2 f,
any k ¤ n is such that hm; ki 62 f; so that T ° F .m; k/. Since T is recursively
axiomatized there is a recursive PRFT. Suppose hm; ni 2 f; then (i) for b D
pF .m; n/q there is some a such that PRFT.a; b/; and (ii) for k ¤ n, there is no
b0 D pF .m; k/q such that for some a, PRFT.a; b0/.

Intuitively, we can find the value of f.m/ by searching the theorems until we
find one of the sort F .m; n/; and from this derive the value n. More formally:
First, for the number of F .m; n/,

numf.m; n/ Ddef formsubŒformsub.pF .x; y/q; pxq; num.m//; pyq; num.n/�

Recall that formsub.p; v; s/ takes the Gödel numbers of a formula P , vari-
able x and term s and returns the number of P x

s ; and num.m/ returns the
Gödel number of the standard numeral for m. So this gives the Gödel number
of F .m; n/ as a function of m and n. By (loose) analogy with code from
chapter 12 (p. 607),

codef.m/ Ddef �zŒlen.z/ D 2 ^ PRFT.exp.z; 0/; numf.m; exp.z; 1///�

So codef.m/ is of the sort 2a � 3n, where a numbers a proof of F .m; n/; that
is, exp.z; 0/ numbers a proof of numf.m; exp.z; 1//. But there is only one n
that could result in a proof of F .m; n/. So,

f.m/ D exp.codef.m/; 1/

And n is easily recovered from codef. So f.m/ is a recursive function.

We use the F .x; y/ that captures f.m/ to generate the recursive f.m/. So a function
is captured in a recursively axiomatized consistent theory iff it is recursive. And
increasing the power of a deductive system from Q to PA and beyond does not ex-
tend the range of captured functions. So the recursive functions, Turing computable
functions and functions captured by a recursively axiomatized consistent theory ex-
tending Q are the same.7

E14.11. Given that Plus.x; y/ captures plus.m; n/, apply the method of T14.10 to
show that plus is recursive.

7And there are more. Church himself was originally impressed by an equivalence between his
lambda calculus and the recursive functions. As additional examples, Markov algorithms are discussed
in Mendelson, Introduction to Mathematical Logic, §5.5; abacus machines in Boolos et al., Computabil-
ity and Logic, §5; see below for discussion of the Kolmogorov-Uspenskii machine.

CHAPTER 14. LOGIC AND COMPUTABILITY 759

Failure of counterexamples. Another reason for accepting Church’s thesis is the
failure to find counterexamples. This may be very much the same point as before:
When we set out to define a notion of computability, or compute a function, what we
end up with are recursive functions, rather than something other. Of course, god’s
mind, Zeno’s machine, an MH machine, or the like might compute a non-recursive
function. Perhaps there are such devices. However, on our account, they are not
algorithmic. What we do not seem to have are algorithmic methods for computing
non-recursive functions.

But also in this category of reasons to accept Church’s thesis is the failure of
a natural strategy for showing that Church’s thesis is false. Suppose one were to
propose that the primitive recursive functions are all the computable functions, and
so that regular minimization is redundant (perhaps you have had this very idea). Here
is a way to see this hypothesis false:

Observe that the primitive recursive functions are recursively enumerable. For
this, we introduce a language LR for an alternative representation of the recursive
functions. The syntax of this language is developed in the usual way. Symbols are
Z1, S1, Ini , Compn and Recn with parentheses and comma. Then,

LR (b) If P n is Z1, S1 or Ini then P n is a formula.

(c) If Pm and Qn1 : : :Q
n
m are formulas, then Compn.Pm;Qn1 : : :Q

n
m/ is a formula.

(r) If Gn and HnC2 are formulas, then RecnC1.Gn;HnC2/ is a formula.

(cl) Any formula can be formed by repeated application of these rules.

These expressions may be exhibited on trees in the usual way. So, for example,
Rec2.I 11 ;Comp3.S1; I 33 // is a formula.

(K)

I11 S1 I33 by LR(b)

\
\
\
\
\
\\

@
@
@

�
�
�

Comp3.S1; I33 /

�
�
�

by LR(c)

Rec2.I11 ;Comp3.S1; I33 // by LR(r)

These expressions may be interpreted so that each P n represents a recursive
function that applies to n objects. Say Ex is x1 : : : xn.

IR (z) IŒZ1�.x/ = zero.x/

(s) IŒS1�.x/ D suc.x/

(i) IŒIni �.Ex/ D idntni .Ex/

CHAPTER 14. LOGIC AND COMPUTABILITY 760

(c) IŒCompn.Pm;Qn1 : : :Q
n
m/�.Ex/ D IŒPm�.IŒQn1 �.Ex/ : : : IŒQ

n
m�.Ex//

(r) IŒRecnC1.Gn;HnC2/�.Ex; 0/ D IŒGn�.Ex/

IŒRecnC1.Gn;HnC2/�.Ex;Sy/ D IŒHnC2�.Ex; y; IŒRecnC1.Gn;HnC2/�.Ex; y//

Observe that we apply a generalized version of composition on which IŒQn
1 �.Ex/ : : :

IŒQn
m�.Ex/ are substituted respectively for the variables of IŒPm�. Clearly, a gener-

alized composition results from multiple applications of our familiar singular form.
And singular composition can be seen as an instance of the generalized form: Say we
have P .u; v; w/ and Q.u; y; z/ and want P .u;Q.u; y; z/; w/. Let Ex D u;w; y; z

and take Comp4.P 3; I 41 ;Comp4.Q3; I 41 ; I
4
3 ; I

4
4 /; I

4
2 /. The result applies general-

ized compositions, and is equivalent to the composition we want.
As an example for IR, Rec2.I 11 ;Comp3.S1; I 33 // is plus. Corresponding to the

above tree are functions,

(L)

IŒI11 �.x/ IŒS1�.x/ IŒI33 �.x; y; u/

\
\
\
\
\
\\

@
@
@

�
�
�

IŒComp3.S1; I33 /�.x; y; u/

�
�
�

IŒRec2.I11 ;Comp3.S1; I33 //�.x; 0/

IŒRec2.I11 ;Comp3.S1; I33 //�.x;Sy/

idnt11.x/ suc.x/ idnt33.x; y; u/

\
\
\
\
\
\\

@
@
@

�
�
�

suc.idnt33.x; y; u//

�
�
�

idnt11.x/

suc.idnt33.x; y; plus.x; y///

where plus.x; y/ is IŒRec2.I 11 ;Comp3.S1; I 33 //�.x; y/. And the conditions for plus are
as we expect.

Now a recursive enumeration of the primitive recursive functions is straightfor-
ward. From their interpretation, an enumeration of the formulas is an enumeration
of the primitive recursive functions: Assign numbers to the symbols and formulas of
LR; find a recursive PRWFF.n/ true of numbers for formulas; and enumerate,

eprfnc.0/ D �zŒPRWFF.z/�

eprfnc.Sn/ D �zŒz > eprfnc.n/ ^ PRWFF.z/�

So there is a recursive enumeration of the primitive recursive functions, there is an
enumeration of the functions of one free variable, and so forth.

Consider an enumeration of the primitive recursive functions of one free variable
and an array as follows.

CHAPTER 14. LOGIC AND COMPUTABILITY 761

(M)

0 1 2 : : :

f0 f0.0/ f0.1/ f0.2/
f1 f1.0/ f1.1/ f1.2/
f2 f2.0/ f2.1/ f2.2/
:::

And consider the function d.n/ D fn.n/ C 1. This function is computable; for any
n: (i) run the enumeration to find fn; (ii) run fn to find fn.n/; (iii) add one. Since
each step is recursive, the whole is computable. But d.n/ is not primitive recursive:
d.0/ ¤ f0.0/; d.1/ ¤ f1.1/; and in general, d.n/ ¤ fn.n/; so d is not identical to any
of the primitive recursive functions. So there are computable functions that are not
primitive recursive.

It is natural to think that a related argument would show that not all computable
functions are recursive: recursively enumerate the recursive functions; then diago-
nalize to find a computable function not on the list. But this does not work! It is
an entirely “grammatical” matter to identify the primitive recursive functions — the
function eprfnc.n/ results purely as a matter of form. But there is no parallel method
for the recursive fuctions. This clear already by the halting and definition problems
(for the latter see E14.7) — there is no recursive way to say in general whether a
function is regular, and so to identify functions as recursive. But we may make the
point by another diagonal argument (here applied to Turing machines).

Suppose there is an enumeration of Turing machines to compute recursive func-
tions (of one free variable) and consider an array as follows.

(N)

0 1 2 : : :

…0 …0.0/ …0.1/ …0.2/
…1 …1.0/ …1.1/ …1.2/
…2 …2.0/ …2.1/ …2.2/
:::

Let �.n/ be …n.n/ C 1. From T14.2 …n.n/ computes the recursive f.n/ D
decode.right.n; n; �jŒstop.n; n; j/ D 0�//; so f.n/ C 1 computes �.n/. And
since f.n/ C 1 is recursive, �.n/ is a Turing program of one free variable; so
�.n/ appears in the enumeration of Turing programs. But this is impossible:
�.0/ ¤ …0.0/; �.1/ ¤ …1.1/; and in general �.n/ ¤ …n.n/. Reject the
assumption: there is no enumeration of Turing machines to compute recursive
functions.

CHAPTER 14. LOGIC AND COMPUTABILITY 762

There is an enumeration of Turing machines; but as in the case of a machine that
never halts, not every Turing machine computes a total function. Thus the enumera-
tion of Turing machines does not automatically convert to an enumeration of Turing
machines to compute recursive functions. And we are in fact blocked from recur-
sively enumerating the recursive functions. So we are blocked from the proposed
means of finding a computable function that is not a recursive function. So this at-
tempt to find a counterexample to Church’s thesis fails.

E14.12. (i) Write down the LR expression that corresponds to times. (ii) Assign num-
bers to expressions of LR and produce the relation PRECWFF to complete the
demonstration that there is an enumeration of primitive recursive functions.
(iii) Extend the demonstration that there is an enumeration of primitive recur-
sive functions to an enumeration emurec of �-recursive functions (as from
E14.7).

The nature of an algorithm. There are also reasons for Church’s thesis from
the very nature of an algorithm.8 Perhaps the “received wisdom” with respect to
Church’s thesis is as follows.

The reason why Church’s [Thesis] is called a thesis is that it has not been rigor-
ously proved and, in this sense, it is something like a “working hypothesis.” Its
plausibility can be attested inductively — this time not in the sense of mathe-
matical induction, but “on the basis of particular confirming cases.” The Thesis
is corroborated by the number of intuitively computable functions commonly
used by mathematicians, which can be defined within recursion theory. But
Church’s Thesis is believed by many to be destined to remain a thesis. The
reason lies, again, in the fact that the notion of effectively computable function
is a merely intuitive and somewhat fuzzy one. It is quite difficult to produce
a completely rigorous proof of the equivalence between intuitively computable
and recursive functions, precisely because one of the sides of the equivalence
is not well-defined (Berto, There’s Something About Gödel, pp. 76-77).

There are a couple of themes in this passage. First, that Church’s thesis is typically
accepted on grounds of the sort we have already considered. Fair enough. But sec-
ond that it is not, and perhaps cannot, be proved. The idea seems to be that the recur-
sive functions are a precise mathematically defined class, while the algorithmically

8Material in this section is developed from Smith, An Introduction to Gödel’s Theorems, chapter
45; Smith, “Squeezing Arguments”; along with Kolmogorov and Uspenskii, “On the Definition of an
Algorithm.” See also Black, “Proving Church’s Thesis.”

CHAPTER 14. LOGIC AND COMPUTABILITY 763

computable functions are not. Thus there is no hope of a demonstrable equivalence
between the two.

But we should be careful. Granted: If we start with an inchoate notion of com-
putable function that includes, at once, calculations with pencil and paper, calcula-
tions on the latest and greatest supercomputer, and calculations on Zeno’s machine,
there will be no saying whether the computable functions definitely are, or are not,
identical to the Turing computable functions. But this is not the notion with which
we are working. We have a relatively refined technical account of algorithmic com-
putability. Of course, it is not yet a mathematical definition. But neither are our
chapter 1 accounts of logical validity and soundness; yet we have been able to show
in T9.1 that any argument that is quantificationally valid (in our mathematical sense)
is logically valid. And similarly, the whole translation project of chapter 5 assumes
the possibility of moving between ordinary and mathematical notions. It is at least
possible that an informally defined predicate might pick out a precise object. The
question is whether we can “translate” the notion of an algorithm to formal terms.

So let us turn to the hard work of considering whether there is an argument for
accepting Church’s thesis. A natural first suggestion is that the step-by-step and finite
nature of any algorithm is always within the reach of, or reflected by, some Turing
program or recursive function, so that the algorithmically computable functions are
inevitably recursively computable.9 Already, this may amount to a consideration
or reason in favor of accepting the Thesis. In chapter 45 of his An Introduction to
Gödel’s Theorems, Peter Smith advances a proposal according to which such consid-
erations amount to proof.

Smith’s overall strategy involves “squeezing” algorithmic computability between
a pair of mathematically precise notions. Even if a condition C (say, “being a tall
person”) is vague, it might remain that there is some completely precise sufficient
condition S (being over seven feet tall), such that anything that is S is C , and per-
fectly precise necessary conditionN (being over five feet tall) such that anything that
is C is N . So,

S � C � N

If it should also happen that N implies S , then the loop is closed, so that,

S ” C ” N

And the target condition C is equivalent to (squeezed between) the precise necessary
and sufficient conditions. Of course, in our simple example, N does not imply C :

9This idea is contained already in the foundational papers of Church, “An Unsolvable Problem,”
and Turing, “On Computable Numbers.”

CHAPTER 14. LOGIC AND COMPUTABILITY 764

being over five feet tall does not imply being over seven feet tall.
For Church’s thesis, we already have that Turing computability is sufficient for

algorithmic computability. So what is required is some necessary condition so that,

T � A � N

Turing computability implies algorithmic computability and algorithmic computabil-
ity implies the necessary condition. Church’s thesis follows if, in addition,N implies
Turing computability. As it turns out, we shall be able to specify a conditionN which
(mathematically) implies T . It will be more controversial whether A implies N .

The argument has three stages: The idea is that, (i) there are some necessary
features of an algorithm, such that any algorithm has those features; (ii) any rou-
tine with those features is embodied in a modified Kolmogorov-Uspenskii (MKU)
machine; (iii) every function that is MKU computable is recursive, and so Turing
computable.

Necessary features MKU computability Turing computability- -

The result is that MKU computability works as as the precise condition N in the
squeezing argument: A implies N , and N implies T . So T iff A iff N , and Church’s
thesis is established — or no less plausible than is the conclusion of this argument.

Perhaps the following are necessary conditions on any algorithm, so that any al-
gorithm satisfies the conditions. If, additionally, we hold that any routine which sat-
isfies the constraints is an algorithm, then the conditions are necessary and sufficient
— so we may see them as an extension or sharpening of our initial more sketchy ac-
count. At this stage, though, the important requirement is that any algorithm satisfies
the conditions.10

AC (1) There is some dataspace consisting of a finite array of “cells” which may
stand in some relations R0, R1 : : : Ra and contain some entities (usually
symbols) s0, s1 : : : sb .

(2) At every stage in a computation, there is some finite “active” portion of
the dataspace upon which the algorithm operates.

10Smith seems to grant that some such conditions are necessary, even though some method may
satisfy the conditions yet fail to count as an algorithm. Perhaps this is because he is impressed by the
initial examples of routines implemented by human agents with relatively limited computing power.
This is not a problem for his squeezing argument, since the corresponding recursive function may yet
be computable by some other method which satisfies more narrow constraints — for example, by a
Turing machine.

CHAPTER 14. LOGIC AND COMPUTABILITY 765

(3) The body of the algorithm includes finitely many instructions for modi-
fying the active portion of the dataspace depending on its character, and
for jumping to the next set of instructions.

(4) For the calculation of a function f.Ex/ D y there is some finite initial rep-
resentation of Ex and some way to read off the value of y, after a finite
number of steps.

So this sets up an algorithm abstractly described. It is hard to see how an algorithm
would not involve some space, portions of which would stand in different relations.
At any given stage, the algorithm operates on some portion of the space, where these
operations may depend upon, and modify the arrangement of the active space. The
algorithm itself consists of some instructions for operating on the dataspace, where
these are generically of the sort, “if the active area is of type t , perform action a,
and go to new instructions q.” The calculation of a function f.Ex/ somehow takes Ex as
an input, and gives a way to read off the value of y as an output. And an algorithm
terminates in a finite number of steps.

Observe that the squeezing argument is effective to the extent that we begin with
the notion of an algorithm and show that for any algorithm there is a Turing machine
equivalent to it. It is cast into doubt if we start with the notion of a Turing machine
and force the notion of an algorithm to match. Thus it is important that we are simply
spelling out the idea of an algorithm — of what is required of a rote, rule-based based
procedure.

Also the finite constraints on the dataspace, relations, symbols and area in (1)
and (2) above seem to be consequences of (3) and (4): There is some upper bound
to the space modified by instructions from a finite collection, each member of which
modifies at most a finite area. Then beginning with a finite initial representation
of some Ex, including finitely many cells of the dataspace standing in finitely many
relations, filled with finitely many symbols and then modifying finite portions of the
space finitely many times, all we are going to get are finitely many cells, standing in
finitely many relations, filled with finitely many symbols.

On the face of it, given their extreme simplicity, it is not obvious that Turing
machines compute every algorithmically computable function. But a related device,
the MKU machine (modified from Kolmogorov and Uspenskii, “On the Definition
of an Algorithm”) purports to implement conditions along these lines.

MKU (1) There are some cells c0, c1 : : : ca which may stand in relations R0,
R1 : : : Rb and contain symbols s0, s1 : : : sc . In simple cases, we may
think of such arrangements graphically as follows,

CHAPTER 14. LOGIC AND COMPUTABILITY 766

(O)

a b c

d

?

R1

R2

R2 is a binary relation and R1 tertiary. Each such relation constitutes an
edge.

(2) Among the one-place relations is an origin property such that exactly one
cell has it — as indicated by ? above. Then the active area includes all
cells on paths � n edges from the origin. From (O), cells other than the
origin are all one edge from the origin cell.

(3) Instructions are finitely many quadruples of the sort hqi ; Sa; Sb; qj iwhere
qi and qj are instruction labels; Sa describes an active area; and Sb a
state with which the active area is to be replaced. Associate each cell in
Sa with the least number of edges between it and the origin; let n be the
greatest such integer in Sa; this n remains the same in every quadruple
with label qi , though the value of nmay vary as qi varies. Again, instruc-
tions are a function in the sense that no instruction has hqi ; Sai the same
but hSb; qj i different. We may see Sa and Sb as follows.

(P)

a b c

d

e

f

(Sa)

?

R1

R2

R3

R2

�

a b c

d

e

x

w

(Sb)

?

R1

R3

R2

R2

R2

In this case n D 2. The active area Sa is replaced by the configuration
Sb . The concentric rectangles indicate the “boundary” cells which may
themselves be related to cells not part of the active area; the replacing area
must have a boundary with cells to match boundary cells of the active
area.

(4) There is some finite initial setup, and some means of reading off the final
value of the function (for different relation and symbol sets, these may be
different). We think of the origin cell as the “machine head,” where an

CHAPTER 14. LOGIC AND COMPUTABILITY 767

algorithm always begins with an instruction label qi D 1 and terminates
when qi D 0.

So an MKU machine is a significant generalization of a Turing machine. We allow
arbitrarily many symbols. And the dataspace is no longer a tape with cells in a fixed
linear relation, but a space with cells in arbitrary relations which may themselves be
modified by the program. Instructions respond to, and modify, not just individual
cells, but arbitrarily large areas of the dataspace. Still, it remains that an instruction
qi is of the sort, if Sa perform action A and go to instruction qj . So, the instruction
(P) might be applied to get,

(Q)

a b c

d

e

f

g

h

(A)

?

R1

R2

R3

R2

R3

R3

�

a b c

d

e

x

w

g

h

(B)

?

R1

R3

R2

R2

R2

R3

R3

As indicated by the dotted line, the dataspace (A) has an active area of the sort re-
quired in instruction (P); so the active area is replaced according to the instruction for
the resultant space (B). The example is arbitrary. But that is the point: The machine
allows arbitrary rote modifications of a dataspace.

Observe that instructions with Sa ¤ S 0a might both map onto a given dataspace
in case the number n of edges from the origin in Sa is different from S 0a (say an active
area with a box for n D 1 inside the box in (Q)). But the consistency requirement
is satisfied with constant n: for consistency, it is sufficient to require that so long as
n.qi ; Sa/ is a constant, there is no instruction with hqi ; Sai the same but hSb; qj i
different.

Now every MKU computable function is recursive.

T14.11. Every MKU computable function is a recursive function.

We have been through this sort of thing before. And there are different ways to
proceed. I indicate only some natural first steps. Begin assigning numbers to labels,
symbols, cells and relations in some reasonable way.

a. gŒqi � D 3C 8i c. gŒci � D 7C 8i

b. gŒsi � D 5C 8i d. gŒr ij � D 9C 8.2
i � 3j /

CHAPTER 14. LOGIC AND COMPUTABILITY 768

Then number for a page is hci i

0 �
hsai
1 � : : :�

hsbi
n , and for an edge

hri
j
i

0 �
hca1i

1 �

: : :�
hcai i

i . So a page is a cell with some symbols, and an edge is an i -place relation
applied to i cells. Some data is a sequence of pages with distinct cell numbers, and
a lattice is a sequence of distinct edges. Cells are (immediately) connected on an
edge when both cells are members of it, and connected on a lattice when there is a
sequence of cells from the lattice, beginning with the one, ending with the other such
that each is immediately connected to the next. A space is a lattice with exactly one
origin and every cell connected to all the others. A dataspace is of the sort m

0 �
n
1

where m numbers some data, n a space, and every cell from m appears in n.
After that, with considerable work, MKUMACH.n/ numbers the MKU machines.

(Given the potentially vast array of finite spaces, rather than supplementing the ma-
chine with repeating commands for every missing instruction, it is simplest to in-
clude a single label that loops on the origin, such that the machine defaults to it.)
kumachs.i;m; n/ numbers an instruction as a function of the number for the ma-
chine, initial label, and dataspace. (Where cells are numbered, some Sa matches the
active portion of a dataspace when there is a map on cells that makes Sa match the
active area.) For machine i with input n, mkuspace.i; n; j/ and mkustate.i; n; j/ give
the current number of the dataspace and state. And mkustop.i; n; j/ takes the value
zero when the machine is stopped. Then,

f.n/ D mkudecode.mkuspace.i; n; �jŒmkustop.i; n; j/ D 0�//

It is a chore to work this out (and you have an opportunity to do so in exercises).
But it should be clear that it can be done. Then any MKU computable function is
recursive, and therefore every MKU computable function is Turing computable.

Given this, the squeezing argument is complete: Turing computability implies
algorithmic computability and algorithmic computability implies MKU and so Tur-
ing computability. So the algorithmically computable functions are the same as the
Turing computable functions. So Church’s thesis! This argument is just as strong as
the premise that algorithmic computability implies MKU and so Turing computabil-
ity. For this, we have translated an informal notion into a formal one. Insofar as
translation is not itself a formal procedure, the result is not formal proof of Church’s
thesis. Perhaps it is difficult to imagine an algorithmic method that does not conform
to AC and then MKU. But failure of imagination is not the same as proof. This leaves
space for different objections:

First, one might worry that the account AC of an algorithm is insufficient in some
respect. But AC is offered as a further exposition or sharpening of what it is to be
an algorithm. Given this, our version of Church’s thesis applies to it. An argument

CHAPTER 14. LOGIC AND COMPUTABILITY 769

about whether Church’s thesis applies to a class C of functions is not undercut by
observing that there are classes other than C .

Still, one might worry that the MKU machine does not compute every algorithm
from AC. Against this, there are a couple of replies. First, careful about what the
MKU machine can do. Say we are interested in parallel computing, whether by
persons following instructions or by computing devices. An MKU machine has but a
single origin; this might seem to be a problem. Still, an active area might have many
“shapes” — and things might be set up as follows,

(R) m
m
m
m

m�

�

?

�

�� -

?

6
@@

��

�� @@

@@ ��

��

@@

with “satellite” centers, to achieve the effect of parallel computing. Similarly, with
a bit of thought, one can see how the MKU machine might achieve the effect of
absolute addressing or bounded quantifiers other than ‘all’ and ‘some’ — as ‘most’
or the like. So it is important to recognize the generality already built into the MKU
machine.

Perhaps, though, the objection goes through and some algorithmic method really
is beyond the reach of the MKU machine. So for example some algorithm might
require physical actions other than symbol manipulation. Consider a method for
truth table construction with the instruction, “whack yourself in the head three times
and write a T in the first row of the first column.” An MKU machine does not have a
head, and so cannot perform this action. More seriously, we might consider actions
as applied to, say, a physical abacus — as “move the bead on the second wire to the
leftmost available position.” The MKU machine does not move physical beads on
a wire, so it does not perform addition on an abacus. Still, it should be possible to
number the states of an abacus, and to represent the successive states so as to calculate
any function that can be worked on the physical device. In this case, the claim is not
that the MKU machine effectuates every algorithm, but rather that it models every
algorithm. Supposing this is sustained, the argument for Church’s thesis stands.

So we are not left with a formal proof of Church’s thesis. Rather we have a
(powerful) case from the independent definitions, the failure of counterexamples and
the nature of an algorithm for the result that Church’s thesis is true. Plausibly, there is
no formal proof that you have a head. Still, there is a strong case to establish that you

CHAPTER 14. LOGIC AND COMPUTABILITY 770

do! Similarly our case may seem sufficient to establish Church’s thesis. To the extent
that Church’s thesis is either plausible or established, our limiting results become
full-fledged incomputability results with applications to logic and computing more
generally. In addition, from Church’s thesis, the computability of a function implies
that it is recursive. Having attained Church’s thesis only at the very end, we have not
applied the thesis in this way. But one might move from the observation that some
function is computable, through the thesis, to the result that the function is recursive.
And this is frequently done!

Theorems of chapter 14

T14.1 There is a recursive enumeration of the Turing machines.

T14.2 Every Turing computable function is a recursive function.

T14.3 Every recursive function is Turing computable.

T14.4 There is no Turing machine H.i/ such that H.i/ D 0 if …i.i/ halts and H.i/ D 1 if it
does not.

T14.5 There is no Turing machine H.i; n/ such that H.i; n/ D 0 if …i.n/ halts and
H.i; n/ D 1 if it does not.

T14.6 If Q is !-consistent, then no Turing computable function f.n/ is such that f.n/ D 0
just in case n numbers a theorem of predicate logic.

T14.7 The set of truths of LNT is not recursively enumerable.

T14.8 If T is a recursively axiomatized sound theory whose language includes LNT, then
T is negation incomplete.

T14.9 If T is a recursively axiomatized theory extending Q, then there is a sentence P

such that if T is consistent T ° P , and if T is !-consistent, T ° �P .

T14.10 Every (total) function that can be captured by a recursively axiomatized consistent
theory extending Q is recursive.

T14.11 Every MKU computable function is a recursive function.

And we mention,

CT Church’s Thesis: The total numerical functions that are effectively computable by
some algorithmic method are just the recursive functions.

E14.13. Work out codes for the MKU machine through dataspace. Very hard core:
Assuming functions code.n/ and decode.d/, complete the demonstration that
any MKU computable function f.n/ is recursive.

CHAPTER 14. LOGIC AND COMPUTABILITY 771

E14.14. For each of the following concepts, explain in an essay of about two pages,
so that (college freshman) Hannah could understand. In your essay, you
should (i) identify the objects to which the concept applies, (ii) give and ex-
plain the definition, and give and explicate examples (iii) where the concept
applies, and (iv) where it does not. Your essay should exhibit an understand-
ing of methods from the text.

a. The Turing computable functions, and their relation to the recursive func-
tions.

b. The essential elements from the chapter contributing to a demonstration of
the decision problem, along with the significance of Church’s thesis for this
result.

c. The essential elements from this chapter contributing to a demonstration of
(the semantic version of) the incompleteness of arithmetic.

d. Church’s thesis, along with reasons for thinking it is true, including the pos-
sibility of demonstrating its truth.

Concluding Remarks

772

Looking Forward and Back

We began this text in Part I setting up the elements of classical symbolic logic. Thus
we began with four notions of validity: logical validity, validity in our derivation
systems AD and ND, along with semantic (sentential and) quantificational validity.
After a parenthesis in Part II to think about techniques for reasoning about logic, we
began to put those techniques to work. The main burden of Part III was to show
soundness and adequacy of our classical logic, that � ` P iff � � P . This is the
good news. In Part IV we established some limiting results. These include Gödel’s
first and second theorems, that no consistent, recursively axiomatizable extension
of Q is negation complete, and that no consistent recursively axiomatized theory
extending PA proves its own consistency. Results about derivations are associated
with computations, and the significance of this association extended by means of
Church’s thesis. This much constitutes a solid introduction to classical logic, and
should position you make progress in logic and philosophy, along with related areas
of mathematics and computer science.

Excellent texts which mostly overlap the content of one, but extend it in different
ways are Mendelson, Introduction to Mathematical Logic; Enderton, Introduction
to Mathematical Logic; and Boolos, Burgess and Jeffrey, Computability and Logic;
these put increased demands on the reader (and such demands are one motivation for
our text), but should be accessible to you now; Schonfield, Introduction to Mathe-
matical Logic is excellent yet still more difficult. Smith, An Introduction to Gödel’s
Theorems extends the material of Part IV; Cooper, Computability Theory develops it
especially from the perspective of chapter 14. Much of what we have done presumes
some set theory as Enderton, Elements of Set Theory, or model theory as Manzano,
Model Theory and, more advanced, Hodges, A Shorter Model Theory.

In places, we have touched on logics alternative to classical logic, including
multi-valued logic, modal logic, and logics with alternative accounts of the condi-
tional. A good place to start is Priest, Non-Classical Logics, which is profitably read
with Roy, “Natural Derivations for Priest” which introduces derivations in a style

773

CONCLUSION 774

much like our own. Our logic is first-order insofar as quantifiers bind just variables
for objects. Second-order logic lets quantifiers bind variables for predicates as well
(so 8x8yŒx D y ! 8F.F x $ Fy/� expresses the indiscernibility of identicals).
Second-order logic has important applications in mathematics, and raises important
issues in metalogic. For this, see Shapiro, Foundations Without Foundationalism,
and Manzano, Extensions of First Order Logic.

Philosophy of logic and mathematics is a subject matter of its own. Shapiro,
“Philosophy of Mathematics and Its Logic” (along with the rest of the articles in the
Oxford Handbook, and Shapiro, Thinking About Mathematics are a good place to
start. Benacerraf and Putnam, Philosophy of Mathematics and Marcus and McEvoy,
Philosophy of Mathematics are collections of classic articles.

Smith’s online, “Teach Yourself Logic” is an excellent comprehensive guide to
further resources.

Have fun!

Answers to Selected Exercises

775

ANSWERS FOR CHAPTER 9 776

Chapter Nine

E9.2. Set up the above induction for T9.2, and complete the unfinished cases to
show that if if �

ÀD
P , then �

ǸD
P . For cases completed in the text, you

may simply refer to the text, as the text refers cases to homework.

Basis: Q1 in A is a premise or an instance of A1, A2, A3, A4, A5, A6, A7 or
A8.

(prem) From text.

(A1) From text.

(A2) From text.

(A3) If Q1 is an instance of A3, then it is of the form, .�C ! �B/ !

..�C ! B/! C/, and we continue N as follows,

0.a Qa P
0.b Qb P
:::

0.j Qj P
1.1 �C ! �B A (g,!I)

1.2 �C ! B A (g,!I)

1.3 �C A (c, �E)

1.4 B 1.2,1.3!E
1.5 �B 1.1,1.3!E
1.6 ? 1.4,1.5 ?I

1.7 C 1.3-1.6 �E

1.8 .�C ! B/! C 1.2-1.7!I

1 .�C ! �B/! ..�C ! B/! C/ 1.1-1.8!I

So Q1 appears, under the scope of the premises alone, on the line num-
bered ‘1’ of N .

(A4) From text.

(A6) If Q1 is an instance of A6, then it is of the form x D x for some variable
x, and we continue N as follows,

0.a Qa P
0.b Qb P
:::

0.j Qj P
1 x D x =I

Exercise 9.2

ANSWERS FOR CHAPTER 9 777

So Q1 appears, under the scope of the premises alone, on the line num-
bered ‘1’ of N .

(A7) From text.

(A8) If Q1 is an instance of A8, then it is of the form .xi D y/! .Rnx1 : : :xi : : :xn !

Rnx1 : : :y : : :xn/ for some variables x1 : : :xn and y, and relation sym-
bol Rn; and we continue N as follows,

0.a Qa P
0.b Qb P
:::

0.j Qj P
1.1 xi D y A (g,!I)

1.2 Rnx1 : : :xi : : :xn A (g,!I)

1.3 Rnx1 : : :y : : :xn 1.2,1.1 =E

1.4 Rnx1 : : :xi : : :xn ! Rnx1 : : :y : : :xn 1.2-1.3!I

1 .xi D y/! .Rnx1 : : :xi : : :xn ! Rnx1 : : :y : : :xn/ 1.1-1.4!I

So Q1 appears, under the scope of the premises alone, on the line num-
bered ‘1’ of N .

Assp: For any i , 1 � i < k, if Qi appears on line i of A, then Qi appears,
under the scope of the premises alone, on the line numbered ‘i ’ of N .

Show: If Qk appears on line k of A, then Qk appears, under the scope of the
premises alone, on the line numbered ‘k’ of N .

Qk in A is a premise, an axiom, or arises from previous lines by MP or
Gen. If Qk is a premise or an axiom then, by reasoning as in the basis
(with line numbers adjusted to k:n) if Qk appears on line k of A, then
Qk appears, under the scope of the premises alone, on the line numbered
‘k’ of A. So suppose Qk arises by MP or Gen.

(MP) From text.

(Gen) From text.

In any case then, Qk appears under the scope of the premises alone, on
the line numbered ‘k’ of N .

Indct: For any line j of A, Qj appears under the scope of the premises alone,
on the line numbered ‘j ’ of N .

E9.8. Set up the above demonstration for T9.7 and complete the unfinished case to
provide a complete demonstration that for any formula A, and terms r and s,

Exercise 9.8

ANSWERS FOR CHAPTER 9 778

if s is free for the replaced instance of r in A, then
ÀD

.r D s/ ! .A !

Ar==s/.

Consider an arbitrary r, s and A, and suppose s is free for the replaced instance
of r in Ar==s.

Basis: If A has no operators and some term in it is replaced, then [from text]

ÀD
.r D s/! .A! Ar==s/.

Assp: For any i , 0 � i < k, if A has i operator symbols, then
ÀD
.r D s/!

.A! Ar==s/.

Show: If A has k operator symbols, then
ÀD
.r D s/! .A! Ar==s/.

If A has k operator symbols, then A is of the form, �P , P ! Q or
8xP for variable x and formulas P and Q with < k operator symbols.

(�) Suppose A is �P . Then [from text]
ÀD
.r D s/! .A! Ar==s/.

(!) Suppose A is P ! Q. Then Ar==s is P r==s ! Q or P ! Qr==s. (i) In
the former case [from text],

ÀD
.r D s/ ! .A ! Ar==s/. (ii) In the

latter case, since s is free for the replaced instance of r in A, it is free
for that instance of r in Q; so by assumption,

ÀD
.r D s/ ! .Q !

Qr==s/; so we may reason as follows,

1. .r D s/! .Q! Qr==s/ prem
2. r D s assp (g, DT)

3. P ! Q assp (g, DT)

4. P assp (g, DT)

5. Q 3,4 MP
6. Q! Qr==s 1,2 MP
7. Qr==s 6,5 MP

8. P ! Qr==s 4-7 DT

9. .P ! Q/! .P ! Qr==s/ 3-8 DT

10. .r D s/! Œ.P ! Q/! .P ! Qr==s/� 2-9 DT

So
ÀD

.r D s/ ! Œ.P ! Q/ ! .P ! Qr==s/�; which is to say,

ÀD
.r D s/ ! .A ! Ar==s/. So in either case,

ÀD
.r D s/ !

.A! Ar==s/.

(8) Suppose A is 8xP . Then [from text]
ÀD
.r D s/! .A! Ar==s/.

So for any A with k operator symbols,
ÀD
.r D s/! .A! Ar==s/.

Indct: For any A,
ÀD
.r D s/! .A! Ar==s/.

Exercise 9.8

ANSWERS FOR CHAPTER 9 779

E9.10. Prove T9.9, to show that for any formulas A, B and C , if
ÀD

B $ C , then

ÀD
A$ AB==C .

Basis: If A is atomic, then the only formula to be replaced is A itself, and B

is A; so AB==C is C . But then A $ AB==C is the same as B $ C . So
if

ÀD
B $ C , then

ÀD
A$ AB==C .

Assp: For any i , 0 � i < k, if A has i operator symbols, then if
ÀD

B $ C ,
then

ÀD
A$ AB==C .

Show: If A has k operator symbols, then if
ÀD

B $ C , then
ÀD

A $

AB==C .

If A has k operator symbols, then it is of the form �P , P ! Q, or
8xP , for variable x and formulas P and Q with < k operator symbols.
If B is all of A, then as in the basis, if

ÀD
B $ C , then

ÀD
A $

AB==C . So suppose B is a proper subformula of A.

(�) Suppose A is �P and B is a proper subformula of A. Then AB==C is
�ŒP B==C �. Suppose

ÀD
B $ C . By assumption,

ÀD
P $ P B==C ;

so by (abv),
ÀD

.P ! P B==C / ^ .P
B==C ! P /; so by T3.20 with

MP,
ÀD

P ! P B==C ; and by T3.13 with MP,
ÀD
�P B==C ! �P ;

similarly, by T3.19 with MP,
ÀD

P B==C ! P ; so by T3.13 with
MP,

ÀD
�P ! �P B==C ; so by T9.4 with two applications of MP,

ÀD
.�P ! �P B==C / ^ .�P B==C ! �P /; so by abv,

ÀD
�P $

�P B==C ; which is just to say,
ÀD

A$ AB==C .

(!) Suppose A is P ! Q and B is a proper subformula of A. Then AB==C
is P B==C ! Q or P ! QB==C . Suppose

ÀD
B $ C .

(i) Say AB==C is P B==C ! Q. By assumption,
ÀD

P $ P B==C ;
so by (abv),

ÀD
.P ! P B==C / ^ .P

B==C ! P /; by T3.19 with
MP,

ÀD
P B==C ! P ; but by T3.5,

ÀD
.P B==C ! P / ! Œ.P !

Q/ ! .P B==C ! Q/�; so by MP,
ÀD

.P ! Q/ ! .P B==C !

Q/. Similarly, by T3.20 with MP,
ÀD

P ! P B==C ; and by T3.5,

ÀD
.P ! P B==C / ! Œ.P B==C ! Q/ ! .P ! Q/�; so by MP,

ÀD
.P B==C ! Q/ ! .P ! Q/. So by T9.4 with two applications of

MP,
ÀD
Œ.P ! Q/! .P B==C ! Q/�^Œ.P B==C ! Q/! .P ! Q/�;

so by abv,
ǸD

.P ! Q/ $.P B==C ! Q/; which is just to say,

ÀD
A$ AB==C .

(ii) Say AB==C is P ! QB==C . By assumption,
ÀD

Q $ QB==C ; so
by (abv),

ÀD
.Q ! QB==C / ^ .Q

B==C ! Q/; so by T3.20 with MP,

ÀD
Q ! QB==C ; but by T3.4,

ÀD
.Q ! QB==C / ! Œ.P ! Q/ !

Exercise 9.10

ANSWERS FOR CHAPTER 9 780

.P ! QB==C /�; so by MP,
ÀD
.P ! Q/! .P ! QB==C /. Similarly,

by T3.19 with MP,
ÀD

QB==C ! Q; and by T3.4,
ÀD

.QB==C !

Q/! Œ.P ! QB==C /! .P ! Q/�; so by MP,
ÀD
.P ! QB==C /!

.P ! Q/. So by T9.4 with two applications of MP,
ÀD
Œ.P ! Q/!

.P ! QB==C /� ^ Œ.P ! QB==C /! .P ! Q/�; so by abv,
ÀD
.P !

Q/$.P ! QB==C /; and this is just to say,
ÀD

A$ AB==C .

(8) Suppose A is 8xP and B is a proper subformula of A. Then AB==C
is 8xŒP B==C �. Suppose

ÀD
B $ C . Then by assumption

ÀD
P $

P B==C ; so by abv,
ǸD

.P ! P B==C / ^ .P
B==C ! P /; so by T3.20

with MP,
ǸD

P ! P B==C . But since x is always free for itself in P , by
A4,

ÀD
8xP ! P ; so by T3.2,

ÀD
8xP ! P B==C ; and since x is

not free in 8xP , by Gen,
ÀD
8xP ! 8xP B==C . Similarly, by T3.19

with MP,
ÀD

P B==C ! P ; but, since x is free for itself in P B==C ,
by A4,

ÀD
8xP B==C ! P B==C ; so by T3.2,

ÀD
8xP B==C ! P ;

and since x is not free in 8xP B==C , by Gen,
ÀD
8xP B==C ! 8xP .

So by T9.4 with two applications of MP,
ÀD

Œ8xP ! 8xP B==C � ^

Œ8xP B==C ! 8xP �; so by abv,
ÀD
8xP $ 8xP B==C ; which is to

say
ÀD

A$ AB==C .

If A has k operator symbols, then if
ÀD

B $ C , then
ÀD

A $

AB==C .

Indct: For any A, if
ÀD

B $ C , then
ÀD

A$ AB==C .

E9.12. Set up the above induction for T9.11 and complete the unfinished cases (in-
cluding the case for 9E) to show that if �

ǸD
P , then �

ÀD
P . For cases

completed in the text, you may simply refer to the text, as the text refers cases
to homework.

Suppose �
ǸD

P ; then there is an ND derivation N of P from premises in
� . We show that for any i , there is a good AD derivation Ai that matches N
through line i .

Basis: The first line of N is a premise or an assumption. [From text] A1
matches N and is good.

Assp: For any i , 0 � i < k, there is a good derivation Ai that matches N
through line i .

Show: There is a good derivation Ak that matches N through line k.

Exercise 9.12

ANSWERS FOR CHAPTER 9 781

Either Qk is a premise or assumption, or arises from previous lines by
R, ^E, ^I,!E,!I, �E, �I, _E, _I,$E,$I, 8E, 8I, 9E, 9I, =E or
=I.

(p/a) From text.

(R) From text.

(^E) From text.

(^I) From text.

(!E) From text.

(!I) From text.

(�E) From text.

(�I) If Qk arises by �I, then N is something like this,

i B

j C ^�C

k �B i -j �I

where i; j < k, the subderivation is accessible at line k, and Qk D �B.
By assumption Ak�1 matches N through line k � 1 and is good. So B

and C ^�C appear at the same scope on the lines numbered ‘i ’ and ‘j ’
of Ak�1; since they appear at the same scope, the parallel subderivation
is accessible in Ak�1; since Ak�1 is good, no application of Gen under
the scope of B is to a variable free in B. So let Ak continue as follows,

i B

j C ^�C

k:1 B ! .C ^�C/ i -j DT
k:2 .C ^�C/! C T3.20
k:3 .C ^�C/! �C T3.19
k:4 B ! C k:1,k:2 T3.2
k:5 B ! �C k:1,k:3 T3.2
k:6 ��B ! B T3.10
k:7 ��B ! C k:6,k:4 T3.2
k:8 ��B ! �C k:6,k:5 T3.2
k:9 .��B ! �C/! ..��B ! C/! �B/ A3
k:10 .��B ! C/! �B k:9,k:8 MP
k �B k:10,k:7 MP

Exercise 9.12

ANSWERS FOR CHAPTER 9 782

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. And since there is no new application of
Gen, Ak is good.

(_E) From text.
(_I) If Qk arises by _I, then N is something like this,

i B

k B _ C i _I
or

i B

k C _B i _I

where i < k and B is accessible at line k. In the first case, Qk D B_C .
By assumption Ak�1 matches N through line k � 1 and is good. So
B appears at the same scope on the line numbered ‘i ’ of Ak�1 and is
accessible in Ak�1. So let Ak continue as follows,

i B

k:1 B ! .B _ C/ T3.17
k B _ C k:1,i MP

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. And since there is no new application
of Gen, Ak is good. And similarly in the other case, by application of
T3.18.

($E) If Qk arises by$E, then N is something like this,

i B $ C

j B

k C i ,j $E

or

i B $ C

j C

k B i ,j $E

where i; j < k and B $ C and B or C are accessible at line k. In the
first case, Qk D C . By assumption Ak�1 matches N through line k� 1
and is good. So B $ C and B appear at the same scope on the lines
numbered ‘i ’ and ‘j ’ of Ak�1 and are accessible in Ak�1. So let Ak
continue as follows,

i B $ C

j B

k:1 .B ! C/ ^ .C ! B/ i abv
k:2 Œ.B ! C/ ^ .C ! B/�! .B ! C/ T3.20
k:3 B ! C k:2,k:1 MP
k C k:3,j MP

Exercise 9.12

ANSWERS FOR CHAPTER 9 783

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. And since there is no new application
of Gen, Ak is good. And similarly in the other case, by application of
T3.19.

($I) If Qk arises by$I, then N is something like this,

g B

h C

i C

j B

k B $ C g-h,i -j $I

where g; h; i; j < k, the two subderivations are accessible at line k
and Qk D B $ C . By assumption Ak�1 matches N through line
k � 1 and is good. So the formulas at lines g; h; i; j appear at the same
scope on corresponding lines in Ak�1; since they appear at the same
scope, corresponding subderivations are accessible inAk�1; sinceAk�1
is good, no application of Gen under the scope of B is to a variable free
in B and no application of Gen under the scope of C is to a variable free
in C . So let Ak continue as follows,

g B

h C

i C

j B

k:1 B ! C g-h DT
k:2 C ! B i -j DT
k:3 .B ! C/! Œ.C ! B/! ..B ! C/ ^ .C ! B//� T9.4
k:4 .C ! B/! ..B ! C/ ^ .C ! B// k:3,k:1 MP
k:5 .B ! C/ ^ .C ! B/ k:4,k:2 MP

k B $ C k:5 abv

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. And since there is no new application of
Gen, Ak is good.

(8E) If Qk arises by 8E, then N looks something like this,

i 8xB

k Bx
t i 8E

Exercise 9.12

ANSWERS FOR CHAPTER 9 784

where i < k, 8xB is accessible at line k, term t is free for variable x in
B, and Qk D Bx

t . By assumption Ak�1 matches N through line k � 1
and is good. So 8xB appears at the same scope on the line numbered
‘i ’ of Ak�1 and is accessible in Ak�1. So let Ak continue as follows,

i 8xB

k:1 8xB ! Bx
t A4

k Bx
t k:1,i MP

Since t is free for x in B, k:1 is an instance of A4. So Qk appears at the
same scope on the line numbered ‘k’ of Ak; so Ak matches N through
line k. And since there is no new application of Gen, Ak is good.

(8I) From text.

(9E) If Qk arises by 9E, then N looks something like this,

h 9xB

i Bx
v

j C

k C h,i -j 9E

where h; i; j < k, 9xB and the subderivation are accessible at line k,
and C is Qk; further, the ND restrictions on 9E are met: (i) v is free
for x in B, (ii) v is not free in any undischarged auxiliary assumption,
and (iii) v is not free in 9xB or in C . By assumption Ak�1 matches
N through line k � 1 and is good. So the formulas at lines h, i and
j appear at the same scope on corresponding lines in Ak�1; since they
appear at the same scope, 9xB and the corresponding subderivation are
accessible in Ak�1. Since Ak�1 is good, no application of Gen under
the scope of Bx

v is to a variable free in Bx
v . So let Ak continue as

follows,

Exercise 9.12

ANSWERS FOR CHAPTER 9 785

h 9xB

i Bx
v

j C

k:1 Bx
v ! C i -j DT

k:2 9vBx
v ! C k:1 T3.31

k:3 8v�Bx
v ! 8x�B T3.27

k:4 .8v�Bx
v ! 8x�B/! .�8x�B ! �8v�Bx

v / T3.13
k:5 �8x�B ! �8v�Bx

v k:4,k:3 MP
k:6 9xB ! 9vBx

v k:5 abv
k:7 9vBx

v h,k:6 MP
k C k:2,k:7 MP

Since from constraint (iii), v is not free in C , k:2 meets the restriction
on T3.31. If v D x we can go directly from h and k:2 to k. So sup-
pose v ¤ x. To see that k:3 is an instance of T3.27, consider first,
8v�Bx

v ! 8xŒ�Bx
v �

v
x ; this is an instance of T3.27 so long as x is

not free in 8v�Bx
v but free for v in �Bx

v . First, since �Bx
v has all

its free instances of x replaced by v , x is not free in 8v�Bx
v . Second,

since v ¤ x, with the constraint (iii), that v is not free in 9xB, v is not
free in B, and so �B; but by (i), v is free for x in B and so �B; so v

appears free in �Bx
v just where x is free in �B; so x is free for every

free instance of v in �Bx
v . So 8v�Bx

v ! 8xŒ�Bx
v �

v
x is an instance

of T3.27. But since v is not free in �B, and free for x in �B, by T8.2,
Œ�Bx

v �
v
x D �B. So k:3 is a version of T3.27.

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. There is an application of Gen in T3.31
at k:2. But Ak�1 is good and since Ak matches N and, by (ii), v is
free in no undischarged auxiliary assumption of N , v is not free in any
undischarged auxiliary assumption of Ak; so Ak is good.

(9I) If Qk arises by 9I, then N looks something like this,

i Bx
t

k 9xB i 9I

where i < k, Bx
t is accessible at line k, term t is free for variable x in

B, and Qk D 9xB. By assumptionAk�1 matchesN through line k�1
and is good. So Bx

t appears at the same scope on the line numbered ‘i ’
of Ak�1 and is accessible in Ak�1. So let Ak continue as follows,

Exercise 9.12

ANSWERS FOR CHAPTER 9 786

i Bx
t

k:1 Bx
t ! 9xB T3.29

k 9xB k:1,i MP

Since t is free for x in B, k:1 is an instance of T3.29. So Qk appears
at the same scope on the line numbered ‘k’ of Ak; so Ak matches N
through line k. And since there is no new application of Gen, Ak is
good.

(=E) If Qk arises by =E, then N is something like this,

i B

j t D s

k Bt=s i ,j =E

or

i B

j s D t

k Bt=s i ,j =E

where i; j < k, s is free for the replaced instances of t in B, B and the
equality are accessible at line k, and Qk D Bt=s. By assumption Ak�1
matches N through line k � 1 and is good. So in the first case, B and
t D s appear at the same scope on the lines numbered ‘i ’ and ‘j ’ of
Ak�1 and are accessible in Ak�1. So augment Ak as follows,

0:k .t D s/! .B ! Bt=s/ T9.8

i B

j t D s

k:1 B ! Bt=s 0:k,j MP
k Bt=s k:1,i MP

Since s is free for the replaced instances of t in B, 0:k is an instance
of T9.8. So Qk appears at the same scope on the line numbered ‘k’ of
Ak; so Ak matches N through line k. There may be applications of
Gen in the derivation of T9.8; but that derivation is under the scope of
no undischarged assumption. And under the scope of any undischarged
assumptions, there is no new application of Gen; so Ak is good. And
similarly in the other case, with an initial application of T3.33 and MP.

(=I) If Qk arises by =I, then N looks something like this,

k t D t =I

where Qk is t D t. By assumption Ak�1 matches N through line k� 1
and is good. So let Ak continue as follows,

Exercise 9.12

ANSWERS FOR CHAPTER 9 787

k t D t T3.32

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. And since there is no new application of
Gen, Ak is good.

In any case, Ak matches N through line k and is good.

Indct: Derivation A matches N and is good.

E9.15. Set up the above induction and complete the unfinished cases to show that
if �

ǸDC
P , then �

ÀD
P . For cases completed in the text, you may simply

refer to the text, as the text refers cases to homework.

Suppose �
ǸDC

P ; then there is an ND+ derivation N of P from premises in
� . We show that for any i , there is a good AD derivation Ai that matches N
through line i .

Basis: The first line of N is a premise or an assumption. Let A1 be the same.
Then A1 matches N ; and since there is no application of Gen, A1 is
good.

Assp: For any i , 0 � i < k, there is a good derivation Ai that matches N
through line i .

Show: There is a good derivation of Ak that matches N through line k.
Either Qk is a premise or assumption, arises by a rule of ND, or by a
the ND+ derivation rules, MT, HS, DS, NB or a replacement rule. If Qk

arises by any of the rules other than HS, DS or NB, then by reasoning
from the text, there is a good derivation Ak that matches N through line
k.

(HS) If Qk arises from previous lines by HS then N is something like this,

i B ! C

j C ! D

k B ! D i ,j HS

where i; j < k, B ! C and C ! D are accessible at line k, and
Qk D B ! D . By assumption Ak�1 matches N through line k � 1
and is good. So B ! D and C ! D appear at the same scope on the
lines numbered ‘i ’ and ‘j ’ of Ak�1 and are accessible in Ak�1. So let
Ak continue as follows,

Exercise 9.15

ANSWERS FOR CHAPTER 9 788

i B ! C

j C ! D

k B ! D i ,j T3.2

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. And since there is no new application of
Gen, Ak is good.

(DS) If Qk arises by DS, then N is something like this,

i B _ C

j �C

k B i ,j DS

or

i B _ C

j �B

k C i ,j DS

where i; j < k, and the formulas at lines i and j are accessible at line
k. In the first case, Qk D B. By assumption Ak�1 matches N through
line k � 1 and is good. So B _ C and �C appear at the same scope on
the lines numbered ‘i ’ and ‘j ’ of Ak�1 and are accessible in Ak�1. So
let Ak continue as follows,

i B _ C

j �C

k:1 �B ! C i abv
k:2 .�B ! C/! .�C ! B/ T3.14
k:3 �C ! B k:2,k:1 MP
k B k:3,j MP

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. And since there is no new application of
Gen, Ak is good. And similarly in the other case, by application of MP
immediately after k:1.

(NB) If Qk arises by NB, then N is something like this,

i B $ C

j �B

k �C i ,j NB

or

i B $ C

j �C

k �B i ,j NB

where i; j < k, and the formulas at lines i and j are accessible at line k.
In the first case, Qk D �C . By assumption Ak�1 matches N through
line k � 1 and is good. So B $ C and �B appear at the same scope

Exercise 9.15

ANSWERS FOR CHAPTER 10 789

on the lines numbered ‘i ’ and ‘j ’ of Ak�1 and are accessible in Ak�1.
So let Ak continue as follows,

i B $ C

j �B

k:1 .B ! C/ ^ .C ! B/ i abv
k:2 Œ.B ! C/ ^ .C ! B/�! .C ! B/ T3.19
k:3 C ! B k:2,k:1 MP
k:4 .C ! B/! .�B ! �C/ T3.13
k:5 �B ! �C k:4,k:3 MP
k �C k:5,j MP

So Qk appears at the same scope on the line numbered ‘k’ of Ak; so
Ak matches N through line k. And since there is no new application of
Gen, Ak is good. And similarly in the other case, with application of
T3.20 in place of T3.19.

In any case, Ak matches N through line k and is good.

Indct: Derivation A matches N and is good.

Chapter Ten

E10.1. Complete the case for (!) in to complete the demonstration of T10.2. You
should set up the complete demonstration, but for cases completed in the text,
you may simply refer to the text, as the text refers cases to homework.

For arbitrary formula Q, term r and interpretation I, suppose r is free for x in
Q. By induction on the number of operator symbols in Q,

Basis: Suppose IdŒr� D o. Then [from the text], IdŒQx
r� D S iff Id.xjo/ŒQ� D S.

Assp: For any i , 0 � i < k, if Q has i operator symbols, r is free for x in Q

and IdŒr� D o, then IdŒQx
r� D S iff Id.xjo/ŒQ� D S.

Show: If Q has k operator symbols, r is free for x in Q and IdŒr� D o, then
IdŒQx

r� D S iff Id.xjo/ŒQ� D S.
Suppose IdŒr� D o. If Q has k operator symbols, then Q is of the form
�B, B ! C , or 8vB for variable v and formulas B and C with < k
operator symbols.

(�) Suppose Q is �B. Then [from the text], IdŒQx
r� D S iff Id.xjo/ŒQ� D S.

(!) Suppose Q is B ! C . Then Qx
r D ŒB ! C �xr D ŒBx

r ! Cx
r �. Since

r is free for x in Q, r is free for x in B and C ; so by assumption,

Exercise 10.1

ANSWERS FOR CHAPTER 10 790

IdŒBx
r � D S iff Id.xjo/ŒB� D S and IdŒCx

r � D S iff Id.xjo/ŒC � D S.
But by SF(!), IdŒBx

r ! Cx
r � D S iff IdŒBx

r � ¤ S or IdŒCx
r � D S;

by assumption, iff Id.xjo/ŒB� ¤ S or Id.xjo/ŒC � D S; by SF(!), iff
Id.xjo/ŒB ! C � D S. So IdŒQx

r� D S iff Id.xjo/ŒQ� D S.

(8) Suppose Q is 8vB. From the text, by the assumption, for any m 2 U,
Id.vjm/ŒBx

r � D S iff Id.vjm;xjo/ŒB� D S. In addition, if Id.xjo/ŒQ� D S
then IdŒQx

r� D S. Now suppose IdŒQx
r� D S but Id.xjo/ŒQ� ¤ S; then

IdŒ8vBx
r � D S but Id.xjo/Œ8vB� ¤ S. From the latter, by SF(8), there

is some m 2 U such that Id.vjm;xjo/ŒB� ¤ S; so by the result from the
assumption, Id.vjm/ŒBx

r � ¤ S; so by SF(8), IdŒ8vBx
r � ¤ S; this is

impossible. So IdŒQx
r� D S iff Id.xjo/ŒQ� D S.

If Q has k operator symbols, if r is free for x in Q and IdŒr� D o, then
IdŒQx

r� D S iff Id.xjo/ŒQ� D S.

Indct: For any Q, if r is free for x in Q and IdŒr� D o, then IdŒQx
r� D S iff

Id.xjo/ŒQ� D S.

E10.2. Complete the case for (MP) to round out the demonstration that AD is sound.
You should set up the complete demonstration, but for cases completed in the
text, you may simply refer to the text, as the text refers cases to homework.

Suppose �
ÀD

P . Then there is an AD derivation A D hQ1 : : :Qni of P from
premises in � , with Qn D P . By induction on the line numbers in A, for any
i , � � Qi . The case when i D n is the desired result.

Basis: The first line of A is a premise or an axiom. Then [from the text], � �
Q1.

Assp: For any i , 1 � i < k, � � Qi .

Show: � � Qk .

Qk is either a premise, an axiom, or arises from previous lines by MP
or Gen. If Qk is a premise or an axiom then, as in the basis, � � Qk .
So suppose Qk arises by MP or Gen.

(MP) If Qk arises by MP, then A is something like this,

i B ! C

j B

:::

k C i ,j MP

Exercise 10.2

ANSWERS FOR CHAPTER 10 791

where i; j < k and Qk D C . Suppose � ² Qk; then � ² C ; so by
QV, there is some I such that IŒ�� D T but IŒC � ¤ T; from the latter,
by TI, there is some d such that IdŒC � ¤ S. But IŒ�� D T and by
assumption, � � B ! C and � � B; so by QV, IŒB ! C � D T and
IŒB� D T; so by TI, IdŒB ! C � D S and IdŒB� D S; from the first
of these, by SF(!), IdŒB� ¤ S or IdŒC � D S; so IdŒC � D S. This is
impossible; reject the assumption: � � Qk .

(Gen) If Qk arises by Gen, then [from the text], � � Qk .

� � Qk .

Indct: For any n, � � Qn.

E10.4. Provide an argument to show T10.5.

If there is an interpretation M such that MŒ� [f�Ag� D T, then � ° A.

Suppose there is an interpretation M such that MŒ� [f�Ag� D T but � ` A.
From the former, MŒ�� D T and MŒ�A� D T. From the latter, by soundness,
� � A; but MŒ�� D T; so by QV, MŒA� D T; so by TI, for any d, MdŒA� D

S and since MŒ�A� D T, MdŒ�A� D S; so by SF(�), MdŒA� ¤ S. This
is impossible; reject the assumption: if there is an interpretation M such that
MŒ� [f�Ag� D T, then � ° A.

E10.10. Complete the second half of the conditional case to complete the proof of
T10.9s . You should set up the entire induction, but may refer to the text for
parts completed there, as the text refers to homework.

Suppose†0 is consistent. Then by T10.8s , †00 is maximal and consistent. Now
by induction on the number of operators in B,

Basis: If B has no operators, then it is an atomic of the sort S . But by the
construction of M0, M0ŒS � D T iff †00 ` S ; so M0ŒB� D T iff †00 ` B.

Assp: For any i , 0 � i < k, if B has i operator symbols, then M0ŒB� D T iff
†00 ` B.

Show: If B has k operator symbols, then M0ŒB� D T iff †00 ` B.
If B has k operator symbols, then it is of the form �P or P ! Q

where P and Q have < k operator symbols.
(�/ Suppose B is �P . [From the text], M0ŒB� D T iff †00 ` B.
(!) Suppose B is P ! Q. (i) Suppose M0ŒB� D T; then [from the text],

†00 ` B. (ii) Suppose †00 ` B but M0ŒB� ¤ T; then †00 ` P ! Q but

Exercise 10.10

ANSWERS FOR CHAPTER 10 792

M0ŒP ! Q� ¤ T; from the latter, by ST(!), M0ŒP � D T and M0ŒQ� ¤
T; so by assumption, †00 ` P and †00 ° Q; from the second of these,
by maximality, †00 ` �Q. But since †00 ` P and †00 ` P ! Q,
by MP, †00 ` Q; so by consistency, †00 ° �Q. This is impossible;
reject the assumption: If †00 ` B, then M0ŒB� D T. So M0ŒB� D T iff
†00 ` B.

If B has k operator symbols, then M0ŒB� D T iff †00 ` B.

Indct: For any B, M0ŒB� D T iff †00 ` B.

E10.13. Finish the cases for A2, A3 and MP to complete the proof of T10.12. You
should set up the complete demonstration, but may refer to the text for cases
completed there, as the text refers cases to homework.

Basis: B1 is either a member of †0 or an axiom.

(prem) If B1 is a member of †0, then [from text], hB1
a
xi is a derivation from

†0 ax .

(eq) If B1 is an equality axiom, A6, A7 or A8, then [from text], hB1
a
xi is a

derivation from †0 ax .

(A1) If B1 is an instance of A1, then [from text], hB1
a
xi is a derivation from

†0 ax .

(A2) If B1 is an instance of A2, then it is of the form, ŒO ! .P ! Q/� !

Œ.O ! P / ! .O ! Q/�; so B1
a
x is ŒOa

x ! .P a
x ! Qa

x/� !

Œ.Oa
x ! P a

x / ! .Oa
x ! Qa

x/�; but this is an instance of A2; so if B1

is an instance of A2, then B1
a
x is an instance of A2, and hB1

a
xi is a

derivation from †0 ax .

(A3) If B1 is an instance of A3, then it is of the form, .�Q ! �P / !

Œ.�Q! P /! Q�; so B1
a
x is .�Qa

x ! �P a
x /! Œ.�Qa

x ! P a
x /!

Qa
x �; but this is an instance of A3; so if B1 is an instance of A3, then

B1
a
x is an instance of A3, and hB1

a
xi is a derivation from †0 ax .

(A4) If B1 is an instance of A4, then [from text], hB1
a
xi is a derivation from

†0 ax .

Assp: For any i , 1 � i < k, hB1
a
x : : :Bi

a
xi is a derivation from †0 ax .

Show: hB1
a
x : : :Bk

a
xi is a derivation from †0 ax .

Bk is a member of †0, an axiom, or arises from previous lines by MP
or Gen. If Bk is a member of †0 or an axiom then, by reasoning as in
the basis, hB1 : : :Bki is a derivation from †0 ax . So two cases remain.

Exercise 10.13

ANSWERS FOR CHAPTER 10 793

(MP) If Bk arises by MP, then there are some lines in D,

i P ! Q

j P

:::

k Q i ,j MP

where i; j < k and Bk D Q. By assumption .P ! Q/ax and P a
x

are members of the derivation hB1
a
x : : :Bk�1

a
xi from †0 ax ; but .P !

Q/ax is P a
x ! Qa

x ; so by MP, Qa
x follows in this new derivation. So

hB1
a
x : : :Bk

a
xi is a derivation from †0 ax .

(Gen) If Bk arises by Gen, then [from text], hB1
a
x : : :Bk

a
xi is a derivation

from †0 ax .

So hB1
a
x : : :Bk

a
xi is a derivation from †0 ax .

Indct: For any n, hB1
a
x : : :Bn

a
xi is a derivation from †0 ax .

E10.21. Complete the proof of T10.14. You should set up the complete induction,
but may refer to the text, as the text refers to homework.

The argument is by induction on the number of function symbols in t. Let d be
a variable assignment, and t a term in L.

Basis: If t has no function symbols, then it is a variable or a constant in L.
If t is a constant, then by construction, MŒt� D M0Œt�; so by TA(c),
MdŒt� D M0dŒt�. If t is a variable, by TA(v), MdŒt� D dŒt� D M0dŒt�. In
either case, then, MdŒt� D M0dŒt�.

Assp: For any i , 0 � i < k, if t has i function symbols, then MdŒt� D M0dŒt�.
Show: If t has k function symbols, then MdŒt� D M0dŒt�.

If t has k function symbols, then [from text] MdŒt� D M0dŒt�.

Indct: For any t in L, MdŒt� D M0dŒt�.

E10.22. Complete the proof of T10.15. As usual, you should set up the complete
induction, but may refer to the text for cases completed there, as the text refers
to homework.

The argument is by induction on the number of operator symbols in P . Let d
be a variable assignment, and P a formula in L.

Basis: If P has no operator symbols, then [from text] MdŒP � D S iff M0dŒP � D
S.

Exercise 10.22

ANSWERS FOR CHAPTER 11 794

Assp: For any i , 0 � i < k, and any common variable assignment d, if P has
i operator symbols, MdŒP � D S iff M0dŒP � D S.

Show: For any variable assignment d for M, if P has k operator symbols,
MdŒP � D S iff M0dŒP � D S.

If P has k operator symbols, then it is of the form �A, A ! B or
8xA for variable x and formulas A and B with < k operator symbols.

(�) Suppose P is of the form �A. Then MdŒP � D S iff MdŒ�A� D S; by
SF(�), iff MdŒA� ¤ S; by assumption, iff M0dŒA� ¤ S; by SF(�), iff
M0dŒ�A� D S; iff M0dŒP � D S.

(!) Suppose P is of the form A ! B. Then MdŒP � D S iff MdŒA !

B� D S; by SF(!), iff MdŒA� ¤ S or MdŒB� D S; by assumption,
iff M0dŒA� ¤ S or M0dŒB� D S; by SF(!), iff M0dŒA ! B� D S; iff
M0dŒP � D S.

(8) Suppose P is of the form 8xA. Then MdŒP � D S iff MdŒ8xA� D S; by
SF(8), iff for any m 2 U, Md.xjm/ŒA� D S; by assumption, iff for any
m 2 U, M0d.xjm/ŒA� D S; by SF(8), iff M0dŒ8xA� D S; iff M0dŒP � D S.

If P has k operator symbols, MdŒP � D S iff M0dŒP � D S.

Indct: For any formula P in L, MdŒP � D S iff M0dŒP � D S.

Chapter Eleven

E11.9. Complete the proof of T11.9. You should set up the complete induction, but
may refer to the text, as the text refers to homework.

By induction on the number of operators in P . Suppose D Š H.

Basis: Suppose P has no operator symbols and d and h are such that for any x,
�.dŒx�/ D hŒx�. If P has no operator symbols, then [from text] DdŒP � D

S iff HhŒP � D S.

Assp: For any i , 0 � i < k, for d and h such that for any x, �.dŒx�/ D hŒx�
and P with i operator symbols, DdŒP � D S iff HhŒP � D S.

Show: For d and h such that for any x, �.dŒx�/ D hŒx� and P with k operator
symbols, DdŒP � D S iff HhŒP � D S.

If P has k operator symbols, then it is of the form �A, A ! B, or
8xA for variable x and formulas A and B with < k operator symbols.
Suppose for any x, �.dŒx�/ D hŒx�.

Exercise 11.9

ANSWERS FOR CHAPTER 12 795

(�) Suppose P is of the form�A. Then [from text] DdŒP � D S iff HhŒP � D

S.

DdŒP � D S iff DdŒ�A� D S; by SF(�), iff DdŒA� ¤ S; by assumption,
iff HhŒA� ¤ S; by SF(�), iff HhŒ�A� D S; iff HhŒP � D S.

(!) DdŒP � D S iff DdŒA! B� D S; by SF(!), iff DdŒA� ¤ S or DdŒB� D

S; by assumption, iff HhŒA� ¤ S or HhŒB� D S; by SF(!), iff HhŒA!

B� D S; iff HhŒP � D S.

(8) Suppose P is of the form 8xA. Then DdŒP � D S iff DdŒ8xA� D S; by
SF(8), iff for any m 2 UD, Dd.xjm/ŒA� D S. Similarly, HhŒP � D S iff
HhŒ8xA� D S; by SF(8), iff for any n 2 UH, Hh.xjn/ŒA� D S. (i) [From
the text], if HhŒP � D S, then DdŒP � D S. (ii) Suppose DdŒP � D S but
HhŒP � ¤ S; then any m 2 UD is such that Dd.xjm/ŒA� D S, but there
is some n 2 UH such that Hh.xjn/ŒA� ¤ S. Since � is onto UH, there is
some o 2 UD such that �.o/ D n; so insofar as d.xjo/ and h.xjn/ have
each member related by �, the assumption applies and Dd.xjo/ŒA� ¤ S;
so there is some m 2 UD such that Dd.xjm/ŒA� ¤ S; this is impossible;
reject the assumption: if DdŒP � D S, then HhŒP � D S.

For d and h such that for any x, �.dŒx�/ D hŒx� and P with k operator
symbols, DdŒP � D S iff HhŒP � D S.

Indct: For d and h such that for any x, �.dŒx�/ D hŒx�, and any P , DdŒP � D S
iff HhŒP � D S.

Chapter Twelve

E12.1. (b) produce functions gpower.x/, and hpower.x; y; u/ and show that they
have the same result as conditions (g) and (h).

Set gpower.x/ D suc.zero.x// and hpower.x; y; u/ D times.idnt33.x; y; u/; x/.
Then,

g0 power.x; 0/ D S.zero.x// D S0
h0 power.x;Sy/ D idnt33.x; y; power.x; y// � x D power.x; y/ � x

E12.5. (a) By the method of our core induction, write down formulas to express the
following recursive function: suc.zero.x//.

Z.x; w/ is x D x ^ w D ; and S.w; y/ is Sw D y; so their composition
F .x; y/ D 9wŒ.x D x ^ w D ;/ ^ Sw D y�.

Exercise 12.5

ANSWERS FOR CHAPTER 12 796

E12.6. Fill out semantic reasoning to demonstrate that proposed (original) formulas
satisfy the conditions for expression for the (z), (i), (c) and (m) clauses to T12.3.

(c) fk.y/ arises by composition from g.y/ and h.w/. By assumption g.y/ is
expressed by some G .y; w/ and h.w/ by H .w; v/. And the composition f.y/ is
expressed by F .y; v/ Ddef 9wŒG .y; w/^H .w; v/�. Suppose hm; ai 2 fk; then
by composition there is some b such that hm; bi 2 g and hb; ai 2 h.

(i) Because G and H express g and h, NŒG .m; b/� D T and NŒH .b; a/� D T.
Suppose NŒ9w.G .m; w/ ^ H .w; a//� ¤ T; then by TI, there is some d such
that NdŒ9w.G .m; w/ ^H .w; a//� ¤ S; let h be a particular assignment of this
sort; then NhŒ9w.G .m; w/ ^ H .w; a//� ¤ S; so by SF(9), for any o 2 U,
Nh.wjo/ŒG .m; w/ ^ H .w; a/� ¤ S; so Nh.wjb/ŒG .m; w/ ^ H .w; a/� ¤ S; so
since NhŒb� D b, with T10.2, NhŒG .m; b/ ^ H .b; a/� ¤ S; so by SF(^),
NhŒG .m; b/� ¤ S or NhŒH .b; a/� ¤ S. But NŒG .m; b/� D T; so by TI, for
any d, NdŒG .m; b/� D S; so NhŒG .m; b/� D S; so NhŒH .b; a/� ¤ S; but
NŒH .b; a/� D T; so by TI, for any d, NdŒH .b; a/� D S; so NhŒH .b; a/� D S.
This is impossible; reject the assumption: NŒ9w.G .m; w/ ^H .w; a//� D T.

(ii) Suppose NŒ8z.9w.G .m; w/ ^ H .w; z// ! z D a/� ¤ T; then by TI,
there is some d such that NdŒ8z.9w.G .m; w/ ^ H .w; z// ! z D a/� ¤
S; let h be a particular assignment of this sort; then NhŒ8z.9w.G .m; w/ ^
H .w; z//! z D a/� ¤ S; so by SF(8), for some o 2 U, Nh.zjo/Œ9w.G .m; w/
^ H .w; z// ! z D a� ¤ S; let p be a particular individual of this sort;
then Nh.zjp/Œ9w.G .m; w/ ^ H .w; z// ! z D a� ¤ S; since NhŒp� D p,
with T10.2, NhŒ9w.G .m; w/ ^ H .w; p// ! p D a� ¤ S; so by SF(!),
NhŒ9w.G .m; w/ ^H .w; p//� D S and NhŒp D a� ¤ S. From the first of these,
by SF(9), there is some o 2 U such that Nh.wjo/ŒG .m; w/ ^ H .w; p/� D S;
let q be a particular individual of this sort; then Nh.wjq/ŒG .m; w/ ^ H .w; p/�
D S; since NhŒq� D q, with T10.2, NhŒG .m; q/ ^H .q; p/� D S; so by SF(^),
NhŒG .m; q/� D S; and NhŒH .q; p/� D S.

Because G expresses g and hm; bi 2 g, NŒ8z.G .m; z/ ! z D b/� D T; so
by TI, for any d, NdŒ8z.G .m; z/ ! z D b/� D S; so NhŒ8z.G .m; z/ ! z D

b/� D S; so by SF(8), for any o 2 U, Nh.zjo/ŒG .m; z/ ! z D b� D S; so
Nh.zjq/ŒG .m; z/ ! z D b� D S; since NhŒq� D q, with T10.2, NhŒG .m; q/ !
q D b� D S; so by SF(!), NhŒG .m; q/� ¤ S or NhŒq D b� D S; but
NhŒG .m; q/� D S; so NhŒq D b� D S; and since NhŒq� D q and NhŒb� D b, with
SF(r), q D b.

Since H expresses h, and hb; ai 2 h, hq; ai 2 h and NŒ8z.H .q; z/ ! z D

Exercise 12.6

ANSWERS FOR CHAPTER 12 797

a/� D T; so by TI, for any d, NdŒ8z.H .q; z/! z D a/� D S; so NhŒ8z.H .q; z/
! z D a/� D S; so by SF(8), for any o 2 U, Nh.zjo/ŒH .q; z/ ! z D

a� D S; so Nh.zjp/ŒH .q; z/ ! z D a� D S; since NhŒp� D p, with T10.2,
NhŒH .q; p/! p D a� D S; so by SF(!), NhŒH .q; p/� ¤ S or NhŒp D a� D S;
but NhŒH .q; p/� D S; so NhŒp D a� D S. This is impossible; reject the assump-
tion: NŒ8z.9w.G .m; w/ ^H .w; z//! z D a/� D T.

E12.11. Complete the demonstration of T12.8 by finishing the remaining cases. You
should set up the entire argument, but may appeal to the text for parts already
completed, as the text appeals to homework.

(9 �) P is .9x � t/A.x/. Since P is a sentence, x is the only variable free
in A; in particular, since x does not appear in t, t is variable free; so
NdŒt� D NŒt� and where NŒt� D n, by T8.13, Q

ǸD
t D n; so Q

ǸD
P

just in case Q
ǸD

.9x � n/A.x/.

(i) Suppose NŒP � D T; then NŒ.9x � t/A.x/� D T; so by TI, for
any d, NdŒ.9x � t/A.x/� D S; so by T12.7, for some m � NdŒt�,
Nd.xjm/ŒA.x/� D S; so where NdŒt� D NŒt� D n, for some m � n,
Nd.xjm/ŒA.x/� D S; so with T10.2, for some m � n, NdŒA.m/� D S;
since x is the only variable free in A, A.m/ is a sentence; so with T8.5,
for some m � n, NŒA.m/� D T; so by assumption for some m � n,
Q

ǸD
A.m/; so by T8.20, Q

ǸD
.9x � n/A.x/; so Q

ǸD
P .

(ii) Suppose NŒP � ¤ T; then NŒ.9x � t/A.x/� ¤ T; so by TI, for
some d, NdŒ.9x � t/A.x/� ¤ S; so by T12.7, for any m � NdŒt�,
Nd.xjm/ŒA.x/� ¤ S; so where NdŒt� D NŒt� D n, for any m � n,
Nd.xjm/ŒA.x/� ¤ S; so with T10.2, for any m � n, NdŒA.m/� ¤ S; so by
TI, for any m � n, NŒA.m/� ¤ T; so NŒA.0/� ¤ T and . . . and NŒA.n/� ¤
T; so by assumption, Q

ǸD
�A.;/ and . . . and Q

ǸD
�A.n/; so by

T8.21, Q
ǸD

.8x � n/�A.x/; so by BQN, Q
ǸD
�.9x � n/A.x/; so

Q
ǸD
�P .

E12.13. Complete the demonstration of T12.11 by completing the remaining cases,
including the basis and part (ii) of the case for composition.

Exercise 12.13

ANSWERS FOR CHAPTER 12 798

1. 8z.G .m; z/! z D b/ G cap g
2. 8z.H .b; z/! z D a/ H cap h

3. 9wŒG .m; w/ ^H .w; j /� A (g,!I)

4. G .m; k/ ^H .k; j / A (g, 3 9E)

5. G .m; k/ 4 ^E
6. G .m; k/! k D b 1 8E
7. k D b 6,5!E
8. H .k; j / 4 ^E
9. H .b; j / 8,7 =E

10. H .b; j /! j D a 2 8E
11. j D a 10,9!E

12. j D a 3,4-11 9E

13. 9wŒG .m; w/ ^H .w; j /�! j D a 3-12!I
14. 8z.9wŒG .m; w/ ^H .w; z/�! z D a/ 13 8I

E12.14. Produce a derivation to show the basis in the argument for the uniqueness
condition.

1. 8zŒG .m; z/! z D k0� from capture
2. 8p8q8yŒ.B.p; q;;; k0/ ^B.p; q;;; y//! k0 D y� from uniqueness

3. 9p9qf9vŒB.p; q;;; v/ ^ G .m; v/� ^Q ^B.p; q;;; j /g A (g,!I)

4. 9qf9vŒB.p; q;;; v/ ^ G .m; v/� ^Q ^B.p; q;;; j /g A (g, 39E)

5. 9vŒB.p; q;;; v/ ^ G .m; v/� ^Q ^B.p; q;;; j / A (g, 49E)

6. 9vŒB.p; q;;; v/ ^ G .m; v/� 5 ^E
7. B.p; q;;; j / 5 ^E
8. B.p; q;;; k/ ^ G .m; k/ A (g, 69E)

9. B.p; q;;; k/ 8 ^E
10. G .m; k/ 8 ^E
11. G .m; k/! k D k0 1 8E
12. k D k0 11,10!E
13. B.p; q;;; k0/ 9,12DE
14. j D k0 2,7,13

15. j D k0 6,8-14 9E

16. j D k0 4,5-15 9E

17. j D k0 3,4-16 9E

18. 9p9qf9vŒB.p; q;;; v/ ^ G .Ex; v/� ^Q ^B.p; q;;; j /g ! j D k0 3-17!I
19. 8wŒ9p9qf9vŒB.p; q;;; v/ ^ G .Ex; v/� ^Q ^B.p; q;;; w/g ! w D k0� 18 8I

Exercise 12.14

ANSWERS FOR CHAPTER 12 799

E12.19. Work carefully through the demonstration of T12.16 by setting up revised
arguments T12.3�, T12.11� and T12.12�.

T12.11�. For any recursive f.Ex/ originally expressed by F .Ex; v/, let F �.Ex; v/

be like F .Ex; v/ except that B is replaced by B0. Then f.Ex/ is captured in Q by
F �.Ex; v/.

By induction on the sequence of recursive functions.

Basis: f0 is an initial function. Everything is the same, except that conclusions
are for Q rather than Qs .

Assp: For any i , 0 � i < k, fi.Ex/ is captured in Q by F �.Ex; v/.

Show: fk.Ex/ is captured in Q by F �.Ex; v/.

fk is either an initial function or arises from previous members by com-
position, recursion or regular minimization. If it is an initial function,
then as in the basis. So suppose fk arises from previous members.

(c) fk.Ex; Ey; Ez/ arises by composition from g.Ey/ and h.Ex;w; Ez/. By assumption
g.Ey/ is captured by G�. Ey;w/ and h.Ex;w; Ez/ by H�.Ex;w; Ez; v/. F �.Ex; Ey; Ez; v/

is 9wŒG�. Ey;w/^H�.Ex;w; Ez; v/�. Consider the case where Ex and Ez drop
out and Ey is a single variable y. Suppose hm; ai 2 fk; then by composi-
tion there is some b such that hm; bi 2 g and hb; ai 2 h.

(i) By T12.3�, F �.y; v/ expresses f.y/; thus, since hm; ai 2 fk, NŒF �.m; a/� D
T; so, since F �.y; v/ is †1, by T12.9, Q

ǸD
F �.m; a/.

(ii) Same but with G�, H� uniformly substituted for G , H .

(r) fk.Ex; y/ arises by recursion from g.Ex/ and h.Ex; y; u/. By assumption g.Ex/
is captured by G�.Ex; v/ and h.Ex; y; u/ by H�.Ex; y; u; v/. F �.Ex; y; z/ is,

9p9qf9vŒB0.p; q;;; v/^G�.Ex; v/�^.8i < y/9u9vŒB0.p; q; i; u/^B0.p; q; Si; v/^H�.Ex; i; u; v/�^

B0.p; q; y; z/g

Suppose Ex reduces to a single variable and hm; n; ai 2 fk. (i) By T12.3�,
F �.x; y; v/ expresses f.x; y/; thus NŒF �.m; n; a/� D T; so, since F �.x; y; v/

is †1, by T12.9, Q
ǸD

F �.m; n; a/. And (ii) by T12.12�, Q
ǸD

8wŒF �.m; n; w/! w D a�.

(m) fk.Ex/ arises by regular minimization from g.Ex; y/. By assumption, g.Ex; y/
is captured by some G�.Ex; y; z/. F �.Ex; v/ is G�.Ex; v;;/^.8y < v/�G�.Ex; y;;/.
Suppose Ex reduces to a single variable and hm; ai 2 fk.

(i) By T12.3�, F �.x; v/ expresses f.x/; thus, since hm; ai 2 fk, NŒF �.m; a/� D
T; so, since F �.y; v/ is †1, by T12.9, Q

ǸD
F �.m; a/.

(ii) Same but with G� uniformly substituted for G .

Exercise 12.19

ANSWERS FOR CHAPTER 12 800

Indct: Any recursive f.Ex/ is captured in Q by F �.Ex; v/.

E12.24. Provide definitions for the recursive functions rm.m; n/ and qt.m; n/ for the
remainder and quotient of m=nC 1. For rm.m; n/,

.�v � n/.9w � m/Œm D Sn � wC v�

E12.25. Functions f1.Ex; y/ and f2.Ex; y/ are defined by simultaneous (mutual) recur-
sion just in case,

f1.Ex; 0/ D g1.Ex/

f2.Ex; 0/ D g2.Ex/

f1.Ex;Sy/ D h1.Ex; y; f1.Ex; y/; f2.Ex; y//

f2.Ex;Sy/ D h2.Ex; y; f1.Ex; y/; f2.Ex; y//

Show that f1 and f2 so defined are recursive. For F.Ex; y/ D f1.Ex;y/
0 �

f2.Ex;y/
1 , set

G.Ex/ D g1.Ex/
0 �

g2.Ex/
1

H.Ex; y; u/ D h1.Ex;y;exp.u;0/;exp.u;1//
0 �

h2.x;y;exp.u;0/;exp.u;1//
1

You should explain how these contribute to the desired result.

E12.29. (i) Complete the construction with recursive relations for AXIOMAD5.n/, GEN.m; n/,
AXIOMAD8.n/, and so AXIOMAD.n/ and PRFAD.m; n/. (ii) Complete the remain-
ing axioms for Robinson arithmetic, and then AXIOMQ.n/ and PRFQ.m; n/. (iii)
Construct also AXIOMQP.n/, like AXIOMQ less AXIOMQ7, and then AXIOMPA.n/ and
PRFPA.m; n/.

AXIOMAD5.n/: .9p � n/.9q � n/.9v � n/ŒWFF.p/ ^ WFF.q/ ^ VAR.v/ ^ �FREEf.p; v/ ^ n D
cnd.unv.v; cnd.p; q//; cnd.p; unv.v; q///�

GEN.m; n/: .9v � n/ŒVAR.v/ ^ n D unv.v;m/�

PRFQ.m; n/: exp.m; len.m/ :
� 1/ D n ^ m > 1 ^ .8k < len.m//ŒAXIOMQ.exp.m; k// _ .9i <

k/.9j < k/ICON.exp.m; i/; exp.m; j/; exp.m; k//�

E12.32. Let T be any theory that extends Q. For any formulas F1.y/ and F2.y/,
generalize the diagonal lemma to find sentences H1 and H2 such that,

T ` H1 $ F1.pH2q/

Exercise 12.32

ANSWERS FOR CHAPTER 12 801

T ` H2 $ F2.pH1q/

Demonstrate your result.

Let alt.p; f1; f2/ D p9w9x9y.w Dq?num.p/?p^ x Dq?num.f2/?p^y Dq?
num.f1/ ? p^9z.q ? f1 ? p^q ? p ? p//q. Then by capture there is a for-
mula Alt.w; x; y; z/ that captures alt; let a D pAlt.w; x; y; z/q. Then H1 D

9w9x9y.w D a ^ x D f 2 ^ y D f 1 ^ 9z.F1.z/ ^ Alt.w; x; y; z///; and
h1 D pH1q D alt.a; f 1; f 2/. And H2 D 9w9x9y.w D a ^ x D f 1 ^ y D
f 2 ^ 9z.F2.z/ ^ Alt.w; x; y; z///; and h2 D pH2q D alt.a; f2; f1/. The trick
to this is that H1 says F1.h2/ and H2 says F2.h1/. For the first case, argue as
follows (broken into separate derivations for the biconditional).

1. H1 $ 9w9x9y.w D a ^ x D f 2 ^ y D f 1 ^ 9z.F1.z/ ^ Alt.w; x; y; z/// def H1

2. 8xŒAlt.a; f 2; f 1; x/! x D h2 from capture

3. H1 A (g!I)

4. 9w9x9y.w D a ^ x D f 2 ^ y D f 1 ^ 9z.F1.z/ ^ Alt.w; x; y; z/// 1,3$E
5. 9x9y.j D a ^ x D f 2 ^ y D f 1 ^ 9z.F1.z/ ^ Alt.j; x; y; z/// A (g 49E)

6. 9y.j D a ^ k D f 2 ^ y D f 1 ^ 9z.F1.z/ ^ Alt.j; k; y; z/// A (g 59E)

7. j D a ^ k D f 2 ^ l D f 1 ^ 9z.F1.z/ ^ Alt.j; k; l; z// A (g 69E)

8. j D a 7 ^E
9. k D f 2 7 ^E

10. l D f 1 7 ^E
11. 9z.F1.z/ ^ Alt.j; k; l; z// 7 ^E
12. F1.m/ ^ Alt.j; k; l; m/ A (g 119E)

13. F1.m/ 12 ^E
14. Alt.j; k; l; m/ 12 ^E
15. Alt.a; f 2; f 1; m/! m D h2 2 8E
16. Alt.a; f 2; f 1; m/ 14,8,9,10DE
17. m D h2 15,14!E
18. F1.h2/ 13,17DE

19. F1.h2/ 12,13-18 9E

20. F1.h2/ 6,7-19 9E

21. F1.h2/ 5,6-20 9E

22. F1.h2/ 4,5-21 9E

23. H1 ! F1.h2/ 3-22!I

Exercise 12.32

ANSWERS FOR CHAPTER 13 802

1. H1 $ 9w9x9y.w D a ^ x D f 2 ^ y D f 1 ^ 9z.F1.z/ ^ Alt.w; x; y; z/// def H1

2. Alt.a; f 2; f 1; h2/ from capture

3. F1.h2/ A (g!I)

4. F1.h2/ ^ Alt.a; f 2; f 1; h2/ 3,2 ^I
5. 9z.F1.z/ ^ Alt.a; f 2; f 1; z// 4 9I
6. a D a ^ f 2 D f 2 ^ f 1 D f 1 DI, ^I
7. a D a ^ f 2 D f 2 ^ f 1 D f 1 ^ 9z.F1.z/ ^ Alt.a; f 2; f 1; z// 6,5 ^I
8. 9y.a D a ^ f 2 D f 2 ^ y D f 1 ^ 9z.F1.z/ ^ Alt.a; f 2; y; z/// 7 9I
9. 9x9y.a D a ^ x D f 2 ^ y D f 1 ^ 9z.F1.z/ ^ Alt.a; x; y; z/// 8 9I

10. 9w9x9y.w D a ^ x D f 2 ^ y D f 1 ^ 9z.F1.z/ ^ Alt.w; x; y; z/// 9 9I
11. H1 1,10$E

12. F1.h2/! H1 3-11!I

So T ` H1 $ F1.pH2q/.

Chapter Thirteen

E13.2. Complete the demonstration of T13.3 by providing a derivation to show
T ` G $ �9xPrft.x; pGq/.

Exercise 13.2

ANSWERS FOR CHAPTER 13 803

1. G $ 9z.z D a^�9x9yŒPrft.x; y/^ Diag.z; y/�/ from def G

2. Diag.a; g/ from capture
3. 8z.Diag.a; z/! z D g/ from capture

4. G A (g$I)

5. 9z.z D a^�9x9yŒPrft.x; y/^ Diag.z; y/�/ 1,4$E
6. j D a^�9x9yŒPrft.x; y/^ Diag.j; y/� A (g 59E)

7. j D a 6 ^E
8. �9x9yŒPrft.x; y/^ Diag.j; y/� 6 ^E
9. 9xPrft.x; g/ A (c �I)

10. Prft.k; g/ A (c 99E)

11. Diag.j; g/ 2,7DE
12. Prft.k; g/^ Diag.j; g/ 10,11 ^I
13. 9yŒPrft.k; y/^ Diag.j; y/� 12 9I
14. 9x9yŒPrft.x; y/^ Diag.j; y/� 13 9I
15. ? 8,14?I

16. ? 9,10-15 9E

17. �9xPrft.x; g/ 9-16�I

18. �9xPrft.x; g/ 5,6-17 9E

19. �9xPrft.x; g/ A (g$I)

20. 9x9yŒPrft.x; y/^ Diag.a; y/� A (c �I)

21. 9yŒPrft.j; y/^ Diag.a; y/� A (c 209E)

22. Prft.j; k/^ Diag.a; k/ A (c 219E)

23. Diag.a; k/ 22 ^E
24. Diag.a; k/! k D g 3 8E
25. k D g 24,23!E
26. Prft.j; k/ 22 ^E
27. Prft.j; g/ 26,25DE
28. 9xPrft.x; g/ 27 9I
29. ? 19,28?I

30. ? 21,22-29 9E

31. ? 20,21-30 9E

32. �9x9yŒPrft.x; y/^ Diag.a; y/� 20-31�I
33. a D a DI
34. a D a^�9x9yŒPrft.x; y/^ Diag.a; y/� 33,32 ^I
35. 9z.z D a^�9x9yŒPrft.x; y/^ Diag.z; y/�/ 34 9I
36. G 1,35$E

37. G $�9xPrft.x; g/ 4-18,19-36$I

So T ` G $ �9xPrft.x; g/ which is to say, T ` G $ �9xPrft.x; pGq/.

E13.7. Complete the unfinished cases to T13.13.

T13.13.

T13.13.a. PA ` .r � s ^ s � t/! r � t

Exercise 13.7 T13.13.a

ANSWERS FOR CHAPTER 13 804

Hint: This does not require IN. It is not hard and can be worked directly from
the definitions.

T13.13.b. PA ` .r < s ^ s < t/! r < t

Hint: This does not require IN. It is not hard and can be worked directly from
the definitions.

T13.13.c. PA ` .r � s ^ s < t/! r < t

Hint: This does not require IN. It is not hard and can be worked directly from
the definitions.

T13.13.d. PA ` ; � t

Hint: This is nearly trivial with the definition.

T13.13.e. PA ` ; < St

Hint: This is nearly trivial with the definition.

T13.13.f. PA ` t ¤ ; $; < t

Hint: This does not require IN. It is straightforward with the definitions.

T13.13.g. PA ` t > ; ! 9y.t D Sy/ y not in t.

Hint: This is trivial with (f) and T6.45.

T13.13.h. PA ` t < St

Hint: This is easy. It does not require IN.

T13.13.i. PA ` St D s! t < s

Hint: This does not require IN. It is not hard and can be worked directly from
the definitions.

T13.13.j. PA ` s � t $ Ss � St

Hint: This does not require IN. It is not hard and can be worked directly from
the definitions. Do not forget about T6.40.

T13.13.k. PA ` s < t $ Ss < St.

Hint: This does not require IN. It is not hard and can be worked directly from
the definitions.

Exercise 13.7 T13.13.k

ANSWERS FOR CHAPTER 13 805

T13.13.l. PA ` s < t $ Ss � t

Hint: This does not require IN. It is not hard and can be worked directly from
the definitions.

T13.13.m. PA ` s � t $ s < t _ s D t

Hint: This does not require IN. It works as a direct argument from the defini-
tions. Do not forget that you have j D ; _ j ¤ ; with T6.45.

T13.13.n. PA ` s < St $ s < t _ s D t

Hint: This does not require IN. It is simplified with (m).

T13.13.o. PA ` s � St $ s � t _ s D St

Hint: This does not require IN. For one direction, it will be helpful to apply (m)
and (n).

T13.13.p. PA ` s < t _ s D t _ t < s

Hint: This is a moderately interesting argument by IN where P is s < x_s D

x _ x < s. Under the assumption s < j _ s D j _ j < s, for the third case,
you may find (l) and (m) helpful.

T13.13.q. PA ` s � t _ t < s

Hint: This is a direct consequence of (p) and (m).

T13.13.r. PA ` s � t $ t – s

Hint: When s � t you will be able to show t – s with the definitions. In the
other direction, use (p) and (m).

T13.13.s. PA ` t < s! t ¤ s

Hint: This does not require IN. It works from the definitions.

T13.13.t. PA ` .s � t ^ t � s/! s D t

Hint: Use (r) and (m) with the assumption for!I.

T13.13.u. PA ` s � sC t

Hint: This is nearly trivial from the definition.

T13.13.v. PA ` r � s! rC t � sC t

Hint: This does not require IN. It is straightforward from the definition and
T6.68.

Exercise 13.7 T13.13.v

ANSWERS FOR CHAPTER 13 806

T13.13.w. PA ` r < s! rC t < sC t

Hint: This does not require IN. It is straightforward from the definition and
T6.68.

T13.13.x. PA ` .r � s ^ t � u/! rC t � sC u

Hint: This does not require IN. It is straightforward from the definitions.

T13.13.y. PA ` .r < s ^ t � u/! rC t < sC u

Hint: This does not require IN. It is straightforward from the definitions.

T13.13.z. PA ` ; < t ! s � s � t

Hint: This is straightforward with (f) and T6.50.

T13.13.aa. PA ` r � s! r � t � s � t

Hint: This is straightforward with distributivity (T6.64).

T13.13.ab. PA ` r � s > ; ! s > ;

Hint: Under the assumption for!I, assume the opposite and go for a contra-
diction.

T13.13.ac. PA ` .r > 1 ^ s > ;/! r � s > s

Hint: You can apply the definition for > multiple times.

T13.13.ad. PA ` .t > ; ^ r < s/! r � t < s � t

Hint: This this combines strategies from previous problems.

T13.13.ae. PA ` .r < s ^ t < u/! r � t < s � u

Hint: This does not require IN. It is straightforward with T6.65.

T13.13.af. PA ` 8xŒ.8: < x/P x
: ! P �! 8xP strong induction (a)

Hint: Under the assumption for!I, you will have a goal like P .j /; you can
get .8z < j /P .z/ ! P .j / from the assumption; go for .8z < j /P .z/ by
IN (where the induction is on j). Then the goal follows immediately by!E.

T13.13.ag. PA ` P x
;
^ 8xŒ.8: � x/P x

: ! P x
Sx�! 8xP strong induction (b)

Again under the assumption for!I, you will be able to obtain 8xP , this time
by (af).

Exercise 13.7 T13.13.ag

ANSWERS FOR CHAPTER 13 807

T13.13.ah. PA ` 9xP ! 9xŒP ^ .8: < x/�P x
: � least number principle

Hint: This follows immediately from T13.13af applied to �P .

E13.9. Produce the quick derivation to show T13.19d.

T13.19.

1. .8z < m.Ex//�Q.Ex; z/ T13.19c

2. Q.Ex; v/ A (g!I)

3. v < m.Ex/ A (c �I)

4. �Q.Ex; v/ 1,3 (8E)
5. ? 2,4?I

6. v –m.Ex/ 3-5�I
7. m.Ex/ � v 6 T13.13r

8. Q.Ex; v/!m.Ex/ � v 2-7!I

E13.11. Complete the justifications for Def [rm] and Def [qt].

Def [rm]. (i) PA ` 9x.9w � ;/Œ; D Sn � w C x ^ x < Sn�.

Supposing the zero case is done,

Exercise 13.11 Def [rm]

ANSWERS FOR CHAPTER 13 808

1. 9x.9w � ;/Œ; D Sn�w C x ^ x < Sn� zero case

2. 9x.9w � j /Œj D Sn�w C x ^ x < Sn� A (g!I)

3. .9w � j /Œj D Sn�w C k ^ k < Sn� A (g 29E)

4. j D Sn� l C k ^ k < Sn A (g 3 (9E))
5. l � j

6. j D Sn� l C k 4 ^E
7. k < Sn 4 ^E
8. Sj D SŒSn� l C k� from 6
9. Sn� l C Sk D SŒSn� l C k� T6.42

10. Sj D Sn� l C Sk 8,9DE
11. k < n_ k D n 7 T13.13n
12. k < n A (g 11_E)

13. Sk < Sn 9 T13.13k
14. Sj D Sn� l C Sk ^ Sk < Sn 10,13 ^I
15. l � j _ l D Sj 5 _I
16. l � Sj 15 T13.13o
17. .9w � Sj/ŒSj D Sn�w C Sk ^ Sk < Sn� 14,16 (9I)
18. 9x.9w � Sj/ŒSj D Sn�w C x ^ x < Sn� 17 9I

19. k D n A (g 11_E)

20. Sj D Sn� l C Sn 10,19DE
21. Sn� Sl D Sn� l C Sn T6.44
22. Sj D Sn� Sl 20,21DE
23. Sn� Sl D Sn� Sl C; T6.41
24. Sj D Sn� Sl C; 22,23DE
25. ; < Sn 25 T13.13e
26. Sj D Sn� Sl C;^ ; < Sn 24,25 ^I
27. Sl � Sj 5 T13.13k
28. .9w � Sj/ŒSj D Sn�w C;^ ; < Sn� 26,27 (9I)
29. 9x.9w � Sj/ŒSj D Sn�w C x ^ x < Sn� 28 9I

30. 9x.9w � Sj/ŒSj D Sn�w C x ^ x < Sn� 11,12-18,19-29 _E

31. 9x.9w � Sj/ŒSj D Sn�w C x ^ x < Sn� 3,4-30 (9E)

32. 9x.9w � Sj/ŒSj D Sn�w C x ^ x < Sn� 2,3-31 9E

33. 9x.9w � j /Œj D Sn�w C x ^ x < Sn�! 9x.9w � Sj/ŒSj D Sn�w C x ^ x < Sn� 2-32!I
34. 8z.9x.9w � z/Œz D Sn�w C x ^ x < Sn�! 9x.9w � Sz/ŒSz D Sn�w C x ^ x < Sn�/ 33 8I
35. 8z9x.9w � z/Œz D Sn�w C x ^ x < Sn� 1,34 IN
36. 9x.9w � m/Œm D Sn�w C x ^ x < Sn� 35 8E

(ii) PA ` 8x8yŒ..9w � m/Œm D Sn � w C x ^ x < Sn� ^ .9w � m/Œm D

Sn � w C y ^ y < Sn�/! x D y�

Exercise 13.11 Def [rm]

ANSWERS FOR CHAPTER 13 809

1. .9w � m/Œm D Sn�w C j ^ j < Sn�^ .9w � m/Œm D Sn�w C k ^ k < Sn� A (g!I)

2. .9w � m/Œm D Sn�w C j ^ j < Sn� 1 ^E
3. .9w � m/Œm D Sn�w C k ^ k < Sn� 1 ^E
4. m D Sn� pC j ^ j < Sn A (g 2(9E))
5. p � m

6. m D Sn� qC k ^ k < Sn A (g 3(9E))
7. q � m

8. m D Sn� pC j 4 ^E
9. j < Sn 4 ^E

10. m D Sn� qC k 6 ^E
11. k < Sn 6 ^E
12. Sn� pC j D Sn� qC k 8,10DE
13. p < q _ p D q _ q < p T13.13p
14. p < q A (c �I)

15. 9v.SvC p D q/ 14 abv
16. Sl C p D q A (c 159E)

17. pC Sl D q 16, T6.54
18. Sn� pC j D Sn� .pC Sl/C k 12,17DE
19. Sn� pC j D .Sn� pC Sn� Sl/C k 18 T6.63
20. Sn� pC j D Sn� pC .Sn� Sl C k/ 19 T6.56
21. j D Sn� Sl C k 20 T6.68
22. ; < Sl T13.13e
23. Sn � Sn� Sl 22 T13.13z
24. Sn� Sl � Sn� Sl C k T13.13u
25. Sn � Sn� Sl C k 23,24 T13.13a
26. Sn � j 21,25DE
27. j 6< Sn 26 T13.13r
28. ? 9,27?I

29. ? 15,16-28 9E

30. p 6< q 14-29�I
31. q < p A (c �I)

32. ? similarly

33. q 6< p 31-32�I
34. p D q 13,30,33 DS
35. Sn� pC j D Sn� pC k 12,34DE
36. j D k 35 T6.68

37. j D k 3,6-36 (9E)

38. j D k 2,4-37 (9E)

39. ..9w � m/Œm D Sn�w C j ^ j < Sn�^ .9w � m/Œm D Sn�w C k ^ k < Sn�/! j D k 1-38!I
40. 8yŒ..9w � m/Œm D Sn�w C j ^ j < Sn�^ .9w � m/Œm D Sn�w C y ^ y < Sn�/! j D y� 39 8I
41. 8x8yŒ..9w � m/Œm D Sn�w C x ^ x < Sn�^ .9w � m/Œm D Sn�w C y ^ y < Sn�/! x D y� 40 8I

E13.12. Complete the unfinished cases to T13.21.

For the recursion clause from right to left:

Exercise 13.12

ANSWERS FOR CHAPTER 13 810

1. v D ˇ.p; q; i/$ B.p; q; i; v/ def ˇ
2. v D g.Ex/$ G .Ex; v/ assp
3. v D h.Ex; y; u/$H.Ex; y; u; v/ assp

4. R.Ex; y; z/ A (g!I)

5. 9p9qf9vŒB.p; q;;; v/^ G .Ex; v/�^ 4 def
.8i < y/9u9vŒB.p; q; i; u/^B.p; q; Si; v/^H.Ex; i; u; v/�^B.p; q; y; z/g

6. 9vŒB.a; b;;; v/^ G .Ex; v/�^ A (g 59E)
.8i < y/9u9vŒB.a; b; i; u/^B.a; b; Si; v/^H.Ex; i; u; v/�^B.a; b; y; z/

7. 9vŒB.a; b;;; v/^ G .Ex; v/� 6 ^E
8. B.a; b;;; k/^ G .Ex; k/ A (g 79E)

9. B.a; b;;; k/ 8 ^E
10. k D ˇ.a; b;;/ 9 with 1
11. G .Ex; k/ 8 ^E
12. k D g.Ex/ 11 with 2
13. ˇ.a; b;;/ D g.Ex/ 10,12DE

14. ˇ.a; b;;/ D g.Ex/ 7,8-13 9E
15. .8i < y/9u9vŒB.a; b; i; u/^B.a; b; Si; v/^H.Ex; i; u; v/� 6 ^E
16. l < y A (g (8I))

17. 9u9vŒB.a; b; l; u/^B.a; b; Sl; v/^H.Ex; l; u; v/� 15,16 (8E)
18. B.a; b; l; r/^B.a; b; Sl; s/^H.Ex; l; r; s/ A (g 179E)

19. B.a; b; l; r/ 18 ^E
20. r D ˇ.a; b; l/ 19, with 1
21. B.a; b; Sl; s/ 18 ^E
22. s D ˇ.a; b; Sl/ 21 with 1
23. H.Ex; l; r; s/ 18 ^E
24. s D h.Ex; l; r/ 23 with 3
25. h.Ex; l; ˇ.a; b; l// D ˇ.a; b; Sl/ 24,20,22DE

26. h.Ex; l; ˇ.a; b; l// D ˇ.a; b; Sl/ 17,18-25 9E

27. .8i < y/h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/ 16-26 (8I)
28. B.a; b; y; z/ 6 ^E
29. ˇ.a; b; y/ D z 28 with 1
30. ˇ.a; b;;/ D g.Ex/^ .8i < y/h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/^ ˇ.a; b; y/ D z 14,27,29 ^I
31. 9p9qŒˇ.p; q;;/ D g.Ex/^ .8i < y/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/^ ˇ.p; q; y/ D z� 30 9I
32. z D r.Ex; y/ 31 def

33. z D r.Ex; y/ 5,6-32 9E

34. R.Ex; y; z/! z D r.Ex; y/ 4-33!I

E13.13. Complete the justification for T13.22 by demonstrating the zero case.

T13.22. With F .Ex; y; v/ as described in the main text,

Exercise 13.13 T13.22

ANSWERS FOR CHAPTER 13 811

1. F .Ex;;;m/^F .Ex;;; n/ A (g!I)

2. 9p9qŒˇ.p; q;;/ D g.Ex/^ .8i < ;/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/^ ˇ.p; q;;/ D m� 1 ^E
3. 9p9qŒˇ.p; q;;/ D g.Ex/^ .8i < ;/h.Ex; i; ˇ.p; q; i// D ˇ.p; q; Si/^ ˇ.p; q;;/ D n� 1 ^E
4. ˇ.a; b;;/ D g.Ex/^ .8i < ;/h.Ex; i; ˇ.a; b; i// D ˇ.a; b; Si/^ ˇ.a; b;;/ D m A (g 29E)

5. ˇ.a; b;;/ D g.Ex/ 4 ^E
6. ˇ.a; b;;/ D m 4 ^E
7. m D g.Ex/ 5,6DE
8. ˇ.c; d;;/ D g.Ex/^ .8i < ;/h.Ex; i; ˇ.c; d; i// D ˇ.c; d; Si/^ ˇ.c; d;;/ D n A (g 39E)

9. ˇ.c; d;;/ D g.Ex/ 8 ^E
10. ˇ.c; d;;/ D n 8 ^E
11. n D g.Ex/ 9,10DE
12. m D n 7,11DE

13. m D n 3,8-12 9E

14. m D n 2,4-13 9E

15. .F .Ex;;;m/^F .Ex;;; n//! m D n 1-14!I
16. 8m8nŒ.F .Ex;;;m/^F .Ex;;; n//! m D n� 15 8I

E13.14. Show (i) and (ii) for Def [:
�]. Then show each of the results in T13.23.

Def [:
�].

(i) PA ` 9vŒx D y C v _ .x < y ^ v D ;/�. Beginning with T13.13q, this is is a
straightforward derivation.

(ii) PA ` 8m8nŒ.Œx D yCm_ .x < y ^m D ;/�^ Œx D yC n_ .x < y ^ n D
;/�/! m D n�

Exercise 13.14 Def [:-]

ANSWERS FOR CHAPTER 13 812

1. Œx D y C j _ .x < y ^ j D ;/�^ Œx D y C k _ .x < y ^ k D ;/� A (g!I)

2. x D y C j _ .x < y ^ j D ;/ 1 ^E
3. x D y C k _ .x < y ^ k D ;/ 1 ^E
4. y � x _ x < y T13.13q
5. y � x A (g 4_E)

6. x – y 5 T13.13r
7. �.x < y ^ j D ;/ 6 _I, DeM
8. �.x < y ^ k D ;/ 6 _I, DeM
9. x D y C j 2,7 DS

10. x D y C k 3,8 DS
11. y C j D y C k 9,10DE
12. j D k 11 T6.68

13. x < y A (g 4_E)

14. y � y C j T13.13u
15. x < y C j 13,14 T13.13c
16. x ¤ y C j 15 T13.13s
17. y � y C k T13.13u
18. x < y C k 13,17 T13.13c
19. x ¤ y C k 18 T13.13s
20. x < y ^ j D ; 2,16 DS
21. x < y ^ k D ; 3,19 DS
22. j D ; 20 ^E
23. k D ; 21 ^E
24. j D k 22,23DE

25. j D k 4,5-12,13-24 _E

26. .Œx D y C j _ .x < y ^ j D ;/�^ Œx D y C k _ .x < y ^ k D ;/�/! j D k 1-25!I
27. 8m8nŒ.Œx D y Cm_ .x < y ^m D ;/�^ Œx D y C n_ .x < y ^ n D ;/�/! m D n� 26 8I

T13.23.

T13.23.a. PA ` a � b ! a D b C .a
:
� b/.

This is straightforward with a D bC .a :
� b/_ Œa < b ^ a

:
� b D ;� from the

definition.

T13.23.b. PA ` b � a! a
:
� b D ;.

From your assumption b � a you have a < b _ a D b with T13.13m. In the
first case, as in the previous problem, you get the result with the definition. In
the second case, a � b by T13.13m and you can use (a) with T6.68.

T13.23.c. PA ` a :
� b � a.

By T13.13q, a � b _ a < b. In the first case apply (a); and in the second you
have a � b so that you can apply (b).

Exercise 13.14 T13.23.c

ANSWERS FOR CHAPTER 13 813

T13.23.f. PA ` a > b ! a
:
� b > ;.

1. a > b A (g!I)

2. 9v.SvC b D a/ 1 def
3. Sj C b D a A (g 29E)

4. a � b 1 T13.13m
5. a D bC .a

:
� b/ 4 T13.23a

6. Sj C b D bC .a
:
� b/ 3,5DE

7. Sj D a
:
� b 6 T6.68

8. ; < Sj T13.13e
9. ; < a

:
� b 7,8DE

10. ; < a
:
� b 2,3-9 9E

11. a > b! ; < a :
� b

T13.23.h. PA ` Sa :
� a D 1.

Given T6.68, this is simple once you see from (a) that Sa D aC .Sa :
� a/ and

from T6.47 that Sa D aC 1.

T13.23.i. PA ` a > ; ! a
:
� 1 < a

You can do this in just a few lines.

T13.23.l. PA ` a � c ! .a
:
� c/C b D .aC b/

:
� c.

1. a � c A (g!I)

2. a D c C .a
:
� c/ 1 T13.23a

3. aC b � a T13.13u
4. aC b � c 1,3 T13.13a
5. aC b D c C Œ.aC b/

:
� c� 4 T13.23a

6. Œc C .a
:
� c/�C b D c C Œ.aC b/

:
� c� 2,5DE

7. c C Œ.a
:
� c/C b� D c C Œ.aC b/

:
� c� 6 T6.56

8. .a
:
� c/C b D .aC b/

:
� c 7 T6.68

9. a � c! .a
:
� c/C b D .aC b/

:
� c 1-8!I

T13.23.n. PA ` .a :
� b/

:
� c D a

:
� .b C c/.

Exercise 13.14 T13.23.n

ANSWERS FOR CHAPTER 13 814

1. a � bC c _ a < bC c T13.13q

2. bC c > a A (g 1_E)

3. bC c � a 2 T13.13m
4. a

:
� .bC c/ D ; 3 T13.23b

5. a � b _ a < b T13.13q
6. b > a A (g 5_E)

7. b � a 6 T13.13m
8. a

:
� b D ; 7 T13.23b

9. c � ; T13.13d
10. c � a

:
� b 8,9DE

11. .a
:
� b/

:
� c D ; 10 T13.23b

12. a � b A (g 5_E)

13. a D bC .a
:
� b/ 12 T13.23a

14. bC c � bC .a
:
� b/ 3,13DE

15. c � a
:
� b 14 T13.13v

16. .a
:
� b/

:
� c D ; 15 T13.23b

17. .a
:
� b/

:
� c D ; 5,6-11,12-16 _E

18. .a
:
� b/

:
� c D a

:
� .bC c/ 17,4DE

19. a � bC c A (g 1_E)

20. a D .bC c/C Œa
:
� .bC c/� 19 T13.23a

21. bC c � b T13.13u
22. a � b 19,21 T13.13a
23. a D bC .a

:
� b/ 22 T13.23a

24. bC .a
:
� b/ � bC c 19,23DE

25. a
:
� b � c 24 T13.13v

26. a
:
� b D c C Œ.a

:
� b/

:
� c� 25 T13.23a

27. bC .a
:
� b/ D .bC c/C Œa

:
� .bC c/� 20,23DE

28. bC .c C Œ.a
:
� b/

:
� c�/ D .bC c/C Œa

:
� .bC c/� 26,27DE

29. .bC c/C Œ.a
:
� b/

:
� c� D .bC c/C Œa

:
� .bC c/� 28 T6.56

30. .a
:
� b/

:
� c D a

:
� .bC c/ 29 T6.68

31. .a :
� b/

:
� c D a

:
� .bC c/ 1,2-18,19-30 _E

T13.23.o. PA ` .aC c/ :
� .b C c/ D a

:
� b.

Start with a � b _ a < b. The second case is easy. For the first, you can apply
T13.23a to both a � b and to aC c � b C c.

T13.23.p. PA ` a � .b :
� c/ D a � b

:
� a � c.

Exercise 13.14 T13.23.p

ANSWERS FOR CHAPTER 13 815

1. a D ;_ a > ; T13.13f

2. a D ; A (g 1_E)

3. a.b
:
� c/ D ; 2 T6.58

4. ab D ; 2 T6.58
5. ac � ; T13.13d
6. ac � ab 5,4DE
7. ab

:
� ac D ; 6 T13.23b

8. a.b
:
� c/ D ab

:
� ac 3,7DE

9. a > ; A (g 1_E)

10. b � c _ b < c T13.13q
11. c > b A (g 10_E)

12. c � b 11 T13.13m
13. b

:
� c D ; 12 T13.23b

14. a.b
:
� c/ D ; 13 T6.43

15. ac � ab 12 T13.13aa
16. ab

:
� ac D ; 15 T13.23b

17. a.b
:
� c/ D ab

:
� ac 14,16DE

18. b � c A (g 10_E)

19. b D c C .b
:
� c/ 18 T13.23a

20. ab D ab DI
21. ab D aŒc C .b

:
� c/� 20,19DE

22. ab D ac C a.b
:
� c/ 21 T6.63

23. ab � ac 18 T13.13aa
24. ab D ac C .ab

:
� ac/ 23 T13.23a

25. ac C a.b
:
� c/ D ac C .ab

:
� ac/ 22,24DE

26. a.b
:
� c/ D ab

:
� ac 25 T6.68

27. a.b
:
� c/ D ab

:
� ac 10,11-17,18-26 _E

28. a.b :
� c/ D ab

:
� ac 1,2-8,9-27 _E

E13.15. Show each of the results in T13.24

T13.24.

T13.24.a. PA ` ;ja

This is nearly immediate from the definition and T6.57.

T13.24.b. PA ` ajSa.

This is nearly immediate from the definition and T6.57.

T13.24.d. PA ` ajb ! aj.b � c/.

With the assumption for !I, you will be able to get .Sa � j /c D bc; then
simple association and the definition give the result.

Exercise 13.15 T13.24.d

ANSWERS FOR CHAPTER 13 816

T13.24.f. PA ` .ajSb ^ bjc/! ajc.

This is straightforward once you apply the definition to your assumption for
!I, and then make the assumptions for 9E.

T13.24.g. PA ` ajb ! Œaj.b C c/$ ajc�.
1. ajb A (g!I)

2. 9q.Sa � q D b/ 1 def
3. Sa � j D b A (g 29E)

4. aj.bC c/ A (g$I)

5. 9q.Sa � q D bC c/ 4 def
6. Sa � k D bC c A (g 59E)

7. Sa � k D .Sa � j /C c 3,6DE
8. j � k _ k < j T13.13q
9. k < j A (c �I)

10. Sa � j � .Sa � j /C c T13.13u
11. ; < Sa T13.13e
12. Sa � k < Sa � j 9,11 T13.13ad
13. Sa � k < .Sa � j /C c 10,12 T13.13c
14. Sa � k ¤ .Sa � j /C c 13 T13.13s
15. ? 7,14?I

16. k – j 9-15�I
17. j � k 8,16 DS
18. 9v.vC j D k/ 17 def
19. l C j D k A (g 189E)

20. Sa � .l C j / D .Sa � j /C c 7,19DE
21. .Sa � l/C .Sa � j / D .Sa � j /C c 20 T6.63
22. Sa � l D c 21 T6.68
23. 9q.Sa � q D c/ 22 9I
24. ajc 23 def

25. ajc 18,19-24 9E

26. ajc 5,6-25 9E

27. ajc A (g$I)

28. 9q.Sa � q D c/ 27 def
29. Sa � k D c A (g 289E)

30. bC c D bC c DI
31. .Sa � j /C .Sa � k/ D bC c 30,3,29DE
32. Sa � .j C k/ D bC c 31 T6.63
33. 9q.Sa � q D bC c/ 32 9I
34. aj.bC c/ 33 def

35. aj.bC c/ 28,29-34 9E

36. aj.bC c/$ ajc 4-26,27-35$I

37. aj.bC c/$ ajc 2,3-36 9E

38. ajb! Œaj.bC c/$ ajc� 1-37!I

Exercise 13.15 T13.24.g

ANSWERS FOR CHAPTER 13 817

T13.24.h. PA ` .b � c ^ ajb/! Œaj.b
:
� c/$ ajc�.

From the assumption for!I you have aj.c C .b :
� c//; then with each of the

assumptions for$I you will be able to apply (g).

T13.24.i. PA ` a < b ! b − Sa.

Make the standard assumptions for!I, �I and, from the definition, 9E to get
Sb � j D Sa; then, using the last strategy for reaching a contradiction, both
j D ; and j ¤ ; lead to contradiction.

T13.24.j. PA ` ajb $ rm.b; a/ D ;.

This is a matter of connecting the definitions. From ajb you get Sa � j D b

and from rm.b; a/ D ;, b D Sa � j C ; ^ ; < Sa; observe also that when
Sa � j D b you have j � b for (9I).

T13.24.k. PA ` rmŒaC .y � Sd/; d � D rm.a; d/.

Let r D rm.a; d/
1. .9w � a/Œa D Sd �w C r ^ r < Sd� def rm

2. a D .Sd � j /C r ^ r < Sd A (g 1(9E))
3. j � a

4. a D .Sd � j /C r 2 ^E
5. aC .y � Sd/ D aC .y � Sd/ DI
6. aC .y � Sd/ D Œ.Sd � j /C r�C .y � Sd/ 4,5DE
7. aC .y � Sd/ D Œ.Sd � j /C .Sd � y/�C r 6 with T6.56
8. aC .y � Sd/ D Sd � .j C y/C r 7 T6.63
9. r < Sd 2 ^E

10. aC .y � Sd/ D Sd � .j C y/C r ^ r < Sd 8,9 ^I
11. aC .y � Sd/ D Œd � .j C y/C .j C y/�C r 8 T6.60
12. aC .y � Sd/ D .j C y/C Œd � .j C y/C r� 11 with T6.56
13. 9vŒvC .j C y/ D aC .y � Sd/� 12 9I
14. j C y � aC .y � Sd/ 13 def
15. .9w � aC .y � Sd//ŒaC .y � Sd/ D Sd �w C r ^ r < Sd� 10,14 (9I)
16. rm.aC .y � Sd/; d/ D r 15 def

17. rm.aC .y � Sd/; d/ D r 1,2-16 (9E)

T13.24.l. PA ` Sd � z � a! z � qt.a; d/.

Let r D rm.a; d/ and q D qt.a; d/

Exercise 13.15 T13.24.l

ANSWERS FOR CHAPTER 13 818

1. a D Sd � qC r ^ r < Sd def qt

2. Sd � z � a A (g!I)

3. z > q A (c �I)

4. z � Sq 3 T13.13l
5. a D Sd � qC r 1 ^E
6. Sd � Sq D .Sd � q/C Sd T6.44
7. Sd � z � Sd � Sq 4 T13.13aa
8. Sd � z � .Sd � q/C Sd 7,6DE
9. r < Sd 1 ^E

10. .Sd � q/C r < .Sd � q/C Sd 9 T13.13w
11. a < .Sd � q/C Sd 5,10DE
12. a < Sd � z 8,11 T13.13c
13. a – Sd � z 2 T13.13r
14. ? 12,13?I

15. z � q 3-14�I
16. z � q 15 T13.13r

17. Sd � z � a! z � q 2-16!I
18. Sd � z � a! z � qt.a; d/ 17 abv

T13.24.m. PA ` a � y � Sd ! rmŒa :
� .y � Sd/; d � D rm.a; d/

Let r D rm.a; d/ and q D qt.a; d/
1. a D Sd � qC r ^ r < Sd def qt

2. a � y � Sd A (g!I)

3. a D Sd � qC r 1 ^E
4. a D .y � Sd/C Œa

:
� .y � Sd/� 2 T13.23a

5. Sd � qC r D .y � Sd/C Œa
:
� .y � Sd/� 3,4DE

6. y � q 2 T13.24l
7. Sd � y � Sd � q 6 T13.13aa
8. Sd � q D .Sd � y/C Œ.Sd � q/

:
� .Sd � y/� 7 T13.23a

9. .Sd � q/C r D .Sd � q/C r DI
10. Œ.Sd � q/

:
� .Sd � y/�C Œ.Sd � y/C r� D .Sd � q/C r 8,9DE

11. Œ.Sd � q/
:
� .Sd � y/�C Œ.Sd � y/C r� D .y � Sd/C Œa

:
� .y � Sd/� 5,10DE

12. Œ.Sd � q/
:
� .Sd � y/�C r D a

:
� .y � Sd/ 11 T6.68

13. a
:
� .y � Sd/ D Sd.q

:
� y/C r 12 T13.23p

14. r < Sd 1 ^E
15. a

:
� .y � Sd/ D Sd.q

:
� y/C r ^ r < Sd 13,14 ^I

16. a
:
� .y � Sd/ D Œd.q

:
� y/C .q

:
� y/�C r� 13 T6.60

17. 9vŒvC .q
:
� y/ D a

:
� .y � Sd/ 16 9I

18. q
:
� y � a

:
� .y � Sd/ 17 def

19. .9w < a
:
� .y � Sd//Œa

:
� .y � Sd/ D Sd �w C r ^ r < Sd� 15,18 (9I)

20. rm.a :
� .y � Sd/; d/ D r 19 def rm

21. a � y � Sd ! rm.a :
� .y � Sd/; d/ D r 2-20!I

E13.16. Show each of the the results in T13.25.

T13.25.

Exercise 13.16 T13.25

ANSWERS FOR CHAPTER 13 819

T13.25.d. PA ` 8xŒx > 1! 9z.Pr.Sz/ ^ zjx/�
1. ; > 1! 9z.Pr.Sz/^ zj;/ trivial

2. .8y � k/Œy > 1! 9z.Pr.Sz/^ zjy/� A (g!I)

3. Sk > 1 A (g!I)

4. Pr.Sk/_�Pr.Sk/ T3.1
5. Pr.Sk/ A (g 4_E)

6. kjSk T13.24b
7. Pr.Sk/^ kjSk 5,6 ^I
8. 9z.Pr.Sz/^ zjSk/ 7 9I

9. �Pr.Sk/ A (g 4_E)

10. �.1 < Sk ^8dŒd jSk! .d D ;_ Sd D Sk/� 9 def
11. 1 – Sk _ 9dŒd jSk ^ d ¤ ;^ Sd ¤ Sk� 10 DeM,QN
12. 9dŒd jSk ^ d ¤ ;^ Sd ¤ Sk� 3,11 DS
13. j jSk ^ j ¤ ;^ Sj ¤ Sk A (g 129E)

14. j jSk 13 ^E
15. j ¤ ; 13 ^E
16. Sj ¤ Sk 13 ^E
17. Sj � k _ k < Sj T13.13q
18. k < Sj A (c �I)

19. k < j _ k D j 18 T13.13n
20. k D j A (c 19_E)

21. Sk D Sk DI
22. Sj D Sk 21,20DE
23. ? 16,22?I

24. k < j A (c 19_E)

25. j − Sk 24 T13.24i
26. ? 14,25?I

27. ? 19,20-23,24-26 _E

28. k – Sj 18-27�I
29. Sj � k 17,28 DS
30. Sj > 1! 9z.Pr.Sz/^ zjSj/ 2,29 (8E)
31. j > ; 15 T13.13f
32. Sj > 1 31 T13.13k
33. 9z.Pr.Sz/^ zjSj/ 30,32!E
34. Pr.Sl/^ ljSj A (g 339E)

35. ljSj 34 ^E
36. ljSj ^ j jSk 35,14 ^I
37. ljSk 36 T13.24f
38. Pr.Sl/ 34 ^E
39. Pr.Sl/^ ljSk 38,37 ^I
40. 9z.Pr.Sz/^ zjSk/ 39 9I

41. 9z.Pr.Sz/^ zjSk/ 33,34-40 9E

42. 9z.Pr.Sz/^ zjSk/ 12,13-41 9E

43. 9z.Pr.Sz/^ zjSk/ 4,4-8,9-42 _E

44. Sk > 1! 9z.Pr.Sz/^ zjSk/ 3-43!I

45. .8y � k/Œy > 1! 9z.Pr.Sz/^ zjy/�! ŒSk > 1! 9z.Pr.Sz/^ zjSk/� 2-44!I
46. 8xf.8y � x/Œy > 1! 9z.Pr.Sz/^ zjy/�! ŒSx > 1! 9z.Pr.Sz/^ zjSx/�g 45 8I
47. 8xŒx > 1! 9z.Pr.Sz/^ zjx/� 1,46 T13.13ag

T13.25.e. PA ` Rp.a; b/$ �9xŒPr.Sx/ ^ xja ^ xjb�.

Exercise 13.16 T13.25.e

ANSWERS FOR CHAPTER 13 820

1. Rp.a; b/ A (g$I)

2. 8dŒ.d ja ^ d jb/! d D ;� 1 def
3. 9xŒPr.Sx/^ xja ^ xjb� A (c �I)

4. Pr.Sj /^ j ja ^ j jb A (c 39E)

5. j ja ^ j jb 4 ^E
6. j D ; 2,5 8E
7. 1 � 1 T13.13m
8. Sj � 1 6,7DE
9. 1 – Sj 8 T13.13r

10. Pr.Sj / 4 ^E
11. 1 < Sj ^8dŒd jSj ! .d D ;_ Sd D Sj/� 10 def
12. 1 < Sj 11 ^E
13. ? 9,12?I

14. ? 3,4-13 9E

15. �9xŒPr.Sx/^ xja ^ xjb� 3-14�I

16. �9xŒPr.Sx/^ xja ^ xjb� A (g$I)

17. 8xŒPr.Sx/!�.xja ^ xjb/� 16 QN,DeM
18. j ja ^ j jb A (g!I)

19. j D ;_ j > ; T13.13f
20. j > ; A (c �I)

21. Sj > 1 20 T13.13k
22. 9z.Pr.Sz/^ zjSj/ 21 T13.25d
23. Pr.Sk/^ kjSj A (c 229E)

24. kjSj 23 ^E
25. j ja 18 ^E
26. kjSj ^ j ja 24,25 ^I
27. kja 26 T13.24f
28. j jb 18 ^E
29. kjSj ^ j jb 26,28 ^E
30. kjb 29 T13.24f
31. kja ^ kjb 27,30 ^I
32. Pr.Sk/ 23 ^E
33. �.kja ^ kjb/ 17,32 8E
34. ? 31,33?I

35. ? 22,23-34 9E

36. j � ; 20-35�I
37. j D ; 19,36 DS

38. .j ja ^ j jb/! j D ; 18-37!I
39. 8dŒ.d ja ^ d jb/! d D ;� 38 8I
40. Rp.a; b/ 39 def

41. Rp.a; b/$�9xŒPr.Sx/^ xja ^ xjb� 1-15,16-40$I

T13.25.f. PA ` 8x8yŒG.a; b; x/! G.a; b; x � y/�

With the assumptions G.a; b; j / and then au C j D bv for!I and 9E, you

Exercise 13.16 T13.25.f

ANSWERS FOR CHAPTER 13 821

can show auk C jk D bkv and generalize.

T13.25.g. PA ` .a > ; ^ b > ;/ ! 8x8yŒ.G.a; b; x/ ^ G.a; b; y/ ^ x � y/ !
G.a; b; x

:
� y/�

1. a > ; ^ b > ; A (g!I)

2. a > ; 1 ^E
3. b > ; 1 ^E
4. G.a; b; i/^G.a; b; j /^ i � j A (g!I)

5. G.a; b; i/ 4 ^E
6. 9x9y.axC i D by/ 5 def
7. G.a; b; j / 4 ^E
8. 9x9y.axC j D by/ 7 def
9. apC i D bq A (g 69E)

10. ar C j D bs A (g 89E)

11. i � j 4 ^E
12. bar � ar 3 T13.13z
13. abs � bs 2 T13.13z
14. apC i � i T13.13u
15. bq � i 9,14DE
16. bq � j 11,15 T13.13a
17. bar C bq � ar C j 12,16 T13.13x
18. bar C bq � bs 10,17DE
19. .bqC bar/C .bsa

:
� bs/ D .bqC bar/C .bsa

:
� bs/ DI

20. ŒbsaC .bqC bar/�
:
� bs D .bqC bar/C .bsa

:
� bs/ 13,19 T13.23l

21. Œ.bqC bar/
:
� bs�C bsa D .bqC bar/C .bsa

:
� bs/ 18,20 T13.23l

22. Œ.bqC bar/
:
� .ar C j /�C bsa D .bqC bar/C .bsa

:
� bs/ 10,21DE

23. Œ..bqC bar/
:
� j /

:
� ar�C bsa D .bqC bar/C .bsa

:
� bs/ 22 T13.23n

24. Œ..bq
:
� j /C bar/

:
� ar�C bsa D .bqC bar/C .bsa

:
� bs/ 16,23 T13.23l

25. Œ.bar
:
� ar/C .bq

:
� j /�C bsa D .bqC bar/C .bsa

:
� bs/ 12,24 T13.23l

26. Œ.bar
:
� ar/C ..apC i/

:
� j /�C bsa D .bqC bar/C .bsa

:
� bs/ 9,25DE

27. Œ.bar
:
� ar/C ..i

:
� j /C ap�C bsa D .bqC bar/C .bsa

:
� bs/ 11,26 T13.23l

28. .apC abs/C .bar
:
� ar/C .i

:
� j / D .bqC bar/C .bsa

:
� bs/ 27 assoc com

29. a.pC bs/C .bar
:
� ar/C .i

:
� j / D b.qC ar/C .bsa

:
� bs/ 28 T6.63

30. a.pC bs/C a.br
:
� r/C .i

:
� j / D b.qC ar/C b.sa

:
� s/ 29 T13.23p

31. aŒ.pC bs/C .br
:
� r/�C .i

:
� j / D bŒ.qC ar/C .sa

:
� s/� 30 T6.63

32. 9x9yŒaxC .i
:
� j / D by� 31 9I

33. G.a; b; i
:
� j / 32 def

34. G.a; b; i
:
� j / 8,10-33 9E

35. G.a; b; i
:
� j / 6,9-34 9E

36. ŒG.a; b; i/^G.a; b; j /^ i � j �! G.a; b; i
:
� j / 4-35!I

37. 8x8y.ŒG.a; b; x/^G.a; b; y/^ x � y�! G.a; b; x
:
� y// 36 8I

38. .a > ; ^ b > ;/!8x8y.ŒG.a; b; x/^G.a; b; y/^ x � y�! G.a; b; x
:
� y// 1-37!I

T13.25.h. PA ` ŒRp.a; b/ ^ a > 1 ^ b > 1�! 9x9y.ax C 1 D by/

(a) Show a � .b
:
� 1/C a D b � a and generalize.

Exercise 13.16 T13.25.h

ANSWERS FOR CHAPTER 13 822

(b) Show a � ; C b D b � 1 and generalize.

(c) Let q D qt.i; d.a; b// and r D rm.i; d.a; b//.

c1. i D .Sd.a; b/� q/C r def qt
c2. r < Sd.a; b/ from def rm

c3. .8y < d.a; b//�Œ.a > ; ^ b > ;/! G.a; b; Sy/� 1 ^E
c4. G.a; b; i/ A (g!I)

c5. G.a; b; Sd.a; b/� q/ 7 T13.25f
c6. Sd.a; b/� q � .Sd.a; b/� q/C r T13.13u
c7. Sd.a; b/� q � i c1,c6DE
c8. 8x8yŒ.G.a; b; x/^G.a; b; y/^ x � y/! G.a; b; x

:
� y/� 6 T13.25g

c9. G.a; b; i
:
� .Sd.a; b/� q// c4,c5,c7,c8 8E

c10. i D Sd.a; b/� qC Œi
:
� .Sd.a; b/� q/� c7 T13.23a

c11. Sd.a; b/� qC Œi
:
� .Sd.a; b/� q/� D .Sd.a; b/� q/C r c1,c10DE

c12. i
:
� .Sd.a; b/� q/ D r c11 T6.68

c13. G.a; b; r/ c9,c11DE
c14. 9y.r D Sy/ A (c �I)

c15. r D Sk A (c c149E)

c16. Sk < Sd.a; b/ c2,c16DE
c17. k < d.a; b/ c16 T13.13k
c18. �Œ.a > ; ^ b > ;/! G.a; b; Sk/� c3,c17 (8E)
c19. .a > ; ^ b > ;/^�G.a; b; Sk/ c18 Impl, Dem
c20. �G.a; b; Sk/ c19 ^E
c21. �G.a; b; r/ c20,c15DE
c22. ? c13,c21?I

c23. ? c14,c15-c22 9E

c24. �9y.r D Sy/ c14-c23�I
c25. r D ; c24 T6.45
c26. d.a; b/ji c25 T13.24j

c27. G.a; b; i/! d.a; b/ji c4-c24!I
c28. 8xŒG.a; b; x/! d.a; b/jx� c27 8I

T13.25.i. PA ` Pr.Sa/ ^ aj.b � c/�! .ajb _ ajc/

Exercise 13.16 T13.25.i

ANSWERS FOR CHAPTER 13 823

1. Pr.Sa/^ aj.b � c/ A (g!I)

2. Pr.Sa/ 1 ^E
3. 1 < Sa ^8xŒxjSa! .x D ;_ Sx D Sa/� 2 def
4. 8xŒxjSa! .x D ;_ Sx D Sa/� 3 ^E
5. aj.b � c/ 1 ^E
6. a − b A (g!I)

7. j jb ^ j jSa A (g!I)

8. j jSa 7 ^E
9. j D ;_ Sj D Sa 4,8 8E

10. Sj D Sa A (c �I)

11. j D a 10 T6.40
12. j jb 7 ^E
13. ajb 12,11DE
14. ? 6,13?I

15. Sj ¤ Sa 10-14�I
16. j D ; 9,15 DS

17. .j jb ^ j jSa/! j D ; 7-16!I
18. 8xŒ.xjb ^ xjSa/! x D ;� 17 8I
19. Rp.b; Sa/ 18 def
20. Sa > ; T13.13e
21. b � ; A (c �E)

22. b D ; 21 T13.13f
23. aj; T13.24c
24. ajb 22,23DE
25. ? 6,24?I

26. b > ; 21-25�E
27. 9x9yŒbxC 1 D Sa � y� 19,20,26 T13.25h
28. bpC 1 D Sa � q A (g 279E)

29. c.Sa � q/ D c.Sa � q/ DI
30. c.bpC 1/ D c.Sa � q/ 28,29DE
31. cbpC c D c.Sa � q/ 30 T6.63
32. ajcbp 5 T13.24d
33. ajSa T13.24b
34. ajc.Sa � q/ 33 T13.24d
35. aj.cbpC c/ 31,34DE
36. ajc 32,35 T13.24g

37. ajc 27,28-36 9E

38. a − b! ajc 6-37!I
39. ajb _ ajc 38 Impl

40. ŒPr.Sa/^ aj.b � c/�! .ajb _ ajc/ 1-39!I

E13.17. Show the conditions for Def [lcm] and Def [plm]. Then show each of the
results in T13.26.

Def [lcm].

Exercise 13.17 Def [lcm]

ANSWERS FOR CHAPTER 13 824

(i) PA ` 9xŒx > ; ^ .8i < k/m.i/jx�

Supposing the zero case is done.

1. 9xŒx > ; ^ .8i < ;/m.i/jx� zero case

2. 9xŒx > ; ^ .8i < j /m.i/jx� A (g!I)

3. a > ; ^ .8i < j /m.i/ja A (g 29E)

4. a > ; 3 ^E
5. .8i < j /m.i/ja 3 ^E
6. Sm.j / > ; T13.13e
8. a � Sm.j / � Sm.j / 4 T13.13z
9. a � Sm.j / > ; 6,8 T13.13c

10. l < Sj A (g (8I))

11. l < j _ l D j 10 T13.13n
12. l < j A (g 11_E)

13. m.l/ja 5,12 (8E)
14. m.l/j.a � Sm.j // 13 T13.24d

15. l D j A (g 11_E)

16. m.j /jSm.j / T13.24b
17. m.l/jSm.j / 16,15DE
18. m.l/j.a � Sm.j // 17 T13.24d

19. m.l/j.a � Sm.j // 11,12-14,15-18 _E

20. .8i < Sj /m.i/j.a � Sm.j // 10-19 (8I)
21. a � Sm.j / > ; ^ .8i < Sj /m.i/j.a � Sm.j // 9,20 ^I
22. 9xŒx > ; ^ .8i < Sj /m.i/jx� 21 9I

23. 9xŒx > ; ^ .8i < Sj /m.i/jx� 2,3-22 9E

24. 9xŒx > ; ^ .8i < j /m.i/jx�! 9xŒx > ; ^ .8i < Sj /m.i/jx� 2-23!I
25. 8y.9xŒx > ; ^ .8i < y/m.i/jx�! 9xŒx > ; ^ .8i < Sy/m.i/jx�/ 248I
26. 9xŒx > ; ^ .8i < k/m.i/jx� 1,25 IN

Def [plm]. These are straightforward.

T13.26.

T13.26.a. Show 1 > ; ^ .8i < ;/m.i/j1 ^ .8z < 1/�Œz > ; ^ .8i < ;/m.i/jz�
and apply the definition.

T13.26.b. This is straightforward.

T13.26.c. PA ` .8i < k/m.i/jx ! pkjx

Let q D qt.x; pk/ and r D rm.x; pk/.

Exercise 13.17 T13.26.c

ANSWERS FOR CHAPTER 13 825

1. .8y < lk/�Œy > ; ^ .8i < k/m.i/jy� def lk T13.19c
2. Spk D lk def pk

3. x D .Spk � q/C r def q
4. r < Spk from def r

5. .8i < k/m.i/jx A (g!I)

6. r < lk 4,2DE
7. a < k A (g (8I))

8. m.a/jx 5,7 (8E)
9. m.a/j..Spk � q/C r/ 8,3DE

10. m.a/jlk 7 T13.26b
11. m.a/jSpk 2,10DE
12. m.a/j.Spk � q/ 11 T13.24d
13. m.a/jr 9,12 T13.24g

14. .8i < k/m.i/jr 7-13 (8I)
15. �Œr > ; ^ .8i < k/m.i/jr� 1,6 (8E)
16. r � ;_�.8i < k/m.i/jr 15 DeM
17. r � ; 14,16 DS
18. r D ; 17 T13.13f
19. pk jx 18 T13.24j

20. .8i < k/m.i/jx! pk jx 5-19!I

T13.26.d. PA ` 8nŒ.Pr.Sn/ ^ njlk/! .9i < k/njSm.i/�

Supposing the zero case is done.

Exercise 13.17 T13.26.d

ANSWERS FOR CHAPTER 13 826

1. 8nŒ.Pr.Sn/^ njl;/! .9i < ;/njSm.i/� zero case
2. lj > ; ^ .8i < j /m.i/jlj def lj T13.19b

3. .8i < j /m.i/jlj 2 ^E
4. 8nŒ.Pr.Sn/^ njlj /! .9i < j /njSm.i/� A (g!I)

5. Pr.Sa/^ ajlSj A (g!I)

6. Pr.Sa/ 5 ^E
7. b < Sj A (g (8I))

8. b < j _ b D j 7 T13.13n
9. b < j A (g 8_E)

10. m.b/jlj 3,9 (8E)
11. m.b/j.lj � Sm.j // 10 T13.24d

12. b D j A (g 8_E)

13. m.j /jSm.j / T13.24b
14. m.b/jSm.j / 12,13DE
15. m.b/j.lj � Sm.j // 14 T13.24d

16. m.b/j.lj � Sm.j // 8,9-11,12-15 _E

17. .8i < Sj /m.i/j.lj � Sm.j // 7-16 (8I)
18. pSj j.lj � Sm.j // 17 T13.26c
19. SpSj D lSj def pSj

20. ajlSj 5 ^E
21. ajSpSj 20,19DE
22. aj.lj � Sm.j // 21,18 T13.24f
23. ajlj _ ajSm.j / 6,22 T13.25i
24. j < Sj T13.13h
25. ajlj A (g 23_E)

26. Pr.Sa/^ ajlj 6,25 ^I
27. .9i < j /ajSm.i/ 4,26 8E
28. ajSm.b/ A (g 27(9E))
29. b < j

30. b < Sj 29,24 T13.13b
31. .9i < Sj /ajSm.i/ 28,30 (9I)

32. .9i < Sj /ajSm.i/ 27,28-31 (9E)

33. ajSm.j / A (g 23_E)

34. .9i < Sj /ajSm.i/ 33,24 (9I)

35. .9i < Sj /ajSm.i/ 23,25-32,33-34 _E

36. .Pr.Sa/^ ajlSj /! .9i < Sj /ajSm.i/ 5-35!I
37. 8nŒ.Pr.Sn/^ njlSj /! .9i < Sj /njSm.i/� 36 8I
38. 8nŒ.Pr.Sn/^ njlj /! .9i < j /njSm.i/�!8nŒ.Pr.Sn/^ njlSj /! .9i < Sj /njSm.i/� 4-37!I
39. 8y.8nŒ.Pr.Sn/^ njly/! .9i < y/njSm.i/�!8nŒ.Pr.Sn/^ njlSy/! .9i < Sy/njSm.i/�/ 38 8I
40. 8nŒ.Pr.Sn/^ njlk/! .9i < k/njSm.i/� 1,39 IN

E13.18. Provide derivations to show each of [a] - [e] to complete the derivation for
T13.27.

Exercise 13.18

ANSWERS FOR CHAPTER 13 827

T13.27.

a. PA ` ; � k ! .A.;/! B.;//

Trivially .8i < ;/rm.;; m.i// D h.i/; this gives you B.;/ and (1) follows
easily from this.

b. You will be able to use (10) and (11) to generate the antecedent to (8); (13) then
follows by!E.

c. PA; .11/ ` Rp.la; Sm.a//

c1. �Rp.la; Sm.a// A (c �E)

c2. 9xŒPr.Sx/^ xjla ^ xjSm.a/� c1, T13.25e
c3. Pr.Su/^ ujla ^ ujSm.a/ A (c c29E)

c4. ujSm.a/ c3 ^E
c5. Pr.Su/ c3 ^E
c6. ujla c3 ^E
c7. Pr.Su/^ ujla c5,c6 ^I
c8. .9i < a/ujSm.i/ c7 T13.26d
c9. ujSm.v/ A (c c8(9E))

c10. v < a

c11. a < Sa T13.13n
c12. v < a ^ a < Sa c10,c11 ^I
c13. .v < a ^ a < Sa/! Rp.Sm.v/; Sm.a// 11 8E
c14. Rp.Sm.v/; Sm.a// c13,c12!E
c15. Pr.Su/^ ujSm.v/^ ujSm.a/ c5,c9,c4 ^I
c16. 9xŒPr.Sx/^ xjSm.v/^ xjSm.a/� c15 9I
c17. �Rp.Sm.v/; Sm.a// c16 T13.25e
c18. ? c14,c17?I

c19. ? c8,c9-c18 (9E)

c20. ? c2,c3-c19 9E

c21. Rp.la; Sm.a// c1-c20�E

d. PA; .20/; .21/ ` s D Sm.a/ � c C h.a/

d1. s D .labC r/C h.a/la 21 T6.63
d2. la > ; def la
d3. h.a/la � h.a/ d2 T13.13z
d4. h.a/la D h.a/C Œh.a/la

:
� h.a/� d3 T13.23a

d5. h.a/la D h.a/C Œh.a/la
:
� h.a/1� d4 T6.57

d6. h.a/la D h.a/C h.a/Œla
:
� 1� d5 T13.23p

d7. s D .labC r/C .h.a/C h.a/Œla
:
� 1�/ d1,d6DE

d8. s D ŒlabC .r C Œla
:
� 1�h.a//�C h.a/ d7 T6.55

d9. s D Sm.a/c C h.a/ 20,d8DE

e. PA; .10/; .13/; .21/; .22/ ` .8i < Sa/rm.s;m.i// D h.i/

Exercise 13.18 T13.27

ANSWERS FOR CHAPTER 13 828

e1. u < Sa A (g (8I))

e2. u < a _ u D a e1 T13.13n
e3. u < a A (g e2_E)

e4. m.u/jla e3 T13.26b
e5. m.u/jla.bC h.a// e4 T13.24d
e6. 9qŒSm.u/q D la.bC h.a//� def |
e7. Sm.u/v D la.bC h.a// A (g e69E)

e8. rm.s;m.u// D rm.s;m.u// DI
e9. rm.s;m.u// D rm.la.bC h.a//C r;m.u// e8,21DE

e10. rm.s;m.u// D rm.Sm.u/vC r;m.u// e9,e7DE
e11. rm.s;m.u// D rm.r;m.u// e10 T13.24k
e12. rm.r; .m.u// D h.u/ 13,e3 (8E)
e13. rm.s;m.u// D h.u/ e11,e12DE

e14. rm.s;m.u// D h.u/ e6,e7-e13 9E

e15. u D a A (g e2_E)

e16. rm.s;m.u// D rm.s;m.u// DI
e17. rm.s;m.u// D rm.Sm.a/c C h.a/;m.u// e16,22DE
e18. rm.s;m.u// D rm.Sm.u/c C h.u/;m.u// e15,e17DE
e19. rm.s;m.u// D rm.h.u/;m.u// e18 T13.24k
e20. a < Sa T13.13h
e21. u < Sa e20,e15DE
e22. m.u/ � h.u/ 10,e21 (8E)
e23. h.u/ < Sm.u/ e22 T13.13m,n
e24. Sm.u/� ; D ; T6.43
e25. ;C h.u/ D h.u/ T6.51
e26. h.u/ D Sm.u/� ;C h.u/ e25,e24 =E
e27. h.u/ D Sm.u/� ;C h.u/^ h.u/ < Sm.u/ e26,e23 ^I
e28. 9wŒh.u/ D Sm.u/�w C h.u/^ h.u/ < Sm.u/ e26 9I
e29. rm.h.u/;m.u// D h.u/ e28 def rm
e30. rm.s;m.u// D h.u/ e19,e29DE

e31. rm.s;m.u// D h.u/ e2,e3-e14,e15-e30 _E

e32. .8i < Sa/rm.s;m.i// D h.i/ e1-e31 (8I)

E13.20. Complete the demonstration for T13.29.

T13.29.

Exercise 13.20 T13.29

ANSWERS FOR CHAPTER 13 829

(i) 1. j < k A (g (8I))

2. Sj > ; T13.13e
3. q � Sj � q 2 T13.13z
4. q > ; def q
5. q � Sj > ; 3,4 T13.13c
6. m.j / > ; 5 defm
7. maxp.k;maxsŒh�k/ � maxsŒh�k T13.28a
8. r � maxsŒh�k 7 def r
9. .8i < k/h.i/ � maxsŒh�k T13.28b

10. h.j / � maxsŒh�k 9,1 (8E)
11. h.j / � r 8,10 T13.13a
12. r < Sr T13.13h
13. Sr D s def s
14. r < s 12,13DE
15. h.j / < s 11,14 T13.13c
16. rjq 14 T13.26b
17. 9vŒSr � v D q� def j
18. Sr � a D q A (g 179E)

19. s � a D q 13,18DE
20. a D ;_ a > ; T13.13f
21. a D ; A (c �I)

22. s � ; D ; T6.43
23. s � a D ; 22,21DE
24. q D ; 19,23DE
25. q ¤ ; 4 T13.13f
26. ? 24,25?I

27. a ¤ ; 21-26�I
28. a > ; 20,27 DS
29. s � a � s 28 T13.13z
30. s � q 19,29DE
31. q � Sj � s 30,3 T13.13a
32. q � Sj > h.j / 15,31 T13.13c
33. m.j / > h.j / 32 defm
34. m.j / � h.j / 33 T13.13m

35. m.j / � h.j / 17,18-34 9E

36. m.j / > ; ^m.j / � h.j / 6,35 ^I

37. .8i < k/.m.i/ > ; ^m.i/ � h.i// 1-36 (8I)

Exercise 13.20 T13.29

ANSWERS FOR CHAPTER 13 830

(ii) (a) a1. i � j 2 T13.13m
a2. Si � Sj a1 T13.13j
a3. q � Si � q � Sj a2 T13.13aa
a4. S.q � Si/ � S.q � Sj/ a3 T13.13j
a5. aj.S.q � Sj/ :

� S.q � Si// a4,8,9 T13.24h
a6. S.q � Sj/ :

� S.q � Si/ D S.q � Sj/
:
� S.q � Si/ DI

a7. S.q � Sj/ D .q � Sj/C 1 T6.47
a8. S.q � Si/ D .q � Si/C 1 T6.47
a9. S.q � Sj/ :

� S.q � Si/ D Œ.q � Sj/C 1�
:
� Œ.q � Si/C 1� a6,a7,a8DE

a10. Œ.q � Sj/C 1�
:
� Œ.q � Si/C 1� D .q � Sj/

:
� .q � Si/ T13.23o

a11. .q � Sj/ :
� .q � Si/ D q.Sj

:
� Si/ T13.23p

a12. q.Sj :
� Si/ D q.Sj

:
� Si/ DI

a13. Sj D j C 1 T6.47
a14. Si D i C 1 T6.47
a15. q.Sj :

� Si/ D q..j C 1/
:
� .i C 1// a12,a13DE

a16. .j C 1/
:
� .i

:
� 1/ D j

:
� i T13.23o

a17. q.Sj :
� Si/ D q.j

:
� i/ a14,a15DE

a18. S.q � Sj/ :
� S.q � Si/ D q.j

:
� i/ a6,a9,a10,a11,a17DE

a19. ajq.j :
� i/ a5,a18DE

(b) b1. j :
� i > ; 2 T13.23f

b2. 9vŒj :
� i D Sv� b1 T13.13g

b3. j
:
� i D Sl A (g b29E)

b4. ajSl 14,b3DE
b5. j

:
� i � j T13.23c

b6. j
:
� i < k b5,3 T13.13c

b7. maxp.k;maxsŒh�k/ � k T13.28a
b8. Sr > r T13.13h
b9. k < s b7,b8 T13.13c

b10. j
:
� i < s b6,b9 T13.13b

b11. Sl < s b3,b10DE
b12. l < Sl T13.13h
b13. l < s b11,b12 T13.13b
b14. ljq b13 T13.26b
b15. ajq b4,b14 T13.24f

b16. ajq b2,b3-b15 9E

E13.21. Show the conditions for Def [h.i/] and then show T13.30.

Def [h.i/]. (i) is straightforward under i < k _ i � k from T13.13q. And (ii) is also
straightforward.

T13.30.

Exercise 13.21 T13.30

ANSWERS FOR CHAPTER 13 831

1. .k < k ^ h.k/ D ˇ.a; b; k//_ .k � k ^ h.k/ D n/ def h
2. .l < k ^ h.l/ D ˇ.a; b; l//_ .l � k ^ h.l/ D n/ def h
3. 9p9q.8i < Sk/ˇ.p; q; i/ D h.i/ T13.29

4. .8i < Sk/ˇ.c; d; i/ D h.i/ A (g 39E)

5. k < Sk T13.13h
6. ˇ.c; d; k/ D h.k/ 4,5 (8E)
7. k � k T13.13m
8. k – k 7 T13.13r
9. k – k _ h.k/ ¤ ˇ.a; b; k/ 8 _I

10. �.k < k ^ h.k/ D ˇ.a; b; k// 9 DeM
11. k � k ^ h.k/ D n 1,10 DS
12. h.k/ D n 11 ^E
13. ˇ.c; d; k/ D n 6,12DE
14. l < k A (g (8I))

15. l < Sk 14,5 T13.13b
16. ˇ.c; d; l/ D h.l/ 4,15 (8E)
17. l � k 14 T13.13r
18. l � k _ h.l/ ¤ n 17 _I
19. �.l � k ^ h.l/ D n/ 18 DeM
20. l < k ^ h.l/ D ˇ.a; b; l/ 2,19 DS
21. h.l/ D ˇ.a; b; l/ 20 ^E
22. ˇ.c; d; l/ D ˇ.a; b; l/ 16,21DE

23. .8i < k/ˇ.c; d; i/ D ˇ.a; b; i/ 14-22 (8I)
24. .8i < k/ˇ.c; d; i/ D ˇ.a; b; i/^ ˇ.c; d; k/ D n 23,13 ^I
25. 9p9qŒ.8i < k/ˇ.p; q; i/ D ˇ.a; b; i/^ ˇ.p; q; k/ D n� 24 9I

26. 9p9qŒ.8i < k/ˇ.p; q; i/ D ˇ.a; b; i/^ ˇ.p; q; k/ D n� 3,4-25 9E

E13.22. Complete the demonstration of T13.31 by showing the zero case.

T13.31. Apply T13.29 with h.i/ D g.x/ to get 9p9q.8i < 1/ˇ.p; q; i/ D g.Ex/;
then under an assumption for 9E, with ; < 1 the result easily follows.

E13.26. Demonstrate each of the results in T13.37.

T13.37.

T13.37.b. PA ` subc.x; y/ D x :
� y

Exercise 13.26 T13.37.b

ANSWERS FOR CHAPTER 13 832

1. gsubc.x/ D idnt11.x/ def from subc, T13.34
2. subc.x;;/ D gsubc.x/ T13.34

3. gsubc.x/ D x 1 with T13.35c
4. subc.x;;/ D x 2,3DE
5. x :

� ; D x T13.23g
6. subc.x;;/ D x :

� ; 4,5DE
7. subc.x; j / D x :

� j A (g (!I)

8. subc.x; Sj / D hsubc.x; j;subc.x; j // T13.34
9. hsubc.x; j; u/ D pred.idnt33.x; j; u// def from subc, T13.34

10. hsubc.x; j; u/ D pred.u/ 9 with T13.35c,T13.37a
11. hsubc.x; j;subc.x; j // D pred.subc.x; j // 10 8E
12. subc.x; Sj / D pred.subc.x; j // 8,11DE
13. subc.x; Sj / D pred.x :

� j / 7,12DE
14. x � j _ x > j T13.13q
15. x � j A (g 14_E)

16. x � Sj 15 T13.13o
17. x

:
� Sj D ; 16 T13.23b

18. x
:
� j D ; 15 T13.23b

19. pred.;/ D ; T13.36a
20. pred.x :

� j / D ; 18,19DE
21. pred.x :

� j / D x
:
� Sj 20,17DE

22. x > j A (g 14_E)

23. x � Sj T13.13l
24. x D Sj C .x

:
� Sj/ 23 13.23a

25. x � j 22 T13.13m
26. x D j C .x

:
� j / 25 13.23a

27. Sj C .x
:
� Sj/ D j C .x

:
� j / 24,26DE

28. j C ŒS;C .x
:
� Sj/� D j C .x

:
� j / 27 with T6.47

29. S;C .x
:
� Sj/ D x

:
� j 28 T6.68

30. S;C .x
:
� Sj/ D SŒ;C .x

:
� Sj/� T6.53

31. SŒ;C .x
:
� Sj/� D x

:
� j 29,30DE

32. ;C .x
:
� Sj/ D x

:
� Sj T6.51

33. S.x
:
� Sj/ D x

:
� j 31,32DE

34. x
:
� j > ; 22 T13.23f

35. Spred.x :
� j / D x

:
� j 34 T13.36a

36. S.x
:
� Sj/ D Spred.x :

� j / 33,35DE
37. x

:
� Sj D pred.x :

� j / 36 T6.40

38. x
:
� Sj D pred.x :

� j / 14,15-21,22-37 _E
39. subc.x; Sj / D x :

� Sj 13,38DE

40. Œsubc.x; j / D x :
� j �! Œsubc.x; Sj / D x :

� Sj � 7-39!I
41. 8y.Œsubc.x; y/ D x :

� y�! Œsubc.x; Sy/ D x :
� Sy�/ 40 8I

42. subc.x; y/ D x :
� y 6,41 IN

T13.37.f. PA ` Eq.x; y/$ x D y

Exercise 13.26 T13.37.f

ANSWERS FOR CHAPTER 13 833

1. Eq.x; y/$ sg.absval.x - y// D ; def from EQ, T13.34

2. Eq.x; y/$ sgŒ.x :
� y/C .y

:
� x/� D ; 1 with T13.37d,c

3. Eq.x; y/$ Œ.x
:
� y/C .y

:
� x/� D ; 2 T13.36e

4. Eq.x; y/ A (g$I)

5. Œ.x
:
� y/C .y

:
� x/� D ; 3,4$E

6. x � y _ x < y T13.13q
7. x � y A (g 6_E)

8. y
:
� x D ; 7 T13.23b

9. .x
:
� y/C; D ; 5,8DE

10. ;C ; D ; T6.41
11. .x

:
� y/C; D ;C ; 9,10DE

12. x
:
� y D ; 11 T6.68

13. x D y C .x
:
� y/ 7 T13.23a

14. x D y C; 12,13DE
15. y C; D y T6.41
16. x D y 14,15DE

17. x < y A (g 6_E)

18. y � x 17 T13.13m
19. x D y similarly

20. x D y 6,7-17,18-19 _E

21. x D y A (g$I)

22. y � x 21 T13.13m
23. x

:
� y D ; 22 T13.23b

24. x � y 21 T13.13m
25. y

:
� x D ; 24 T13.23b

26. ;C ; D ; T6.41
27. Œ.x

:
� y/C .y

:
� x/� D ; 26,23,25DE

28. Eq.x; y/ 3,27$E

29 . Eq.x; y/$ x D y 4-20,21-28$I

T13.37.i. PA ` Neg.P.Ex//$ �P.Ex/

Exercise 13.26 T13.37.i

ANSWERS FOR CHAPTER 13 834

1. P.Ex/$ chP.Ex/ D ; T13.32
2. Neg.P.Ex//$ csg.chP.Ex// D ; def from NEG, T13.34

3. Neg.P.Ex//$ csg.chP.Ex// D ; 2 T13.37e
4. Neg.P.Ex// A (g$I)

5. csg.chP.Ex// D ; 3,4$E
6. chP.Ex/ > ; 5 T13.36h
7. chP.Ex/ ¤ ; 6 T13.13f
8. �P.Ex/ 1,7 NB

9. �P.Ex/ A (g$I)

10. chP.Ex/ ¤ ; 1,9 NB
11. chP.Ex/ > ; 10 T13.13f
12. csg.chP.Ex// D ; 11 T13.36h
13. Neg.P.Ex// 3,12$E

14. Neg.P.Ex//$�P.Ex/ 4-8,9-13$I

E13.27. Demonstrate each of the results in T13.39.

T13.39.

T13.39.a. PA ` .9 y � z/P.Ex; z; y/$.9y � z/P.Ex; y; z/

1. P.Ex; z; y/$ chP.Ex; z; y/ D ; T13.32
2. chR.Ex; z;;/ D gchR.Ex; z/ T13.34
3. gchR.Ex; z/ D chP.Ex; z;;/ def from ELEQ, T13.34

4. chR.Ex; z;;/ D chP.Ex; z;;/ 2,3DE
5. chR.Ex; z;;/ D ; A (g$I)

6. chP.Ex; z;;/ D ; 4,5DE
7. P.Ex; z;;/ 1,6 8E,$E
8. ; � ; T13.13m
9. .9y � ;/P.Ex; z; y/ 7,8 (9I)

10. .9y � ;/P.Ex; z; y/ A (g$I)

11. P.Ex; z; j / A (g 10(9E))
12. j � ;

13. j D ; 12 T13.13m, T6.49
14. P.Ex; z;;/ 11,13DE
15. chP.Ex; z;;/ D ; 1,14 8E,$E
16. chR.Ex; z;;/ D ; 4,15DE

17. chR.Ex; z;;/ D ; 10,11-16 (9E)

18. chR.Ex; z;;/ D ;$.9y � ;/P.Ex; z; y/ 5-9,10-17$I

Exercise 13.27 T13.39.a

ANSWERS FOR CHAPTER 13 835

1. chR.Ex; z;;/ D ;$.9y � ;/P.Ex; z; y/ zero case
2. P.Ex; z; y/$ chP.Ex; z; y/ D ; T13.32
3. chR.Ex; z; Sj / D hchR.Ex; z; j; chR.x; z; j // T13.34
4. hchR.Ex; z; j; u/ D timesŒu; chP.Ex; z;suc.j //� def from ELEQ, T13.34

5. hchR.Ex; z; j; u/ D u� chP.Ex; z; Sj / 4 T13.35a,e
6. hchR.Ex; z; j; chR.x; z; j // D chR.x; z; j /� chP.Ex; z; Sj / 5 8E
7. chR.Ex; z; Sj / D chR.x; z; j /� chP.Ex; z; Sj / 3,6DE
8. chR.Ex; z; j / D ;$.9y � j /P.Ex; z; y/ A (g!I)

9. chR.Ex; z; Sj / D ; A (g$I)

10. chR.x; z; j /� chP.Ex; z; Sj / D ; 7,9DE
11. chR.x; z; j / D ;_ chR.x; z; j / > ; T13.13f
12. chR.x; z; j / D ; A (g 11_E)

13. .9y � j /P.Ex; z; y/ 8,12$E
14. P.Ex; z; a/ A (g 13(9E))
15. a � j

16. a � Sj 15 T13.13o
17. .9y � Sj/P.Ex; z; y/ 14,16 (9I)

18. .9y � Sj/P.Ex; z; y/ 13,14-17 (9E)

19. chR.x; z; j / > ; A (g 11_E)

20. chR.x; z; j / ¤ ; 19 T13.13f
22. chR.x; z; j /� ; D ; T6.43
23. chR.x; z; j /� chP.Ex; z; Sj / D chR.x; z; j /� ; 10,22DE
24. chP.Ex; z; Sj / D ; 23,20 T6.69
25. P.Ex; z; Sj / 2,24 8E,$E
26. Sj � Sj T13.13m
27. .9y � Sj/P.Ex; z; y/ 15,26 (9I)

28. .9y � Sj/P.Ex; z; y/ 11,12-18,19-27 _E

29. .9y � Sj/P.Ex; z; y/ A (g$I)

30. P.Ex; z; a/ A (g 29(9E))
31. a � Sj

32. a � j _ a D Sj 31 T13.13o
33. a � j A (g 32_E)

34. .9y � j /P.Ex; z; y/ 30,33 (9I)
35. chR.Ex; z; j / D ; 8,34$E
36. chR.Ex; z; j /� chP.Ex; z; Sj / D ; 35 T6.58
37. chR.Ex; z; Sj / D ; 7,36DE

38. a D Sj A (g 32_E)

39. P.Ex; z; Sj / 30,38DE
40. chP.Ex; z; Sj / D ; 2,39 8E,$E
41. chR.Ex; z; j /� chP.Ex; z; Sj / D ; 40 T6.58
42. chR.Ex; z; Sj / D ; 7,41DE

43. chR.Ex; z; Sj / D ; 32,33-37,38-42 _E

44. chR.Ex; z; Sj / D ; 29,30-43 (9E)

45. chR.Ex; z; Sj / D ;$.9y � Sj/P.Ex; z; y/ 9-28,29-44$I

46. ŒchR.Ex; z; j / D ;$.9y � j /P.Ex; z; y/�! ŒchR.Ex; z; Sj / D ;$.9y � Sj/P.Ex; z; y/� 8-45!I
47. 8w.ŒchR.Ex; z;w/ D ;$.9y � w/P.Ex; z; y/�! ŒchR.Ex; z; Sw/ D ;$.9y � Sw/P.Ex; z; y/�/ 46 8I
48. chR.Ex; z; n/ D ;$.9y � n/P.Ex; z; y/ 1,47 IN

Exercise 13.27 T13.39.a

ANSWERS FOR CHAPTER 13 836

1. chR.Ex; z; n/ D ;$.9y � n/P.Ex; z; y/ from above
2. chS.Ex; z/ D chR.Ex; z; z/ def from ELEQ, T13.34
3. S.Ex; z/$ chS.Ex; z/ D ; T13.32
4. chR.Ex; z; z/ D ;$.9y � z/P.Ex; z; y/ 1 8E
5. chS.Ex; z/ D ;$.9y � z/P.Ex; z; y/ 2,4DE
6. S.Ex; z/$.9y � z/P.Ex; z; y/ from 3,5
7. .9 y � z/P.Ex; z; y/$.9y � z/P.Ex; y; z/ 6 abv

T13.39.e. PA ` .�y � z/P.Ex; z; y/$.�y � z/P.Ex; z; y/

(a) a1. q.Ex; z;;/ D gq.Ex; z/ T13.33a
a2. gq.Ex; z/ D zero.chR.Ex; z;;// def from least, T13.34
a3. gq.Ex; z/ D ; a2 T13.35b
a4. q.Ex; z;;/ D ; a1,a3DE
a5. .�y � ;/P.Ex; z; y/ D ; T13.20a
a6. q.Ex; z;;/ D .�y � ;/P.Ex; z; y/ a4,a5DE

(b) b1. k � j A (g (8I))

b2. k < j _ k D j b1 T13.13m
b3. k < j A (g b2_E)

b4. k < a b3,17DE
b5. �P.Ex; z; k/ 15,b4 (8E)

b6. k D j A (g b2_E)

b7. �P.Ex; z; k/ 19,b6DE

b8. �P.Ex; z; k/ b2,b3-b5,b6-b7 _E

b9. .8y � j /�P.Ex; z; y/ b1-b8 (8I)
b10. �.9y � j /P.Ex; z; y/ b9 (QN)
b11. chR.Ex; z; j / ¤ ; 3,b10 NB
b12. chR.Ex; z; j / D 1 2,b11 DS
b13. b D aC 1 12,b12DE
b14. b D Sa b13 T6.47
b15. b D Sj b14,17DE
b16. b D Sj _P.Ex; z; b/ b15 _I
b17. k < b A (g (8I))

b18. k < Sj b17,b15DE
b19. k ¤ Sj b18 T13.13s
b20. k < j _ k D j b18 T13.13.m
b21. k < j A (g b20_E)

b22. k < a b21,17DE
b23. �P.Ex; z; k/ 15,b22 (8E)

b24. k D j A (g b20_E)

b25. �P.Ex; z; k/ 19,b24DE

b26. �P.Ex; z; k/ b20,b21-b23,b24-b25 _E
b27. k ¤ Sj ^�P.Ex; z; k/ b19,b26 ^I

b28. .8w < b/.w ¤ Sj ^�P.Ex; z;w// b17-b27 (8I)
b29. Œb D Sj _P.Ex; z; b/�^ .8w < b/.w ¤ Sj ^�P.Ex; z;w// b16,b28 ^I

Exercise 13.27 T13.39.e

ANSWERS FOR CHAPTER 13 837

(c) c1. j � j T13.13m
c2. .9y � j /P.Ex; z; y/ 21,c1 (9I)
c3. chR.Ex; z; j / D ; 3,c2$E
c4. b D aC; 12,c3DE
c5. aC; D a t6.41
c6. b D a c4,c5DE
c7. b D j 17,c6DE
c8. P.Ex; z; b/ 21,c7DE
c9. b D Sj _P.Ex; z; b/ c8 _I

c10. k < b A (g (8I))

c11. k < j c10,c7DE
c12. k < Sj c11 T13.13n
c13. k ¤ Sj c12 T13.13s
c14. k < a c10,c6DE
c15. �P.Ex; z; k/ 15,c14 (8E)
c16. k ¤ Sj ^�P.Ex; z; k/ c13,c15 ^I

c17. .8w < b/.w ¤ Sj ^�P.Ex; z;w/ c10-c16 (8I)
c18. Œb D Sj _P.Ex; z; b/�^ .8w < b/.w ¤ Sj ^�P.Ex; z;w// c9,c17 ^I

(d) d1. j < a A (c �I)

d2. j ¤ j 15,d1 (8E)
d3. j D j DI
d4. ? d2,d3?I

d5. j – a d1-d4�I
d6. a � j d5 T13.13q
d7. .9y � j /P.Ex; z; y/ 24,d6 (9I)
d8. chR.Ex; z; j / D ; 3,d7$E
d9. b D aC; 12,d8DE

d10. aC; D a t6.41
d11. b D a d9,d10DE
d12. P.Ex; z; b/ 24,d11DE
d13. b D Sj _P.Ex; z; b/ d12 _I
d14. k < b A (g (8I))

d15. k < a d14,d11DE
d16. k < j d14,d6 T13.13c
d17. k < Sj d16 T13.13n
d18. k ¤ Sj d17 T13.13s
d19. �P.Ex; z; k/ 15,d15 (8E)
d20. k ¤ Sj ^�P.Ex; z; k/ d18,d19 ^I

d21. .8w < b/.w ¤ Sj ^�P.Ex; z;w// d14-d20 (8I)
d22. Œb D Sj _P.Ex; z; b/�^ .8w < b/.w ¤ Sj ^�P.Ex; z;w// d13,d21 ^I

1. q.Ex; z; n/ D .�y � n/P.Ex; z; y/ from main arg
2. m.Ex; z/ D q.Ex; z; z/ def from least, T13.34
3. q.Ex; z; z/ D .�y � z/P.Ex; z; y/ 1 8E
4. m.Ex; z/ D .�y � z/P.Ex; z; y/ 2,3DE
5. .�y � z/P.Ex; z; y/$.�y � z/P.Ex; y; z/ 4 abv

T13.39.g. PA ` Prime.n/$ Pr.n/

Exercise 13.27 T13.39.g

ANSWERS FOR CHAPTER 13 838

1. Pr.n/ A (g$I)

2. 1 < n^8xŒxjn! .x D ;_ Sx D n/� 1 Def [Pr]
3. 1 < n 2 ^E
4. 8xŒxjn! .x D ;_ Sx D n/� 2 ^E
5. a < n A (g (8I))

6. ajn! .a D ;_ Sa D n/ 4 8E

7. .8j < n/Œj jn! .j D ;_ Sj D n/� 5-6 (8I)
8. 1 < n^ .8j < n/Œj jn! .j D ;_ Sj D n/� 3,7 ^I
9. Prime.n/ 8 def PRIME and T13.34

10. Prime.n/ A (g$I)

11. 1 < n^ .8j < n/Œj jn! .j D ;_ Sj D n/� 10 def PRIME and T13.34
12. 1 < n 11 ^E
13. .8j < n/Œj jn! .j D ;_ Sj D n/� 11 ^E
14. a < n_ n � a T13.13q
15. a < n A (g 14_E)

16. ajn! .a D ;_ Sa D n/ 13,15 (8E)

17. n � a A (g 14_E)

18. ; < 1 T13.13e
19. ; < n 18,12 T13.13b
20. 9v.n D Sv/ 19 T13.13g
21. n D Sb A (g 209E)

22. Sb � a 17,21DE
23. b < a 22 T13.13l
24. a − Sb 23 T13.24i
25. a − n 24,21DE

26. a − n 20,21-25 9E
27. a − n_ .a D ;_ Sa D n/ 26 _I
28. ajn! .a D ;_ Sa D n/ 27 Impl

29. ajn! .a D ;_ Sa D n/ 14,15-16,17-28 _E
30. 8xŒxjn! .x D ;_ Sx D n/� 29 8I
31. 1 < n^8xŒxjn! .x D ;_ Sx D n/� 12,30 ^I
32. Pr.n/ 31 Def [Pr]

E13.28. Show each of the results from T13.41.

T13.41.

T13.41.m. PA ` m > 1! a < ma

Exercise 13.28 T13.41.m

ANSWERS FOR CHAPTER 13 839

1. m; D 1 T13.41a
2. ; < 1 T13.13e
3. ; < m; 1,2DE
4. m � 1_ ; < m; 3 _I
5. m > 1! ; < m; 4 Impl
6. m > 1! j < mj A (g!I)

7. m > 1 A (g!I)

8. j < mj 6,7!E
9. Sj < Smj 8 T13.13k

10. mSj D mj �m T13.41a
11. 9v.SvC 1 D m/ 7 def
12. Sl C 1 D m A (g 119E)

13. Sl C 1 D SSl T6.47
14. m D SSl 12,13DE
15. mj � SSl D mj � Sl Cmj T6.44
16. mj �m D mj � Sl Cmj 15,14DE
17. mSj D mj � Sl Cmj 16,10DE
18. Sl > ; T13.13e
19. mj � Sl � mj 18 T13.13z
20. m > ; 7,2 T13.13b
21. mj > ; 20 T13.41i
22. mj � Sl > ; 19,21 T13.13c
23. mj � Sl � 1 22 T13.13l
24. mj � Sl Cmj � 1Cmj 23 T13.13v
25. 1Cmj D Smj T6.47
26. mj � Sl Cmj � Smj 24,25DE
27. mSj � Smj 17,26DE
28. Sj < mSj 9,27 T13.13c

29. Sj < mSj 11,12-28 9E

30. m > 1! Sj < mSj 7-29!I

31. .m > 1! j < mj /! .m > 1! Sj < mSj / 6-30!I
32. 8yŒ.m > 1! y < my/! .m > 1! Sy < mSy/� 31 8I
33. m > 1! a < ma 5,32 IN

E13.29. Show each of the results from T13.42.

T13.42.

T13.42.e. PA ` .9y � fact.n/C 1/Œn < y ^ Pr.y/�

Exercise 13.29 T13.42.e

ANSWERS FOR CHAPTER 13 840

1. fact.n/ > 0 1 T13.42c
2. fact.n/C 1 > 1 1 with T13.13w
3. 9zŒPr.Sz/^ zj.fact.n/C 1/� 2 T13.25d
4. Pr.Sk/^ kj.fact.n/C 1/ A (g 39E)

5. Pr.Sk/ 4 ^E
6. Sk > 1 5 def
7. kj.fact.n/C 1/ 4 ^E
8. k < n A (g �I)

9. kjfact.n/ 8 T13.42d
10. kj1 7,9 T13.24g
11. ; < k 6 T13.13k
12. k − 1 11 T13.24i
13. ? 10,12?I

14. k – n 8-12�I
15. n � k 13 T13.13r
16. n < Sk 15 T13.13m,n
17. n < Sk ^ Pr.Sk/ 5,17 ^I
18. fact.n/C 1 D Sfact.n/ T 6.47
19. kjSfact.n/ 7,18DE
20. fact.n/ – k 19 T13.24i
21. k � fact.n/ 20 T13.13r
22. Sk � Sfact.n/ 21 T13.13j
23. Sk � fact.n/C 1 22 T6.47
24. .9y � fact.n/C 1/Œn < y ^ Pr.y/� 17,23 (9I)

25. .9y � fact.n/C 1/Œn < y ^ Pr.y/� 3,4-24 9E

E13.30. Show each of the results from T13.43.

T13.43.

T13.43.m. PA ` 8yPr.y/! 9jpi.j / D y

Exercise 13.30 T13.43.m

ANSWERS FOR CHAPTER 13 841

1. a � pi.0/ A (g (8I))

2. pi.0/ D 2 T13.43a
3. a � 2 1,2DE
4. a D 0_ a D 1_ a D 2 3 T8.16
5. a D 0 A (g 4_E)

6. �Pr.;/ T13.25a
7. �Pr.a/ 6,5DE
8. �Pr.a/_ 9jpi.j / D a 6 _I

9. a D 1 A (g 4_E)

10. �Pr.1/ T13.25b
11. �Pr.a/ 10,9DE
12. �Pr.a/_ 9jpi.j / D a 11 _I

13. a D 2 A (g 4_E)

14. pi.0/ D a 2,13DE
15. 9jpi.j / D a 14 9I
16. �Pr.a/_ 9jpi.j / D a 15 _I

17. �Pr.a/_ 9jpi.j / D a 4,5-8,9-12,13-16 _E
18. Pr.a/! 9jpi.j / D a 17 Impl

19. .8y � pi.;//ŒPr.y/! 9jpi.j / D y� 1-17 (8I)

Exercise 13.30 T13.43.m

ANSWERS FOR CHAPTER 13 842

20. .8y � pi.k//ŒPr.y/! 9jpi.j / D y� A (g!I)

21. a � pi.Sk/ A (g (8I))

22. a D pi.Sk/_ a < pi.Sk/ 21 T13.13m
23. a D pi.Sk/ A (g 22_E)

24. 9jpi.j / D a 23 9I
25. �Pr.a/_ 9jpi.j / D a 24 _I
26. Pr.a/! 9jpi.j / D a 25 Impl

27. a < pi.Sk/ A (g 22_E)

28. a � pi.k/_ a > pi.k/ T13.13q
29. a � pi.k/ A (g 28_E)

30. Pr.a/! 9jpi.j / D a� 20,29 (8E)

31. a > pi.k/ A (g 28_E)

32. .8w < pi.Sk//�Œpi.k/ < w ^ Pr.w/� T13.43e
33. �Œpi.k/ < a ^ Pr.a/� 32,27 (8E)
34. pi.k/ – a _�Pr.a/ 33 DeM
35. �Pr.a/ 34,31 DS
36. �Pr.a/_ 9jpi.j / D a 35 _I
37. Pr.a/! 9jpi.j / D a 36 Impl

38. Pr.a/! 9jpi.j / D a 28,29-30,31-37 _E

39. Pr.a/! 9jpi.j / D a 22,23-26,27-38 _E

40. .8y � pi.Sk//ŒPr.y/! 9jpi.j / D y� 21-39 (8I)

41. .8y � pi.k//ŒPr.y/! 9jpi.j / D y�! .8y � pi.Sk//ŒPr.y/! 9jpi.j / D y� 20-40!I
42. 8z..8y � pi.z//ŒPr.y/! 9jpi.j / D y�! .8y � pi.Sz//ŒPr.y/! 9jpi.j / D y�/ 41 8I
43. .8y � pi.i//ŒPr.y/! 9jpi.j / D y� 19,42 IN

44. Pr.k/ A (g!I)

45. k � k T13.13m
46. Sk < pi.k/ 45 T13.43l
47. k < Sk T13.13h
48. k < pi.k/ 46,47 T13.13b
49. k � pi.k/ 48 T13.13m
50. Pr.k/! 9jpi.j / D k 43,49 (8E)
51. 9jpi.j / D k 44,50!E

52. Pr.k/! 9jpi.j / D k 44-51!I
53. 8yŒPr.y/! 9jpi.j / D y� 52 8I

T13.43.n. PA ` m ¤ n! pred.pi.m// − pi.n/a

Exercise 13.30 T13.43.n

ANSWERS FOR CHAPTER 13 843

1. m ¤ n A (g!I)

2. pi.n/; D 1 T13.41a
3. Spred.pi.n/;/ D pi.n/; T13.43j
4. Spred.pi.n/;/ D 1 2,3DE
5. Spred.pi.m/1/ D pi.m/1 T13.43j
6. pi.m/1 D pi.m/ T13.41b
7. Spred.pi.m// D pi.m/ 5,6DE
8. pi.m/ > 1 T13.43g
9. Spred.pi.m// > Spred.pi.n/;/ 8,7,4DE

10. pred.pi.m// > pred.pi.n/;/ 9 T13.13k
11. pred.pi.m// − Spred.pi.n/;/ 10 T13.24i
12. pred.pi.m// − pi.n/; 11,3DE
13. pred.pi.m// − pi.n/j A (g!I)

14. pred.pi.m//jpi.n/Sj A (c �I)

15. pi.n/Sj D pi.n/j �pi.n/ T13.41a
16. pred.pi.m//j.pi.n/j �pi.n// 14,15DE
17. PrŒpi.m/� T13.43f
18. PrŒSpred.pi.m//� 7,17DE
19. pred.pi.m//jpi.n/j _ pred.pi.m//jpi.n/ 16,18 T13.25i
20. pred.pi.m//jpi.n/ 19,13 DS
21. PrŒpi.n/� T13.43f
22. pred.pi.m// D ;_ Spred.pi.m// D pi.n/ 20,21 def Pr
23. Spred.pi.m// > S; 7,8DE
24. pred.pi.m// > ; 23 T13.13k
25. pred.pi.m// ¤ ; 24 T13.13f
26. Spred.pi.m// D pi.n/ 22,25 DS
27. pi.m/ D pi.n/ 7,26DE
28. m < n_ n < m 1 with T13.13p
29. m < n A (g 28_E)

30. pi.m/ < pi.n/ 29 T13.43k
31. pi.m/ ¤ pi.n/ 30 T13.13f

32. n < m A (g 28_E)

33. pi.n/ < pi.m/ 32 T13.43k
34. pi.m/ ¤ pi.n/ 33 T13.13f

35. pi.m/ ¤ pi.n/ 28,29-31,32-34 _E
36. ? 27,35?I

37. pred.pi.m// − pi.n/Sj 14-36�I

38. Œpi.m// − pi.n/j �! Œpred.pi.m// − pi.n/Sj � 13-37!I
39. 8y.Œpi.m// − pi.n/y �! Œpred.pi.m// − pi.n/Sy �/ 38 8I
40. pred.pi.m// − pi.n/a 12,39 IN

41. m ¤ n! pred.pi.m// − pi.n/a 1-40!I

T13.43.p. PA ` Œm ¤ n ^ pred.pi.m/b/j.s � pi.n/a/�! pred.pi.m/b/js

Exercise 13.30 T13.43.p

ANSWERS FOR CHAPTER 13 844

1. m ¤ n^ pred.pi.m/b/j.s �pi.n/a/ A (g!I)

2. m ¤ n 1 ^E
3. pred.pi.m/b/j.s �pi.n/a/ 1 ^E
4. pi.m/; D 1 T13.41a
5. pred.1/ D ; T13.36b
6. ;js T13.24a
7. pred.pi.m/;/js 6,4,5DE
8. ; — b _ pred.pi.m/;/js 7 _I
9. ; � b! pred.pi.m/;/js 8 Impl

Exercise 13.30 T13.43.p

ANSWERS FOR CHAPTER 13 845

10. j � b! pred.pi.m/j /js A (g!I)

11. Sj � b A (g!I)

12. j � b T13.13l,m
13. pred.pi.m/j /js 10,12!E
14. Spred.pi.m/b/ D pi.m/b T13.43j
15. Spred.pi.m/j / D pi.m/j T13.43j
16. 9qŒSpred.pi.m/b/� q D s �pi.n/a� 3 def
17. 9qŒSpred.pi.m/j /� q D s� 13 def
18. Spred.pi.m/b/� u D s �pi.n/a A (g 169E)

19. pi.m/b � u D s �pi.n/a 14,18DE
20. Spred.pi.m/j /� v D s A (g 179E)

21. pi.m/j � v D s 15,20DE
22. j < b 11 T13.13l
23. 9v.SvC j D b/ 22 def
24. Sl C j D b A (g 239E)

25. pi.m/SlCj D pi.m/Sl �pi.m/j T13.41e
26. pi.m/b D pi.m/Sl �pi.m/j 25,24DE
27. pi.m/Sl �pi.m/j � u D s �pi.n/a 19,26DE
28. pi.m/Sl �pi.m/j � u D pi.m/j � v �pi.n/a 27,21DE
29. pi.m/j ¤ ; with T13.43h
30. pi.m/Sl � u D v �pi.n/a 28,29 T6.69
31. pred.pi.m/1/jpi.m/lC1 T13.41g
32. pi.m/1 D pi.m/ T13.41b
33. l C 1 D Sl T6.47
34. pred.pi.m//jpi.m/Sl 31,32,33DE
35. pred.pi.m//jpi.m/Sl � u 34 T13.24d
36. pred.pi.m//jv �pi.n/a 35,30DE
37. Spred.pi.m/1/ D pi.m/1 T13.43j
38. pi.m/1 D pi.m/ T13.41b
39. Spred.pi.m// D pi.m/ 37,38DE
40. PrŒpi.m/� T13.43f
41. PrŒSpred.pi.m//� 40,39DE
42. pred.pi.m//jv _ pred.pi.m//jpi.n/a 36,41 T13.25i
43. pred.pi.m// − pi.n/a 2 T13.43n
44. pred.pi.m//jv 42,43 DS
45. 9qŒSpred.pi.m//� q D v� 44 def
46. Spred.pi.m//� t D v A (g 459E)

47. pi.m/� t D v 46,39DE
48. pi.m/j �pi.m/� t D s 21,47DE
49. pi.m/j �pi.m/ D pi.m/Sj T13.41a
50. pi.m/Sj � t D s 48,49DE
51. Spred.pi.m/Sj / D pi.m/Sj T13.43j
52. Spred.pi.m/Sj /� t D s 50,51DE
53. 9qŒSpred.pi.m/Sj /� q D s� 52 9I
54. pred.pi.m/Sj /js 53 def

55. pred.pi.m/Sj /js 45,46-54 9E

56. pred.pi.m/Sj /js 23,24-55 9E

57. pred.pi.m/Sj /js 17,20-56 9E

58. pred.pi.m/Sj /js 16,18-57 9E

59. Sj � b! pred.pi.m/Sj /js 11-58!I

60. Œj � b! pred.pi.m/j /js�! ŒSj � b! pred.pi.m/Sj /js� 10-59!I
61. i � b! pred.pi.m/i /js 9,60 IN
62. b � b! pred.pi.m/b/js 61 8E
63. b � b T13.13m
64. pred.pi.m/b/js 62,63!E

65. Œm ¤ n^ pred.pi.m/b/j.s �pi.n/a/�! pred.pi.m/b/js 1-64!I

Exercise 13.30 T13.43.p

ANSWERS FOR CHAPTER 13 846

E13.31. Show each of the results from T13.44.

T13.44.

T13.44.c. PA ` exp.Sn; i/ D �xŒpred.pi.i/x/jSn ^ pred.pi.i/xC1/ − Sn�

1. pred.pi.i/ex.n;i// − Sn T13.19b
2. .8z < ex.n; i//pred.pi.i/z/jSn T13.19c
3. ex.n; i/ D ;_ ex.n; i/ > ; T13.13d,m
4. ex.n; i/ D ; A (c �I)

5. pi.i/; D 1 T13.41a
6. pi.i/ex.n;i/ D 1 4,5DE
7. Spred.pi.i/ex.n;i// D pi.i/ex.n;i/ T13.43j
8. Spred.pi.i/ex.n;i// D S; 6,7DE
9. pred.pi.i/ex.n;i// D ; 8 T6.40

10. ;jSn T13.24a
11. pred.pi.i/ex.n;i//jSn 9,10DE
12. ? 1,11?I

13. ex.n; i/ ¤ ; 4-12�I
14. ex.n; i/ > ; 3,13 DS
15. 9vŒex.n; i/ D Sv� 14 T13.13g
16. ex.n; i/ D Sa A (g 159E)

17. a < Sa T13.13h
18. a < ex.n; i/ 17,16DE
19. pred.pi.i/a/jSn 2,18 (8E)
20. pred.pi.i/Sa/ − Sn 1,16DE
21. Sa D aC 1 T6.47
22. pred.pi.i/aC1/ − Sn 20,21DE
23. pred.pi.i/a/jSn^ pred.pi.i/aC1/ − Sn 19,22 ^I
24. pi.i/ > 1 T13.43g
25. a < pi.i/a 24 T13.41m
26. Spred.pi.i/a/ D pi.i/a T13.43j
27. n – pred.pi.i/a/ 19 T13.24i
28. pred.pi.i/a/ � n 27 T13.13r
29. Spred.pi.i/a/ � Sn 28 T13.13j
30. pi.i/a � Sn 26,29DE
31. a < Sn 25,30 T13.13c
32. a � Sn 31 T13.13m
33. .9x � Sn/Œpred.pi.i/x/jSn^ pred.pi.i/xC1/ − Sn� 23,32 (9I)

34. .9x � Sn/Œpred.pi.i/x/jSn^ pred.pi.i/xC1/ − Sn� 15,16-33 9E
35. .�x � Sn/Œpred.pi.i/x/jSn^ pred.pi.i/xC1/ − Sn� D �xŒpred.pi.i/x/jSn^ pred.pi.i/xC1/ − Sn� 34 T13.20b
36. exp.Sn; i/ D �xŒpred.pi.i/x/jSn^ pred.pi.i/xC1/ − Sn� 35 def

T13.44.l. PA ` 9qŒpi.i/exp.Sn;i/ � q D Sn ^ pred.pi.i// − q ^ 8y.y ¤ i !

exp.q; y/ D exp.Sn; y//�

Exercise 13.31 T13.44.l

ANSWERS FOR CHAPTER 13 847

1. pred.pi.i/exp.Sn;i//jSn^ pred.pi.i/exp.Sn;i/C1/ − Sn T13.44d
2. exp.Sn; i/ D a abv
3. 9qŒSpred.pi.i/a/� q D Sn� 1,2 with ^E
4. pred.pi.i/aC1/ − Sn 1,2 with ^E
5. Spred.pi.i/a/ D pi.i/a T13.43j
6. 9qŒpi.i/a � q D Sn� 3,5DE
7. pi.i/a � j D Sn A (g 69E)

8. pred.pi.i//jj A (c �I)

9. 9qŒSpred.pi.i//� q D j � 8 def
10. Spred.pi.i//� k D j A (g 99E)

11. pi.i/� k D j 10 T13.43j
12. pi.i/a �pi.i/� k D Sn 7,11DE
13. pi.i/aC1 � k D Sn 12 T13.41a
14. Spred.pi.i/aC1/� k D Sn 13 T13.43j
15. pred.pi.i/aC1/jSn 14 def
16. ? 4,15?I

17. ? 9,10-16 9E

18. pred.pi.i// − j 8-17�I
19. j D ;_ j > ; T13.13f
20. j D ; A (c �I)

21. pi.i/a � ; D ; T6.43
22. pi.i/a � j D ; 21,20DE
23. ; D Sn 7,22DE
24. ; ¤ Sn with T13.13e
25. ? 23,24?I

26. j ¤ ; 20-25�I
27. j > ; 19,26 DS
28. k ¤ i A (g!I)

29. 9v.j D Sv/ 27 T13.13g
30. j D Sl A (g 299E)

31. pi.i/a � Sl D Sn 7,30DE
32. exp.Sn; k/ D b abv
33. pred.pi.k/b/jSn 32 T13.44d
34. pred.pi.k/b/jpi.i/a � Sl 31,33DE
35. pred.pi.k/b/jSl 28,34 T13.43p
36. pred.pi.k/bC1/ − Sn T13.44d
37. pred.pi.k/bC1/jSl A (g �I)

38. pred.pi.k/bC1/jpi.i/a � Sl 37 T13.24d
39. pred.pi.k/bC1/jSn 38,31DE
40. ? 36,39?I

41. pred.pi.k/bC1/ − Sl 37-40�I
42. pred.pi.k/b/jSl ^ pred.pi.k/bC1/ − Sl 35,41 ^I
43. exp.Sl; k/ D b 42 T13.44f
44. exp.j; k/ D b 43,30DE
45. exp.j; k/ D exp.Sn; k/ 44 abv

46. exp.j; k/ D exp.Sn; k/ 29,30-45 9E

47. k ¤ i ! exp.j; k/ D exp.Sn; k/ 28-46!I
48. 8y.y ¤ i ! exp.j; y/ D exp.Sn; y// 47 8I
49. pi.i/a � j D Sn^ pred.pi.i// − j ^8y.y ¤ i ! exp.j; y/ D exp.Sn; y// 7,18,48 ^I
50. 9qŒpi.i/a � q D Sn^ pred.pi.i// − q ^8y.y ¤ i ! exp.q; y/ D exp.Sn; y//� 49 9I

51. 9qŒpi.i/exp.Sn;i/ � q D Sn^ pred.pi.i// − q ^8y.y ¤ i ! exp.q; y/ D exp.Sn; y//� 6,7-50 9E

T13.44.m. PA ` exp.Sm � Sn; i/ D exp.Sm; i/C exp.Sn; i/

Exercise 13.31 T13.44.m

ANSWERS FOR CHAPTER 13 848

1. pi.i/a > ; T13.43h
2. pred.pi.i/exp.Sm;i//jSm T13.44d
3. pred.pi.i/exp.Sn;i//jSn T13.44d
4. pred.pi.i/exp.Sm;i/ �pi.i/exp.Sn;i//j.Sm� Sn/ 1,2,3 T13.24e
5. pred.pi.i/exp.Sm;i/Cexp.Sn;i//j.Sm� Sn/ 4 T13.41e
6. 9qŒpi.i/exp.Sm;i/ � q D Sm^ pred.pi.i// − q� T13.44l
7. 9rŒpi.i/exp.Sn;i/ � r D Sn^ pred.pi.i// − r� T13.44l
8. pi.i/exp.m;i/ � q D Sm^ pred.pi.i// − q A (g 6,7 9E)
9. pi.i/exp.Sn;i/ � r D Sn^ pred.pi.i// − r

10. Sm� Sn D pi.i/exp.Sm;i/ � q �pi.i/exp.Sn;i/ � r 8,9 ^E, etc.
11. Sm� Sn D pi.i/exp.Sm;i/Cexp.Sn;i/ � q � r 10 T13.41e
12. pred.pi.i/exp.Sm;i/Cexp.Sn;i/C1/j.Sm� Sn/ A (c �I)

13. 9sŒSpred.pi.i/exp.Sm;i/Cexp.Sn;i/C1/� s D Sm� Sn� 12 def
14. Spred.pi.i/exp.Sm;i/Cexp.Sn;i/C1/� s D Sm� Sn A (g 13 9E)

15. pi.i/exp.Sm;i/Cexp.Sn;i/C1 � s D Sm� Sn 1,14 T13.36c
16. pi.i/exp.Sm;i/Cexp.Sn;i/ �pi.i/� s D Sm� Sn 15 T13.41a
17. pi.i/exp.Sm;i/Cexp.Sn;i/ �pi.i/� s D pi.i/exp.Sm;i/Cexp.Sn;i/ � q � r 11,16DE
18. pi.i/� s D q � r 1,17 T6.69
19. Spred.pi.i//� s D q � r 18 T13.36c
20. 9sŒSpred.pi.i//� s D q � r� 19 9I
21. pred.pi.i//j.q � r/ 20 def
22. pred.pi.i//jq _ pred.pi.i//jr T13.43f,13.25i
23. ? 8,9,22?I

24. ? 13,14-23 9E

25. pred.pi.i/exp.Sm;i/Cexp.Sn;i/C1/ − .Sm� Sn/ 12-24�I
26. pred.pi.i/exp.Sm;i/Cexp.Sn;i//j.Sm� Sn/^pi.i/exp.Sm;i/Cexp.Sn;i/C1/ − .Sm� Sn/ 5,25 ^I
27. exp.Sm� Sn; i/ D exp.Sm; i/C exp.Sn; i/ 26 T13.44f

28. exp.Sm� Sn; i/ D exp.Sm; i/C exp.Sn; i/ 6,7,8-27 9E

E13.32. Show each of the results from T13.45.

T13.45.

T13.45.h. PA ` exp.m; i/ > ; ! len.m/ > i

Exercise 13.32 T13.45.h

ANSWERS FOR CHAPTER 13 849

1. exp.m; i/ > ; A (g!I)

2. exp.m; i/ ¤ ; 1 T13.13f
3. m D ;_m > ; T13.13f
4. m D ; A (g 3_E)

5. len.m/ � i A (c �E)

6. exp.;; i/ D ; T13.44b
7. exp.m; i/ D ; 6,4DE
8. ? 2,7?I

9. len.m/ > i 5-8�E

10. m > ; A (g 3_E)

11. len.m/ � i A (c �E)

12. len.m/ � i 11 T13.13r
13. 9v.m D Sv/ 10 T13.13g
14. m D Sa A (g 139E)

15. exp.Sa; i/ ¤ ; 2,14DE
16. len.Sa/ � i 12,14DE
17. i > Sa A (g �I)

18. i � a 17 T13.13m,n
19. exp.Sa; i/ D ; 18 T13.44h
20. ? 15,19?I

21. i � Sa 17-20�I
22. i � Sa T13.13r
23. .8z � Sa/Œz � len.Sa/! exp.Sa; z/ D ;� T13.45d
24. i � len.Sa/! exp.Sa; i/ D ; 23,22 (8E)
25. exp.Sa; i/ D ; 24,16!E
26. ? 15,25?I

27. ? 13,14-26 9E

28. len.m/ > i 11-27�E

29. len.m/ > i 3,4-9,10-28 _E

30. exp.m; i/ > ; ! len.m/ > i 1-29!I

T13.45.k. PA ` p > ; ! len.pi.i/p/ D Si

Exercise 13.32 T13.45.k

ANSWERS FOR CHAPTER 13 850

1. p > ; A (g!I)

2. len.pi.i/p/ < Si _ len.pi.i/p/ D Si _ len.pi.i/p/ > Si T13.13p
3. exp.pi.i/p; i/ D p T13.44i
4. exp.pi.i/p; i/ > ; 1,3DE
5. len.pi.i/p/ > i 4 T13.45h
6. len.pi.i/p/ � Si 5 T13.13l
7. len.pi.i/p/ – Si 6 T13.13r
8. len.pi.i/p/ > Si A (c �I)

9. pi.i/p > ; T13.43h
10. 9yŒpi.i/p D Sy� 9 T6.50
11. pi.i/p D Sj A (g 109E)

12. .8w < len.Sj //�.8z < Sj/Œz � w ! exp.Sj; z/ D ;� T13.45e
13. len.Sj / > Si 8,11DE
14. �.8z < Sj/Œz � Si ! exp.Sj; z/ D ;� 12,13 (8E)
15. �.8z < pi.i/p/Œz � Si ! exp.pi.i/p; z/ D ;� 11,14DE
16. k < pi.i/p A (g (8I))

17. k � Si A (g!I)

18. k > i 17 T13.13h,c
19. pred.pi.k// − pi.i/p 18 T13.43n
20. pred.pi.k// − Sj 11,19DE
21. exp.Sj; k/ 6� 1 20 T13.44k
22. exp.Sj; k/ < S; 21 T13.13r
23. exp.Sj; k/ < ; _ exp.Sj; k/ D ; 22 T13.13n
24. exp.Sj; k/ D ; 23 with T6.49
25. exp.pi.i/p; k/ D ; 24,11DE

26. k � Si ! exp.pi.i/p; k/ D ; 17-25!I

27. .8z < pi.i/p/Œz � Si ! exp.pi.i/p; z/ D ;� 16-26 (8I)
28. ? 15,27?I

29. ? 10,11-28 9E

30. len.pi.i/p/ 6> Si 8-29�I
31. len.pi.i/p/ D Si 2,7,30 DS

32. p > ; ! len.pi.i/p/ D Si 1-31!I

T13.45.m. PA ` len.n/ D Sl ! exp.n; l/ � 1

Exercise 13.32 T13.45.m

ANSWERS FOR CHAPTER 13 851

1. len.n/ D Sl A (g!I)

2. n D ;_ n > ; T13.13f
3. n D ; A (c �I)

4. len.;/ D ; T13.45b
5. len.n/ D ; 3,4DE
6. ; D Sl 1,5DE
7. ; ¤ Sl T6.39
8. ? 6,7?I

9. n ¤ ; 3-8�I
10. n > ; 2,9 DS
11. 9v.n D Sv/ 10 T13.13g
12. n D Sm A (g 119E)

13. len.Sm/ D Sl 1,12DE
14. .8z � Sm/Œz � Sl ! exp.Sm; z/ D ;� T13.45d
15. .8w < Sl/�.8z � Sm/Œz � w ! exp.Sm; z/ D ;� 13 T13.45e
16. exp.Sm; l/ � 1 A (c �E)

17. exp.Sm; l/ < 1 16 T13.13r
18. exp.Sm; l/ D ; 17 T8.16
19. a � Sm A (g (8I))

20. a � l A (g!I)

21. l D a _ l < a 20 T13.13m
22. l D a A (g 21_E)

23. exp.Sm;a/ D ; 18,22DE

24. l < a A (g 21_E)

25. Sl � a 24 T13.13l
26. len.Sm/ � a 25,13DE
27. exp.Sm;a/ D ; 26 T13.45l

28. exp.Sm;a/ D ; 21,22-23,24-27 _E

29. a � l ! exp.Sm;a/ D ; 20-28!I

30. .8z � Sm/Œz � l ! exp.Sm; z/ D ;� 19-29 (8I)
31. a < l A (g (8I))

32. a < Sl 31 T13.13n
33. �.8z � Sm/Œz � a! exp.Sm; z/ D ;� 15,32 (8E)

34. .8w < l/�.8z � Sm/Œz � w ! exp.Sm; z/ D ;� 31-33 (8I)
35. len.Sm/ D l 14,34 T13.45c
36. Sl D l 13,35DE
37. Sl ¤ l T13.13h,s
38. ? 36,37?I

39. exp.Sm; l/ � 1 16-38�E
40. exp.n; l/ � 1 12,39DE
41. exp.n; l/ � 1 11,12-40 9E

42. len.n/ D Sl ! exp.n; l/ � 1 1-41!I

E13.33. Show each of the results from T13.46.

Exercise 13.33

ANSWERS FOR CHAPTER 13 852

T13.46.

T13.46.e. PA ` .8i � a/pred.pi.i// − val�.m; n; i/

1. j � ; A (g (8I))

2. val�.m;n;;/ D 1 def val�

3. pi.j / > 1 T13.43g
4. pi.j / > ; 3 with T13.13e
5. Spred.pi.j // D pi.j / 4 T13.36c
6. Spred.pi.j // > S; 3,5DE
7. pred.pi.j // > ; 6 T13.13k
8. pred.pi.j // − 1 7 T13.24i
9. pred.pi.j // − val�.m;n;;/ 8,2DE

10. .8i � ;/pred.pi.i// − val�.m;n;;/ 1-9 (8I)
11. .8i � a/pred.pi.i// − val�.m;n; a/ A (g!I)

12. j � Sa A (g (8I))

13. j > a 12 T13.13l
14. j � a 13 T13.13m
15. pred.pi.j // − val�.m;n; a/ 11,14 (8E)
16. val�.m;n;Sa/ D val�.m;n; a/�pi.a/exc.m;n;a/ def val�

17. pred.pi.j //jval�.m;n;Sa/ A (c �I)

18. pred.pi.j //jval�.m;n; a/�pi.a/exc.m;n;a/ 16,17DE
19. j ¤ a 13 T13.13s
20. pred.pi.j //jval�.m;n; a/ 18,19 T13.43p
21. ? 15,20?I

22. pred.pi.j // − val�.m;n;Sa/ 17-21�I

23. .8i � Sa/pred.pi.i// − val�.m;n;Sa/ 12-22 (8I)

24. Œ.8i � a/pred.pi.i// − val�.m;n; a/�! Œ.8i � Sa/pred.pi.i// − val�.m;n;Sa/� 11-23!I
25. .8i � a/pred.pi.i// − val�.m;n; a/ 10,24 IN

T13.46.f. PA ` .8j < i/exp.val�.m; n; i/; j / D exc.m; n; j /

1. a < ; A (g (8I))

2. exp.val�.m;n;;/; a/ ¤ exc.m;n; a/ A (c �E)

3. a – ; T6.49
4. ? 1,3?I

5. exp.val�.m;n;;/; a/ D exc.m;n; a/ 2-4�E

6. .8j < ;/exp.val�.m;n;;/; j / D exc.m;n; j / 1-5 (8I)

Exercise 13.33 T13.46.f

ANSWERS FOR CHAPTER 13 853

7. .8j < i/exp.val�.m;n; i/; j / D exc.m;n; j / A (g!I)

8. a < Si A (g (8I))

9. val�.m;n; i/ D Spred.val�.m;n; i// T13.46d, T13.36c
10. val�.m;n;Si/ D Spred.val�.m;n;Si// T13.46d, T13.36c
11. val�.m;n;Si/ D val�.m;n; i/�pi.i/exc.m;n;i/ def val�

12. exc.m;n; a/ D e abv
13. a < i _ a D i 8 T13.13m
14. a < i A (g 13_E)

15. exp.val�.m;n; i/; a/ D exc.m;n; a/ 7,14 (8E)
16. pred.pi.a/exp.val�.m;n;i/;a//jval�.m;n; i/ 9 T13.44d
17. pred.pi.a/e/jval�.m;n; i/ 12,15,16DE
18. pred.pi.a/e/jval�.m;n; i/�pi.i/exc.m;n;i/ 17 T13.24d
19. pred.pi.a/e/jval�.m;n;Si/ 18,11DE
20. pred.pi.a/eC1/jval�.m;n;Si/ A (c �I)

21. pred.pi.a/eC1/jval�.m;n; i/�pi.i/exc.m;n;i/ 20,11DE
22. a ¤ i 14 T13.13f
23. pred.pi.a/eC1/jval�.m;n; i/ 21,22 T13.43p
24. pred.pi.a/exp.val�.m;n;i/;a/C1/ − val�.m;n; i/ 9 T13.44d
25. pred.pi.a/eC1/ − val�.m;n; i/ 12,15,24DE
26. ? 23,25?I

27. pred.pi.a/eC1/ − val�.m;n;Si/ 20-26�I
28. pred.pi.a/e/jval�.m;n;Si/^pred.pi.a/eC1/ − val�.m;n;Si/ 19,27 ^I
29. exp.val�.m;n;Si/; a/ D exc.m;n; a/ 28,10 T13.44f

30. a D i A (g 13_E)

31. val�.m;n;Si/ D val�.m;n; a/�pi.a/e 11,12,30DE
32. pred.pi.a/e/jSpred.pi.a/e/ T13.24b
33. Spred.pi.a/e/ D pi.a/e T13.43j
34. pred.pi.a/e/jpi.a/e 32,33DE
35. pred.pi.a/e/jval�.m;n; a/�pi.a/e 34 T13.24d
36. pred.pi.a/e/jval�.m;n;Si/ 35,31DE
37. pred.pi.a/eC1/jval�.m;n;Si/ A (c �I)

38. pred.pi.a/eC1/jval�.m;n; a/�pi.a/e 37,31DE
39. 9qŒSpred.pi.a/eC1/� q D val�.m;n; a/�pi.a/e� 38 def
40. Spred.pi.a/eC1/ D pi.a/eC1 T13.43j
41. 9qŒpi.a/eC1 � q D val�.m;n; a/�pi.a/e� 39,40DE
42. pi.a/eC1 � q D val�.m;n; a/�pi.a/e A (c 419E)

43. eC 1 D Se T6.47
44. pi.a/Se � q D val�.m;n; a/�pi.a/e 42,43DE
45. pi.a/e �pi.a/� q D val�.m;n; a/�pi.a/e 44 T13.41a
46. pi.a/e ¤ ; with T13.43h
47. pi.a/� q D val�.m;n; a/ 45,46 T6.69
48. Spred.pi.a// D pi.a/ with T13.43j
49. Spred.pi.a//� q D val�.m;n; a/ 47,48DE
50. 9qŒSpred.pi.a//� q D val�.m;n; a/� 49 9I
51. pred.pi.a//jval�.m;n; a/ 50 def
52. a � a T13.13m
53. pred.pi.a// − val�.m;n; a/ 52 T13.46e
54. ? 51,53?I

55. ? 41,42-54 9E

56. pred.pi.a/eC1/ − val�.m;n;Si/ 37-55�I
57. pred.pi.a/e/jval�.m;n;Si/^ pred.pi.a/eC1/ − val�.m;n;Si/ 36,56 ^I
58. exp.val�.m;n;Si/; a/ D exc.m;n; a/ 57,10 T13.44f

59. exp.val�.m;n;Si/; a/ D exc.m;n; a/ 13,14-29,30-58 _E

60. .8j < Si/exp.val�.m;n;Si/; j / D exc.m;n; j / 8-59 (8I)

61. Œ.8j < i/exp.val�.m;n; i/; j / D exc.m;n; j /�! Œ.8j < Si/exp.val�.m;n;Si/; j / D exc.m;n; j /� 7-60!I
62. .8j < i/exp.val�.m;n; i/; j / D exc.m;n; j / 6,61 INExercise 13.33 T13.46.f

ANSWERS FOR CHAPTER 13 854

T13.46.g. PA ` .8i < len.m//Œexp.val�.m; n; l/; i/ D exp.m; i/�^.8i < len.n//Œexp.val�.m; n; l/; iC
len.m// D exp.n; i/�

1. l D len.m/C len.n/ abv
2. .8j < l/exp.val�.m;n; l/; j / D exc.m;n; j / T13.46f
3. j < len.m/! exc.m;n; j / D exp.m; j / T13.46b
4. j < len.m/ A (g (8I))

5. exc.m;n; j / D exp.m; j / 3,4!E
6. len.m/ � len.m/C len.n/ T13.13u
7. j < l 4,6 T13.13c
8. exp.val�.m;n; l/; j / D exc.m;n; j / 2,7 (8E)
9. exp.val�.m;n; l/; j / D exp.m; j / 5,8DE

10. .8i < len.m//exp.val�.m;n; l/; i/ D exp.m; i/ 4-9 (8I)
11. j C len.m/ � len.m/! exc.m;n; j C len.m// D exp.n; .j C len.m// :

� len.m// T13.46c
12. j < len.n/ A (g (8I))

13. j C len.m/ � len.m/ T13.13u
14. exc.m;n; j C len.m// D exp.n; .j C len.m// :

� len.m// 11,12!E
15. j C len.m/ D len.m/C Œ.j C len.m// :

� len.m/� 13 T13.23a
16. j D .j C len.m// :

� len.m/ 15 T6.68
17. exc.m;n; j C len.m// D exp.n; j / 14,16DE
18. j C len.m/ < len.n/C len.m/ 12 T13.13w
19. j C len.m/ < l 1,18DE
20. exp.val�.m;n; l/; j C len.m// D exc.m;n; j C len.m// 2,19 (8E)
21. exp.val�.m;n; l/; j C len.m// D exp.n; j / 20,17DE

22. .8i < len.n//exp.val�.m;n; l/; i C len.m// D exp.n; i/ 12-21 (8I)
23. .8i < len.m//Œexp.val�.m;n; l/; i/ D exp.m; i/�^ .8i < len.n//Œexp.val�.m;n; l/; i C len.m// D exp.n; i/� 10,22 ^I

T13.46.h. PA ` i � l ! Œpi.l/mCn�i � val�.m; n; i/

Exercise 13.33 T13.46.h

ANSWERS FOR CHAPTER 13 855

1. l D len.m/C len.n/ abv
2. 1 � 1 T8.14
3. Œpi.l/mCn�; D 1 T13.41a
4. val�.m;n;;/ D 1 def val�

5. Œpi.l/mCn�; � val�.m;n;;/ 2,3,4DE
6. ; — l _ Œpi.l/mCn�; � val�.m;n;;/ 5 _I
7. ; � l ! Œpi.l/mCn�; � val�.m;n;;/ 6 Impl
8. i � l ! Œpi.l/mCn�i � val�.m;n; i/ A (g!I)

9. Si � l A (g!I)

10. i < l 9 T13.13l
11. i � l 10 T13.13m
12. Œpi.l/mCn�i � val�.m;n; i/ 8,11!E
13. Œpi.l/mCn�Si D Œpi.l/mCn�i �pi.l/mCn T13.41a
14. val�.m;n;Si/ D val�.m;n; i/�pi.i/exc.m;n;i/ def val�

15. pi.i/ < pi.l/ 10 T13.43k
16. i < len.m/_ i � len.m/ T14.13q
17. i < len.m/ A (g 16_E)

18. exc.m;n; i/ D exp.m; i/ 17 T13.46b
19. exp.m; i/ � m T13.44g
20. exc.m;n; i/ � m 18,19DE
21. m � mC n T13.13u
22. exc.m;n; i/ � mC n 20,21 T13.13a

23. i � len.m/ A (g 16_E)

24. exc.m;n; i/ D exp.n; i :
� len.m// 23 T13.46c

25. exp.n; i :
� len.m// � n T13.44g

26. exc.m;n; i/ � n 24,25DE
27. n � mC n T13.13u
28. exc.m;n; i/ � mC n 26,27 T13.13a

29. exc.m;n; i/ � mC n 16,17-22,23-28 _E
30. pi.i/exc.m;n;i/ � pi.l/exc.m;n;i/ 15 T13.41f
31. pi.l/ > ; with T13.43g
32. pi.l/exc.m;n;i/ � pi.l/mCn 29,31 T13.41j
33. pi.i/exc.m;n;i/ � pi.l/mCn 30,32 T13.13a
34. val�.m;n; i/�pi.i/exc.m;n;i/ � val�.m;n; i/�pi.l/mCn 33 T13.13aa
35. val�.m;n; i/�pi.l/mCn � Œpi.l/mCn�i �pi.l/mCn 12 T13.13aa
36. val�.m;n; i/�pi.i/exc.m;n;i/ � Œpi.l/mCn�i �pi.l/mCn 34,35 T13.13a
37. Œpi.l/mCn�Si � val�.m;n;Si/ 13,14,36DE

38. Si � l ! Œpi.l/mCn�Si � val�.m;n;Si/ 9-37!I

39. Œi � l ! Œpi.l/mCn�i � val�.m;n; i/�! ŒSi � l ! Œpi.l/mCn�Si � val�.m;n;Si/� 8-38!I
40. i � l ! Œpi.l/mCn�i � val�.m;n; i/ 7,39 IN
41. l � l T13.13m
42. Œpi.l/mCn�l � val�.m;n; l/ 40,41 (8E)

T13.46.n. PA ` 8x8nŒlen.Sn/ � x ! val.Sn; x/ D Sn�

Exercise 13.33 T13.46.n

ANSWERS FOR CHAPTER 13 856

1. len.Sa/ � ; A (g!I)

2. len.Sa/ � ; 1 T13.13r
3. Sa � 1 2 T13.45j
4. Sa � 1 3 T13.13r
5. a � ; T13.13d
6. Sa � 1 5 T13.13j
7. Sa D 1 4,6 T13.13t
8. val.1;;/ D 1 def

9. val.Sa;;/ D Sa 8,7DE
10. len.Sa/ � ;! val.Sa;;/ D Sa 1-9!I
11. 8nŒlen.Sn/ � ;! val.Sn;;/ D Sn� 10 8I
12. 8nŒlen.Sn/ � x! val.Sn; x/ D Sn� A (g!I)

13. len.Sa/ � x! val.Sa; x/ D Sa 12 8E
14. val.Sa;Sx/ D val.Sa; x/�pi.x/exp.Sa;x/ def
15. len.Sa/ � Sx A (g!I)

16. len.Sa/ � x _ len.Sa/ D Sx 15 T13.13m
17. len.Sa/ � x A (g 16_E)

18. val.Sa; x/ D Sa 13,17!E
19. exp.Sa; x/ D ; 17 T13.45h
20. pi.x/; D 1 T13.20a
21. pi.x/exp.Sa;x/ D 1 20,19DE
22. val.Sa;Sx/ D Sa � 1 14,18,21DE
23. val.Sa;Sx/ D Sa 22 T6.57

24. len.Sa/ D Sx A (g 16_E)

25. 9qŒpi.x/exp.Sa;x/ � q D Sa ^ pred.pi.x// − q ^8y.y ¤ x! exp.q; y/ D exp.Sa; y//� T13.44l
26. pi.x/exp.Sa;x/ � q D Sa ^ pred.pi.x// − q ^8y.y ¤ x! exp.q; y/ D exp.Sa; y// A (g 259E)

27. pi.x/exp.Sa;x/ � q D Sa 26 ^E
28. pred.pi.x// − q 26 ^E
29. 8y.y ¤ x! exp.q; y/ D exp.Sa; y// 26 ^E
30. q > ; 27 T13.13ab
31. 9r.q D Sr/ 30 T6.50
32. q D Sr A (g 319E)

33. 8y.y ¤ x! exp.Sr; y/ D exp.Sa; y// 29,32DE
34. len.Sr/ > x A (c �I)

35. �.8z � Sr/Œz � x! exp.Sr; z/ D ;� 34 T13.45e
36. l � Sr A (g (8I))

37. l � x A (g!I)

38. l > x _ l D x 37 T13.13
39. l > x A (g 38_E)

40. l ¤ x 39 T13.13s
41. exp.Sr; l/ D exp.Sa; l/ 33,40 8E
42. l � Sx 39 T13.13l
43. l � len.Sa/ 42,24DE
44. exp.Sa; l/ D ; 43 T13.45l
45. exp.Sr; l/ D ; 44,41DE

46. l D x A (g 38_E)

47. pred.pi.x// − Sr 28,32DE
48. exp.Sr; x/ D ; 47 T13.44k
49. exp.Sr; l/ D ; 48,46DE

50. exp.Sr; l/ D ; 38,39-45,46-49 _E

51. l � x! exp.Sr; l/ D ; 37-50!I

52. .8z � Sr/Œz � x! exp.Sr; z/ D ;� 36-51 (8I)
53. ? 35,52?I

54. len.Sr/ � x 34-53�I
55. len.Sr/ � x 54 T13.13r

Exercise 13.33 T13.46.n

ANSWERS FOR CHAPTER 13 857

56. val.Sr; x/ D Sr 12,55 8E
57. l < x A (g (8I))

58. l ¤ x 57 T13.13s
59. exp.Sr; l/ D exp.Sa; l/ 33,58 8E
60. .8i < x/exp.Sr; i/ D exp.Sa; i/ 57-59 (8I)
61. val.Sr; x/ D val.Sa; x/ 60 T13.46m
62. pi.x/exp.Sa;x/ � Sr D Sa 27,32DE
63. val.Sa; x/�pi.x/exp.Sa;x/ D Sa 62,56,61DE
64. val.Sa;Sx/ D Sa 14,63DE

65. val.Sa;Sx/ D Sa 31,32-64 9E

66. val.Sa;Sx/ D Sa 25,26-65 9E

67. val.Sa;Sx/ D Sa 16,17-23,24-66 _E

68. len.Sa/ � Sx! val.Sa;Sx/ D Sa 15-67!I
69. 8nŒlen.Sn/ � Sx! val.Sn;Sx/ D Sn� 68 8I

70. 8nŒlen.Sn/ � x! val.Sn; x/ D Sn/�!8nŒlen.Sn/ � Sx! val.Sn;Sx/ D Sn� 12-69!I
71. 8x8nŒlen.Sn/ � x! val.Sn; x/ D Sn� 11,70 IN

T13.46.o. Œlen.n/ � q^ .8k < len.n//exp.n; k/ � r�! Œpi.q/r �q � val.n; len.n//

Exercise 13.33 T13.46.o

ANSWERS FOR CHAPTER 13 858

1. len.n/ � q ^ .8k < len.n//exp.n; k/ � r A (g!I)

2. len.n/ � q 1 ^E
3. .8k < len.n//exp.n; k/ � r 1 ^E
4. Œpi.q/r �; D 1 T13.41a
5. val.n;;/ D 1 def
6. Œpi.q/r �; � val.n;;/ 4,5 T13.13m
7. ; � q! Œpi.q/r �; � val.n;;/ 6 _I
8. i � q! Œpi.q/r �i � val.n; i/ A (g!I)

9. Si � q A (g!I)

10. i � q 9 T13.13l,m
11. val.n; Si/ D val.n; i/�pi.i/exp.n;i/ def
12. Œpi.q/r �Si D Œpi.q/r �i �pi.q/r T13.41a
13. Œpi.q/r �i � val.n; i/ 8,10!E
14. pi.i/ � pi.q/ 10 T13.43k
15. i < len.n/_ i � len.n/ T13.13q
16. i < len.n/ A (g 15_E)

17. exp.n; i/ � r 3,16 (8E)

18. i � len.n/ A (g 15_E)

19. exp.n; i/ D ; 18 T13.45l
20. ; � r T13.13d
21. exp.n; i/ � r 20,19DE

22. exp.n; i/ � r 15,16-17,18-21 _E
23. pi.i/ > 1 T13.43g
24. pi.i/exp.n;i/ � pi.i/r 22,23 T13.41j
25. pi.i/r � pi.q/r 14 T13.41f
26. pi.i/exr.n;i/ � pi.q/r 24,25 T13.13a
27. val.n; i/�pi.i/exp.n;i/ � val.n; i/�pi.q/r 26 T13.13aa
28. val.n; i/�pi.q/r � Œpi.q/r �i �pi.q/r 13 T13.13aa
29. val.n; i/�pi.i/exp.n;i/ � Œpi.q/r �i �pi.q/r 27,28 T13.13a
30. Œpi.q/r �Si � val.n; Si/ 29,11,12DE
31. Si � q! Œpi.q/r �Si � val.n; Si/ 9-30!I
32. fi � q! Œpi.q/r �i � val.n; i/g ! fSi � q! Œpi.q/r �Si � val.n; Si/g 8-31!I
33. i � q! Œpi.q/r �i � val.n; i/ 7,32 IN
34. Œpi.q/r �len.n/ � val.n; len.n// 2,33!E
35. pi.q/r > ; T13.43h
36. Œpi.q/r �len.n/ � Œpi.q/r �q 35,2 T13.41j
37. Œpi.q/r �q � val.n; len.n// 34,36 T13.13a
38. Œlen.n/ � q ^ .8k < len.n//exp.n; k/ � r�! Œpi.q/r �q � val.n; len.n// 1-37!I

E13.34. Show each of the results from T13.47.

T13.47.

T13.47.e. PA ` len.m � n/ � l

Exercise 13.34 T13.47.e

ANSWERS FOR CHAPTER 13 859

1. l D len.m/C len.n/ abv
2. len.n/ D ;_ len.n/ > ; T13.13f
3. len.n/ D ; A (g 2_E)

4. len.m/ D ;_ len.m/ > ; T13.13f
5. len.m/ D ; A (g 4 _E)

6. ;C ; D ; T6.41
7. len.m � n/ � ; T13.13d
8. len.m � n/ � ;C ; 6,7DE
9. len.m � n/ � l 8,5,3DE

10. len.m/ > ; A (g 4_E)

11. 9vŒlen.m/ D Sv� 10 T13.13g
12. len.m/ D Sa A (g 119E)

13. exp.m; a/ > ; 12 with T13.45m
14. a < len.m/ 12 T13.13i
15. .8i < len.m//exp.m � n; i/ D exp.m; i/ T13.47c
16. exp.m � n; a/ D exp.m; a/ 15,14 (8E)
17. exp.m � n; a/ > ; 13,16DE
18. len.m � n/ > a 17 T13.45h
19. len.m � n/ � Sa 18 T13.13l
20. len.m � n/ � len.m/ 19,12DE
21. len.m/C; D len.m/ T6.41
22. l D len.m/ 21,3DE
23. len.m � n/ � l 20,22DE

24. len.m � n/ � l 11,12-23 9E

25. len.m � n/ � l 4,5-9,10-24 _E

26. len.n/ > ; A (g 2_E)

27. 9vŒlen.n/ D Sv� 26 T13.13g
28. len.n/ D Sa A (g 279E)

29. exp.n; a/ > ; 28 with T13.45m
30. a < len.n/ 28 T13.13i
31. .8i < len.n//exp.m � n; i C len.m// D exp.n; i/ T13.47c
32. exp.m � n; aC len.m// D exp.n; a/ 31,30 (8E)
33. exp.m � n; aC len.m// > ; 29,32DE
34. len.m � n/ > aC len.m/ 33 T13.45h
35. len.m � n/ � S.aC len.m// 34 T13.13l
36. S.aC len.m// D SaC len.m/ T6.53
37. S.aC len.m// D l 36,28DE
38. len.m � n/ � l 35,37DE

39. len.m � n/ � l 27,28-38 9E
40. len.m � n/ � l 2,3-25,26-39 _E

T13.47.f. PA ` len.m � n/ D l

Exercise 13.34 T13.47.f

ANSWERS FOR CHAPTER 13 860

1. l D len.m/C len.n/ abv
2. len.m � n/ � l T13.47e
3. len.m � n/ — l A (c �E)

4. len.m � n/ > l 3 T13.13r
5. l � ; T13.13d
6. len.m � n/ > ; 4,5 T13.13c
7. m � n > 1 6 T13.45g
8. 1 > ; T8.14
9. m � n > ; 7,8 T13.13b

10. 9vŒm � n D Sv� 9 T13.13g
11. m � n D Sp A (c 109E)

12. len.Sp/ > l 4,11DE
13. 9vŒSvC l D len.Sp/� 12 def
14. SaC l D len.Sp/ A (c 139E)

15. S.aC l/ D SaC l T6.53
16. S.aC l/ D len.Sp/ 14,15DE
17. exp.Sp; aC l/ � 1 16 T13.45m
18. 9qŒpi.aC l/exp.Sp;aCl/ � q D Sp ^8y.y ¤ aC l ! exp.q; y/ D exp.Sp; y//� T13.44l
19. pi.aC l/exp.Sp;aCl/ � j D Sp ^8y.y ¤ aC l ! exp.j; y/ D exp.Sp; y// A (c 189E)

20. pi.aC l/exp.Sp;aCl/ � j D Sp 19 ^E
21. pi.aC l/exp.Sp;aCl/ � pi.aC l/ 17 with T13.41l
22. pi.aC l/ > 1 T13.43g
23. pi.aC l/exp.Sp;aCl/ > 1 21,22 T13.13c
24. Sp > ; T13.13e
25. pi.aC l/exp.Sp;aCl/ � j > ; 24,20DE
26. j > ; 25 T13.13ab
27. pi.aC l/exp.Sp;aCl/ � j > j 23,26 T13.13ac
28. j < Sp 20,27DE

Exercise 13.34 T13.47.f

ANSWERS FOR CHAPTER 13 861

29. 8y.y ¤ aC l ! exp.j; y/ D exp.Sp; y// 19 ^E
30. b < len.m/ A (g (8I))

31. .8i < len.m//exp.m � n; i/ D exp.m; i/ T13.47c
32. exp.m � n; b/ D exp.m; b/ 31,30 (8E)
33. exp.Sp; b/ D exp.m; b/ 11,32DE
34. len.m/ � aC l T13.13u
35. b < aC l 30,34 T13.13c
36. b ¤ aC l 35 T13.13s
37. b ¤ aC l ! exp.j; b/ D exp.Sp; b/ 29 8E
38. exp.j; b/ D exp.Sp; b/ 37,36!E
39. exp.j; b/ D exp.m; b/ 33,38DE

40. .8i < len.m//exp.j; i/ D exp.m; i/ 30-39 (8I)
41. b < len.n/ A (g (8I))

42. .8i < len.n//exp.m � n; i C len.m// D exp.n; i/ T13.47c
43. exp.m � n; bC len.m// D exp.n; b/ 42,41 (8E)
44. exp.Sp; bC len.m// D exp.n; b/ 43,11DE
45. len.m/ � aC len.m/ T13.13u
46. bC len.m/ < aC l 41,45 T13.13y
47. bC len.m/ ¤ aC l 46 T13.13s
48. bC len.m/ ¤ aC l ! exp.j; bC len.m// D exp.Sp; bC len.m// 29 8E
49. exp.j; bC len.m// D exp.Sp; bC len.m// 48,47!E
50. exp.j; bC len.m// D exp.n; b/ 44,49DE

51. .8i < len.n//exp.j; i C len.m// D exp.n; i/ 41-50 (8I)
52. .8i < len.m//exp.j; i/ D exp.m; i/^ .8i < len.n//exp.j; i C len.m// D exp.n; i/ 40,51 ^I
53. .8w < m � n/�Œ.8i < len.m//exp.w; i/ D exp.m; i/^ T13.47d

.8i < len.n//exp.w; i C len.m// D exp.n; i/�
54. .8w < Sp/�Œ.8i < len.m//exp.w; i/ D exp.m; i/^ 53,11DE

.8i < len.n//exp.w; i C len.m// D exp.n; i/�
55. �Œ.8i < len.m//exp.j; i/ D exp.m; i/^ .8i < len.n//exp.j; i C len.m// D exp.n; i/� 54,28 (8E)
56. ? 52,55?I

57. ? 18,19-56 9E

58. ? 13,14-57 9E

59. ? 10,11-58 9E

60. len.m � n/ � l 3-59�E
61. len.m � n/ D l 2,60 T13.13t

T13.47.m. PA ` val.Sm � Sn; a/ D val.Sm; a/ � val.Sn; a :
� len.Sm//

Exercise 13.34 T13.47.m

ANSWERS FOR CHAPTER 13 862

1. i < a A (g (8I))

2. a < len.Sm/_ a � len.Sm/ T13.13q
3. a < len.Sm/ A (g 2_E)

4. i < len.Sm/ 1,3 T13.13b
5. exp.Sm � Sn; i/ D exp.Sm; i/ 4 T13.47c
6. a

:
� len.Sm/ D ; 3 T13.23b

7. val.Sn; a
:
� len.m// D 1 6 def

8. val.Sm;a/ > ; T13.46i
9. val.Sm;a/ D val.Sm;a/ � val.Sn; a

:
� len.Sm// 7,8 T13.47i

10. exp.val.Sm;a/; i/ D exp.Sm; i/ 1 T13.46l
11. exp.Sm � Sn; i/ D exp.val.Sm;a/ � val.Sn; a

:
� len.Sm//; i/ 5,10,9DE

12. a � len.Sm/ A (g 2_E)

13. val.Sm;a/ D Sm 12 T13.46n
14. len.val.Sm;a// D len.Sm/ 13DE
15. i < len.Sm/_ i � len.Sm/ T13.13q
16. i < len.Sm/ A (g 15_E)

17. exp.Sm � Sn; i/ D exp.Sm; i/ 16 T13.47c
18. i < len.val.Sm;a// 16,14DE
19. exp.val.Sm;a/ � val.Sn; a

:
� len.Sm//; i/ D exp.val.Sm;a/; i/ 18 T13.47c

20. exp.val.Sm;a/; i/ D exp.Sm; i/ 1 T13.46l
21. exp.Sm � Sn; i/ D exp.val.Sm;a/ � val.Sn; a

:
� len.Sm//; i/ 17,20,19DE

22. i � len.Sm/ A (g 15_E)

23. exp.Sm � Sn; .i
:
� len.Sm//C len.Sm// D exp.Sn; i

:
� len.Sm// T13.47g

24. i D len.Sm/C .i
:
� len.Sm// 22 T13.23a

25. exp.Sm � Sn; i/ D exp.Sn; i
:
� len.Sm// 23,24DE

26. exp.val.Sm;a/ � val.Sn; a
:
� len.Sm//; .i

:
� len.Sm//C len.val.Sm;a/// D

exp.val.Sn; a
:
� len.Sm//; i

:
� len.Sm// T13.47g

27. exp.val.Sm;a/ � val.Sn; a
:
� len.Sm//; i/ D exp.val.Sn; a

:
� len.Sm//; i

:
� len.Sm// 26,24,14DE

28. a
:
� len.Sm/ > i

:
� len.Sm/ 22,1 T13.23e

29. exp.val.Sn; a
:
� len.Sm//; i

:
� len.Sm// D exp.Sn; i

:
� len.Sm// 28 T13.46l

30. exp.Sm � Sn; i/ D exp.val.Sm;a/ � val.Sn; a
:
� len.Sm//; i/ 25,29,27DE

31. exp.Sm � Sn; i/ D exp.val.Sm;a/ � val.Sn; a
:
� len.Sm//; i/ 15,16-21,22-30 _E

32. exp.Sm � Sn; i/ D exp.val.Sm;a/ � val.Sn; a
:
� len.Sm//; i/ 2,3-11,12-31 _E

33. .8i < a/exp.Sm � Sn; i/ D exp.val.Sm;a/ � val.Sn; a
:
� len.Sm//; i/ 1-32 (8I)

34. val.Sm � Sn; a/ D val.val.Sm;a/ � val.Sn; a
:
� len.Sm//; a/ 33 T13.46m

35. len.val.Sm;a/ � val.Sn; a
:
� len.Sm/// D len.val.Sm;a//C len.val.Sn; a

:
� len.Sm/// T13.47f

36. a < len.Sm/_ a � len.Sm/ T13.13q
37. a < len.Sm/ A (g 36_E)

38. len.val.Sm;a// � a T13.46j
39. a

:
� len.Sm/ D ; 37 T13.23b

40. val.Sn; a
:
� len.Sm// D 1 39 def

41. len.val.Sn; a
:
� len.Sm/// D ; 40 T13.45f

42. len.val.Sm;a/ � val.Sn; a
:
� len.Sm/// D len.val.Sm;a// 35,41DE

43. len.val.Sm;a/ � val.Sn; a
:
� len.Sm/// � a 38,42DE

44. a � len.Sm/ A (g 36_E)

45. len.val.Sm;a// � len.Sm/ T13.46k
46. len.val.Sn; a

:
� len.Sm/// � a

:
� len.Sm/ T13.46j

47. len.val.Sm;a//C len.val.Sn; a
:
� len.Sm/// � len.Sm/C .a

:
� len.Sm// 45,46 T13.13v

48. a D len.Sm/C .a
:
� len.Sm// 44 T13.23a

49. len.val.Sm;a//C len.val.Sn; a
:
� len.Sm/// � a 47,48DE

50. len.val.Sm;a/ � val.Sn; a
:
� len.Sm/// � a 35,49DE

51. len.val.Sm;a/ � val.Sn; a
:
� len.Sm/// � a 36,37-43,44-50 _E

52. val.Sm;a/ � val.Sn; a
:
� len.Sm// � 1 T13.47c

53. val.val.Sm;a/ � val.Sn; a
:
� len.Sm//; a/ D val.Sm;a/ � val.Sn; a

:
� len.Sm// 51 T13.46n

54. val.Sm � Sn; a/ D val.Sm;a/ � val.Sn; a
:
� len.Sm// 34,53DE

Exercise 13.34 T13.47.m

ANSWERS FOR CHAPTER 13 863

E13.35. Show (j) and the unfinished cases for the C disjunct in (l) and (n). Hard
core: show each of the results from T13.48.

T13.48.

T13.48.i. PA ` Termseq.m; t/! Termseq.m � 2
pSq�t

; pSq � t /

Exercise 13.35 T13.48.i

ANSWERS FOR CHAPTER 13 864

1. Termseq.m; t/ A (g!I)

2. exp.m; len.m/
:
� 1/ D t 1 T13.48a

3. m > 1 1 T13.48a
4. .8k < len.m//ŒA.m;k/_B.m;k/_C.m;k/_D.m;k/� 1 T13.48a

5. len.2
pSq�t

/ D 1 T13.45k

6. exp.2
pSq�t

;;/ D pSq � t T13.44i

7. len.m � 2
pSq�t

/ D len.m/C 1 5 T13.47f
8. len.m/C 1 D Slen.m/ T6.47
9. len.m/ D Slen.m/

:
� 1 T13.23k

10. len.m/ D len.m � 2
pSq�t

/
:
� 1 9,7,8DE

11. exp.m � 2
pSq�t

; len.m// D pSq � t 6 T13.47c

12. exp.m � 2
pSq�t

; len.m � 2
pSq�t

/
:
� 1/ D pSq � t 11,10DE

13. len.m � 2
pSq�t

/ > ; 7 T13.13u

14. m � 2
pSq�t

> 1 13 T13.45g

15. a < len.m � 2
pSq�t

/ A (g (8I))

16. a < len.m/_ a D len.m/ 15,7 T13.13n
17. a < len.m/ A (g 16_E)

18. exp.m � 2
pSq�t

; a/ D exp.m; a// 17 T13.47c
19. A.m;a/_B.m;a/_C.m;a/_D.m;a/ 4,17 (8E)
20. A.m;a/ A (g 19_E)

21. exp.m; a/ D p;q_ Var.exp.m; a// 20 abv
22. exp.m; a/ D p;q A (g 21_E)

23. exp.m � 2
pSq�t

; a/ D p;q 18,22DE

24. exp.m � 2
pSq�t

; a/ D p;q_ Var.exp.m � 2
pSq�t

; a// 23 _I

25. A.m � 2
pSq�t

; a/ 24 abv

26. Var.exp.m; a// A (g 21_E)

27. Var.exp.m � 2
pSq�t

; a// 18,26DE

28. exp.m � 2
pSq�t

; a/ D p;q_ Var.exp.m � 2
pSq�t

; a// 27 _I

29. A.m � 2
pSq�t

; a/ 28 abv

30. A.m � 2
pSq�t

; a/ 21,22-25,26-29_E

31. A.m � 2
pSq�t

; a/_B.m � 2
pSq�t

; a/_C.m � 2
pSq�t

; a/_D.m � 2
pSq�t

; a/ 30 _I

32. B.m;a/ A (g 19_E)

33. .9j < a/Œexp.m; a/ D pSq � exp.m; j /� 32 abv
34. exp.m; a/ D pSq � exp.m; j / A (g 33(9E))
35. j < a

36. j < len.m/ 17,35 T13.13b

37. exp.m � 2
pSq�t

; j / D exp.m; j // 36 T13.47c

38. exp.m � 2
pSq�t

; a/ D pSq � exp.m � 2
pSq�t

; j / 34,18,37DE

39. .9j < a/Œexp.m � 2
pSq�t

; a/ D pSq � exp.m � 2
pSq�t

; j /� 38,35 (9I)

40. B.m � 2
pSq�t

; a/ 39 abv

41. B.m � 2
pSq�t

; a/ 33,34-40 (9E)

42. A.m � 2
pSq�t

; a/_B.m � 2
pSq�t

; a/_C.m � 2
pSq�t

; a/_D.m � 2
pSq�t

; a/ 41 _I

43. C.m;a/ A (g 19_E)

44. A.m � 2
pSq�t

; a/_B.m � 2
pSq�t

; a/_C.m � 2
pSq�t

; a/_D.m � 2
pSq�t

; a/ similarly

45. m;a/ A (g 19_E)

46. A.m � 2
pSq�t

; a/_B.m � 2
pSq�t

; a/_C.m � 2
pSq�t

; a/_D.m � 2
pSq�t

; a/ similarly

47. A.m � 2
pSq�t

; a/_B.m � 2
pSq�t

; a/_C.m � 2
pSq�t

; a/_D.m � 2
pSq�t

; a/ 19,20-46 _E

Exercise 13.35 T13.48.i

ANSWERS FOR CHAPTER 13 865

48. a D len.m/ A (g 16_E)

49. len.m/ > ; 3 T13.45j
50. len.m/

:
� 1 < len.m/ 49 T13.23i

51. exp.m � 2
pSq�t

; len.m/
:
� 1/ D exp.m; len.m/

:
� 1/ 50 T13.47c

52. exp.m � 2
pSq�t

; len.m/
:
� 1/ D t 51,2DE

53. exp.m � 2
pSq�t

; a/ D pSq � t 11,48DE

54. exp.m � 2
pSq�t

; a/ D pSq � exp.m � 2
pSq�t

; len.m/
:
� 1/ 52,53DE

55. .9j < a/Œexp.m � 2
pSq�t

; a/ D pSq � exp.m � 2
pSq�t

; j /� 50,54 (9I)

56. B.m � 2
pSq�t

; a/ 55 abv

57. A.m � 2
pSq�t

; a/_B.m � 2
pSq�t

; a/_C.m � 2
pSq�t

; a/_D.m � 2
pSq�t

; a/ 56 _I

58. A.m � 2
pSq�t

; a/_B.m � 2
pSq�t

; a/_C.m � 2
pSq�t

; a/_D.m � 2
pSq�t

; a/ 16,17-47,48-57 _E

59. .8k < len.m � 2
pSq�t

//ŒA.m � 2
pSq�t

; k/_B.m � 2
pSq�t

; k/_C.m � 2
pSq�t

; k/_D.m � 2
pSq�t

; k/� 15-58 (8I)

60. Termseq.m � 2
pSq�t

; pSq � t/ 12,14,59 T13.48a

61. Termseq.m; t/! Termseq.m � 2
pSq�t

; pSq � t/ 1-60!I

T13.48.l. PA ` Termseq.m; t/ ! 8x.8k < len.m//flen.exp.m; k// � x !

9nŒTermseq.n; exp.m; k// ^ .8i < len.n//exp.n; i/ � exp.m; k/ ^ len.n/ �
len.exp.m; k/�g

Let P be the formula, .8k < len.m//flen.exp.m; k// � x ! 9nŒTermseq.n;
exp.m; k// ^ .8i < len.n//exp.n; i/ � exp.m; k/ ^ len.n/ � len.exp.m; k/�g

1. Termseq.m; t/ A (g!I)

2. P x
;

basis
3. .8k < len.m//exp.m; k/ > 1 1 T13.48e
4. P A g!I

5. .8k < len.m//flen.exp.m; k// � x! 9nŒTermseq.n;exp.m; k//^
.8i < len.n//exp.n; i/ � exp.m; k/ ^ len.n/ � len.exp.m; k/�g 4 abv

6. a < len.m/ A (g (8I))

7. exp.m; a/ > 1 3,6 (8E)

8. len.2
exp.m;a/

/ D 1 7 with T13.45k

9. exp.2
exp.m;a/

;;/ D exp.m; a/ T13.44i
10. len.exp.m; a// � Sx A (g!I)

11. .8k < len.m/ŒA.m;k/_B.m;k/_C.m;k/_D.m;k/� 1 T13.48a
12. A.m;a/_B.m;a/_C.m;a/_D.m;a/ 11,6 (8E)
13. A.m;a/ A (g 12 _E)

14. exp.m; a/ D p;q_ Var.exp.m; a// 13 abv

15. Termseq.2
exp.m;a/

;exp.m; a// 14 T13.48g,h
16. b < 1 A (g (8I))

17. b D ; 16 with T8.16

18. exp.2
exp.m;a/

; b/ � exp.m; a/ 9 T13.13m

19. .8i < len.2
exp.m;a/

//exp.2
exp.m;a/

; i/ � exp.m; a/ 8,16-18 (8I)
20. len.exp.m; a// � 1 7 T13.45j

21. len.2
exp.m;a/

/ � len.exp.m; a/ 8,20DE
22. 9nŒTermseq.n;exp.m; a//^ .8i < len.n//exp.n; i/ � exp.m; a/^ len.n/ � len.exp.m; a/� 15,19,21 9I

Exercise 13.35 T13.48.l

ANSWERS FOR CHAPTER 13 866

23. B.m;a/ A (g 12 _E)

24. .9j < a/exp.m; a/ D pSq � exp.m; j / 23 abv
25. b < a A (g 24 9E)
26. exp.m; a/ D pSq � exp.m; b/

27. b < len.m/ 6,25 T13.13b
28. exp.m; b/ � exp.m; a/ 26 T13.47n
29. len.pSq/ D 1 cap
30. len.pSq � exp.m; b/// D 1C len.exp.m; b// 29 T13.47f
31. len.exp.m; b// < len.exp.m; a// 26,30 def
32. len.exp.m; b// < Sx 10,31 T13.13d
33. len.exp.m; b// � x 32 T13.13n
34. 9nŒTermseq.n;exp.m; b//^ .8i < len.n//exp.n; i/ � exp.m; b/ ^ len.n/ � len.exp.m; b//� 5,27,33 (8E)
35. Termseq.l;exp.m; b//^ .8i < len.l//exp.l; i/ � exp.m; b/ ^ len.l/ � len.exp.m; b// A (g 34 9E)

36. len.l � 2
exp.m;a/

/ D len.l/C len.2
exp.m;a/

/ T13.47f

37. len.l � 2
exp.m;a/

/ D len.l/C 1 36,8DE
38. Termseq.l;exp.m; b// 35 ^E

39. Termseq.l � 2
pSq�exp.m;b/

; pSq � exp.m; b// 38 T13.48i

40. Termseq.l � 2
exp.m;a/

;exp.m; a// 26,39DE

41. j < len.l � 2
exp.m;a/

/ A (g (8I))

42. j < Slen.l/ 41,37DE
43. j < len.l/_ j D len.l/ 42 T13.13n
44. j < len.l/ A (g 43 _E)

45. .8i < len.l//exp.l; i/ � exp.m; b/ 35 ^E
46. exp.l; j / � exp.m; b/ 45,44 (8E)
47. exp.l; j / � exp.m; a/ 46,28 T13.13a

48. exp.l; j / D exp.l � 2
exp.m;a/

; j / 44 T13.47c

49. exp.l � 2
exp.m;a/

; j / � exp.m; a/ 47,48DE

50. j D len.l/ A (g 43 _E)

51. exp.2
exp.m;a/

;;/ D exp.l � 2
exp.m;a/

; len.l// T13.47c

52. exp.m; a/ D exp.l � 2
exp.m;a/

; len.l// 51,9DE

53. exp.l � 2
exp.m;a/

; j / � exp.m; a/ 52 T13.13m

54. exp.l � 2
exp.m;a/

; j / � exp.m; a/ 43,44-49,50-53 _E

55. .8i < len.l � 2
exp.m;a/

//exp.l � 2
exp.m;a/

; i/ � exp.m; a/ 41-54 (8I)
56. len.l/ � len.exp.m; b// 35 ^E
57. len.l/ < len.exp.m; a/ 56,31 T13.13c
58. Slen.l/ � len.exp.m; a/ 57 T13.13l

59. len.l � 2
exp.m;a/

/ � len.exp.m; a/ 58,37DE
60. 9nŒTermseq.n;exp.m; a//^ .8i < len.n//exp.n; i/ � exp.m; a/^ len.n/ � len.exp.m; a/� 40,55,59 9I

61. 9nŒTermseq.n;exp.m; a//^ .8i < len.n//exp.n; i/ � exp.m; a/^ len.n/ � len.exp.m; a/� 34,35-60 9E

62. 9nŒTermseq.n;exp.m; a//^ .8i < len.n//exp.n; i/ � exp.m; a/^ len.n/ � len.exp.m; a/� 24,25-61 (9E)

63. C.m;a/ A (g 12 _E)

64. 9nŒTermseq.n;exp.m; a//^ .8i < len.n//exp.n; i/ � exp.m; a/^ len.n/ � len.exp.m; a/� similarly

65. D.m;a/ A (g 12 _E)

66. 9nŒTermseq.n;exp.m; a//^ .8i < len.n//exp.n; i/ � exp.m; a/^ len.n/ � len.exp.m; a/� similarly

67. 9nŒTermseq.n;exp.m; a//^ .8i < len.n//exp.n; i/ � exp.m; a/^ len.n/ � len.exp.m; a/� 12,13-66 _E
68. len.exp.m; a// � Sx! 9nŒTermseq.n;exp.m; a//^ .8i < len.n//exp.n; i/ � exp.m; a/^

len.n/ � len.exp.m; a/� 10-67!I
69. .8k < len.m//flen.exp.m; k// � Sx! 9nŒTermseq.n;exp.m; k//^

.8i < len.n//exp.n; i/ � exp.m; k/ ^ len.n/ � len.exp.m; k/�g 6-68 (8I)
70. P x

Sx 69 abv
71. P ! P x

Sx 4-70!I
72. 8x.8k < len.m//flen.exp.m; k// � x! 9nŒTermseq.n;exp.m; k//^ .8i < len.n//exp.n; i/ � exp.m; k/^

len.n/ � len.exp.m; k/�g 2, 71 IN
73. Termseq.m; t/!8x.8k < len.m//flen.exp.m; k// � x! 9nŒTermseq.n;exp.m; k//^

.8i < len.n//exp.n; i/ � exp.m; k/ ^ len.n/ � len.exp.m; k/�g 1-72!I
Exercise 13.35 T13.48.l

ANSWERS FOR CHAPTER 13 867

T13.48.n. PA ` Termseq.m; t/! .8i < len.m//Term.exp.m; i//

Exercise 13.35 T13.48.n

ANSWERS FOR CHAPTER 13 868

1. Termseq.m; t/ A (g!I)

2. exp.m; len.m/
:
� 1/ D t 1 T13.48a

3. m > 1 1 T13.48a
4. .8k < len.m//ŒA.m;k/_B.m;k/_C.m;k/_D.m;k/� 1 T13.48a
5. ; < len.m/ 3 T13.45j
6. A.m;;/_B.m;;/_C.m;;/_D.m;;/ 4,5 (8E)
7. A.m;;/ A (g 6_E)

8. exp.m;;/ D p;q_ Var.exp.m;;// 7 abv

9. Termseq.2
exp.m;;/

;exp.m;;// 8 T13.48g,h
10. 9xTermseq.x;exp.m;;// 9 9I

11. B.m;;/ A (g 6_E)

12. �9xTermseq.x;exp.m;;// A (c �E)

13. .9j < ;/exp.m;;/ D pSq � exp.m; j / 11 abv
14. exp.m;;/ D pSq � exp.m; j / A (c 13 (9E))
15. j < ;

16. j – ; T13.13d,r
17. ? 15,16?I

18. ? 13,14-17 (9E)
19. 9xTermseq.x;exp.m;;// 12-18�E

20. C.m;;/ A (g 6_E)

21. 9xTermseq.x;exp.m;;// similarly

22. D.m;;/ A (g 6_E)

23. 9xTermseq.x;exp.m;;// similarly

24. 9xTermseq.x;exp.m;;// 6,7-23 _E
25. ; < len.m/! 9xTermseq.x;exp.m;;// 24 _I
26. .8z � k/Œz < len.m/! 9xTermseq.x;exp.m; z//� A (g!I)

27. Sk < len.m/ A (g!I)

28. k < len.m/ 27 T13.13l
29. A.m;Sk/_B.m;Sk/_C.m;Sk/_D.m;Sk/ 4,27 (8E)
30. A.m;Sk/ A (g 29_E)

31. exp.m;Sk/ D p;q_ Var.exp.m;Sk// 30 abv

32. Termseq.2
exp.m;Sk/

;exp.m;Sk// 31 T13.48g,h
33. 9xTermseq.x;exp.m;Sk// 32 9I

34. B.m;Sk/ A (g 29_E)

35. .9j < Sk/exp.m;Sk/ D pSq � exp.m; j / 34 abv
36. exp.m;Sk/ D pSq � exp.m; a/ A (g 35 (9E))
37. a < Sk

38. a � k 37 T13.13n
39. a < len.m/ 38,28 T13.13c
40. 9xTermseq.x;exp.m; a// 26,38,39 (8E)
41. Termseq.n;exp.m; a// A (g 409E)

42. Termseq.n � 2
pSq�exp.m;a/

; pSq � exp.m; a// 41 T13.48i
43. 9xTermseq.x; pSq � exp.m; a// 42 9I
44. 9xTermseq.x;exp.m;Sk// 43,36DE

45. 9xTermseq.x;exp.m;Sk// 40,41-44 9E
46. 9xTermseq.x;exp.m;Sk// 35,36-45 (9E)

47. C.m;Sk/ A (g 29_E)

48. 9xTermseq.x;exp.m;Sk// similarly

49. D.m;Sk/ A (g 29_E)

50. 9xTermseq.x;exp.m;Sk// similarly

51. 9xTermseq.x;exp.m;Sk// 29,30-50 _E

52. Sk < len.m/! 9xTermseq.x;exp.m;Sk// 27-51!I

53. .8z � k/Œz < len.m/! 9xTermseq.x;exp.m; z//�! ŒSk < len.m/! 9xTermseq.x;exp.m;Sk//� 26-52!I
54. 8kŒk < len.m/! 9xTermseq.x;exp.m; k//� 25,53 T13.13ag
55. a < len.m/ A (g (8I))
56. 9xTermseq.x;exp.m; a// 55 (8E)
57. Term.exp.m; a// 56 T13.48m

58. .8i < len.m//Term.exp.m; i// 55-57 (8I)

59. Termseq.m; t/! .8i < len.m//Term.exp.m; i// 1-59!I

Exercise 13.35 T13.48.n

ANSWERS FOR CHAPTER 13 869

E13.37. Work theK andM cases from T13.50l. Hard core: show each of the results
from T13.50.

T13.50.

T13.50.i. PA ` Tsubseq.m; n; t; v; s; u/! Tsubseq.m � 2
pSq�t

; n � 2
pSq�u

; pSq �
t; v; s; pSq � u/

Exercise 13.37 T13.50.i

ANSWERS FOR CHAPTER 13 870

1. Tsubseq.m;n; t; v; s; u/ A (g!I)

2. Termseq.m; t/ 1 T13.50a
3. len.m/ D len.n/ 1 T13.50a
4. exp.n; len.n/

:
� 1/ D u 1 T13.50a

5. .8k < len.m//.I.m;n; k/_ J.v;m;n; k/_K.v; s;m;n; k/_L.m;n; k/_M.m;n; k/_N.m;n; k// 1 T13.50a

6. Termseq.m � 2
pSq�t

; pSq � t/ 2 T13.48i
7. pSq > ; cap
8. pSq � t > ; ^ pSq � u > ; 7 T13.47n

9. len.2
pSq�t

/ D 1^ len.2
pSq�u

/ D 1 8 T13.45k

10. len.m � 2
pSq�t

/ D len.m/C 1^ len.n � 2
pSq�u

/ D len.n/C 1 9 T13.47f

11. len.m � 2
pSq�t

/ D len.n � 2
pSq�u

/ 10,3DE

12. len.n � 2
pSq�u

/
:
� 1 D len.n/ 10 T13.23k

13. exp.n � 2
pSq�u

; len.n// D exp.2
pSq�u

;;/ T13.47g

14. exp.2
pSq�u

;;/ D pSq � u T13.44i

15. exp.n � 2
pSq�u

; len.n � 2
pSq�u

/
:
� 1/ D pSq � u 12,13,14DE

16. l < len.m � 2
pSq�t

/ A (g (8I))

17. l < Slen.m/ 10,16DE
18. l < len.m/_ l D len.m/ 17 T13.13n
19. l < len.m/ A (g 18_E)

20. exp.m � 2
pSq�t

; l/ D exp.m; l/^ exp.n � 2
pSq�u

; l/ D exp.n; l/ 19,3 T13.47c
21. I.m;n; l/_ J.v;m;n; l/_K.v; s;m;n; l/_L.m;n; l/_M.m;n; l/_N.m;n; l/ 5,19 (8E)
22. I.m;n; l/ A (g 21_E)

23. exp.m; l/ D p;q^ exp.n; l/ D p;q 22 abv

24. exp.m � 2
pSq�t

; l/ D p;q^ exp.n � 2
pSq�u

; l/ D p;q 20,23DE

25. I.m � 2
pSq�t

; n � 2
pSq�u

; l/ 24 abv

26. I _ J _K _L_M _N.v; s;m � 2
pSq�t

; n � 2
pSq�u

; l/ 25 _I

27. J.v;m;n; l/_K.v; s;m;n; l/ A (g 21_E)

28. I _ J _K _L_M _N.v; s;m � 2
pSq�t

; n � 2
pSq�u

; l/ similarly

29. L.m;n; l/ A (g 21_E)

30. .9i < l/Œexp.m; l/ D pSq � exp.m; i/^ exp.n; l/ D pSq � exp.n; i/� 29 abv
31. i < l A (g 30 (9E))
32. exp.m; l/ D pSq � exp.m; i/^ exp.n; l/ D pSq � exp.n; i/

33. i < len.m/^ i < len.n/ 31,19,3 T13.13b

34. exp.m � 2
pSq�t

; i/ D exp.m; i/^ exp.n � 2
pSq�u

; i/ D exp.n; i/ 33 T13.47c

35. exp.m � 2
pSq�t

; l/ D pSq � exp.m � 2
pSq�t

; i/^ exp.n � 2
pSq�u

; l/ D pSq � exp.n � 2
pSq�u

; i/� 32,20,34DE

36. .9i < l/Œexp.m � 2
pSq�t

; l/ D pSq � exp.m � 2
pSq�t

; i/^ exp.n � 2
pSq�u

; l/ D pSq � exp.n � 2
pSq�u

; i/� 31,35 (9I)

37. L.m � 2
pSq�t

; n � 2
pSq�u

; l/ 36 abv

38. L.m � 2
pSq�t

; n � 2
pSq�u

; l/ 30,31-37 (9E)

39. I _ J _K _L_M _N.v; s;m � 2
pSq�t

; n � 2
pSq�u

; l/ 38 _I

40. M.m;n; l/_N.m;n; l/ A (g 21_E)

41. I _ J _K _L_M _N.v; s;m � 2
pSq�t

; n � 2
pSq�u

; l/ similarly

42. I _ J _K _L_M _N.v; s;m � 2
pSq�t

; n � 2
pSq�u

; l/ 21,22-41 _E

Exercise 13.37 T13.50.i

ANSWERS FOR CHAPTER 13 871

43. l D len.m/ A (g 18_E)

44. l D len.n/ 43,3DE
45. m > 1 2 T13.48a
46. len.m/ > ; 45 T13.45j
47. len.m/

:
� 1 < len.m/ 46 T13.23i

48. len.m/
:
� 1 < len.n/ 47,3DE

49. len.m/
:
� 1 < l 47,43DE

50. exp.m � 2
pSq�t

; len.m/
:
� 1/ D exp.m; len.m/

:
� 1/ 47 T13.47c

51. exp.m; len.m/
:
� 1/ D t 2 T13.48a

52. exp.m � 2
pSq�t

; len.m/
:
� 1/ D t 50,51DE

53. exp.m � 2
pSq�t

; len.m// D exp.2
pSq�t

;;/ T13.47g

54. exp.2
pSq�t

;;/ D pSq � t T13.44i

55. exp.m � 2
pSq�t

; len.m// D pSq � t 53,54DE

56. exp.m � 2
pSq�t

; l/ D pSq � exp.m � 2
pSq�t

; len.m/
:
� 1/ 55,43,52DE

57. exp.n � 2
pSq�u

; len.m/
:
� 1/ D exp.n; len.m/

:
� 1/ 48 T13.47c

58. exp.n; len.m/
:
� 1/ D u 3,4DE

59. exp.n � 2
pSq�u

; len.m/
:
� 1/ D u 57,58DE

60. exp.n � 2
pSq�u

; len.n// D exp.2
pSq�u

;;/ T13.47g

61. exp.2
pSq�u

;;/ D pSq � u T13.44i

62. exp.n � 2
pSq�t

; len.m// D pSq � u 3,60,61DE

63. exp.n � 2
pSq�u

; l/ D pSq � exp.n � 2
pSq�u

; len.m/
:
� 1/ 62,43,59DE

64. .9i < l/Œexp.m � 2
pSq�t

; l/ D pSq � exp.m � 2
pSq�t

; i/^ exp.n � 2
pSq�u

; l/ D pSq � exp.n � 2
pSq�u

; i/� 56,63,49 (9I)

65. L.m � 2
pSq�t

; n � 2
pSq�u

; l/ 64 abv

66. I _ J _K _L_M _N.v; s;m � 2
pSq�t

; n � 2
pSq�u

; l/ 65 _I

67. I _ J _K _L_M _N.v; s;m � 2
pSq�t

; n � 2
pSq�u

; l/ 18,19-66 _E

68. .8k < len.m � 2
pSq�t

//I _ J _K _L_M _N.v; s;m � 2
pSq�t

; n � 2
pSq�u

; k/ 16-67 (8I)

69. Tsubseq.m � 2
pSq�t

; n � 2
pSq�u

; pSq � t; v; s; pSq � u/ 6,11,15,68 T13.50a

70. Tsubseq.m;n; t; v; s; u/! Tsubseq.m � 2
pSq�t

; n � 2
pSq�u

; pSq � t; v; s; pSq � u/ 1-69!I

T13.50.l. PA ` Tsubseq.m; n; t; v; s; u/! Termsub.t; v; s; u/

Let P .m; n; v; s; k/ D 9a9bŒTsubseq.a; b; exp.m; k/; v; s; exp.n; k//^len.a/ �
len.exp.m; k//^.8i < len.a//.exp.a; i/ � exp.m; k/^exp.b; i/ � exp.n; k//�

Exercise 13.37 T13.50.l

ANSWERS FOR CHAPTER 13 872

1. Tsubseq.m;n; t; v; s; u/ A (g!I)

2. Termseq.m; t/ 1 T13.50a
3. len.m/ D len.n/ 1 T13.50a
4. exp.n; len.n/

:
� 1/ D u 1 T13.50a

5. .8k < len.m//.I.m;n; k/_ J.v;m;n; k/_K.v; s;m;n; k/_L.m;n; k/_M.m;n; k/_N.m;n; k// 1 T13.50a
6. exp.m; len.m/

:
� 1/ D t 2 T13.48a

7. m > 1 2 T13.48a
8. .8k < len.m//ŒA.m;k/_B.m;k/_C.m;k/_D.m;k/� 2 T13.48a
9. k < len.m/ A (g (8I))

10. len.exp.m; k// � ; A (g!I)

11. �P A (g �E)

12. exp.m; k/ > 1 2,9 T13.48e
13. exp.m; k/ � 1 10 T13.45j
14. ? 12,13?I

15. P 11-14�E

16. len.exp.m; k// � ;! P 10-15!I

17. .8k < len.m//Œlen.exp.m; k// � ;! P � 9-16 (8I)
18. .8k < len.m//Œlen.exp.m; k// � x! P � A (g!I)

19. j < len.m/ A (g (8I))

20. len.exp.m; j // � Sx A (g!I)

21. exp.m; j / > 1 2,19 T13.48e
22. len.exp.m; j // � 1 21 T13.45j
23. I.m;n; j /_ J.v;m;n; j /_K.v; s;m;n; j /_L.m;n; j /_M.m;n; j /_N.m;n; j / 5,19 (8E)
24. I.m;n; j / A (g 23_E)

25. exp.m; j / D p;q^ exp.n; j / D p;q 24 abv

26. Tsubseq.2
p;q
; 2

p;q
;exp.m; j /; v; s;exp.n; j // 25 T13.50f

27. len.2
p;q
/ D 1 cap

28. len.2
p;q
/ � len.exp.m; j // 22,27DE

29. l < len.2
p;q
/ A (g (8I))

30. l D ; 27,29 T8.16

31. exp.2
p;q
;;/ D p;q T13.44i

32. exp.2
p;q
; l/ � exp.m; j / 25,31DE

33. exp.2
p;q
; l/ � exp.n; j / 25,31DE

34. exp.2
p;q
; l/ � exp.m; j /^ exp.2

p;q
; l/ � exp.n; j / 32,33 ^I

35. .8i < len.2
p;q
//.exp.2

p;q
; i/ � exp.m; j /^ exp.2

p;q
; i/ � exp.n; j / 29-34 (8I)

36. P k
j

26,28,35 9I

Exercise 13.37 T13.50.l

ANSWERS FOR CHAPTER 13 873

37. J.v;m;n; j / A (g 23_E)

38. Var.exp.m; j //^ exp.m; j / ¤ v ^ exp.n; j / D exp.m; j / 37 abv

39. Tsubseq.2
exp.m;j /

; 2
exp.n;j /

;exp.m; j /; v; s;exp.n; j // 38 T13.50g

40. len.2
exp.m;j /

/ D 1 21 T13.45k

41. len.2
exp.m;j /

/ � len.exp.m; j // 22,40DE

42. l < len.2
exp.m;j /

/ A (g (8I))

43. l D ; 40,42 T8.16

44. exp.2
exp.m;j /

;;/ D exp.m; j /^ exp.2
exp.n;j /

;;/ D exp.n; j / T13.44i

45. exp.2
exp.m;j /

;;/ � exp.m; j /^ exp.2
exp.n;j /

;;/ � exp.n; j / 44 T13.13m

46. exp.2
exp.m;j /

; l/ � exp.m; j /^ exp.2
exp.n;j /

; l/ � exp.n; j / 43,45DE

47. .8i < len.2
exp.m;j /

//.exp.2
exp.m;j /

; i/ � exp.m; j /^ exp.2
exp.n;j /

; i/ � exp.n; j // 42-46 (8I)
48. P k

j
39,41,47 9I

49. K.v; s;m;n; j / A (g 23_E)

50. P k
j

similarly

51. L.m;n; j / A (g 23_E)

52. .9i < j /Œexp.m; j / D pSq � exp.m; i/^ exp.n; j / D pSq � exp.n; i/� 51 abv
53. l < j A (g 52 (9E))
54. exp.m; j / D pSq � exp.m; l/
55. exp.n; j / D pSq � exp.n; l/

56. l < len.m/ 19,53 T13.13b
57. len.pSq/ D 1 cap
58. len.pSq � exp.m; l// D 1C len.exp.m; l// 57 T13.47f
59. len.exp.m; l// < len.exp.m; j // 54,58 def
60. len.exp.m; l// � x 20,59 T13.13n
61. P k

l
18,56,60 (8E)

62. Tsubseq.c; d;exp.m; l/; v; s;exp.n; l// A (g 619E)
63. len.c/ � len.exp.m; l//
64. .8i < len.c//.exp.c; i/ � exp.m; l/^ exp.d; i/ � exp.n; l//

65. len.c/ D len.d/ 62 T13.50a

66. Tsubseq.c � 2
exp.m;j /

; d � 2
exp.n;j /

;exp.m; j /; v; s;exp.n; j // 54,55,62 T13.50i
67. len.pSq � exp.n; l// D 1C len.exp.n; l// 57 T13.47f
68. len.pSq � exp.n; l// � 1 67 T13.13u
69. pSq � exp.n; l/ > 1 68 T13.45g
70. exp.n; j / > 1 55,69DE

71. len.2
exp.m;j /

/ D 1^ len.2
exp.n;j /

D 1/ 21,70 T13.45k

72. len.c � 2
exp.m;j /

/ D len.c/C 1^ len.d � 2
exp.n;j /

/ D len.d/C 1 71 T13.47f

73. len.c � 2
exp.m;j /

/ D len.d � 2
exp.n;j /

/ 65,72DE
74. len.exp.m; j // D 1C len.exp.m; l// 54,58DE
75. len.c/C 1 � len.exp.m; l//C 1 63 T13.13v

76. len.c � 2
exp.m;j /

/ � len.exp.m; j // 72,74,75DE

77. q < len.c � 2
exp.m;j /

/ A (g (8I))

78. q < Slen.c/ 72,77DE
79. q < len.c/_ q D len.c/ 78 T13.13n
80. q < len.c/ A (g 79_E)

81. q < len.d/ 80,65DE
82. exp.c; q/ � exp.m; l/^ exp.d; q/ � exp.n; l// 64,80 (8E)
83. exp.c; q/ � exp.m; j /^ exp.d; q/ � exp.n; j / 54,55,82 T13.47o

84. exp.c � 2
exp.m;j /

; q/ D exp.c; q/^ exp.d � 2
exp.n;j /

; q/ D exp.d; q/ 80,81 T13.47c

85. exp.c � 2
exp.m;j /

; q/ � exp.m; j /^ exp.d � 2
exp.n;j /

; q/ � exp.n; j / 83,84DE

86. q D len.c/ A (g 79_E)

87. exp.c � 2
exp.m;j /

; q/ D exp.2
exp.m;j /

;;/^ exp.d � 2
exp.n;j /

; q/ D exp.2
exp.n;j /

;;/ 86,65 T13.47g

88. exp.2
exp.m;j /

;;/ D exp.m; j /^ exp.2
exp.n;j /

;;/ D exp.n; j / T13.44i

89. exp.c � 2
exp.m;j /

; q/ � exp.m; j /^ exp.d � 2
exp.n;j /

; q/ � exp.n; j / 87,86DE

90. exp.c � 2
exp.m;j /

; q/ � exp.m; j /^ exp.d � 2
exp.n;j /

; q/ � exp.n; j / 79,80-89 _E

91. .8i < len.c � 2
exp.m;j /

//.exp.c � 2
exp.m;j /

; i/ � exp.m; j /^ exp.d � 2
exp.n;j /

; i/ � exp.n; j // 77-90 (8I)
92. P k

j
66,73,76,91 9I

93. P k
j

61,62-92 9E

94. P k
j

52,53-93 (9E)

Exercise 13.37 T13.50.l

ANSWERS FOR CHAPTER 13 874

95. M.m;n; j / A (g 23_E)

96. P k
j

similarly

97. N.m;n; j / A (g 23_E)

98. P k
j

similarly

99. P k
j

23,24-98 _E

100. len.exp.m; j // � Sx! P k
j

20-99!I

101. .8k < len.m//Œlen.exp.m; k// � Sx! P � 19-100 (8I)

102. .8k < len.m//Œlen.exp.m; k// � x! P �! .8k < len.m//Œlen.exp.m; k// � Sx! P � 18-101!I
103. 8x.8k < len.m//Œlen.exp.m; k// � x! P � 17,102 IN
104. len.m/ > ; 7 T13.45j
105. len.m/

:
� 1 < len.m/ 104 T13.23i

106. P k

len.m/
:
�1

103,105 (8E)

107. Tsubseq.a; b; t; v; s; u/ A (g 106,4,6 9E)
108. len.a/ � len.t/
109. .8i < len.a//.exp.a; i/ � t ^ exp.b; i/ � u�

110. len.a/ D len.b/ 107 T13.50a
111. Œpi.len.t//t �len.t/ � val.a; len.a// 108,109 T13.46o
112. Œpi.len.t//u�len.t/ � val.b; len.b// 110,108,109 T13.46o
113. Termseq.a; t/ 107 T13.50a
114. a > 1 113 T13.48a
115. len.a/ > ; 114 T13.45j
116. len.b/ > ; 115,110DE
117. b > 1 116 T13.45g
118. a � Œpi.len.t//t �len.t/ ^ b � Œpi.len.t//u�len.t/ 111,112,114,117 T13.46n
119. .9x � Xt /.9y � Yt;u/Tsubseq.x; y; t; v; s; u/ 107,118 (9I)
120. Termsub.t; v; s; u/ 119 T13.50b

121. Termsub.t; v; s; u/ 106,107-120 9E

122. Tsubseq.m;n; t; v; s; u/! Termsub.t; v; s; u/ 1-121!I

T13.50.m. PA ` ŒTerm.t/^Term.s/�! 9uŒTermsub.t; v; s; u/^len.u/ � len.t/�
len.s/ ^ .8k < len.u//exp.u; k/ � t C s�

Let P .m; i; v; s/ D 9x9y9uŒTsubseq.x; y; exp.m; i/; v; s; u/^len.u/ � len.exp.m; i//�
len.s/ ^ .8k < len.u//exp.u; k/ � exp.m; i/C s�

Exercise 13.37 T13.50.m

ANSWERS FOR CHAPTER 13 875

1. Term.t/^ Term.s/ A (g!I)

2. Termseq.m; t/ 1 T13.48b, 9E
3. exp.m; len.m/

:
� 1/ D t ^m > 1^ .8k < len.m//ŒA.m;k/_B.m;k/_C.m;k/_D.m;k/� 2 T13.48a

4. len.m/ > ; 3 T13.45j
5. len.m/

:
� 1 � len.m/ 4 T13.23i

6. s > 1 1 T13.48f
7. len.s/ > ; 6 T13.45j
8. ; < len.m/ A (g!I)

9. Term.exp.m;;// 2,8 T13.48n
10. exp.m;;/ > 1 T13.48f
11. len.exp.m;;// > ; T13.45j
12. A.m;;/_B.m;;/_C.m;;/_D.m;;/ 3,8 (8E)
13. A.m;;/ A (g 12_E)

14. exp.m;;/ D p;q_ Var.exp.m;;// 13 abv
15. exp.m;;/ D p;q A (g 14_E)

16. len.p;q/ D 1 cap

17. Tsubseq.2
p;q
; 2

p;q
;exp.m;;/; v; s; p;q/ 15 T13.50f

18. len.p;q/ � len.p;q/� len.s/ 7 T13.13z
19. len.p;q/ � len.exp.m;;//� len.s/ 15,18DE
20. k < len.p;q/ A (g (8I))

21. exp.p;q; k/ � p;q T13.44g
22. p;q � p;qC s T13.13u
23. exp.p;q; k/ � exp.m;;/C s 15,21,22 T13.13a

24. .8k < len.p;q//exp.p;q; k/ � exp.m;;/C s 20-23 (8I)
25. P i

;
17,19,24 9I

26. Var.exp.m;;// A (g 14_E)

27. exp.m;;/ D v _ exp.m;;/ ¤ v T3.1
28. exp.m;;/ D v A (g 27_E)

29. Tsubseq.2
exp.m;;/

; 2
exp.m;;/

;exp.m;;/; v; s; s/ 26 T13.50h
30. len.exp.m;;// > ; 26 T13.48d
31. len.s/ � len.exp.m;;//� len.s/ 30 T13.13z
32. k < len.s/ A (g (8I))

33. exp.s; k/ � s T13.44g
34. s � exp.m;;/C s T13.13u
35. exp.s; k/ � exp.m;;/C s 33,34 T13.13a
36. .8k < len.s//exp.s; k/ � exp.m;;/C s 32-35 (8I)
37. P i

;
29,31,36 9I

38. exp.m;;/ ¤ v A (g 27_E)

39. Tsubseq.2
exp.m;;/

; 2
exp.m;;/

;exp.m;;/; v; s;exp.m;;// 38 T13.50g
40. len.exp.m;;// � len.exp.m;;//� len.s/ 7 T13.13z
41. k < len.exp.m;;// A (g (8I))

42. exp.exp.m;;/; k/ � exp.m;;/ T13.44g
43. exp.m;;/ � exp.m;;/C s T13.13u
44. exp.exp.m;;/; k/ � exp.m;;/C s 42,43 T13.13a

45. .8k < len.exp.m;;///exp.m;;/; k/ � exp.m;;/C s 41-44 (8I)
46. P i

;
39,40,45 9I

47. P i
;

27,28-46_E

48. P i
;

14,15-47 _E

49. B.m;;/_C.m;;/_D.m;;/ A (g 12_E)

50. P i
;

trivial

51. P i
;

12,13-50 _E
52. ; < len.m/! P i

;
8-51!I

Exercise 13.37 T13.50.m

ANSWERS FOR CHAPTER 13 876

53. .8z � i/.z < len.m/! P i
z / A (g!I)

54. Si < len.m/ A (g!I)

55. A.m;Si/_B.m;Si/_C.m;Si/_D.m;Si/ 3,54 (8E)
56. A.m;Si/ A (g 55_E)

57. P i
Si

as above

58. B.m;Si/ A (g 55_E)

59. .9j < Si/exp.m;Si/ D pSq � exp.m; j / 58 abv
60. exp.m;Si/ D pSq � exp.m; j / A (g 59 (9E))
61. j < Si

62. j � i 61 T13.13n
63. j < len.m/ 54,61 T13.13b
64. P i

j
53,62,63 (8E)

65. Tsubseq.a; b;exp.m; j /; v; s; r/ A (g 64 9E)
66. len.r/ � len.exp.m; j //� len.s/
67. .8k < len.r//exp.r; k/ � exp.m; j /C s

68. Tsubseq.a � 2
pSq�exp.m;j /

; b � 2
pSq�r

; pSq � exp.m; j /; v; s; pSq � r/ 65 T13.50i
69. len.pSq/ D 1 cap
70. len.pSq � r/ D 1C len.r/ 69 T13.47f
71. len.pSq � exp.m; j // D 1C len.exp.m; j // 69 T13.47f
72. 1C len.r/ � 1C len.exp.m; j //� len.s/ 66 T13.13v
73. len.pSq � r/ � 1C len.exp.m; j //� len.s/ 72,70DE
74. 1C len.exp.m; j //� len.s/ � len.s/C len.exp.m; j //� len.s/ 7 T13.13v
75. len.pSq � r/ � len.s/C len.exp.m; j //� len.s/ 73,74 T13.13a
76. len.pSq � r/ � Œ1C len.exp.m; j //�� len.s/ 75 T6.64
77. len.pSq � r/ � len.exp.m;Si//� len.s/ 60,71,76DE
78. k < len.pSq � r/ A (g (8I))

79. k < len.pSq/C len.r/ 78 T13.47f
80. k < len.pSq/_ k � len.pSq/ T13.13q
81. k < len.pSq/ A (g 80_E)

82. exp.pSq � r; k/ D exp.pSq; k/ 81 T13.47c
83. exp.pSq; k/ � pSq T13.44g
84. exp.pSq � r; k/ � pSq 82,83DE
85. pSq � pSq � exp.m; j / T13.47n
86. pSq � exp.m; j / � pSq � exp.m; j /C s T13.13u
87. pSq � exp.m; j / � exp.m;Si/C s 60,85DE
88. exp.pSq � r; k/ � exp.m;Si/C s 84,85,87 T13.13a

89. k � len.pSq/ A (g 80_E)

90. k D len.pSq/C .k
:
� len.pSq// 89 T13.23a

91. exp.pSq � r; k/ D exp.r; k
:
� len.pSq// 90 T13.47g

92. k
:
� len.pSq/ < .len.pSq/C len.r//

:
� len.pSq/ 89,79 T13.23e

93. k
:
� len.pSq/ < len.r/ 92 T13.23l,b

94. exp.r; k
:
� len.pSq// � exp.m; j /C s 93,67 (8E)

95. exp.pSq � r; k/ � exp.m; j /C s 91,94DE
96. exp.m; j / � pSq � exp.m; j / T13.47o
97. exp.m; j / � exp.m;Si/ 60,96DE
98. exp.pSq � r; k/ � exp.m;Si/C s 95,97 T13.13v

99. exp.pSq � r; k/ � exp.m;Si/C s 80,81-98 _E

100. .8k < len.pSq � r//exp.pSq � r; k/ � exp.m;Si/C s 78-99 (8I)
101. P i

Si
68,77,100 9I

102. P i
Si

64,65-101 9E

103. P i
Si

59,60-102 (9E)

Exercise 13.37 T13.50.m

ANSWERS FOR CHAPTER 13 877

104. C.m;Si/ A (g 55_E)

105. P i
Si

similarly

106. D.m;Si/ A (g 55_E)

107. P i
Si

similarly

108. P i
Si

55,56-107 _E
109. Si < len.m/! P i

Si
54-108!I

110. Œ.8z � i/.z < len.m/! P i
z /�! ŒSi < len.m/! P i

Si
� 53-109!I

111. 8iŒi < len.m/! P � 52,110 T13.13ag
112. 9x9y9uŒTsubseq.x; y; t; v; s; u/^ len.u/ � len.t/� len.s/^ .8k < len.u//exp.u; k/ � t C s� 3,5,111 8E
113. Tsubseq.x; y; t; v; s; u/^ len.u/ � len.t/� len.s/^ .8k < len.u//exp.u; k/ � t C s A (g 112 9E)

114. Termsub.t; v; s; u/^ len.u/ � len.t/� len.s/^ .8k < len.u//exp.u; k/ � t C s 113 T13.50l
115. 9uŒTermsub.t; v; s; u/^ len.u/ � len.t/� len.s/^ .8k < len.u//exp.u; k/ � t C s� 114 9I

116. 9uŒTermsub.t; v; s; u/^ len.u/ � len.t/� len.s/^ .8k < len.u//exp.u; k/ � t C s� 112,113-115 9E

117. ŒTerm.t/^ Term.s/�! 9uŒTermsub.t; v; s; u/^ len.u/ � len.t/� len.s/^ .8k < len.u//exp.u; k/ � t C s� 1-116!I

T13.50.n. PA ` ŒAtomic.p/ ^ Term.s/� ! 9qŒAtomsub.p; v; s; q/ ^ len.q/ �
len.p/ � len.s/ ^ .8k < len.q//exp.q; k/ � p C s�

Exercise 13.37 T13.50.n

ANSWERS FOR CHAPTER 13 878

1. Atomic.p/^ Term.s/ A (g!I)

2. s > 1 1 T13.48f
3. len.s/ > ; 2 T13.45j
4. .9x � p/.9y � p/ŒTerm.x/^ Term.y/^ p D pDq � x � y� 1 T13.49c
5. Term.a/^ Term.b/ A (g 4 (9E))
6. p D pDq � a � b

7. a � p ^ b � p

8. 9a0ŒTermsub.a; v; s; a0/^ len.a0/ � len.a/� len.s/^ .8k < len.a0//exp.a0; k/ � aC s� 1,5 T13.50m
9. 9b0ŒTermsub.b; v; s; b0/^ len.b0/ � len.b/� len.s/^ .8k < len.b0//exp.b0; k/ � bC s� 1,5 T13.50m

10. Termsub.a; v; s; a0/ A (g 89E)
11. len.a0/ � len.a/� len.s/
12. .8k < len.a0//exp.a0; k/ � aC s

13. Termsub.b; v; s; b0/ A (g 99E)
14. len.b0/ � len.b/� len.s/
15. .8k < len.b0//exp.b0; k/ � bC s

16. b0 � pDq � a0 � b0 T13.47o
17. a0 � pDq � a0 T13.47o
18. pDq � a0 � pDq � a0 � b0 T13.47n
19. a0 � pDq � a0 � b0 17,18 T13.13a
20. a0 � pDq � a0 � b0 ^ b0 � pDq � a0 � b0 19,16 ^I
21. Term.a/^ Term.b/^ p D pDq � a � b ^ Termsub.a; v; s; a0/^ Termsub.b; v; s; b0/^

pDq � a0 � b0 D pDq � a0 � b0 5,6,10,13 ^I
22. Atomsub.p; v; s; pDq � a0 � b0/ 7,20,21 (9I)
23. len.pDq/ � len.pDq/� len.s/ 3 T13.13z
24. len.pDq � a � b/ D len.pDq/C len.a/C len.b/ T13.47f
25. len.pDq � a0 � b0/ D len.pDq/C len.a0/C len.b0/ T13.47f
26. len.pDq/C len.a0/C len.b0/ � len.pDq/� len.s/C len.a/� len.s/C len.b/� len.s/ 23,11,14 T13.13v
27. len.pDq/� len.s/C len.a/� len.s/C len.b/� len.s/ D Œlen.pDq/C len.a/C len.b/�� len.s/ T6.64
28. len.pDq/C len.a0/C len.b0/ � Œlen.pDq/C len.a/C len.b/�� len.s/ 26,27DE
29. len.pDq � a0 � b0/ � len.pDq � a � b/� len.s/ 28,25,24DE
30. len.pDq � a0 � b0/ � len.p/� len.s/ 29,6DE
31. j < len.pDq � a0 � b0/ A (g (8I))

32. j < len.pDq/_ j � len.pDq/ T13.13q
33. j < len.pDq/ A (g 32_E)

34. exp.pDq � a0 � b0; j / D exp.pDq; j / 33 T13.47c
35. exp.pDq; j / � pDq T13.44g
36. pDq � pDq � a � b T13.47n
37. pDq � a � b � pDq � a � bC s T13.13u
38. exp.pDq; j / � pDq � a � bC s 35,36,37 T13.13a
39. exp.pDq � a0 � b0; j / � pDq � a � bC s 34,38DE

Exercise 13.37 T13.50.n

ANSWERS FOR CHAPTER 13 879

40. j � len.pDq/ A (g 32_E)

41. len.pDq/ D le def
42. j D le C .j

:
� le/ 40 T13.23a

43. exp.pDq � a0 � b0; j / D exp.a0 � b0; j
:
� le/ 42 T13.47g

44. j
:
� le < len.a0/_ j

:
� le � len.a0/ T13.13q

45. j
:
� le < len.a0/ A (g 44 _E)

46. exp.a0 � b0; j
:
� le/ D exp.a0; j

:
� le/ 45 T13.47c

47. exp.pDq � a0 � b0; j / D exp.a0; j
:
� le/ 43,46DE

48. exp.a0; j
:
� le/ � aC s 12,45 (8E)

49. exp.pDq � a0 � b0; j / � aC s 47,48DE
50. a � pDq � a T13.47o
51. pDq � a � pDq � a � b T13.47n
52. a � pDq � a � b 50,51 T13.13a
53. exp.pDq � a0 � b0; j / � pDq � a � bC s 49,52 T13.13v

54. j
:
� le � len.a0/ A (g 44_E)

55. .j
:
� le/C le � le C len.a0/ 54 T13.13v

56. j � le C len.a0/ 42,55DE
57. le C len.a0/ D la def
58. j D la C .j

:
� la/ 56 T13.23a

59. len.pDq � a0/ D la T13.47f
60. exp.pDq � a0 � b0; j / D exp.b0; j

:
� la/ 58,59 T13.47g

61. len.pDq � a0 � b0/ D la C len.b0/ T13.47f
62. j < la C len.b0/ 31,61DE
63. la C .j

:
� la/ < la C len.b0/ 58,62DE

64. j
:
� la < len.b0/ 63 T13.13w

65. exp.b0; j
:
� la/ � bC s 15,64 (8E)

66. b � pDq � a � b T13.47o
67. bC s � pDq � a � bC s 66 T13.13v
68. exp.b0; j

:
� la/ � pDq � a � bC s 65,67 T13.13a

69. exp.pDq � a0 � b0; j / � pDq � a � bC s 60,68DE

70. exp.pDq � a0 � b0; j / � pDq � a � bC s 44,45-69 _E

71. exp.pDq � a0 � b0; j / � pDq � a � bC s 32,33-70 _E
72. exp.pDq � a0 � b0; j / � pC s 71,6DE

73. .8k < len.pDq � a0 � b0//exp.pDq � a0 � b0; k/ � pC s 31-72 (8I)
74. 9qŒAtomsub.p; v; s; q/^ len.q/ � len.p/� len.s/^ .8k < len.q//exp.q; k/ � pC s� 22,30,73 9I

75. 9qŒAtomsub.p; v; s; q/^ len.q/ � len.p/� len.s/^ .8k < len.q//exp.q; k/ � pC s� 9,13-74 9E

76. 9qŒAtomsub.p; v; s; q/^ len.q/ � len.p/� len.s/^ .8k < len.q//exp.q; k/ � pC s� 8,10-75 9E

77. 9qŒAtomsub.p; v; s; q/^ len.q/ � len.p/� len.s/^ .8k < len.q//exp.q; k/ � pC s� 4,5-76 (9E)

78. ŒAtomic.p/^ Term.s/�! 9qŒAtomsub.p; v; s; q/^ len.q/ � len.p/� len.s/^ .8k < len.q//exp.q; k/ � pC s� 1-77!I

E13.39. Work the case marked “similarly” on line 115 of T13.52a and the D case
from T13.52f. Hard core: show each of the results from T13.52.

T13.52.

T13.52.a.

Exercise 13.39 T13.52.a

ANSWERS FOR CHAPTER 13 880

1. 8uŒ.P .u/^ len.u/ � x/! .8k < len.u/�P .val.u; k/� P
2. val.c; j / � val.a; j

:
� l1/ � val.c1; j

:
� l2/ � val.b; j

:
� l3/ � val.c2; j

:
� l4/ D c � d � c1 � e � c2 P

3. P .a/^P .b/^P .d/^P .e/ P
4. 8v.P .v/! v > 1/ P
5. len.c/ D 1^ c1 > ; ^ c2 > ; ^ len.c1/ � 1^ len.c2/ � 1 P
6. j < l ^ Sx � l P

7. a > 1^ b > 1^ d > 1^ e > 1 3,4 8E
8. val.a; len.a// D a ^ val.b; len.b// D b ^ val.d; len.d// D d ^ val.e; len.e// D e 7 T13.46n
9. c > ; 5 T13.45g

10. val.c; len.c// D c ^ val.c1; len.c1// D c1 ^ val.c2; len.c2// D c2 5,9 T13.46n
11. l D S.len.a/C len.c1/C len.b/C len.c2// 5 T6.47
12. Sx � S.len.a/C len.c1/C len.b/C len.c2// 6,11DE
13. x � len.a/C len.c1/C len.b/C len.c2/ 12 T13.13j
14. len.a/ � x ^ len.b/ � x 13 T13.13u
15. len.val.c; j / � val.a; j

:
� l1/ � val.c1; j

:
� l2/ � val.b; j

:
� l3/ � val.c2; j

:
� l4// D

len.val.c; j //C len.val.a; j
:
� l1//C len.val.c1; j

:
� l2//C len.val.b; j

:
� l3//C len.val.c2; j

:
� l4// T13.47f

16. len.val.c; j //C len.val.a; j
:
� l1//C len.val.c1; j

:
� l2//C len.val.b; j

:
� l3/C len.val.c2; j

:
� l4// � l T13.46k,T13.13v

17. len.c � d � c1 � e � c2/ � l 2,15,16DE
18. len.c � d � c1 � e � c2/ D S.len.d/C len.c1/C len.e/C len.c2// 5 T13.47f
19. S.len.d/C len.c1/C len.e/C len.c2// � Sx 17,18,6 T13.13a
20. len.d/C len.c1/C len.e/C len.c2/ � x 19 T13.13j
21. len.d/ � x ^ len.e/ � x 20 T13.13u
22. j < l1 A (c �I)

23. j D ; 5,22 T8.16
24. j

:
� l1 D ;^ j

:
� l2 D ;^ j

:
� l3 D ;^ j

:
� l4 D ; 23 T13.23b

25. val.c; j / D 1^ val.a; j
:
� l1/ D 1^ val.c1; j

:
� l2/ D 1^ val.b; j

:
� l3/ D 1^ val.c2; j

:
� l4/ D 1 23,24 def

26. val.c; j / � val.a; j
:
� l1/ � val.c1; j

:
� l2/ � val.b; j

:
� l3/ � val.c2; j

:
� l4/ D 1 25 T13.47i

27. c � d � c1 � e � c2 D 1 2, 26DE
28. len.c � d � c1 � e � c2/ � 1 5 T13.47f
29. c � d � c1 � e � c2 > 1 T13.45g
30. 1 > 1 27,29DE
31. 1 � 1 T13.13s
32. ? 30,31?I

33. j – l1 22-32�I
34. j � l1 33 T13.13r
35. val.c; j / D c 9,34 T13.46n
36. val.a; j

:
� l1/ � val.c1; j

:
� l2/ � val.b; j

:
� l3/ � val.c2; j

:
� l4/ > ; T13.47c

37. d � c1 � e � c2 > ; T13.47c
38. val.a; j

:
� l1/ � val.c1; j

:
� l2/ � val.b; j

:
� l3/ � val.c2; j

:
� l4/ D d � c1 � e � c2 2,35,36,37 T13.47l

39. j < l2 A (c �I)

40. j
:
� l2 D ;^ j

:
� l3 D ;^ j

:
� l4 D ; 39 T13.23b

41. val.c1; j
:
� l2/ D 1^ val.b; j

:
� l3/ D 1^ val.c2; j

:
� l4/ D 1 40 def

42. val.a; j
:
� l1/ > ; 41 T13.46i

43. val.a; j
:
� l1/ � val.c1; j

:
� l2/ � val.b; j

:
� l3/ � val.c2; j

:
� l4/ D val.a; j

:
� l1/ 42,41 T13.47i

44. val.a; j
:
� l1/ D d � c1 � e � c2 38,43DE

45. len.d � c1 � e � c2/ D len.d/C len.c1/C len.e/C len.c2/ T13.47f
46. len.d/ � len.d � c1 � e � c2/ 45 T13.13u
47. len.d/ � len.val.a; j

:
� l1// 46,44DE

48. len.val.a; j
:
� l1// � j

:
� l1 T13.46j

49. len.d/ � j
:
� l1 47,48 T13.13a

50. z < len.d/ A (g (8I))

51. exp.d � c1 � e � c2; z/ D exp.d; z/ 50 T13.47c
52. z < len.val.a; j

:
� l1// 47,50 T13.13c

53. exp.val.a; j
:
� l1/ � val.c1; j

:
� l2/ � val.b; j

:
� l3/ � val.c2; j

:
� l4; z/ D exp.val.a; j

:
� l1/; z/ 52 T13.47c

54. z < j
:
� l1 50,49 T13.13c

55. exp.val.a; j
:
� l1/; z/ D exp.a; z/ 54 T13.46l

56. exp.a; z/ D exp.d; z/ 38,51,53,55DE

57. .8z < len.d//exp.a; z/ D exp.d; z/ 50-56 (8I)
58. val.a; len.d// D val.d; len.d// 57 T13.46m
59. d D val.a; len.d// 58,8DE
60. P .val.a; len.d/// 3,59DE
61. j

:
� l1 < l2

:
� l1 34,39 T13.23e

62. l2
:
� l1 D len.a/ T13.23l

63. len.d/ < len.a/ 49,61,62 T13.13c
64. �P .val.a; len.d/// 1,3,14,63 8E
65. ? 60,64?I

66. j – l2 39-65�I

Exercise 13.39 T13.52.a

ANSWERS FOR CHAPTER 13 881

66. j � l2 66 T13.13r
67. l2 � l1 T13.13u
68. j

:
� l1 � l2

:
� l1 66,67 T13.23d

69. l2
:
� l1 D len.a/ T13.23l

70. j
:
� l1 � len.a/ 68,69DE

71. val.a; j
:
� l1/ D a 7,70 T13.46n

72. len.d/ < len.a/_ len.d/ D len.a/_ len.d/ > len.a/ T13.13p
73. len.d/ < len.a/ A (c 72_E)

74. z < len.d/ A (g (8I))

75. exp.d � c1 � e � c2; z/ D exp.d; z/ 74 T13.47c
76. z < len.val.a; j

:
� l1// 71,73,74 T13.13c

77. exp.val.a; j
:
� l1/ � val.c1; j

:
� l2/ � val.b; j

:
� l3/ � val.c2; l

:
� l4/; z/ D exp.val.a; j

:
� l1/; z/ 76 T13.47c

78. exp.a; z/ D exp.d; z/ 71,77,75,38DE

79. .8z < len.d//exp.a; z/ D exp.d; z/ 74-78 (8I)
80. val.a; len.d// D val.d; len.d// 79 T13.46m
81. val.a; len.d// D d 80,8DE
82. P .val.a; len.d/// 3,81DE
83. �P .val.a; len.d/// 1,3,14,73 8E
84. ? 82,83?I

85. len.d/ > len.a/ A (c 72_E)

86. ? similarly (72)

87. len.d/ D len.a/ A (c 72_E)

88. z < len.d/ A (g (8I))

89. z < len.a/ 88,87DE
90. z < len.val.a; j

:
� l1// 71,89DE

91. exp.d � c1 � e � c2; z/ D exp.d; z/ 88 T13.47c
92. exp.val.a; j

:
� l1/ � val.c1; j

:
� l2/ � val.b; j

:
� l3/ � val.c2; j

:
� l4/; z/ D exp.val.a; j

:
� l1/; z/ 90 T13.47c

93. exp.val.a; j
:
� l1/; z/ D exp.d; z/ 92,91,38DE

94. .8z < len.d//exp.val.a; j
:
� l1/; z/ D exp.d; z/ 88-93 (8I)

95. val.val.a; j
:
� l1/; len.val.a; j

:
� l1/// D val.d; len.d// 94,71,87 T13.46m

96. val.a; j
:
� l1/ > ; T13.46i

97. val.val.a; j
:
� l1/; len.val.a; j

:
� l1/// D val.a; j

:
� l1/ 96 T13.46n

98. val.a; j
:
� l1/ D d 95,97,8DE

99. val.c1; j
:
� l2/ � val.b; j

:
� l3/ � val.c2; j

:
� l4// > ; T13.47c

100. c1 � e � c2 > ; T13.47c
101. val.c1; j

:
� l2/ � val.b; j

:
� l3/ � val.c2; j

:
� l4/ D c1 � e � c2 98,38,99,100 T13.47l

102. j < l3 A (c �I)

103. ? similarly (22)

104. j – l3 102-103�I
105. j � l3 104 T13.13r
106. l3 � l2 T13.13u
107. j

:
� l2 � l3

:
� l2 105,106 T13.23d

108. l3
:
� l2 D len.c1/ T13.23l

109. j
:
� l2 � len.c1/ 107,108DE

110. val.c1; j
:
� l2/ D c1 5,105 T13.46n

111. val.b; j
:
� l3/ � val.c2; j

:
� l4/ > ; T13.47c

112. e � c2 > ; T13.47c
113. val.b; j

:
� l3/ � val.c2; j

:
� l4/ D e � c2 101,110,111,112 T13.47l

114. j < l4 A (c �I)

115. ? similarly (39)

116. j – l4 114-115�I

Exercise 13.39 T13.52.a

ANSWERS FOR CHAPTER 13 882

117. j � l4 116 T13.13r
118. l4 � l3 T13.13u
119. j

:
� l3 � l4

:
� l3 117,118 T13.23d

120. l4
:
� l3 D len.b/ T13.23l

121. j
:
� l3 � len.b/ 119,120DE

122. val.b; j
:
� l3/ D b 121,7 T13.46n

123. len.e/ < len.b/_ len.e/ D len.b/_ len.e/ > len.b/
124. len.e/ < len.b/ A (c 123_E)

125. ? similarly (72)

126. len.e/ > len.b/ A (c 123_E)

127. ? similarly (72)

128. len.e/ D len.b/ A (c 123_E)

129. val.b; j
:
� l3/ D e similarly

130. val.c2; j
:
� l4/ > ; T13.46i

131. val.c2; j
:
� l4/ D c2 113,130,5 T13.47l

132. len.val.c2; j
:
� l4// D len.c2/ 131DE

133. len.val.c2; j
:
� l4// � j

:
� l4 T13.46j

134. j
:
� l4 � len.c2/ 133,134DE

135. .j
:
� l4/C l4 � len.c2/C l4 134 T13.13v

136. j D l4 C .j
:
� l4/ 117 T13.23a

137. j � l 135,136DE
138. j – l 137 T13.13r
139. ? 138,6?I

140. ? 123,124-139 _E

141. ? 72,73-140 _E

T13.52.f. PA ` Term.t/! .8k < len.t//�Term.val.t; k//

Exercise 13.39 T13.52.f

ANSWERS FOR CHAPTER 13 883

1. Term.t/^ len.t/ � ; A (g!I)

2. k < len.t/ A (g (8I))

3. Term.val.t; k// A (c �I)

4. k < ; 1,2 T13.13c
5. k – ; T13.13d,r
6. ? 4,5?I

7. �Term.val.t; k// 3-6�I

8. .8k < len.t//�Term.val.t; k// 2-7 (8I)

9. .Term.t/^ len.t/ � ;/! .8k < len.t//�Term.val.t; k// 1-8! I
10. 8tŒ.Term.t/^ len.t/ � ;/! .8k < len.t//�Term.val.t; k//� 9 8I
11. 8tŒ.Term.t/^ len.t/ � x/! .8k < len.t//�Term.val.t; k//� A (g!I)
12. Term.a/^ len.a/ � Sx A (g!I)

13. Term.a/ 12 ^E
14. len.a/ � Sx 12 ^E
15. j < len.a/ A (g (8I))

16. j D ;_ j > ; T13.13d,m
17. j D ; A (g 16_E)

18. val.a; j / D 1 17 def
19. val.a; j / � 1 18 T13.13m,r
20. �Term.val.a; j // 19 T13.48f

21. j > ; A (g 16_E)

22. j D S.j
:
� 1/ 21 T13.23j

23. S.j
:
� 1/ < len.a/ 15,22DE

24. Termseq.m; a/ 13 T13.48b
25. exp.m; len.m/

:
� 1/ D a 24 T13.48a

26. m > 1 24 T13.48a
27. .8k < len.m//ŒA.m;k/_B.m;k/_C.m;k/_D.m;k/� 24 T13.48a
28. len.m/ > ; 26 T13.45j
29. len.m/

:
� 1 < len.m/ 28 T13.23i

30. A.m; len.m/
:
� 1/_B.m; len.m/

:
� 1/_C.m; len.m/

:
� 1/_D.m; len.m/

:
� 1/ 27,29 (8E)

31. Term.val.a; j // A (c �I)

32. A.m; len.m/
:
� 1/ A (c 30 _E)

33. a D p;q_ Var.a/ 32,25 abv
34. a D p;q A (g 33_E)

35. len.a/ D 1 34 cap

36. Var.a/ A (g 33_E)

37. .9x � a/a D 2
23C2x

36 def

38. a D 2
23C2x

A (g 37 (9E))

39. len.a/ D 1 38 T13.45k

40. len.a/ D 1 37,38-39 (9E)

41. len.a/ D 1 33,34-35,36-40 _E
42. j < ; _ j D ; 15,41 T13.13n
43. j D ; 42 T13.13d,r
44. ? 21,43?I

45. B.m; len.m/
:
� 1/ A (c 30 _E)

46. .9j < len.m/
:
� 1/a D pSq � exp.m; j / 45,25 abv

47. l < len.m/
:
� 1 A (c 46 (9E))

48. a D pSq � exp.m; l/

49. l < len.m/ 29,47 T13.13b
50. Term.exp.m; l// 24,49 T13.48n
51. len.pSq/ D 1 cap
52. pSq > ; 51 T13.45g
53. exp.m; l/ > ; 49,24 T13.48e
54. val.pSq � exp.m; l/; j / D val.pSq; j / � val.exp.m; l/; j

:
� 1/ 51,52,53 T13.47m

55. val.pSq; j / D pSq 21,51 T13.46n
56. val.a; j / D pSq � val.exp.m; l/; j

:
� 1/ 54,48,55DE

57. 9rŒpSq � val.exp.m; l/; j
:
� 1/ D pSq � r ^ Term.r/� 31,56 T13.52c

Exercise 13.39 T13.52.f

ANSWERS FOR CHAPTER 13 884

58. pSq � val.exp.m; l/; j
:
� 1/ D pSq � r A (c 579E)

59. Term.r/

60. val.exp.m; l/; j
:
� 1/ > ; T13.46i

61. r > ; 59 T13.48f
62. val.exp.m; l/; j

:
� 1/ D r 58,60,61 T13.47l

63. Term.val.exp.m; l/; j
:
� 1// 59,62DE

64. len.a/ D len.pSq/C len.exp.m; l// 48 T13.47f
65. len.a/ D 1C len.exp.m; l// 64,51DE
66. len.a/ D Slen.exp.m; l// 65 T6.47
67. Slen.exp.m; l// � Sx 14,66DE
68. len.exp.m; l// � x 67 T13.13j
69. S.j

:
� 1/ < Slen.exp.m; l// 66,23DE

70. j
:
� 1 < len.exp.m; l// 69 T13.13k

71. �Term.val.exp.m; l/; j
:
� 1// 11,50,68,70 (8E)

72. ? 63,71?I

73. ? 57,58-72 9E

74. ? 46,47-73 (9E)

75. C.m; len.m/
:
� 1/ A (c 30 _E)

76. .9i < len.m/
:
� 1/.9j < len.m/

:
� 1/a D pCq � exp.m; i/ � exp.m; j / 75 abv

77. k < len.m/
:
� 1 A (c 76(9E))

78. l < len.m/
:
� 1

79. a D pCq � exp.m; k/ � exp.m; l/

80. k < len.m/ 29,77 T13.13b
81. l < len.m/ 29,78 T13.13b
82. Term.exp.m; k// 24,80 T13.48n
83. Term.exp.m; l// 24,81 T13.48n
84. len.pCq/ D 1 cap
85. pCq > ; 84 T13.45g
86. exp.m; k/ > ; 77,24 T13.48e
87. exp.m; l/ > ; 78,24 T13.48e
88. val.pCq � exp.m; k/ � exp.m; l/; j / D

val.pCq; j / � val.exp.m; k/; j
:
� 1/ � val.exp.m; l/; j

:
� .1C len.exp.m; k//// 84,85,86,87 T13.47m

89. val.pCq; j / D pCq 21,84 T13.46n
90. val.a; j / D pCq � val.exp.m; k/; j

:
� 1/ � val.exp.m; l/; j

:
� .1C len.exp.m; k//// 88,79,89DE

91. 9r9sŒpCq � val.exp.m; k/; j
:
� 1/ � val.exp.m; l/; j

:
� .1C len.exp.m; k//// D

pCq � r � s ^ Term.r/^ Term.s/ 31,90 T13.52d
92. pCq � val.exp.m; k/; j

:
� 1/ � val.exp.m; l/; j

:
� .1C len.exp.m; k//// D pCq � r � s A (c 919E)

93. Term.r/
94. Term.s/

95. val.pCq; j / � val.exp.m; k/; j
:
� 1/ � val.exp.m; l/; j

:
� .1C len.exp.m; k//// D pCq � r � s 92,89DE

96. Term.exp.m; k//^ Term.exp.m; l//^ Term.r/^ Term.s/ 82,83,93,94 ^I
97. 8v.Term.v/! v > 1/ T13.48f
98. len.a/ � Sx ^ j < len.a/ 14,15 ^I
99. ? 11,95,96,97,84,98 T13.52a

100. ? 91,92-99 9E

101. ? 76,77-100 (9E)

102. D.m; len.m/
:
� 1/ A (c 30 _E)

103. ? similarly

104. ? 30,32-103 _E
105. �Term.val.a; j // 31-104�I

106. �Term.val.a; j // 16,17-20,21-105 _E

107. .8k < len.a//�Term.val.a; k// 15-106 (8I)

108. .Term.a/^ len.a/ � Sx/! .8k < len.a//�Term.val.a; k// 12-108!I
109. 8tŒ.Term.t/^ len.t/ � Sx/! .8k < len.t//�Term.val.t; k//� 108 8I

110. 8tŒ.Term.t/^ len.t/ � x/! .8k < len.t//�Term.val.t; k//� !
8tŒ.Term.t/^ len.t/ � Sx/! .8k < len.t//�Term.val.t; k//� 11-109!I

111. 8tŒ.Term.t/^ len.t/ � x/! .8k < len.t//�Term.val.t; k//� 10,110 IN

Exercise 13.39 T13.52.f

ANSWERS FOR CHAPTER 13 885

E13.40. Show (g) including at least the A case, and (k) from T13.53. Hard core:
show each of the results from T13.53.

T13.53.

T13.53.h. PA ` ŒW ff .p//^W ff .q/^W ff .a/^W ff .b/�! Œcnd.p; q/ D cnd.a; b/!
.p D a ^ q D b/�

1. W ff .p//^W ff .q/^W ff .a/^W ff .b/ A (g!I)

2. cnd.p; q/ D cnd.a; b/ A (g!I)

3. p.q � p � p!q � q � p/q D p.q � a � p!q � b � p/q 2 def
4. p > 1^ q > 1^ a > 1^ b > 1 1 T13.49e
5. p � p!q � q � p/q > 1^ a � p!q � b � p/q > 1 4 T13.47n
6. p � p!q � q � p/q D p � p!q � q � p/q 3,5 T13.47l
7. p � p!q � q > 1^ a � p!q � b > 1 4 T13.47n
8. p � p!q � q D a � p!q � b 6,7 T13.47k
9. len.p/ < len.a/_ len.p/ D len.a/_ len.p/ > len.a/ T13.13p

10. len.p/ < len.a/ A (g �I)

11. i < len.p/ A g (8I))

12. i < len.a/ 11,10 T13.13b
13. exp.p � p!q � q; i/ D exp.p; i/^ exp.a � p!q � b; i/ D exp.a; i/ 11,12 T13.47c
14. exp.p; i/ D exp.a; i/ 8,13DE

15. .8i < len.p//exp.p; i/ D exp.a; i/ 11-14 (8I)
16. val.p; len.p// D val.a; len.p// 15 T13.46m
17. p D val.a; len.p// 16,4 T13.46n
18. W ff .val.a; len.p/// 17,1DE
19. �W ff .val.a; len.p/// 1,10 T13.52g
20. ? 18,19?I

21. len.p/ – len.a/ 10-20�I
22. len.p/ > len.a/ A (g �I)

23. ? similarly

24. len.p/ � len.a/ 22-23�I
25. len.p/ D len.a/ 9,21,24 DS
26. p!q � q > 1^ p!q � b > 1 4 T13.47o
27. p!q � q D p!q � b 8,25,26 T13.47l
28. q D b 27,4 T13.47l
29. p � p!q > 1^ a � p!q > 1 4 T13.47n
30. p � p!q D a � p!q 8,28,29 T13.47k
31. p D a 30,4 T13.47k
32. p D a ^ q D b 31,28 ^I

33. cnd.p; q/ D cnd.a; b/! .p D a ^ q D b/ 2-32!I

34. ŒW ff .p//^W ff .q/^W ff .a/^W ff .b/�! Œcnd.p; q/ D cnd.a; b/! .p D a ^ q D b/� 1-33!I

T13.53.j. PA ` Axiompa.p/! W ff .p/

The cases for axioms of Q are immediate by capture. The following should be
sufficient to see how other cases will go.

PA ` Axiomad6.n/! W ff .n/

Exercise 13.40 T13.53.j

ANSWERS FOR CHAPTER 13 886

1. Axiomad6.n/ A (g!I)

2. .9v � n/ŒVar.v/^ n D pDq � v � v� 1 T13.40a
3. v � n A (g 2 (9E))
4. Var.v/^ n D pDq � v � v

5. Term.v/ 4 T13.48p
6. Term.v/^ Term.v/^ n D pDq � v � v 5,4 ^I
7. .9x � n/.9y � n/ŒTerm.x/^ Term.y/^ n D pDq � x � y� 6,3 (9I)
8. Atomic.n/ 7 T13.49c
9. W ff .n/ 8 T13.49m

10. W ff .n/ 2,3-9 (9E)

11. Axiomad6.n/!W ff .n/ 1-10!I

PA ` Axiompa7.n/! W ff .n/

1. Axiompa7.p/ A (g!I)

2. .9p � n/.9v � n/ŒW ff .p/^ Var.v/^ n D cnd.neg.cnd.formsub.p; v; p;q/;
neg.unv.v; cnd.p;formsub.p; v; pSq � v//////;unv.v; p//� 1 T13.40a

3. W ff .p/^ Var.v/ A (g 2 (9E))
4. n D cnd.neg.cnd.formsub.p; v; p;q/;neg.unv.v; cnd.p;formsub.p; v; pSq � v//////;unv.v; p//

5. Term.p;q/^ Term.pSq � v/ 3 T13.48o,p
6. W ff .formsub.p; v; p;q// 3,5 T13.51m
7. W ff .formsub.p; v; pSq � v// 3,5 T13.51m
8. W ff .cnd.p;formsub.p; v; pSq � v/// 3,7 T13.49o
9. W ff .unv.v; cnd.p;formsub.p; v; pSq � v//// 3,8 T13.49p

10. W ff .neg.unv.v; cnd.p;formsub.p; v; pSq � v///// 9 T13.49c
11. W ff .cnd.formsub.p; v; p;q/;neg.unv.v; cnd.p;formsub.p; v; pSq � v////// 6,10 T13.49o
12. W ff .neg.cnd.formsub.p; v; p;q/;neg.unv.v; cnd.p;formsub.p; v; pSq � v/////// 11 T13.49c
13. W ff .unv.v; p// 3 T13.49p
14. W ff .cnd.neg.cnd.formsub.p; v; p;q/;neg.unv.v; cnd.p;formsub.p; v; pSq � v//////;unv.v; p/// 12,13 T13.49o
15. W ff .n/ 4,14DE

16. W ff .n/ 2,3-15 (9E)

17. Axiompa7.n/!W ff .n/ 1-16!I

E13.41. As a start to a complete demonstration of T13.54, provide a demonstration
through part (C) that does not skip any steps.

T13.54. PA ` Prvt.cnd.p; q//! .Prvt.p/! Prvt.q//.

(a)

Exercise 13.41 T13.54

ANSWERS FOR CHAPTER 13 887

1. Prvt.cnd.p; q// A (g!I)

2. W ff .cnd.p; q// 1 T13.53k
3. Prvt.p/ A (g!I)

4. W ff .p/ 3 T13.53k
5. W ff .q/ 2,4 T13.53i
6. Mp.cnd.p; q/; p; q/ T13.40c
7. Mp.cnd.p; q/; p; q/_ .cnd.p; q/ D p ^Gen.p; q// 6 _I
8. Icon.cnd.p; q/; p; q/ 7 T13.40e
9. 9vPrft.v; cnd.p; q// 1 abv

10. 9vPrft.v; p/ 3 abv
11. Prft.j; cnd.p; q// A (g 99E)

12. Prft.k;p/ A (g 109E)

13. l Ddef j � k � 2
q def

14. exp.j; len.j / :
� 1/ D cnd.p; q/ 11 T13.40f

15. exp.k; len.k/ :
� 1/ D p 12 T13.40f

16. len.j � k/ D len.j /C len.k/ T13.47f
17. q > ; 5 T13.49e
18. len.2q

/ D 1 17 T13.45k
19. .8i < 1/Œexp.l; i C len.j � k// D exp.2q

; i/ 13,18 T13.47c
20. ; < 1 T13.13e
21. exp.l; len.j � k// D exp.2q

;;/ 19,20 (8E)
22. exp.2q

;;/ D q T13.44i
23. exp.l; len.j � k// D q 21,22DE
24. exp.l; len.j /C len.k// D q 23,16DE
25. IconŒexp.j; len.j / :

� 1/;exp.k; len.k/ :
� 1/;exp.l; len.j /C len.k//� 8,14,15,24DE

(b)

26. .8i < len.j //exp.l; i/ D exp.j; i/ 13 T13.47c
27. .8i < len.j � k//exp.l; i/ D exp.j � k; i/ 13 T13.47c
28. .8i < len.k//exp.j � k; i C len.j // D exp.k; i/ T13.47c
29. a < len.k/ A (g (8I))

30. exp.j � k; aC len.j // D exp.k; a/ 28,29 (8E)
31. len.j /C a < len.j /C len.k/ 29 T13.13w
32. len.j /C a < len.j � k/ 31,16DE
33. exp.l; len.j /C a/ D exp.j � k; len.j /C a/ 27,32 (8E)
34. exp.l; len.j /C a/ D exp.k; a/ 33,30DE

35. .8i < len.k//exp.l; len.j /C i/ D exp.k; i/ 29-34 (8I)
36. cnd.p; q/ > ; 2 T13.49e
37. exp.j; len.j / :

� 1/ > ; 14,36DE
38. len.j / :

� 1 < len.j / 37 T13.45h
39. exp.l; len.j / :

� 1/ D exp.j; len.j / :
� 1/ 26,38 (8E)

40. p > ; 4 T13.49e
41. exp.k; len.k/ :

� 1/ > ; 40,15DE
42. len.k/ :

� 1 < len.k/ 41 T13.45h
43. exp.l; len.j /C len.k/ :

� 1/ D exp.k; len.k/ :
� 1/ 35,42 (8E)

44. IconŒexp.l; len.j / :
� 1/;exp.l; len.j /C len.k/ :

� 1/;exp.l; len.j /C len.k//� 25,39,43DE

Exercise 13.41 T13.54

ANSWERS FOR CHAPTER 13 888

(c1)
45. .8i < len.j //ŒAxiomt.exp.j; i//_ .9m < i/.9n < i/Icon.exp.j;m/;exp.j; n/;exp.j; i//� T13.40f
46. a < len.j / A (g (8I))

47. Axiomt.exp.j; a//_ .9m < a/.9n < a/Icon.exp.j;m/;exp.j; n/;exp.j; a// 45,46 (8E)
48. exp.l; a/ D exp.j; a/ 26,46 (8E)
49. Axiomt.exp.j; a// A (g 47_E)

50. Axiomt.exp.l; a// 49,48DE
51. Axiomt.exp.l; a//_ .9m < a/.9n < a/Icon.exp.l;m/;exp.l; n/;exp.l; a// 50 _I

52. .9m < a/.9n < a/Icon.exp.j;m/;exp.j; n/;exp.j; a// A (g 47_E)

53. Icon.exp.j;m0/;exp.j; n0/;exp.j; a// A (g 529E)
54. m0 < a

55. n0 < a

56. m0 < len.j / 46,54 T13.13b
57. n0 < len.j / 46,55 T13.13b
58. exp.l;m0/ D exp.j;m0/ 26,56 (8E)
59. exp.l; n0/ D exp.j; n0/ 26,57 (8E)
60. Icon.exp.l;m0/;exp.l; n0/;exp.l; a// 53,58,59,48DE
61. .9m < a/.9n < a/Icon.exp.l;m/;exp.l; n/;exp.l; a// 60,54,55 (9I)

62. .9m < a/.9n < a/Icon.exp.l;m/;exp.l; n/;exp.l; a// 52,53-61 (9E)
63. Axiomt.exp.l; a//_ .9m < a/.9n < a/Icon.exp.l;m/;exp.l; n/;exp.l; a// 62 _I

64. Axiomt.exp.l; a//_ .9m < a/.9n < a/Icon.exp.l;m/;exp.l; n/;exp.l; a// 47,49-51,52-63 _E

65. .8i < len.j //ŒAxiom.exp.l; i//_ .9m < i/.9n < i/Icon.exp.l;m/;exp.l; n/;exp.l; i//� 46-64 (8I)

(c2) The argument is similar for,

.8i<len.k//ŒAxiom.exp.l;len.j /Ci//_.9m<i/.9n<i/Icon.exp.l;len.j /Cm/;exp.l;len.j /Cn/;exp.l;len.j /C

i//�

(c3) Here is a schematic argument (or theorem) you can apply.

Exercise 13.41 T13.54

ANSWERS FOR CHAPTER 13 889

1. .8i < s/ŒP .tC i/_ .9m < i/.9n < i/Q.tCm; tC n; tC i/� prem

2. t � a ^ a < tC s A (g!I)

3. t � a 2 ^E
4. a < tC s 2 ^E
5. 9v.vC t D a/ 3 def
6. l C t D a A (g 59E)

7. tC l < tC s 4,6DE
8. l < s 7 T13.13w
9. P .tC l/_ .9m < l/.9n < l/Q.tCm; tC n; tC l/ 1,8 (8E)

10. P .tC l/ A (g 9_E)

11. P .a/ 10,6DE
12. P .a/_ .9m < a/.9n < a/Q.m;n; a/ 11 _I

13. .9m < l/.9n < l/Q.tCm; tC n; tC l/ A (g 9_E)

14. Q.tCm0; tC n0; tC l/ A (g 13(9E))
15. m0 < l

16. n0 < l

17. tCm0 < tC l 15 T13.13w
18. tCm0 < a 17,6DE
19. tC n0 < tC l 16 T13.13w
20. tC n0 < a 19,6DE
21. .9m < a/.9n < a/Q.m;n; t C l/ 14,18,20 (9I)
22. .9m < a/.9n < a/Q.m;n; a/ 21,6DE

23. .9m < a/.9n < a/Q.m;n; a/ 13,14-22 (9E)
24. P .a/_ .9m < a/.9n < a/Q.m;n; a/ 23 _I

25. P .a/_ .9m < a/.9n < a/Q.m;n; a/ 9,10-12,13-24 _E

26. P .a/_ .9m < a/.9n < a/Q.m;n; a/ 5,6-25 9E

27. .t � a ^ a < tC s/! ŒP .a/_ .9m < a/.9n < a/Q.m;n; a/� 2-26!I
28. 8iŒ.t � i ^ i < tC s/! ŒP .i/_ .9m < i/.9n < i/Q.m;n; i/�� 278I
29. .8i W t � i < tC s/ŒP .i/_ .9m < i/.9n < i/Q.m;n; i/� 28 abv

E13.42. Show

T13.55.

T13.55.i. PA ` ŒTermsub.t; v; s; q/ ^ Termsub.t; v; s; r/�! q D r

Exercise 13.42 T13.55.i

ANSWERS FOR CHAPTER 13 890

1. Termsub.t; v; s; q/^ Termsub.t; v; s; r/ A (g!I)

2. .9x � X/.9y � Y /Tsubseq.x; y; t; v; s; q/^ .9x � X/.9y � Y /Tsubseq.x; y; t; v; s; r/ 1 T13.50b
3. Tsubseq.m;n; t; v; s; q/^ Tsubseq.m0; n0; t; v; s; r/ A (g 2 (9E))

4. Termseq.m; t/^ Termseq.m0; t/ 3 T13.50a
5. len.m/ D len.n/^ len.m0/ D len.n0/ 3 T13.50a
6. exp.n; len.n/

:
� 1/ D q ^ exp.n0; len.n0/

:
� 1/ D r 3 T13.50a

7. exp.m; len.m/
:
� 1/ D t ^ exp.m0; len.m0/

:
� 1/ D t 4 T13.48a

8. m > 1^m0 > 1 4 T13.48a
9. len.m/ > ; ^ len.m0/ > ; 8 T13.45j

10. len.m/
:
� 1 < len.m/^ len.m0/

:
� 1 < len.m0/ 9 T13.23i

11. ; < len.m/ A (g!I)

12. a < len.m0/ A (g (8I))

13. exp.m;;/ D exp.m0; a/ A (g!I)

14. I.m;n;;/_ J.v;m;n;;/_K.v; s;m;n;;/_L.m;n;;/_M.m;n;;/_N.m;n;;/ 3,11 T13.50a
15. I.m0; n0; a/_ J.v;m0; n0; a/_K.v; s;m0; n0; a/_L.m0; n0; a/_M.m0; n0; a/_N.m0; n0; a/ 3,12, T13.50a
16. I.m;n;;/ A (g 14_E)

17. exp.m;;/ D p;q^ exp.n;;/ D p;q 16 abv
18. I.m0; n0; a/ A (g 15_E)

19. exp.n0; a/ D p;q 18 abv
20. exp.n;;/ D exp.n0; a/ 17,19DE

21. J.v;m0; n0; a/_K.v; s;m0; n0; a/_L.m0; n0; a/_M.m0; n0; a/_N.m0; n0; a/ A (g 15_E)

22. exp.n;;/ ¤ exp.n0; a/ A (c �E)

23. exp.m0; a/ D p;q 13,17DE
24. �ŒJ.v;m0; n0; a/_K.v; s;m0; n0; a/_L.m0; n0; a/_M.m0; n0; a/_N.m0; n0; a/� 23 T13.55c
25. ? 21,24?I

26. exp.n;;/ D exp.n0; a/ 22-25�E

27. exp.n;;/ D exp.n0; a/ 15,18-26 _E

28. J.v;m;n;;/_K.v; s;m;n;;/ A (g 14_E)

29. exp.n;;/ D exp.n0; a/ similarly

30. L.m;n;;/ A (g 14_E)

31. .9i < ;/Œexp.m;;/ D pSq � exp.m; i/^ exp.n;;/ D exp.n; i/ 30 abv
32. i < ; A (g 31 (9E))

33. exp.n;;/ ¤ exp.n0; a/ A (c �E)

34. i – ; T13.13d,r
35. ? 32,34?I

36. exp.n;;/ D exp.n0; a/ 33-35�E

37. exp.n;;/ D exp.n0; a/ 31,32-36 (9E)

38. M.m;n;;/_N.m;n;;/ A (g 14_E)

39. exp.n;;/ D exp.n0; a/ similarly

40. exp.n;;/ D exp.n0; a/ 14,16-39 _E

41. exp.m;;/ D exp.m0; a/! exp.n;;/ D exp.n0; a/ 13-40!I

42. .8x < len.m0//.exp.m;;/ D exp.m0; x/! exp.n;;/ D exp.n0; x// 12-41 (8I)

43. ; < len.m/! .8x < len.m0//.exp.m;;/ D exp.m0; x/! exp.n;;/ D exp.n0; x// 11-42!I

Exercise 13.42 T13.55.i

ANSWERS FOR CHAPTER 13 891

44. .8z � k/Œz < len.m/! .8x < len.m0//.exp.m; z/ D exp.m0; x/! exp.n; z/ D exp.n0; x//� A (g!I)

45. Sk < len.m/ A (g!I)

46. a < len.m0/ A (g (8I))

47. exp.m;Sk/ D exp.m0; a/ A (g!I)

48. I.m;n;Sk/_ J.v;m;n;Sk/_K.v; s;m;n;Sk/_L.m;n;Sk/_M.m;n;Sk/_N.m;n;Sk/ 3,45 T13.50a
49. I.m0; n0; a/_ J.v;m0; n0; a/_K.v; s;m0; n0; a/_L.m0; n0; a/_M.m0; n0; a/_N.m0; n0; a/ 3,46 T13.50a
50. I.m;n;Sk/_ J.v;m;n;Sk/_K.v; s;m;n;Sk/ A (g 48_E)

51. exp.n; Sk/ D exp.n0; a/ as from basis

52. L.m;n;Sk/ A (g 48_E)

53. .9i < Sk/Œexp.m;Sk/ D pSq � exp.m; i/^ exp.n; Sk/ D pSq � exp.n; i/� 52 abv
54. b < Sk A (g 53 (9E))
55. exp.m;Sk/ D pSq � exp.m; b/^ exp.n; Sk/ D pSq � exp.n; b/

56. L.m0; n0; a/ A (g 49_E)

57. .9i < a/Œexp.m0; a/ D pSq � exp.m0; i/^ exp.n0; a/ D pSq � exp.n0; i/� 56 abv
58. c < a A (g 57 (9E))
59. exp.m0; a/ D pSq � exp.m0; c/^ exp.n0; a/ D pSq � exp.n0; c/

60. pSq � exp.m; b/ D pSq � exp.m0; c/ 47,55,59DE
61. b < len.m/^ c < len.m0/ 45,46,54,58 T13.13b
62. Term.exp.m; b//^ Term.exp.m0; c// 4,61 T13.48n
63. exp.m; b/ D exp.m0; c/ 60,62 T13.52b
64. b � k 54 T13.13n,m
65. exp.m; b/ D exp.m0; c/! exp.n; b/ D exp.n0; c/ 44,64,61 (8E)
66. exp.n; b/ D exp.n0; c/ 65,63!E
67. pSq � exp.n; b/ D pSq � exp.n0; c/ 66DE
68. exp.n; Sk/ D exp.n0; a/ 67,55,59DE

69. exp.n; Sk/ D exp.n0; a/ 57,58-68 (9E)

70. I.m0; n0; a/_ J.v;m0; n0; a/_K.v; s;m0; n0; a/_M.m0; n0; a/_N.m0; n0; a/ A (g 49_E)

71. exp.n; Sk/ D exp.n0; a/ as before

72. exp.n; Sk/ D exp.n0; a/ 49,56-71 _E

73. exp.n; Sk/ D exp.n0; a/ 53,54-72 (9E)

74. M.m;n;Sk/_N.m;n;Sk/ A (g 48_E)

75. exp.n; Sk/ D exp.n0; a/ similarly

76. exp.n; Sk/ D exp.n0; a/ 48,50-75 _E

77. exp.m;Sk/ D exp.m0; a/! exp.n; Sk/ D exp.n0; a/ 47-76!I

78. .8x < len.m0//.exp.m;Sk/ D exp.m0; x/! exp.n; Sk/ D exp.n0; x// 46-77 (8I)

79. Sk < len.m/! .8x < len.m0//.exp.m;Sk/ D exp.m0; x/! exp.n; Sk/ D exp.n0; x// 45-78!I

80. .8z � k/Œz < len.m/! .8x < len.m0//.exp.m; z/ D exp.m0; x/! exp.n; z/ D exp.n0; x//� !
ŒSk < len.m/! .8x < len.m0//.exp.m;Sk/ D exp.m0; x/! exp.n; Sk/ D exp.n0; x//� 44-79!I

81. 8kŒk < len.m/! .8x < len.m0//.exp.m; k/ D exp.m0; x/! exp.n; k/ D exp.n0; x//� 43,80 T13.13ag
82. exp.m; len.m/

:
� 1/ D exp.m0; len.m0/

:
� 1/! exp.n; len.n/

:
� 1/ D exp.n0; len.n0/

:
� 1/ 81,5,10 (8E)

83. exp.m; len.m/
:
� 1/ D exp.m0; len.m0/

:
� 1/ 7DE

84. exp.n; len.n/
:
� 1/ D exp.n0; len.n0/

:
� 1/ 82,83!E

85. q D r 6,84DE

86. q D r 2,3-85 (9E)

87. ŒTermsub.t; v; s; q/^ Termsub.t; v; s; r/�! q D r 3-85!I

T13.55.n. PA ` Var.v/ ! Œ.�Atomsub.p; v; v � 4; p/ ^ Atomsub.p; v; s; q// !
s � q�

Exercise 13.42 T13.55.n

ANSWERS FOR CHAPTER 13 892

1. Var.v/ A (g!I)

2. �Atomsub.p; v; v � 4; p/^Atomsub.p; v; s; q/ A (g!I)

3. w D v � 4 def
4. Term.w/^w ¤ v 1,3 T13.55b
5. .9a � p/.9b � p/.9a0 � q/.9b0 � q/ŒTerm.a/^ Term.b/^ p D pDq � a � b^

Termsub.a; v; s; a0/^ Termsub.b; v; s; b0/^ q D pDq � a0 � b0� 2 T13.50c
6. Term.c/^ Term.d/^ p D pDq � c � d A (g 5 (9E)
7. Termsub.c; v; s; c0/^ Termsub.d; v; s; d 0/^ q D pDq � c0 � d 0

8. Atomic.p/ 6 T13.49c
9. 9qAtomsub.p; v;w; q/ 4,8 T13.50n

10. Atomsub.p; v;w; r/ A (g 99E)

11. r ¤ p 2,10�I
12. .9a � p/.9b � p/.9a0 � r/.9b0 � r/ŒTerm.a/^ Term.b/^ p D pDq � a � b^

Termsub.a; v;w; a0/^ Termsub.b; v;w; b0/^ r D pDq � a0 � b0� 10 T13.50c
13. Term.e/^ Term.f /^ p D pDq � e � f A (g 12 (9E)
14. Termsub.e; v;w; e0/^ Termsub.f; v;w; f 0/^ r D pDq � e0 � f 0

15. pDq � c � d D pDq � e � f 6,13DE
16. c D e ^ d D f 6,13,15 T13.52i
17. pDq � e � f ¤ pDq � e0 � f 0 11,13,14DE
18. e ¤ e0 _ f ¤ f 0 17�I
19. �Termsub.e; v;w; e/_�Termsub.f; v;w; f / 14,18 T13.55i
20. Freet.e; v/_Freet.f; v/ 19 T13.55a
21. Freet.e; v/ A (g 20_E)

22. Termsub.e; v; s; c0/ 7,16DE
23. s � c0 13,1,21,22 T13.55m
24. c0 � pDq � c0 � d 0 T13.47n,o
25. s � q 23,24,7 T13.13a

26. Freet.f; v/ A (g 20_E)

27. s � q similarly
28. s � q 20,21-27 _E

29. s � q 12,13-28 (9E)

30. s � q 9,10-29 9E

31. s � q 5,6-30 (9E)

32. .�Atomsub.p; v; v � 4; p/^Atomsub.p; v; s; q//! s � q 2-31!I

33. Var.v/! Œ.�Atomsub.p; v; v � 4; p/^Atomsub.p; v; s; q//! s � q� 1-32!I

E13.44. Show (s) and (u) from T13.57. Hard core: show the rest of the results from
T13.57.

T13.57.

T13.57.h. PA ` ŒPrvt.p/ ^ Var.v/�! Prvt.unv.v; p//

Exercise 13.44 T13.57.h

ANSWERS FOR CHAPTER 13 893

1. Prvt.p/^ Var.v/ A (g!I)

2. Prvt.p/ 1 ^E
3. 9vPrft.v; p/ 2 abv
4. Prft.m;p/ A (g 39E)

5. exp.m; len.m/
:
� 1/ D p 4 T13.40f

6. m > 1 4 T13.40f
7. .8k < len.m//ŒAxiomt.exp.m; k//_ .9i < k/.9j < k/Icon.exp.m; i/;exp.m; j /;exp.m; k//� 4 T13.40f
8. len.p8q/ D 1 cap
9. len.unv.v; p// D len.p8q/C len.v/C len.p/ T13.47f def

10. len.unv.v; p// � 1 8,9 T13.13u
11. unv.v; p/ > 1 10 T13.45g

12. len.2
unv.v;p/

/ D 1 11 T13.45k

13. len.m � 2
unv.v;p/

/ D len.m/C 1 12 T13.47f

14. len.m � 2
unv.v;p/

/
:
� 1 D len.m/ 13 T13.23k

15. exp.m � 2
unv.v;p/

; len.m// D exp.2
unv.v;p/

;;/ 14 T13.47g

16. exp.2
unv.v;p/

;;/ D unv.v; p/ T13.44i

17. exp.m � 2
unv.v;p/

; len.m// D unv.v; p/ 15,16DE

18. exp.m � 2
unv.v;p/

; len.m � 2
unv.v;p/

/
:
� 1/ D unv.v; p/ 17,14DE

19. len.m � 2
unv.v;p/

/ � 1 13 T13.13u

20. m � 2
unv.v;p/

> 1 19 T13.45g
21. unv.v; p/ D u abv
22. a < len.m/ � 2

u
A (g (8I))

23. a < len.m/_ a D len.m/ 13 T13.13n
24. a < len.m/ A (g 23_E)

25. exp.m � 2
u
; a/ D exp.m; a/ 24 T13.47c

26. Axiomt.exp.m; a//_ .9i < a/.9j < a/Icon.exp.m; i/;exp.m; j /;exp.m; a// 7,24 (8E)
27. Axiomt.exp.m; a// A (g 26_E)

28. Axiomt.exp.m � 2
u
; a// 27,25DE

29. Axiomt.exp.m � 2
u
; a//_ .9i < a/.9j < a/Icon.exp.m � 2

u
; i/;exp.m � 2

u
; j /;exp.m � 2

u
; a// 28 _I

30. .9i < a/.9j < a/Icon.exp.m; i/;exp.m; j /;exp.m; a// A (g 26_E)

31. r < a ^ s < a A (g 30 (9E))
32. Icon.exp.m; r/;exp.m; s/;exp.m; a//

33. r < len.m/^ s < len.m/ 24,31 T13.13b
34. exp.m � 2

u
; r/ D exp.m; r/^ exp.m � 2

u
; s/ D exp.m; s/ 33 T13.47c

35. Icon.exp.m � 2
u
; r/;exp.m � 2

u
; s/;exp.m � 2

u
; a// 32,34,25DE

36. .9i < a/.9j < a/Icon.exp.m � 2
u
; i/;exp.m � 2

u
; j /;exp.m � 2

u
; a// 31,35 (9I)

37. Axiomt.exp.m � 2
u
; a//_ .9i < a/.9j < a/Icon.exp.m � 2

u
; i/;exp.m � 2

u
; j /;exp.m � 2

u
; a// 36 _I

38. Axiomt.exp.m � 2
u
; a//_ .9i < a/.9j < a/Icon.exp.m � 2

u
; i/;exp.m � 2

u
; j /;exp.m � 2

u
; a// 30,31-37 (9E)

39. Axiomt.exp.m � 2
u
; a//_ .9i < a/.9j < a/Icon.exp.m � 2

u
; i/;exp.m � 2

u
; j /;exp.m � 2

u
; a// 26,27-38 _E

40. a D len.m/ A (g 23_E)

41. len.m/ > ; 6 T13.45j
42. len.m/

:
� 1 < len.m/ 41 T13.23i

43. exp.m � 2
u
; len.m/

:
� 1/ D exp.m; len.m/

:
� 1/ 42 T13.47c

44. exp.m � 2
u
; len.m/

:
� 1/ D p 43,5DE

45. v � unv.v; p/ T13.47n,o
46. .9v � u/.Var.v/^ u D unv.v;exp.m � 2

u
; len.m/

:
� 1/// 1,44,45 (9I)

47. Gen.exp.m � 2
u
; len.m/

:
� 1/; u/ 46 T13.40d

48. MP.exp.m � 2
u
; len.m/

:
� 1/;exp.m � 2

u
; len.m/

:
� 1/; u/_

.exp.m � 2
u
; len.m/

:
� 1/ D exp.m � 2

u
; len.m/

:
� 1/^Gen.exp.m � 2

u
; len.m/

:
� 1/; u/ 47 _I

49. Icon.exp.m � 2
u
; len.m/

:
� 1/;exp.m � 2

u
; len.m/

:
� 1/; u/ 48 T13.40e

50. len.m/
:
� 1 < a 42,40DE

51. .9i < a/.9j < a/Icon.exp.m � 2
u
; i/;exp.m � 2

u
; j /;exp.m � 2

u
; a// 50,17 (9I)

52. Axiomt.exp.m � 2
u
; a//_ .9i < a/.9j < a/Icon.exp.m � 2

u
; i/;exp.m � 2

u
; j /;exp.m � 2

u
; a// 51 _I

53. Axiomt.exp.m � 2
u
; a//_ .9i < a/.9j < a/Icon.exp.m � 2

u
; i/;exp.m � 2

u
; j /;exp.m � 2

u
; a// 23,24-52 _E

54. .8k < len.m/ � 2
unv.v;p/

/ŒAxiomt.exp.m � 2
unv.v;p/

; k//_

.9i < k/.9j < k/Icon.exp.m � 2
unv.v;p/

; i/;exp.m � 2
unv.v;p/

; j /;exp.m � 2
unv.v;p/

; k//� 22-53 (8I)

55. Prft.m � 2
unv.v;p/

;unv.v; p// 18,20,54 T13.40f
56. Prvt.unv.v; p// 55 9I

57. Prvt.unv.v; p// 3,4-56 9E

58. ŒPrvt.p/^ Var.v/�! Prvt.unv.v; p// 1-57!I

Exercise 13.44 T13.57.h

ANSWERS FOR CHAPTER 13 894

T13.57.j. PA ` ŒW ff .p/ ^ Var.v/�! Freefor.v; v; p/

1. W ff .p/^ Var.v/ A (g!I)

2. Formseq.m;p/ 1 T13.49b
3. exp.m; len.m/

:
� 1/ D p 2 T13.49a

4. m > 1 2 T13.49a
5. len.m/ > ; 4 T13.45j
6. len.m/

:
� 1 < len.m/ 5 T13.23i

7. Formseq.n;p/^ .8i < len.n//exp.n; i/ � p ^ len.n/ � len.p/ 2,3,6 T13.49j
8. Œpi.len.p//p�len.p/ � val.n; len.n// 7 T13.46o
9. n > 1 7 T13.49a

10. n � Œpi.len.p//p�len.p/ 8,9 T13.46n
11. n � Bp 10 T13.57b
12. exp.n; len.n/

:
� 1/ D p 7 T13.49a

13. a < len.n/ A (g (8I))

14. E.n; a/_F.n; a/_G.n; a/_H.p;n; a/ 7,13 T13.49a
15. E.n; a/ A (g 14_E)

16. Atomic.exp.n; a// 15 abv
17. T.n; a/ 16 abv
18. T.n; a/_U.n; a/_ V.n; a/_W.p; v; n; a/_X.p; v; v; n; a/ 17_I

19. F.n; a/_G.n; a/ A (g 14_E)

20. T.n; a/_U.n; a/_ V.n; a/_W.p; v; n; a/_X.p; v; v; n; a/ similarly

21. H.p;n; a/ A (g 14_E)

22. .9i < a/.9j < p/ŒVar.j /^ exp.n; a/ D unv.j;exp.n; i// 21 abv
23. l < a ^ u < p A (g 22 (9E))
24. Var.u/^ exp.n; a/ D unv.u;exp.n; l//

25. u D v _ u ¤ v T3.1
26. u D v A (g 25_E)

27. l < len.n/ 13,23 T13.13b
28. W ff .exp.n; l// 7,27 T13.49l
29. exp.n; l/ � p 7,27 (8E)
30. exp.n; a/ D unv.v;exp.n; l// 24,26DE
31. .9q < p/ŒW ff .q/^ exp.n; a/ D unv.v; q/� 29,28,30 (9I)
32. W.p; v; n; a/ 31 abv
33. T.n; a/_U.n; a/_ V.n; a/_W.p; v; n; a/_X.p; v; v; n; a/ 32 _I

34. u ¤ v A (g 25_E)

35. Tsubseq.2
v
; 2

v
; v; u; u� 4; v/ 1,34 T13.50g

36. Termsub.v; u; u� 4; v/ 35 T13.50l
37. �Freet.v; u/ 36 T13.55a
38. �Freet.v; u/_�Freef .exp.n; l/; v/ 37 _I
39. .9i < a/.9j � p/ŒVar.j /^ j ¤ v ^ .�Freet.v; j /_�Freef .exp.n; i/; v//^ exp.n; a/ D unv.j;exp.n; i// 23,24,34,38 (9I)
40. X.p; v; v; n; a/ 39 abv
41. T.n; a/_U.n; a/_ V.n; a/_W.p; v; n; a/_X.p; v; v; n; a/ 40 _I

42. T.n; a/_U.n; a/_ V.n; a/_W.p; v; n; a/_X.p; v; v; n; a/ 25,26-41 _E

43. T.n; a/_U.n; a/_ V.n; a/_W.p; v; n; a/_X.p; v; v; n; a/ 22,23-42 (9E)

44. T.n; a/_U.n; a/_ V.n; a/_W.p; v; n; a/_X.p; v; v; n; a/ 14,15-43 _E

45. .8k < len.n//ŒT .n; k/_U.n; k/_ V.n; k/_W.p; v; n; k/_X.p; v; v; n; k/� 13-44 (8I)
46. Ffseq.n; v; v; p/ 12,9,45 T13.57a
47. .9x � Bp/Ffseq.x; v; v; p/ 11,46 (9I)
48. Freefor.v; v;p/ 47 T13.57b

49. ŒW ff .p/^ Var.v/�! Freefor.v; v;p/ 1-48!I

Exercise 13.44 T13.57.j

ANSWERS FOR CHAPTER 13 895

T13.57.k. PA ` Axiomad4.n/ $ 9s.9p � n/.9v � n/ŒW ff .p/ ^ Var.v/ ^
Term.s/ ^ Freefor.s; v; p/ ^ n D cnd.unv.v; p/;formsub.p; v; s//�

Let A D �Freef .v; p/ ^ n D cnd.unv.v; p/; p/ and B D .9s � n/.Freef .v; p/ ^ Term.s/ ^

Freefor.s; v; p/ ^ n D cnd.unv.v; p/;formsub.p; v; s//

Exercise 13.44 T13.57.k

ANSWERS FOR CHAPTER 13 896

1. Axiomad4.n/ A (g$I)

2. .9p � n/.9v � n/ŒW ff .p/^ Var.v/^ .A_B/� 1 T13.57c
3. p � n^ v � n A (g 2 (9E))
4. W ff .p/^ Var.v/
5. A_B

6. A A (g 5_E)

7. �Freef .v; p/^ n D cnd.unv.v; p/; p/ 6 abv
8. v � unv.v; p/ T13.47n,o
9. v � n 7,8 T13.47n,o

10. Term.v/ 4 T13.48i,m
11. Freefor.v; v;p/ 4 T13.57j
12. formsub.p; v; v/ D p 4,10,7 T13.56i
13. n D cnd.unv.v; p/;formsub.p; v; v// 7,12DE
14. 9s.9p � n/.9v � n/ŒW ff .p/^ Var.v/^ Term.s/^Freefor.s; v; p/^ n D cnd.unv.v; p/;formsub.p; v; s//� 3,4,10,11,13 (9I)

15. B A (g 5 (9E)

16. .9s � n/.Freef .v; p/^ Term.s/^Freefor.s; v; p/^ n D cnd.unv.v; p/;formsub.p; v; s/// 15 abv
17. s � n A (g 16 (9E))
18. Freef .v; p/^ Term.s/^Freefor.s; v; p/^ n D cnd.unv.v; p/;formsub.p; v; s///

19. 9s.9p � n/.9v � n/ŒW ff .p/^ Var.v/^ Term.s/^Freefor.s; v; p/^ n D cnd.unv.v; p/;formsub.p; v; s//� 3,4,18 (9I)

20. 9s.9p � n/.9v � n/ŒW ff .p/^ Var.v/^ Term.s/^Freefor.s; v; p/^ n D cnd.unv.v; p/;formsub.p; v; s//� 16,17-19 (9E)

21. 9s.9p � n/.9v � n/ŒW ff .p/^ Var.v/^ Term.s/^Freefor.s; v; p/^ n D cnd.unv.v; p/;formsub.p; v; s//� 5,6-20 _E

22. 9s.9p � n/.9v � n/ŒW ff .p/^ Var.v/^ Term.s/^Freefor.s; v; p/^ n D cnd.unv.v; p/;formsub.p; v; s//� 2,3-21 (9E)

23. 9s.9p � n/.9v � n/ŒW ff .p/^ Var.v/^ Term.s/^Freefor.s; v; p/^ n D cnd.unv.v; p/;formsub.p; v; s//� A (g$I)

24. p � n^ v � n A (g 23 (9E))
25. W ff .p/^ Var.v/^ Term.s/^Freefor.s; v; p/^ n D cnd.unv.v; p/;formsub.p; v; s//

26. Freef .v; p/_�Freef .v; p/ T3.1
27. Freef .v; p/ A (g 26_E)

28. s � formsub.p; v; s/ 25,27 T13.56j
29. s � n 28,25 T13.47n,o
30. Freef .v; p/^ Term.s/^Freefor.s; v; p/^ n D cnd.unv.v; p/;formsub.p; v; s// 27,25 ^I
31. .9s � n/ŒFreef .v; p/^ Term.s/^Freefor.s; v; p/^ n D cnd.unv.v; p/;formsub.p; v; s//� 29,30 (9I)
32. B 31 abv
33. A_B 32 _I
34. .9p � n/.9v � n/ŒW ff .p/^ Var.v/^ .A_B/� 24,25,33 (9I)

35. �Freef .v; p/ A (g 26_E)

36. formsub.p; v; s/ D p 25,35 T13.56i
37. n D cnd.unv.v; p/; p/ 25,36DE
38. �Freef .v; p/^ n D cnd.unv.v; p/; p/ 35,37 ^I
39. A 38 abv
40. A_B 39 _I
41. W ff .p/^ Var.v/^ .A_B/ 25,40 ^I
42. .9p � n/.9v � n/ŒW ff .p/^ Var.v/^ .A_B/� 24,42 (9I)

43. .9p � n/.9v � n/ŒW ff .p/^ Var.v/^ .A_B/� 26,27-42 _E

44. .9p � n/.9v � n/ŒW ff .p/^ Var.v/^ .A_B/� 23,24-43 (9E)
45. Axiomad4.n/ 44 T13.57c
46. Axiomad4.n/ $

9s.9p � n/.9v � n/ŒW ff .p/^ Var.v/^ Term.s/^Freefor.s; v; p/^ n D cnd.unv.v; p/;formsub.p; v; s//� 1-22,23-45$I

T13.57.o. PA ` len.numseq.x// D Sx

Exercise 13.44 T13.57.o

ANSWERS FOR CHAPTER 13 897

1. numseq.;/ D pi.;/num.;/ def
2. num.;/ > ; T13.57l
3. len.pi.;/num.;// D S; 2 T13.45k
4. len.numseq.;// D S; 3,1DE
5. len.numseq.x// D Sx A (g!I)

6. numseq.Sx/ D numseq.x/�pi.Sx/num.Sx/ def
7. num.Sx/ > ; T13.57l
8. numseq.x/ > ; T13.57m
9. pi.Sx/num.Sx/ > ; T13.43h

10. 8j Œexp.numseq.Sx/; j / D exp.numseq.x/; j /C exp.pi.Sx/num.Sx/; j /� 6,8,9 T13.44m
11. exp.pi.Sx/num.Sx/; Sx/ D num.Sx/ T13.44i
12. exp.pi.Sx/num.Sx/; Sx/ > ; 7,11DE
13. exp.numseq.Sx/; Sx/ � exp.pi.Sx/num.Sx/; Sx/ 10 T13.13u
14. exp.numseq.Sx/; Sx/ > ; 12,13 T13.13c
15. len.numseq.Sx// > Sx 14 T13.45h
16. len.numseq.Sx// � SSx 15 T13.13l
17. k > Sx A (g (8I))

18. exp.numseq.x/; k/ D ; 5,17 T13.45l
19. exp.pi.Sx/num.Sx/; k/ D ; 17 T13.44j
20. exp.numseq.Sx/; k/ D ; 10,18,19DE

21. .8k > Sx/exp.numseq.Sx/; k/ D ; 17-20 (8I)
22. len.numseq.Sx// � SSx 21 T13.45i
23. len.numseq.Sx// D SSx 16,22 T13.20

24. len.numseq.x// D Sx! len.numseq.Sx// D SSx 5-23!I
25. len.numseq.x// D Sx 4,24 IN

T13.57.t. PA ` ŒW ff .p/ ^ Var.v/�! Freefor.num.x/; v; p/

Exercise 13.44 T13.57.t

ANSWERS FOR CHAPTER 13 898

1. W ff .p/^ Var.v/ A (g!I)

2. Formseq.m;p/ 1 T13.49b
3. exp.m; len.m/

:
� 1/ D p 2 T13.49a

4. Formseq.n;p/ 2,3 T13.49j
5. .8i < len.n//exp.n; i/ � p ^ len.n/ � len.p/ 2,3 T13.49j
6. Œpi.len.p//p�len.p/ � val.n; len.n// 5 T13.46o
7. n > 1 4 T13.49a
8. val.n; len.n// D n 7 T13.46n
9. n � Bp 6,8 T13.57b

10. exp.n; len.n/
:
� 1/ D p 4 T13.49a

11. a < len.n/ A (g (8I))

12. E.n; a/_F.n; a/_G.n; a/_H.p;n; a/ 4,11 T13.49a
13. E.n; a/ A (g 12_E)

14. Atomic.exp.n; a// 13 abv
15. T.n; a/ 14 abv
16. T.n; a/_U.n; a/_ V.n; a/_W.p; v; n; a/_X.p; v;num.x/; n; a/ 15 _I

17. F.n; a/_G.n; a/ A (g 12_E)

18. T.n; a/_U.n; a/_ V.n; a/_W.p; v; n; a/_X.p; v;num.x/; n; a/ similarly

19. H.p;n; a/ A (g 12_E)

20. .9i < a/.9j < p/ŒVar.j /^ exp.n; a/ D unv.j;exp.n; i//� 19 abv
21. i < a ^ j < p A (g 20 (9E))
22. Var.j /
23. exp.n; a/ D unv.j;exp.n; i//

24. j D v _ j ¤ v T3.1
25. j D v A (g 24_E)

26. i < len.n/ 11,21 T13.13b
27. W ff .exp.n; i// 4,26 T13.49l
28. exp.n; a/ D unv.v;exp.n; i// 23,25DE
29. W ff .exp.n; i//^ exp.n; a/ D unv.v;exp.n; i// 27,28 ^I
30. exp.n; i/ � p 5,26 (8E)
31. .9b � p/ŒW ff .b/^ exp.n; a/ D unv.v; b/� 29,30 (9I)
32. W.p; v; n; a/ 31 abv
33. T.n; a/_U.n; a/_ V.n; a/_W.p; v; n; a/_X.p; v;num.x/; n; a/ 32 _I

34. j ¤ v A (g 24_E)

35. �Freet.num.x/; j / T13.57s
36. �Freet.num.x/; j /_�Freef .exp.n; i/; v/ 35 _I
37. .9i < a/.9j < p/ŒVar.j /^ j ¤ v ^ .�Freet.num.x/; j /_�Freef .exp.n; i/; v//^ exp.n; a/ D unv.j;exp.n; i//� 21,22,34,36,23 (9I)
38. X.p; v;num.x/; n; a/ 37 abv
39. T.n; a/_U.n; a/_ V.n; a/_W.p; v; n; a/_X.p; v;num.x/; n; a/ 38 _I

40. T.n; a/_U.n; a/_ V.n; a/_W.p; v; n; a/_X.p; v;num.x/; n; a/ 24,25-39 _E

41. T.n; a/_U.n; a/_ V.n; a/_W.p; v; n; a/_X.p; v;num.x/; n; a/ 20,21-40 (9E)

42. T.n; a/_U.n; a/_ V.n; a/_W.p; v; n; a/_X.p; v;num.x/; n; a/ 12,13-41 _E

43. .8k < len.n//ŒT .n; k/_U.n; k/_ V.n; k/_W.p; v; n; k/_X.p; v;num.x/; n; k/� 11-42 (8I)
44. Ffseq.n;num.x/; v; p/ 10,7,43 T13.57a
45. .9y � Bp/.Ffseq.y;num.x/; v; p/ 9,44 (9I)
46. Freefor.num.x/; v; p/ 45 T13.57b

47. ŒW ff .p/^ Var.v/�! Freefor.num.x/; v; p/ 1-46!I

E13.45. Show T13.58a; then set up the argument for T13.58g including assertion
of the main proposition to be shown by induction; then set up the show part
working just the P case. Hard core: finish T13.58g and the rest of the results

Exercise 13.45

ANSWERS FOR CHAPTER 13 899

in T13.58.

T13.58.

T13.58.b. PA ` ŒTerm.p/^v ¤ w�! 9q9t9t 0ŒTermsub.p; v;num.y/; t/^Termsub.p;
w;num.z/; t 0/ ^ Termsub.t; w;num.z/; q/ ^ Termsub.t 0; v;num.y/; q/�

Let P D 9q9a9b9c9dŒTsubseq.a; b; exp.n; k/; w;num.z/; q/^Tsubseq.c; d; exp.n0; k0/; v;num.y/; q/�

1. Term.p/^ v ¤ w A (g!I)

2. Term.num.y//^ Term.num.z// T13.57r
3. 9tTermsub.p; v;num.y/; t/^ 9t 0Termsub.p;w;num.z/; t 0/ 1,2 T13.50m
4. Termsub.p; v;num.y/; t/^ Termsub.p;w;num.z/; t 0/ A (g 39E)

5. .9x � X/.9y � Y /Tsubseq.x; y;p; v;num.y/; t/^ .9x � X/.9y � Y /Tsubseq.x; y;p;w;num.z/; t 0/ 4 T13.50b
6. Tsubseq.m;n;p; v;num.y/; t/^ Tsubseq.m0; n0; p;w;num.z/; t 0/ A (g 5 (9E))

7. Termseq.m;p/^ Termseq.m0; t 0/ 6 T13.50a
8. exp.m; len.m/

:
� 1/ D p ^ exp.m0; len.m0/

:
� 1/ D p 7 T13.48a

9. m > 1^m0 > 1 7 T13.48a
10. len.m/ > ; ^ len.m0/ > ; 9 T13.45j
11. exp.n; len.n/

:
� 1/ D t ^ exp.n0; len.n0/

:
� 1/ D t 0 6 T13.50a

12. len.m/ D len.n/^ len.m0/ D len.n0/ 6 T13.50a
13. .8k < len.m//ŒI.m;n; k/_ J.v;m;n; k/_K.v;num.y/;m;n; k/_L.m;n; k/_M.m;n; k/_N.m;n; k/� 6 T13.50a
14. .8k < len.m0//ŒI.m0; n0; k/_ J.w;m0; n0; k/_K.w;num.z/;m0; n0; k/_L.m0; n0; k/_M.m0; n0; k/_N.m0; n0; k/� 6 T13.50a
15. l < len.m/^ l 0 < len.m0/ A (g (8I))

16. len.exp.m; l// � ; A (g!I)

17. �Œexp.m; l/ D exp.m0; l 0/! P
k;k0

l;l0
� A (c �E)

18. exp.m; l/ > 1 7,15 T13.48f
19. exp.m; l/ � 1 16 T13.45j
20. ? 18,19?I

21. exp.m; l/ D exp.m0; l 0/! P
k;k0

l;l0
17-20�E

22. len.exp.m; l// � ;! .exp.m; l/ D exp.m0; l 0/! P
k;k0

l;l0
/ 16-21!I

23. .8k < len.m//.8k0 < len.m0//Œlen.exp.m; k// � ;! .exp.m; k/ D exp.m0; k0/! P /� 15-22 (8I)
24. .8k < len.m//.8k0 < len.m0//Œlen.exp.m; k// � x! .exp.m; k/ D exp.m0; k0/! P /� A (g!I)

25. l < len.m/^ l 0 < len.m0/ A (g (8I))

26. len.exp.m; l// � Sx ^ exp.m; l/ D exp.m0; l 0/ A (g!I)

27. I.m;n; l/_ J.v;m;n; l/_K.v;num.y/;m;n; l/_L.m;n; l/_M.m;n; l/_N.m;n; l/ 13,25 (8E)
28. I.m0; n0; l 0/_ J.w;m0; n0; l 0/_K.w;num.z/;m0; n0; l 0/_L.m0; n0; l 0/_M.m0; n0; l 0/_N.m0; n0; l 0/ 14,25 (8E)
29. I.m;n; l/ A (g 27_E)

30. exp.m; l/ D p;q^ exp.n; l/ D p;q 29 abv
31. I.m0; n0; l 0/ A (g 28_E)

32. exp.m0; l 0/ D p;q^ exp.n0; l 0/ D p;q 31 abv

33. Tsubseq.2
p;q
; 2

p;q
;exp.n; l/;w;num.z/; p;q/ 30 T13.50f

34. Tsubseq.2
p;q
; 2

p;q
;exp.n0; l 0/; v;num.y/; p;q/ 32 T13.50f

35. P
k;k0

l;l0
33,34 9I

36. J.w;m0; n0; l 0/_K.w;num.z/;m0; n0; l 0/_L.m0; n0; l 0/_M.m0; n0; l 0/_N.m0; n0; l 0/ A (g 28_E)

37. �P
k;k0

l;l0
A (c �E)

38. exp.m0; l 0/ D p;q 30,26DE
39. �ŒJ.w;m0; n0; l 0/_K.w;num.z/;m0; n0; l 0/_L.m0; n0; l 0/_M.m0; n0; l 0/_N.m0; n0; l 0/� 38 T13.55c
40. ? 36,39?I

41. P
k;k0

l;l0
37-40�E

Exercise 13.45 T13.58.b

ANSWERS FOR CHAPTER 13 900

42. J.v;m;n; l/ A (g 27 _E)

43. Var.exp.m; l//^ exp.m; l/ ¤ v ^ exp.n; l/ D exp.m; l/ 42 abv
44. J.w;m0; n0; l 0/ A (g 28_E)

45. Var.exp.m0; l 0//^ exp.m0; l 0/ ¤ w ^ exp.n0; l 0/ D exp.m0; l 0/ 43 abv
46. exp.n; l/ ¤ w ^ exp.n0; l 0/ ¤ v ^ exp.n; l/ D exp.n0; l 0/ 26,43,45DE

47. Tsubseq.2
exp.n;l/

; 2
exp.n;l/

;exp.n; l/;w;num.z/;exp.n; l// 43,46 T13.50g

48. Tsubseq.2
exp.n0;l0/

; 2
exp.n0;l0/

;exp.n0; l 0/; v;num.y/;exp.n0; l 0// 45,46 T13.50g

49. P
k;k0

l;l0
47,48,46 9I

50. K.w;num.z/;m0; n0; l 0/ A (g 28_E)

51. Var.exp.m0; l 0//^ exp.m0; l 0/ D w ^ exp.n0; l 0/ D num.z/ 50 abv
52. Var.exp.n; l//^ exp.n; l/ D w 26,43,51DE

53. Tsubseq.2
exp.n;l/

; 2
num.z/

;exp.n; l/;w;num.z/;num.z// 52 T13.50h
54. Termsub.exp.n0; l 0/; v;num.y/;num.z// 51 T13.57s
55. .9x � X/.9y � Y /Tsubseq.x; y;exp.n0; l 0/; v;num.y/;num.z// 54 T13.50b
56. Tsubseq.e; f;exp.n0; l 0/; v;num.y/;num.z// A (g 55 (9E))

57. P
k;k0

l;l0
53,56 9I

58. P
k;k0

l;l0
55,56-57 (9E)

59. I.m0; n0; l 0/_L.m0; n0; l 0/_M.m0; n0; l 0/_N.m0; n0; l 0/ A (g 28_E)

60. Var.exp.m0; l 0// 43,26DE

61. �P
k;k0

l;l0
A (c �E)

62. exp.m0; l 0/ D w A (c �I)

63. �ŒI.m0; n0; l 0/_ J.w;m0; n0; l 0/_L.m0; n0; l 0/_M.m0; n0; l 0/_N.m0; n0; l 0/� 60,62 T13.55e
64. ? with 59,63

65. exp.m0; l 0/ ¤ w 62-64�I
66. �ŒI.m0; n0; l 0/_K.w;num.z/;m0; n0; l 0/_L.m0; n0; l 0/_M.m0; n0; l 0/_N.m0; n0; l 0/� 60,65 T13.55d
67. ? with 59,66

68. P
k;k0

l;l0
61-67�E

69. P
k;k0

l;l0
28,44-68 _E

Exercise 13.45 T13.58.b

ANSWERS FOR CHAPTER 13 901

70. K.v;num.y/;m;n; l/ A (g 27_E)

71. Var.exp.m; l/^ exp.m; l/ D v ^ exp.n; l/ D num.y/ 70 abv
72. K.w;num.z/;m0; n0; l 0/ A (g 28_E)

73. Var.exp.m0; l 0/^ exp.m0; l 0/ D w ^ exp.n0; l 0/ D num.z/ 72 abv

74. �P
k;k0

l;l0
A (c �E)

75. v D w 26,71,73
76. ? 1,75?I

77. P
k;k0

l;l0
74-76�E

78. J.w;m0; n0; l 0/ A (g 28_E)

79. Var.exp.m0; l 0//^ exp.m0; l 0/ ¤ w ^ exp.n0; l 0/ D exp.m0; l 0/ 78 abv
80. Var.exp.n0; l 0//^ exp.n0; l 0/ D v 26,71,79DE

81. Tsubseq.2
exp.n0;l0/

; 2
num.y/

;exp.n0; l 0/; v;num.y/;num.y// 80 T13.50h
82. Termsub.exp.n; l/;w;num.z/;num.y// 71 T13.57s
83. Tsubseq.e; f;exp.n; l/;w;num.z/;num.y// 82 T13.50b

84. P
k;k0

l;l0
81,83 9I

85. I.m0; n0; l 0/_L.m0; n0; l 0/_M.m0; n0; l 0/_N.m0; n0; l 0/ A (g 28_E)

86. Var.exp.m0; l 0// 26,71DE

87. �P
k;k0

l;l0
A (c �E)

88. exp.m0; l 0/ D w A (c �I)

89. �ŒI.m0; n0; l 0/_ J.w;m0; n0; l 0/_L.m0; n0; l 0/_M.m0; n0; l 0/_N.m0; n0; l 0/� 86,88 T13.55e
90. ? with 85,89

91. exp.m0; l 0/ ¤ w 62-64�I
92. �ŒI.m0; n0; l 0/_K.w;num.z/;m0; n0; l 0/_L.m0; n0; l 0/_M.m0; n0; l 0/_N.m0; n0; l 0/� 86,91 T13.55d
93. ? with 85,92

94. P
k;k0

l;l0
87-93�E

95. P
k;k0

l;l0
28,72-94 _E

Exercise 13.45 T13.58.b

ANSWERS FOR CHAPTER 13 902

96. L.m;n; l/ A (g 27_E)

97. .9i < l/Œexp.m; l/ D pSq � exp.m; i/^ exp.n; l/ D pSq � exp.n; i/� 96 abv
98. h < l A (g 97 (9E))
99. exp.m; l/ D pSq � exp.m;h/^ exp.n; l/ D pSq � exp.n; h/

100. L.m0; n0; l 0/ A (g 28_E)

101. .9i < l 0/Œexp.m0; l 0/ D pSq � exp.m0; i/^ exp.n0; l 0/ D pSq � exp.n0; i/� 100 abv
102. h0 < l 0 A (g 101 (9E))
103. exp.m0; l 0/ D pSq � exp.m0; h0/^ exp.n0; l 0/ D pSq � exp.n0; h0/

104. pSq � exp.m;h/ D pSq � exp.m0; h0/ 26,99,103DE
105. h < len.m/^ h0 < len.m0/ 25,98,102 T13.13b
106. Term.exp.m;h//^ Term.exp.m0; h0// 7,105 T13.48n
107. exp.m;h/ D exp.m0; h0/ 106,104 T13.52b
108. len.exp.m; l// D 1C len.exp.m;h// 99 T13.47f
109. len.exp.m; l// > len.exp.m;h// 108 T13.13l
110. len.exp.m;h// < Sx 26,109 T13.13c
111. len.exp.m;h// � x 110 T13.13n

112. exp.m;h/ D exp.m0; h0/! P
k;k0

h;h0
24,105,111 (8E)

113. P
k;k0

h;h0
112,107!E

114. 9q9a9b9c9dŒTsubseq.a; b;exp.n; h/;w;num.z/; q/^ Tsubseq.c; d;exp.n0; h0/; v;num.y/; q/� 113 abv
115. Tsubseq.a; b;exp.n; h/;w;num.z/; q/^ Tsubseq.c; d;exp.n0; h0/; v;num.y/; q/ A (g 1149E)

116. Tsubseq.a � 2
pSq�exp.n;h/

; b � 2
pSq�q

; pSq � exp.n; h/;w;num.z/; pSq � q/ 115 T13.50i

117. Tsubseq.c � 2
pSq�exp.n0;h0/

; d � 2
pSq�q

; pSq � exp.n0; h0/; v;num.y/; pSq � q/ 115 T13.50i

118. Tsubseq.a � 2
exp.n;l/

; b � 2
pSq�q

;exp.n; l/;w;num.z/; pSq � q/ 99,116DE

119. Tsubseq.c � 2
exp.n0;l0/

; b � 2
pSq�q

;exp.n0; l 0/; v;num.y/; pSq � q/ 103,117DE

120. P
k;k0

l;l0
118,119 9I

121. P
k;k0

l;l0
114,115-120 9E

122. P
k;k0

l;l0
101,102-121 (9E)

123. I.m0; n0; l 0/_ J.w;m0; n0; l 0/_K.w;num.z/;m0; n0; l 0/_M.m0; n0; l 0/_N.m0; n0; l 0/ A (g 28_E)

124. exp.m0; l 0/ D pSq � exp.m;h/ 26,99DE

125. �P
k;k0

l;l0
A (c �E)

126. �ŒI.m0; n0; l 0/_ J.w;m0; n0; l 0/_K.w;num.z/;m0; n0; l 0/_M.m0; n0; l 0/_N.m0; n0; l 0/� 124 T13.55f
127. ? 123,126?I

128. P
k;k0

l;l0
125-127�E

129. P
k;k0

l;l0
28,100-128 _E

130. P
k;k0

l;l0
97,98-129 (9E)

131. M.m;n; l/_N.m;n; l/ A (g 27_E)

132. P
k;k0

l;l0
similarly

133. P
k;k0

l;l0
27,29-132 _E

Exercise 13.45 T13.58.b

ANSWERS FOR CHAPTER 13 903

134. len.exp.m; l// � Sx! .exp.m; l/ D exp.m0; l 0/! P
k;k0

l;l0
/ 26-133!I

135. .8k < len.m//.8k0 < len.m0//Œlen.exp.m; k// � Sx! .exp.m; k/ D exp.m0; k0/! P /� 25-134 (8I)

136. .8k < len.m//.8k0 < len.m0//Œlen.exp.m; k// � x! .exp.m; k/ D exp.m0; k0/! P /� !

.8k < len.m//.8k0 < len.m0//Œlen.exp.m; k// � Sx! .exp.m; k/ D exp.m0; k0/! P /� 24-135!I
137. 8x.8k < len.m//.8k0 < len.m0//Œlen.exp.m; k// � x! .exp.m; k/ D exp.m0; k0/! P /� 23,136 IN
138. len.m/

:
� 1 < len.m/^ len.m0/

:
� 1 < len.m0/ 10 T13.23i

139. len.exp.m; len.m/
:
� 1// � len.p/! .exp.m; len.m/

:
� 1/ D exp.m0; len.m0/

:
� 1/! P

k;k0

len.m/
:
�1;len.m0/

:
�1
/ 137,138 (8E)

140. P
k;k0

len.m/
:
�1;len.m0/

:
�1

139,8!E

141. 9q9a9b9c9dŒTsubseq.a; b;exp.n; len.m/
:
� 1/;w;num.z/; q/^ Tsubseq.c; d;exp.n0; len.m0/

:
� 1/; v;num.y/; q/� 140 abv

142. 9q9a9b9c9dŒTsubseq.a; b; t;w;num.z/; q/^ Tsubseq.c; d; t 0; v;num.y/; q/� 141,11,12DE
143. Tsubseq.a; b; t;w;num.z/; q/^ Tsubseq.c; d; t 0; v;num.y/; q/ A (g 1429E)

144. Termsub.t;w;num.z/; q/^ Termsub.t 0; v;num.y/; q/ 143 T13.50l
145. 9q9t9t 0ŒTermsub.p; v;num.y/; t/^ Termsub.p;w;num.z/; t 0/^

Termsub.t;w;num.z/; q/^ Termsub.t 0; v;num.y/; q/� 4,144 9I

146. 9q9t9t 0ŒTermsub.p; v;num.y/; t/^ Termsub.p;w;num.z/; t 0/^
Termsub.t;w;num.z/; q/^ Termsub.t 0; v;num.y/; q/� 142,143-145 9E

147. 9q9t9t 0ŒTermsub.p; v;num.y/; t/^ Termsub.p;w;num.z/; t 0/^
Termsub.t;w;num.z/; q/^ Termsub.t 0; v;num.y/; q/� 5,6-146 (9E)

148. 9q9t9t 0ŒTermsub.p; v;num.y/; t/^ Termsub.p;w;num.z/; t 0/^
Termsub.t;w;num.z/; q/^ Termsub.t 0; v;num.y/; q/� 3,4-147 9E

149. ŒTerm.p/^ v ¤ w�! 9q9t9t 0ŒTermsub.p; v;num.y/; t/^ Termsub.p;w;num.z/; t 0/^
Termsub.t;w;num.z/; q/^ Termsub.t 0; v;num.y/; q/� 1-148!I

T13.58.d. PA ` ŒW ff .p/^v ¤ w�! formsub.formsub.p; v;num.y//; w;num.z// D
formsub.formsub.p;w;num.z//; v;num.y//

Let P D 9q9a9b9c9dŒFsubseq.a; b; exp.n; k/; w;num.z/; q/^Fsubseq.c; d; exp.n0; k0/; v;num.y/; q/�

Exercise 13.45 T13.58.d

ANSWERS FOR CHAPTER 13 904

1. W ff .p/^ v ¤ w A (g!I)

2. Term.num.y//^ Term.num.z// T13.57r
3. 9qFormsub.p; v;num.y/; q/^ 9qFormsub.p;w;num.z/; q/ 1,2 T13.51k
4. Formsub.p; v;num.y/; t/^Formsub.p;w;num.z/; t 0/ A (g 39E)

5. formsub.p; v;num.y// D t ^formsub.p;w;num.z// D t 0 1,2,4 T13.56h
6. W ff .t/^W ff .t 0/ 4,2 T13.51d
7. .9x � X/.9y � Y /Fsubseq.x; y;p; v;num.y/; t/^ .9x � X/.9y � Y /Fsubseq.x; y;p;w;num.z/; t 0/ 4 T13.51b
8. Fsubseq.m;n;p; v;num.y/; t/^Fsubseq.m0; n0; p;w;num.z/; t 0/ A (g 7 (9E))

9. Formseq.m;p/^Formseq.m0; p/ 8 T13.51a
10. exp.m; len.m/

:
� 1/ D p ^ exp.m0; len.m0/

:
� 1/ D p 9 T13.49a

11. m > 1^m0 > 1 9 T13.49a
12. len.m/ > ; ^ len.m0/ > ; 11 T13.45j
13. exp.n; len.n/

:
� 1/ D t ^ exp.n0; len.n0/

:
� 1/ D t 0 8 T13.51a

14. len.m/ D len.n/^ len.m0/ D len.n0/ 8 T13.51a
15. .8k < len.m//ŒO.v;num.y/;m;n; k/_P.m;n; k/_Q.m;n; k/_R.v;p;m;n; k/_ S.v;p;m;n; k/ 8 T13.51a
16. .8k < len.m0//ŒO.w;num.z/;m0; n0; k/_P.m0; n0; k/_Q.m0; n0; k/_R.w;p;m0; n0; k/_ S.w;p;m0; n0; k/ 8 T13.51a
17. l < len.m/^ l 0 < len.m0/ A (g (8I))

18. len.exp.m; l// � ; A (g!I)

19. �Œexp.m; l/ D exp.m0; l 0/! P
k;k0

l;l0
� A (c �E)

20. exp.m; l/ > 1 9,17 T13.49d
21. exp.m; l/ � 1 18 T13.45j
22. ? 20,21?I

23. exp.m; l/ D exp.m0; l 0/! P
k;k0

l;l0
19-22�E

24. len.exp.m; l// � ;! .exp.m; l/ D exp.m0; l 0/! P
k;k0

l;l0
/ 18-23!I

25. .8k < len.m//.8k0 < len.m0//Œlen.exp.m; k// � ;! .exp.m; k/ D exp.m0; k0/! P /� 17-24 (8I)
26. .8k < len.m//.8k0 < len.m0//Œlen.exp.m; k// � x! .exp.m; k/ D exp.m0; k0/! P /� A (g!I)

27. l < len.m/^ l 0 < len.m0/ A (g (8I))

28. len.exp.m; l/ � Sx ^ exp.m; l/ D exp.m0; l 0/ A (g!I)

29. O.v;num.y/;m;n; l/_P.m;n; l/_Q.m;n; l/_R.v;p;m;n; l/_ S.v;p;m;n; l/ 15,27 (8E)
30. O.w;num.z/;m0; n0; l 0/_P.m0; n0; l 0/_Q.m0; n0; l 0/_R.w;p;m0; n0; l 0/_ S.w;p;m0; n0; l 0/ 16,27 (8E)
31. O.v;num.y/;m;n; l/ A (g 29_E)

32. Atomic.exp.m; l//^Atomsub.exp.m; l/; v;num.y/;exp.n; l// 31 abv
33. O.w;num.z/;m0; n0; l 0/ A (g 30_E)

34. Atomic.exp.m0; l 0//^Atomsub.exp.m0; l 0/;w;num.z/;exp.n0; l 0// 33 abv
35. Atomsub.exp.m; l/;w;num.z/;exp.n0; l 0// 34,28DE
36. Atomic.exp.n; l//^Atomic.exp.n0; l 0// 2,32,34 T13.50e
37. 9q9t9t 0ŒAtomsub.exp.m; l/; v;num.y/; t/^Atomsub.exp.m; l/;w;num.z/; t 0/^

Atomsub.t;w;num.z/; q/^Atomsub.t 0; v;num.y/; q/� 1,32 T13.58c
38. Atomsub.exp.m; l/; v;num.y/; u/^Atomsub.exp.m; l/;w;num.z/; u0/ A (g 379E)
39. Atomsub.u;w;num.z/; r/^Atomsub.u0; v;num.y/; r/

40. exp.n; l/ D u^ exp.n0; l 0/ D u0 32,35,38, T13.55j
41. Atomsub.exp.n; l/;w;num.z/; r/^Atomsub.exp.n0; l 0/; v;num.y/; r/ 39,40DE

42. Fsubseq.2
exp.n;l/

; 2
r
;exp.n; l/;w;num.z/; r/^Fsubseq.2

exp.n0;l0/
; 2

r
;exp.n0; l 0/; v;num.y/; r/ 36,41 T13.51e

43. P
k;k0

l;l0
42 9I

44. P
k;k0

l;l0
37,38-43 9E

45. P.m0; n0; l 0/_Q.m0; n0; l 0/_R.w;p;m0; n0; l 0/_ S.w;p;m0; n0; l 0/ A (g 30_E)

46. �P
k;k0

l;l0
A (c �E)

47. Atomic.exp.m0; l 0// 32,28DE
48. �ŒP.m0; n0; l 0/_Q.m0; n0; l 0/_R.w;p;m0; n0; l 0/_ S.w;p;m0; n0; l 0/� 47 T13.56b
49. ? 45,48?I

50. P
k;k0

l;l0
46-49�E

51. P
k;k0

l;l0
30,33-50 _E

Exercise 13.45 T13.58.d

ANSWERS FOR CHAPTER 13 905

52. P.m;n; l/ A (g 29_E)

53. .9i < l/Œexp.m; l/ D neg.exp.m; i//^ exp.n; l/ D neg.exp.n; i// 52 abv
54. h < l A (g 53 (9E))
55. exp.m; l/ D neg.exp.m;h//^ exp.n; l/ D neg.exp.n; h//

56. P.m0; n0; l 0/ A (g 30_E)

57. .9i < l 0/Œexp.m0; l 0/ D neg.exp.m0; i//^ exp.n0; l 0/ D neg.exp.n0; i// 56 abv
58. h0 < l 0 A (g 57 (9E))
59. exp.m0; l 0/ D neg.exp.m0; h0//^ exp.n0; l 0/ D neg.exp.n0; h0//

60. neg.exp.m;h// D neg.exp.m0; h0// 28,55,59DE
61. h < len.m/^ h0 < len.m0/ 27,54,58 T13.13b
62. W ff .exp.m;h//^W ff .exp.m0; h0// 9,61 T13.49l
63. exp.m;h/ D exp.m0; h0/ 60,62 T13.53a
64. len.exp.m; l// D 1C len.exp.m;h// 55 T13.47f
65. len.exp.m;h// < len.exp.m; l// 64 T13.13h
66. len.exp.m;h// < Sx 28,65 T13.13c
67. len.exp.m;h// � x 66 T13.13n

68. exp.m;h/ D exp.m0; h0/! P
k;k0

h;h0
26,61,67 (8E)

69. P
k;k0

h;h0
68,63!E

70. 9q9a9b9c9dŒFsubseq.a; b;exp.n; h/;w;num.z/; q/^Fsubseq.c; d;exp.n0; h0/; v;num.y/; q/� 69 abv
71. Fsubseq.a; b;exp.n; h/;w;num.z/; q/^Fsubseq.c; d;exp.n0; h0/; v;num.y/; q/ A (g 709E)

72. Fsubseq.a � 2
neg.exp.n;h//

; 2
neg.q/

;neg.exp.n; h//;w;num.z/;neg.q//^

Fsubseq.c � 2
neg.exp.n0;h0//

; 2
neg.q/

;neg.exp.n0; h0//; v;num.y/;neg.q// 71 T13.51f

73. Fsubseq.a � 2
exp.n;l/

; 2
neg.q/

;exp.n; l//;w;num.z/;neg.q//^

Fsubseq.c � 2
exp.n0;l0/

; 2
neg.q/

;exp.n0; l 0//; v;num.y/;neg.q// 72,55,59DE

74. P
k;k0

l;l0
73 9I

75. P
k;k0

l;l0
70,71-74 9E

76. P
k;k0

l;l0
57,58-75 (9E)

77. O.w;num.z/;m0; n0; l 0/_Q.m0; n0; l 0/_R.w;p;m0; n0; l 0/_ S.w;p;m0; n0; l 0/ A (g 30_E)

78. �P
k;k0

l;l0
A (c �E)

79. exp.m0; l 0/ D neg.exp.m;h// 55,28DE
80. �ŒO.w;num.z/;m0; n0; l 0/_Q.m0; n0; l 0/_R.w;p;m0; n0; l 0/_ S.w;p;m0; n0; l 0/� 79 T13.56c
81. ? 77,80?I

82. P
k;k0

l;l0
78-81�E

83. P
k;k0

l;l0
30,56-82 _E

84. P
k;k0

l;l0
53,54-83 (9E)

85. Q.m;n; l/_R.v;p;m;n; l/ A (g 29_E)

86. P
k;k0

l;l0
similarly

Exercise 13.45 T13.58.d

ANSWERS FOR CHAPTER 13 906

87. S.v;p;m;n; l/ A (g 29_E)

88. .9i < l/.9j < p/ŒVar.j /^ j D v ^ exp.m; l/ D unv.j;exp.m; i//^ exp.n; l/ D exp.m; l/ 87 abv
89. h < l ^ u < p A (g 88 (9E))
90. Var.u/^ u D v ^ exp.m; l/ D unv.u;exp.m;h//^ exp.n; l/ D exp.m; l/

91. S.w;p;m0; n0; l 0/ A (g 30_E)

92. .9i < l 0/.9j < p/ŒVar.j /^ j D w ^ exp.m0; l 0/ D unv.j;exp.m0; i//^ exp.n0; l 0/ D exp.m0; l 0/ 91 abv
93. h0 < l 0 ^ u0 < p A (g 92 (9E))
94. Var.u0/^ u0 D w ^ exp.m0; l 0/ D unv.u0;exp.m0; h0//^ exp.n0; l 0/ D exp.m0; l 0/

95. h < len.m/^ h0 < len.m0/ 27,89,93 T13.13b
96. W ff .exp.m;h//^W ff .exp.m0; h0/ 9,95 T13.49l
97. 9qFormsub.exp.m;h/;w;num.z/; q/^ 9qFormsub.exp.m0; h0/; v;num.y/; q/ 2,96 T13.51k
98. Formsub.exp.m;h/;w;num.z/; q/^Formsub.exp.m0; h0/; v;num.y/; q0/ A (g 979E)

99. .9x � X/.9y � Y /Fsubseq.x; y;exp.m;h/;w;num.z/; q/^
.9x � X/.9y � Y /Fsubseq.x; y;exp.m0; h0/; v;num.y/; q0/ 98 T13.51b

100. Fsubseq.a; b;exp.m;h/;w;num.z/; q/^Fsubseq.c; d;exp.m0; h0/; v;num.y/; q0/ A (g 99 (9E))

101. unv.u;exp.m;h// D unv.u0;exp.m0; h0// 28,90,94DE
102. exp.m;h/ D exp.m0; h0/^ u D u0 101,96,90,94 T13.53b
103. u D w ^ u0 D v 90,94,102DE
104. exp.n; l/ D exp.n0; l 0/ 28,90,94DE

105. Fsubseq.a � 2
unv.u;exp.m;h//

; b � 2
unv.u;exp.m;h//

;unv.u;exp.m;h//;w;num.z/;unv.u;exp.m;h/// 100,90,103 T13.51i

106. Fsubseq.a � 2
exp.n;l/

; b � 2
exp.n;l/

;exp.n; l/;w;num.z/;exp.n; l// 105,90DE

107. Fsubseq.c � 2
unv.u0;exp.m0;h0//

; d � 2
unv.u0;exp.m0;h0//

;

unv.u0;exp.m0; h0//; v;num.y/;unv.u0;exp.m0; h0/// 100,94,103 T13.51i

108. Fsubseq.c � 2
exp.n0;l0/

; b � 2
exp.n0;l0/

;exp.n0; l 0/; v;num.y/;exp.n0; l 0// 107,94DE

109. Fsubseq.c � 2
exp.n0;l0/

; b � 2
exp.n0;l0/

;exp.n0; l 0/; v;num.y/;exp.n; l// 108,104DE

110. P
k;k0

l;l0
106,109 9I

111. P
k;k0

l;l0
99,100-110 (9E)

112. P
k;k0

l;l0
97,98-111 9E

113. P
k;k0

l;l0
92,93-112 (9E)

114. O.w;num.z/;m0; n0; l 0/_P.m0; n0; l 0/_Q.m0; n0; l 0/_R.w;p;m0; n0; l 0/ A (g 30_E)

115. P
k;k0

l;l0
as above

116. P
k;k0

l;l0
30,91-115 _E

117. P
k;k0

l;l0
88,89-116 (9E)

118. P
k;k0

l;l0
29,31-117 _E

119. len.exp.m; l// � Sx! .exp.m; l/ D exp.m0; l 0/! P
k;k0

l;l0
/ 28-118!I

120. .8k < len.m//.8k0 < len.m0//Œlen.exp.m; k// � Sx! .exp.m; k/ D exp.m0; k0/! P /� 27-119 (8I)

121. .8k < len.m//.8k0 < len.m0//Œlen.exp.m; k// � x! .exp.m; k/ D exp.m0; k0/! P /�!

.8k < len.m//.8k0 < len.m0//Œlen.exp.m; k// � Sx! .exp.m; k/ D exp.m0; k0/! P /� 26-120!I
122. 8x.8k < len.m//.8k0 < len.m0//Œlen.exp.m; k// � x! .exp.m; k/ D exp.m0; k0/! P /� 25,121 IN
123. len.m/

:
� 1 < len.m/^ len.m0/

:
� 1 < len.m0/ 12 T13.23i

124. len.exp.m; len.m/
:
� 1// � len.p/! .exp.m; len.m/

:
� 1/ D exp.m0; len.m0/

:
� 1/! P

k;k0

len.m/
:
�1;len.m0/

:
�1
/ 122,123 (8E)

125. len.p/ � len.p/! .p D p! P
k;k0

len.m/
:
�1;len.m0/

:
�1
/ 124,10DE

126. P
k;k0

len.m/
:
�1;len.m0/

:
�1

125DI,!E

127. P
k;k0

len.n/
:
�1;len.n0/

:
�1

126,14DE

128. 9q9a9b9c9dŒFsubseq.a; b; t;w;num.z/; q/^Fsubseq.c; d; t 0; v;num.y/; q/� 127,13DE
129. Fsubseq.a; b; t;w;num.z/; q/^Fsubseq.c; d; t 0; v;num.y/; q/ A (g 1289E)

130. Formsub.t;w;num.z/; q/^Formsub.t 0; v;num.y/; q/ 129 T13.51j
131. formsub.t;w;num.z// D q ^formsub.t 0; v;num.y// D q 130,6,2 T13.56h
132. formsub.t;w;num.z// D formsub.t 0; v;num.y// 131DE
133. formsub.formsub.p; v;num.y//;w;num.z// D formsub.formsub.p;w;num.z//; v;num.y// 5,132DE

134. formsub.formsub.p; v;num.y//;w;num.z// D formsub.formsub.p;w;num.z//; v;num.y// 128,129-133 9E

135. formsub.formsub.p; v;num.y//;w;num.z// D formsub.formsub.p;w;num.z//; v;num.y// 7,8-134 (9E)

136. formsub.formsub.p; v;num.y//;w;num.z// D formsub.formsub.p;w;num.z//; v;num.y// 3,4-135 9E

137. ŒW ff .p/^ v ¤ w�! formsub.formsub.p; v;num.y//;w;num.z// D formsub.formsub.p;w;num.z//; v;num.y// 1-136!I

Exercise 13.45 T13.58.d

ANSWERS FOR CHAPTER 13 907

E13.47. Fill in the parts of T13.61 that are left as “similarly” to to show that PA `
P $ P ?.

T13.61. For any�0 formula P there is a †? formula P ? such that PA ` P $ P ?.

P � is .8x < t/B. Set P ? D 9zŒ.t D z/? ^ .8x � z/..x ¤ z/? ! B?�.

Exercise 13.47 T13.61

ANSWERS FOR CHAPTER 13 908

1. t D z$.t D z/? T13.59
2. x ¤ z$.x ¤ z/? (�) case
3. B$ B? by assp

4. P ? A (g$I)

5. 9zŒ.t D z/? ^ .8x � z/..x ¤ z/? ! B?.x//� 4 abv
6. 9zŒt D z ^ .8x � z/.x ¤ z! B.x//� 5 with 1,2,3
7. t D a ^ .8x � a/.x ¤ a! B.x// A (g 69E)

8. l < t A (g (8I)

9. t D a 7 ^E
10. .8x � a/.x ¤ a! B.x// 7 ^E
11. .8x � t/.x ¤ t! B.x// 10,9DE
12. l � t 8 T13.13m
13. l ¤ t! B.l/ 11,12 (8E)
14. l ¤ t 8 T13.13s
15. B.l/ 13,14!E

16. .8x < t/B.x/ 8-15 (8I)

17. .8x < t/B.x/ 6,7-16 9E
18. P� abv

19. P� A (g$I)

20. .8x < t/B.x/ 19 abv
21. t D t DI
22. a � t A (g (8I))

23. a < t _ a D t 22 T13.13m
24. a < t A (g 23_E)

25. B.a/ 20,24 (8E)
26. a D t _B.a/ 25 _I
27. a ¤ t! B.a/ 26 Impl

28. a D t A (g 23_E)

29. a D t _B.a/ 28 _I
30. a ¤ t! B.a/ 29 Impl

31. a ¤ t! B.a/ 23,24-27,28-30 _E

32. .8x � t/.x ¤ t! B.x// 22-31 (8I)
33. t D t ^ .8x � t/.x ¤ t! B.x//� 21,32 ^I
34. 9zŒt D z ^ .8x � z/.x ¤ z! B.x//� 33 9I
35. 9zŒ.t D z/? ^ .8x � z/..x ¤ z/? ! B?.x//� 34 with 1,2,3
36. P ? 35 abv

37. P ? $ P� 4-18,19-36$I

E13.49. Provide a demonstration for T13.65.

T13.65. For any i , PA ` subiC1.pP q; xa; xy1 : : : xyn/ D subiC1.pPq; xy1 : : : xyi ;

xa; xy.iC1/
: : : xyn/.

Exercise 13.49 T13.65

ANSWERS FOR CHAPTER 13 909

Preliminary: If PA ` W ff .p/, then PA ` formsub.formsub.p;gvar.a/;num.xa//;gvar.b/;
num.xb// D formsub.formsub.p;gvar.b/;num.xb//;gvar.a/;num.xa//.

Suppose PA ` W ff .p/.

(i) Suppose a D b; then trivially PA ` formsub.formsub.p;gvar.a/;num.xa//;gvar.b/;
num.xb// D formsub.formsub.p;gvar.b/;num.xb//;gvar.a/;num.xa//.

(ii) Suppose a ¤ b; then by capture PA ` a ¤ b; so by T13.57g, PA ` gvar.a/ ¤ gvar.b/; so
by T13.58d, PA ` formsub.formsub.p;gvar.a/;num.xa//;gvar.b/;num.xb// D formsub.
formsub.p;gvar.b/;num.xb//;gvar.a/;num.xa//.

In either case, then, PA ` formsub.formsub.p;gvar.a/;num.xa//;gvar.b/;num.xb// D formsub.

formsub.p;gvar.b/;num.xb//;gvar.a/;num.xa//.

Basis: PA ` sub1.pP q; xa; xy1 : : : xyn/ D sub1.pP q; xa; xy1 : : : xyn/.
Assp: For any i , PA ` subiC1.pP q; xa; xy1 : : : xyn/ D subiC1.pP q; xy1 : : : xyi ; xa; xyiC1 : : : xyn/

Show: PA ` subiC2.pP q; xa; xy1 : : : xyn/ D subiC2.pPq; xy1 : : : xyiC1 ; xa; xyiC2 : : : xyn/

1. W ff .subi.pPq; xy1 : : : xyi ; xa; xyiC1 : : : xyn // T13.63
2. subiC2.pPq; xy1 : : : xyiC1 ; xa; xyiC2 : : : xyn /

3. D formsubŒsubiC1.pPq; xy1 : : : xyiC1 ; xa; xyiC2 : : : xyn /;gvar.a/;num.xa/� def
4. D formsubŒformsub.subi.pPq; xy1 : : : xyi ; xyiC1 ; xa; xyiC2 : : : xyn /;gvar.yiC1/;num.xyiC1 //;gvar.a/;num.xa/� def
5. D formsubŒformsub.subi.pPq; xy1 : : : xyi ; xa; xyiC1 : : : xyn /;gvar.yiC1/;num.xyiC1 //;gvar.a/;num.xa/� T13.64
6. D formsubŒformsub.subi.pPq; xy1 : : : xyi ; xa; xyiC1 : : : xyn /;gvar.a/;num.xa//;gvar.yiC1/;num.xyiC1 /� 1,5 prelm
7. D formsubŒformsub.subiC1.pPq; xy1 : : : xyi ; xa; xyiC1 : : : xyn /;gvar.yiC1/;num.xyiC1 /� def
8. D formsubŒformsub.subiC1.pPq; xa; xy1 : : : xyn //;gvar.yiC1/;num.xiC1/� assp
9. D subiC2.pPq; xa; xy1 : : : xyn / def

Indct: For any i , PA ` subiC1.pPq; xa; xy1 : : : xyn/ D subiC1.pPq; xy1 : : : xyi ; xa; xyiC1 : : : xyn/

E13.50. Provide a demonstration for T13.67

T13.67. If the variables of Ey and Ez are ordered by their subscripts and Ey and Ez are
the same except that Ez includes some variables not in Ey (and so not free in P),
then PA ` sub.pP q; Ey/ D sub.pPq; Ez/.
Suppose S.i:j / is as in the hint to T13.67.

Basis: PA ` sub0.pPq; Ey/ D pPq D sub0.pP q; Ez/.
Assp: For any i:j in the sequence, PA ` subi .pP q; Ey/ D subj .pP q; Ez/

Show: For S.i:j / D k:l , PA ` subk.pP q; Ey/ D subl.pP q; Ez/. Either (i)
ySi D zSj or (ii) ySi ¤ zSj.

(i) ySi D zSj so that k:l D Si:Sj . Let a D ySi D zSj.
1. subSi .pPq; Ey/ D formsub.subi .pPq; Ey/;gvar.a/;num.xa// by def
2. formsub.subi .pPq; Ey/;gvar.a/;num.xa// D formsub.subj .pPq; Ez/;gvar.a/;num.xa// by assp
3. formsub.subj .pPq; Ez/;gvar.a/;num.xa// D subSj .pPq; Ez/ by def
4. subSi .pPq; Ey/ D subSj .pPq; Ez/ 1,2,3DE

Exercise 13.50 T13.67

ANSWERS FOR CHAPTER 14 910

So PA ` subk.pPq; Ey/ D subl.pP q; Ez/.
(ii) ySi ¤ zSj so that k:l D i:Sj . Let a D zSj; in this case, xa is not in Ey and

so not free in P .

1. subSj .pPq; Ez/ D subj .pPq; Ez/ T13.66
2. subj .pPq; Ez/ D subi .pPq; Ey/ by assp
3. subi .pPq; Ey/ D subSj .pPq; Ez/ 1,2DE

So PA ` subk.pPq; Ey/ D subl.pP q; Ez/.

Indct: For any i:j in the sequence PA ` subi .pP q; Ey/ D subj .pP q; Ez/; and
PA ` subn.pP q; Ey/ D subm.pP q; Ez/.

Chapter Fourteen

You are ready to do these on your own!

Exercise 13.50 T13.67

Bibliography

Benacerraf, P., and H. Putnam. Philosophy of Mathematics: Selected Readings.
Cambridge: Cambridge University Press, 1983, 2nd edition.

Bergmann, M., J. Moor, and J. Nelson. The Logic Book. New York: McGraw-Hill,
2004, 4th edition.

Berto, Francesco. There’s Something About Gödel: The Complete Guide to the In-
completeness Theorem. Oxford: Wiley-Blackwell, 2009.

Black, Robert. “Proving Church’s Thesis.” Philosophia Mathematica 8 (2000): 244–
258.

Boolos, G., J. Burgess, and R. Jeffrey. Computability and Logic. Cambridge: Cam-
bridge University Press, 2002, 4th edition.

Boolos, George. The Logic of Provability. Cambridge: Cambridge University Press,
1993.

Cederblom, J, and D Paulsen. Critical Reasoning. Belmont: Wadsworth, 2005, 6th
edition.

Church, Alonzo. “An Unsolvable Problem of Elementary Number Theory.” Ameri-
can Journal of Mathematics 58 (1936): 345–363.

Cooper, B. Computability Theory. Boca Raton: Chapman & Hall/CRC Mathematics,
2004.

Dennett, Daniel, editor. The Philosopher’s Lexicon. 1987. URL http://www.
blackwellpublishing.com/lexicon/.

Drake, F., and Singh D. Intermediate Set Theory. Chichester, England: John Wiley
& Sons, 1996.

911

http://www.blackwellpublishing.com/lexicon/
http://www.blackwellpublishing.com/lexicon/

BIBLIOGRAPHY 912

Earman, J, and J. Norton. “Forever is a Day: Supertasks in Pitowsky and Malament-
Hogarth Spacetimes.” Philosophy of Science 60 (1993): 22–42.

Earman, John. Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausal-
ities in Relativistic Spacetimes. New York: Oxford University Press, 1995.

Enderton, H. Elements of Set Theory. Boston: Academic Press, Inc., 1977.

Feferman, et al., editors. Gödel’s Collected Works: Vol I. New York: Oxford Uni-
versity Press, 1986.

Fisher, A. Formal Number Theory and Computability. Oxford: Clarendon Press,
1982.

George, A, and D. Velleman. Philosophies of Mathematics. Blackwell Publishers,
2002.

Gödel, K. “On Formally Undecidable Propositions of Principia Mathematica and
Related Systems I.” In Collected Works, Vol. I: Publications 1929-1936, Oxford:
Oxford University Press, 1986, 144–95.

Gödel, Kurt. “Die Vollständigkeit der Axiome des Logischen Funktionenkalküls.”
Monatshefte für Mathematik und Physik 37 (1930): 349–360.

von Heijenoort, editor. From Frege to Gödel. Cambridge: Harvard University Press,
1967.

Henkin, Leon. “The Completeness of the First-Order Functional Calculus.” Journal
of Symbolic Logic 14 (1949): 159–166.

. “A Problem Concerning Provability.” Journal of Symbolic Logic 17 (1952):
160.

Hodges, W. A Shorter Model Theory. Cambridge: Cambridge University Press,
1997.

Hogarth, Mark. “Does General Relativity Allow an Observer To View an Eternity In
a Finite Time?” Foundations of Physics Letters 173–181.

Kolmogorov, and Uspenskii. “On the Definition of an Algorithm.” American Math-
ematical Society Translations 29 (1963): 217–245.

Kripke, Saul. Wittgenstein on Rules and Private Language: An Elementary Exposi-
tion. Cambridge, Mass.: Harvard University Press, 1982.

BIBLIOGRAPHY 913

Manzano, María. Extensions of First Order Logic. Cambridge: Cambridge Univer-
sity Press, 1996.

. Model Theory. Oxford: Clarendon Press, 1999.

Marcus, and McEvoy. An Historical Introduction to the Philosophy of Mathematics.
London: Bloomsbury Publishing, 2016.

Mendelson, Elliott. Introduction to Mathematical Logic. New York: Chapman and
Hall, 1997, 4th edition.

Pietroski, Paul. “Logical Form.” In The Stanford Encyclopedia of Philosophy, edited
by Edward N. Zalta, 2009. Fall, 2009 edition. URL http://plato.stanford.
edu/archives/fall2009/entries/logical-form/.

Plantinga, Alvin. God, Freedom, and Evil. Grand Rapids: Eerdmans, 1977.

Pohlers, W. Proof Theory. Berlin: Springer-Verlag, 1989.

Priest, Graham. Non-Classical Logics. Cambridge: Cambridge University Press,
2001.

Putnam, Hilary. Reason, Truth and History. Cambridge: Cambridge University Pres,
1981.

Raatikainen, Panu. “Gödel’s Incompleteness Theorems.” In The Stanford En-
cyclopedia of Philosophy, edited by Edward N. Zalta, 2015. Spring 2015
edition. URL http://plato.stanford.edu/archives/spr2015/entries/
goedel-incompleteness/.

Robinson, R. “An Essentially Undecidable Axiom System.” Proceedings of the
International Congress of Mathematics 1 (1950): 729–730.

Rosser, Barkley. “Extensions of Some Theorems of Gödel and Church.” Journal of
Symbolic Logic 1 (1936): 230–235.

Rowling, J.K. Harry Potter and the Prisoner of Azkaban. New York: Scholastic Inc.,
1999.

Roy, Tony. “Natural Derivations for Priest, An Introduction to Non-Classical Logic.”
The Australasian Journal of Logic 47–192. URL http://ojs.victoria.ac.
nz/ajl/article/view/1779.

http://plato.stanford.edu/archives/fall2009/entries/logical-form/
http://plato.stanford.edu/archives/fall2009/entries/logical-form/
http://plato.stanford.edu/archives/spr2015/entries/goedel-incompleteness/
http://plato.stanford.edu/archives/spr2015/entries/goedel-incompleteness/
http://ojs.victoria.ac.nz/ajl/article/view/1779
http://ojs.victoria.ac.nz/ajl/article/view/1779

BIBLIOGRAPHY 914

. “Modality.” In The Continuum Companion to Metaphysics, London: Con-
tinuum Publishing Group, 2012, 46–66.

Russell, B. “On Denoting.” Mind 14.

Shapiro, S. Foundations Without Foundationalism: A Case for Second Order Logic.
Oxford: Clarendon Press, 1991.

. Thinking About Mathematics: The Philosophy of Mathematics. Oxford:
Oxford University Press, 2000.

. “Philosophy of Mathematics and Its Logic: Introduction.” In The Oxford
Handbook of Philosophy of Mathematics and Logic, edited by S. Shapiro, Oxford:
Oxford University Press, 2005, 3–28.

Smith, Peter. “Squeezing Arguments.” Analysis 71 (2011): 22–30.

. An Introduction to Gödel’s Theorems. Cambridge: Cambridge University
Press, 2013a, second edition.

. “Teach Yourself Logic: A Study Guide.”, 2013b. URL http://www.
logicmatters.net/tyl/.

Szabo, M., editor. The Collected Papers of Gerhard Gentzen. Amsterdam: North-
Holland, 1969.

Takeuti, G. Proof Theory. Amsterdam: North-Holland, 1975.

Tourlakis, George. Lectures in Logic and Set Theory, Volume I: Mathematical Logic.
Cambridge: Cambridge University Press, 2003.

Turing, Alan. “On Computable Numbers, With an Application to the Entschei-
dungsproblem.” Proceedings of the London Mathematical Society 42 (1936): 230–
265.

Wang, Hao. “The axiomatization of Arithmetic.” Journal of Symbolic Logic 22
(1957): 145–158.

http://www.logicmatters.net/tyl/
http://www.logicmatters.net/tyl/

Index

expressive completeness, 428

915

	Preface
	Contents
	Named Definitions
	Quick Reference Guides
	III Classical Metalogic: Soundness and Adequacy
	9 Preliminary Results
	9.1 Semantic Validity Implies Logical Validity
	9.2 Validity in AD Implies Validity in ND
	9.3 Validity in ND Implies Validity in AD
	9.4 Extending to ND+

	10 Main Results
	10.1 Soundness
	10.2 Sentential Adequacy
	10.3 Quantificational Adequacy: Basic Version
	10.4 Quantificational Adequacy: Full Version

	11 More Main Results
	11.1 Expressive Completeness
	11.2 Unique Readability
	11.3 Independence
	11.4 Isomorphic Models
	11.5 Compactness and Isomorphism
	11.6 Submodels and Löwenheim-Skolem

	IV Logic and Arithmetic: Incompleteness and Computability
	12 Recursive Functions and Q
	12.1 Recursive Functions
	12.2 Expressing Recursive Functions
	12.3 Capturing Recursive Functions
	12.4 More Recursive Functions
	12.5 Essential Results

	13 Gödel's Theorems
	13.1 Gödel's First Theorem
	13.2 Gödel's Second Theorem: Overview
	13.3 The Derivability Conditions: Background
	13.4 The Second Condition: (=========P =========Q) (=========P ==================Q)
	13.5 The Third Condition: =========P =========P
	13.6 Reflections on the theorem

	14 Logic and Computability
	14.1 Turing Computable Functions
	14.2 Essential Results
	14.3 Church's Thesis

	Concluding Remarks
	Answers to Selected Exercises
	Chapter Nine
	Chapter Ten
	Chapter Eleven
	Chapter Twelve
	Chapter Thirteen
	Chapter Fourteen

	Bibliography
	Index

