### Symbolic Logic

An Accessible Introduction to Serious Mathematical Logic

Volume II

Tony Roy

version 7.3

January 19, 2017

## Preface

There is, I think, a gap between what many students learn in their first course in formal logic, and what they are expected to know for their second. While courses in mathematical logic with metalogical components often cast only the barest glance at mathematical induction or even the very idea of reasoning from definitions, a first course may also leave these untreated, and fail explicitly to lay down the definitions upon which the second course is based. The aim of this text is to integrate material from these courses and, in particular, to make serious mathematical logic accessible to students I teach. The first parts introduce classical symbolic logic as appropriate for beginning students; the last parts build to Gödel's adequacy and incompleteness results. A distinctive feature of the last section is a complete development of Gödel's second incompleteness theorem.

Accessibility, in this case, includes components which serve to locate this text among others: First, assumptions about background knowledge are minimal. I do not assume particular content about computer science, or about mathematics much beyond high school algebra. Officially, everything is introduced from the ground up. No doubt, the material requires a certain sophistication — which one might acquire from other courses in critical reasoning, mathematics or computer science. But the requirement does not extend to particular contents from any of these areas.

Second, I aim to build skills, and to keep conceptual distance for different applications of 'so' relatively short. Authors of books that are completely correct and precise may assume skills and require readers to recognize connections not fully explicit. It may be that this accounts for some of the reputed difficulty of the material. The results are often elegant. But this can exclude a class of students capable of grasping and benefiting from the material, if only it is adequately explained. Thus I attempt explanations and examples to put the student at every stage in a position to understand the next. In some cases, I attempt this by introducing relatively concrete methods for reasoning. The methods are, no doubt, tedious or unnecessary for the experienced logician. However, I have found that they are valued by students, inso-

#### PREFACE

far as students are presented with an occasion for success. These methods are not meant to wash over or substitute for understanding details, but rather to expose and clarify them. Clarity, beauty and power come, I think, by getting at details, rather than burying or ignoring them.

Third, the discussion is ruthlessly directed at core results. Results may be rendered inaccessible to students, who have many constraints on their time and schedules, simply because the results would come up in, say, a second course rather than a first. My idea is to exclude side topics and problems, and to go directly after (what I see as) the core. One manifestation is the way definitions and results from earlier sections feed into ones that follow. Thus simple integration is a benefit. Another is the way predicate logic with identity is introduced as a whole in Part I. Though it is possible to isolate sentential logic from the first parts of chapter 2 through chapter 7, and so to use the text for separate treatments of sentential and predicate logic, the guiding idea is to avoid repetition that would be associated with independent treatments for sentential logic, or perhaps monadic predicate logic, the full predicate logic, and predicate logic with identity.

Also (though it may suggest I am not so ruthless about extraneous material as I would like to think), I try to offer some perspective about what is accomplished along the way. In addition, this text may be of particular interest to those who have, or desire, an exposure to natural deduction in formal logic. In this case, accessibility arises from the nature of the system, and association with what has come before. In the first part, I introduce both axiomatic and natural derivation systems; and in Part III, show how they are related.

There are different ways to organize a course around this text. For students who are likely to complete the whole, the ideal is to proceed sequentially through the text from beginning to end (but postponing chapter 3 until after chapter 6). Taken as wholes, Part II depends on Part I; Parts III and IV on Parts I and II. Part IV is mostly independent of Part III. I am currently working within a sequence that isolates sentential logic from quantificational logic, treating them in separate quarters, together covering all of chapters 1 - 7 (except 3). A third course picks up leftover chapters from the first two parts (3 and 8) with Part III; and a fourth the leftover chapters from the first parts with Part IV. Perhaps not the most efficient arrangement, but the best I have been able to do with shifting student populations. Other organizations are possible!

A remark about chapter 7 especially for the instructor: By a formal system for reasoning with semantic definitions, chapter 7 aims to leverage derivation skills from earlier chapters to informal reasoning with definitions. I have had a difficult time convincing instructors to try this material — and even been told flatly that these

#### PREFACE

skills "cannot be taught." In my experience, this is false (and when I have been able to convince others to try the chapter, they have quickly seen its value). Perhaps the difficulty is that it is "weird" — none of us had anything like this when we learned logic. Of course, if one is presented with students whose mathematical sophistication is sufficient for advanced work, the material is not necessary. But if, as is often the case especially for students in philosophy, one obtains one's mathematical sophistication *from* courses in logic, this chapter is an important part of the bridge from earlier material to later. Additionally, the chapter is an important "take-away" even for students who will not continue to later material. The chapter closes an open question from chapter 4 — how it is possible to demonstrate quantificational validity. But further, the ability to reason closely with definitions is a skill from which students in (sentential or) predicate logic, even though they never go on to formalize another sentence or do another derivation, will benefit both in philosophy and more generally.

Another remark about the (long) sections 13.3, 13.4 and 13.5. These develop in PA the "derivability conditions" for Gödel's second theorem. They are perhaps for enthusiasts. Still, in my experience many students are enthusiasts and, especially from an introduction, benefit by seeing how the conditions are derived. There are different ways to treat the sections. One might work through them in some detail. One might wave at results individually. And even for the short shrift often accorded the derivability conditions, there is an advantage having a sort of panorama at which one can point and say "thus it is accomplished!"

Naturally, results in this book are not innovative. If there is anything original, it is in presentation. Even here, I am greatly indebted to others, especially perhaps Bergmann, Moor and Nelson, *The Logic Book*, Mendelson, *Introduction to Mathematical Logic*, and Smith, *An Introduction to Gödel's Theorems*. I thank my first logic teacher, G.J. Mattey, who communicated to me his love for the material. And I thank especially my colleagues John Mumma and Darcy Otto for many helpful comments. Hannah Baehr and Catlin Andrade made comments and produced answers to exercises for certain parts. In addition I have received helpful feedback from Steve Johnson, along with students in different logic classes at CSUSB. I welcome comments, and expect that your sufferings will make it better still.

This text evolved over a number of years starting modestly from notes originally provided as a supplement to other texts. It is now long (!) and perhaps best conceived in separate volumes for Parts I and II and then Parts III and IV. With the addition of Part IV it is complete for the first time in this version. (But chapter 11, which I rarely get to in teaching, remains a stub that could be developed in different directions.) Most of the text is reasonably stable, though I shall be surprised if I have not introduced errors in the last part both substantive and otherwise.

#### PREFACE

I think this is fascinating material, and consider it great reward when students respond "cool!" as they sometimes do. I hope you will have that response more than once along the way.

T.R. Winter 2017

# Contents

| Pr | face                                   | i    |
|----|----------------------------------------|------|
| Co | ntents                                 | v    |
| Na | med Definitions                        | ix   |
| Qu | ick Reference Guides                   | xvii |
| Ι  | The Elements: Four Notions of Validity | 1    |
| 1  | Logical Validity and Soundness         | 5    |
|    | 1.1 Consistent Stories                 | 6    |
|    | 1.2 The Definitions                    | 12   |
|    | 1.3 Some Consequences                  | 24   |
| 2  | Formal Languages                       | 32   |
|    | 2.1 Introductory                       | 32   |
|    | 2.2 Sentential Languages               | 34   |
|    | 2.3 Quantificational Languages         | 48   |
| 3  | Axiomatic Deduction                    | 69   |
|    | 3.1 General                            | 70   |
|    | 3.2 Sentential                         | 74   |
|    | 3.3 Quantificational                   | 82   |
| 4  | Semantics                              | 98   |
|    | 4.1 Sentential                         | 98   |
|    | 4.2 Quantificational                   | 115  |

| 5   | Translation         5.1       General         5.2       Sentential         5.3       Quantificational         5.4       The system ND+         | <ul> <li>140</li> <li>140</li> <li>142</li> <li>173</li> <li>210</li> <li>210</li> <li>220</li> <li>273</li> <li>321</li> </ul> |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| II  | Transition: Reasoning About Logic                                                                                                              | 332                                                                                                                             |
| 7   | Direct Semantic Reasoning7.1General7.2Sentential7.3Quantificational                                                                            | <b>334</b><br>335<br>338<br>354                                                                                                 |
| 8   | Mathematical Induction8.1General Characterization8.2Preliminary Examples8.3Further Examples (for Part III)8.4Additional Examples (for Part IV) | <b>381</b><br>381<br>387<br>401<br>411                                                                                          |
| III | I Classical Metalogic: Soundness and Adequacy                                                                                                  | 426                                                                                                                             |
| 9   | Preliminary Results9.1Semantic Validity Implies Logical Validity                                                                               | <b>429</b><br>429<br>434<br>441<br>462                                                                                          |
| 10  | Main Results10.1 Soundness10.2 Sentential Adequacy10.3 Quantificational Adequacy: Basic Version10.4 Quantificational Adequacy: Full Version    | <b>467</b><br>468<br>475<br>486<br>501                                                                                          |

### CONTENTS

| 11 More Main Results                                                                                                     | 517 |
|--------------------------------------------------------------------------------------------------------------------------|-----|
| 11.1 Expressive Completeness                                                                                             | 517 |
| 11.2 Unique Readability                                                                                                  | 522 |
| 11.3 Independence                                                                                                        | 525 |
| 11.4 Isomorphic Models                                                                                                   | 529 |
| 11.5 Compactness and Isomorphism                                                                                         | 539 |
| 11.6 Submodels and Löwenheim-Skolem                                                                                      | 541 |
| IV Logic and Arithmetic: Incompleteness and Computability                                                                | 546 |
| 12 Recursive Functions and Q                                                                                             | 550 |
| 12.1 Recursive Functions                                                                                                 | 552 |
| 12.2 Expressing Recursive Functions                                                                                      | 559 |
| 12.3 Capturing Recursive Functions                                                                                       | 569 |
| 12.4 More Recursive Functions                                                                                            | 587 |
| 12.5 Essential Results                                                                                                   | 607 |
| 13 Gödel's Theorems                                                                                                      | 618 |
| 13.1 Gödel's First Theorem                                                                                               | 618 |
| 13.2 Gödel's Second Theorem: Overview                                                                                    | 626 |
| 13.3 The Derivability Conditions: Background                                                                             | 631 |
| 13.4 The Second Condition: $\Box(\mathcal{P} \to \mathcal{Q}) \to (\Box \mathcal{P} \to \Box \mathcal{Q}) \ldots \ldots$ | 670 |
| 13.5 The Third Condition: $\Box \mathcal{P} \rightarrow \Box \Box \mathcal{P}$                                           | 700 |
| 13.6 Reflections on the theorem                                                                                          | 722 |
| 14 Logic and Computability                                                                                               | 732 |
| 14.1 Turing Computable Functions                                                                                         | 732 |
| 14.2 Essential Results                                                                                                   | 746 |
| 14.3 Church's Thesis                                                                                                     | 752 |
| Concluding Remarks                                                                                                       | 772 |
| Answers to Selected Exercises                                                                                            | 775 |
| Chapter Nine                                                                                                             | 776 |
| Chapter Ten                                                                                                              | 789 |
| Chapter Eleven                                                                                                           |     |
| Chapter Twelve                                                                                                           | 795 |
| Chapter Thirteen                                                                                                         | 802 |

| CONTENTS         | viii |
|------------------|------|
| Chapter Fourteen | 910  |
| Bibliography     | 911  |
| Index            | 915  |

| c | h | a | p   | tei | r 1 |  |
|---|---|---|-----|-----|-----|--|
|   |   |   | r . |     |     |  |

| AR  | Argument                          |
|-----|-----------------------------------|
| LV  | Logical Validity                  |
| LS  | Logical Soundness                 |
| IT  | Invalidity Test                   |
| VT  | Validity Test                     |
|     | chapter 2                         |
| VC  | Vocabulary (sentential)           |
| FR  | Formulas (sentential)             |
| SB  | Subformulas                       |
| IS  | Immediate Subformula              |
| AS  | Atomic Subformula                 |
| МО  | Main Operator (formal)            |
| AB  | Abbreviation (sentential)         |
| FR' | Abbreviated Formulas (sentential) |
| VC  | Vocabulary 49                     |
| TR  | Terms                             |
| FR  | Formulas                          |
| AB  | Abbreviation                      |
| FR' | Abbreviated Formulas 61           |
|     | chapter 3                         |
| MP  | Modus Ponens                      |
| AV  | Axiomatic Consequence             |
| AS  | <i>AD</i> Sentential              |
| AU  | AD Quantificational               |
| AE  | <i>AD</i> Equality                |
| AD  | <i>AD</i> Axioms (summary)        |

| 90  |
|-----|
|     |
| 99  |
| 99  |
| 99  |
| 107 |
| 111 |
| 111 |
| 112 |
| 114 |
| 116 |
| 120 |
| 123 |
| 124 |
| 124 |
| 124 |
| 124 |
| 125 |
| 127 |
| 130 |
| 135 |
| 135 |
| 135 |
| 135 |
| 138 |
|     |
| 141 |
| 147 |
| 147 |
| 147 |
| 147 |
| 147 |
| 150 |
|     |
| 211 |
| 210 |
| 219 |
|     |

Х

| SA                  | Accessible Subderivation                                                                                                                   | 219 |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
| R                   | <i>ND</i> Reiteration                                                                                                                      | 219 |
| $\rightarrow E$     | $ND \rightarrow Exploitation \dots \dots \dots \dots \dots \dots$                                                                          | 221 |
| $\rightarrow$ I     | $ND \rightarrow$ Introduction                                                                                                              | 222 |
| ∧E                  | $ND \wedge Exploitation$                                                                                                                   | 225 |
| $\wedge I$          | $ND \wedge Introduction$                                                                                                                   | 225 |
| $\sim I$            | $ND \sim Introduction \dots \dots \dots \dots \dots$                                                                                       | 230 |
| $\sim E$            | $ND \sim Exploitation \dots \dots \dots \dots \dots \dots \dots$                                                                           | 230 |
| $\perp I$           | $ND \perp$ Introduction                                                                                                                    | 231 |
| $\sim I$            | $ND \sim Introduction \dots \dots \dots \dots \dots$                                                                                       | 232 |
| $\sim E$            | $ND \sim Exploitation \dots \dots \dots \dots \dots \dots$                                                                                 | 232 |
| $\vee I$            | $ND \lor Introduction$                                                                                                                     | 233 |
| ∨E                  | $ND \lor Exploitation$                                                                                                                     | 233 |
| ↔E                  | $ND \leftrightarrow \text{Exploitation}$                                                                                                   | 239 |
| $\leftrightarrow I$ | $ND \leftrightarrow$ Introduction                                                                                                          | 239 |
| SG                  | Strategies for a Goal (Sentential)                                                                                                         | 247 |
| SC                  | Strategies for a Contradiction (Sentential)                                                                                                | 260 |
| ∀E                  | $ND \forall$ Exploitation                                                                                                                  | 274 |
| ΞI                  | $ND \exists$ Introduction                                                                                                                  | 276 |
| ΑI                  | $ND \forall$ Introduction                                                                                                                  | 280 |
| ∃E                  | $ND \exists$ Exploitation                                                                                                                  | 283 |
| SG                  | Strategies for a Goal                                                                                                                      | 290 |
| SC                  | Strategies for a Contradiction                                                                                                             | 290 |
| =I                  | <i>ND</i> = Introduction                                                                                                                   | 301 |
| =Е                  | <i>ND</i> = Exploitation                                                                                                                   | 302 |
| $(\forall E)$       | $(\forall)$ Exploitation                                                                                                                   | 306 |
| (IE)                | $(\exists)$ Introduction                                                                                                                   | 306 |
| $(\forall I)$       | $(\forall)$ Introduction                                                                                                                   | 306 |
| (∃E)                | $(\exists) Exploitation \dots \dots$ | 306 |
| Q                   | Robinson Arithmetic Axioms                                                                                                                 | 306 |
| IN                  | Mathematical Induction                                                                                                                     | 312 |
| PA7                 | Peano Induction Axiom                                                                                                                      | 318 |
| MT                  | <i>ND</i> + Modus Tollens                                                                                                                  | 321 |
| NB                  | <i>ND</i> + Negated Biconditional                                                                                                          | 321 |
| DS                  | <i>ND</i> + Disjunctive Syllogism                                                                                                          | 322 |
| HS                  | <i>ND</i> + Hypothetical Syllogism                                                                                                         | 322 |
| DN                  | <i>ND</i> + Double Negation                                                                                                                | 323 |
| Com                 | <i>ND</i> + Commutation                                                                                                                    | 324 |

| Assoc | <i>ND</i> + Association                         | 324 |
|-------|-------------------------------------------------|-----|
| Idem  | <i>ND</i> + Idempotence                         | 324 |
| Impl  | <i>ND</i> + Implication                         | 324 |
| Trans | <i>ND</i> + Transposition                       | 324 |
| DeM   | <i>ND</i> + DeMorgan                            | 325 |
| Exp   | <i>ND</i> + Exportation                         | 325 |
| Equiv | <i>ND</i> + Equivalence                         | 325 |
| Dist  | <i>ND</i> + Distribution                        | 325 |
| QN    | <i>ND</i> + Quantifier Negation                 | 325 |
| BQN   | <i>ND</i> + Bounded Quantifier Negation         | 325 |
|       | chapter 7                                       |     |
| ST(I) | Satisfaction for Stroke                         | 337 |
| T(I)  | Characteristic Table (I)                        | 338 |
| ST    | Sentential Truth (formalized)                   | 339 |
| com   | Commutation (metalinguistic)                    | 339 |
| idm   | Idempotence (metalinguistic)                    | 339 |
| dem   | DeMorgan (metalinguistic)                       | 339 |
| cnj   | Conjunctive rules (metalinguistic)              | 339 |
| dsj   | Disjunctive rules (metalinguistic)              | 339 |
| neg   | Negation Rules (metalinguistic)                 | 339 |
| bot   | Bottom Introduction (metalinguistic)            | 339 |
| SV    | Sentential Validity (formalized)                | 342 |
| exs   | Existential rules (metalinguistic)              | 342 |
| ins   | Inspection                                      | 343 |
| cnd   | Conditional rules (metalinguistic)              | 347 |
| bend  | Biconditional rules (metalinguistic)            | 347 |
| abv   | Abbreviation (metalinguistic)                   | 347 |
| ST'   | Abbreviations for Sentential Truth (formalized) | 347 |
| dst   | Distribution (metalinguistic)                   | 349 |
| SF    | Satisfaction (formalized)                       | 354 |
| SF'   | Abbreviations for Satisfaction (formalized)     | 354 |
| TI    | Truth on an Interpretation (formalized)         | 356 |
| QV    | Quantificational Validity (formalized)          | 356 |
| unv   | Universal rules (metalinguistic)                | 356 |
| qn    | Quantifier negation (metalinguistic)            | 357 |
| TA    | Term Assignment (formalized)                    | 359 |
| eq    | Equality rules (metalinguistic)                 | 359 |

| SF(R)             | Satisfaction for relation symbols (formalized) 36 | 60         |
|-------------------|---------------------------------------------------|------------|
| $SF(\forall)$     | Satisfaction for $\forall$ (formalized)           | 64         |
| SF′(∃)            | Satisfaction for $\exists$ (formalized)           | 64         |
| def               | Definition (metalinguistic)                       | 0'         |
|                   | chapter 8                                         |            |
| AI                | Term Assignment on an Interpretation              | 4          |
|                   | chapter 9                                         |            |
|                   |                                                   |            |
| Con               | chapter 10                                        | 16         |
|                   | Core Thesis (contential)                          | 0          |
| (*)<br>Mov        | Maximality 49                                     | /<br>>1    |
| IVIAX             | Maximality                                        | )1<br>)0   |
| (*)<br>Seat       | Core Thesis (preinfinary)                         | 19<br>12   |
| Scgl              | Care Thesis (mentificational)                     | '3<br>\1   |
| (**)              | Core Thesis (quantificational)                    | 11         |
|                   | chapter 11                                        |            |
| A1(~)             | Table for Independence $(\sim)$                   | :6         |
| $A1(\rightarrow)$ | Table for Independence $(\rightarrow)$            | :6         |
| A2(~)             | Table for Independence $(\sim)$                   | :9         |
| $A2(\rightarrow)$ | Table for Independence $(\rightarrow)$            | 29         |
| IS                | Isomorphism                                       | 60         |
| EE                | Elementary Equivalence                            | 52         |
| ST                | Satisfiability                                    | 9          |
| SM                | Submodel                                          | 1          |
| ES                | Elementary Submodel                               | 1          |
|                   | chapter 12                                        |            |
| suc(x)            | successor                                         | ;3         |
| zero(x)           | zero                                              | 63         |
| idnt <sup>j</sup> | identity                                          | ;3         |
| СМ                | Composition 55                                    | 53         |
| RC                | Recursion                                         | <i>i</i> 4 |
| plus(x, y)        | plus                                              | 54         |
| times(x, y)       | times                                             | 54         |
| fact(y)           | factorial                                         | 5          |
| RT                | Recursion Theorem                                 | 6          |
| RM                | regular minimization                              | 57         |
| RF                | Recursive Functions                               | 57         |

| PR                                               | primitive recursive          |
|--------------------------------------------------|------------------------------|
| power(x, y)                                      | power                        |
| EXr                                              | Expressionr                  |
| EXf                                              | Expressionf                  |
| СР                                               | Capture                      |
| $\Delta_0$                                       | Delta Formulas               |
| pred(y)                                          | predecessor                  |
| subc(x, y)                                       | subtraction with cutoff      |
| absval(x - y)                                    | absolute value               |
| sg(y)                                            | sign                         |
| csg(y)                                           | converse sign                |
| CF                                               | characteristic function 588  |
| $EQ(S(\vec{x}), t(\vec{y}))$                     | equality                     |
| $LEQ(S(\vec{x}), t(\vec{y}))$                    | less than or equal           |
| $LESS(\mathbf{s}(\vec{x}), \mathbf{t}(\vec{y}))$ | less than                    |
| $NEG(P(\vec{X}))$                                | negation                     |
| $DSJ(P(\vec{X}), Q(\vec{y}))$                    | disjunction                  |
| $IMP(P(\vec{X}), Q(\vec{y}))$                    | implication                  |
| $(\exists y \leq z) P(\vec{x}, z, y)$            | exists less than or equal to |
| $(\exists y < z) P(\vec{x}, z, y)$               | exists less than             |
| $(\forall z \leq y) P(\vec{x}, z)$               | all less than or equal to    |
| $(\forall z < y) P(\vec{x}, z)$                  | all less than                |
| $(\mu y \leq z) P(\vec{x}, z, y)$                | bounded minimization 591     |
| $f(\vec{x})/c_0 \dots c_k$                       | definition by cases          |
| fctr(m, n)                                       | factor                       |
| PRIME(n)                                         | prime                        |
| pi(n)                                            | prime sequence               |
| exp(n, i)                                        | prime exponent               |
| len(n)                                           | prime length                 |
| rm(m, n)                                         | remainder                    |
| qt(m, n)                                         | quotient                     |
| cncat(m, n)                                      | concatenation                |
| VAR(n)                                           | variable                     |
| TERMSEQ $(m, n)$                                 | term sequence                |
| TERM(N)                                          | term                         |
| ATOMIC(n)                                        | atomic formula 599           |
| wff(n)                                           | well-formed formula 599      |
| FORMSEQ(m, n)                                    | formula sequence             |

| PRFADS(m,n)                      | sentential proof                           | 500 |
|----------------------------------|--------------------------------------------|-----|
| AXIOMADS(n)                      | sentential axiom                           | 500 |
| cnd(n, o)                        | conditional                                | 500 |
| neg(n)                           | negation                                   | 500 |
| unv(v, n)                        | universal                                  | 500 |
| MP(m, n, o)                      | recursive modus ponens                     | 500 |
| TSUBSEQ $(m, n, t, v, s, u)$     | substitution sequence for terms            | 502 |
| TERMSUB(t,v,s,u)                 | substitution in terms                      | 502 |
| ATOMSUB $(p, v, s, q)$           | substitution in atomics                    | 503 |
| FSUBSEQ(m, n, p, v, s, q)        | substitution sequence for formulas         | 503 |
| FORMSUB(p, v, s, q)              | substitution in formulas                   | 503 |
| formusb(p, v, s)                 | formsub (function)                         | 503 |
| FREEt(t, v)                      | free in term                               | 504 |
| FREEf(p, v)                      | free in formula                            | 504 |
| SENT(n)                          | sentence                                   | 504 |
| FREEFOR(S, V, U)                 | free for                                   | 504 |
| FFSEQ(m, s, v, u)                | free for sequence                          | 504 |
| AXIOMAD4(n)                      | axiom 4                                    | 505 |
| AXIOMAD5(n)                      | axiom 5                                    | 505 |
| gen(m, n)                        | gen rule                                   | 505 |
| AXIOMAD6(n)                      | axiom 6                                    | 505 |
| AXIOMAD7(n)                      | axiom 7                                    | 505 |
| ICON(m, n, o)                    | immediate consequence                      | 506 |
| AXIOMPA7(n)                      | PA axiom 7                                 | 506 |
| AXIOMAD(n)                       | axiom of AD                                | 506 |
| PRFAD(m,n)                       | proof in AD                                | 506 |
| AXIOMQ(n)                        | axiom of Q                                 | 506 |
| PRFQ(m, n)                       | proof in Q                                 | 506 |
| AXIOMQP(n)                       | axiom of Q less Q7                         | 506 |
| AXIOMPA(n)                       | axiom of PA                                | 506 |
| PRFPA(m, n)                      | proof in PA                                | 506 |
| num(n)                           | number of numeral for value of $n \dots n$ | 510 |
|                                  | chapter 13                                 |     |
| $f(\vec{x}, \vec{y}, \vec{z})$   | composition                                | 540 |
| $\mu v (\mathbf{Q}(\vec{x}, v))$ | minimization                               | 541 |
| $(\mu v < z) Q(\vec{x}. z. v)$   | bounded minimization                       | 541 |
| rm                               | remainder                                  | 544 |
|                                  |                                            |     |

| qt                        | quotient                                              | 45 |
|---------------------------|-------------------------------------------------------|----|
| β                         | beta function                                         | 45 |
| suc(x)                    | defined successor                                     | 46 |
| zero(x)                   | defined zero                                          | 46 |
| $idnt_k^j(x_1\ldots x_j)$ | defined identity function 6                           | 46 |
| •<br>-                    | dot minus                                             | 53 |
|                           | Factor                                                | 54 |
| Pr                        | <i>Prime</i>                                          | 56 |
| Rp                        | <i>Rprime</i>                                         | 56 |
| G                         | <i>Good</i>                                           | 56 |
| d                         | least good                                            | 56 |
| lcm                       | <i>lcm</i>                                            | 59 |
| plm                       | <i>plm</i>                                            | 59 |
| тахр                      | <i>maxp</i>                                           | 62 |
| maxs                      | <i>maxs</i>                                           | 62 |
| h(i)                      | h(i)                                                  | 64 |
| CF                        | coordinate functions                                  | 71 |
| CR                        | coordinate relations                                  | 72 |
| pred                      | pred                                                  | 74 |
| sg                        | sg                                                    | 74 |
| csg                       | csg                                                   | 74 |
| ex                        | <i>ex</i>                                             | 82 |
| exc(m, n, i)              | exc                                                   | 84 |
| val(n,i)                  | val                                                   | 85 |
| $val^*(m, n, i)$          | val*                                                  | 85 |
| gvar(n)                   | number of variable $n  \dots  \dots  \dots  \dots  7$ | 04 |
| numseq(n)                 | numseq                                                | 04 |
| $\Sigma^{\star}$          | Sigma Star Formulas                                   | 07 |
| LR                        | Löb Rule                                              | 28 |
|                           | abartar 14                                            |    |
| СТ                        | Church's thesis                                       | 52 |
|                           |                                                       | 50 |
|                           | Language for recursion                                | 59 |
|                           | Algorithmic computability 7                           | 59 |
| AU                        |                                                       | 04 |
| MKU                       | MIKU Machine                                          | 00 |

# **Quick Reference Guides**

| Negation and Quantity                             | 21  |
|---------------------------------------------------|-----|
| Countability                                      | 36  |
| Parts of a Formula                                | 40  |
| More on Countability                              | 50  |
| Grammar Quick Reference                           | 64  |
| <i>AD</i> Quick Reference                         | 89  |
| Peano Arithmetic (AD)                             | 97  |
| Semantics Quick Reference (Sentential)            | 114 |
| Basic Notions of Set Theory                       | 117 |
| Semantics Quick Reference (quantificational)      | 138 |
| Definitions for Translation                       | 147 |
| Cause and Conditional                             | 167 |
| Definitions for Auxiliary Assumptions             | 219 |
| ND Quick Reference (Sentential)                   | 241 |
| ND Quick Reference (Quantificational)             | 303 |
| $\mathcal{L}_{\text{NT}}$ reference               | 307 |
| Robinson and Peano Arithmetic (ND)                | 318 |
| <i>ND</i> + Quick Reference                       | 327 |
| Metalinguistic Quick Reference (sentential)       | 350 |
| Metalinguistic Quick Reference (quantificational) | 372 |
| Theorems of Chapter 7                             | 378 |
| Induction Schemes                                 | 388 |
| First Theorems of Chapter 8                       | 410 |
| Final Theorems of Chapter 8                       | 425 |
| Theorems of Chapter 9                             | 465 |
| Some Arithmetic Relevant to Gödel Numbering       | 480 |
| More Arithmetic Relevant to Gödel Numbering       | 492 |
| Theorems of Chapter 10                            | 516 |

### Quick Reference Guides

| ne Recursion Theorem                   | 556 |
|----------------------------------------|-----|
| tithmetic for the <i>Beta</i> Function | 567 |
| rst Results of Chapter 12              | 608 |
| nal Results of Chapter 12              | 617 |
| dditional Theorems of PA               | 632 |
| rst theorems of chapter 13             | 650 |
| ont conventions                        | 669 |
| cond theorems of chapter 13            | 701 |
| nal theorems of chapter 13             | 731 |
| mple Time Dilation                     | 757 |
| neorems of chapter 14                  | 770 |
|                                        |     |

## Part III

# Classical Metalogic: Soundness and Adequacy

### Introductory

In Part I we introduced four notions of validity. In this part, we set out to show that they are interrelated as follows.



An argument is semantically valid iff it is valid in the derivation systems. So the three formal notions apply to exactly the same arguments. And if an argument is semantically valid, then it is logically valid. So any of the formal notions imply logical validity for a corresponding ordinary argument.

More carefully, in Part I, we introduced four main notions of validity. There are logical validity from chapter 1, semantic validity from chapter 4, and syntactic validity in the derivation systems AD, from chapter 3 and ND from chapter 6. We turn in this part to the task of thinking *about* these notions, and especially about how they are related. The primary result is that  $\Gamma \models \mathcal{P}$  iff  $\Gamma \vdash_{AD} \mathcal{P}$  iff  $\Gamma \vdash_{ND} \mathcal{P}$  (iff  $\Gamma \vdash_{ND+} \mathcal{P}$ ). Thus our different formal notions of validity are met by just the same arguments, and the derivation systems — themselves defined in terms of *form* are "faithful" to the semantic notion: what is derivable is neither more nor less than what is semantically valid. And this is just right: If what is derivable were more than what is semantically valid, derivations could lead us from true premises to false conclusions; if it were less, not all semantically valid arguments could be identified as such by derivations. That the derivable is no *more* than what is semantically valid, is known as *soundness* of a derivation system; that it is no *less* is *adequacy*. In addition,

we show that if an argument is semantically valid, then a corresponding ordinary argument is *logically valid*. Given the equivalence between the formal notions of validity, it follows that if an argument is valid in any of the formal senses, then it is logically valid. This connects the formal machinery to the notion of validity with which we began.<sup>2</sup>

We begin in chapter 9 showing that just the same arguments are valid in the derivation systems ND and AD. This puts us in a position to demonstrate in chapter 10 the core result that the derivation systems are both sound and adequate. Chapter chapter 11 fills out this core picture in different directions.

 $<sup>^{2}</sup>Adequacy$  is commonly described as *completeness*. However, this only invites confusion with theory completeness as described in Part IV.

### **Chapter 9**

## **Preliminary Results**

We have said that the aim of this part is to establish the following relations: An argument is semantically valid iff it is valid in *AD*; iff it is valid in *ND*; and if an argument is semantically valid, then it is logically valid.



In this chapter, we begin to develop these relations, taking up some of the simpler cases. We consider the leftmost horizontal arrow, and the rightmost vertical ones. Thus we show that quantificational (semantic) validity implies logical validity, that validity in *AD* implies validity in *ND*, and that validity in *ND* implies validity in *AD* (and similarly for ND+). Implications between semantic validity and the syntactical notions will wait for chapter 10.

### 9.1 Semantic Validity Implies Logical Validity

Logical validity is defined for arguments in ordinary language. From LV, an argument is logically valid iff there is no consistent *story* in which all the premises are true and the conclusion is false. Quantificational validity is defined for arguments in

a formal language. From QV, an argument is quantificationally valid iff there is no *interpretation* on which all the premises are true and the conclusion is not. So our task is to show how facts about formal expressions and interpretations connect with ordinary expressions and stories. In particular, where  $\mathcal{P}_1 \dots \mathcal{P}_n/\mathcal{Q}$  is an ordinary-language argument, and  $\mathcal{P}'_1 \dots \mathcal{P}'_n$ ,  $\mathcal{Q}'$  are the formulas of a good translation, we show that if  $\mathcal{P}'_1 \dots \mathcal{P}'_n \models \mathcal{Q}'_1$ , then the ordinary argument  $\mathcal{P}_1 \dots \mathcal{P}_n/\mathcal{Q}$  is logically valid. The reasoning itself is straightforward. We will spend a bit more time discussing the result.

Recall our criterion of goodness for translation CG from chapter 5 (p. 141). When we identify an interpretation function II (sentential or quantificational), we thereby identify an *intended interpretation*  $II_{\omega}$  corresponding to any way  $\omega$  that the world can be. For example, corresponding to the interpretation function,

- II B: Bill is happy
  - H: Hill is happy

 $II_{\omega}[B] = T$  just in case Bill is happy at  $\omega$ , and similarly for H. Given this, a formal translation  $\mathcal{A}'$  of some ordinary  $\mathcal{A}$  is *good* only if at any  $\omega$ ,  $II_{\omega}[\mathcal{A}']$  has the same truth value as  $\mathcal{A}$  at  $\omega$ . Given this, we can show,

T9.1. For any ordinary argument  $\mathcal{P}_1 \dots \mathcal{P}_n/\mathcal{Q}$ , with good translation consisting of II and  $\mathcal{P}'_1 \dots \mathcal{P}'_n$ ,  $\mathcal{Q}'$ , if  $\mathcal{P}'_1 \dots \mathcal{P}'_n \models \mathcal{Q}'$ , then  $\mathcal{P}_1 \dots \mathcal{P}_n/\mathcal{Q}$  is logically valid. Suppose  $\mathcal{P}'_1 \dots \mathcal{P}'_n \models \mathcal{Q}'$  but  $\mathcal{P}_1 \dots \mathcal{P}_n/\mathcal{Q}$  is not logically valid. From the latter, by LV, there is some consistent story where each of  $\mathcal{P}_1 \dots \mathcal{P}_n$  is true but  $\mathcal{Q}$  is false. Since  $\mathcal{P}_1 \dots \mathcal{P}_n$  are true at  $\omega$ , by CG,  $II_{\omega}[\mathcal{P}'_1] = T$ , and  $\dots$  and  $II_{\omega}[\mathcal{P}'_n] = T$ . And since  $\omega$  is consistent with  $\mathcal{Q}$  false at  $\omega$ ,  $\mathcal{Q}$  is not both true and false at  $\omega$ ; so  $\mathcal{Q}$  is not true at  $\omega$ ; so by by CG,  $II_{\omega}[\mathcal{Q}'_1] \neq T$ . So there is an I that that makes each of  $I[\mathcal{P}'_1] = T$ , and  $\dots$  and  $I[\mathcal{P}'_n] = T$  and  $I[\mathcal{Q}'] \neq T$ ; so by QV,  $\mathcal{P}'_1 \dots \mathcal{P}'_n \not\models \mathcal{Q}'$ . This is impossible; reject the assumption: if  $\mathcal{P}'_1 \dots \mathcal{P}'_n \models \mathcal{Q}'$  then  $\mathcal{P}_1 \dots \mathcal{P}_n/\mathcal{Q}$  is logically valid.

It is that easy. If there is no interpretation where  $\mathcal{P}'_1 \dots \mathcal{P}'_n$  are true but  $\mathcal{Q}'$  is not, then there is no *intended* interpretation where  $\mathcal{P}'_1 \dots \mathcal{P}'_n$  are true but  $\mathcal{Q}'$  is not; so, by CG, there is no consistent story where the premises are true and the conclusion is not; so  $\mathcal{P}_1 \dots \mathcal{P}_n/\mathcal{Q}$ , is logically valid. So if  $\mathcal{P}'_1 \dots \mathcal{P}'_n \models \mathcal{Q}'$  then  $\mathcal{P}_1 \dots \mathcal{P}_n/\mathcal{Q}$  is logically valid.

Let us make a couple of observations: First, CG is stronger than is actually required for our application of semantic to logical validity. CG requires a biconditional for good translation.

$$\omega \rightleftharpoons \Pi_{\omega}$$

A is true at  $\omega$  iff  $\|I_{\omega}[A'] = T$ . But our reasoning applies to premises just the leftto-right portion of this condition: if  $\mathcal{P}$  is true at  $\omega$  then  $\|I_{\omega}[\mathcal{P}'] = T$ . And for the conclusion, the reasoning goes in the opposite direction: if  $\|I_{\omega}[Q']] = T$  then Q is true at  $\omega$  (so that if the consequent fails at  $\omega$ , then the antecedent fails at  $\|_{\omega}$ ). The biconditional from CG guarantees both. But, strictly, for premises, all we need is that truth of an ordinary expression at a story guarantees truth for the corresponding formal one at the intended interpretation. And for a conclusion, all we need is that truth of the formal expression on the intended interpretation guarantees truth of the corresponding ordinary expression at the story.

Thus we might use our methods to identify logical validity even where translations are less than completely good. Consider, for example, the following argument.

(A)  $\frac{\text{Bob took a shower and got dressed}}{\text{Bob took a shower}}$ 

As discussed in chapter 5 (p. 160), where II gives S the same value as "Bob took a shower" and D the same as "Bob got dressed," we might agree that there are cases where  $II_{\omega}[S \wedge D] = T$  but "Bob took a shower and got dressed" is false. So we might agree that the right-to-left conditional is false, and the translation is not good.

However, even if this is so, given our interpretation function, there is no situation where "Bob took a shower and got dressed" is true but  $S \wedge D$  is F at the corresponding intended interpretation. So the left-to-right conditional is sustained. So, even if the translation is not good by CG, it remains possible to use our methods to demonstrate logical validity. Since it remains that if the ordinary premise is true at a story, then the formal expression is true at the corresponding intended interpretation, semantic validity implies logical validity. A similar point applies to conclusions. Of course, we already knew that this argument is logically valid. But the point applies to more complex arguments as well.

Second, observe that our reasoning does not work in reverse. It might be that  $\mathcal{P}_1 \ldots \mathcal{P}_n/\mathcal{Q}$  is logically valid, even though  $\mathcal{P}'_1 \ldots \mathcal{P}'_n \nvDash \mathcal{Q}'$ . Finding a quantificational interpretation where  $\mathcal{P}'_1 \ldots \mathcal{P}'_n$  are true and  $\mathcal{Q}'$  is not shows that  $\mathcal{P}'_1 \ldots \mathcal{P}'_n \nvDash \mathcal{Q}'$ . However it does not show that  $\mathcal{P}_1 \ldots \mathcal{P}_n/\mathcal{Q}$  is not logically valid. Here is why: There may be quantificational interpretations which do not correspond to any consistent story. The situation is like this:



Intended interpretations correspond to stories. If no interpretation whatsoever has the premises true and the conclusion not, then no intended interpretation has the premises true and conclusion not, so no consistent story makes the premises true and the conclusion not. But it may be that some (unintended) interpretation makes the premises true and conclusion false, even though no intended interpretation is that way. Thus, if we were to attempt to run the above reasoning in reverse, a move from the assumption that  $\mathcal{P}'_1 \dots \mathcal{P}'_n \nvDash \mathcal{Q}'$ , to the conclusion that there is a consistent story where  $\mathcal{P}_1 \dots \mathcal{P}_n$  are true but  $\mathcal{Q}$  is not, would fail.

It is easy to see why there might be unintended interpretations. Consider, first, this standard argument.

All humans are mortal

 $(B) \quad \frac{\text{Socrates is human}}{\text{Socrates is mortal}}$ 

It is logically valid. But consider what happens when we translate into a *sentential* language. We might try an interpretation function as follows.

- A: All humans are mortal
- H: Socrates is human
- M: Socrates is mortal

with translation, A, H/M. But, of course, there is a row of the truth table on which A and H are T and M is F. So the argument is not sententially valid. This interpretation is unintended in the sense that it corresponds to no consistent story whatsoever. Sentential languages are sufficient to identify validity when validity results from truth functional structure; but this argument is not valid because of truth functional structure.

We are in a position to expose its validity only in the quantificational case. Thus we might have,

s: Socrates

 $H^1$ : {o | o is human}

 $M^1$ : {o | o is mortal}

with translation  $\forall x (Hx \rightarrow Mx), Hs/Ms$ . The argument is quantificationally valid. And, as above, it follows that the ordinary one is logically valid.

But related problems may arise even for quantificational languages. Thus, consider,

(C)  $\frac{\text{Socrates is necessarily human}}{\text{Socrates is human}}$ 

Again, the argument is logically valid. But now we end up with something like an additional relation symbol  $N^1$  for {o | o is necessarily human}, and translation Ns/Hs. And this is not quantificationally valid. Consider, for example, an interpretation with  $U = \{1\}, I[s] = 1, I[N] = \{1\}, and I[H] = \{\}$ . Then the premise is true, but the conclusion is not. Again, the interpretation corresponds to no consistent story. And, again, the argument includes structure that our quantificational language fails to capture. As it turns out, *modal* logic is precisely an attempt to work with structure introduced by notions of possibility and necessity. Where ' $\Box$ ' represents necessity, this argument, with translation  $\Box Hs/Hs$  is valid on standard modal systems.

The upshot of this discussion is that our methods are adequate when they work to identify validity. When an argument is semantically valid, we can be sure that it is logically valid. But we are not in a position to identify all the arguments that are logically valid. Thus quantificational invalidity does not imply logical invalidity. We should not be discouraged by this or somehow put off the logical project. Rather, we have a rationale for *expanding* the logical project! In Part I, we set up formal logic as a "tool" or "machine" to identify logical validity. Beginning with the notion of logical validity, we introduce our formal languages, learn to translate into them, and to manipulate arguments by semantical and syntactical methods. The sentential notions have some utility. But when it turns out that sentential languages miss important structure, we expand the language to include quantificational structure, developing the semantical and syntactical methods to match. And similarly, if our quantificational languages should turn out to miss important structure, we expand the language to capture that structure, and further develop the semantical and syntactical methods. As it happens, the classical quantificational logic we have so far seen is sufficient to identify validity in a wide variety of contexts — and, in particular, for arguments in mathematics. Also, controversy may be introduced as one expands beyond the classical quantificational level. So the logical project is a live one. But let us return to the kinds of validity we have already seen.

E9.1. (i) Recast the above reasoning to show directly a corollary to T9.1: If ⊨ Q', then Q is necessarily true (that is, true in any consistent story). (ii) Suppose ⊭ Q'; does it follow that Q is not necessary (that is, not true in some consistent story)? Explain.

### 9.2 Validity in *AD* Implies Validity in *ND*

It is easy to see that if  $\Gamma \vdash_{AD} \mathcal{P}$ , then  $\Gamma \vdash_{ND} \mathcal{P}$ . Roughly, anything we can accomplish in AD, we can accomplish in ND as well. If a premise appears in an AD derivation, that same premise can be used in ND. If an axiom appears in an AD derivation, that axiom can be derived in ND. And if a line is justified by MP or Gen in AD, that same line may be justified by rules of ND. So anything that can be derived in AD can be derived in ND. If an axiom on the line numbers of an AD derivation, and it is appropriate to work out the details more formally. The argument by mathematical induction is longer than anything we have seen so far, but the reasoning is straightforward.

T9.2. If  $\Gamma \vdash_{AD} \mathcal{P}$ , then  $\Gamma \vdash_{ND} \mathcal{P}$ .

Suppose  $\Gamma \vdash_{AD} \mathcal{P}$ . Then there is an AD derivation  $A = \langle \mathcal{Q}_1 \dots \mathcal{Q}_n \rangle$  of  $\mathcal{P}$  from premises in  $\Gamma$ , with  $\mathcal{Q}_n = \mathcal{P}$ . We show that there is a corresponding ND derivation N, such that if  $\mathcal{Q}_i$  appears on line i of A, then  $\mathcal{Q}_i$  appears, under the scope of the premises alone, on the line numbered 'i' of N. It follows that  $\Gamma \vdash_{ND} \mathcal{P}$ . For any *premises*  $\mathcal{Q}_a, \mathcal{Q}_b, \dots \mathcal{Q}_j$  in A, let N begin,

 $\begin{array}{c|ccc} 0.a & \mathcal{Q}_a & & P \\ 0.b & \mathcal{Q}_b & & P \\ \vdots & & \\ 0.j & \mathcal{Q}_j & & P \end{array}$ 

Now we reason by induction on the line numbers in A. The general plan is to *construct* a derivation N which accomplishes just what is accomplished in A. Fractional line numbers, as above, maintain the parallel between the two derivations.

*Basis:*  $Q_1$  in A is a premise or an instance of A1, A2, A3, A4, A5, A6, A7 or A8.

(prem) If  $Q_1$  is a premise  $Q_i$ , continue N as follows,

 $\begin{array}{cccc} 0.a & \mathcal{Q}_a & P \\ 0.b & \mathcal{Q}_b & P \\ \vdots & & \\ 0.j & \mathcal{Q}_j & P \\ 1 & \mathcal{Q}_i & 0.i \ R \end{array}$ 

So  $Q_1$  appears, under the scope of the premises alone, on the line numbered '1' of N.

(A1) If  $Q_1$  is an instance of A1, then it is of the form,  $\mathcal{B} \to (\mathcal{C} \to \mathcal{B})$ , and we continue N as follows,

| 0.a | $Q_a$                                                         | Р                                                |
|-----|---------------------------------------------------------------|--------------------------------------------------|
| 0.b | $\mathcal{Q}_b$                                               | Р                                                |
| ÷   |                                                               |                                                  |
| 0.j | $\mathcal{Q}_j$                                               | Р                                                |
| 1.1 | B                                                             | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$ |
| 1.2 | e                                                             | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$ |
| 1.3 | $\mathcal{B}$                                                 | 1.1 R                                            |
| 1.4 | $\mathcal{C}  ightarrow \mathcal{B}$                          | $1.2\text{-}1.3 \rightarrow \text{I}$            |
| 1   | $\mathcal{B}  ightarrow (\mathcal{C}  ightarrow \mathcal{B})$ | $1.1$ - $1.4 \rightarrow I$                      |

So  $Q_1$  appears, under the scope of the premises alone, on the line numbered '1' of N.

(A2) If  $\mathcal{Q}_1$  is an instance of A2, then it is of the form,  $(\mathcal{B} \to (\mathcal{C} \to \mathcal{D})) \to ((\mathcal{B} \to \mathcal{C}) \to (\mathcal{B} \to \mathcal{D}))$  and we continue N as follows,

| 0.a | $Q_a$                                                                                                                   | Р                                                |
|-----|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 0.b | $\mathcal{Q}_{b}$                                                                                                       | Р                                                |
| :   |                                                                                                                         |                                                  |
| 0.j | $Q_j$                                                                                                                   | Р                                                |
| 1.1 | $\mathcal{B} \to (\mathcal{C} \to \mathcal{D})$                                                                         | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$ |
| 1.2 |                                                                                                                         | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$ |
| 1.3 |                                                                                                                         | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$ |
| 1.4 | e e                                                                                                                     | 1.2,1.3 →E                                       |
| 1.5 | $ \mathcal{C}  ightarrow \mathcal{D}$                                                                                   | $1.1, 1.3 \rightarrow E$                         |
| 1.6 | $\mathcal{D}$                                                                                                           | $1.5, 1.4 \rightarrow E$                         |
| 1.7 | $\mathcal{B}  ightarrow \mathcal{D}$                                                                                    | $1.3-1.6 \rightarrow I$                          |
| 1.8 | $(\mathcal{B} \to \mathcal{C}) \to (\mathcal{B} \to \mathcal{D})$                                                       | $1.2\text{-}1.7 \rightarrow \text{I}$            |
| 1   | $(\mathcal{B} \to (\mathcal{C} \to \mathcal{D})) \to ((\mathcal{B} \to \mathcal{C}) \to (\mathcal{B} \to \mathcal{D}))$ | $1.1\text{-}1.8 \rightarrow \text{I}$            |

So  $Q_1$  appears, under the scope of the premises alone, on the line numbered '1' of N.

- (A3) Homework.
- (A4) If  $Q_1$  is an instance of A4, then it is of the form  $\forall x \mathcal{B} \to B_t^x$  for some variable x and term t that is free for x in  $\mathcal{B}$ , and we continue N as follows,

0.a 
$$\mathcal{Q}_{a}$$
 P  
0.b  $\mathcal{Q}_{b}$  P  
 $\vdots$   
0.j  $\mathcal{Q}_{j}$  P  
1.1  $| \forall x \mathcal{B}$  A  $(g, \rightarrow I)$   
1.2  $| \mathcal{B}_{t}^{x}$  1.1  $\forall E$   
1  $\forall x \mathcal{B} \rightarrow \mathcal{B}_{t}^{x}$  1.1-1.2  $\rightarrow I$ 

Since we are given that t is free for x in  $\mathcal{B}$ , the parallel requirement on  $\forall E$  is met at line 1.2. So  $\mathcal{Q}_1$  appears, under the scope of the premises alone, on the line numbered '1' of N.

- (A5) Homework.
- (A6) Homework.
- (A7) If  $\mathcal{Q}_1$  is an instance of A7, then it is of the form  $(x_i = y) \rightarrow (\hbar^n x_1 \dots x_i \dots x_n = \hbar^n x_1 \dots y \dots x_n)$  for some variables  $x_1 \dots x_n$  and y and function symbol  $\hbar^n$ ; and we continue N as follows,

| 0 a | (Q a                                                                                      | Р                                                |
|-----|-------------------------------------------------------------------------------------------|--------------------------------------------------|
| 0.4 |                                                                                           | P                                                |
| 0.b | $ a_b $                                                                                   | Р                                                |
|     |                                                                                           |                                                  |
| :   |                                                                                           |                                                  |
| 0.j | $Q_{j}$                                                                                   | Р                                                |
| 1.1 | $x_i = y$                                                                                 | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$ |
| 1.2 | $\hbar^n x_1 \dots x_i \dots x_n = \hbar^n x_1 \dots x_i \dots x_n$                       | =I                                               |
| 1.3 | $h^n x_1 \dots x_i \dots x_n = h^n x_1 \dots y \dots x_n$                                 | 1.2,1.1 <b>=</b> E                               |
| 1   | $(x_i = y) \rightarrow (\hbar^n x_1 \dots x_i \dots x_n = \hbar^n x_1 \dots y \dots x_n)$ | $1.1$ - $1.3 \rightarrow I$                      |

So  $Q_1$  appears, under the scope of the premises alone, on the line numbered '1' of N.

- (A8) Homework.
- Assp: For any  $i, 1 \le i < k$ , if  $Q_i$  appears on line i of A, then  $Q_i$  appears, under the scope of the premises alone, on the line numbered 'i' of N.
- Show: If  $Q_k$  appears on line k of A, then  $Q_k$  appears, under the scope of the premises alone, on the line numbered 'k' of N.

 $Q_k$  in A is a premise, an axiom, or arises from previous lines by MP or Gen. If  $Q_k$  is a premise or an axiom then, by reasoning as in the basis (with line numbers adjusted to k.n) if  $Q_k$  appears on line k of A, then  $Q_k$  appears, under the scope of the premises alone, on the line numbered 'k' of A. So suppose  $Q_k$  arises by MP or Gen.

(MP) If  $Q_k$  arises from previous lines by MP, then A is as follows,

 $i \ \mathcal{B}$   $\vdots$   $j \ \mathcal{B} \rightarrow \mathcal{C}$   $\vdots$   $k \ \mathcal{C} \qquad i, j \ MP$ where i, j < k and c

where i, j < k and  $\mathcal{Q}_k$  is  $\mathcal{C}$ . By assumption, then, there are lines in N,

 $i \mid \mathcal{B} \\ \vdots \\ j \mid \mathcal{B} \to \mathcal{C}$ 

So we simply continue derivation N,

 $i \mid \mathcal{B}$   $\vdots$   $j \mid \mathcal{B} \to \mathcal{C}$   $\vdots$   $k \mid \mathcal{C} \qquad i, j \to E$ So  $\mathcal{O}_{i}$  appears under t

So  $Q_k$  appears under the scope of the premises alone, on the line numbered 'k' of N.

(Gen) If  $\mathcal{Q}_k$  arises from previous lines by Gen, then A is as follows,

*i*  $\mathcal{B}$ : *k*  $\forall x \mathcal{B}$  *i* Gen where *i* < *k*, and  $\mathcal{Q}_k$  is  $\forall x \mathcal{B}$ . By assumption *N* has a line *i*,

```
i B
:
```

under the scope of the premises alone. So we continue N as follows,

$$\begin{array}{c|c} i & \mathcal{B} \\ \vdots \\ k & \forall x \mathcal{B} & i \forall \mathbf{I} \end{array}$$

Since *i* is under the scope of the premises alone, x is not free in an undischarged assumption. Further, since there is no change of variables, we can be sure that x is free for every free instance of x in  $\mathcal{B}$ , and that x is not free in  $\forall x \mathcal{B}$ . So the restrictions are met on  $\forall I$ . So  $\mathcal{Q}_k$  appears under the scope of the premises alone, on the line numbered 'k' of N.

In any case then,  $Q_k$  appears under the scope of the premises alone, on the line numbered 'k' of N.

*Indct:* For any line j of A,  $Q_j$  appears under the scope of the premises alone, on the line numbered 'j' of N.

So  $\Gamma \vdash_{ND} \mathcal{Q}_n$ , where this is just to say  $\Gamma \vdash_{ND} \mathcal{P}$ . So T9.2, if  $\Gamma \vdash_{AD} \mathcal{P}$ , then  $\Gamma \vdash_{ND} \mathcal{P}$ . Notice the way we use line numbers,  $i.1, i.2, \dots i.n, i$  in N to make good on the claim that for each  $\mathcal{Q}_i$  in A,  $\mathcal{Q}_i$  appears on the line numbered 'i' of N — where the line numbered 'i' may or may not be the *i*th line of N. We need this parallel between the line numbers when it comes to cases for MP and Gen. With the parallel, we are in a position to make use of line numbers from justifications in derivation A, directly in the specification of derivation N.

Given an *AD* derivation, what we have done shows that there exists an *ND* derivation, by showing how to construct it. We can see into how this works, by considering an application. Thus, for example, consider the derivation of T3.2 on p. 75.

|     | 1. $\mathcal{B} \to \mathcal{C}$                                                                                           | prem   |
|-----|----------------------------------------------------------------------------------------------------------------------------|--------|
|     | 2. $(\mathcal{B} \to \mathcal{C}) \to [\mathcal{A} \to (\mathcal{B} \to \mathcal{C})]$                                     | A1     |
|     | 3. $\mathcal{A} \to (\mathcal{B} \to \mathcal{C})$                                                                         | 1,2 MP |
| (D) | 4. $[\mathcal{A} \to (\mathcal{B} \to \mathcal{C})] \to [(\mathcal{A} \to \mathcal{B}) \to (\mathcal{A} \to \mathcal{C})]$ | A2     |
|     | 5. $(\mathcal{A} \to \mathcal{B}) \to (\mathcal{A} \to \mathcal{C})$                                                       | 3,4 MP |
|     | 6. $\mathcal{A} \to \mathcal{B}$                                                                                           | prem   |
|     | 7. $\mathcal{A} \to \mathcal{C}$                                                                                           | 5,6 MP |

Let this be derivation A; we will follow the method of our induction to construct a corresponding ND derivation N. The first step is to list the premises.

$$\begin{array}{c|ccc} 0.1 & \mathcal{B} \to \mathcal{C} & & \mathsf{P} \\ 0.2 & \mathcal{A} \to \mathcal{B} & & \mathsf{P} \end{array}$$

Now to the induction itself. The first line of A is a premise. Looking back to the basis case of the induction, we see that we are instructed to produce the line numbered '1' by reiteration. So that is what we do.

$$\begin{array}{c|ccc} 0.1 & \mathcal{B} \to \mathcal{C} & P \\ 0.2 & \mathcal{A} \to \mathcal{B} & P \\ 1 & \mathcal{B} \to \mathcal{C} & 0.1 \ \mathrm{R} \end{array}$$

This may strike you as somewhat pointless! But, again, we need  $\mathcal{B} \to \mathcal{C}$  on the line numbered '1' in order to maintain the parallel between the derivations. So our recipe requires this simple step.

Line 2 of A is an instance of A1, and the induction therefore tells us to get it "by reasoning as in the basis." Looking then to the case for A1 in the basis, we continue on that pattern as follows,

| 0.1 | $\mathscr{B}  ightarrow \mathscr{C}$                                                | Р                                                |
|-----|-------------------------------------------------------------------------------------|--------------------------------------------------|
| 0.2 | $\mathcal{A}  ightarrow \mathcal{B}$                                                | Р                                                |
| 1   | $\mathscr{B} 	o \mathscr{C}$                                                        | 0.1 R                                            |
| 2.1 | $\_\mathscr{B} \to \mathscr{C}$                                                     | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$ |
| 2.2 | A                                                                                   | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$ |
| 2.3 | $\mathscr{B} 	o \mathscr{C}$                                                        | 2.1 R                                            |
| 2.4 | $\mathcal{A}  ightarrow (\mathcal{B}  ightarrow \mathcal{C})$                       | 2.2-2.3 →I                                       |
| 2   | $(\mathcal{B} \to \mathcal{C}) \to (\mathcal{A} \to (\mathcal{B} \to \mathcal{C}))$ | $2.1-2.4 \rightarrow I$                          |
|     |                                                                                     |                                                  |

Notice that this reasoning for the show step now applies to line 2, so that the line numbers are 2.1, 2.2, 2.3, 2.4, 2 instead of 1.1, 1.2, 1.3, 1.4, 1 as for the basis. Also, what we have added follows *exactly* the pattern from the recipe in the induction, given the relevant instance of A1.

Line 3 is justified by 1,2 MP. Again, by the recipe from the induction, we continue,

| 0.1 | $\mathscr{B} 	o \mathscr{C}$                                                        | Р                                                |
|-----|-------------------------------------------------------------------------------------|--------------------------------------------------|
| 0.2 | $\mathcal{A}  ightarrow \mathcal{B}$                                                | Р                                                |
| 1   | $\mathscr{B} 	o \mathscr{C}$                                                        | 0.1 R                                            |
| 2.1 | $\_\mathcal{B} \to \mathcal{C}$                                                     | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$ |
| 2.2 | A                                                                                   | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$ |
| 2.3 | $\mathscr{B} 	o \mathscr{C}$                                                        | 2.1 R                                            |
| 2.4 | $\mathcal{A}  ightarrow (\mathcal{B}  ightarrow \mathcal{C})$                       | $2.2-2.3 \rightarrow 1$                          |
| 2   | $(\mathcal{B} \to \mathcal{C}) \to (\mathcal{A} \to (\mathcal{B} \to \mathcal{C}))$ | $2.1-2.4 \rightarrow 1$                          |
| 3   | $\mathcal{A} \to (\mathcal{B} \to \mathcal{C})$                                     | $1,2 \rightarrow E$                              |

Notice that the line numbers of the justification are identical to those in the justification from A. And similarly, we are in a position to generate each line in A. Thus, for example, line 4 of A is an instance of A2. So we would continue with lines 4.1-4.8 and 4 to generate the appropriate instance of A2. And so forth. As it turns out, the resultant ND derivation is not very efficient! But it is a derivation, and our point is merely to show that some ND derivation of the same result exists. So if  $\Gamma \vdash_{AD} \mathcal{P}$ , then  $\Gamma \vdash_{ND} \mathcal{P}$ .

- \*E9.2. Set up the above induction for T9.2, and complete the unfinished cases to show that if  $\Gamma \vdash_{AD} \mathcal{P}$ , then  $\Gamma \vdash_{ND} \mathcal{P}$ . For cases completed in the text, you may simply refer to the text, as the text refers cases to homework.
- E9.3. (i) Where *A* is the derivation for T3.2, complete the process of finding the corresponding derivation *N*. Hint: if you follow the recipe correctly, the result should have exactly 21 lines. (ii) This derivation *N* is not very efficient! See if you can find an *ND* derivation to show  $\mathcal{A} \to \mathcal{B}$ ,  $\mathcal{B} \to \mathcal{C} \vdash_{ND} \mathcal{A} \to \mathcal{C}$  that takes fewer than 10 lines.
- E9.4. Consider the axiomatic system A3 as described for E8.12 on p. 398, and produce a complete demonstration that if  $\Gamma \vdash_{A3} \mathcal{P}$ , then  $\Gamma \vdash_{ND} \mathcal{P}$ .

#### 9.3 Validity in *ND* Implies Validity in *AD*

Perhaps the result we have just attained is obvious: if  $\Gamma \vdash_{AD} \mathcal{P}$ , then of course  $\Gamma \vdash_{ND} \mathcal{P}$ . But the other direction may be less obvious. Insofar as AD may seem to have fewer resources than ND, one might wonder whether it is the case that if  $\Gamma \vdash_{ND} \mathcal{P}$ , then  $\Gamma \vdash_{AD} \mathcal{P}$ . But, in fact, it is possible to do in AD whatever can be done in ND. To show this, we need a couple of preliminary results. I begin with an important result known as the *deduction theorem*, turn to some substitution theorems, and finally to the intended result that whatever is provable in ND is provable in AD.

#### 9.3.1 Deduction Theorem

According to the deduction theorem — subject to an important restriction — if there is an *AD* derivation of  $\mathcal{Q}$  from the members of some set of sentences  $\Delta$  plus  $\mathcal{P}$ , then there is an *AD* derivation of  $\mathcal{P} \to \mathcal{Q}$  from the members of  $\Delta$  alone: if  $\Delta \cup \{\mathcal{P}\} \vdash_{AD} \mathcal{Q}$  then  $\Delta \vdash_{AD} \mathcal{P} \to \mathcal{Q}$ . In practice, this lets us reason just as we do with  $\to$ I.

(E)   
a. 
$$\begin{array}{|c|c|} & members of \Delta \\ & & \\ B. & & \\ c. & \mathcal{P} \to \mathcal{Q} \\ & & a-b \text{ deduction theorem} \end{array}$$

At (b), there is a derivation of  $\mathcal{Q}$  from the mbembers of  $\Delta$  plus  $\mathcal{P}$ . At (c), the assumption is discharged to indicate a derivation of  $\mathcal{P} \to \mathcal{Q}$  from the members of  $\Delta$  alone. By the deduction theorem, if there is a derivation of  $\mathcal{Q}$  from  $\Delta$  plus  $\mathcal{P}$ , then there is a derivation of  $\mathcal{P} \to \mathcal{Q}$  from  $\Delta$  alone. Here is the restriction: The discharge of an auxiliary assumption  $\mathcal{P}$  is legitimate just in case no application of Gen under its scope generalizes on a variable free in  $\mathcal{P}$ . The effect is like that of the *ND* restriction on  $\forall I$  — here, though, the restriction is not on Gen, but rather on the discharge of auxiliary assumptions. In the one case, an assumption available for discharge is one such that no application of Gen under its scope is to a variable free in the assumption; in the other, we cannot apply  $\forall I$  to a variable free in an undischarged assumption (so that, effectively, every assumption is always available for discharge).

Again, our strategy is to show that given one derivation, it is possible to construct another. In this case, we begin with an *AD* derivation (A) as below, with premises  $\Delta \cup \{\mathcal{P}\}$ . Treating  $\mathcal{P}$  as an auxiliary premise, with scope as indicated in (B), we set out to show that there is an *AD* derivation (C), with premises in  $\Delta$  alone, and lines numbered '1', '2', ... corresponding to 1, 2, ... in (A).

(A) 1. 
$$Q_1$$
  
2.  $Q_2$   
(B) 1.  $Q_1$   
2.  $Q_2$   
(C) 1.  $\mathcal{P} \to Q_1$   
2.  $\mathcal{Q}_2$   
(C) 2.  $\mathcal{P} \to Q_2$   
2.  $\mathcal{P} \to Q_2$   
(F)  
 $\mathcal{P}$   
 $\mathcal{P}$   
 $\mathcal{P}$   
 $\mathcal{P}$   
 $\mathcal{P} \to \mathcal{P}$   
 $\mathcal{P}$   
 $\mathcal{P} \to \mathcal{P}$   
 $\mathcal{P}$   
 $\mathcal{P} \to \mathcal{Q}_n$ 

That is, we construct a derivation with premises in  $\Delta$  such that for any formula  $\mathcal{A}$  on line *i* of the first derivation,  $\mathcal{P} \to \mathcal{A}$  appears on the line numbered '*i*' of the constructed derivation. The last line *n* of the resultant derivation is the desired result,  $\Delta \vdash_{\mathcal{AD}} \mathcal{P} \to \mathcal{Q}$ .

T9.3. (*Deduction Theorem*) If  $\Delta \cup \{\mathcal{P}\} \vdash_{AD} \mathcal{Q}$ , and no application of Gen under the scope of  $\mathcal{P}$  is to a variable free in  $\mathcal{P}$ , then  $\Delta \vdash_{AD} \mathcal{P} \to \mathcal{Q}$ .

Suppose  $A = \langle Q_1, Q_2, \dots, Q_n \rangle$  is an *AD* derivation of Q from  $\Delta \cup \{\mathcal{P}\}$ , where Q is  $Q_n$  and no application of Gen under the scope of  $\mathcal{P}$  is to a variable free in  $\mathcal{P}$ . By induction on the line numbers in derivation *A*, we show there is a derivation *C* with premises only in  $\Delta$ , such that for any line *i* of *A*,  $\mathcal{P} \rightarrow Q_i$  appears on the line numbered '*i*' of *C*. The case when i = n gives the desired result, that  $\Delta \vdash_{AD} \mathcal{P} \rightarrow Q$ .

#### *Basis:* $Q_1$ of A is an axiom, a member of $\Delta$ , or $\mathcal{P}$ itself.

(i) If  $Q_1$  is an axiom or a member of  $\Delta$ , then begin *C* as follows,

| 1.1 $Q_1$                                               | axiom / premise |
|---------------------------------------------------------|-----------------|
| 1.2 $\mathcal{Q}_1 \to (\mathcal{P} \to \mathcal{Q}_1)$ | A1              |
| 1 $\mathcal{P} \to \mathcal{Q}_1$                       | 1.1, 1.2 MP     |

(ii)  $\mathcal{Q}_1$  is  $\mathcal{P}$  itself. By T3.1,  $\vdash_{AD} \mathcal{P} \to \mathcal{P}$ ; which is to say  $\mathcal{P} \to \mathcal{Q}_1$ ; so begin derivation C,

$$1 \quad \mathcal{P} \rightarrow \mathcal{P} \qquad T3.1$$

In either case,  $\mathcal{P} \to \mathcal{Q}_1$  appears on the line numberd '1' of *C* with premises in  $\Delta$  alone.

- Assp: For any  $i, 1 \le i < k, \mathcal{P} \to \mathcal{Q}_i$  appears on the line numbered 'i' of C, with premises in  $\Delta$  alone.
- Show:  $\mathcal{P} \to \mathcal{Q}_k$  appears on the line numbered 'k' of C, with premises in  $\Delta$  alone.
$\mathcal{Q}_k$  of A is a member of  $\Delta$ , an axiom,  $\mathcal{P}$  itself, or arises from previous lines by MP or Gen. If  $\mathcal{Q}_k$  is a member of  $\Delta$ , an axiom or  $\mathcal{P}$  itself then, by reasoning as in the basis,  $\mathcal{P} \to \mathcal{Q}_k$  appears on the line numbered 'k' of C from premises in  $\Delta$  alone. So two cases remain.

(MP) If  $Q_k$  arises from previous lines by MP, then there are lines in derivation A of the sort,

 $\begin{array}{l} \mathrm{i} \quad \mathcal{B} \\ \\ \mathrm{j} \quad \mathcal{B} \rightarrow \mathcal{C} \\ \\ \\ \mathrm{i} \\ \mathrm{k} \quad \mathcal{C} \\ \end{array}$  i,j MP

where i, j < k and  $Q_k$  is C. By assumption, there are lines in C,

 $i \ \mathcal{P} \to \mathcal{B}$  $\vdots$  $j \ \mathcal{P} \to (\mathcal{B} \to \mathcal{C})$ 

So continue derivation C as follows,

 $\begin{array}{ll} i \ \mathcal{P} \to \mathcal{B} \\ \vdots \\ j \ \mathcal{P} \to (\mathcal{B} \to \mathcal{C}) \\ \vdots \\ k.1 \ [\mathcal{P} \to (\mathcal{B} \to \mathcal{C})] \to [(\mathcal{P} \to \mathcal{B}) \to (\mathcal{P} \to \mathcal{C})] & A2 \\ k.2 \ (\mathcal{P} \to \mathcal{B}) \to (\mathcal{P} \to \mathcal{C}) & j, k.1 \text{ MP} \\ k \ \mathcal{P} \to \mathcal{C} & i, k.2 \text{ MP} \end{array}$ 

So  $\mathcal{P} \to \mathcal{Q}_k$  appears on the line numbered 'k' of *C*, with premises in  $\Delta$  alone.

(Gen) If  $\mathcal{Q}_k$  arises from a previous line by Gen, then there are lines in derivation A of the sort,

 $i \ \mathcal{B}$  $\vdots$  $k \ \forall x \mathcal{B}$ 

where i < k and  $Q_k$  is  $\forall x \mathcal{B}$ . Either line k is under the scope of  $\mathcal{P}$  in derivation A or not.

(i) If line k is not under the scope of  $\mathcal{P}$ , then  $\forall x \mathcal{B}$  in A follows from  $\Delta$  alone. So continue C as follows,

k.1 $\mathcal{Q}_1$ exactly as in A but with prefixk.2 $\mathcal{Q}_2$ 'k.' for numeric references.........k.k $\forall x \mathcal{B}$ ...k.k+1 $\forall x \mathcal{B} \rightarrow (\mathcal{P} \rightarrow \forall x \mathcal{B})$ A1k $\mathcal{P} \rightarrow \forall x \mathcal{B}$ k.k+1, k.k MP

Since each of the lines in A up to k is derived from  $\Delta$  alone, we have  $\mathcal{P} \to \mathcal{Q}_k$  on the line numbered 'k' of C, from premises in  $\Delta$  alone.

(ii) If line k is under the scope of  $\mathcal{P}$ , we depend on the assumption, and continue *C* as follows,

i  $\mathcal{P} \to \mathcal{B}$  (by inductive assumption) : k  $\mathcal{P} \to \forall x \mathcal{B}$  i T3.28

If line k is under the scope of  $\mathcal{P}$  then, since no application of Gen under the scope of  $\mathcal{P}$  is to a variable free in  $\mathcal{P}$ , x is not free in  $\mathcal{P}$ ; so k meets the restriction on T3.28. So we have  $\mathcal{P} \to \mathcal{Q}_k$  on the line numbered 'k' of *C*, from premises in  $\Delta$  alone.

*Indct:* For for any  $i, \mathcal{P} \to \mathcal{Q}_k$  appears on the line numbered '*i*' of *C*, from premises in  $\Delta$  alone.

So given an *AD* derivation of  $\mathcal{Q}$  from  $\Delta \cup \{\mathcal{P}\}$ , where no application of Gen under the scope of assumption  $\mathcal{P}$  is to a variable free in  $\mathcal{P}$ , there is sure to be an *AD* derivation of  $\mathcal{P} \rightarrow \mathcal{Q}$  from  $\Delta$  alone. Notice that T3.28 and T3.30 abbreviate sequences which include applications of Gen. So the restriction on Gen for the deduction theorem applies to applications of these results as well.

As a sample application of the deduction theorem (DT), let us consider another derivation of T3.2. In tis case,  $\Delta = \{\mathcal{A} \to \mathcal{B}, \mathcal{B} \to \mathcal{C}\}$ , and we argue as follows,

At line (5) we have established that  $\Delta \cup \{\mathcal{A}\} \vdash_{AD} \mathcal{C}$ ; it follows from the deduction theorem that  $\Delta \vdash_{AD} \mathcal{A} \to \mathcal{C}$ . But we should be careful: this is not an *AD* derivation of  $\mathcal{A} \to \mathcal{C}$  from  $\mathcal{A} \to \mathcal{B}$  and  $\mathcal{B} \to \mathcal{C}$ . And it is not an abbreviation in the sense that we have seen so far — we do not appeal to a result whose derivation could be inserted at that very stage. Rather, what we have is a demonstration, via the deduction theorem, that there *exists* an *AD* derivation of  $\mathcal{A} \to \mathcal{C}$  from the premises. If there is any abbreviating, the entire derivation abbreviates, or indicates the existence of, another. Our proof of the deduction theorem shows us that, given a derivation of  $\Delta \cup \{\mathcal{P}\} \vdash_{AD} \mathcal{Q}$ , it is possible to *construct* a derivation for  $\Delta \vdash_{AD} \mathcal{P} \to \mathcal{Q}$ .

Let us see how this works in the example. Lines 1-5 become our derivation A, with  $\Delta = \{A \rightarrow B, B \rightarrow C\}$ . For each  $Q_i$  in derivation A, the induction tells us how to derive  $A \rightarrow Q_i$  from  $\Delta$  alone. Thus  $Q_i$  on the first line is a member of  $\Delta$ : reasoning from the basis tells us to use A1 as follows,

| 1.1 | $\mathcal{A}  ightarrow \mathcal{B}$                                                | prem       |
|-----|-------------------------------------------------------------------------------------|------------|
| 1.2 | $(\mathcal{A} \to \mathcal{B}) \to (\mathcal{A} \to (\mathcal{A} \to \mathcal{B}))$ | A1         |
| 1   | $\mathcal{A}  ightarrow (\mathcal{A}  ightarrow \mathcal{B})$                       | 1.2,1.1 MP |

to get  $\mathcal{A}$  arrow the form on line 1 of A. Notice that we are again using fractional line numbers to make lines in derivation A correspond to lines in the constructed derivation. One may wonder why we bother getting  $\mathcal{A} \to \mathcal{Q}_1$ . And again, the answer is that our "recipe" calls for this ingredient at stages connected to MP and Gen. Similarly, we can use A1 to get  $\mathcal{A}$  arrow the form on line (2).

| 1.1 | $\mathcal{A}  ightarrow \mathcal{B}$                                                | prem       |
|-----|-------------------------------------------------------------------------------------|------------|
| 1.2 | $(\mathcal{A} \to \mathcal{B}) \to (\mathcal{A} \to (\mathcal{A} \to \mathcal{B}))$ | A1         |
| 1   | $\mathcal{A}  ightarrow (\mathcal{A}  ightarrow \mathcal{B})$                       | 1.2,1.1 MP |
| 2.1 | $\mathscr{B}  ightarrow \mathscr{C}$                                                | prem       |
| 2.2 | $(\mathcal{B} \to \mathcal{C}) \to (\mathcal{A} \to (\mathcal{B} \to \mathcal{C}))$ | A1         |
| 2   | $\mathcal{A}  ightarrow (\mathcal{B}  ightarrow \mathcal{C})$                       | 2.2,2.1 MP |

The form on line (3) is A itself. If we wanted a derivation in the primitive system, we could repeat the steps in our derivation of T3.1. But we will simply continue, as in the induction,

| 1.1 | $\mathcal{A}  ightarrow \mathcal{B}$                                                | prem         |
|-----|-------------------------------------------------------------------------------------|--------------|
| 1.2 | $(\mathcal{A} \to \mathcal{B}) \to (\mathcal{A} \to (\mathcal{A} \to \mathcal{B}))$ | A1           |
| 1   | $\mathcal{A}  ightarrow (\mathcal{A}  ightarrow \mathcal{B}$                        | 1.2,1.2 MI   |
| 2.1 | $\mathcal{B} \to \mathcal{C})$                                                      | prem         |
| 2.2 | $(\mathcal{B} \to \mathcal{C}) \to (\mathcal{A} \to (\mathcal{B} \to \mathcal{C}))$ | A1           |
| 2   | $\mathcal{A}  ightarrow (\mathcal{B}  ightarrow \mathcal{C})$                       | 2.2,2.1 MI   |
| 3   | $\mathcal{A}  ightarrow \mathcal{A}$                                                | <b>T3.</b> 1 |
|     |                                                                                     |              |

to get A arrow the form on line (3) of A. The form on line (4) arises from lines (1) and (3) by MP; reasoning in our show step tells us to continue,

| 1.1 | $\mathcal{A}  ightarrow \mathcal{B}$                                                                                    | prem         |
|-----|-------------------------------------------------------------------------------------------------------------------------|--------------|
| 1.2 | $(\mathcal{A} \to \mathcal{B}) \to (\mathcal{A} \to (\mathcal{A} \to \mathcal{B}))$                                     | A1           |
| 1   | $\mathcal{A}  ightarrow (\mathcal{A}  ightarrow \mathcal{B})$                                                           | 1.2,1.1 MP   |
| 2.1 | $\mathcal{B}  ightarrow \mathcal{C}$                                                                                    | prem         |
| 2.2 | $(\mathcal{B} \to \mathcal{C}) \to (\mathcal{A} \to (\mathcal{B} \to \mathcal{C}))$                                     | A1           |
| 2   | $\mathcal{A}  ightarrow (\mathcal{B}  ightarrow \mathcal{C})$                                                           | 2.2,2.1 MP   |
| 3   | $\mathcal{A}  ightarrow \mathcal{A}$                                                                                    | <b>T3.</b> 1 |
| 4.1 | $(\mathcal{A} \to (\mathcal{A} \to \mathcal{B})) \to ((\mathcal{A} \to \mathcal{A}) \to (\mathcal{A} \to \mathcal{B}))$ | A2           |
| 4.2 | $(\mathcal{A}  ightarrow \mathcal{A})  ightarrow (\mathcal{A}  ightarrow \mathcal{B})$                                  | 4.1,1 MP     |
| 4   | $\mathcal{A}  ightarrow \mathcal{B}$                                                                                    | 4.2,3 MP     |

using A2 to get  $\mathcal{A} \to \mathcal{B}$ . Notice that the original justification from lines (1) and (3) dictates the appeal to (1) at line (4.2) and to (3) at line (4). The form on line (5) arises from lines (2) and (4) by MP; so, finally, we continue,

| 1.1 | $\mathcal{A}  ightarrow \mathcal{B}$                                                                                    | prem       |
|-----|-------------------------------------------------------------------------------------------------------------------------|------------|
| 1.2 | $(\mathcal{A} \to \mathcal{B}) \to (\mathcal{A} \to (\mathcal{A} \to \mathcal{B}))$                                     | A1         |
| 1   | $\mathcal{A}  ightarrow (\mathcal{A}  ightarrow \mathcal{B})$                                                           | 1.2,1.1 MP |
| 2.1 | $\mathcal{B}  ightarrow \mathcal{C}$                                                                                    | prem       |
| 2.2 | $(\mathcal{B} \to \mathcal{C}) \to (\mathcal{A} \to (\mathcal{B} \to \mathcal{C}))$                                     | A1         |
| 2   | $\mathcal{A}  ightarrow (\mathcal{B}  ightarrow \mathcal{C})$                                                           | 2.2,2.1 MP |
| 3   | $\mathcal{A}  ightarrow \mathcal{A}$                                                                                    | T3.1       |
| 4.1 | $(\mathcal{A} \to (\mathcal{A} \to \mathcal{B})) \to ((\mathcal{A} \to \mathcal{A}) \to (\mathcal{A} \to \mathcal{B}))$ | A2         |
| 4.2 | $(\mathcal{A} \to \mathcal{A}) \to (\mathcal{A} \to \mathcal{B})$                                                       | 4.1,1 MP   |
| 4   | $\mathcal{A}  ightarrow \mathcal{B}$                                                                                    | 4.2,3 MP   |
| 5.1 | $(\mathcal{A} \to (\mathcal{B} \to \mathcal{C})) \to ((\mathcal{A} \to \mathcal{B}) \to (\mathcal{A} \to \mathcal{C}))$ | A2         |
| 5.2 | $(\mathcal{A} \to \mathcal{B}) \to (\mathcal{A} \to \mathcal{C})$                                                       | 5.1,2 MP   |
| 5   | $\mathcal{A}  ightarrow \mathcal{C}$                                                                                    | 5.2,4 MP   |

And we have the AD derivation which our proof of the deduction theorem told us there would be. Notice that this derivation is not very efficient! We did it in seven lines (without appeal to T3.1) in chapter 3. What our proof of the deduction theorem tells us is that there is sure to be some derivation — where there is no expectation that the guaranteed derivation is particularly elegant or efficient.

Here is a last example which makes use of the deduction theorem. First, an alternate derivation of T3.3.

|     | 1. 2 | $\mathfrak{k}  ightarrow (\mathcal{B}  ightarrow \mathcal{C})$ | prem        |
|-----|------|----------------------------------------------------------------|-------------|
|     | 2.   | B                                                              | assp(g, DT) |
|     | 3.   | A                                                              | assp(g, DT) |
| (H) | 4.   | $\mathscr{B} \to \mathscr{C}$                                  | 1,3 MP      |
|     | 5.   | $\mathcal{C}$                                                  | 4,2 MP      |
|     | 6.   | $\mathcal{A}  ightarrow \mathcal{C}$                           | 3-5 DT      |
|     | 7. 1 | $B \to (A \to C)$                                              | 2-6 DT      |

In chapter 3 we proved T3.3 in five lines (with an appeal to T3.2). But perhaps this version is relatively intuitive, coinciding as it does, with strategies from ND. In this case, there are two applications of DT, and reasoning from the induction therefore applies twice. First, at line (5), there is an AD derivation of  $\mathcal{C}$  from  $\{\mathcal{A} \to (\mathcal{B} \to \mathcal{C}), \mathcal{B}\} \cup \{\mathcal{A}\}$ . By reasoning from the induction, then, there is an AD derivation from just  $\{\mathcal{A} \to (\mathcal{B} \to \mathcal{C}), \mathcal{B}\}$  with  $\mathcal{A}$  arrow each of the forms on lines 1-5. So there is a derivation of  $\mathcal{A} \to \mathcal{C}$  from  $\{\mathcal{A} \to (\mathcal{B} \to \mathcal{C}), \mathcal{B}\}$ . But then reasoning from the induction, there is a derivation applies again. By reasoning from the induction applied to this *new* derivation, there is a derivation of  $\mathcal{B} \to (\mathcal{A} \to \mathcal{C})$  with  $\mathcal{B}$  arrow each of the forms in it. So there is a derivation of  $\mathcal{B} \to (\mathcal{A} \to \mathcal{C})$  from just  $\mathcal{A} \to (\mathcal{B} \to \mathcal{C})$ . So the first derivation, lines 1-5 above, is replaced by another, by the reasoning from DT. The result is an AD derivation of the desired result.

Here are a couple more cases, where the latter at least, may inspire a certain affection for the deduction theorem.

- T9.4.  $\vdash_{AD} \mathcal{A} \to (\mathcal{B} \to (\mathcal{A} \land \mathcal{B}))$
- T9.5.  $\vdash_{AD} (\mathcal{A} \to \mathcal{C}) \to [(\mathcal{B} \to \mathcal{C}) \to ((\mathcal{A} \lor \mathcal{B}) \to \mathcal{C})]$
- E9.5. Making use of the deduction theorem, prove T9.4 and T9.5. Having done so, see if you can prove them in the style of chapter 3, without any appeal to DT.
- E9.6. By the method of our proof of the deduction theorem, convert the above derivation (H) for T3.3 into an official *AD* derivation. Hint: As described above, the method of the induction applies twice: first to lines 1-5, and then to the new derivation. The result should be derivations with 13, and then 37 lines.

E9.7. Consider the axiomatic system A2 from E3.4 on p. 81, and produce a demonstration of the deduction theorem for it. That is, show that if  $\Delta \cup \{\mathcal{P}\} \vdash_{A2} \mathcal{Q}$ , then  $\Delta \vdash_{A2} \mathcal{P} \rightarrow \mathcal{Q}$ . You may appeal to any of the A2 theorems listed on 81.

#### 9.3.2 Substitution Theorems

Recall what we are after. Our goal is to show that if  $\Gamma \vdash_{ND} \mathcal{P}$ , then  $\Gamma \vdash_{AD} \mathcal{P}$ . Toward this end, the deduction theorem lets AD mimic rules in ND which require subderivations. For equality, we turn to some substitution results. Say a complex term r is *free* in an expression  $\mathcal{P}$  just in case no variable in r is bound. Then where  $\mathcal{T}$  is any term or formula, let  $\mathcal{T}^r/\!\!/_4$  be  $\mathcal{T}$  where at most one free instance of r is replaced by term s. Having shown in T3.37, that  $\vdash_{AD} (q_i = s) \to (\mathcal{R}^n q_1 \dots q_i \dots q_n \to \mathcal{R}^n q_1 \dots s \dots q_n)$ , one might think we have proved that  $\vdash_{AD} (r = s) \to (\mathcal{A} \to \mathcal{A}^r/\!\!/_4)$  for any atomic formula  $\mathcal{A}$  and any terms r and s. But this is not so. Similarly, having proved in T3.36 that  $\vdash_{AD} (q_i = s) \to (\hbar^n q_1 \dots q_i \dots q_n = \hbar^n q_1 \dots s \dots q_n)$ , one might think we have proved that  $\vdash_{AD} (r = s) \to (t \to t^r/\!\!/_s)$  for any terms r, s and t. But this is not so. In each case, the difficulty is that the replaced term r might be a *component* of the other terms  $q_1 \dots q_n$ , and so might not be any of  $q_1 \dots q_n$ . What we have shown is only that it is possible to replace any of the whole terms,  $q_1 \dots q_n$ . Thus,  $(x = y) \to (f^1 g^1 x = f^1 g^1 y)$  is not an instance of T3.36 because we do not replace  $g^1 x$  but rather a component of it.

However, as one might expect, it is possible to replace terms in basic parts; use the result to make replacements in terms of which *they* are parts; and so forth, all the way up to wholes. Both  $(x = y) \rightarrow (g^1x = g^1y)$  and  $(g^1x = g^1y) \rightarrow$  $(f^1g^1x = f^1g^1y)$  are instances of T3.36. (Be clear about these examples in your mind.) From these, with T3.2 it follows that  $(x = y) \rightarrow (f^1g^1x = f^1g^1y)$ . This example suggests a method for obtaining the more general results: Using T3.36, we work from equalities at the level of the parts, to equalities at the level of the whole. For the case of terms, the proof is by induction on the number of function symbols in an arbitrary term t.

- T9.6. For arbitrary terms r, s and t,  $\vdash_{AD} (r = s) \rightarrow (t = t^{r} //_{s})$ .
  - Basis: If t has no function symbols, then t is a variable or a constant. In this case, either (i)  $r \neq t$  and  $t^r //_{\mathfrak{s}} = t$  (nothing is replaced) or (ii) r = t and  $t^r //_{\mathfrak{s}} = \mathfrak{s}$  (all of t is replaced). (i) In this case, by T3.32,  $\vdash_{AD} t = t$ ; which is to say,  $\vdash_{AD} (t = t^r //_{\mathfrak{s}})$ ; so with A1,  $\vdash_{AD} (r = \mathfrak{s}) \to (t = t^r //_{\mathfrak{s}})$ . (ii) In this case,  $(r = \mathfrak{s}) \to (t = t^r //_{\mathfrak{s}})$  is the same as  $(r = \mathfrak{s}) \to (r = \mathfrak{s})$ ; so by T3.1,  $\vdash_{AD} (r = \mathfrak{s}) \to (t = t^r //_{\mathfrak{s}})$ .

- Assp: For any  $i, 0 \le i < k$ , if t has i function symbols, then  $\vdash_{AD} (r = s) \rightarrow (t = t^r // s)$ .
- Show: If t has k function symbols, then  $\vdash_{AD} (r = s) \rightarrow (t = t^{r}//s)$ .

If t has k function symbols, then t is of the form  $\hbar^n q_1 \dots q_n$  for terms  $q_1 \dots q_n$  with < k function symbols. If all of t is replaced, or no part of t is replaced, then reason as in the basis. So suppose r is some subcomponent of t; then for some  $q_i, t^r/\!/_4$  is  $\hbar^n q_1 \dots q_i r'\!/_4 \dots q_n$ . By assumption,  $\vdash_{AD} (r = s) \rightarrow (q_i = q_i r'\!/_4)$ ; and by T3.36,  $\vdash_{AD} (q_i = q_i r''/_4) \rightarrow (\hbar^n q_1 \dots q_i \dots q_n = \hbar^n q_1 \dots q_i r''/_4 \dots q_n)$ ; so by T3.2,  $\vdash_{AD} (r = s) \rightarrow (\hbar^n q_1 \dots q_i \dots q_n = \hbar^n q_1 \dots q_i r''/_4 \dots q_n)$ ; but this is to say,  $\vdash_{AD} (r = s) \rightarrow (t = t^r/\!/_4)$ .

*Indct:* For any terms r, s and t,  $\vdash_{AD} (r = s) \rightarrow (t = t^{r} // s)$ .

We might think of this result as a further strengthened or generalized version of the *AD* axiom A7. Where A7 lets us replace just variables in terms of the sort  $h^n x_1 \dots x_n$ , we are now in a position to replace in arbitrary terms with arbitrary terms.

Now we can go after a similarly strengthened version of A8. We show that for any formula  $\mathcal{A}$ , if s is free for the replaced instance of r in  $\mathcal{A}^r/\!\!/_s$ , then  $\vdash_{\mathcal{AD}} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r/\!\!/_s)$ . The argument is by induction on the number of operators in  $\mathcal{A}$ .

T9.7. For any formula  $\mathcal{A}$  and terms r and s, if s is free for the replaced instance of r in  $\mathcal{A}$ , then  $\vdash_{\mathcal{AD}} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r //_s)$ .

Consider an arbitrary r, s and A, and suppose s is free for the replaced instance of r in  $A^r/\!/_s$ .

- Basis: If  $\mathcal{A}$  is atomic then (i)  $\mathcal{A}^r/\!\!/_{\mathfrak{s}} = \mathcal{A}$  (nothing is replaced) or (ii)  $\mathcal{A}$  is an atomic of the form  $\mathcal{R}^n t_1 \dots t_i \dots t_n$  and  $\mathcal{A}^r/\!\!/_{\mathfrak{s}}$  is  $\mathcal{R}^n t_1 \dots t_i {}^r/\!\!/_{\mathfrak{s}} \dots t_n$ . (i) In this case, by T3.1,  $\vdash_{AD} \mathcal{A} \to \mathcal{A}$ , which is to say  $\vdash_{AD} \mathcal{A} \to \mathcal{A}^r/\!\!/_{\mathfrak{s}}$ ; so with A1,  $\vdash_{AD} r = \mathfrak{s} \to (\mathcal{A} \to \mathcal{A}^r/\!\!/_{\mathfrak{s}})$ . (ii) In this case, by T9.6,  $\vdash_{AD} (r = \mathfrak{s}) \to (t_i = t_i {}^r/\!\!/_{\mathfrak{s}})$ ; and by T3.37,  $\vdash_{AD} (t_i = t_i {}^r/\!\!/_{\mathfrak{s}}) \to (\mathcal{R}^n t_1 \dots t_i \dots t_n \to \mathcal{R}^n t_1 \dots t_i {}^r/\!\!/_{\mathfrak{s}} \dots t_n)$ ; so by T3.2,  $\vdash_{AD} (r = \mathfrak{s}) \to (\mathcal{R}^n t_1 \dots t_i \dots t_n \to \mathcal{R}^n t_1 \dots t_i {}^r/\!\!/_{\mathfrak{s}} \dots t_n)$ ; and this is just to say,  $\vdash_{AD} (r = \mathfrak{s}) \to (\mathcal{A} \to \mathcal{A}^r/\!\!/_{\mathfrak{s}})$ .
- Assp: For any  $i, 0 \le i < k$ , if A has *i* operator symbols and s is free for the replaced instance of r in A, then  $\vdash_{AD} (r = s) \to (A \to A^r/\!/_s)$ .

Corollary to the assumption. If  $\mathcal{A}$  has  $\langle k$  operators, then  $\mathcal{A}^{r}/\!\!/_{s}$  has  $\langle k$  operators; and since s replaces only a free instance of r in  $\mathcal{A}$ , r is free for the replacing instance of s in  $\mathcal{A}^{r}/\!\!/_{s}$ ; so where the outer substitution is made to sustain  $[\mathcal{A}^{r}/\!\!/_{s}]^{s}/\!\!/_{r} = \mathcal{A}$ , we have  $\vdash_{AD} (s = r) \rightarrow (\mathcal{A}^{r}/\!\!/_{s} \rightarrow [\mathcal{A}^{r}/\!\!/_{s}]^{s}/\!\!/_{r})$  as an instance of the inductive assumption, which is just,  $\vdash_{AD} (s = r) \rightarrow (\mathcal{A}^{r}/\!\!/_{s} \rightarrow \mathcal{A})$ . And by T3.33,  $\vdash_{AD} (r = s) \rightarrow (s = r)$ ; so with T3.2,  $\vdash_{AD} (r = s) \rightarrow (\mathcal{A}^{r}/\!\!/_{s} \rightarrow \mathcal{A})$ .

Show: If A has k operator symbols and s is free for the replaced instance of r in A, then  $\vdash_{AD} (r = s) \rightarrow (A \rightarrow A^r //_s)$ .

If  $\mathcal{A}$  has k operator symbols, then  $\mathcal{A}$  is of the form,  $\sim \mathcal{P}, \mathcal{P} \rightarrow \mathcal{Q}$  or  $\forall x \mathcal{P}$  for variable x and formulas  $\mathcal{P}$  and  $\mathcal{Q}$  with < k operator symbols. Suppose s is free for any replaced instance of r in  $\mathcal{A}$ .

- (~) Suppose  $\mathcal{A}$  is  $\sim \mathcal{P}$ . Then  $\mathcal{A}^r/\!\!/_s$  is  $[\sim \mathcal{P}]^r/\!\!/_s$  which is the same as  $\sim [\mathcal{P}^r/\!\!/_s]$ . Since s is free for a replaced instance of r in  $\mathcal{A}$ , it is free for that instance of r in  $\mathcal{P}$ ; so by the corollary to the assumption,  $\vdash_{AD} (r = s) \rightarrow (\mathcal{P}^r/\!\!/_s \rightarrow \mathcal{P})$ . But by T3.13,  $\vdash_{AD} (\mathcal{P}^r/\!\!/_s \rightarrow \mathcal{P}) \rightarrow (\sim \mathcal{P} \rightarrow \sim [\mathcal{P}^r/\!\!/_s])$ ; so by T3.2,  $\vdash_{AD} (r = s) \rightarrow (\sim \mathcal{P} \rightarrow \sim [\mathcal{P}^r/\!\!/_s])$ ; which is to say,  $\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r/\!\!/_s)$ .
- (→) Suppose A is P → Q. Then A<sup>r</sup>//<sub>s</sub> is P<sup>r</sup>//<sub>s</sub> → Q or P → Q<sup>r</sup>//<sub>s</sub>. (i) In the former case, since s is free for a replaced instance of r in A, it is free for that instance of r in P; so by the corollary to the assumption, ⊢<sub>AD</sub> (r = s) → (P<sup>r</sup>//<sub>s</sub> → P); so we may reason as follows,

| 1.  | $(r=\mathfrak{s})\to(\mathscr{P}^r/\!\!/_{\mathfrak{s}}\to\mathscr{P})$                                            | prem                                                  |
|-----|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 2.  | r = s                                                                                                              | $\mathrm{assp}(g,\mathrm{DT})$                        |
| 3.  | $\bigsqcup_{\mathcal{P}} \rightarrow \mathcal{Q}$                                                                  | $\operatorname{assp}\left(g,\operatorname{DT}\right)$ |
| 4.  | $\mathcal{P}^{r}/\!\!/_{s}$                                                                                        | $\operatorname{assp}\left(g,\operatorname{DT}\right)$ |
| 5.  | $\left  \begin{array}{c} \left  \right. \mathcal{P}^{r} /\!\!/_{\mathfrak{s}} \to \mathcal{P} \end{array} \right.$ | 1,2 MP                                                |
| 6.  | $    \mathcal{P}$                                                                                                  | 5,4 MP                                                |
| 7.  | Q                                                                                                                  | 3,6 MP                                                |
| 8.  | $\mathscr{P}^{r}/\!\!/_{s} \to \mathcal{Q}$                                                                        | 4-7 DT                                                |
| 9.  | $(\mathcal{P} \to \mathcal{Q}) \to (\mathcal{P}^{r} /\!\!/_{\mathfrak{s}} \to \mathcal{Q})$                        | 3-8 DT                                                |
| 10. | $(r=\mathfrak{s})\to [(\mathcal{P}\to\mathcal{Q})\to(\mathcal{P}^r/\!\!/_{\mathfrak{s}}\to\mathcal{Q})]$           | 2-9 DT                                                |

So  $\vdash_{AD} (r = s) \rightarrow [(\mathcal{P} \rightarrow \mathcal{Q}) \rightarrow (\mathcal{P}^r /\!\!/_s \rightarrow \mathcal{Q})];$  which is to say,  $\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r /\!\!/_s).$  (ii) And similarly in the other case [by homework],  $\vdash_{AD} (r = s) \rightarrow [(\mathcal{P} \rightarrow \mathcal{Q}) \rightarrow (\mathcal{P} \rightarrow \mathcal{Q}^{*}/\!\!/_{s})]$ . So in either case,  $\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^{*}/\!\!/_{s})$ .

(∀) Suppose A is ∀xP. Then a free instance of r in A remains free in P and A<sup>r</sup>//<sub>s</sub> is ∀x[P<sup>r</sup>//<sub>s</sub>]. Since s is free for r in A, s is free for r in P; so by assumption, ⊢<sub>AD</sub> (r = s) → (P → P<sup>r</sup>//<sub>s</sub>); so we may reason as follows,

| 1. | $(r = s) \to (\mathcal{P} \to \mathcal{P}^r /\!\!/_s)$                                | prem                           |
|----|---------------------------------------------------------------------------------------|--------------------------------|
| 2. | r = s                                                                                 | $\mathrm{assp}(g,\mathrm{DT})$ |
| 3. | $\forall x \mathcal{P} \to \mathcal{P}$                                               | A4                             |
| 4. | $\mathscr{P} 	o \mathscr{P}^r/\!\!/_s$                                                | 1,2 MP                         |
| 5. | $\forall \mathcal{X} \mathcal{P} \to \mathcal{P}^{\mathcal{P}} /\!\!/_{\mathfrak{s}}$ | 3,4 T3.2                       |
| 6. | $\forall x \mathcal{P} \to \forall x \mathcal{P}^r /\!\!/_s$                          | 5 T3.28                        |
| 7. | $(r = s) \to (\forall x \mathcal{P} \to \forall x \mathcal{P}^r / \!\!/_s)$           | 2-6 DT                         |

Notice that x is sure to be free for itself in  $\mathcal{P}$ , so that (3) is an instance of A4. And x is bound in  $\forall x \mathcal{P}$ , so (6) is an instance of T3.28. And because r is free in A, and s is free for r in A, x cannot be a variable in r or s; so the restriction on DT is met at (7). So  $\vdash_{AD} (r = s) \rightarrow$  $(\forall x \mathcal{P} \rightarrow \forall x \mathcal{P}^r /\!\!/_s)$ ; which is to say,  $\vdash_{AD} (r = s) \rightarrow (A \rightarrow A^r /\!\!/_s)$ . So for any A with k operator symbols,  $\vdash_{AD} (r = s) \rightarrow (A \rightarrow A^r /\!\!/_s)$ .

*Indct:* For any  $\mathcal{A}$ ,  $\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r /\!\!/_s)$ .

So T9.7, for any formula  $\mathcal{A}$ , and terms r and s, if s is free for a replaced instance of r in  $\mathcal{A}$ , then  $\vdash_{\mathcal{AD}} (r = s) \to (\mathcal{A} \to \mathcal{A}^r //_s)$ .

It is a short step from T9.7, which allows substitution of just a single term, to T9.8 which allows substitution of arbitrarily many. Where, as in chapter 6,  $\mathcal{P}^{t}/_{s}$  is  $\mathcal{P}$  with some, but not necessarily all, free instances of term t replaced by term s,

T9.8. For any formula  $\mathcal{A}$  and terms r and s, if s is free for the replaced instances of r in  $\mathcal{A}$ , then  $\vdash_{\mathcal{AD}} (r = s) \to (\mathcal{A} \to \mathcal{A}^r/_s)$ .

By induction on the number of instances of r that are replaced by s in A. Say  $A_i$  is A with i free instances of r replaced by s. Suppose s is free for the replaced instances of r in A. We show that for any i,  $\vdash_{AD} (r = s) \rightarrow (A \rightarrow A_i)$ .

*Basis:* If no instances of r are replaced by s then  $A_0 = A$ . But by T3.1,  $\vdash_{AD} A \to A$ , and by A1,  $\vdash_{AD} (A \to A) \to [(r = s) \to (A \to A)];$  so by MP,  $\vdash_{AD} (r = s) \rightarrow (A \rightarrow A)$ ; which is to say,  $\vdash_{AD} (r = s) \rightarrow (A \rightarrow A_0)$ .

Assp: For any  $i, 0 \le i < k, \vdash_{AD} (r = s) \to (A \to A_i)$ .

Show:  $\vdash_{AD} (r = s) \rightarrow (A \rightarrow A_k).$ 

 $\mathcal{A}_k$  is of the sort  $\mathcal{A}_i \ {}^r/\!\!/_s$  for i < k. By assumption, then,  $\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}_i)$ , and by T9.7,  $\vdash_{AD} (r = s) \rightarrow (\mathcal{A}_i \rightarrow \mathcal{A}_i \ {}^r/\!\!/_s)$ , which is the same as  $\vdash_{AD} (r = s) \rightarrow (\mathcal{A}_i \rightarrow \mathcal{A}_k)$ . So reason as follows,

| 1. | $(r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}_i)$ | by assumption                  |
|----|---------------------------------------------------------------|--------------------------------|
| 2. | $(r=s) \to (\mathcal{A}_i \to \mathcal{A}_k)$                 | <b>T9.</b> 7                   |
| 3. | r = s                                                         | $\mathrm{assp}(g,\mathrm{DT})$ |
| 4. | $\mathcal{A}  ightarrow \mathcal{A}_i$                        | 1,3 MP                         |
| 5. | $\mathcal{A}_i  ightarrow \mathcal{A}_k$                      | 2,3 MP                         |
| 6. | $\mathcal{A}  ightarrow \mathcal{A}_k$                        | <b>4,5 T3.</b> 2               |
| 7. | $(r = s) \rightarrow (A \rightarrow A_k)$                     | 3-6 DT                         |

Since *s* is free for the replaced instances of *r* in  $\mathcal{A}$ , (2) is an instance of T9.7. So  $\vdash_{\mathcal{AD}} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}_k)$ .

*Indct:* For any  $i, \vdash_{AD} (r = s) \rightarrow (A \rightarrow A_i)$ .

In effect, the result is by multiple applications of T9.7. No matter how many instances of r have been replaced by s, we may use T9.7 to replace another!

Some final substitution results allow substitution of *formulas* rather than terms. We have the result in syntactic and semantic forms. Where  $\mathcal{A}^{\mathcal{B}}/\!\!/_{\mathcal{C}}$  is  $\mathcal{A}$  with exactly one instance of a subformula  $\mathcal{B}$  replaced by formula  $\mathcal{C}$ ,

T9.9. For any formulas  $\mathcal{A}, \mathcal{B}$  and  $\mathcal{C}, \text{ if } \vdash_{\mathcal{AD}} \mathcal{B} \leftrightarrow \mathcal{C}, \text{ then } \vdash_{\mathcal{AD}} \mathcal{A} \leftrightarrow \mathcal{A}^{\mathcal{B}}/\!\!/_{\mathcal{C}}.$ 

The proof is by induction on the number of operators in  $\mathcal{A}$ . If you have understood the previous two inductions, this one should be straightforward. Observe that, in the basis, when  $\mathcal{A}$  is atomic,  $\mathcal{B}$  can only be all of  $\mathcal{A}$ , and  $\mathcal{A}^{\mathcal{B}}/\!\!/e$  is  $\mathcal{C}$ . For the show, either  $\mathcal{B}$  is all of  $\mathcal{A}$  or it is not. If it is, then the result holds by reasoning as in the basis. If  $\mathcal{B}$  is a proper part of  $\mathcal{A}$ , then the assumption applies.

T9.10. For any formulas  $\mathcal{A}$ ,  $\mathcal{B}$  and  $\mathcal{C}$ , if for any d,  $I_d[\mathcal{B}] = S$  iff  $I_d[\mathcal{C}] = S$ , then  $I_d[\mathcal{A}] = S$  iff  $I_d[\mathcal{A}_{\mathcal{C}}^{\mathcal{B}}] = S$ .

- \*E9.8. Set up the above demonstration for T9.7 and complete the unfinished case to provide a complete demonstration that for any formula  $\mathcal{A}$ , and terms r and s, if s is free for the replaced instance of r in  $\mathcal{A}$ , then  $\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r/\!/_s)$ .
- E9.9. Suppose our primitive operators are  $\sim$ ,  $\wedge$  and  $\exists$  rather than  $\sim$ ,  $\rightarrow$  and  $\forall$ . Modify your argument for T9.7 to show that for any formula  $\mathcal{A}$ , and terms r and s, if s is free for the replaced instance of r in  $\mathcal{A}$ , then  $\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r /\!\!/_s)$ . Hint: Do not forget that you may appeal to T9.4.
- \*E9.10. Prove T9.9, to show that for any formulas  $\mathcal{A}$ ,  $\mathcal{B}$  and  $\mathcal{C}$ , if  $\vdash_{AD} \mathcal{B} \leftrightarrow \mathcal{C}$ , then  $\vdash_{AD} \mathcal{A} \leftrightarrow \mathcal{A}^{\mathcal{B}}/\!\!/_{\mathcal{C}}$ . Hint: Where  $\mathcal{P} \leftrightarrow \mathcal{Q}$  abbreviates  $(\mathcal{P} \rightarrow \mathcal{Q}) \land (\mathcal{Q} \rightarrow \mathcal{P})$ , you can use (abv) along with T3.19, T3.20 and T9.4 to manipulate formulas of the sort  $\mathcal{P} \leftrightarrow \mathcal{Q}$ .
- E9.11. Where  $\mathcal{A}^{\mathcal{B}}/_{\mathcal{C}}$  replaces some, but not necessarily all, instances of formula  $\mathcal{B}$  with formula  $\mathcal{C}$ , use your result from E9.10 to show that if  $\vdash_{AD} \mathcal{B} \leftrightarrow \mathcal{C}$ , then  $\vdash_{AD} \mathcal{A} \leftrightarrow \mathcal{A}^{\mathcal{B}}/_{\mathcal{C}}$ .

#### 9.3.3 Intended Result

We are finally ready to show that if  $\Gamma \vdash_{ND} \mathcal{P}$  then  $\Gamma \vdash_{AD} \mathcal{P}$ . As usual, the idea is that the existence of one derivation guarantees the existence of another. In this case, we begin with a derivation in *ND*, and move to the existence of one in *AD*. Suppose  $\Gamma \vdash_{ND} \mathcal{P}$ . Then there is an *ND* derivation *N* of  $\mathcal{P}$  from premises in  $\Gamma$ , with lines  $\langle \mathcal{Q}_1 \dots \mathcal{Q}_n \rangle$  and  $\mathcal{Q}_n = \mathcal{P}$ . We show that there is an *AD* derivation *A* of the same result (with possible appeal to DT). Say derivation *A matches N* iff any  $\mathcal{Q}_i$  from *N* appears at the same scope on the line numbered '*i*' of *A*; and say derivation *A* is *good* iff it has no application of Gen to a variable free in an undischarged auxiliary assumption. Then, given derivation *N*, we show that there is a good derivation *A* that matches *N*. The reason for the restriction on free variables is to be sure that DT is available at any stage in derivation *A*. The argument is by induction on the line number of *N*, where we show that for any *i*, there is a good derivation *A<sub>i</sub>* that matches *N* through line *i*. The case when *i* = *n* is an *AD* derivation of  $\mathcal{P}$  under the scope of the premises alone, and so a demonstration of the desired result. T9.11. If  $\Gamma \vdash_{ND} \mathcal{P}$ , then  $\Gamma \vdash_{AD} \mathcal{P}$ .

Suppose  $\Gamma \vdash_{ND} \mathcal{P}$ ; then there is an *ND* derivation *N* of  $\mathcal{P}$  from premises in  $\Gamma$ . We show that for any *i*, there is a good *AD* derivation  $A_i$  that matches *N* through line *i*.

- *Basis:* The first line of N is a premise or an assumption. Let  $A_1$  be the same. Then  $A_1$  matches N; and since there is no application of Gen,  $A_1$  is good.
- Assp: For any  $i, 1 \le i < k$ , there is a good derivation  $A_i$  that matches N through line i.
- Show: There is a good derivation  $A_k$  that matches N through line k.

Either  $\mathcal{Q}_k$  is a premise or assumption, or arises from previous lines by R,  $\wedge E$ ,  $\wedge I$ ,  $\rightarrow E$ ,  $\rightarrow I$ ,  $\sim E$ ,  $\sim I$ ,  $\vee E$ ,  $\vee I$ ,  $\leftrightarrow E$ ,  $\leftrightarrow I$ ,  $\forall E$ ,  $\forall I$ ,  $\exists E$ ,  $\exists I$ , =E or =I.

- (p/a) If  $\mathcal{Q}_k$  is a premise or an assumption, let  $A_k$  continue in the same way. Then, by reasoning as in the basis,  $A_k$  matches N and is good.
- (R) If  $\mathcal{Q}_k$  arises from previous lines by R, then N looks something like this,

$$i \mid \mathcal{B}$$
  
 $k \mid \mathcal{B} = i \mathbf{R}$ 

where i < k,  $\mathcal{B}$  is accessible at line k, and  $\mathcal{Q}_k = \mathcal{B}$ . By assumption

where i < k,  $\mathscr{D}$  is accessible at line k, and  $\mathscr{Q}_k = \mathscr{D}$ . By assumption  $A_{k-1}$  matches N through line k-1 and is good. So  $\mathscr{B}$  appears at the same scope on the line numbered 'i' of  $A_{k-1}$  and is accessible in  $A_{k-1}$ . So let  $A_k$  continue as follows,

 $i \mid \mathcal{B}$   $\vdots$   $k.1 \mid \mathcal{B} \to \mathcal{B} \qquad T3.1$   $k \mid \mathcal{B} \qquad k.1, i \text{ MP}$ 

So  $\mathcal{Q}_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good.

( $\wedge$ E) If  $\mathcal{Q}_k$  arises by  $\wedge$ E, then N is something like this,

where i < k and  $\mathcal{B} \wedge \mathcal{C}$  is accessible at line k. In the first case,  $\mathcal{Q}_k = \mathcal{B}$ . By assumption  $A_{k-1}$  matches N through line k - 1 and is good. So  $\mathcal{B} \wedge \mathcal{C}$  appears at the same scope on the line numbered 'i' of  $A_{k-1}$  and is accessible in  $A_{k-1}$ . So let  $A_k$  continue as follows,

$$i \quad \mathcal{B} \land \mathcal{C}$$

$$k.1 \quad (\mathcal{B} \land \mathcal{C}) \to \mathcal{B} \qquad \text{T3.20}$$

$$k \quad \mathcal{B} \qquad \qquad k.1, i \text{ MP}$$

So  $\mathcal{Q}_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good. And similarly in the other case, by application of T3.19.

( $\wedge$ I) If  $\mathcal{Q}_k$  arises from previous lines by  $\wedge$ I, then N is something like this,

 $\begin{array}{c|c} i & \mathcal{B} \\ j & \mathcal{C} \\ k & \mathcal{B} \land \mathcal{C} \\ \end{array}$ 

where  $i, j < k, \mathcal{B}$  and  $\mathcal{C}$  are accessible at line k, and  $\mathcal{Q}_k = \mathcal{B} \land \mathcal{C}$ . By assumption  $A_{k-1}$  matches N through line k - 1 and is good. So  $\mathcal{B}$  and  $\mathcal{C}$  appear at the same scope on the lines numbered '*i*' and '*j*' of  $A_{k-1}$  and are accessible in  $A_{k-1}$ . So let  $A_k$  continue as follows,

 $i \mid \mathcal{B}$   $j \mid \mathcal{C}$   $k.1 \mid \mathcal{B} \to (\mathcal{C} \to (\mathcal{B} \land \mathcal{C})) \qquad \text{T9.4}$   $k.2 \mid \mathcal{C} \to (\mathcal{B} \land \mathcal{C}) \qquad k.1, i \text{ MP}$   $k \mid \mathcal{B} \land \mathcal{C} \qquad k.2, j \text{ MP}$ 

So  $Q_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good.

 $(\rightarrow E)$  If  $\mathcal{Q}_k$  arises from previous lines by  $\rightarrow E$ , then N is something like this,

$$\begin{array}{c|c} i & \mathcal{B} \to \mathcal{C} \\ j & \mathcal{B} \\ k & \mathcal{C} \\ \end{array}$$

$$k & i, j \to \mathbf{E}$$

where  $i, j < k, \mathcal{B} \to \mathcal{C}$  and  $\mathcal{B}$  are accessible at line k, and  $\mathcal{Q}_k = \mathcal{C}$ . By assumption  $A_{k-1}$  matches N through line k - 1 and is good. So  $\mathcal{B} \to \mathcal{C}$  and  $\mathcal{B}$  appear at the same scope on the lines numbered '*i*' and '*j*' of  $A_{k-1}$  and are accessible in  $A_{k-1}$ . So let  $A_k$  continue as follows,

 $\begin{array}{c|c} i & \mathcal{B} \to \mathcal{C} \\ j & \mathcal{B} \\ k & \mathcal{C} & i, j \text{ MP} \end{array}$ 

So  $\mathcal{Q}_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good.

 $(\rightarrow I)$  If  $\mathcal{Q}_k$  arises by  $\rightarrow I$ , then N is something like this,

$$\begin{array}{c|c} i & \mathcal{B} \\ j & \mathcal{C} \\ k & \mathcal{B} \to \mathcal{C} & i - j \to \mathbf{I} \end{array}$$

where i, j < k, the subderivation is accessible at line k and  $\mathcal{Q}_k = \mathcal{B} \rightarrow \mathcal{C}$ . By assumption  $A_{k-1}$  matches N through line k-1 and is good. So  $\mathcal{B}$  and  $\mathcal{C}$  appear at the same scope on the lines numbered 'i' and 'j' of  $A_{k-1}$ ; since they appear at the same scope, the parallel subderivation is accessible in  $A_{k-1}$ ; since  $A_{k-1}$  is good, no application of Gen under the scope of  $\mathcal{B}$  is to a variable free in  $\mathcal{B}$ . So let  $A_k$  continue as follows,

$$\begin{array}{c|c} i & \mathcal{B} \\ \hline \\ j & \mathcal{C} \\ k & \mathcal{B} \to \mathcal{C} & i - j \text{ DT} \end{array}$$

So  $\mathcal{Q}_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good.

(~E) If  $\mathcal{Q}_k$  arises by ~E, then N is something like this (reverting to the unabbreviated form),

```
 \begin{vmatrix} i \\ -\mathcal{B} \\ j \\ \mathcal{C} \land \sim \mathcal{C} \\ k \\ \mathcal{B} \\ i - j \sim E \end{vmatrix}
```

where i, j < k, the subderivation is accessible at line k, and  $\mathcal{Q}_k = \mathcal{B}$ . By assumption  $A_{k-1}$  matches N through line k - 1 and is good. So  $\sim \mathcal{B}$  and  $\mathcal{C} \wedge \sim \mathcal{C}$  appear at the same scope on the lines numbered 'i' and 'j' of  $A_{k-1}$ ; since they appear at the same scope, the parallel subderivation is accessible in  $A_{k-1}$ ; since  $A_{k-1}$  is good, no application of Gen under the scope of  $\sim \mathcal{B}$  is to a variable free in  $\sim \mathcal{B}$ . So let  $A_k$ continue as follows,

| i           | $\sim \mathcal{B}$                                                                                 |                             |
|-------------|----------------------------------------------------------------------------------------------------|-----------------------------|
|             |                                                                                                    |                             |
| j           | $\mathcal{C} \wedge \sim \mathcal{C}$                                                              |                             |
| k.1         | $\sim \mathcal{B}  ightarrow (\mathcal{C} \wedge \sim \mathcal{C})$                                | <i>i-j</i> DT               |
| k.2         | $(\mathcal{C}\wedge {\sim} \mathcal{C}) \to \mathcal{C}$                                           | <b>T3.</b> 20               |
| <i>k</i> .3 | $(\mathcal{C}\wedge {\sim} \mathcal{C}) \to {\sim} \mathcal{C}$                                    | T3.19                       |
| <i>k</i> .4 | $\sim \mathcal{B}  ightarrow \mathcal{C}$                                                          | k.1,k.2 T3.2                |
| <i>k</i> .5 | $\sim \mathcal{B} \rightarrow \sim \mathcal{C}$                                                    | k.1,k.3 T3.2                |
| <i>k</i> .6 | $(\sim \mathcal{B} \to \sim \mathcal{C}) \to ((\sim \mathcal{B} \to \mathcal{C}) \to \mathcal{B})$ | A3                          |
| k.7         | $(\sim \mathcal{B} \to \mathcal{C}) \to \mathcal{B}$                                               | k.6,k.5 MP                  |
| k           | B                                                                                                  | <i>k</i> .7, <i>k</i> .4 MP |

So  $Q_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good.

- $(\sim I)$  Homework.
- $(\lor E)$  If  $\mathcal{Q}_k$  arises by  $\lor E$ , then N is something like this,

 $\begin{array}{c|c} f & \mathcal{B} \lor \mathcal{C} \\ g & | \mathcal{B} \\ h & | \mathcal{D} \\ i & | \mathcal{C} \\ j & | \mathcal{D} \\ k & \mathcal{D} \\ \end{array}$ 

where  $f, g, h, i, j < k, \mathcal{B} \lor \mathcal{C}$  and the two subderivations are accessible at line k and  $\mathcal{Q}_k = \mathcal{D}$ . By assumption  $A_{k-1}$  matches N through line k - 1 and is good. So the formulas at lines f, g, h, i, j appear at the same scope on corresponding lines in  $A_{k-1}$ ; since they appear at the same scope,  $\mathcal{B} \lor \mathcal{C}$  and corresponding subderivations are accessible in  $A_{k-1}$ ; since  $A_{k-1}$  is good, no application of Gen under the

scope of  $\mathcal{B}$  is to a variable free in  $\mathcal{B}$ , and no application of Gen under the scope of  $\mathcal{C}$  is to a variable free in  $\mathcal{C}$ . So let  $A_k$  continue as follows,

| f           | $\boldsymbol{\mathscr{B}}\vee\boldsymbol{\mathscr{C}}$                                                                   |                             |
|-------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| g           | ß                                                                                                                        |                             |
| h           | $\mathcal{D}$                                                                                                            |                             |
| i           | e                                                                                                                        |                             |
| j           | D                                                                                                                        |                             |
| k.1         | $\mathcal{B}  ightarrow \mathcal{D}$                                                                                     | g- $h$ DT                   |
| k.2         | $\mathcal{C} \to \mathcal{D}$                                                                                            | <i>i-j</i> DT               |
| <i>k</i> .3 | $(\mathcal{B} \to \mathcal{D}) \to [(\mathcal{C} \to \mathcal{D}) \to ((\mathcal{B} \lor \mathcal{C}) \to \mathcal{D})]$ | T9.5                        |
| k.4         | $(\mathcal{C} \to \mathcal{D}) \to ((\mathcal{B} \lor \mathcal{C}) \to \mathcal{D})$                                     | k.3,k.1 MP                  |
| k.5         | $(\mathcal{B} \lor \mathcal{C})  ightarrow \mathcal{D}$                                                                  | <i>k</i> .4, <i>k</i> .2 MP |
| k           | $\mathcal{D}$                                                                                                            | k.5, f MP                   |

So  $Q_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good.

- $(\lor I)$  Homework.
- $(\leftrightarrow E)$  Homework.
- $(\leftrightarrow I)$  Homework.
- $(\forall E)$  Homework.
- $(\forall I)$  If  $\mathcal{Q}_k$  arises by  $\forall I$ , then N looks something like this,
  - $\begin{vmatrix} i & \mathcal{B}_{v}^{x} \\ k & \forall x \mathcal{B} & i \forall \mathbf{I} \end{vmatrix}$

where i < k,  $\mathcal{B}_v^{x}$  is accessible at line k, and  $\mathcal{Q}_k = \forall x \mathcal{B}$ ; further the ND restrictions on  $\forall I$  are met: (i) v is free for x in  $\mathcal{B}$ , (ii) v is not free in any undischarged auxiliary assumption, and (iii) v is not free in  $\forall x \mathcal{B}$ . By assumption  $A_{k-1}$  matches N through line k - 1 and is good. So  $\mathcal{B}_v^{x}$  appears at the same scope on the line numbered 'i' of  $A_{k-1}$  and is accessible in  $A_{k-1}$ . So let  $A_k$  continue as follows,

 $\begin{array}{c|c|c} i & \mathcal{B}_{v}^{x} \\ k.1 & \forall v \, \mathcal{B}_{v}^{x} & i \text{ Gen} \\ k.2 & \forall v \, \mathcal{B}_{v}^{x} \to \forall x \mathcal{B} & \text{T3.27} \\ k & \forall x \mathcal{B} & k.1, k.2 \text{ MP} \end{array}$ 

If v is x, we have the desired result already at k.1. So suppose  $x \neq v$ . On its face, k.2 does not look like T3.27 according to which  $\forall x \mathcal{A} \rightarrow \forall y \mathcal{A}_y^x$  with y free for x in  $\mathcal{A}$  but not free in  $\forall x \mathcal{A}$ . To see that we have it right, consider first,  $\forall v \mathcal{B}_v^x \rightarrow \forall x [\mathcal{B}_v^x]_x^v$ ; this is an instance of T3.27 so long as x is not free in  $\forall v \mathcal{B}_v^x$  but free for v in  $\mathcal{B}_v^x$ . First, since  $\mathcal{B}_v^x$  has all its free instances of x replaced by v, x is not free in  $\forall v \mathcal{B}_v^x$ . Second, since  $v \neq x$ , with the constraint (iii), that v is not free in  $\forall x \mathcal{B}, v$  is not free in  $\mathcal{B}_v$  so every free instance of v in  $\mathcal{B}_v^x$ . So  $\forall v \mathcal{B}_v^x \rightarrow \forall x [\mathcal{B}_v^x]_x^v$  is an instance of T3.27. But since v is not free in  $\mathcal{B}$ , and by constraint (i), v is free for x in  $\mathcal{B}$ , by T8.2,  $[\mathcal{B}_v^x]_x^v = \mathcal{B}$ . So k.2 is a version of T3.27.

So  $\mathcal{Q}_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. This time, there is an application of Gen at k.1. But  $A_{k-1}$  is good and since  $A_k$  matches N and, by (ii), v is free in no undischarged auxiliary assumption of N, v is not free in any undischarged auxiliary assumption of  $A_k$ ; so  $A_k$  is good. (Notice that, in this reasoning, we appeal to each of the restrictions that apply to  $\forall$ I in N).

( $\exists E$ ) If  $\mathcal{Q}_k$  arises by  $\exists E$ , then N looks something like this,

$$\begin{array}{c|c} h & \exists x \mathcal{B} \\ i & & \mathcal{B}_{v}^{x} \\ j & & \mathcal{C} \\ k & \mathcal{C} \end{array}$$

where  $h, i, j < k, \exists x \mathcal{B}$  and the subderivation are accessible at line k, and  $\mathcal{Q}_k = \mathcal{C}$ ; further, the *ND* restrictions on  $\exists E$  are met: (i) v is free for x in  $\mathcal{B}$ , (ii) v is not free in any undischarged auxiliary assumption, and (iii) v is not free in  $\exists x \mathcal{B}$  or in  $\mathcal{C}$ . By assumption  $A_{k-1}$  matches N through line k - 1 and is good. So the formulas at lines h, i and jappear at the same scope on corresponding lines in  $A_{k-1}$ ; since they appear at the same scope,  $\exists x \mathcal{B}$  and the corresponding subderivation are accessible in  $A_{k-1}$ . Since  $A_{k-1}$  is good, no application of Gen under the scope of  $\mathcal{B}_v^x$  is to a variable free in  $\mathcal{B}_v^x$ . So let  $A_k$  continue as follows,

| h           | $\exists x \mathcal{B}$                                                                                                                                   |                             |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| i           | $\mathcal{B}_v^{\chi}$                                                                                                                                    |                             |
| j           | $\mathcal{C}$                                                                                                                                             |                             |
| k.1         | ${\mathscr B}^{\chi}_v 	o {\mathcal C}$                                                                                                                   | <i>i-j</i> DT               |
| k.2         | $\exists v  \mathscr{B}_v^{\chi} \to \mathscr{C}$                                                                                                         | <b>k.1 T3.3</b> 1           |
| <i>k</i> .3 | $\forall v \sim \mathcal{B}_v^{\chi} \to \forall x \sim \mathcal{B}$                                                                                      | <b>T3.</b> 27               |
| k.4         | $(\forall v \sim \mathcal{B}_v^{\chi} \to \forall x \sim \mathcal{B}) \to (\sim \forall x \sim \mathcal{B} \to \sim \forall v \sim \mathcal{B}_v^{\chi})$ | T3.13                       |
| <i>k</i> .5 | $\sim \forall x \sim \mathcal{B} \rightarrow \sim \forall v \sim \mathcal{B}_v^x$                                                                         | <i>k</i> .4, <i>k</i> .3 MP |
| <i>k</i> .6 | $\exists x \mathcal{B} \to \exists v  \mathcal{B}_v^{\chi}$                                                                                               | k.5 abv                     |
| k.7         | $\exists v  \mathcal{B}_v^{\chi}$                                                                                                                         | h,k.6 MP                    |
| k           | C                                                                                                                                                         | k.2,k.7 MP                  |

From constraint (iii), that v is not free in  $\mathcal{C}$ , k.2 meets the restriction on T3.31. If v = x we can go directly from h and k.2 to k. So suppose  $v \neq x$ . Then by [homework]  $\forall v \sim \mathcal{B}_v^x \rightarrow \forall x \sim \mathcal{B}$  at k.3 is an instance of T3.27. So  $\mathcal{Q}_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. There is an application of Gen in T3.31 at k.2. But  $A_{k-1}$  is good and since  $A_k$  matches N and, by (ii), v is free in no undischarged auxiliary assumption of N, v is not free in any undischarged auxiliary assumption of  $A_k$ ; so  $A_k$  is good. (Notice again that we appeal to each of the restrictions that apply to  $\exists E \text{ in } N$ ).

- (I) Homework.
- (=E) Homework.
- (=I) Homework.

In any case,  $A_k$  matches N through line k and is good.

*Indct:* Derivation A matches N and is good.

So if there is an *ND* derivation to show  $\Gamma \vdash_{ND} \mathcal{P}$ , then there is a matching *AD* derivation to show the same; so T9.11, if  $\Gamma \vdash_{ND} \mathcal{P}$ , then  $\Gamma \vdash_{AD} \mathcal{P}$ . So with T9.2, *AD* and *ND* are equivalent; that is,  $\Gamma \vdash_{ND} \mathcal{P}$  iff  $\Gamma \vdash_{AD} \mathcal{P}$ . Given this, we will often ignore the difference between *AD* and *ND* and simply write  $\Gamma \vdash \mathcal{P}$  when there is a(n *AD* or *ND*) derivation of  $\mathcal{P}$  from premises in  $\Gamma$ . Also given the equivalence between the systems, we are in a position to *transfer* results from one system to the other without demonstrating them directly for both. We will come to appreciate this, and especially the relative simplicity of *AD*, as time goes by.

As before, given any *ND* derivation, we can use the method of our induction to find a corresponding *AD* derivation. For a simple example, consider the following demonstration that  $\sim A \rightarrow (A \wedge B) \vdash_{ND} A$ .

|     | 1. | $\sim A \to (A \land B)$ | Р                   |
|-----|----|--------------------------|---------------------|
|     | 2. | $\sim A$                 | A $(c, \sim E)$     |
| (I) | 3. | $A \wedge B$             | $1,2 \rightarrow E$ |
|     | 4. | A                        | $3 \land E$         |
|     | 5. | $A \wedge \sim A$        | 4,2 ∧I              |
|     | 6. | Â                        | 2-4 ~E              |

Given relevant cases from the induction, the corresponding *AD* derivation is as follows,

| 1   | $\sim A \rightarrow (A \wedge B)$                                                | prem          |
|-----|----------------------------------------------------------------------------------|---------------|
| 2   | $\sim A$                                                                         | assp          |
| 3   | $A \wedge B$                                                                     | 1,2 MP        |
| 4.1 | $(A \wedge B) \to A$                                                             | <b>T3.</b> 20 |
| 4   | A                                                                                | 4.1,3 MP      |
| 5.1 | $A \to (\sim A \to (A \land \sim A))$                                            | <b>T9.</b> 4  |
| 5.2 | $\sim A \rightarrow (A \land \sim A)$                                            | 4,5.1 MP      |
| 5   | $A \wedge \sim A$                                                                | 5.2,2 MP      |
| 6.1 | $\sim A \rightarrow (A \wedge \sim A)$                                           | 2-5 DT        |
| 6.2 | $(A \land \sim A) \to A$                                                         | <b>T3.</b> 20 |
| 6.3 | $(A \land \sim A) \to \sim A$                                                    | T3.19         |
| 6.4 | $\sim A \rightarrow A$                                                           | 6.1,6.2 T3.2  |
| 6.5 | $\sim A \rightarrow \sim A$                                                      | 6.1,6.3 T3.2  |
| 6.6 | $(\sim A \rightarrow \sim A) \rightarrow ((\sim A \rightarrow A) \rightarrow A)$ | A3            |
| 6.7 | $(\sim A \to A) \to A$                                                           | 6.6,6.5 MP    |
| 6   | A                                                                                | 6.7,6.4 MP    |

For the first two lines, we simply take over the premise and assumption from the *ND* derivation. For (3), the induction uses MP in *AD* where  $\rightarrow$ E appears in *ND*; so that is what we do. For (4), our induction shows that we can get the effect of  $\wedge$ E by appeal to T3.20 with MP. (5) in the *ND* derivation is by  $\wedge$ I, and, as above, we get the same effect by T9.4 with MP. (6) in the *ND* derivation is by  $\sim$ E. Following the strategy from the induction, we set up for application of A3 by getting the conditional by DT. As usual, the constructed derivation is not very efficient! You should be able to get the same result in just five lines by appeal to T3.20, T3.2 and then T3.7 (try it). But, again, the point is just to show that there always *is* a corresponding derivation.

\*E9.12. Set up the above induction for T9.11 and complete the unfinished cases (including the case for  $\exists E$ ) to show that if  $\Gamma \vdash_{ND} \mathcal{P}$ , then  $\Gamma \vdash_{AD} \mathcal{P}$ . For cases completed in the text, you may simply refer to the text, as the text refers cases to homework.

- E9.13. Consider a system N2 which is like ND except that its only rules are  $\wedge E$ ,  $\wedge I$ ,  $\sim E$  and  $\sim I$ , along with the system A2 from E3.4 on p. 81. Produce a complete demonstration that if  $\Gamma \vdash_{N2} \mathcal{P}$ , then  $\Gamma \vdash_{A2} \mathcal{P}$ . You may use any of the theorems for A2 from E3.4, along with DT from E9.7.
- E9.14. Consider the following *ND* derivation and, using the method from the induction, construct a derivation to show  $\exists x (C \land Bx) \vdash_{AD} C$ .

| 1. | $\exists x (C \land Bx)$ | Р                                              |
|----|--------------------------|------------------------------------------------|
| 2. | $C \wedge By$            | $\mathbf{A}\left(g,1\exists \mathbf{E}\right)$ |
| 3. | C                        | $2 \land E$                                    |
| 4. | С                        | 1,2-3 ∃E                                       |

Hint: your derivation should have 12 lines.

## 9.4 Extending to *ND*+

ND+ adds sixteen rules to ND: the four inference rules, MT, HS, DS and NB and the twelve replacement rules, DN, Com, Assoc, Idem, Impl, Trans, DeM, Exp, Equiv, Dist, QN and BQN — where some of these have multiple forms. It might seem tedious to go through all the cases but, as it happens, we have already done most of the work. First, it is easy to see that,

T9.12. If  $\Gamma \vdash_{ND} \mathcal{P}$  then  $\Gamma \vdash_{ND+} \mathcal{P}$ .

Suppose  $\Gamma \vdash_{ND} \mathcal{P}$ . Then there is an *ND* derivation *N* of  $\mathcal{P}$  from premises in  $\Gamma$ . But since every rule of *ND* is a rule of *ND*+, *N* is a derivation in *ND*+ as well. So  $\Gamma \vdash_{ND+} \mathcal{P}$ .

From T9.2 and T9.12, then, the situation is as follows,

$$\Gamma \vdash_{\!\!\! AD} \mathscr{P} \xrightarrow{9.2} \Gamma \vdash_{\!\!\! ND} \mathscr{P} \xrightarrow{9.12} \Gamma \vdash_{\!\!\! ND+} \mathscr{P}$$

If an argument is valid in AD, it is valid in ND, and in ND+. From T9.11, the leftmost arrow is a biconditional. Again, however, one might think that ND+ has more resources than ND, so that more could be derived in ND+ than ND. But this is not so. To see this, we might begin with the closer systems ND and ND+, and attempt to show that anything derivable in ND+ is derivable in ND. Alternatively, we choose simply to expand the induction of the previous section to include cases for all the

rules of ND+. The result is a demonstration that if  $\Gamma \vdash_{ND+} \mathcal{P}$ , then  $\Gamma \vdash_{AD} \mathcal{P}$ . Given this, the three systems are connected in a "loop" — so that if there is a derivation in any one of the systems, there is a derivation in the others as well.

T9.13. If  $\Gamma \vdash_{ND+} \mathcal{P}$ , then  $\Gamma \vdash_{AD} \mathcal{P}$ .

Suppose  $\Gamma \vdash_{ND+} \mathcal{P}$ ; then there is an ND+ derivation N of  $\mathcal{P}$  from premises in  $\Gamma$ . We show that for any i, there is a good AD derivation  $A_i$  that matches N through line i.

- *Basis:* The first line of N is a premise or an assumption. Let  $A_1$  be the same. Then  $A_1$  matches N; and since there is no application of Gen,  $A_1$  is good.
- Assp: For any  $i, 0 \le i < k$ , there is a good derivation  $A_i$  that matches N through line i.
- Show: There is a good derivation of  $A_k$  that matches N through line k.

Either  $\mathcal{Q}_k$  is a premise or assumption, arises by a rule of *ND*, or by the *ND*+ derivation rules, MT, HS, DS, NB or replacement rules, DN, Com, Assoc, Idem, Impl, Trans, DeM, Exp, Equiv, Dist, QN or BQN. If  $\mathcal{Q}_k$  is a premise or assumption or arises by a rule of *ND*, then by reasoning as for T9.11, there is a good derivation  $A_k$  that matches *N* through line *k*. So suppose  $\mathcal{Q}_k$  arises by one of the *ND*+ rules.

(MT) If  $\mathcal{Q}_k$  arises from previous lines by MT, then N is something like this,

$$\begin{vmatrix} i & \mathcal{B} \to \mathcal{C} \\ j & \sim \mathcal{C} \\ k & \sim \mathcal{B} & i, j \text{ MT} \end{vmatrix}$$

where  $i, j < k, \mathcal{B} \to \mathcal{C}$  and  $\sim \mathcal{C}$  are accessible at line k, and  $\mathcal{Q}_k = \sim \mathcal{B}$ . By assumption  $A_{k-1}$  matches N through line k-1 and is good. So  $\mathcal{B} \to \mathcal{C}$  and  $\sim \mathcal{C}$  appear at the same scope on the lines numbered '*i*' and '*j*' of  $A_{k-1}$  and are accessible in  $A_{k-1}$ . So let  $A_k$  continue as follows,

 $i \mid \mathcal{B} \to \mathcal{C}$   $j \mid \sim \mathcal{C}$   $k.1 \quad (\mathcal{B} \to \mathcal{C}) \to (\sim \mathcal{C} \to \sim \mathcal{B}) \qquad \text{T3.13}$   $k.2 \quad \sim \mathcal{C} \to \sim \mathcal{B} \qquad \qquad k.1, i \text{ MP}$   $k \mid \sim \mathcal{B} \qquad \qquad k.2, j \text{ MP}$ 

So  $Q_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good.

- (HS) Homework.
- (DS) Homework.
- (NB) Homework.
- (rep) If If  $\mathcal{Q}_k$  arises from a replacement rule *rep* of the form  $\mathcal{C} \triangleleft \triangleright \mathcal{D}$ , then N is something like this,

where i < k,  $\mathcal{B}$  is accessible at line k and, in the first case,  $\mathcal{Q}_k = \mathcal{B}^{\mathcal{C}}/\!\!/_{\mathcal{D}}$ . By assumption  $A_{k-1}$  matches N through line k-1 and is good. But by T6.11 - T6.28, T6.31, T6.32, and T6.70,  $\vdash_{ND} \mathcal{C} \leftrightarrow \mathcal{D}$ ; so with T9.11,  $\vdash_{AD} \mathcal{C} \leftrightarrow \mathcal{D}$ ; so by T9.9,  $\vdash_{AD} \mathcal{B} \leftrightarrow \mathcal{B}^{\mathcal{C}}/\!\!/_{\mathcal{D}}$ . Call an arbitrary particular result of this sort, Tx, and augment  $A_k$  as follows,

$$\begin{array}{c|ccccc} 0.k & \mathcal{B} \leftrightarrow \mathcal{B}^{\mathcal{C}} / \! /_{\mathcal{D}} & Tx \\ i & \mathcal{B} \\ k.1 & (\mathcal{B} \rightarrow \mathcal{B}^{\mathcal{C}} / \! /_{\mathcal{D}}) \wedge (\mathcal{B}^{\mathcal{C}} / \! /_{\mathcal{D}} \rightarrow \mathcal{B}) & 0.k \text{ abv} \\ k.2 & [(\mathcal{B} \rightarrow \mathcal{B}^{\mathcal{C}} / \! /_{\mathcal{D}}) \wedge (\mathcal{B}^{\mathcal{C}} / \! /_{\mathcal{D}} \rightarrow \mathcal{B})] \rightarrow (\mathcal{B} \rightarrow \mathcal{B}^{\mathcal{C}} / \! /_{\mathcal{D}}) & T3.20 \\ k.3 & \mathcal{B} \rightarrow \mathcal{B}^{\mathcal{C}} / \! /_{\mathcal{D}} & k.2, k.1 \text{ MP} \\ k & \mathcal{B}^{\mathcal{C}} / \! /_{\mathcal{D}} & k.3, i \text{ MP} \end{array}$$

So  $\mathcal{Q}_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. There may be applications of Gen in the derivation of Tx; but that derivation is under the scope of no undischarged assumption. And under the scope of any undischarged assumptions, there is no new application of Gen. So  $A_k$  is good. And similarly in the other case, with some work to flip the biconditional  $\vdash_{AD} \mathcal{C} \leftrightarrow \mathcal{D}$  to  $\vdash_{AD} \mathcal{D} \leftrightarrow \mathcal{C}$ .

In any case,  $A_k$  matches N through line k and is good.

*Indct:* Derivation A matches N and is good.

That is it! The key is that work we have already done collapses cases for all the replacement rules into one. So each of the derivation systems, *AD*, *ND*, and *ND*+ is

### **Theorems of Chapter 9**

- T9.1 For any ordinary argument  $\mathcal{P}_1 \dots \mathcal{P}_n/\mathcal{Q}$ , with good translation consisting of II and  $\mathcal{P}'_1 \dots \mathcal{P}'_n, \mathcal{Q}'$ , if  $\mathcal{P}'_1 \dots \mathcal{P}'_n \models \mathcal{Q}'$ , then  $\mathcal{P}_1 \dots \mathcal{P}_n/\mathcal{Q}$  is logically valid.
- T9.2 If  $\Gamma \vdash_{AD} \mathcal{P}$ , then  $\Gamma \vdash_{ND} \mathcal{P}$ .
- T9.3 (*Deduction Theorem*) If  $\Delta \cup \{\mathcal{P}\} \vdash_{AD} \mathcal{Q}$ , and no application of Gen under the scope of  $\mathcal{P}$  is to a variable free in  $\mathcal{P}$ , then  $\Delta \vdash_{AD} \mathcal{P} \to \mathcal{Q}$ .
- T9.4  $\vdash_{AD} \mathcal{A} \to (\mathcal{B} \to (\mathcal{A} \land \mathcal{B}))$
- $\mathsf{T9.5} \vdash_{\mathsf{AD}} (\mathcal{A} \to \mathcal{C}) \to [(\mathcal{B} \to \mathcal{C}) \to ((\mathcal{A} \lor \mathcal{B}) \to \mathcal{C})]$
- T9.6 For arbitrary terms r, s and t,  $\vdash_{AD} (r = s) \rightarrow (t = t^{r}//_{s})$ .
- T9.7 For any formula  $\mathcal{A}$  and terms r and s, if s is free for the replaced instance of r in  $\mathcal{A}$ , then  $\vdash_{\mathcal{AD}} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r //_s)$ .
- T9.8 For any formula A and terms r and s, if s is free for the replaced instances of r in A, then  $\vdash_{AD} (r = s) \rightarrow (A \rightarrow A^r/_s)$ .
- T9.9 For any formulas  $\mathcal{A}, \mathcal{B}$  and  $\mathcal{C}, \text{ if } \vdash_{AD} \mathcal{B} \leftrightarrow \mathcal{C}, \text{ then } \vdash_{AD} \mathcal{A} \leftrightarrow \mathcal{A}^{\mathcal{B}}/\!\!/_{\mathcal{C}}.$
- T9.11 If  $\Gamma \vdash_{ND} \mathcal{P}$ , then  $\Gamma \vdash_{AD} \mathcal{P}$ .
- T9.12 If  $\Gamma \vdash_{ND} \mathcal{P}$  then  $\Gamma \vdash_{ND+} \mathcal{P}$ .
- T9.13 If  $\Gamma \vdash_{ND+} \mathcal{P}$ , then  $\Gamma \vdash_{AD} \mathcal{P}$ .

equivalent to the others. That is,  $\Gamma \vdash_{AD} \mathcal{P}$  iff  $\Gamma \vdash_{ND} \mathcal{P}$  iff  $\Gamma \vdash_{ND+} \mathcal{P}$ . And that is what we set out to show.

- \*E9.15. Set up the above induction and complete the unfinished cases to show that if  $\Gamma \vdash_{ND+} \mathcal{P}$ , then  $\Gamma \vdash_{AD} \mathcal{P}$ . For cases completed in the text, you may simply refer to the text, as the text refers cases to homework.
- E9.16. Consider a sentential language with ~ and  $\land$  primitive, along with systems N2 with rules  $\land E$ ,  $\land I$ ,  $\sim E$  and  $\sim I$  from E9.13, and A2 from E3.4 on p. 81. Suppose N2 is augmented to a system N2+ that includes rules MT and Com (for  $\land$ ). Augment your argument from E9.13 to produce a complete demonstration that if  $\Gamma \vdash_{N2+} \mathcal{P}$  then  $\Gamma \vdash_{A2} \mathcal{P}$ . Hint: You will have to prove some

*A2* results parallel to ones for which we have merely appealed to theorems above. Do not forget that you have DT from E9.7.

- E9.17. For each of the following concepts, explain in an essay of about two pages, so that (college freshman) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.
  - a. The reason semantic validity implies logical validity, but not the other way around.
  - b. The notion of a *constructive* proof by mathematical induction.

## Chapter 10

# **Main Results**

We have introduced four notions of validity, and started to think about their interrelations. In chapter 9, we showed that if an argument is semantically valid, then it is logically valid, and that an argument is valid in *AD* iff it is valid in *ND*. We turn now to the relation between these derivation systems and semantic validity. This completes the project of demonstrating that the different notions of validity are related as follows.



Since AD and ND are equivalent, it is not necessary separately to establish the relations between AD and semantic validity, and between ND and semantic validity. Because it is relatively easy to reason about AD, we mostly reason about a system like AD to establish that an argument is valid in AD iff it is semantically valid. From the equivalence between AD and ND it then follows that an argument is valid in NDiff it is semantically valid.

The project divides into two parts. First, we take up the arrows from right to left, and show that if an argument is valid in *AD*, then it is semantically valid: if  $\Gamma \vdash_{AD} \mathcal{P}$ , then  $\Gamma \vDash \mathcal{P}$ . Thus our derivation system is *sound*. If a derivation system is sound, it never leads from premises that are true on an interpretation, to a conclusion

that is not. Second, moving in the other direction, we show that if an argument is semantically valid, then it is valid in *AD*: if  $\Gamma \models \mathcal{P}$ , then  $\Gamma \vdash_{AD} \mathcal{P}$ . Thus our derivation system is *adequate*. If a derivation system is adequate, there is a derivation from the premises to the conclusion for every argument that is semantically valid.

## 10.1 Soundness

It is easy to construct derivation systems that are not sound. Thus, for example, consider a derivation system like AD but without the restriction on A4 that the substituted term t be free for the variable x in formula  $\mathcal{P}$ . Given this, we might reason as follows,

|     | 1. $\forall x \exists y \sim (x = y)$                                    | prem   |
|-----|--------------------------------------------------------------------------|--------|
| (A) | 2. $\forall x \exists y \sim (x = y) \rightarrow \exists y \sim (y = y)$ | "A4"   |
|     | 3. $\exists y \sim (y = y)$                                              | 1,2 MP |

y is not free for x in  $\exists y \sim (x = y)$ ; so line (2) is not an instance of A4. And it is a good thing: Consider any interpretation with at least two elements in U. Then it is true that for every x there is some y not identical to it. So the premise is true. But there is no y in U that is not identical to itself. So the conclusion is not true. So the true premise leads to a conclusion that is not true. So the derivation system is not sound.

We would like to show that AD is sound — that there is no sequence of moves, no matter how complex or clever, that would lead from premises that are true to a conclusion that is not true. The argument itself is straightforward: suppose  $\Gamma \vdash_{AD} \mathcal{P}$ ; then there is an AD derivation  $A = \langle Q_1 \dots Q_n \rangle$  of  $\mathcal{P}$  with  $Q_n = \mathcal{P}$ . By induction on line numbers in A, we show that for any  $i, \Gamma \vDash Q_i$ . The case when i = n is the desired result. So if  $\Gamma \vdash_{AD} \mathcal{P}$ , then  $\Gamma \vDash \mathcal{P}$ . This general strategy should by now be familiar. However, for the case involving A4, it will be helpful to obtain a pair of preliminary results.

#### **10.1.1** Switching Theorems

In this section, we develop a couple theorems which link substitutions into formulas and terms with substitutions in variable assignments. As we have seen before, the results are a matched pair, with a first result for terms, that feeds into the basis clause for a result about formulas. Perhaps the hardest part is not so much the proofs of the theorems, as understanding what the theorems say. So let us turn to the first.

Suppose we have some terms t and r with interpretation I and variable assignment d. Say  $I_d[r] = 0$ . Then the first proposition is this: term t is assigned the same

object on  $I_{d(x|o)}$ , as  $t_r^{\chi}$  is assigned on  $I_d$ . Intuitively, this is because the same object is fed into the x-place of the term in each case. With t and d(x|o),

(B) 
$$t: h^n \dots x \dots$$
$$| d(x|o): \dots o \dots$$

object 0 is the input to the "slot" occupied by x. But we are given that  $l_d[r] = 0$ . So with  $t_r^x$  and d,

(C) 
$$\begin{array}{c} t_r^{\chi} \colon \hbar^n \dots r \dots \\ | \\ \mathsf{d} \colon \dots \circ \dots \end{array}$$

object o is the input into the "slot" that was occupied by x. So if  $I_d[r] = 0$ , then  $I_{d(x|0)}[t] = I_d[t_r^{\chi}]$ . In the one case, we guarantee that object 0 goes into the x-place by meddling with the variable assignment. In the other, we get the same result by meddling with the term. Be sure you are clear about this in your own mind. This will be our first result.

T10.1. For any interpretation I, variable assignment d, with terms t and r, if  $l_d[r] = 0$ , then  $l_{d(x|0)}[t] = l_d[t_r^{\chi}]$ .

For arbitrary terms t and r, with interpretation I and variable assignment d, suppose  $I_d[r] = 0$ . By induction on the number of function symbols in t,  $I_{d(x|0)}[t] = I_d[t_r^x]$ .

- *Basis:* If t has no function symbols, then it is a constant or a variable. Either t is the variable x or it is not. (i) Suppose t is a constant or variable other than x; then  $t_r^{\chi} = t$  (no replacement is made); but d and d(x|o) assign just the same things to variables other than x; so they assign just the same things to any variable in t; so by T8.3,  $I_d[t] = I_{d(x|o)}[t]$ . So  $I_d[t_r^{\chi}] = I_{d(x|o)}[t]$ . (ii) If t is x, then  $t_r^{\chi}$  is r (all of t is replaced by r); so  $I_d[t_r^{\chi}] = I_d[r] = 0$ . But t is x; so  $I_d(x|o)[t] = I_d(x|o)[x]$ ; and by TA(v),  $I_d(x|o)[x] = d(x|o)[x] = 0$ . So  $I_d[t_r^{\chi}] = I_d(x|o)[t]$ .
- Assp: For any  $i, 0 \le i < k$ , for t with i function symbols,  $I_d[t_r^x] = I_{d(x|o)}[t]$ .

Show: If t has k function symbols, then  $l_d[t_r^x] = l_{d(x|o)}[t]$ .

If t has k function symbols, then it is of the form,  $\hbar^n s_1 \dots s_n$  where  $s_1 \dots s_n$  have  $\langle k$  function symbols. In this case,  $t_r^{\chi} = [\hbar^n s_1 \dots s_n]_r^x$   $= \hbar^n s_1 \frac{\chi}{r} \dots s_n \frac{\chi}{r}$ . So  $l_d[t_r^{\chi}] = l_d[\hbar^n s_1 \frac{\chi}{r} \dots s_n \frac{\chi}{r}]$ ; by TA(f), this is  $l[\hbar^n] \langle l_d[s_1 \frac{\chi}{r}] \dots l_d[s_n \frac{\chi}{r}] \rangle$ . Similarly,  $l_{d(\chi|0)}[t] = l_{d(\chi|0)}[\hbar^n s_1 \dots s_n]$ ; and by TA(f), this is  $l[\hbar^n] \langle l_{d(\chi|0)}[s_1] \dots l_{d(\chi|0)}[s_n] \rangle$ . But by assumption,  $l_d[s_1 \frac{\chi}{r}] = l_{d(\chi|0)}[s_1]$ , and  $\dots$  and  $l_d[s_n \frac{\chi}{r}] = l_{d(\chi|0)}[s_n]$ ; so  $\langle \mathsf{I}_{\mathsf{d}}[\mathfrak{s}_{1} \overset{x}{r}] \dots \mathsf{I}_{\mathsf{d}}[\mathfrak{s}_{n} \overset{x}{r}] \rangle = \langle \mathsf{I}_{\mathsf{d}(x|\mathsf{o})}[\mathfrak{s}_{1}] \dots \mathsf{I}_{\mathsf{d}(x|\mathsf{o})}[\mathfrak{s}_{n}] \rangle; \text{ so } \mathsf{I}[\hbar^{n}] \langle \mathsf{I}_{\mathsf{d}}[\mathfrak{s}_{1} \overset{x}{r}] \\ \dots \mathsf{I}_{\mathsf{d}}[\mathfrak{s}_{n} \overset{x}{r}] \rangle = \mathsf{I}[\hbar^{n}] \langle \mathsf{I}_{\mathsf{d}(x|\mathsf{o})}[\mathfrak{s}_{1}] \dots \mathsf{I}_{\mathsf{d}(x|\mathsf{o})}[\mathfrak{s}_{n}] \rangle; \text{ so } \mathsf{I}_{\mathsf{d}}[t^{x}_{r}] = \mathsf{I}_{\mathsf{d}(x|\mathsf{o})}[t].$ 

Indet: For any t,  $I_d[t_r^x] = I_{d(x|o)}[t]$ .

Since the "switching" leaves assignments to the parts the same, assignments to the whole remains the same as well.

Similarly, suppose we have we have term r with interpretation I and variable assignment d, where  $I_d[r] = 0$  as before. Suppose r is free for variable x in formula Q. Then the second proposition is that a formula Q is satisfied on  $I_{d(x|0)}$  iff  $Q_r^x$  is satisfied on  $I_d$ . Again, intuitively, this is because the same object is fed into the x-place of the formula in each case. With Q and d(x|0),

(D) 
$$\begin{array}{ccc} \mathcal{Q}: & \mathcal{Q} \dots x \dots \\ & & | \\ d(x|o): & \dots & o \dots \end{array}$$

object o is the input to the "slot" occupied by x. But  $I_d[x] = 0$ . So with  $\mathcal{Q}_{x}^{x}$  and d,

(E) 
$$\begin{array}{c} \mathcal{Q}_{r}^{\chi} \colon \mathcal{Q} \dots r \dots \\ | \\ \mathsf{d} \colon \dots \circ \dots \end{array}$$

object o is the input into the "slot" that was occupied by x. So if  $I_d[r] = o$  (and r is free for x in  $\mathcal{Q}$ ), then  $I_{d(x|o)}[\mathcal{Q}] = S$  iff  $I_d[\mathcal{Q}_r^{\chi}] = S$ . In the one case, we guarantee that object o goes into the x-place by meddling with the variable assignment. In the other, we get the same result by meddling with the formula. This is our second result, which draws directly upon the first.

T10.2. For any interpretation I, variable assignment d, term r, and formula Q, if  $I_d[r] = 0$ , and r is free for x in Q, then  $I_d[Q_r^x] = S$  iff  $I_{d(x|o)}[Q] = S$ .

For arbitrary formula Q, term r and interpretation I, suppose r is free for x in Q. By induction on the number of operator symbols in Q,

Basis: Suppose  $l_d[r] = 0$ . If  $\mathcal{Q}$  has no operator symbols, then it is a sentence letter  $\mathcal{S}$  or an atomic of the form  $\mathcal{R}^n t_1 \dots t_n$ . In the first case,  $\mathcal{Q}_r^x = \mathcal{S}_r^x = \mathcal{S}$ . So  $l_d[\mathcal{Q}_r^x] = S$  iff  $l_d[\mathcal{S}] = S$ ; by SF(s), iff  $l[\mathcal{S}] = T$ ; by SF(s) again, iff  $l_{d(x|0)}[\mathcal{S}] = S$ ; iff  $l_{d(x|0)}[\mathcal{Q}] = S$ . In the second case,  $\mathcal{Q}_r^x = [\mathcal{R}^n t_1 \dots t_n]_r^x = \mathcal{R}^n t_1 \frac{x}{r} \dots t_n \frac{x}{r}$ . So  $l_d[\mathcal{Q}_r^x] = S$  iff  $l_d[\mathcal{R}^n t_1 \frac{x}{r} \dots t_n \frac{x}{r}] = S$ ; by SF(r), iff  $\langle l_d[t_1 \frac{x}{r}] \dots l_d[t_n \frac{x}{r}] \rangle \in l[\mathcal{R}^n]$ ; since  $l_d[r] = 0$ , by T10.1, iff  $\langle l_{d(x|0)}[t_1] \dots l_{d(x|0)}[t_n] \rangle \in l[\mathcal{R}^n]$ ; by SF(r), iff  $l_{d(x|0)}[\mathcal{R}^n t_1 \dots t_n] = S$ ; iff  $l_{d(x|0)}[\mathcal{Q}] = S$ .

- Assp: For any  $i, 0 \le i < k$ , if  $\mathcal{Q}$  has i operator symbols, r is free for x in  $\mathcal{Q}$ and  $l_d[r] = 0$ , then  $l_d[\mathcal{Q}_r^x] = S$  iff  $l_{d(x|0)}[\mathcal{Q}] = S$ .
- Show: If  $\mathcal{Q}$  has k operator symbols, r is free for x in  $\mathcal{Q}$  and  $I_d[r] = 0$ , then  $I_d[\mathcal{Q}_r^{\chi}] = S$  iff  $I_{d(\chi|0)}[\mathcal{Q}] = S$ . Suppose  $I_d[r] = 0$ . If  $\mathcal{Q}$  has k operator symbols, then  $\mathcal{Q}$  is of the form  $\sim \mathcal{B}, \ \mathcal{B} \to \mathcal{C}$ , or  $\forall v \mathcal{B}$  for variable v and formulas  $\mathcal{B}$  and  $\mathcal{C}$  with

< k operator symbols.

- (~) Suppose  $\mathcal{Q}$  is  $\sim \mathcal{B}$ . Then  $\mathcal{Q}_{r}^{\chi} = [\sim \mathcal{B}]_{r}^{\chi} = \sim [\mathcal{B}_{r}^{\chi}]$ . Since *r* is free for  $\chi$  in  $\mathcal{Q}$ , *r* is free for  $\chi$  in  $\mathcal{B}$ ; so the assumption applies to  $\mathcal{B}$ .  $\mathsf{I}_{\mathsf{d}}[\mathcal{Q}_{r}^{\chi}] = \mathsf{S}$  iff  $\mathsf{I}_{\mathsf{d}}[\sim \mathcal{B}_{r}^{\chi}] = \mathsf{S}$ ; by  $\mathsf{SF}(\sim)$ , iff  $\mathsf{I}_{\mathsf{d}}[\mathcal{B}_{r}^{\chi}] \neq \mathsf{S}$ ; by assumption iff  $\mathsf{I}_{\mathsf{d}}(\chi_{|\mathsf{0}})[\mathcal{B}] \neq \mathsf{S}$ ; by  $\mathsf{SF}(\sim)$ , iff  $\mathsf{I}_{\mathsf{d}}(\chi_{|\mathsf{0}})[\sim \mathcal{B}] = \mathsf{S}$ ; iff  $\mathsf{I}_{\mathsf{d}}(\chi_{|\mathsf{0}})[\mathcal{Q}] = \mathsf{S}$ .
- $(\rightarrow)$  Homework.
- (∀) Suppose Q is ∀v B. Either there are free occurrences of x in Q or not.
  (i) Suppose there are no free occurrences of x in Q. Then Q<sup>x</sup><sub>r</sub> is just Q (no replacement is made). But since d and d(x|o) make just the same assignments to variables other than x, they make just the same assignments to all the variables free in Q; so by T8.4, l<sub>d</sub>[Q] = S iff l<sub>d(x|o)</sub>[Q] = S. So l<sub>d</sub>[Q<sup>x</sup><sub>r</sub>] = S iff l<sub>d(x|o)</sub>[Q] = S.

(ii) Suppose there are free occurrences of x in  $\mathcal{Q}$ . Then x is some variable other than v, and  $\mathcal{Q}_{r}^{x} = [\forall v \mathcal{B}]_{r}^{x} = \forall v [\mathcal{B}_{r}^{x}].$ 

First, since r is free for x in  $\mathcal{Q}$ , r is free for x in  $\mathcal{B}$ , and v is not a variable in r; from this, for any  $m \in U$ , the variable assignments d and d(v|m) agree on assignments to variables in r; so by T8.3,  $I_d[r] = I_{d(v|m)}[r]$ ; so  $I_{d(v|m)}[r] = 0$ ; so the requirement of the assumption is met for the assignment d(v|m) and, as an instance of the assumption, for any  $m \in U$ , we have,  $I_{d(v|m)}[\mathcal{B}_r^{\chi}] = S$  iff  $I_{d(v|m,\chi|o)}[\mathcal{B}] = S$ .

Now suppose  $I_{d(x|o)}[\mathcal{Q}] = S$  but  $I_d[\mathcal{Q}_r^x] \neq S$ ; then  $I_{d(x|o)}[\forall v \mathcal{B}] = S$ but  $I_d[\forall v \mathcal{B}_r^x] \neq S$ . From the latter, by SF( $\forall$ ), there is some  $m \in U$ such that  $I_{d(v|m)}[\mathcal{B}_r^x] \neq S$ ; so by the above result,  $I_{d(v|m,x|o)}[\mathcal{B}] \neq S$ ; so by SF( $\forall$ ),  $I_{d(x|o)}[\forall v \mathcal{B}] \neq S$ ; this is impossible. And similarly [by homework] in the other direction. So  $I_{d(x|o)}[\mathcal{Q}] = S$  iff  $I_d[\mathcal{Q}_r^x] = S$ .

If  $\mathcal{Q}$  has k operator symbols, if r is free for x in  $\mathcal{Q}$  and  $I_d[r] = 0$ , then  $I_d[\mathcal{Q}_r^x] = S$  iff  $I_{d(x|0)}[\mathcal{Q}] = S$ .

*Indct:* For any  $\mathcal{Q}$ , if r is free for x in  $\mathcal{Q}$  and  $I_d[r] = 0$ , then  $I_d[\mathcal{Q}_r^x] = S$  iff  $I_{d(x|0)}[\mathcal{Q}] = S$ .

Perhaps the quantifier case looks more difficult than it is. The key point is that since r is free for x in Q, changes in the assignment to v do not affect the assignment to r. Thus the assumption applies to B for variable assignments that differ in their assignments to v. This lets us "take the quantifier off," apply the assumption, and then "put the quantifier back on" in the usual way. Another way to make this point is to see how the argument fails when r is not free for x in Q. If r is not free for x in Q, then a change in the assignment to v may affect the assignment to r. In this case, although  $l_d[r] = 0$ ,  $l_{d(v|m)}[r]$  might be something else. So there is no reason to think that substituting r for x will have the same effect as assigning x to 0. As we shall see, this restriction corresponds directly to the one on axiom A4. An example of failure for the axiom is the one (A) with which we began the chapter.

\*E10.1. Complete the cases for (→) and (∀) to complete the demonstration of T10.2. You should set up the complete demonstration, but for cases completed in the text, you may simply refer to the text, as the text refers cases to homework.

#### 10.1.2 Soundness

We are now ready for our main proof of soundness for *AD*. Actually, all the parts are already on the table. It is simply a matter of pulling them together into a complete demonstration.

T10.3. If  $\Gamma \vdash_{AD} \mathcal{P}$ , then  $\Gamma \vDash \mathcal{P}$ . (Soundness)

Suppose  $\Gamma \vdash_{AD} \mathcal{P}$ . Then there is an *AD* derivation  $A = \langle \mathcal{Q}_1 \dots \mathcal{Q}_n \rangle$  of  $\mathcal{P}$  from premises in  $\Gamma$ , with  $\mathcal{Q}_n = \mathcal{P}$ . By induction on the line numbers in *A*, we show that for any  $i, \Gamma \models \mathcal{Q}_i$ . The case when i = n is the desired result.

- *Basis:* The first line of A is a premise or an axiom. So  $Q_1$  is either a member of  $\Gamma$  or an instance of A1, A2, A3, A4, A5, A6 A7 or A8. The cases for A1, A2, A3, A5, A6, A7 and A8 are parallel.
- (prem) If  $\mathcal{Q}_1$  is a member of  $\Gamma$ , then there is no interpretation where all the members of  $\Gamma$  are true and  $\mathcal{Q}_1$  is not; so by QV,  $\Gamma \models \mathcal{Q}_1$ .
  - (Ax) Suppose  $\mathcal{Q}_1$  is an instance of A1, A2, A3, A5, A6, A7 or A8 and  $\Gamma \nvDash \mathcal{Q}_1$ . Then by QV, there is some I such that  $I[\Gamma] = T$  but  $I[\mathcal{Q}_1] \neq T$ . But by T7.2, T7.3, T7.4, T7.6, T7.8, T7.9, and T7.10,  $\vDash \mathcal{Q}_1$ ; so by QV,  $I[\mathcal{Q}_1] = T$ . This is impossible, reject the assumption:  $\Gamma \vDash \mathcal{Q}_1$ .
- (A4) If  $\mathcal{Q}_1$  is an instance of A4, then it is of the form  $\forall x \mathcal{B} \to \mathcal{B}_r^x$  where term r is free for variable x in formula  $\mathcal{B}$ . Suppose  $\Gamma \nvDash \mathcal{Q}_1$ . Then by

QV, there is an I such that  $I[\Gamma] = T$ , but  $I[\forall x \mathcal{B} \to \mathcal{B}_{r}^{x}] \neq T$ . From the latter, by TI, there is some d such that  $I_{d}[\forall x \mathcal{B} \to \mathcal{B}_{r}^{x}] \neq S$ ; so by SF( $\to$ ),  $I_{d}[\forall x \mathcal{B}] = S$  but  $I_{d}[\mathcal{B}_{r}^{x}] \neq S$ ; from the first of these, by SF( $\forall$ ), for any  $m \in U$ ,  $I_{d(x|m)}[\mathcal{B}] = S$ ; in particular, where for some object 0,  $I_{d}[r] = 0$ ,  $I_{d(x|0)}[\mathcal{B}] = S$ ; so, with r free for x in formula  $\mathcal{B}$ , by T10.2,  $I_{d}[\mathcal{B}_{r}^{x}] = S$ . This is impossible; reject the assumption:  $\Gamma \models Q_{1}$ .

- *Assp:* For any  $i, 1 \leq i < k, \Gamma \vDash Q_i$ .
- Show:  $\Gamma \vDash Q_k$ .

 $Q_k$  is either a premise, an axiom, or arises from previous lines by MP or Gen. If  $Q_k$  is a premise or an axiom then, as in the basis,  $\Gamma \models Q_k$ . So suppose  $Q_k$  arises by MP or Gen.

- (MP) Homework.
- (Gen) If  $Q_k$  arises by Gen, then A is something like this,

```
i \mathcal{B}
\vdots
k \forall x \mathcal{B} \quad i \text{ Gen}
```

where i < k and  $\mathcal{Q}_k = \forall x \mathcal{B}$ . Suppose  $\Gamma \nvDash \mathcal{Q}_k$ ; then  $\Gamma \nvDash \forall x \mathcal{B}$ ; so by QV, there is some I such that  $I[\Gamma] = T$  but  $I[\forall x \mathcal{B}] \neq T$ ; from the latter, by TI, there is a d such that  $I_d[\forall x \mathcal{B}] \neq S$ ; so by  $SF(\forall)$ , there is some  $o \in U$ , such that  $I_d(x|o)[\mathcal{B}] \neq S$ . But  $I[\Gamma] = T$ , and by assumption,  $\Gamma \vDash \mathcal{B}$ ; so by QV,  $I[\mathcal{B}] = T$ ; so by TI, for any variable assignment h,  $I_h[\mathcal{B}] = S$ ; in particular, then,  $I_d(x|o)[\mathcal{B}] = S$ . This is impossible; reject the assumption:  $\Gamma \vDash \mathcal{Q}_k$ .

$$\Gamma \vDash \mathcal{Q}_k.$$

*Indct:* For any  $n, \Gamma \vDash Q_n$ .

So if  $\Gamma \vdash_{AD} \mathcal{P}$ , then  $\Gamma \vDash \mathcal{P}$ . So *AD* is sound. And since *AD* is sound, with theorems T9.2, T9.12 and T9.13 it follows that *ND* and *ND*+ are sound as well.

- \*E10.2. Complete the case for (MP) to round out the demonstration that AD is sound. You should set up the complete demonstration, but for cases completed in the text, you may simply refer to the text, as the text refers cases to homework.
- E10.3. Consider a derivation system A4 which has axioms and rules,

A4 A1. Any sentential form  $\mathcal{P}$  such that  $\models \mathcal{P}$ . A2.  $\vdash \mathcal{P}_t^{\chi} \to \exists \chi \mathcal{P} \qquad -\text{ where } t \text{ is free for } \chi \text{ in } \mathcal{P}$ MP.  $\mathcal{Q}$  follows from  $\mathcal{P} \to \mathcal{Q}$  and  $\mathcal{P}$  $\exists E. \exists \chi P \to Q$  follows from  $\mathcal{P} \to \mathcal{Q} \qquad -\text{ where } \chi \text{ is not free in } \mathcal{Q}$ 

Provide a complete demonstration that  $A^4$  is sound. You may appeal to substitution results from the text as appropriate. Hint: By the soundness of AD, if  $\mathcal{P}$  is a sentential form and  $\vdash_{AD} \mathcal{P}$  then  $\mathcal{P}$  is among axioms of the sort (A1).

#### 10.1.3 Consistency

The proof of soundness is the main result we set out to achieve in this section. But before we go on, it is worth pausing to make an application to *consistency*. Say a set  $\Sigma$  (Sigma) of formulas is *consistent* iff there is no formula  $\mathcal{A}$  such that  $\Sigma \vdash \mathcal{A}$  and  $\Sigma \vdash \sim \mathcal{A}$ . Consistency is thus defined in terms of *derivations* rather than semantic notions. But we show,

T10.4. If there is an interpretation M such that  $M[\Gamma] = T$  (a *model* for  $\Gamma$ ), then  $\Gamma$  is consistent.

Suppose there is an interpretation M such that  $M[\Gamma] = T$  but  $\Gamma$  is inconsistent. From the latter, there is a formula  $\mathcal{A}$  such that  $\Gamma \vdash \mathcal{A}$  and  $\Gamma \vdash \sim \mathcal{A}$ ; so by T10.3,  $\Gamma \vDash \mathcal{A}$  and  $\Gamma \vDash \sim \mathcal{A}$ . But  $M[\Gamma] = T$ ; so by QV,  $M[\mathcal{A}] = T$  and  $M[\sim \mathcal{A}] = T$ ; so by TI, for any d,  $M_d[\mathcal{A}] = S$  and  $M_d[\sim \mathcal{A}] = S$ ; from the second of these, by SF( $\sim$ ),  $M_d[\mathcal{A}] \neq S$ . This is impossible; reject the assumption: if there is an interpretation M such that  $M[\Gamma] = T$ , then  $\Gamma$  is consistent.

This is an interesting and important theorem. Suppose we want to show that some set of formulas is inconsistent. For this, it is enough to *derive* a contradiction from the set. But suppose we want to show that there is no way to derive a contradiction. Merely failing to find a derivation does not show that there is not one! But, with soundness, we can demonstrate that there is no such derivation by finding a model for the set.

Similarly, if we want to show that  $\Gamma \vdash A$ , it is enough to *produce* the derivation. But suppose we want to show that  $\Gamma \nvDash A$ . Merely failing to find a derivation does not show that there is not one! Still, as above, given soundness, we can demonstrate that there is no derivation by finding a model on which the premises are true, with the negation of the conclusion. T10.5. If there is an interpretation M such that  $M[\Gamma \cup \{\sim \mathcal{A}\}] = T$ , then  $\Gamma \nvDash \mathcal{A}$ .

The reasoning is left for homework. But the idea is very much as above. With soundness, it is impossible to have both  $M[\Gamma \cup \{\sim A\}] = T$  and  $\Gamma \vdash A$ .

Again, the result is useful. Suppose, for example, we want to show that  $\sim \forall x Ax \nvDash Aa$ . You may be unable to find a derivation, and be able to point out flaws in a friend's attempt. But we show that there is no derivation by finding a model on which both  $\sim \forall x Ax$  and  $\sim \sim Aa$  are true. And this is easy. Let U = {1,2} with M[a] = 1 and  $M[A] = \{1\}$ .

(i) Suppose  $M[\sim \forall x Ax] \neq T$ ; then by TI, there is some d such that  $M_d[\sim \forall x Ax] \neq S$ ; so by  $SF(\sim)$ ,  $M_d[\forall x Ax] = S$ ; so by  $SF(\forall)$ , for any  $o \in U$ ,  $M_{d(x|o)}[Ax] = S$ ; so  $M_{d(x|2)}[Ax] = S$ . But d(x|2)[x] = 2; so by TA(v),  $M_{d(x|2)}[x] = 2$ ; so by SF(r),  $2 \in M[A]$ ; but  $2 \notin M[A]$ . This is impossible; reject the assumption:  $M[\sim \forall x Ax] = T$ . (ii) Suppose  $M[\sim \sim Aa] \neq T$ ; then by TI, there is some d such that  $M_d[\sim \sim Aa] \neq S$ ; so by  $SF(\sim)$ ,  $M_d[\sim Aa] = S$ ; and by  $SF(\sim)$  again,  $M_d[Aa] \neq S$ . But M[a] = 1; so by TA(c),  $M_d[a] = 1$ ; so by SF(r),  $1 \notin M[A]$ ; but  $1 \in M[A]$ . This is impossible; reject the assumption:  $M[\sim \sim Aa] = T$ . So  $M[\sim \forall x Ax] = T$  and  $M[\sim \sim Aa] = T$ . So by T10.5,  $\sim \forall x Ax \nvDash \sim Aa$ .

If there is a model on which all the members of  $\Gamma$  are true and  $\sim A$  is true, then it is not the case that every model with  $\Gamma$  true has A true. So, with soundness, there cannot be a derivation of A from  $\Gamma$ .

- \*E10.4. Provide an argument to show T10.5. Hint: The reasoning is very much as for T10.4.
- E10.5. (a) Show that  $\{\exists x Ax, \sim Aa\}$  is consistent. (b) Show that  $\forall x (Ax \rightarrow Bx), \sim Ba \nvDash \neg \exists x Ax.$

## **10.2** Sentential Adequacy

The proof of soundness is straightforward given methods we have used before. But the proof of adequacy was revolutionary when Gödel first produced it in 1930. It is easy to construct derivation systems that are *not* adequate. Thus, for example, consider a system like the sentential part of AD but without A1. It is easy to see that such a system is sound, and so that derivations without A1 do not go astray. (All we have to do is leave the case for A1 out of the proof for soundness.) But, by our discussion of independence from section 11.3 (see also E8.14), there is no derivation of A1 from A2 and A3 alone. So there are sentential expressions  $\mathcal{P}$  such that  $\models \mathcal{P}$ , but for which there is no derivation. So the resultant derivation system would not be adequate. We turn now to showing that our derivation systems are in fact adequate: if  $\Gamma \models \mathcal{P}$ , then  $\Gamma \vdash \mathcal{P}$ . Given this, with soundness, we have  $\Gamma \models \mathcal{P}$  iff  $\Gamma \vdash \mathcal{P}$ , so that our derivation systems deliver just the results they are supposed to.

Adequacy for a system like *AD* was first proved by Kurt Gödel in his 1930 doctoral dissertation. The version of the proof that we will consider is the standard one, essentially due to L. Henkin.<sup>1</sup> An interesting feature of these proofs is that they are not constructive. So far, in proving the equivalence of deductive systems, we have been able to show that there are certain derivations, by showing how to *construct* them. In this case, we show that there are derivations, but without showing how to construct them. As we shall see in Part IV, a constructive proof of adequacy for our full predicate logic is impossible. So this is the only way to go.

The proof of adequacy is more involved than any we have encountered so far. Each of the parts is comparable to what has gone before, and all the parts are straightforward. But there are enough parts that it is possible to lose the forest for the trees. I thus propose to do the proof three times. In this section, we will prove sentential adequacy — that for expressions in a sentential language, if  $\Gamma \models \mathcal{P}$ , then  $\Gamma \vdash \mathcal{P}$ . This should enable us to grasp the overall shape of the argument without interference from too many details. We will then consider a basic version of the quantificational argument and, after addressing a few complications, put it all together for the full version. Notation and theorem numbers are organized to preserve parallels between the cases.

#### 10.2.1 Basic Idea

The basic idea is straightforward: Let us restrict ourselves to an arbitrary sentential language  $\mathcal{L}_s$  and to sentential semantic rules. Derivations are automatically restricted to sentential rules by the restricted language. So derivations and semantics are particularly simple. For formulas in this language, our goal is to show that if  $\Gamma \models_s \mathcal{P}$ , then  $\Gamma \vdash \mathcal{P}$ . We can see how this works with just a couple of preliminaries.

We begin with a definition and a theorem. As before, let us say,

Con A set  $\Sigma$  of formulas is *consistent* iff there is no formula  $\mathcal{A}$  such that  $\Sigma \vdash \mathcal{A}$ and  $\Sigma \vdash \sim \mathcal{A}$ .

<sup>&</sup>lt;sup>1</sup>Henkin, "Completeness of the First-Order Calculus." Kurt Gödel, "Die Vollständigkeit der Axiome des Logischen Funktionenkalküls." English translation in *From Frege to Gödel*, reprint in *Gödel's Collected Works*.

So consistency is a syntactical notion. A set of formulas is consistent just in case there is no way to derive a contradiction from it. Now for the theorem,

T10.6<sub>s</sub>. For any set of formulas  $\Sigma$  and sentence  $\mathcal{P}$ , if  $\Sigma \nvDash \sim \mathcal{P}$ , then  $\Sigma \cup \{\mathcal{P}\}$  is consistent.

Suppose  $\Sigma \nvDash \sim \mathcal{P}$ , but  $\Sigma \cup \{\mathcal{P}\}$  is not consistent. From the latter, there is some  $\mathcal{A}$  such that  $\Sigma \cup \{\mathcal{P}\} \vdash \mathcal{A}$  and  $\Sigma \cup \{\mathcal{P}\} \vdash \sim \mathcal{A}$ . So by DT,  $\Sigma \vdash \mathcal{P} \rightarrow \mathcal{A}$ and  $\Sigma \vdash \mathcal{P} \rightarrow \sim \mathcal{A}$ ; by T3.10,  $\vdash \sim \sim \mathcal{P} \rightarrow \mathcal{P}$ ; so by T3.2,  $\Sigma \vdash \sim \sim \mathcal{P} \rightarrow \mathcal{A}$ , and  $\Sigma \vdash \sim \sim \mathcal{P} \rightarrow \sim \mathcal{A}$ ; but by A3,  $\vdash (\sim \sim \mathcal{P} \rightarrow \sim \mathcal{A}) \rightarrow [(\sim \sim \mathcal{P} \rightarrow \mathcal{A}) \rightarrow \sim \mathcal{P}]$ ; so by two instances of MP,  $\Sigma \vdash \sim \mathcal{P}$ . But this is impossible; reject the assumption: if  $\Sigma \nvDash \sim \mathcal{P}$ , then  $\Sigma \cup \{\mathcal{P}\}$  is consistent.

The idea is simple: if  $\Gamma \cup \{\mathcal{P}\}$  is inconsistent, then by reasoning as for  $\sim I$  in *ND*,  $\sim \mathcal{P}$  follows from  $\Gamma$  alone; so if  $\sim \mathcal{P}$  cannot be derived from  $\Gamma$  alone, then  $\Gamma \cup \{\mathcal{P}\}$  is consistent. Notice that, insofar as the language is sentential, the derivation does not include any applications of Gen, so the applications of DT are sure to meet the restriction on Gen.

In the last section, we saw that any set with a model is consistent. Now suppose we knew the converse, that any consistent set has a model.

(\*) For any consistent set of formulas  $\Sigma'$ , there is an interpretation M' such that  $M'[\Sigma'] = T$ .

This sets up the key connection between syntactic and semantic notions, between consistency on the one hand, and truth on the other, that we will need for adequacy. Schematically, then, with (\*) we have the following,

| 1. | $\Gamma \cup \{\sim \mathcal{P}\}$ has a model       | $\implies$ | $\Gamma \not\models_s \mathscr{P}$             |     |
|----|------------------------------------------------------|------------|------------------------------------------------|-----|
| 2. | $\Gamma \cup \{\sim \mathcal{P}\}$ is consistent     | $\implies$ | $\Gamma \cup \{\sim \mathcal{P}\}$ has a model | (*) |
| 3. | $\Gamma \cup \{\sim \mathcal{P}\}$ is not consistent | $\implies$ | $\Gamma \vdash \mathscr{P}$                    |     |

(2) is just (\*). (1) is by simple semantic reasoning: Suppose  $\Gamma \cup \{\sim \mathcal{P}\}$  has a model; then there is some M such that  $M[\Gamma \cup \{\sim \mathcal{P}\}] = T$ ; so  $M[\Gamma] = T$  and  $M[\sim \mathcal{P}] = T$ ; from the latter, by  $ST(\sim)$ ,  $M[\mathcal{P}] \neq T$ ; so  $M[\Gamma] = T$  and  $M[\mathcal{P}] \neq T$ ; so by  $SV, \Gamma \not\models_s \mathcal{P}$ . (3) is by straightforward syntactic reasoning: Suppose  $\Gamma \cup \{\sim \mathcal{P}\}$  is not consistent; then by an application of  $T10.6_s$ ,  $\Gamma \vdash \sim \sim \mathcal{P}$ ; but by  $T3.10, \vdash \sim \sim \mathcal{P} \rightarrow \mathcal{P}$ ; so by MP,  $\Gamma \vdash \mathcal{P}$ . Now suppose  $\Gamma \models_s \mathcal{P}$ ; then by (1), reading from right to left,  $\Gamma \cup \{\sim \mathcal{P}\}$ does not have a model; so by (2), again from right to left,  $\Gamma \cup \{\sim \mathcal{P}\}$  is not consistent; so by (3),  $\Gamma \vdash \mathcal{P}$ . So if  $\Gamma \models_s \mathcal{P}$ , then  $\Gamma \vdash \mathcal{P}$ , which was to be shown. Of course, knowing that there is some way to derive  $\mathcal{P}$  is not the same as knowing what that way is. All the same, (\*) tells us that there must exist a model of a certain sort, from which it follows that there must exist a derivation. And the work of our demonstration of adequacy reduces to a demonstration of (\*).

So we need to show that every consistent set of formulas  $\Sigma'$  has an interpretation M' such that  $M'[\Sigma'] = T$ . Here is the basic idea: We show that any consistent  $\Sigma'$  is a subset of a corresponding "big" set  $\Sigma''$  specified in such a way that it must have a model M' — which in turn is a model for the smaller  $\Sigma'$ . Following the arrows,



Given a consistent  $\Sigma'$ , we show that there is the big set  $\Sigma''$ . From this we show that there must be an M' that is a model not only for  $\Sigma''$  but for  $\Sigma'$  as well. So if  $\Sigma'$  is consistent, then it has a model. We proceed through a series of theorems to show that this can be done.

#### 10.2.2 Gödel Numbering

In constructing our big sets, we will want to consider formulas, for inclusion or exclusion, serially — one after another. For this, we need to "line them up" for consideration. Thus, in this section we show,

T10.7<sub>s</sub>. There is an enumeration  $Q_1, Q_2 \dots$  of all formulas in  $\mathcal{L}_s$ .

The proof is by construction. We develop a method by which the formulas can be lined up. The method is interesting in its own right, and foreshadows methods from Gödel's Incompleteness Theorem for arithmetic.

In subsection 2.2.1, we required that any sentential language  $\mathcal{L}_s$  has countably many sentence letters, which can be ordered into a series,  $\mathcal{S}_0, \mathcal{S}_1...$  Assume some such series. We want to show that the *formulas* of  $\mathcal{L}_s$  can be so ordered as well. Begin by assigning to each symbol  $\alpha$  (alpha) in the language an integer  $g[\alpha]$ , called its *Gödel* Number.

a. g[(] = 3
- b. g[) = 5
- c.  $g[\sim] = 7$
- d.  $g[\rightarrow] = 9$
- e.  $g[\mathscr{S}_n] = 11 + 2n$

So, for example,  $g[\mathscr{S}_0] = 11$  and  $g[\mathscr{S}_4] = 11 + 2 \times 4 = 19$ . Clearly each symbol gets a unique Gödel number, and Gödel numbers for individual symbols are odd positive integers.

Now we are in a position to assign a Gödel number to each formula as follows: Where  $\alpha_0, \alpha_1 \dots \alpha_n$  are the symbols, in order from left to right, in some expression Q,

$$g[\mathcal{Q}] = 2^{g[\alpha_0]} \times 3^{g[\alpha_1]} \times 5^{g[\alpha_2]} \times \ldots \times \pi_n^{g[\alpha_n]}$$

where 2, 3, 5...  $\pi_n$  are the first *n* prime numbers. So, for example,  $g[\sim \delta_0] = 2^7 \times 3^7 \times 5^{11}$ ; similarly,  $g[\sim (\vartheta_0 \rightarrow \vartheta_4)] = 2^7 \times 3^3 \times 5^{11} \times 7^9 \times 11^{19} \times 13^5 = 15463, 36193, 79608, 90364, 71042, 41201, 87066, 87500, 00000 — a very big integer! All the same, it is an integer, and it is clear that every expression is assigned to some integer.$ 

Further, different expressions get different Gödel numbers. It is a theorem of arithmetic that every integer is uniquely factored into primes (see the arithmetic for Gödel numbering and more arithmetic for Gödel numbering references). So a given integer can correspond to at most one formula: Given a Gödel number, we can find its unique prime factorization; then if there are seven 2s in the factorization, the first symbol is  $\sim$ ; if there are seven 3s, the second symbol is  $\sim$ ; if there are eleven 5s, the third symbol is  $\delta_0$ ; and so forth. Notice that numbers for individual *symbols* are odd, where numbers for *expressions* are even (where the number for an atomic comes out odd when it is thought of as a symbol, but then even when it is thought of as a formula).

The point is not that this is a practical, or a fun, procedure. Rather, the point is that we have integers associated with each expression of the language. Given this, we can take the set of all formulas, and *order* its members according to their Gödel numbers — so that there is an enumeration  $Q_1, Q_2...$  of all formulas. And this is what was to be shown.

E10.6. Find Gödel numbers for the following sentences (for the last, you need not do the calculation).

$$\$_7 \qquad \sim \$_0 \qquad \$_0 \rightarrow \sim (\$_1 \rightarrow \sim \$_0)$$

# Some Arithmetic Relevant to Gödel Numbering

Say an integer *i* has a "representation as a product of primes" if there are some primes  $p_a, p_b \dots p_j$  such that  $p_a \times p_b \times \dots \times p_j = i$ . We understand a single prime *p* to be its own representation.

- G1. Every integer > 1 has at least one representation as a product of primes.
  - *Basis:* 2 is prime and so is its own representation; so the first integer > 1 has a representation as a product of primes.
  - Assp: For any i, 1 < i < k, i has a representation as a product of primes.
  - *Show: k* has a representation as a product of primes.

If k is prime, the result is immediate; so suppose there are some i, j < k such that  $k = i \times j$ ; by assumption i has a representation as a product of primes  $p_a \times \ldots \times p_b$  and j has a representation as a product of primes  $q_a \times \ldots \times q_b$ ; so  $k = i \times j = p_a \times \ldots \times p_b \times q_a \times \ldots \times q_b$  has a representation as a product of primes.

*Indct:* Any i > 1 has a representation as a product of primes.

Corollary: any integer > 1 is divided by at least one prime.

G2. There are infinitely many prime numbers.

Suppose the number of primes is finite; then there is some list  $p_1, p_2...p_n$  of all the primes; consider  $q = p_1 \times p_2 \times ... \times p_n + 1$ ; no  $p_i$  in the list  $p_1...p_n$  divides q evenly, since each leaves remainder 1; but by the corollary to (G1), q is divided by some prime; so some prime is not on the list; reject the assumption: there are infinitely many primes.

Note: Sometimes q, calculated this way, is itself prime: when the list is {2}, q = 2 + 1 = 3, and 3 is prime. Similarly,  $2 \times 3 + 1 = 7$ ,  $2 \times 3 \times 5 + 1 = 31$ ,  $2 \times 3 \times 5 \times 7 + 1 = 211$ , and  $2 \times 3 \times 5 \times 7 \times 11 + 1 = 2311$ , where 7, 31, 211, and 2311 are all prime. But  $2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$ . So we are not always *finding* a prime not on the list, but rather only showing that there *is* a prime not on it.

G3. For any i > 1, if *i* is the product of the primes  $p_1, p_2 \dots p_a$ , then no distinct collection of primes  $q_1, q_2 \dots q_b$  is such that *i* is the product of them. (The *Fundamental Theorem* of Arithmetic)

For a proof, see the more arithmetic for Gödel numbering reference in the corresponding part of the next section.

E10.7. Determine the expressions that have the following Gödel numbers.

49 1944  $2^7 \times 3^3 \times 5^{11} \times 7^9 \times 11^7 \times 13^{13} \times 17^5$ 

E10.8. Which would come first in the official enumeration of formulas,  $\vartheta_1 \to -\vartheta_2$  or  $\vartheta_2 \to -\vartheta_2$ ? Explain. Hint: you should be able to do this without actually calculating the Gödel numbers.

#### 10.2.3 The Big Set

Recall that a set  $\Sigma$  is consistent iff there is no A such that  $\Sigma$  implies both A and  $\sim A$ . Now, a set  $\Sigma$  is *maximal* iff for any A the set implies one or the other.

Max A set  $\Sigma$  of formulas is *maximal* iff for any sentence  $\mathcal{A}, \Sigma \vdash \mathcal{A}$  or  $\Sigma \vdash \sim \mathcal{A}$ .

Again, this is a syntactical notion. If a set is maximal, then it implies  $\mathcal{A}$  or  $\sim \mathcal{A}$  for any sentence  $\mathcal{A}$ ; if it is consistent, then it does not imply both. We set out to construct a big set  $\Sigma''$  from  $\Sigma'$ , and show that  $\Sigma''$  is both maximal and consistent.

 $\operatorname{Cns}\Sigma''$  Construct  $\Sigma''$  from  $\Sigma'$  as follows: By T10.7<sub>s</sub>, there is an enumeration,  $\mathcal{Q}_1, \mathcal{Q}_2...$  of all the formulas in  $\mathcal{L}_s$ . Consider this enumeration, and let  $\Omega_0$ (Omega<sub>0</sub>) be the same as  $\Sigma'$ . Then for any i > 0, let

```
\begin{array}{lll} \Omega_{i} = \Omega_{i-1} & \text{if} & \Omega_{i-1} \vdash \sim \mathcal{Q}_{i} \\ \text{else,} \\ \Omega_{i} = \Omega_{i-1} \cup \{\mathcal{Q}_{i}\} & \text{if} & \Omega_{i-1} \nvDash \sim \mathcal{Q}_{i} \\ \text{then,} \\ \Sigma'' = \bigcup_{i>0} \Omega_{i} - \text{that is, } \Sigma'' \text{ is the union of all the } \Omega_{i} \text{s} \end{array}
```

Beginning with set  $\Sigma' (= \Omega_0)$ , we consider the formulas in the enumeration  $Q_1$ ,  $Q_2$ ... one-by-one, adding a formula to the set just in case its negation is not already derivable.  $\Sigma''$  contains all the members of  $\Sigma'$  together with all the formulas added this way. Observe that  $\Sigma' \subseteq \Sigma''$ . One might think of the  $\Omega_i$ s as constituting a big "sack" of formulas, and the  $Q_i$ s as coming along on a conveyor belt: for a given  $Q_i$ , if there is no way to derive its negation from formulas already in the sack, we throw the  $Q_i$  in; otherwise, we let it go on by. Of course, this is not a procedure we could complete in finite time. Rather, we give a *logical* condition which specifies, for any  $Q_i$  in the language, whether it is to be included in  $\Sigma''$  or not. The important point is that some  $\Sigma''$  meeting these conditions *exists*.

As an example, suppose  $\Sigma' = \{ \sim A \rightarrow B \}$  and consider an enumeration which begins  $A, \sim A, B, \sim B...$  Then,

 $\Omega_0 = \Sigma'; \text{ so } \Omega_0 = \{\sim A \to B\}.$   $\mathcal{Q}_1 = A, \text{ and } \Omega_0 \nvDash \sim A; \text{ so } \Omega_1 = \{\sim A \to B\} \cup \{A\} = \{\sim A \to B, A\}.$ (F)  $\mathcal{Q}_2 = \sim A, \text{ and } \Omega_1 \vdash \sim \sim A; \text{ and } \Omega_2 \text{ is unchanged; so } \Omega_2 = \{\sim A \to B, A\}.$   $\mathcal{Q}_3 = B, \text{ and } \Omega_2 \nvDash \sim B; \text{ so } \Omega_3 = \{\sim A \to B, A\} \cup \{B\} = \{\sim A \to B, A, B\}.$ 

$$Q_4 = \sim B$$
, and  $\Omega_3 \vdash \sim \sim B$ ; and  $\Omega_4$  is unchanged; so  $\Omega_4 = \{\sim A \rightarrow B, A, B\}$ .

So we include  $Q_i$  each time its negation is not implied. Ultimately, we will use this set to construct a model. For now, though, the point is simply to understand the condition under which a formula is included or excluded from the set.

We now show that if  $\Sigma'$  is consistent, then  $\Sigma''$  is maximal and consistent. Perhaps the first is obvious: We guarantee that  $\Sigma''$  is maximal by including  $Q_i$  as a member whenever  $\sim Q_i$  is not already a consequence.

T10.8<sub>s</sub>. If  $\Sigma'$  is consistent, then  $\Sigma''$  is maximal and consistent.

The proof comes to the demonstration of three results. Given the assumption that  $\Sigma'$  is consistent, we show, (a)  $\Sigma''$  is maximal; (b) each  $\Omega_i$  is consistent; and use this to show (c),  $\Sigma''$  is consistent. Suppose  $\Sigma'$  is consistent.

(a)  $\Sigma''$  is maximal. Suppose otherwise. Then there is some  $\mathcal{Q}_i$  such that both  $\Sigma'' \nvDash \mathcal{Q}_i$  and  $\Sigma'' \nvDash \sim \mathcal{Q}_i$ . For this *i*, by construction, each member of  $\Omega_{i-1}$  is in  $\Sigma''$ ; so if  $\Omega_{i-1} \vdash \sim \mathcal{Q}_i$  then  $\Sigma'' \vdash \sim \mathcal{Q}_i$ ; but  $\Sigma'' \nvDash \sim \mathcal{Q}_i$ ; so  $\Omega_{i-1} \nvDash \sim \mathcal{Q}_i$ ; so by construction,  $\Omega_i = \Omega_{i-1} \cup \{\mathcal{Q}_i\}$ ; and by construction again,  $\mathcal{Q}_i \in \Sigma''$ ; so  $\Sigma'' \vdash \mathcal{Q}_i$ . This is impossible; reject the assumption:  $\Sigma''$ is maximal.

(b) Each  $\Omega_i$  is consistent. By induction on the series of  $\Omega_i$ s.

*Basis:*  $\Omega_0 = \Sigma'$  and  $\Sigma'$  is consistent; so  $\Omega_0$  is consistent.

Assp: For any  $i, 0 \le i < k, \Omega_i$  is consistent.

Show:  $\Omega_k$  is consistent.

 $\Omega_k$  is either  $\Omega_{k-1}$  or  $\Omega_{k-1} \cup \{\mathcal{Q}_k\}$ . Suppose the former; by assumption,  $\Omega_{k-1}$  is consistent; so  $\Omega_k$  is consistent. Suppose the latter; then by construction,  $\Omega_{k-1} \nvDash \sim \mathcal{Q}_k$ ; so by T10.6<sub>s</sub>,  $\Omega_{k-1} \cup \{\mathcal{Q}_k\}$  is consistent; so  $\Omega_k$  is consistent. So, either way,  $\Omega_k$  is consistent.

*Indct:* For any i,  $\Omega_i$  is consistent.

(c)  $\Sigma''$  is consistent. Suppose  $\Sigma''$  is not consistent; then there is some  $\mathcal{A}$  such that  $\Sigma'' \vdash \mathcal{A}$  and  $\Sigma'' \vdash \sim \mathcal{A}$ . Consider derivations D1 and D2 of these results, and the premises  $\mathcal{Q}_i \dots \mathcal{Q}_j$  of these derivations. Where  $\mathcal{Q}_j$  is the last of these premises in the enumeration of formulas, by the construction of  $\Sigma''$ , each of  $\mathcal{Q}_i \dots \mathcal{Q}_j$  must be a member of  $\Omega_j$ ; so D1 and D2 are derivations from  $\Omega_j$ ; so  $\Omega_j$  is inconsistent. But by the previous result,  $\Omega_j$  is consistent. This is impossible; reject the assumption:  $\Sigma''$  is consistent.

Because derivations of  $\mathcal{A}$  and  $\sim \mathcal{A}$  have only finitely many premises, all the premises in a derivation of a contradiction must show up in some  $\Omega_j$ ; so if  $\Sigma''$  is inconsistent, then some  $\Omega_j$  is inconsistent. But no  $\Omega_j$  is inconsistent. So  $\Sigma''$  is consistent. So we have what we set out to show.  $\Sigma' \subseteq \Sigma''$ , and if  $\Sigma'$  is consistent, then  $\Sigma''$  is both maximal and consistent.

E10.9. (i) Suppose  $\Sigma' = \{A \to \sim B\}$  and the enumeration of formulas begins A,  $\sim A$ , B,  $\sim B$ ... What are  $\Omega_0$ ,  $\Omega_1$ ,  $\Omega_2$ ,  $\Omega_3$ , and  $\Omega_4$ ? (ii) What are they when the enumeration begins B,  $\sim B$ , A,  $\sim A$ ...? In each case, produce a (sentential) model to show that the resultant  $\Omega_4$  is consistent.

#### 10.2.4 The Model

We now construct a model M' for  $\Sigma'$ . In this sentential case, the specification is particularly simple.

CnsM' For any atomic  $\mathscr{S}$ , let M'[ $\mathscr{S}$ ] = T iff  $\Sigma'' \vdash \mathscr{S}$ .

Notice that there clearly exists some such interpretation M': We assign T to every sentence letter that can be derived from  $\Sigma''$ , and F to the others. It will not be the case that we are in a position to do all the derivations, and so to know what are all the assignments to the atomics. Still, it must be that any atomic either is or is not a consequence of  $\Sigma'$ , and so that there exists a corresponding interpretation M' on which those sentence letters either are or are not assigned T.

We now want to show that if  $\Sigma'$  is consistent, then M' is a model for  $\Sigma'$  — that if  $\Sigma'$  is consistent then M'[ $\Sigma'$ ] = T. As we shall see, this results immediately from the following theorem.

T10.9<sub>s</sub>. If  $\Sigma'$  is consistent, then for any sentence  $\mathcal{B}$ , of  $\mathcal{L}_s$ ,  $\mathsf{M}'[\mathcal{B}] = \mathsf{T}$  iff  $\Sigma'' \vdash \mathcal{B}$ .

Suppose  $\Sigma'$  is consistent. Then by T10.8<sub>s</sub>,  $\Sigma''$  is maximal and consistent. Now by induction on the number of operators in  $\mathcal{B}$ ,

- *Basis:* If  $\mathcal{B}$  has no operators, then it is an atomic of the sort  $\mathcal{S}$ . But by the construction of M', M'[ $\mathcal{S}$ ] = T iff  $\Sigma'' \vdash \mathcal{S}$ ; so M'[ $\mathcal{B}$ ] = T iff  $\Sigma'' \vdash \mathcal{B}$ .
- Assp: For any  $i, 0 \le i < k$ , if  $\mathcal{B}$  has i operator symbols, then  $\mathsf{M}'[\mathcal{B}] = \mathsf{T}$  iff  $\Sigma'' \vdash \mathcal{B}$ .
- Show: If  $\mathcal{B}$  has k operator symbols, then  $\mathsf{M}'[\mathcal{B}] = \mathsf{T}$  iff  $\Sigma'' \vdash \mathcal{B}$ . If  $\mathcal{B}$  has k operator symbols, then it is of the form  $\sim \mathcal{P}$  or  $\mathcal{P} \to \mathcal{Q}$  where  $\mathcal{P}$  and  $\mathcal{Q}$  have < k operator symbols.
  - (~) Suppose B is ~P. (i) Suppose M'[B] = T; then M'[~P] = T; so by ST(~), M'[P] ≠ T; so by assumption, Σ" ⊬ P; so by maximality, Σ" ⊢ ~P; which is to say, Σ" ⊢ B. (ii) Suppose Σ" ⊢ B; then Σ" ⊢ ~P; so by consistency, Σ" ⊬ P; so by assumption, M'[P] ≠ T; so by ST(~), M'[~P] = T; which is to say, M'[B] = T. So M'[B] = T iff Σ" ⊢ B.
  - $\begin{array}{l} (\rightarrow) \ \ \text{Suppose } \mathcal{B} \ \text{is } \mathcal{P} \rightarrow \mathcal{Q}. \ (\text{i) } \ \text{Suppose } \mathsf{M}'[\mathcal{B}] = \mathsf{T}; \ \text{then } \mathsf{M}'[\mathcal{P} \rightarrow \mathcal{Q}] = \\ \mathsf{T}; \ \text{so by } \mathsf{ST}(\rightarrow), \mathsf{M}'[\mathcal{P}] \neq \mathsf{T} \ \text{or } \mathsf{M}'[\mathcal{Q}] = \mathsf{T}; \ \text{so by assumption}, \ \Sigma'' \nvDash \mathcal{P} \\ \text{or } \Sigma'' \vdash \mathcal{Q}. \ \text{Suppose the latter; by } \mathsf{A1}, \vdash \mathcal{Q} \rightarrow (\mathcal{P} \rightarrow \mathcal{Q}); \ \text{so by } \mathsf{MP}, \\ \Sigma'' \vdash \mathcal{P} \rightarrow \mathcal{Q}. \ \text{Suppose the former; then by maximality}, \ \Sigma'' \vdash \sim \mathcal{P}; \\ \text{but by } \mathsf{T3.9}, \vdash \sim \mathcal{P} \rightarrow (\mathcal{P} \rightarrow \mathcal{Q}); \ \text{so by } \mathsf{MP}, \ \Sigma'' \vdash \mathcal{P} \rightarrow \mathcal{Q}. \ \text{So in} \\ \text{either case, } \Sigma'' \vdash \mathcal{P} \rightarrow \mathcal{Q}; \ \text{where this is to say, } \Sigma'' \vdash \mathcal{B}. \ (\text{ii) } \text{Suppose } \\ \Sigma'' \vdash \mathcal{B} \ \text{but } \mathsf{M}'[\mathcal{B}] \neq \mathsf{T}; \ \text{by [homework], this is impossible: so if } \\ \Sigma'' \vdash \mathcal{B}, \ \text{then } \mathsf{M}'[\mathcal{B}] = \mathsf{T}. \ \text{So } \mathsf{M}'[\mathcal{B}] = \mathsf{T} \ \text{iff } \Sigma'' \vdash \mathcal{B}. \end{array}$

If  $\mathcal{B}$  has k operator symbols, then  $M'[\mathcal{B}] = T$  iff  $\Sigma'' \vdash \mathcal{B}$ .

*Indct:* For any  $\mathcal{B}, \mathsf{M}'[\mathcal{B}] = \mathsf{T}$  iff  $\Sigma'' \vdash \mathcal{B}$ .

So if  $\Sigma'$  is consistent, then for any  $\mathcal{B} \in \Sigma'', \mathsf{M}'[\mathcal{B}] = \mathsf{T}$  iff  $\Sigma'' \vdash \mathcal{B}$ .

The key to this is that  $\Sigma''$  is both maximal and consistent. In (F), for example,  $\Omega_0 = \{ \sim A \rightarrow B \}$ ; so  $\Omega_0 \nvDash A$  and  $\Omega_0 \nvDash B$ ; if we were simply to follow our construction procedure as applied to this set, the result would have  $M'[A] \neq T$  and  $M'[B] \neq T$ ; but then  $M'[\sim A \rightarrow B] \neq T$  and there is no model for  $\Omega_0$ . But  $\Omega_4$  has A and B as members; so  $\Omega_4 \vdash A$  and  $\Omega_4 \vdash B$ . So by the construction procedure, M'[A] = T and M'[B] = T; so  $M'[\sim A \rightarrow B] = T$ . Thus it is the construction with maximality and consistency of  $\Sigma''$  that puts us in a position to draw the parallel between the implications of  $\Sigma''$  and what is true on M'. It is now a short step to seeing that we have a model for  $\Sigma'$  and so (\*) that we have been after.

\*E10.10. Complete the second half of the conditional case to complete the proof of T10.9<sub>s</sub>. You should set up the entire induction, but may refer to the text for

parts completed there, as the text refers to homework.

E10.11. (i) Where  $\Sigma' = \{A \to \sim B\}$ , and the enumeration of formulas are as in the first part of E10.9, what assignments does M' make to A and B? (ii) What assignments does it make on the second enumeration? Use a truth table to show, for each case, that the assignments result in a *model* for  $\Sigma'$ . Explain.

# 10.2.5 Final Result

The proof of sentential adequacy is now a simple matter of pulling together what we have done. First, it is a simple matter to show,

T10.10<sub>s</sub>. If  $\Sigma'$  is consistent, then  $M'[\Sigma'] = T$ . (\*)

Suppose  $\Sigma'$  is consistent but  $M'[\Sigma'] \neq T$ . From the latter, there is some formula  $\mathcal{B} \in \Sigma'$  such that  $M'[\mathcal{B}] \neq T$ . Since  $\mathcal{B} \in \Sigma'$ , by construction,  $\mathcal{B} \in \Sigma''$ ; so  $\Sigma'' \vdash \mathcal{B}$ ; so, since  $\Sigma'$  is consistent, by T10.9<sub>s</sub>,  $M'[\mathcal{B}] = T$ . This is impossible; reject the assumption: if  $\Sigma'$  is consistent, then  $M'[\Sigma'] = T$ .

That is it! Going back to the beginning of our discussion of sentential adequacy, all we needed was (\*), and now we have it. So the final argument is as sketched before:

T10.11<sub>s</sub>. If  $\Gamma \vDash_{s} \mathcal{P}$ , then  $\Gamma \vdash \mathcal{P}$ . (sentential adequacy)

Suppose  $\Gamma \vDash_{s} \mathcal{P}$  but  $\Gamma \nvDash \mathcal{P}$ . Say, for the moment, that  $\Gamma \vdash \sim \sim \mathcal{P}$ ; by T3.10,  $\vdash \sim \sim \mathcal{P} \rightarrow \mathcal{P}$ ; so by MP,  $\Gamma \vdash \mathcal{P}$ ; but this is impossible; so  $\Gamma \nvDash \sim \sim \mathcal{P}$ . Given this, by T10.6<sub>s</sub>,  $\Gamma \cup \{\sim \mathcal{P}\}$  is consistent; so by T10.10<sub>s</sub>, there is a model M' such that M'[ $\Gamma \cup \{\sim \mathcal{P}\}$ ] = T; so M'[ $\sim \mathcal{P}$ ] = T; so by ST( $\sim$ ), M'[ $\mathcal{P}$ ]  $\neq$  T; so M'[ $\Gamma$ ] = T but M'[ $\mathcal{P}$ ]  $\neq$  T; so by SV,  $\Gamma \nvDash_{s} \mathcal{P}$ . This is impossible; reject the assumption: if  $\Gamma \vDash_{s} \mathcal{P}$ , then  $\Gamma \vdash \mathcal{P}$ .

Try again to get the complete picture in your mind: The key is that consistent sets always have models. If there is no derivation of  $\mathcal{P}$  from  $\Gamma$ , then  $\Gamma \cup \{\sim \mathcal{P}\}$  is consistent; and if  $\Gamma \cup \{\sim \mathcal{P}\}$  is consistent, then it has a model — so that  $\Gamma \not\models_s \mathcal{P}$ . Thus, put the other way around, if  $\Gamma \models_s \mathcal{P}$ , then there is a derivation of  $\mathcal{P}$  from  $\Gamma$ . We get the key point, that consistent sets have models, by finding a relation between consistent, and *maximal* consistent sets. If a set is both maximal and consistent, then it contains enough information about its atomics that a model for its atomics is a model for the whole. It is obvious that the argument is not constructive — we do not see how to show that  $\Gamma \vdash \mathcal{P}$  whenever  $\Gamma \models_s \mathcal{P}$ . But it is interesting to see why. The argument turns on the *existence* of our big sets under certain conditions, and so on the existence of models. We show that the sets must exist and have certain properties, though we are not in a position to find all their members. This puts us in a position to know the existence of derivations, though we do not say what they are.<sup>2</sup>

E10.12. Suppose our primitive operators are  $\sim$  and  $\wedge$  and the derivation system is A2 from E3.4 on p. 81. Present a complete demonstration of adequacy for this derivation system — with all the definitions and theorems. You may simply appeal to the text for results that require no change.

# **10.3** Quantificational Adequacy: Basic Version

As promised, the demonstration of quantificational adequacy is parallel to what we have seen. Return to a quantificational language and to our regular quantificational semantic and derivation notions. The goal is to show that if  $\Gamma \models \mathcal{P}$ , then  $\Gamma \vdash \mathcal{P}$ . Certain complications are avoided if we suppose that the language  $\mathcal{L}'$  includes infinitely many constants not in  $\Gamma$ , and does not include the '=' symbol for equality. The constants not already in  $\Gamma$  are required for the construction of our big sets. And without = in the language, the model specification is simplified. We will work through the basic argument in this section and, dropping constraints on the language, return to the general case in the next. If you are confused at any stage, it may help to refer back to the parallel section for the sentential case.

Before launching into the main argument, it will be helpful to have a preliminary theorem. Where  $D = \langle \mathcal{B}_1 \dots \mathcal{B}_n \rangle$  is an *AD* derivation, and  $\Sigma' = \{\mathcal{C}_1 \dots \mathcal{C}_n\}$  is a set of formulas, for some constant *a* and variable *x*, say  $D_x^a = \langle \mathcal{B}_1 \overset{a}{x} \dots \mathcal{B}_n \overset{a}{x} \rangle$  and  $\Sigma' \overset{a}{=} \{\mathcal{C}_1 \overset{a}{x} \dots \mathcal{C}_n \overset{a}{x}\}$ . By induction on the line numbers in *D*, we show,

T10.12. If D is a derivation from  $\Sigma'$ , and x is a variable that does not appear in D, then for any constant a,  $D_x^a$  is a derivation from  $\Sigma' \frac{a}{x}$ .

*Basis:*  $\mathcal{B}_1$  is either a member of  $\Sigma'$  or an axiom.

(prem) If  $\mathcal{B}_1$  is a member of  $\Sigma'$ , then  $\mathcal{B}_1 {a \atop \chi}^{a}$  is a member of  $\Sigma' {a \atop \chi}^{a}$ ; so  $\langle \mathcal{B}_1 {a \atop \chi}^{a} \rangle$  is a derivation from  $\Sigma' {a \atop \chi}^{a}$ .

<sup>&</sup>lt;sup>2</sup>In fact, there are constructive approaches to sentential adequacy. See, for example, Lemma 1.13 and Proposition 1.14 of Mendelson, *Introduction to Mathematical Logic*. Our primary purpose, however, is to set up the argument for the quantificational case, where such methods do not apply.

- (eq) If  $\mathcal{B}_1$  is an equality axiom, A6, A7 or A8, then it includes no constants; so  $\mathcal{B}_1 = \mathcal{B}_1 \frac{a}{\chi}$ ; so  $\mathcal{B}_1 \frac{a}{\chi}$  is an equality axiom, and  $\langle \mathcal{B}_1 \frac{a}{\chi} \rangle$  is a derivation from  $\Sigma' \frac{a}{\chi}$ .
- (A1) If  $\mathcal{B}_1$  is an instance of A1, then it is of the form,  $\mathcal{P} \to (\mathcal{Q} \to \mathcal{P})$ ; so  $\mathcal{B}_1{}^a_{\chi}$  is  $\mathcal{P}^a_{\chi} \to (\mathcal{Q}^a_{\chi} \to \mathcal{P}^a_{\chi})$ ; but this is an instance of A1; so if  $\mathcal{B}_1$  is an instance of A1, then  $\mathcal{B}_1{}^a_{\chi}$  is an instance of A1, and  $\langle \mathcal{B}_1{}^a_{\chi} \rangle$  is a derivation from  $\Sigma'{}^a_{\chi}$ .
- (A2) Homework.
- (A3) Homework.
- (A4) If  $\mathcal{B}_1$  is an instance of A4, then it is of the form,  $\forall v \mathcal{P} \to \mathcal{P}_t^v$ , for some variable v and term t that is free for v in  $\mathcal{P}$ . So  $\mathcal{B}_1 {}_x^a = [\forall v \mathcal{P} \to \mathcal{P}_t^v]_x^a = [\forall v \mathcal{P}]_x^a \to [\mathcal{P}_t^v]_x^a$ . But since x does not appear in  $D, x \neq v$ ; so  $[\forall v \mathcal{P}]_x^a = \forall v[\mathcal{P}_x^a]$ . And by T8.7,  $[\mathcal{P}_t^v]_x^a = [\mathcal{P}_x^a]_{t_x^a}^v$ . So  $\mathcal{B}_1 {}_x^a = \forall v[\mathcal{P}_x^a] \to [\mathcal{P}_x^a]_{t_x^a}^v$ ; and since x is new to D and t is free for v in  $\mathcal{P}, t_x^a$  is free for v in  $\mathcal{P}_x^a$ ; so  $\forall v[\mathcal{P}_x^a] \to [\mathcal{P}_x^a]_{t_x^a}^v$ is an instance of A4; so if  $\mathcal{B}_1$  is an instance of A4, then  $\mathcal{B}_1 {}_x^a$  is an instance of A4, and  $\langle \mathcal{B}_1 {}_x^a \rangle$  is a derivation from  $\sum' {}_x^a$ .
- (A5) Homework.
- Assp: For any  $i, 1 \leq i < k, \langle \mathcal{B}_1 \overset{a}{_{\chi}} \dots \mathcal{B}_i \overset{a}{_{\chi}} \rangle$  is a derivation from  $\Sigma' \overset{a}{_{\chi}}$ .
- Show:  $\langle \mathcal{B}_1 \overset{a}{_{\chi}} \dots \mathcal{B}_k \overset{a}{_{\chi}} \rangle$  is a derivation from  $\Sigma' \overset{a}{_{\chi}}$ .

 $\mathcal{B}_k$  is a member of  $\Sigma'$ , an axiom, or arises from previous lines by MP or Gen. If  $\mathcal{B}_k$  is a member of  $\Sigma'$  or an axiom then, by reasoning as in the basis,  $\langle \mathcal{B}_1 \dots \mathcal{B}_k \rangle$  is a derivation from  $\Sigma' \frac{a}{\chi}$ . So two cases remain.

- (MP) Homework.
- (Gen) If  $\mathcal{B}_k$  arises by Gen, then there are some lines in D,
  - i P :
  - $k \quad \forall v Q \qquad i \text{ Gen}$

where i < k and  $\mathcal{B}_k = \forall v \mathcal{P}$ . By assumption  $\mathcal{P}_{\chi}^a$  is a member of the derivation  $\langle \mathcal{B}_1 \,_{\chi}^a \dots \mathcal{B}_{k-1} \,_{\chi}^a \rangle$  from  $\Sigma' \,_{\chi}^a$ ; so  $\forall v \mathcal{P}_{\chi}^a$  follows in this new derivation by Gen. So  $\langle \mathcal{B}_1 \,_{\chi}^a \dots \mathcal{B}_k \,_{\chi}^a \rangle$  is a derivation from  $\Sigma' \,_{\chi}^a$ . So  $\langle \mathcal{B}_1 \,_{\chi}^a \dots \mathcal{B}_k \,_{\chi}^a \rangle$  is a derivation from  $\Sigma' \,_{\chi}^a$ .

*Indct:* For any n,  $\langle \mathcal{B}_1 \overset{a}{_{\chi}} \dots \mathcal{B}_n \overset{a}{_{\chi}} \rangle$  is a derivation from  $\Sigma' \overset{a}{_{\chi}}$ .

The reason this works is that none of the justifications change: switching x for *a* leaves each line justified for the same reasons as before. The only sticking point

may be the case for A4. But we did the real work for this by induction in T8.7. And that result should be intuitive, once we see what it says. Given this, the rest is straightforward.

\*E10.13. Finish the cases for A2, A3, A5 and MP to complete the proof of T10.12. You should set up the complete demonstration, but may refer to the text for cases completed there, as the text refers cases to homework.

E10.14. Where  $\Sigma' = \{Ab\}$  and *D* is as follows,

| 1. $\forall x \sim Ax \rightarrow \sim Ab$                                                                 | A4            |
|------------------------------------------------------------------------------------------------------------|---------------|
| 2. $(\forall x \sim Ax \rightarrow \sim Ab) \rightarrow (\sim \sim Ab \rightarrow \sim \forall x \sim Ax)$ | <b>T3.13</b>  |
| 3. $\sim Ab \rightarrow \sim \forall x \sim Ax$                                                            | 2,1 MP        |
| 4. $Ab \rightarrow \sim \sim Ab$                                                                           | <b>T3.</b> 11 |
| 5. $Ab \to \sim \forall x \sim Ax$                                                                         | 4,3 T3.2      |
| 6. <i>Ab</i>                                                                                               | prem          |
| 7. $\sim \forall x \sim Ax$                                                                                | 5,6 MP        |
| 8. $\exists x A x$                                                                                         | 7 abv         |

apply T10.12 to show that  $D_y^b$  is a derivation from  $\Sigma'_y^b$ . Do any of the justifications change? Explain.

### 10.3.1 Basic Idea

As before, our main argument turns on the idea that every consistent set has a model. Thus we begin with a definition and a theorem.

Con A set  $\Sigma$  of formulas is *consistent* iff there is no formula  $\mathcal{A}$  such that  $\Sigma \vdash \mathcal{A}$ and  $\Sigma \vdash \sim \mathcal{A}$ .

So a set of formulas is consistent just in case there is no way to derive a contradiction from it. Of course, now we are working with full quantificational languages, and so with our complete quantificational derivation systems.

For the following theorem, notice that  $\Sigma$  is a set of *formulas*, and  $\mathcal{P}$  a *sentence* (a distinction without a difference in the sentential case). Again as before,

T10.6. For any set of formulas  $\Sigma$  and sentence  $\mathcal{P}$ , if  $\Sigma \nvDash \sim \mathcal{P}$ , then  $\Sigma \cup \{\mathcal{P}\}$  is consistent.

For some sentence  $\mathcal{P}$ , suppose  $\Sigma \nvDash \sim \mathcal{P}$  but  $\Sigma \cup \{\mathcal{P}\}$  is not consistent. From the latter, there is some formula  $\mathcal{A}$  such that  $\Sigma \cup \{\mathcal{P}\} \vdash \mathcal{A}$  and  $\Sigma \cup \{\mathcal{P}\} \vdash$ 

 $\sim \mathcal{A}$ ; since  $\mathcal{P}$  is a sentence, it has no free variables; so by DT,  $\Sigma \vdash \mathcal{P} \rightarrow \mathcal{A}$ and  $\Sigma \vdash \mathcal{P} \rightarrow \sim \mathcal{A}$ ; by T3.10,  $\vdash \sim \sim \mathcal{P} \rightarrow \mathcal{P}$ ; so by T3.2,  $\Sigma \vdash \sim \sim \mathcal{P} \rightarrow \mathcal{A}$ and  $\Sigma \vdash \sim \sim \mathcal{P} \rightarrow \sim \mathcal{A}$ ; but by A3,  $\vdash (\sim \sim \mathcal{P} \rightarrow \sim \mathcal{A}) \rightarrow [(\sim \sim \mathcal{P} \rightarrow \mathcal{A}) \rightarrow \sim \mathcal{P}]$ ; so by two instances of MP,  $\Sigma \vdash \sim \mathcal{P}$ . This is impossible; reject the assumption: if  $\Sigma \nvDash \sim \mathcal{P}$ , then  $\Sigma \cup \{\mathcal{P}\}$  is consistent.

Insofar as  $\mathcal{P}$  is required to be a sentence, the restriction on applications of DT is sure to be met: since  $\mathcal{P}$  has no free variables, no application of Gen is to a variable free in  $\mathcal{P}$ . So T10.6 does not apply to arbitrary formulas.

To the extent that T10.6 plays a direct role in our basic argument for adequacy, this point that it does not apply to arbitrary formulas might seem to present a problem about reaching our general result, that if  $\Gamma \models \mathcal{P}$  then  $\Gamma \vdash \mathcal{P}$ , which is supposed to apply in the arbitrary case. But there is a way around the problem. For any formula  $\mathcal{P}$ , let its (*universal*) closure  $\mathcal{P}^c$  be  $\mathcal{P}$  prefixed by a universal quantifier for every variable free in  $\mathcal{P}$ . To make  $\mathcal{P}^c$  unique, for some enumeration of variables,  $x_1, x_2 \dots$ let the quantifiers be in order of ascending subscripts. So if  $\mathcal{P}$  has no free variables,  $\mathcal{P}^c = \mathcal{P}$ ; if  $x_1$  is free in  $\mathcal{P}$ , then  $\mathcal{P}^c = \forall x_1 \mathcal{P}$ ; if  $x_1$  and  $x_3$  are free in  $\mathcal{P}$ , then  $\mathcal{P}^c = \forall x_1 \forall x_3 \mathcal{P}$ ; and so forth. So for any formula  $\mathcal{P}$ ,  $\mathcal{P}^c$  is a *sentence*. As it turns out, we will be able to argue about arbitrary formulas  $\mathcal{P}$ , by using their closures  $\mathcal{P}^c$ as intermediaries.

Suppose that the members of  $\Gamma \cup \{\sim \mathcal{P}^c\} = \Sigma'$  are formulas of  $\mathcal{L}'$ . Then it will be sufficient for us to show that any consistent set of this sort has a model.

(★) For any consistent set Σ' of formulas in L', there is an interpretation M' such that M'[Σ'] = T.

Again, this sets up the key connection between syntactic and semantic notions — between consistency on the one hand, and truth on the other — that we will need for adequacy. Supposing (\*) we have the following,

1.  $\Gamma \cup \{\sim \mathcal{P}^c\}$  has a model  $\Longrightarrow$   $\Gamma \not\models \mathcal{P}$ 2.  $\Gamma \cup \{\sim \mathcal{P}^c\}$  is consistent  $\Longrightarrow$   $\Gamma \cup \{\sim \mathcal{P}^c\}$  has a model  $(\star)$ 3.  $\Gamma \cup \{\sim \mathcal{P}^c\}$  is not consistent  $\Longrightarrow$   $\Gamma \vdash \mathcal{P}$ 

(2) is just (\*). Observe that (1) and (3) switch between  $\mathcal{P}^c$  and  $\mathcal{P}$ . (1) is by semantic reasoning: Suppose  $\Gamma \cup \{\sim \mathcal{P}^c\}$  has a model; then there is some M such that  $M[\Gamma \cup \{\sim \mathcal{P}^c\}] = T$ ; so  $M[\Gamma] = T$  and  $M[\sim \mathcal{P}^c] = T$ ; from the latter, by TI, for arbitrary d,  $M_d[\sim \mathcal{P}^c] = S$ ; so by  $SF(\sim)$ ,  $M_d[\mathcal{P}^c] \neq S$ ; so by TI,  $M[\mathcal{P}^c] \neq T$ ; so by repeated

applications of T7.7 on page 371,  $M[\mathcal{P}] \neq T$ ; so  $M[\Gamma] = T$  and  $M[\mathcal{P}] \neq T$ ; so by QV,  $\Gamma \not\models \mathcal{P}$ . (3) is by syntactic reasoning: Suppose  $\Gamma \cup \{\sim \mathcal{P}^c\}$  is not consistent; then since  $\mathcal{P}^c$  is a sentence, by an application of T10.6,  $\Gamma \vdash \sim \sim \mathcal{P}^c$ ; but by T3.10,  $\vdash \sim \sim \mathcal{P}^c \rightarrow \mathcal{P}^c$ ; so by MP,  $\Gamma \vdash \mathcal{P}^c$ ; and by repeated applications of A4 and MP,  $\Gamma \vdash \mathcal{P}$ .

Now suppose  $\Gamma \vDash \mathcal{P}$ ; then from (1),  $\Gamma \cup \{\sim \mathcal{P}^c\}$  does not have a model; so by (2),  $\Gamma \cup \{\sim \mathcal{P}^c\}$  is not consistent; so by (3),  $\Gamma \vdash \mathcal{P}$ . So if  $\Gamma \vDash \mathcal{P}$ , then  $\Gamma \vdash \mathcal{P}$ , and this is the result we want. T7.7, according to which  $M[\mathcal{P}] = T$  iff  $M[\forall x \mathcal{P}] = T$ , along with A4 and Gen, which let us derive  $\mathcal{P}$  from  $\forall x \mathcal{P}$  and vice versa, bridge between  $\mathcal{P}$  and  $\mathcal{P}^c$  so that our suppositions about formulas can be converted into claims about sentences and then back again.

Again, it remains to show  $(\star)$ , that every consistent set  $\Sigma'$  of formulas has a model. And, again, our strategy is to find a "big" set related to  $\Sigma'$  which can be used to specify a model for  $\Sigma'$ .

# 10.3.2 Gödel Numbering

As before, in constructing our big sets, we will want to line up expressions serially — one after another. The method merely expands our approach for the sentential case.

T10.7. There is an enumeration  $Q_1, Q_2...$  of all the formulas, terms, and the like, in  $\mathcal{L}'$ .

The proof is again by construction: We develop a method by which all the expressions of  $\mathcal{L}'$  can be lined up. Then the collection of all formulas, taken in that order, is an an enumeration of all formulas; the collection of all terms, taken in that order, is an enumeration of all terms; and so forth.

Insofar as the collections of variable symbols, constant symbols, function symbols, sentence letters, and relation symbols in any quantificational language are countable, they are capable of being sorted into series,  $x_0, x_1 \dots$  and  $a_0, a_1 \dots$  and  $h_0^n$ ,  $h_1^n \dots$  and  $\mathcal{R}_0^n, \mathcal{R}_1^n \dots$  for variables, constants, function symbols and relation symbols, respectively (where we think of sentence letters as 0-place relation symbols). Supposing that they are sorted into such series, begin by assigning to each symbol  $\alpha$  in  $\mathcal{L}'$  an integer  $g[\alpha]$  called its *Gödel Number*.

| a. | g[(] = 3             | f. | $g[\forall] = 13$                    |
|----|----------------------|----|--------------------------------------|
| b. | g[)] = 5             | g. | $g[x_i] = 15 + 10i$                  |
| c. | $g[\sim] = 7$        | h. | $g[a_i] = 17 + 10i$                  |
| d. | $g[\rightarrow] = 9$ | i. | $g[h_i^n] = 19 + 10(2^n \times 3^i)$ |

\*e. 
$$g[=] = 11$$
 j.  $g[\mathcal{R}_i^n] = 21 + 10(2^n \times 3^i)$ 

Officially, we do not yet have '=' in the language, but it is easy enough to leave it out for now. So, for example,  $g[x_0] = 15$ ,  $g[x_1] = 15 + 10 \times 1 = 25$ , and  $g[\mathcal{R}_1^2] = 21 + 10(2^2 \times 3^1) = 141$ .

To see that each symbol gets a distinct Gödel number, first notice that numbers in different categories cannot overlap: Each of (a) - (f) is obviously distinct and  $\leq 13$ . But (g) - (j) are all greater than 13, and when divided by 10, the remainder is 5 for variables, 7 for constants 9 for function symbols, and 1 for relation symbols; so variables, constants, and function symbols all get different numbers. Second, different symbols get different numbers within the categories. This is obvious except in cases (i) and (j). For these we need to see that each n/i combination results in a different multiplier.

Suppose this is not so, that there are some combinations n, i and m, j such that  $2^n \times 3^i = 2^m \times 3^j$  but  $n \neq m$  or  $i \neq j$ . If n = m then, dividing both sides by  $2^n$ , we get  $3^i = 3^j$ , so that i = j. So suppose  $n \neq m$  and, without loss of generality, that n > m. Dividing each side by  $2^m$  and  $3^i$ , we get  $2^{n-m} = 3^{j-i}$ ; since n > m, n-m is a positive integer; so  $2^{n-m}$  is > 1 and even. But  $3^{i-j}$  is either < 1 or odd. Reject the assumption: if  $2^n \times 3^i = 2^m \times 3^j$ , then n = m and i = j.

So each n/i combination gets a different multiplier, and we conclude that each symbol gets a different Gödel number. (This result is a special case of the Fundamental theorem of Arithmetic treated in the arithmetic fore Gödel numbering and more arithmetic for Gödel numbering references.)

Now, as before, assign Gödel numbers to expressions as follows: Where  $\alpha_0, \alpha_1$ ... $\alpha_n$  are the symbols, in order from left to right, in some expression Q,

$$g[\mathcal{Q}] = 2^{g[\alpha_0]} \times 3^{g[\alpha_1]} \times 5^{g[\alpha_2]} \times \ldots \times \pi_n^{g[\alpha_n]}$$

where 2, 3, 5... $\pi_n$  are the first *n* prime numbers. So, for example,  $g[\sim \mathcal{R}_1^2 x_0 x_1] = 2^7 \times 3^7 \times 5^{141} \times 7^{15} \times 11^{25}$  — a relatively large integer (one with over 130 digits)! All the same, it is an integer, and different expressions get different Gödel numbers. Given a Gödel number, we can find the corresponding expression by finding its prime factorization; then if there are seven 2s in the factorization, the first symbol is  $\sim$ ; if there are seven 3s, the second symbol is  $\sim$ ; if there are one hundred forty one 5s, the third symbol is  $\mathcal{R}_1^2$ ; and so forth. Notice that numbers for individual symbols are odd, where numbers for expressions are even.

So we can take the set of all formulas, the set of all terms, or whatever, and order their members according to their Gödel numbers — so that there is an enumeration  $Q_1, Q_2...$  of all formulas, terms, and so forth. And this is what was to be shown.

# More Arithmetic Relevant to Gödel Numbering

- G3. For any i > 1, if *i* is the product of the primes  $p_1, p_2 \dots p_a$ , then no distinct collection of primes  $q_1, q_2 \dots q_b$  is such that *i* is the product of them. (The *Fundamental Theorem* of Arithmetic)
  - *Basis:* The first integer  $\geq 1 = 2$ ; but the only collection of primes such that their product is equal to 2 is the collection containing just 2 itself; so no distinct collection of primes is such that 2 is the product of them.
  - Assp: For any  $i, 1 \le i < k$ , if i is the product of primes  $p_1 \dots p_a$ , then no distinct collection of primes  $q_1 \dots q_b$  is such that i is the product of them.
  - Show: k is such that if it is the product of the primes  $p_1 \dots p_a$ , then no distinct collection of primes  $q_1 \dots q_b$  is such that k is the product of them.

Suppose there are distinct collections of primes  $p_1 ldots p_a$  and  $q_1 ldots q_b$  such that  $k = p_1 \times \ldots \times p_a = q_1 \times \ldots \times q_b$ ; divide out terms common to both lists of primes; then for some subclasses of the original lists,  $n = p_1 \times \ldots \times p_c = q_1 \times \ldots \times q_d$ , where no member of  $p_1 \dots p_c$  is a member of  $q_1 \dots q_d$  and *vice versa* (of course this  $p_1$  may be distinct from the one in the original list, and so forth). So  $p_1 \neq q_1$ ; suppose, without loss of generality, that  $p_1 > q_1$ ; and let  $m = q_1(n/q_1 - n/p_1) = n - (q_1/p_1)n = n - q_1 \times p_2 \times \ldots \times p_c$ .

Some preliminary results: (i)  $m < n \le k$ ; so m < k. Further,  $n/q_1$  and  $n/p_1$  are integers, with the first greater than the second; so the difference is an integer > 0; any prime is > 1; so  $q_1$  is > 1; so the product of  $q_1$  and  $(n/q_1 - n/p_1)$  is > 1; so m > 1. So the inductive assumption applies to m. (ii)  $q_1$  divides n and  $q_1$  divides  $q_1 \times p_2 \times \ldots \times p_c$ ; so  $[n-q_1 \times p_2 \times \ldots \times p_c]/q_1$  is an integer; so  $m/q_1$  is an integer, and  $q_1$  divides m. (iii)  $(p_1 - q_1)/q_1 = p_1/q_1 - 1$ ; since  $p_1$  is prime, this is no integer; so  $q_1$  does not divide  $(p_1 - q_1)$ .

Notice that  $m = (p_1 - q_1)(n/p_1)$ ; either  $p_1 - q_1 = 1$  or it has some prime factorization, and  $n/p_1$  has a prime factorization,  $p_2 \times \ldots \times p_c$ ; the product of the factorization(s) is a prime factorization of m. Given the cancellation of common terms to get n,  $q_1$  is not a member of  $p_2 \times \ldots \times p_c$ ; by (iii),  $q_1$  is not a member of the factorization of m. By (ii),  $q_1$  divides m, and however many times it goes into m, by (G1), that number has a prime factorization; the product of  $q_1$  and this factorization of m. But by (i), the inductive assumption applies to m; so m has only one prime factorization. Reject the assumption: there are no distinct collections of primes,  $p_1 \ldots p_a$  and  $q_1 \ldots q_b$  such that  $k = p_1 \times \ldots \times p_a = q_1 \times \ldots \times q_b$ .

*Indct:* For any i > 1, if i is the product of the primes  $p_1, p_2 \dots p_a$ , then no distinct collection of primes  $q_1, q_2 \dots q_b$  is such that i is the product of them.

E10.15. Find Gödel numbers for each of the following. Treat the first as a simple symbol. (For the last, you need not do the calculation!)

$$\mathcal{R}_3^2 \qquad \hbar_1^1 x_1 \qquad \forall x_2 \mathcal{R}_1^2 a_2 x_2$$

E10.16. Determine the objects that have the following Gödel numbers.

61  $2^{13} \times 3^{15} \times 5^3 \times 7^{15} \times 11^{11} \times 13^{15} \times 17^5$ 

#### 10.3.3 The Big Set

This section, along with the next, constitutes the heart of our demonstration of adequacy. Last time, to build our big set we added formulas to  $\Sigma'$  to form a  $\Sigma''$  that was both maximal and consistent. A set of formulas is consistent just in case there is no formula A such that both A and  $\sim A$  are consequences. To accommodate restrictions from T10.6, maximality is defined in terms of *sentences*.

Max A set  $\Sigma$  of formulas is *maximal* iff for any sentence  $\mathcal{A}, \Sigma \vdash \mathcal{A}$  or  $\Sigma \vdash \sim \mathcal{A}$ .

This time, however, we need an additional property for our big sets. If a maximal and consistent set has  $\forall x \mathcal{P}$  as a member, then it has  $\mathcal{P}_a^x$  as a consequence for every constant a. (Be clear about why this is so.) But in a maximal and consistent set, the status of a universal  $\forall x \mathcal{P}$  is not always reflected at the level of its instances. Thus, for example, though a set has  $\mathcal{P}_a^x$  as a consequence for every constant a, it may consistently include  $\sim \forall x \mathcal{P}$  as well — for it may be that a universal is falsified by some individual to which no constant is assigned. But when we come to showing by induction that there is a model for our big set, it will be important that the status of a universal *is* reflected at the level of its instances. We guarantee this by building the set to satisfy the following condition.

Scgt A set  $\Sigma$  of formulas is a *scapegoat* set iff for any sentence  $\sim \forall x \mathcal{P}$ , if  $\Sigma \vdash \sim \forall x \mathcal{P}$ , then there is some constant *a* such that  $\Sigma \vdash \sim \mathcal{P}_a^x$ .

Equivalently,  $\Sigma$  is a scapegoat set just in case any sentence  $\exists x \mathcal{P}$  is such that if  $\Sigma \vdash \exists x \mathcal{P}$ , then there is some constant *a* such that  $\Sigma \vdash \mathcal{P}_a^x$ . In a scapegoat set, we assert the existence of a particular individual (a *scapegoat*) corresponding to any existential claim. Notice that, since  $\neg \forall x \mathcal{P}$  is a sentence,  $\neg \mathcal{P}_a^x$  is a sentence too.

So we set out to construct from  $\Sigma'$  a maximal, consistent, scapegoat set. As before, the idea is to line the formulas up, and consider them for inclusion one-by-one. In addition, this time, we consider an enumeration of constants  $c_1, c_2...$  and

for any included sentence of the form  $\sim \forall x \mathcal{P}$ , we include  $\sim \mathcal{P}_c^{\chi}$  where *c* is a constant that does not so far appear in the construction. Notice that if, as we have assumed,  $\mathcal{L}'$  includes infinitely many constants not in  $\Gamma$ , there are sure to *be* infinitely many constants not already in a  $\Sigma'$  built on  $\Gamma$ .

Cns $\Sigma''$  Construct  $\Sigma''$  from  $\Sigma'$  as follows: By T10.7, there is an enumeration,  $Q_1$ ,  $Q_2$ ... of all the sentences in  $\mathcal{L}'$  and also an enumeration  $c_1, c_2...$  of constants not in  $\Sigma'$ . Let  $\Omega_0 = \Sigma'$ . Then for any i > 0, let

| $\Omega_i = \Omega_{i-1}$                                     | if | $\Omega_{i-1} \vdash {\sim} \mathcal{Q}_i$                      |
|---------------------------------------------------------------|----|-----------------------------------------------------------------|
| else,<br>$\Omega_{i^*} = \Omega_{i-1} \cup \{\mathcal{Q}_i\}$ | if | $\Omega_{i-1} \nvDash \sim \mathcal{Q}_i$                       |
| and,                                                          |    |                                                                 |
| $\Omega_i = \Omega_{i^*}$                                     | if | $Q_i$ is not of the form $\sim \forall x \mathcal{P}$           |
| $\Omega_i = \Omega_{i^*} \cup \{\sim \mathscr{P}_c^{\chi}\}$  | if | $Q_i$ is of the form $\sim \forall x \mathcal{P}$ ; c the first |
|                                                               |    | constant not in $\Omega_{i*}$                                   |

then,

 $\Sigma'' = \bigcup_{i \ge 0} \Omega_i$  — that is,  $\Sigma''$  is the union of all the  $\Omega_i$ s

Beginning with set  $\Sigma' (= \Omega_0)$ , we consider the sentences in the enumeration  $\mathcal{Q}_1$ ,  $\mathcal{Q}_2 \dots$  one-by-one, adding a sentence just in case its negation is not already derivable. In addition, if  $\mathcal{Q}_i$  is of the sort  $\sim \forall x \mathcal{P}$ , we add an instance of it, using a new constant. This time,  $\Omega_{i^*}$  functions as an intermediate set. Observe that if *c* is not in  $\Omega_{i^*}$ , then *c* is not in  $\sim \forall x \mathcal{P}$ .  $\Sigma''$  contains all the members of  $\Sigma'$ , together with all the formulas added this way.

It remains to show that if  $\Sigma'$  is consistent, then  $\Sigma''$  is a maximal, consistent, scapegoat set.

T10.8. If  $\Sigma'$  is consistent, then  $\Sigma''$  is a maximal, consistent, scapegoat set.

The proof comes to showing (a)  $\Sigma''$  is maximal. (b) If  $\Sigma'$  is consistent then each  $\Omega_i$  is consistent. From this, (c) if  $\Sigma'$  is consistent then  $\Sigma''$  is consistent. And (d) if  $\Sigma'$  is consistent, then  $\Sigma''$  is a scapegoat set. Suppose  $\Sigma'$  is consistent.

(a)  $\Sigma''$  is maximal. Suppose  $\Sigma''$  is not maximal. Then there is some sentence  $Q_i$  such that both  $\Sigma'' \nvDash Q_i$  and  $\Sigma'' \nvDash \sim Q_i$ . For this *i*, by construction, each member of  $\Omega_{i-1}$  is in  $\Sigma''$ ; so if  $\Omega_{i-1} \vdash \sim Q_i$  then  $\Sigma'' \vdash \sim Q_i$ ; but  $\Sigma'' \nvDash \sim Q_i$ ; so  $\Omega_{i-1} \nvDash \sim Q_i$ ; so by construction,  $\Omega_{i^*} = \Omega_{i-1} \cup \{Q_i\}$ ; and

by construction again,  $Q_i \in \Sigma''$ ; so  $\Sigma'' \vdash Q_i$ . This is impossible; reject the assumption:  $\Sigma''$  is maximal.

(b) Each  $\Omega_i$  is consistent. By induction on the series of  $\Omega_i$ s.

*Basis:*  $\Omega_0 = \Sigma'$  and  $\Sigma'$  is consistent; so  $\Omega_0$  is consistent.

Assp: For any  $i, 0 \le i < k, \Omega_i$  is consistent.

Show:  $\Omega_k$  is consistent.

 $\Omega_k$  is either (i)  $\Omega_{k-1}$ , (ii)  $\Omega_{k^*} = \Omega_{k-1} \cup \{\mathcal{Q}_k\}$ , or (iii)  $\Omega_{k^*} \cup \{\sim \mathcal{P}_c^{\chi}\}$ .

- (i) Suppose  $\Omega_k$  is  $\Omega_{k-1}$ . By assumption,  $\Omega_{k-1}$  is consistent; so  $\Omega_k$  is consistent.
- (ii) Suppose Ω<sub>k</sub> is Ω<sub>k\*</sub> = Ω<sub>k-1</sub> ∪ {𝔅<sub>k</sub>}. Then by construction, Ω<sub>k-1</sub> ⊬ ~𝔅<sub>k</sub>; so, since 𝔅<sub>k</sub> is a sentence, by T10.6, Ω<sub>k-1</sub> ∪ {𝔅<sub>k</sub>} is consistent; so Ω<sub>k\*</sub> is consistent, and Ω<sub>k</sub> is consistent.
- (iii) Suppose  $\Omega_k$  is  $\Omega_{k^*} \cup \{\sim \mathcal{P}_c^x\}$  for c not in  $\Omega_{k^*}$  or in  $\sim \forall x \mathcal{P}$ . In this case, as in (ii) above,  $\Omega_{k^*}$  is consistent; and, by construction  $\sim \forall x \mathcal{P} \in \Omega_{k^*}$ ; so  $\Omega_{k^*} \vdash \sim \forall x \mathcal{P}$ . Suppose  $\Omega_k$  is inconsistent; then there are formulas  $\mathcal{A}$  and  $\sim \mathcal{A}$  such that  $\Omega_k \vdash \mathcal{A}$  and  $\Omega_k \vdash \sim \mathcal{A}$ ; so  $\Omega_{k^*} \cup \{\sim \mathcal{P}_c^x\} \vdash \mathcal{A}$  and  $\Omega_{k^*} \cup \{\sim \mathcal{P}_c^x\} \vdash \sim \mathcal{A}$ . But since  $\sim \mathcal{P}_c^x$  is a sentence, the restriction on DT is met, and both  $\Omega_{k^*} \vdash \sim \mathcal{P}_c^x \rightarrow \mathcal{A}$  and  $\Omega_{k^*} \vdash \sim \mathcal{P}_c^x \rightarrow \sim \mathcal{A}$ ; by A3,  $\vdash (\sim \mathcal{P}_c^x \rightarrow \sim \mathcal{A}) \rightarrow [(\sim \mathcal{P}_c^x \rightarrow \mathcal{A}) \rightarrow \mathcal{P}_c^x]$ ; so by two instances of MP,  $\Omega_{k^*} \vdash \mathcal{P}_c^x$ .

Consider some derivation of this result; by T10.12, we can switch c for some variable v that does not occur in  $\Omega_{k^*}$  or in the derivation, and the result is a derivation; so  $\Omega_{k^*} {}^c_v \vdash [\mathcal{P}^x_c]^c_v$ ; but since c does not occur in  $\Omega_{k^*}$  or in  $\sim \forall x \mathcal{P}$ , this is to say,  $\Omega_{k^*} \vdash \mathcal{P}^x_v$ ; so by Gen,  $\Omega_{k^*} \vdash \forall v \mathcal{P}^x_v$ ; but x is not free in  $\forall v \mathcal{P}^x_v$  and x is free for v in  $\mathcal{P}^x_v$ , so by T3.27,  $\vdash \forall v \mathcal{P}^x_v \rightarrow \forall x [\mathcal{P}^x_v]^v_x$ ; so by MP,  $\Omega_{k^*} \vdash \forall x [\mathcal{P}^x_v]^v_x$ ; and since v is not a variable in  $\mathcal{P}$ , it is not free in  $\mathcal{P}$  and free for x in  $\mathcal{P}$ ; so by T8.2,  $[\mathcal{P}^x_v]^v_x = \mathcal{P}$ ; so  $\Omega_{k^*} \vdash \forall x \mathcal{P}$ .

But  $\Omega_{k^*} \vdash \sim \forall x \mathcal{P}$ . So  $\Omega_{k^*}$  is inconsistent. This is impossible; reject the assumption:  $\Omega_k$  is consistent.

 $\Omega_k$  is consistent

*Indct:* For any i,  $\Omega_i$  is consistent.

(c)  $\Sigma''$  is consistent. Suppose  $\Sigma''$  is not consistent; then there is some  $\mathcal{A}$  such that  $\Sigma'' \vdash \mathcal{A}$  and  $\Sigma'' \vdash \sim \mathcal{A}$ . Consider derivations *D1* and *D2* of these results,

and the premises  $Q_i \dots Q_j$  of these derivations. Where  $Q_j$  is the last of these premises in the enumeration of formulas, by the construction of  $\Sigma''$ , each of  $Q_i \dots Q_j$  must be a member of  $\Omega_j$ ; so D1 and D2 are derivations from  $\Omega_j$ ; so  $\Omega_j$  is inconsistent. But by the previous result,  $\Omega_j$  is consistent. This is impossible; reject the assumption:  $\Sigma''$  is consistent.

(d)  $\Sigma''$  is a scapegoat set. Suppose  $\Sigma'' \vdash Q_i$ , for  $Q_i$  of the form  $\sim \forall x \mathcal{P}$ . By (c),  $\Sigma''$  is consistent; so  $\Sigma'' \nvDash \sim \sim \forall x \mathcal{P}$ ; which is to say,  $\Sigma'' \nvDash \sim Q_i$ ; so,  $\Omega_{i-1} \nvDash \sim Q_i$ ; so by construction,  $\Omega_{i^*} = \Omega_{i-1} \cup \{\sim \forall x \mathcal{P}\}$  and  $\Omega_i = \Omega_{i^*} \cup \{\sim \mathcal{P}_c^x\}$ ; so by construction,  $\sim \mathcal{P}_c^x \in \Sigma''$ ; so  $\Sigma'' \vdash \sim \mathcal{P}_c^x$ . So if  $\Sigma'' \vdash \sim \forall x \mathcal{P}$ , then  $\Sigma'' \vdash \sim \mathcal{P}_c^x$ , and  $\Sigma''$  is a scapegoat set.

In a pattern that should be familiar by now, we guarantee maximal scapegoat sets, by including instances as required. The most difficult case is (iii) for consistency. Having shown that  $\Omega_{k^*} \vdash \mathcal{P}_c^{\chi}$  for c not in  $\Omega_{k^*}$  or in  $\mathcal{P}$ , we want to generalize to show that  $\Omega_{k^*} \vdash \forall \chi \mathcal{P}$ . But, in our derivation systems, generalization is on variables, not constants. To get the generalization we want, we first use T10.12 to replace c with an arbitrary variable v. From this, we might have moved immediately to  $\forall \chi \mathcal{P}$  by the *ND* rule  $\forall$ I. However, in the above reasoning, we stick with the pattern of *AD* rules, applying Gen, and then T3.27 to switch bound variables, for the desired result, that contradicts  $\sim \forall \chi \mathcal{P}$ .

- E10.17. Let  $\Sigma' = \{\forall x \sim Bx, Ca\}$  and consider enumerations of sentences and extra constants in  $\mathcal{L}'$  that begin, Aa, Ba,  $\sim \forall xCx \dots$  and  $c_1, c_2 \dots$  What are  $\Omega_0$ ,  $\Omega_{1^*}, \Omega_1, \Omega_{2^*}, \Omega_2, \Omega_{3^*}, \Omega_3$ ? Produce a model to show that the resultant set  $\Omega_3$  is consistent.
- E10.18. Suppose some  $\Omega_{i-1} = \{Ac_2, \forall x (Ax \to Bx)\}$ . Show that  $\Omega_{i^*}$  is consistent, but  $\Omega_i$  is not, if  $\mathcal{Q}_i = \sim \forall x Bx$ , and we add  $\sim \forall x Bx$  with  $\sim Bc_2$  to form  $\Omega_{i^*}$  and  $\Omega_i$ . Why cannot this happen in the construction of  $\Sigma''$ ?

#### 10.3.4 The Model

We turn now to constructing the model M' for  $\Sigma'$ . As it turns out, the construction is simplified by our assumption that '=' does not appear in the language. A quantificational interpretation has a universe, with assignments to sentence letters, constants, function symbols, and relation symbols.

CnsM' Let the universe U be the set of positive integers,  $\{1, 2...\}$ . Then, where a *variable-free* term consists just of function symbols and constants, consider an enumeration  $t_1, t_2...$  of all the variable-free terms in  $\mathcal{L}'$ . If  $t_z$  is a constant, set  $M'[t_z] = z$ . If  $t_z = \hbar^n t_a ... t_b$  for some function symbol  $\hbar^n$  and n variable-free terms  $t_a...t_b$ , then let  $\langle \langle a...b \rangle, z \rangle \in M'[\hbar^n]$ . For a sentence letter  $\mathscr{S}$ , let  $M'[\mathscr{S}] = T$  iff  $\Sigma'' \vdash \mathscr{S}$ . And for a relation symbol  $\mathscr{R}^n$ , let  $\langle a...b \rangle \in M'[\mathscr{R}^n]$  iff  $\Sigma'' \vdash \mathscr{R}^n t_a ...t_b$ .

Thus, for example, where  $t_1$  and  $t_3$  from the enumeration of terms are constants and  $\Sigma'' \vdash \Re t_1 t_3$ , then  $M'[t_1] = 1$ ,  $M'[t_3] = 3$  and  $\langle 1, 3 \rangle \in M'[\Re]$ . Given this, it should be clear why  $\Re t_1 t_3$  comes out satisfied on M': Put generally, where  $t_a \dots t_b$  are constants, we set  $M'[t_a] = a$ , and  $\dots$  and  $M'[t_b] = b$ ; so by TA(c), for any variable assignment d,  $M'_d[t_a] = a$ , and  $\dots$  and  $M'_d[t_b] = b$ . So by SF(r),  $M'_d[\Re^n t_a \dots t_b] = S$  iff  $\langle a \dots b \rangle \in M'[\Re^n]$ ; by construction, iff  $\Sigma'' \vdash \Re^n t_a \dots t_b$ . Just as in the sentential case, our idea is to make atomic sentences true on M' just in case they are proved by  $\Sigma''$ .

Our aim has been to show that if  $\Sigma'$  is consistent, then  $\Sigma'$  has a model. We have constructed an interpretation M', and now show what sentences are true on it. As in the sentential case, the main weight is carried by a preliminary theorem. And, as in the sentential case, the key is that we can appeal to special features of  $\Sigma''$ , this time that it is a maximal, consistent, scapegoat set. Notice that  $\mathcal{B}$  is a *sentence*.

T10.9. If  $\Sigma'$  is consistent, then for any sentence  $\mathcal{B}$  of  $\mathcal{L}', M'[\mathcal{B}] = T$  iff  $\Sigma'' \vdash \mathcal{B}$ .

Suppose  $\Sigma'$  is consistent and  $\mathcal{B}$  is a sentence of  $\mathcal{L}'$ . By T10.8,  $\Sigma''$  is a maximal, consistent, scapegoat set. We begin with a preliminary result, which connects arbitrary variable-free terms to our treatment of constants in the example above: for any variable-free term  $t_z$  and variable assignment d,  $M'_d[t_z] = z$ .

Suppose  $t_z$  is a variable-free term and d is an arbitrary variable assignment. By induction on the number of function symbols in  $t_z$ ,  $M'_d[t_z] = z$ .

- *Basis:* If  $t_z$  has no function symbols, then it is a constant. In this case, by construction,  $M'[t_z] = z$ ; so by TA(c),  $M'_{\sigma}[t_z] = z$ .
- Assp: For any  $i, 0 \le i < k$ , if  $t_z$  has i function symbols, then  $M'_d[t_z] = z$ .

<sup>&</sup>lt;sup>3</sup>It is common to let U just be the set of variable-free terms in  $\mathcal{L}'$ , and the interpretation of a term be itself. There is nothing the matter with this. However, working with the integers emphasizes continuity with other models we have seen, and positions us for further results.

Show: If  $t_z$  has k function symbols, then  $M'_d[t_z] = z$ .

If  $t_z$  has k function symbols, then it is of the form  $\hbar^n t_a \dots t_b$  for function symbol  $\hbar^n$  and variable-free terms  $t_a \dots t_b$  each with < k function symbols. By TA(f),  $M'_d[t_z] = M'_d[\hbar^n t_a \dots t_b] = M'[\hbar^n] \langle M'_d[t_a]$  $\dots M'_d[t_b] \rangle$ ; but by assumption,  $M'_d[t_a] = a$ , and  $\dots$  and  $M'_d[t_b] =$ b; so  $M'_d[t_z] = M'[\hbar^n] \langle a \dots b \rangle$ . But since  $t_z = \hbar^n t_a \dots t_b$  is a variable-free term, by construction,  $\langle \langle a \dots b \rangle, z \rangle \in M'[\hbar^n]$ ; so we have  $M'_d[t_z] = M'[\hbar^n] \langle a \dots b \rangle = z$ .

Indet: For any  $t_z$ ,  $M'_d[t_z] = z$ .

Given this, we are ready to show, by induction on the number of operators in  $\mathcal{B}$ , that  $M'[\mathcal{B}] = T$  iff  $\Sigma'' \vdash \mathcal{B}$ . Suppose  $\mathcal{B}$  is a sentence.

- Basis: If  $\mathscr{B}$  is a sentence with no operators, then it is a sentence letter  $\mathscr{S}$ , or an atomic  $\mathscr{R}^n t_a \dots t_b$  for relation symbol  $\mathscr{R}^n$  and variable-free terms  $t_a \dots t_b$ . In the first case, by construction,  $\mathsf{M}'[\mathscr{S}] = \mathsf{T}$  iff  $\Sigma'' \vdash \mathscr{S}$ . In the second case, by TI,  $\mathsf{M}'[\mathscr{R}^n t_a \dots t_b] = \mathsf{T}$  iff for arbitrary d,  $\mathsf{M}'_d[\mathscr{R}^n t_a \dots t_b] = \mathsf{S}$ ; by SF(r), iff  $\langle \mathsf{M}'_d[t_a] \dots \mathsf{M}'_d[t_b] \rangle \in$  $\mathsf{M}'[\mathscr{R}^n]$ ; since  $t_a \dots t_b$  are variable-free terms, by the above result, iff  $\langle a \dots b \rangle \in \mathsf{M}'[\mathscr{R}^n]$ ; by construction, iff  $\Sigma'' \vdash \mathscr{R}^n t_a \dots t_b$ . In either case, then,  $\mathsf{M}'[\mathscr{B}] = \mathsf{T}$  iff  $\Sigma'' \vdash \mathscr{B}$ .
- Assp: For any  $i, 0 \le i < k$  if a sentence  $\mathcal{B}$  has i operator symbols, then  $\mathsf{M}'[\mathcal{B}] = \mathsf{T}$  iff  $\Sigma'' \vdash \mathcal{B}$ .
- Show: If a sentence  $\mathcal{B}$  has k operator symbols, then  $M'[\mathcal{B}] = T$  iff  $\Sigma'' \vdash \mathcal{B}$ . If  $\mathcal{B}$  has k operator symbols, then it is of the form,  $\sim \mathcal{P}, \mathcal{P} \rightarrow \mathcal{Q}$  or  $\forall x \mathcal{P}$ , for variable x and  $\mathcal{P}$  and  $\mathcal{Q}$  with < k operator symbols.
  - (~) Suppose 𝔅 is ∼𝒫. Homework. Hint: given T8.6, your reasoning may be very much as in the sentential case.
  - $(\rightarrow)$  Suppose  $\mathcal{B}$  is  $\mathcal{P} \rightarrow \mathcal{Q}$ . Homework.
  - (∀) Suppose B is ∀xP. Then since B is a sentence, x is the only variable that could be free in P.

(i) Suppose  $M'[\mathcal{B}] = T$  but  $\Sigma'' \nvDash \mathcal{B}$ ; from the latter,  $\Sigma'' \nvDash \forall x\mathcal{P}$ ; since  $\Sigma''$  is maximal,  $\Sigma'' \vdash \neg \forall x\mathcal{P}$ ; and since  $\Sigma''$  is a scapegoat set, for some constant c,  $\Sigma'' \vdash \neg \mathcal{P}_c^{\chi}$ ; so by consistency,  $\Sigma'' \nvDash \mathcal{P}_c^{\chi}$ ; but  $\mathcal{P}_c^{\chi}$  is a sentence; so by assumption,  $M'[\mathcal{P}_c^{\chi}] \neq T$ ; so by TI, for some d,  $M'_d[\mathcal{P}_c^{\chi}] \neq S$ ; but, where c is some  $t_a$ , by construction, M'[c] = a; so by TA(c),  $M'_d[c] = a$ ; so, since c is free for  $\chi$  in  $\mathcal{P}$ , by T10.2,  $M'_{d(x|a)}[\mathcal{P}] \neq S$ ; so by SF( $\forall$ ),  $M'_{d}[\forall x \mathcal{P}] \neq S$ ; so by TI,  $M'[\forall x \mathcal{P}] \neq T$ ; and this is just to say,  $M'[\mathcal{B}] \neq T$ . But this is impossible; reject the assumption: if  $M'[\mathcal{B}] = T$ , then  $\Sigma'' \vdash \mathcal{B}$ .

(ii) Suppose  $\Sigma'' \vdash \mathcal{B}$  but  $M'[\mathcal{B}] \neq T$ ; from the latter,  $M'[\forall x\mathcal{P}] \neq T$ ; so by TI, there is some d such that  $M'_d[\forall x\mathcal{P}] \neq S$ ; so by SF( $\forall$ ), there is some  $a \in U$  such that  $M'_{d(x|a)}[\mathcal{P}] \neq S$ ; but for variable-free term  $t_a$ , by our above result,  $M'_d[t_a] = a$ , and since  $t_a$  is variable-free, it is free for x in  $\mathcal{P}$ , so by T10.2,  $M'_d[\mathcal{P}^x_{t_a}] \neq S$ ; so by TI,  $M'[\mathcal{P}^x_{t_a}] \neq T$ ; but  $\mathcal{P}^x_{t_a}$ is a sentence; so by assumption,  $\Sigma'' \nvDash \mathcal{P}^x_{t_a}$ ; so by the maximality of  $\Sigma'', \Sigma'' \vdash \sim \mathcal{P}^x_{t_a}$ ; but  $t_a$  is free for x in  $\mathcal{P}$ , so by A4,  $\vdash \forall x\mathcal{P} \rightarrow \mathcal{P}^x_{t_a}$ ; and by T3.13,  $\vdash (\forall x\mathcal{P} \rightarrow \mathcal{P}^x_{t_a}) \rightarrow (\sim \mathcal{P}^x_{t_a} \rightarrow \sim \forall x\mathcal{P})$ ; so by a couple instances of MP,  $\Sigma'' \vdash \sim \forall x\mathcal{P}$ ; so by the consistency of  $\Sigma'',$  $\Sigma'' \nvDash \forall x\mathcal{P}$ ; which is to say,  $\Sigma'' \nvDash \mathcal{B}$ . This is impossible; reject the assumption: if  $\Sigma'' \vdash \mathcal{B}$ , then  $M'[\mathcal{B}] = T$ .

If  $\mathcal{B}$  has k operator symbols, then  $M'[\mathcal{B}] = T$  iff  $\Sigma'' \vdash \mathcal{B}$ .

*Indct:* For any sentence  $\mathcal{B}, \mathsf{M}'[\mathcal{B}] = \mathsf{T} \text{ iff } \Sigma'' \vdash \mathcal{B}.$ 

So if  $\Sigma'$  is consistent, then for any sentence  $\mathcal{B}$  of  $\mathcal{L}'$ ,  $\mathsf{M}'[\mathcal{B}] = \mathsf{T}$  iff  $\Sigma'' \vdash \mathcal{B}$ . We are now just one step away from (\*). It will be easy to see that  $\mathsf{M}'[\Sigma'] = \mathsf{T}$ , and so to reach the final result.

E10.19. Complete the  $\sim$  and  $\rightarrow$  cases to complete the demonstration of T10.9. You should set up the complete demonstration, but may refer to the text for cases completed there, as the text refers cases to homework.

#### **10.3.5** Final Result

And now we are in a position to get the final result. This works just as before. First,

T10.10. If  $\Sigma'$  is consistent, then  $M'[\Sigma'] = T$ . (\*)

Suppose  $\Sigma'$  is consistent, but  $M'[\Sigma'] \neq T$ . From the latter, there is some formula  $\mathcal{B} \in \Sigma'$  such that  $M'[\mathcal{B}] \neq T$ . Since  $\mathcal{B} \in \Sigma'$ , by construction,  $\mathcal{B} \in$  $\Sigma''$ , so  $\Sigma'' \vdash \mathcal{B}$ ; so, where  $\mathcal{B}^c$  is the universal closure of  $\mathcal{B}$ , by application of Gen as necessary,  $\Sigma'' \vdash \mathcal{B}^c$ ; so since  $\Sigma'$  is consistent, by T10.9,  $M'[\mathcal{B}^c] = T$ ; so by applications of T7.7 as necessary,  $M'[\mathcal{B}] = T$ . This is impossible; reject the assumption: if  $\Sigma'$  is consistent, then  $M'[\Sigma'] = T$ . Notice that this result applies to arbitrary sets of *formulas*. We are able to bridge between formulas and sentences by T10.7 and Gen. But now we have the  $(\star)$  that we have needed for adequacy.

So that is it! All we needed for the proof of adequacy was  $(\star)$ . And we have it. So here is the final argument. Suppose the members of  $\Gamma$  and  $\mathcal{P}$  are formulas of  $\mathcal{L}'$ .

#### T10.11. If $\Gamma \vDash \mathcal{P}$ , then $\Gamma \vdash \mathcal{P}$ . (quantificational adequacy)

Suppose  $\Gamma \models \mathcal{P}$  but  $\Gamma \nvDash \mathcal{P}$ . Say, for the moment that  $\Gamma \vdash \sim \sim \mathcal{P}^c$ ; by T3.10,  $\vdash \sim \sim \mathcal{P}^c \rightarrow \mathcal{P}^c$ ; so by MP,  $\Gamma \vdash \mathcal{P}^c$ ; so by repeated applications of A4 and MP,  $\Gamma \vdash \mathcal{P}$ ; but this is impossible; so  $\Gamma \nvDash \sim \sim \mathcal{P}^c$ . Given this, since  $\sim \sim \mathcal{P}^c$  is a sentence, by T10.6,  $\Gamma \cup \{\sim \mathcal{P}^c\} = \Sigma'$  is consistent; so by T10.10, there is a model M' constructed as above such that  $M'[\Sigma'] = T$ . So  $M'[\Gamma] = T$  and  $M'[\sim \mathcal{P}^c] = T$ ; from the latter, by T8.6,  $M'[\mathcal{P}^c] \neq T$ ; so by repeated applications of T7.7,  $M'[\mathcal{P}] \neq T$ ; so by QV,  $\Gamma \nvDash \mathcal{P}$ . This is impossible; reject the assumption: if  $\Gamma \vDash \mathcal{P}$  then  $\Gamma \vdash \mathcal{P}$ .

Again, you should try to get the complete picture in your mind: The key is that consistent sets always have models. If  $\Gamma \cup \{\sim \mathcal{P}\}$  is not consistent, then there is a derivation of  $\mathcal{P}$  from  $\Gamma$ . So if there is no derivation of  $\mathcal{P}$  from  $\Gamma$ ,  $\Gamma \cup \{\sim \mathcal{P}\}$  is consistent and so must have a model — with the result that  $\Gamma \nvDash \mathcal{P}$ . We get the key point, that consistent sets have models, by finding a relation between consistent, and *maximal*, consistent, scapegoat sets. If a set is maximal and consistent and a scapegoat set, then it contains enough information to specify a model for the whole. The model for the big set then guarantees the existence of a model M for the original  $\Gamma$ . All of this is very much parallel to the sentential case.

E10.20. Consider a quantificational language  $\mathcal{L}$  which has function symbols as usual but with  $\wedge$ ,  $\sim$ , and  $\exists$  as primitive operators. Suppose axioms and rules are as in A4 of E10.3 on p. 473. You may suppose there is no symbol for equality, and there are infinitely many constants not in  $\Gamma$ . Provide a complete demonstration that A4 is adequate. You may appeal to any results from the text whose demonstration remains unchanged, but should recreate parts whose demonstration is not the same.

Hints: As preliminaries you will need revised versions of DT and T10.12. In addition, a few quick theorems for derivations, along with an analog to one side of T7.7 might be helpful,

(a)  $\vdash \exists y \mathcal{P}_{y}^{\chi} \to \exists \chi \mathcal{P}$  y free for  $\chi$  in  $\mathcal{P}$  and not free in  $\exists \chi \mathcal{P}$ 

(b)  $\vdash \sim \exists x \mathcal{P} \to \sim \exists y \mathcal{P}_y^{x}$  y free for x in  $\mathcal{P}$  and not free in  $\exists x \mathcal{P}$ (c)  $\sim \mathcal{P}_v^{x} \vdash \sim \exists x \mathcal{P}$  use  $\exists E$  with  $\mathcal{Q}$  some  $X \land \sim X$ ; note that  $\models \sim (X \land \sim X)$ (7.6\*) If  $|[\sim \exists x \mathcal{P}] = T$  then  $|[\sim \mathcal{P}] = T$ 

Then redefine key notions (such as 'scapegoat set') in terms of the existential quantifier, so that you can work cases directly within the new system. Say  $\mathcal{P}^e$  is the *existential* closure of  $\mathcal{P}$ . Note that  $\sim (\sim \mathcal{P})^e$  is equivalent to  $\mathcal{P}^c$  (imagine replacing all the added universal quantifiers in  $\mathcal{P}^c$  with  $\sim \exists x \sim$  and using DN on inner double tildes). This will help with T10.10 and T10.11.

# 10.4 Quantificational Adequacy: Full Version

So far, we have shown that if  $\Gamma \vDash \mathcal{P}$ , then  $\Gamma \vdash \mathcal{P}$  where the members of  $\Gamma$  and  $\mathcal{P}$  are formulas of  $\mathcal{L}'$ . Now allow that the members of  $\Gamma$  and  $\mathcal{P}$  are in an arbitrary quantificational language  $\mathcal{L}$ . Then we we shall require require not (\*) with application just to  $\mathcal{L}'$ , but the more general,

(\*\*) For any consistent set of formulas  $\Sigma$ , there is an interpretation M such that  $M[\Sigma] = T$ .

Given this, reasoning is exactly as before.

1.  $\Gamma \cup \{\sim \mathcal{P}^c\}$  has a model  $\Longrightarrow$   $\Gamma \not\vDash \mathcal{P}$ 2.  $\Gamma \cup \{\sim \mathcal{P}^c\}$  is consistent  $\Longrightarrow$   $\Gamma \cup \{\sim \mathcal{P}^c\}$  has a model  $(\star \star)$ 3.  $\Gamma \cup \{\sim \mathcal{P}^c\}$  is not consistent  $\Longrightarrow$   $\Gamma \vdash \mathcal{P}$ 

Reasoning for (1) and (3) remains the same. (2) is  $(\star\star)$ . Now suppose  $\Gamma \models \mathcal{P}$ ; then from (1),  $\Gamma \cup \{\sim \mathcal{P}^c\}$  does not have a model; so by (2),  $\Gamma \cup \{\sim \mathcal{P}^c\}$  is not consistent; so by (3),  $\Gamma \vdash \mathcal{P}$ . So if  $\Gamma \models \mathcal{P}$ , then  $\Gamma \vdash \mathcal{P}$ . Supposing that  $(\star\star)$ has application to arbitrary sets of formulas, the result has application to arbitrary premises and conclusion. So we are left with two issues relative to our reasoning from before:  $\mathcal{L}$  might lack the infinitely many constants not in the premises, and  $\mathcal{L}$ might include equality.

#### **10.4.1** Adding Constants

Suppose  $\mathcal{L}$  does not have infinitely many constants not in  $\Gamma$ . This can happen in different ways. Perhaps  $\mathcal{L}$  simply does not have infinitely many constants. Or perhaps the constants of  $\mathcal{L}$  are  $a_1, a_2 \dots$  and  $\Gamma = \{\mathcal{R}a_1, \mathcal{R}a_2 \dots\}$ ; then  $\mathcal{L}$  has infinitely many constants, but there are not any constants in  $\mathcal{L}$  that do not appear in  $\Gamma$ . And we need the extra constants for construction of the maximal, consistent, scapegoat set. To avoid this sort of worry, we simply *add* infinitely many constants to form a language  $\mathcal{L}'$  out of  $\mathcal{L}$ .

 $Cns \mathcal{L}'$  Where  $\mathcal{L}$  is a language whose constants are some of  $a_1, a_2 \dots$  let  $\mathcal{L}'$  be like  $\mathcal{L}$  but with the addition of new constants  $c_1, c_2 \dots$ 

By reasoning as in the countability reference on p. 36, insofar as they can be lined up,  $a_1, c_1, a_2, c_2...$  the collection of constants remains countable, so that  $\mathcal{L}'$  remains a perfectly legitimate quantificational language. Clearly, every formula of  $\mathcal{L}$  remains a formula of  $\mathcal{L}'$ . Thus, where  $\Sigma$  is a set of formulas in language  $\mathcal{L}$ , let  $\Sigma'$  be like  $\Sigma$ except that its members are formulas of language  $\mathcal{L}'$ .

Our reasoning for  $(\star)$  has application to sets of the sort  $\Sigma'$ . That is, where  $\mathcal{L}'$  has infinitely many constants not in  $\Sigma'$ , we have been able to find a maximal, consistent, scapegoat set  $\Sigma''$ , and from this a model M' for  $\Sigma'$ . But, give an arbitrary  $\Sigma$  of formulas in  $\mathcal{L}$ , we need that *it* has a model M. That is, we shall have to establish a bridge between  $\Sigma$  and  $\Sigma'$ , and between M' and M. Thus, to obtain  $(\star\star)$ , we show,

| 2a. | $\Sigma$ is consistent   | $\implies$ | $\Sigma'$ is consistent  |
|-----|--------------------------|------------|--------------------------|
| 2b. | $\Sigma'$ is consistent  | $\implies$ | $\Sigma'$ has a model M' |
| 2c. | $\Sigma'$ has a model M' | $\implies$ | $\Sigma$ has a model M   |

(2b) is just ( $\star$ ) from before. And by a sort of hypothethical syllogism, together these yield ( $\star\star$ ).

For the first result, we need that if  $\Sigma$  is consistent, then  $\Sigma'$  is consistent. Of course,  $\Sigma$  and  $\Sigma'$  contain just the same formulas, only sentences of the one are in a language with extra constants. But there might be *derivations* in  $\mathcal{L}'$  from  $\Sigma'$  that are not derivations in  $\mathcal{L}$  from  $\Sigma$ . So we need to show that these extra derivations do not result in contradiction. For this, the overall idea is simple: If we can derive a contradiction from  $\Sigma'$  in the enriched language then, by a modified version of that very derivation, we can derive a contradiction from  $\Sigma$  in the reduced language. So if there is no contradiction in the reduced language  $\mathcal{L}$ , then there can be no contradiction in the enriched language  $\mathcal{L}'$ .

result T10.12. Let  $\Sigma$  be a set of formulas in  $\mathcal{L}$ , and  $\Sigma'$  those same formulas in  $\mathcal{L}'$ . We show,

T10.13. If  $\Sigma$  is consistent, then  $\Sigma'$  is consistent.

Suppose  $\Sigma$  is consistent. If  $\Sigma'$  is not consistent, then there is a formula  $\mathcal{A}$  in  $\mathcal{L}'$  such that  $\Sigma' \vdash \mathcal{A}$  and  $\Sigma' \vdash \sim \mathcal{A}$ ; but by T9.4,  $\vdash \mathcal{A} \rightarrow [\sim \mathcal{A} \rightarrow (\mathcal{A} \land \sim \mathcal{A})]$ ; so by two instances of MP,  $\Sigma' \vdash \mathcal{A} \land \sim \mathcal{A}$ . So if  $\Sigma'$  is not consistent, there is a derivation of a contradiction from  $\Sigma'$ . By induction on the number of new constants which appear in a derivation  $D = \langle \mathcal{B}_1, \mathcal{B}_2 \ldots \rangle$ , we show that no such D is a derivation of a contradiction from  $\Sigma'$ .

- *Basis:* Suppose *D* contains no new constants and *D* is a derivation of some contradiction  $\mathcal{A} \wedge \sim \mathcal{A}$  from  $\Sigma'$ . Since *D* contains no new constants, every member of *D* is also a formula of  $\mathcal{L}$ , so  $D = \langle \mathcal{B}_1, \mathcal{B}_2 \dots \rangle$  is a derivation of  $\mathcal{A} \wedge \sim \mathcal{A}$  from  $\Sigma$ ; so by T3.19 and T3.20 with MP,  $\Sigma \vdash \mathcal{A}$  and  $\Sigma \vdash \sim \mathcal{A}$ ; so  $\Sigma$  is not consistent. This is impossible; reject the assumption: *D* is not a derivation of a contradiction from  $\Sigma'$ .
- Assp: For any  $i, 0 \le i < k$ , if D contains i new constants, then it is not a derivation of a contradiction from  $\Sigma'$ .
- Show: If D contains k new constants, then it is not a derivation of a contradiction from  $\Sigma'$ .

Suppose *D* contains *k* new constants and is a derivation of a contradiction  $\mathcal{A} \wedge \sim \mathcal{A}$  from  $\Sigma'$ . Where *c* is one of the new constants in *D* and  $\alpha$  is a variable not in *D*, by T10.12,  $D_{\alpha}^{c}$  is a derivation of  $[\mathcal{A} \wedge \sim \mathcal{A}]_{\alpha}^{c}$  from  $\Sigma'_{\alpha}^{c}$ . But all the members of  $\Sigma'$  are in  $\mathcal{L}$ ; so *c* does not appear in any member of  $\Sigma'$ ; so  $\Sigma'_{\alpha}^{c} = \Sigma'$ . And  $[\mathcal{A} \wedge \sim \mathcal{A}]_{\alpha}^{c} = \mathcal{A}_{\alpha}^{c} \wedge \sim [\mathcal{A}_{\alpha}^{c}]$ . So  $D_{\alpha}^{c}$  is a derivation of a contradiction from  $\Sigma'$ . But  $D_{\alpha}^{c}$  has k - 1new constants and so, by assumption, is not a derivation of a contradiction from  $\Sigma'$ . This is impossible; reject the assumption: *D* is not a derivation of a contradiction from  $\Sigma'$ .

*Indct:* No derivation *D* is a derivation of a contradiction from  $\Sigma'$ .

So if  $\Sigma$  is consistent, then  $\Sigma'$  is consistent. So if we have a consistent set of sentences in  $\mathcal{L}$ , and convert to  $\mathcal{L}'$  with additional constants, we can be sure that the converted set is consistent as well.

With the extra constants in-hand, all our reasoning goes through as before to show that there is a model M' for  $\Sigma'$ . Officially, though, an interpretation for some

sentences in  $\mathcal{L}'$  is not a model for some sentences in  $\mathcal{L}$ : a model for sentences in  $\mathcal{L}$  has assignments for its constants, function symbols and relation symbols, where a model for  $\mathcal{L}'$  has assignments for *its* constants, function symbols and relation symbols. A model M' for  $\Sigma'$ , then, is not the same as a model M for  $\Sigma$ . But it is a short step to a solution.

CnsM Let M be like M' but without assignments to constants not in  $\mathcal{L}$ .

M is an interpretation for language  $\mathcal{L}$ . M and M' have exactly the same universe of discourse, and exactly the same interpretations for all the symbols that are in  $\mathcal{L}$ . It turns out that the evaluation of any formula in  $\mathcal{L}$  is therefore the same on M as on M' — that is, for any  $\mathcal{P}$  in  $\mathcal{L}$ , M[ $\mathcal{P}$ ] = T iff M'[ $\mathcal{P}$ ] = T. Perhaps this is obvious. However, it is worthwhile to consider a proof. Thus we need the following matched pair of theorems (in fact, we show somewhat more than is necessary, as M and M' differ only by assignments to constants). The proofs are straightforward, and mostly left as an exercise. I do just enough to get you started.

Suppose  $\mathcal{L}'$  extends  $\mathcal{L}$  and M' is like M except that it makes assignments to constants, functions symbols and relation symbols in  $\mathcal{L}'$  but not in  $\mathcal{L}$ .

T10.14. For any variable assignment d, and for any term t in  $\mathcal{L}$ ,  $M_d[t] = M'_d[t]$ .

The argument is by induction on the number of function symbols in t. Let d be a variable assignment, and t a term in  $\mathcal{L}$ .

Basis: Homework

Assp: For any  $i, 0 \le i < k$ , if t has i function symbols, then  $M_d[t] = M'_d[t]$ . Show: If t has k function symbols, then  $M_d[t] = M'_d[t]$ .

If t has k function symbols, then it is of the form,  $\hbar^n t_1 \dots t_n$  for function symbol  $\hbar^n$  and terms  $t_1 \dots t_n$  with  $\langle k$  function symbols. By TA(f),  $M_d[t] = M_d[\hbar^n t_1 \dots t_n] = M[\hbar^n] \langle M_d[t_1] \dots M_d[t_n] \rangle$ ; similarly,  $M'_d[t] = M'_d[\hbar^n t_1 \dots t_n] = M'[\hbar^n] \langle M'_d[t_1] \dots M'_d[t_n] \rangle$ . But by assumption,  $M_d[t_1] = M'_d[t_1]$ , and ... and  $M_d[t_n] = M'_d[t_n]$ ; and by construction,  $M[\hbar^n] = M'[\hbar^n]$ ; so  $M[\hbar^n] \langle M_d[t_1] \dots M_d[t_n] \rangle =$  $M'[\hbar^n] \langle M'_d[t_1] \dots M'_d[t_n] \rangle$ ; so  $M_d[t] = M'_d[t]$ .

Indet: For any t in  $\mathcal{L}$ ,  $M_d[t] = M'_d[t]$ .

T10.15. For any variable assignment d, and for any formula  $\mathcal{P}$  in  $\mathcal{L}$ ,  $M_d[\mathcal{P}] = S$  iff  $M'_d[\mathcal{P}] = S$ .

The argument is by induction on the number of operator symbols in  $\mathcal{P}$ . Let d be a variable assignment, and  $\mathcal{P}$  a formula in  $\mathcal{L}$ .

- Basis: If  $\mathcal{P}$  has no operator symbols, then it is a sentence letter  $\mathscr{S}$  or an atomic  $\mathcal{R}^n t_1 \dots t_n$  for relation symbol  $\mathcal{R}^n$  and terms  $t_1 \dots t_n$  in  $\mathscr{L}$ . In the first case, by SF(s),  $M_d[\mathscr{S}] = S$  iff  $M[\mathscr{S}] = T$ ; by construction, iff  $M'_{[\mathscr{S}]} = T$ ; by SF(s), iff  $M'_d[\mathscr{S}] = S$ . In the second case, by SF(r),  $M_d[\mathcal{P}] = S$  iff  $M_d[\mathcal{R}^n t_1 \dots t_n] = S$ ; iff  $\langle M_d[t_1] \dots M_d[t_n] \rangle \in M[\mathcal{R}^n]$ ; similarly,  $M'_d[\mathcal{P}] = S$  iff  $M'_d[\mathcal{R}^n t_1 \dots t_n] = S$ ; iff  $\langle M'_d[t_1] \dots M'_d[t_n] \rangle \in M'[\mathcal{R}^n]$ . But by T10.14,  $M_d[t_1] = M'_d[t_1]$ , and  $\dots$  and  $M_d[t_n] = M'_d[t_n]$ ; and by construction,  $M[\mathcal{R}^n] = M'[\mathcal{R}^n]$ ; so  $\langle M_d[t_1] \dots M_d[t_n] \rangle \in M[\mathcal{R}^n]$  iff  $\langle M'_d[t_1] \dots M'_d[t_n] \rangle \in M'[\mathcal{R}^n]$ ; so  $M_d[\mathcal{P}] = S$  iff  $M'_d[\mathcal{P}] = S$ .
- Assp: For any  $i, 0 \le i < k$ , and any variable assignment d, if  $\mathcal{P}$  has i operator symbols,  $M_d[\mathcal{P}] = S$  iff  $M'_d[\mathcal{P}] = S$ .
- Show: Homework

*Indct:* For any formula  $\mathcal{P}$  of  $\mathcal{L}$ ,  $M_d[\mathcal{P}] = S$  iff  $M'_d[\mathcal{P}] = S$ .

And now we are in a position to show that M is indeed a model for  $\Sigma$ . In particular, it is easy to show,

T10.16. If  $M'[\Sigma'] = T$ , then  $M[\Sigma] = T$ .

Suppose  $M'[\Sigma'] = T$ , but  $M[\Sigma] \neq T$ . From the latter, there is some formula  $\mathcal{B} \in \Sigma$  such that  $M[\mathcal{B}] \neq T$ ; so by TI, for some d,  $M_d[\mathcal{B}] \neq S$ ; so by T10.15,  $M'_d[\mathcal{B}] \neq S$ ; so by TI,  $M'[\mathcal{B}] \neq T$ ; and since  $\mathcal{B} \in \Sigma$ , we have  $\mathcal{B} \in \Sigma'$ ; so  $M'[\Sigma'] \neq T$ . This is impossible; reject the assumption: if  $M'[\Sigma'] = T$ , then  $M[\Sigma] = T$ .

T10.13, T10.10, and T10.16 together yield,

T10.17.  $\mathcal{L}$ , if  $\Sigma$  is consistent, then  $\Sigma$  has a model M ( $\mathcal{L}$  without equality).

Suppose  $\Sigma$  is consistent; then by T10.13,  $\Sigma'$  is consistent; so by T10.10,  $\Sigma'$  has a model M'; so by T10.16,  $\Sigma$  has a model M.

And that is what we needed to recover the adequacy result for  $\mathcal{L}$  without the constraint on constants. Where  $\mathcal{L}$  does not include infinitely many constants not in  $\Gamma$ , we simply add them to form  $\mathcal{L}'$ . Our theorems from this section ensure that the results go through as before.

- \*E10.21. Complete the proof of T10.14. You should set up the complete induction, but may refer to the text, as the text refers to homework.
- \*E10.22. Complete the proof of T10.15. As usual, you should set up the complete induction, but may refer to the text for cases completed there, as the text refers to homework.
- E10.23. Adapt the demonstration of T10.11 for the supposition that  $\mathcal{L}$  need not be the same as  $\mathcal{L}'$ . You may appeal to theorems from this section.

#### **10.4.2** Accommodating Equality

Dropping the assumption that language  $\mathcal{L}$  lacks the symbol '=' for equality results in another sort of complication. In constructing our models, where  $t_1$  and  $t_3$  from the enumeration of variable-free terms are constants and  $\Sigma'' \vdash \mathcal{R}t_1t_3$ , we set  $M'[t_1] = 1$ ,  $M'[t_3] = 3$  and  $\langle 1, 3 \rangle \in M'[\mathcal{R}]$ . But suppose  $\mathcal{R}$  is the equal sign, '='; then by our procedure,  $\langle 1, 3 \rangle \in M'[=]$ . But this is wrong! Where  $U = \{1, 2, ...\}$ , the proper interpretation of '=' is  $\{\langle 1, 1 \rangle, \langle 2, 2 \rangle ...\}$ , and  $\langle 1, 3 \rangle$  is not a member of this set at all. So our procedure does not result in the specification of a legitimate model. The procedure works fine for relation symbols other than equality. There are no restrictions on assignments to other relation symbols, so nothing stops us from specifying interpretations as above. But there is a restriction on the interpretation of '='. So we cannot proceed blindly this way.

Here is the nub of a solution: Say  $\Sigma'' \vdash a_1 = a_3$ ; then let the set {1,3} be an element of U, and let  $M'[a_1] = M'[a_3] = \{1,3\}$ . Similarly, if  $a_2 = a_4$  and  $a_4 = a_5$  are consequences of  $\Sigma''$ , let {2,4,5} be a member of U, and  $M'[a_2] =$  $M'[a_4] = M'[a_5] = \{2,4,5\}$ . That is, let U consist of certain sets of integers where these sets are specified by atomic equalities that are consequences of  $\Sigma''$ . Then let  $M'[a_2]$  be the set of which z is a member. Given this, if  $\Sigma'' \vdash \mathcal{R}^n t_a \dots t_b$ , then include the tuple consisting of the set assigned to  $t_a$ , and ... and the set assigned to  $t_b$ , in the interpretation of  $\mathcal{R}^n$ . So on the above interpretation of the constants, if  $\Sigma'' \vdash \mathcal{R}a_1a_4$ , then  $\langle \{1,3\}, \{2,4,5\} \rangle \in M'[\mathcal{R}]$ . And if  $\Sigma'' \vdash a_1 = a_3$ , then  $\langle \{1,3\}, \{1,3\} \rangle \in M'[=]$ . You should see why this is so. And it is just right! If  $\{1,3\} \in U$ , then  $\langle \{1,3\}, \{1,3\} \rangle$  should be in M'[=]. So we respond to the problem by a revision of the specification for CnsM'.

Let us now turn to the details. Put abstractly, the reason the argument in the basis of T10.9 works is that our model M' assigns each t in the enumeration of variable-free terms an object m such that whenever  $\Sigma'' \vdash \mathcal{R}t$  then  $m \in M'[\mathcal{R}]$ ; and for the

universal case, it is important that for each object there is a constant to which it is assigned. We want an interpretation that preserves these features. And it will be important to demonstrate that our specifications are coherent. A model consists of a universe U, along with assignments to constants, function symbols, sentence letters, and relation symbols. We take up these elements, one after another.

**The universe.** The elements of our universe U are to be certain sets of integers.<sup>4</sup> Consider an enumeration  $t_1, t_2...$  of all the variable-free terms in  $\mathcal{L}'$ , and let there be a relation  $\simeq$  on the set  $\{1, 2...\}$  of positive integers such that  $i \simeq j$  iff  $\Sigma'' \vdash$  $t_i = t_j$ . Let  $\overline{n}$  be the set of integers which stand in the  $\simeq$  relation to n — that is,  $\overline{n} = \{z \mid z \simeq n\}$ . So whenever  $z \simeq n$ , then  $z \in \overline{n}$ . The universe U of M' is then the collection of all these sets — that is,

CnsM' For each integer greater than or equal to one, the universe includes the class corresponding to it.  $U = \{\overline{n} \mid n \ge 1\}$ .

The way this works is really quite simple. If according to  $\Sigma''$ ,  $t_1$  equals only itself, then the only z such that  $z \simeq 1$  is 1; so  $\overline{1} = \{1\}$ , and this is a member of U. If, according to  $\Sigma''$ ,  $t_1$  equals just itself and  $t_2$ , then  $1 \simeq 2$  so that  $\overline{1} = \overline{2} = \{1, 2\}$ , and this set is a member of U. If, according to  $\Sigma''$ ,  $t_1$  equals itself,  $t_2$  and  $t_3$ , then  $1 \simeq 2 \simeq 3$  so that  $\overline{1} = \overline{2} = \{1, 2, 3\}$ , and this set is a member of U. And so forth.

In order to make progress, it will be convenient to establish some facts about the  $\simeq$  relation, and about the sets in U. Recall that  $\simeq$  is a relation on the *integers* which is specified relative to expressions in  $\Sigma''$ , so that  $i \simeq j$  iff  $\Sigma'' \vdash t_i = t_j$ . First we show that  $\simeq$  is *reflexive*, symmetric, and transitive.

*Reflexivity.* For any i, i  $\simeq$  i. By T3.32,  $\vdash t_i = t_i$ ; so  $\Sigma'' \vdash t_i = t_i$ ; so by construction, i  $\simeq$  i.

Symmetry. For any i and j, if  $i \simeq j$ , then  $j \simeq i$ . Suppose  $i \simeq j$ ; then by construction,  $\Sigma'' \vdash t_i = t_j$ ; but by T3.33,  $\vdash t_i = t_j \rightarrow t_j = t_i$ ; so by MP,  $\Sigma'' \vdash t_j = t_i$ ; so by construction,  $j \simeq i$ .

*Transitivity.* For any i, j and k, if i  $\simeq$  j and j  $\simeq$  k, then i  $\simeq$  k. Suppose i  $\simeq$  j and j  $\simeq$  k; then by construction,  $\Sigma'' \vdash t_i = t_j$  and  $\Sigma'' \vdash t_j = t_k$ ; but by

<sup>&</sup>lt;sup>4</sup>Again, it is common to let the universe be *sets of terms* in  $\mathcal{L}'$ . There is nothing the matter with this. However, working with the integers emphasizes continuity with other models we have seen, and positions us for further results.

T3.34,  $\vdash t_i = t_j \rightarrow (t_j = t_k \rightarrow t_i = t_k)$ ; so by two instances of MP,  $\Sigma'' \vdash t_i = t_k$ ; so by construction,  $i \simeq k$ .

A relation which is reflexive, symmetric and transitive is called an *equivalence* relation. As an equivalence relation, it divides or *partitions* the members of  $\{1, 2...\}$  into mutually exclusive classes such that each member of a class bears  $\simeq$  to each of the others in its partition, but not to integers outside the partition. More particularly, because  $\simeq$  is an equivalence relation, the collections  $\overline{n} = \{z \mid z \simeq n\}$  in U are characterized as follows.

Self-membership. For any  $n, n \in \overline{n}$ . By reflexivity,  $n \simeq n$ ; so by construction,  $n \in \overline{n}$ . Corollary: Every integer i is a member of at least one class.

*Uniqueness.* For any i, i is an an element of at most one class. Suppose i is an element of more than one class; then there are some m and n such that  $i \in \overline{m}$  and  $i \in \overline{n}$  but  $\overline{m} \neq \overline{n}$ . Since  $\overline{m} \neq \overline{n}$  there is some j such that  $j \in \overline{m}$  and  $j \notin \overline{n}$ , or  $j \in \overline{n}$  and  $j \notin \overline{m}$ ; without loss of generality, suppose  $j \in \overline{m}$  and  $j \notin \overline{n}$ . Since  $j \in \overline{m}$ , by construction,  $j \simeq m$ ; and since  $i \in \overline{m}$ , by construction  $i \simeq m$ ; so by symmetry,  $m \simeq i$ ; so by transitivity,  $j \simeq i$ . Since  $i \in \overline{n}$ , by construction  $i \simeq n$ ; so by transitivity again,  $j \simeq n$ ; so by construction,  $j \in \overline{n}$ . This is impossible; reject the assumption: i is an element of at most one class.

*Equality.* For any m and n, m  $\simeq$  n iff  $\overline{m} = \overline{n}$ . (i) Suppose m  $\simeq$  n. Then by construction, m  $\in \overline{n}$ ; but by self-membership, m  $\in \overline{m}$ ; so by uniqueness,  $\overline{n} = \overline{m}$ . Suppose  $\overline{m} = \overline{n}$ ; by self-membership, m  $\in \overline{m}$ ; so m  $\in \overline{n}$ ; so by construction, m  $\simeq$  n.

Corresponding to the relations by which they are formed, classes characterized by self-membership, uniqueness and equality are *equivalence classes*. From self-membership and uniqueness, every n is a member of exactly one such class. And from equality,  $m \simeq n$  just when  $\overline{m}$  is the very same thing as  $\overline{n}$ . So, for example, if  $1 \simeq 1$  and  $2 \simeq 1$  (and nothing else), then  $\overline{1} = \overline{2} = \{1, 2\}$ . You should be able to see that these formal specifications develop just the informal picture with which we began.

Terms. The specification for constants is simple.

CnsM' If  $t_z$  in the enumeration of variable-free terms  $t_1, t_2...$  is a constant, then  $M'[t_z] = \overline{z}$ .

Thus, with self-membership, any constant  $t_z$  designates the equivalence class of which z is a member. In this case, we need to be sure that the specification picks out exactly one member of U for each constant. The specification would fail if the relation  $\simeq$  generated classes such that some integer was an element of no class, or some integer was an element of more than one. But, as we have just seen, by self-membership and uniqueness, every z is a member of exactly one class. So far, so good!

CnsM' If  $t_z$  in the enumeration of variable-free terms  $t_1, t_2...$  is  $\hbar^n t_a...t_b$  for function symbol  $\hbar^n$  and variable-free terms  $t_a...t_b$ , then  $\langle \langle \overline{a}...\overline{b} \rangle, \overline{z} \rangle \in M'[\hbar^n]$ .

Thus when the input to  $\hbar^n$  is  $\langle \overline{\mathbf{a}} \dots \overline{\mathbf{b}} \rangle$ , the output is  $\overline{\mathbf{z}}$ . This time, we must be sure that the result is a function — that (i) there is a defined output object for every input *n*-tuple, and (ii) there is at most one output object associated with any one input *n*tuple. The former worry is easily dispatched. The second concern is that there might be some  $t_m = \hbar t_a$  and  $t_n = \hbar t_b$  in the list of variable-free terms, where  $\overline{\mathbf{a}} = \overline{\mathbf{b}}$ . Then  $\langle \overline{\mathbf{a}}, \overline{\mathbf{m}} \rangle$ ,  $\langle \overline{\mathbf{b}}, \overline{\mathbf{n}} \rangle \in \mathsf{M}'[\hbar]$ , and we fail to specify a function.

(i) There is at least one output object. Corresponding to any  $\langle \overline{a} \dots b \rangle$  where  $\overline{a} \dots \overline{b}$  are members of U, there is some variable-free  $t_z = h^n t_a \dots t_b$  in the sequence  $t_1, t_2 \dots$ ; so by construction,  $\langle \langle \overline{a} \dots \overline{b} \rangle, \overline{z} \rangle \in M'[\hbar^n]$ . So  $M'[\hbar^n]$  has a defined output object when the input is  $\langle \overline{a} \dots \overline{b} \rangle$ .

(ii) There is at most one output object. Suppose  $\langle \langle \bar{a} \dots \bar{c} \rangle, \bar{m} \rangle \in M'[\hbar^n]$ and  $\langle \langle \bar{d} \dots \bar{f} \rangle, \bar{n} \rangle \in M'[\hbar^n]$ , where  $\langle \bar{a} \dots \bar{c} \rangle = \langle \bar{d} \dots \bar{f} \rangle$ , but  $\bar{m} \neq \bar{n}$ . Since  $\langle \bar{a} \dots \bar{c} \rangle = \langle \bar{d} \dots \bar{f} \rangle$ ,  $\bar{a} = \bar{d}$ , and ... and  $\bar{c} = \bar{f}$ ; so by equality,  $a \simeq d$ , and ... and  $c \simeq f$ ; so by construction,  $\Sigma'' \vdash t_a = t_d$ , and ... and  $\Sigma'' \vdash t_c = t_f$ . Since  $\langle \langle \bar{a} \dots \bar{c} \rangle, \bar{m} \rangle \in M'[\hbar^n]$  and  $\langle \langle \bar{d} \dots \bar{f} \rangle, \bar{n} \rangle \in M'[\hbar^n]$ , by construction, there are some variable-free terms,  $t_m = \hbar^n t_a \dots t_c$  and  $t_n = \hbar^n t_d \dots t_f$ in the enumeration; but by T3.36,  $\vdash t_b = t_e \rightarrow \hbar^n t_a \dots t_b \dots t_c = \hbar^n t_a \dots t_c$ , and so forth; so collecting repeated applications of this theorem with MP and T3.35,  $\Sigma'' \vdash \hbar^n t_a \dots t_c = \hbar^n t_d \dots t_f$ ; but this is to say,  $\Sigma'' \vdash t_m = t_n$ ; so by construction,  $m \simeq n$ ; so by equality,  $\overline{m} = \overline{n}$ . This is impossible; reject the assumption: if  $\langle \langle \overline{a} \dots \overline{c} \rangle, \overline{m} \rangle \in M'[\hbar^n]$  and  $\langle \langle \overline{d} \dots \overline{f} \rangle, \overline{n} \rangle \in M'[\hbar^n]$ , where  $\langle \overline{a} \dots \overline{c} \rangle = \langle \overline{d} \dots \overline{f} \rangle$ , then  $\overline{m} = \overline{n}$ .

So, as they should be, functions are well-defined.

We are now in a position to recover an analogue to the preliminary result for demonstration of T10.9: for any variable-free term  $t_z$  and variable assignment d,  $M'_d[t_z] = \overline{z}$ . The argument is very much as before. Suppose  $t_z$  is a variable-free term. By induction on the number of function symbols in  $t_z$ .

- *Basis:* If  $t_z$  has no function symbols, then it is a constant. In this case, by construction,  $M'[t_z] = \overline{z}$ ; so by TA(c),  $M'_d[t_z] = \overline{z}$ .
- Assp: For any  $i, 0 \le i < k$ , if  $t_z$  has i function symbols, then  $M'_d[t_z] = \overline{z}$ .
- Show: If  $t_z$  has k function symbols, then  $M'_d[t_z] = \overline{z}$ .

If  $t_z$  has k function symbols, then it is of the form,  $\hbar^n t_a \dots t_b$  where  $t_a \dots t_b$ have  $\langle k$  function symbols. By TA(f) we have,  $M'_d[t_z] = M'_d[\hbar^n t_a \dots t_b] =$  $M'[\hbar^n]\langle M'_d[t_a] \dots M'_d[t_b]\rangle$ ; but by assumption,  $M'_d[t_a] = \overline{a}$ , and  $\dots$  and  $M'_d[t_b]$  $= \overline{b}$ ; so  $M'_d[t_z] = M'[\hbar^n]\langle \overline{a} \dots \overline{b} \rangle$ . But since  $t_z = \hbar^n t_a \dots t_b$  is a variablefree term,  $\langle \langle \overline{a} \dots \overline{b} \rangle, \overline{z} \rangle \in M'[\hbar^n]$ ; so  $M'[\hbar^n]\langle \overline{a} \dots \overline{b} \rangle = \overline{z}$ ; so  $M'_d[t_z] = \overline{z}$ .

*Indct*: For any variable-free term  $t_z$ ,  $M'_d[t_z] = \overline{z}$ .

So the interepretation of any variable-free term is the equivalence class corresponding to its position in the enumeration of terms.

**Atomics.** The result we have just seen for terms makes the specification for atomics seem particularly natural. Sentence letters are easy. As before,

CnsM' For a sentence letter  $\mathscr{S}$ , M'[ $\mathscr{S}$ ] = T iff  $\Sigma'' \vdash \mathscr{S}$ .

Then for relation symbols, the idea is as sketched above. We simply let the assignment be such as to make a variable-free atomic come out true iff it is a consequence of  $\Sigma''$ .

CnsM' For a relation symbol  $\mathcal{R}^n$ , where  $t_a \dots t_b$  are *n* members of the enumeration of variable-free terms, let  $\langle \overline{a} \dots \overline{b} \rangle \in M'[\mathcal{R}^n]$  iff  $\Sigma'' \vdash \mathcal{R}^n t_a \dots t_b$ .

To see that the specification for relation symbols is legitimate, we need to be clear that the specification is consistent — that we do not both assert and deny that some tuple is in the extension of  $\mathcal{R}^n$ , and we need to be sure that M'[=] is as it should be — that it is  $\{\langle \overline{n}, \overline{n} \rangle | \overline{n} \in U\}$ . The case for equality is easy. The former concern is that we might have some  $\overline{a} \in M'[\mathcal{R}]$  and  $\overline{b} \notin M'[\mathcal{R}]$  but  $\overline{a} = \overline{b}$ .

(i) The specification is consistent. Suppose otherwise. Then there is some  $\langle \overline{a} \dots \overline{c} \rangle \in \mathsf{M}'[\mathcal{R}^n]$  and  $\langle \overline{d} \dots \overline{f} \rangle \notin \mathsf{M}'[\mathcal{R}^n]$ , where  $\langle \overline{a} \dots \overline{c} \rangle = \langle \overline{d} \dots \overline{f} \rangle$ . From the latter,  $\overline{a} = \overline{d}$ , and ... and  $\overline{c} = \overline{f}$ ; so by equality,  $a \simeq d$ , and ... and  $c \simeq f$ ; so by construction,  $\Sigma'' \vdash t_a = t_d$ , and ... and  $\Sigma'' \vdash t_c = t_f$ . But since  $\langle \overline{a} \dots \overline{c} \rangle \in \mathsf{M}'[\mathcal{R}^n]$  and  $\langle \overline{d} \dots \overline{f} \rangle \notin \mathsf{M}'[\mathcal{R}^n]$ , by construction,  $\Sigma'' \vdash \mathcal{R}^n t_a \dots t_c$  and  $\Sigma'' \nvDash \mathcal{R}^n t_d \dots t_f$ ; and by T3.37,  $\vdash t_b = t_e \to (\mathcal{R}^n t_a \dots t_b \dots t_c \to \mathcal{R}^n t_a \dots t_c)$ , and so forth; so by repeated applications of this theorem with MP,  $\Sigma'' \vdash \mathcal{R}^n t_d \dots t_f$ . This is impossible; reject the assumption: if  $\langle \overline{a} \dots \overline{c} \rangle \in \mathsf{M}'[\mathcal{R}^n]$  and  $\langle \overline{d} \dots \overline{f} \rangle \notin \mathsf{M}'[\mathcal{R}^n]$ , then  $\langle \overline{a} \dots \overline{c} \rangle \neq \langle \overline{d} \dots \overline{f} \rangle$ .

(ii) The case for equality is easy. By equality,  $\overline{\mathbf{m}} = \overline{\mathbf{n}}$  iff  $\mathbf{m} \simeq \mathbf{n}$ ; by construction iff  $\Sigma'' \vdash t_m = t_n$ ; by construction iff  $\langle \overline{\mathbf{m}}, \overline{\mathbf{n}} \rangle \in \mathsf{M}'[=]$ .

This completes the specification of M'. The specification is more complex than for the basic version, and we have had to work to demonstrate its consistency. Still, the result is a perfectly ordinary model M', with a domain, assignments to constants, assignments to function symbols, and assignments to relation symbols.

With this revised specification for M', the demonstration of T10.9 proceeds as before. Here is the key portion of the basis. We are showing that  $M'[\mathcal{B}] = T$  iff  $\Sigma'' \vdash \mathcal{B}$ .

Suppose  $\mathcal{B}$  is an atomic  $\mathcal{R}^n t_a \dots t_b$ ; then by TI,  $\mathsf{M}'[\mathcal{R}^n t_a \dots t_b] = \mathsf{T}$  iff for arbitrary d,  $\mathsf{M}'_{\mathsf{d}}[\mathcal{R}^n t_a \dots t_b] = \mathsf{S}$ ; by SF(r), iff  $\langle \mathsf{M}'_{\mathsf{d}}[t_a] \dots \mathsf{M}'_{\mathsf{d}}[t_b] \rangle \in \mathsf{M}'[\mathcal{R}^n]$ ; since  $t_a \dots t_b$  are variable-free terms, as we have just seen, iff  $\langle \overline{\mathsf{a}} \dots \overline{\mathsf{b}} \rangle \in$  $\mathsf{M}'[\mathcal{R}^n]$ ; by construction, iff  $\Sigma'' \vdash \mathcal{R}^n t_a \dots t_b$ . So  $\mathsf{M}'[\mathcal{B}] = \mathsf{T}$  iff  $\Sigma'' \vdash \mathcal{B}$ .

So all that happens is that we depend on the conversion from individuals to sets of individuals for both assignments to terms, and assignments to relation symbols. Given this, the argument is exactly parallel to the one from before.

- E10.24. Suppose the enumeration of variable-free terms begins,  $a, b, f^{1}a, f^{1}b \dots$ (so these are  $t_1 \dots t_4$ ) and, for these terms,  $\Sigma'' \vdash \text{just } a = a, b = b, f^{1}a = f^{1}a, f^{1}b = f^{1}b, a = f^{1}a$ , and  $f^{1}a = a$ . What objects stand in the  $\simeq$  relation? What are  $\overline{1}, \overline{2}, \overline{3}$ , and  $\overline{4}$ ? Which corresponding sets are members of U?
- E10.25. Return to the case from E10.24. Explain how  $\simeq$  satisfies reflexivity, symmetry and transitivity. Explain how U satisfies self-membership, uniqueness and equality.

E10.26. Where  $\Sigma''$  and U are as in the previous two exercises, what are M'[a], M'[b] and M'[f]? Supposing that  $\Sigma'' \vdash R^1 a$ ,  $R^1 f^1 a$  and  $R^1 f^1 b$ , but  $\Sigma'' \nvDash R^1 b$ , what is  $M'[R^1]$ ? According to the method, what is M'[=]? Is this as it should be? Explain.

# **10.4.3** The Final Result

We are really done with the demonstration of adequacy. Perhaps, though, it will be helpful to draw some parts together. Begin with the basic definitions.

- Con A set  $\Sigma$  of formulas is *consistent* iff there is no formula  $\mathcal{A}$  such that  $\Sigma \vdash \mathcal{A}$ and  $\Sigma \vdash \sim \mathcal{A}$ .
- Max A set  $\Sigma$  of formulas is *maximal* iff for any sentence  $\mathcal{A}, \Sigma \vdash \mathcal{A}$  or  $\Sigma \vdash \sim \mathcal{A}$ .
- Scgt A set  $\Sigma$  of formulas is a *scapegoat* set iff for any sentence  $\sim \forall x \mathcal{P}$ , if  $\Sigma \vdash \sim \forall x \mathcal{P}$ , then there is some constant *a* such that  $\Sigma \vdash \sim \mathcal{P}_a^x$ .

Then we proceed in language  $\mathcal{L}'$ , for a maximal, consistent, scapegoat set  $\Sigma''$  constructed from any consistent  $\Sigma'$ .

- T10.6 For any set of formulas  $\Sigma$  and sentence  $\mathcal{P}$ , if  $\Sigma \nvDash \sim \mathcal{P}$ , then  $\Sigma \cup \{\mathcal{P}\}$  is consistent.
- T10.7 There is an enumeration  $Q_1, Q_2...$  of all the formulas, terms, and the like, in  $\mathcal{L}'$ .
- Cns $\Sigma''$  Construct  $\Sigma''$  from  $\Sigma'$  as follows: By T10.7, there is an enumeration,  $\mathcal{Q}_1$ ,  $\mathcal{Q}_2$ ... of all the sentences in  $\mathcal{L}'$  and also an enumeration  $c_1, c_2...$  of constants not in  $\Sigma'$ . Let  $\Omega_0 = \Sigma'$ . Then for any i > 0, let  $\Omega_i = \Omega_{i-1}$  if  $\Omega_{i-1} \vdash \sim \mathcal{Q}_i$ . Otherwise,  $\Omega_{i^*} = \Omega_{i-1} \cup \{\mathcal{Q}_i\}$  if  $\Omega_{i-1} \nvDash \sim \mathcal{Q}_i$ . Then  $\Omega_i = \Omega_{i^*}$  if  $\mathcal{Q}_i$  is not of the form  $\sim \forall x \mathcal{P}$ , and  $\Omega_i = \Omega_{i^*} \cup \{\sim \mathcal{P}_c^x\}$  if  $\mathcal{Q}_i$  is of the form  $\sim \forall x \mathcal{P}$ , where c is the first constant not in  $\Omega_{i^*}$ . Then  $\Sigma'' = \bigcup_{i>0} \Omega_i$ .
- T10.8 If  $\Sigma'$  is consistent, then  $\Sigma''$  is a maximal, consistent, scapegoat set.

Given the maximal, consistent, scapegoat set  $\Sigma''$ , there are results and a definition for a model M' such that  $M'[\Sigma'] = T$ .

CnsM' U = { $\overline{n} \mid n \ge 1$ }. If  $t_z$  in an enumeration of variable-free terms  $t_1, t_2...$ is a constant, then M'[ $t_z$ ] =  $\overline{z}$ . If  $t_z$  is  $\hbar^n t_a...t_b$  for function symbol  $\hbar^n$ and variable-free terms  $t_a...t_b$ , then  $\langle \langle \overline{a} ... \overline{b} \rangle, \overline{z} \rangle \in M'[\hbar^n]$ . For a sentence letter  $\vartheta, M'[\vartheta] = T$  iff  $\Sigma'' \vdash \vartheta$ . For a relation symbol  $\mathcal{R}^n$ , where  $t_a...t_b$  are *n* members of the enumeration of variable-free terms, let  $\langle \overline{a} ... \overline{b} \rangle \in M'[\mathcal{R}^n]$ iff  $\Sigma'' \vdash \mathcal{R}^n t_a...t_b$ .

This modifies the relatively simple version where  $U = \{1, 2, ...\}$ . And for an enumeration of variable-free terms, if  $t_z$  is a constant,  $M'[t_z] = z$ . If  $t_z = \hbar^n t_a ... t_b$  for some relation symbol  $\hbar^n$  and n variable-free terms  $t_a ... t_b$ ,  $\langle \langle a...b \rangle, z \rangle \in M'[\hbar^n]$ . For a sentence letter  $\mathcal{S}, M'[\mathcal{S}] = T$  iff  $\Sigma'' \vdash \mathcal{S}$ . And for a relation symbol  $\mathcal{R}^n$ ,  $\langle a...b \rangle \in M'[\mathcal{R}^n]$  iff  $\Sigma'' \vdash \mathcal{R}^n t_a ... t_b$ .

T10.9 If  $\Sigma'$  is consistent, then for any sentence  $\mathcal{B}$  of  $\mathcal{L}', \mathsf{M}'[\mathcal{B}] = \mathsf{T}$  iff  $\Sigma'' \vdash \mathcal{B}$ .

T10.10 If  $\Sigma'$  is consistent, then  $M'[\Sigma'] = T$ . (\*)

Then we have had to connect results for  $\Sigma'$  in  $\mathcal{L}'$  to an arbitrary  $\Sigma$  in language  $\mathcal{L}$ .

T10.13 If  $\Sigma$  is consistent, then  $\Sigma'$  is consistent.

This is supported by T10.12 on which if *D* is a derivation from  $\Sigma'$ , and *x* is a variable that does not appear in *D*, then for any constant *a*,  $D_x^a$  is a derivation from  $\Sigma' \frac{a}{x}$ .

T10.16 If  $M'[\Sigma'] = T$ , then  $M[\Sigma] = T$ .

This is supported by the matched pair of theorems, T10.14 on which, if d is a variable assignment, then for any term t in  $\mathcal{L}$ ,  $M_d[t] = M'_d[t]$ , and T10.15 on which, if d is a variable assignment, then for any formula  $\mathcal{P}$  in  $\mathcal{L}$ ,  $M_d[\mathcal{P}] = S$  iff  $M'_d[\mathcal{P}] = S$ .

These theorems together yield,

T10.17. If  $\Sigma$  is consistent, then  $\Sigma$  has a model M. ( $\mathcal{L}$  unconstrained) ( $\star\star$ )

This puts us in a position to recover the main result. Recall that our argument runs through  $\mathcal{P}^c$  the universal closure of  $\mathcal{P}$ .

T10.11. If  $\Gamma \vDash \mathcal{P}$ , then  $\Gamma \vdash \mathcal{P}$ . (quantificational adequacy)

Suppose  $\Gamma \vDash \mathcal{P}$  but  $\Gamma \nvDash \mathcal{P}$ . Say, for the moment that  $\Gamma \vdash \sim \sim \mathcal{P}^c$ ; by T3.10,  $\vdash \sim \sim \mathcal{P}^c \rightarrow \mathcal{P}^c$ ; so by MP,  $\Gamma \vdash \mathcal{P}^c$ ; so by repeated applications

of A4 and MP,  $\Gamma \vdash \mathcal{P}$ ; but this is impossible; so  $\Gamma \nvDash \sim \sim \mathcal{P}^c$ . Given this, since  $\sim \sim \mathcal{P}^c$  is a sentence, by T10.6,  $\Gamma \cup \{\sim \mathcal{P}^c\}$  is consistent. Since  $\Sigma = \Gamma \cup \{\sim \mathcal{P}^c\}$  is consistent, by T10.17, there is a model M constructed as above such that  $M[\Sigma] = T$ . So  $M[\Gamma] = T$  and  $M[\sim \mathcal{P}^c] = T$ ; from the latter, by T8.6,  $M[\mathcal{P}^c] \neq T$ ; so by repeated applications of T7.7,  $M[\mathcal{P}] \neq T$ ; so by QV,  $\Gamma \nvDash \mathcal{P}$ . This is impossible; reject the assumption: if  $\Gamma \vDash \mathcal{P}$  then  $\Gamma \vdash \mathcal{P}$ .

The sentential version had parallels to Con, Max,  $Cns\Sigma''$  and CnsM' along with theorems T10.6<sub>s</sub> - T10.11<sub>s</sub>. (The distinction between (\*) and (\*\*) is a distinction without a difference in the sentential case.) The basic quantificational version requires these along with Sgt, T10.12 and the simple version of CnsM'. For the full version, we have had to appeal also to T10.13 and T10.16 (and so T10.17), and use the relatively complex specification for CnsM'.

Again, you should try to get the complete picture in your mind: As always, the key is that consistent sets have models. If  $\Gamma \cup \{\sim \mathcal{P}\}$  is not consistent, then there is a derivation of  $\mathcal{P}$  from  $\Gamma$ . So if there is no derivation of  $\mathcal{P}$  from  $\Gamma$ , then  $\Gamma \cup \{\sim \mathcal{P}\}$  is consistent, and so has a model — and the existence of a model for  $\Gamma \cup \{\sim \mathcal{P}\}$  is sufficient to show that  $\Gamma \nvDash \mathcal{P}$ . Put the other way around, if  $\Gamma \vDash \mathcal{P}$ , then there is a derivation of  $\mathcal{P}$  from  $\Gamma$ . We get the key point, that consistent sets have models, by finding a relation between consistent, and maximal consistent scapegoat sets. If a set is a maximal consistent scapegoat set, then it contains enough information to specify a model for the whole. The model for the big set then guarantees the existence of a model M for the original  $\Gamma$ .

E10.27. Return to the case from E10.20 on p. 500, but dropping the assumptions that there is no symbol for equality, and that  $\mathcal{L}$  is identical to  $\mathcal{L}'$ . Add to the derivation system axioms,

A3 
$$\vdash t = t$$
  
A4  $\vdash r = s \rightarrow (\mathcal{P} \rightarrow \mathcal{P}^{r}/_{s})$  —where s is free for replaced instances of r in  $\mathcal{P}$ 

Provide a complete demonstration that this version of A4 is adequate. You may appeal to any results from the text whose demonstration remains unchanged, but should recreate parts whose demonstration is not the same. Hint: You may find it helpful to demonstrate a relation to T8.5 as follows,
- T8.5\* For any formula  $\mathcal{P}$ , terms s and t, constant c, and variable x,  $[\mathcal{P}^{s}/_{t}]_{\chi}^{c}$  is the same formula as  $[\mathcal{P}_{\chi}^{c}]^{s_{\chi}^{c}}/_{t_{\chi}^{c}}$  where the same instance(s) of s are replaced in each case.
- E10.28. We have shown from T10.4 that if a set of formulas has a model, then it is consistent; and now that if an arbitrary set of formulas is consistent, then it has a model and one whose U is this set of sets of positive integers. Notice that any such U is *countable* insofar as its members can be put into correspondence with the integers (we might, say, order the members by their least elements). Considering what we showed in the more on countability reference on p. 50, how might this be a problem for the logic of real numbers? Hint: Think about the consequences sentences in an arbitrary  $\Gamma$  may have about the number of elements in U.
- E10.29. For each of the following concepts, explain in an essay of about two pages, so that (college freshman) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.
  - a. The soundness of a derivation system, and its demonstration by mathematical induction.
  - b. The adequacy of a derivation system, and the basic strategy for its demonstration.
  - c. Maximality and consistency, and the reasons for them.
  - d. Scapegoat sets, and the reasons for them.

### **Theorems of Chapter 10**

- T10.1 For any interpretation I, variable assignment d, with terms t and r, if  $I_d[r] = 0$ , then  $I_{d(x|0)}[t] = I_d[t_r^x]$ .
- T10.2 For any interpretation I, variable assignment d, term r, and formula  $\mathcal{Q}$ , if  $I_d[r] = 0$ , and r is free for x in  $\mathcal{Q}$ , then  $I_d[\mathcal{Q}_r^x] = S$  iff  $I_{d(x|0)}[\mathcal{Q}] = S$ .
- T10.3 If  $\Gamma \vdash_{AD} \mathcal{P}$ , then  $\Gamma \vDash \mathcal{P}$ . (Soundness)
- T10.4 If there is an interpretation M such that  $M[\Gamma] = T$  (a *model* for  $\Gamma$ ), then  $\Gamma$  is consistent.
- T10.5 If there is an interpretation M such that  $M[\Gamma \cup \{\sim A\}] = T$ , then  $\Gamma \nvDash A$ .
- T10.6<sub>s</sub> For any set of formulas  $\Sigma$  and sentence  $\mathcal{P}$ , if  $\Sigma \nvDash \sim \mathcal{P}$ , then  $\Sigma \cup \{\mathcal{P}\}$  is consistent.
- T10.6 For any set of formulas  $\Sigma$  and sentence  $\mathcal{P}$ , if  $\Sigma \nvDash \sim \mathcal{P}$ , then  $\Sigma \cup \{\mathcal{P}\}$  is consistent.
- T10.7<sub>s</sub> There is an enumeration  $Q_1, Q_2...$  of all formulas in  $\mathcal{L}_s$ .
- T10.7 There is an enumeration  $Q_1, Q_2 \dots$  of all the formulas, terms, and the like, in  $\mathcal{L}'$ .
- T10.8<sub>s</sub> If  $\Sigma'$  is consistent, then  $\Sigma''$  is maximal and consistent.
- T10.8 If  $\Sigma'$  is consistent, then  $\Sigma''$  is a maximal, consistent, scapegoat set.
- T10.9<sub>s</sub> If  $\Sigma'$  is consistent, then for any sentence  $\mathcal{B}$ , of  $\mathcal{L}_s$ ,  $\mathsf{M}'[\mathcal{B}] = \mathsf{T}$  iff  $\Sigma'' \vdash \mathcal{B}$ .
- T10.9 If  $\Sigma'$  is consistent, then for any sentence  $\mathcal{B}$  of  $\mathcal{L}', \mathsf{M}'[\mathcal{B}] = \mathsf{T}$  iff  $\Sigma'' \vdash \mathcal{B}$ .
- T10.10<sub>s</sub> If  $\Sigma'$  is consistent, then  $M'[\Sigma'] = T$ . (\*)
- T10.10 If  $\Sigma'$  is consistent, then  $M'[\Sigma'] = T$ . (\*)
- T10.11<sub>s</sub> If  $\Gamma \models_{s} \mathcal{P}$ , then  $\Gamma \vdash \mathcal{P}$ . (sentential adequacy)
- T10.11 If  $\Gamma \vDash \mathcal{P}$ , then  $\Gamma \vdash \mathcal{P}$ . (quantificational adequacy)
- T10.12 If D is a derivation from  $\Sigma'$ , and x is a variable that does not appear in D, then for any constant a,  $D_x^a$  is a derivation from  $\Sigma'_x^a$ .
- T10.13 If  $\Sigma$  is consistent, then  $\Sigma'$  is consistent.
- T10.14 For any variable assignment d, and for any term t in  $\mathcal{L}$ ,  $M_d[t] = M'_d[t]$ .
- T10.15 For any variable assignment d, and for any formula  $\mathcal{P}$  in  $\mathcal{L}$ ,  $M_d[\mathcal{P}] = S$  iff  $M'_d[\mathcal{P}] = S$ .

T10.16 If  $M'[\Sigma'] = T$ , then  $M[\Sigma] = T$ .

T10.17a If  $\Sigma$  is consistent, then  $\Sigma$  has a model M. ( $\mathcal{L}$  without equality)

T10.17 If  $\Sigma$  is consistent, then  $\Sigma$  has a model M. ( $\mathcal{L}$  unconstrained) ( $\star\star$ )

# Chapter 11

# **More Main Results**

In this chapter, we take up results which deepen our understanding of the power and limits of logic. The first sections restrict discussion to *sentential* forms, for discussion of *expressive completenes, unique readability* and *independence*. Then we turn to discussion of the conditions under which models are *isomorphic*, and transition to a discussion of submodels, and especially the Löwenheim-Skolem theorems, which help us see some conditions under which models are not isomorphic.<sup>1</sup>

### **11.1 Expressive Completeness**

In chapter 5 on translation, we introduced the idea of a truth functional operator, where the truth value of the whole is a function of the truth values of the parts. We exhibited operators as truth functional by tables. Thus, if some ordinary expression  $\mathcal{P}$  with components  $\mathcal{A}$  and  $\mathcal{B}$  has table,

|     | $A B \mathcal{P}$ |
|-----|-------------------|
|     | тт <b>т</b>       |
| (A) | t f <b>f</b>      |
|     | гт <b>г</b>       |
|     | F F   <b>F</b>    |

then it is truth functional. And we translate by an equivalent formal operator: in this case  $\mathcal{A} \wedge \mathcal{B}$  does fine. Of course, not every such table, or truth function, is directly represented by one of our operators. Thus, if  $\mathcal{P}$  is 'neither  $\mathcal{A}$  nor  $\mathcal{B}$ ' we have the table,

<sup>&</sup>lt;sup>1</sup>This chapter is not in finished form. It contains some parts which I've had occasion to write up and found useful from time to time. But it's not worked into a fully-formed textbook chapter. Take it in the spirit with which it's provided!

$$(B) \qquad \begin{array}{c|c} \mathcal{A} & \mathcal{B} & \mathcal{P} \\ \hline \mathsf{T} & \mathsf{T} & \mathsf{F} \\ \mathsf{T} & \mathsf{F} & \mathsf{F} \\ \mathsf{F} & \mathsf{T} & \mathsf{F} \\ \mathsf{F} & \mathsf{F} & \mathsf{F} \\ \mathsf{F} & \mathsf{F} & \mathsf{T} \end{array}$$

where none of our operators is equivalent to this. But it takes only a little ingenuity to see that, say,  $(\sim A \land \sim B)$  or  $\sim (A \lor B)$  have the same table, and so result in a good translation. In chapter 5 (p. ??), we claimed that for any table a truth functional operator may have, there is always some way to generate that table by means of our formal operators — and, in fact, by means of just the operators  $\sim$  and  $\land$ , or just the operators  $\sim$  and  $\lor$ , or just the operators  $\sim$  and  $\rightarrow$ . As it turns out, it is also possible to express any truth function by means of just the operator 1. In this section, we prove these results. First,

T11.1. It is possible to represent any truth function by means of an expression with just the operators  $\sim$ ,  $\wedge$ , and  $\vee$ .

The proof of this result is simple. Given an arbitrary truth function, we provide a recipe for constructing an expression with the same table. Insofar as for any truth function it is always possible to construct an expression with the same table, there must always be a formal expression with the same table.

Suppose we are given an arbitrary truth function, in this case with four basic sentences as on the left.

|     |    | $s_1$ | $s_2$ | 83 | $s_4$ | $ \mathcal{P} $ |                                                                                                                    |
|-----|----|-------|-------|----|-------|-----------------|--------------------------------------------------------------------------------------------------------------------|
|     | 1  | Т     | Т     | Т  | Т     | F               | $\mathcal{C}_1 = \mathscr{S}_1 \land \mathscr{S}_2 \land \mathscr{S}_3 \land \mathscr{S}_4$                        |
|     | 2  | Т     | Т     | Т  | F     | F               | $\mathcal{C}_2 = \mathscr{S}_1 \land \mathscr{S}_2 \land \mathscr{S}_3 \sim \land \mathscr{S}_4$                   |
|     | 3  | Т     | Т     | F  | Т     | Τ               | $\mathcal{C}_3 = \mathscr{S}_1 \land \mathscr{S}_2 \land \sim \mathscr{S}_3 \land \mathscr{S}_4$                   |
|     | 4  | Т     | Т     | F  | F     | F               | $\mathcal{C}_4 = \mathcal{S}_1 \land \mathcal{S}_2 \land \sim \mathcal{S}_3 \land \sim \mathcal{S}_4$              |
|     | 5  | Т     | F     | Т  | Т     | Τ               | $\mathcal{C}_5 = \mathscr{S}_1 \wedge \mathscr{S}_2 \wedge \mathscr{S}_3 \wedge \mathscr{S}_4$                     |
|     | 6  | Т     | F     | Т  | F     | F               | $\mathcal{C}_6 = \mathscr{S}_1 \wedge \mathscr{S}_2 \wedge \mathscr{S}_3 \wedge \mathscr{S}_4$                     |
|     | 7  | Т     | F     | F  | Т     | F               | $\mathcal{C}_7 = \mathscr{S}_1 \wedge \sim \mathscr{S}_2 \wedge \sim \mathscr{S}_3 \wedge \mathscr{S}_4$           |
| (C) | 8  | Т     | F     | F  | F     | F               | $\mathcal{C}_8 = \mathcal{S}_1 \wedge \sim \mathcal{S}_2 \wedge \sim \mathcal{S}_3 \wedge \sim \mathcal{S}_4$      |
|     | 9  | F     | Т     | Т  | Т     | F               | $\mathcal{C}_9 = \sim \mathcal{S}_1 \land \mathcal{S}_2 \land \mathcal{S}_3 \land \mathcal{S}_4$                   |
|     | 10 | F     | Т     | Т  | F     | F               | $\mathcal{C}_{10} = \sim \mathscr{S}_1 \land \mathscr{S}_2 \land \mathscr{S}_3 \land \sim \mathscr{S}_4$           |
|     | 11 | F     | Т     | F  | Т     | F               | $\mathcal{C}_{11} = \sim \mathscr{S}_1 \land \mathscr{S}_2 \land \sim \mathscr{S}_3 \land \mathscr{S}_4$           |
|     | 12 | F     | Т     | F  | F     | Τ               | $\mathcal{C}_{12} = \sim \mathscr{S}_1 \land \mathscr{S}_2 \land \sim \mathscr{S}_3 \land \sim \mathscr{S}_4$      |
|     | 13 | F     | F     | Т  | Т     | Τ               | $\mathcal{C}_{13} = \sim \mathscr{S}_1 \land \sim \mathscr{S}_2 \land \mathscr{S}_3 \land \mathscr{S}_4$           |
|     | 14 | F     | F     | Т  | F     | F               | $\mathcal{C}_{14} = \sim \mathscr{S}_1 \land \sim \mathscr{S}_2 \land \mathscr{S}_3 \land \sim \mathscr{S}_4$      |
|     | 15 | F     | F     | F  | Т     | F               | $\mathcal{C}_{15} = \sim \mathscr{S}_1 \land \sim \mathscr{S}_2 \land \sim \mathscr{S}_3 \land \mathscr{S}_4$      |
|     | 16 | F     | F     | F  | F     | F               | $\mathcal{C}_{16} = \sim \mathscr{S}_1 \land \sim \mathscr{S}_2 \land \sim \mathscr{S}_3 \land \sim \mathscr{S}_4$ |

For this sentence  $\mathcal{P}$  with basic sentences  $\mathscr{S}_1 \dots \mathscr{S}_n$ , begin by constructing the *charac*teristic sentence  $\mathscr{C}_i$  corresponding to each row: If the interpretation  $I_i$  corresponding to row *j* has  $I_j[\mathscr{S}_i] = T$ , then let  $\mathscr{S}'_i = \mathscr{S}_i$ . If  $I_j[\mathscr{S}_i] = F$ , let  $\mathscr{S}'_i = -\mathscr{S}_i$ . Then the characteristic sentence  $\mathscr{C}_j$  corresponding to  $I_j$  is the conjunction of each  $\mathscr{S}'_i$ . So  $\mathscr{C}_j = \mathscr{S}'_1 \wedge \ldots \wedge \mathscr{S}'_n$  (with appropriate parentheses). These sentences are exhibited above. The characteristic sentences are true *only* on their corresponding rows. Thus  $\mathscr{C}_4$  above is true only when  $I[\mathscr{S}_1] = T$ ,  $I[\mathscr{S}_2] = T$ ,  $I[\mathscr{S}_3] = F$ , and  $I[\mathscr{S}_4] = F$ .

Then, given the characteristic sentences, if  $\mathcal{P}$  is  $\mathsf{F}$  on every row,  $\mathscr{S}_1 \wedge \sim \mathscr{S}_1$  has the same table as  $\mathcal{P}$ . Otherwise, where  $\mathcal{P}$  is  $\mathsf{T}$  on rows  $a, b \ldots d, \mathscr{C}_a \vee \mathscr{C}_b \vee \ldots \mathscr{C}_d$ (with appropriate parentheses) has the same table as  $\mathcal{P}$ . Thus, for example,  $\mathscr{C}_3 \vee \mathscr{C}_5 \vee \mathscr{C}_{12} \vee \mathscr{C}_{13}$ , that is,

 $(\$_1 \land \$_2 \land \sim \$_3 \land \$_4) \lor (\$_1 \land \sim \$_2 \land \$_3 \land \$_4) \lor (\sim \$_1 \land \$_2 \land \sim \$_3 \land \sim \$_4) \lor (\sim \$_1 \land \sim \$_2 \land \$_3 \land \$_4)$ 

has the same table as  $\mathcal{P}$ . Inserting parentheses, the resultant table is,

|     |    | $s_1$ | $s_2$ | 83 | $s_4$ | $(\mathcal{C}_3)$ | $\vee$ | $\mathcal{C}_5)$ | $\vee$ | $(\mathcal{C}_{12}$ | $\vee$ | $\mathcal{C}_{13}$ ) | ${\mathcal P}$ |
|-----|----|-------|-------|----|-------|-------------------|--------|------------------|--------|---------------------|--------|----------------------|----------------|
|     | 1  | Т     | Т     | Т  | Т     | F                 | F      | F                | F      | F                   | F      | F                    | F              |
|     | 2  | Т     | Т     | Т  | F     | F                 | F      | F                | F      | F                   | F      | F                    | F              |
|     | 3  | Т     | Т     | F  | Т     | Т                 | Т      | F                | Т      | F                   | F      | F                    | Т              |
|     | 4  | Т     | Т     | F  | F     | F                 | F      | F                | F      | F                   | F      | F                    | F              |
|     | 5  | Т     | F     | Т  | Т     | F                 | Т      | Т                | Τ      | F                   | F      | F                    | Τ              |
|     | 6  | Т     | F     | Т  | F     | F                 | F      | F                | F      | F                   | F      | F                    | F              |
|     | 7  | Т     | F     | F  | Т     | F                 | F      | F                | F      | F                   | F      | F                    | F              |
| (D) | 8  | Т     | F     | F  | F     | F                 | F      | F                | F      | F                   | F      | F                    | F              |
|     | 9  | F     | Т     | Т  | Т     | F                 | F      | F                | F      | F                   | F      | F                    | F              |
|     | 10 | F     | Т     | Т  | F     | F                 | F      | F                | F      | F                   | F      | F                    | F              |
|     | 11 | F     | Т     | F  | Т     | F                 | F      | F                | F      | F                   | F      | F                    | F              |
|     | 12 | F     | Т     | F  | F     | F                 | F      | F                | Т      | Т                   | Т      | F                    | Т              |
|     | 13 | F     | F     | Т  | Т     | F                 | F      | F                | Τ      | F                   | Т      | Т                    | Τ              |
|     | 14 | F     | F     | Т  | F     | F                 | F      | F                | F      | F                   | F      | F                    | F              |
|     | 15 | F     | F     | F  | Т     | F                 | F      | F                | F      | F                   | F      | F                    | F              |
|     | 16 | F     | F     | F  | F     | F                 | F      | F                | F      | F                   | F      | F                    | F              |

And we have constructed an expression with the same table as  $\mathcal{P}$ . And similarly for any truth function with which we are confronted. So given any truth function, there is a formal expression with the same table.

In a by-now familiar pattern, the expressions produced by this method are not particularly elegant or efficient. Thus for the table,

(E) 
$$\begin{array}{c|c} \mathcal{A} & \mathcal{B} & \mathcal{P} \\ \hline \mathsf{T} & \mathsf{T} & \mathsf{T} \\ \mathsf{T} & \mathsf{F} & \mathsf{F} \\ \mathsf{F} & \mathsf{T} & \mathsf{T} \\ \mathsf{F} & \mathsf{F} & \mathsf{T} \\ \mathsf{F} & \mathsf{F} & \mathsf{T} \end{array}$$

by our method we get the expression  $(\mathcal{A} \land \mathcal{B}) \lor (\sim \mathcal{A} \land \mathcal{B}) \lor (\sim \mathcal{A} \land \sim \mathcal{B})$ . It has the right table. But, of course,  $\mathcal{A} \to \mathcal{B}$  is much simpler! The point is not that the

resultant expressions are elegant or efficient, but that for any truth function, there *exists* a formal expression that works the same way.

We have shown that we can represent any truth function by an expression with operators  $\sim$ ,  $\wedge$ , and  $\vee$ . But any such expression is an abbreviation of one whose only operators are  $\sim$  and  $\rightarrow$ . So we can represent any truth function by an expression with just operators  $\sim$  and  $\rightarrow$ . And we can argue for other cases. Thus, for example,

T11.2. It is possible to represent any truth function by means of an expression with just the operators  $\sim$  and  $\wedge$ .

Again, the proof is simple. Given T11.1, if we can show that any  $\mathcal{P}$  whose operators are  $\sim$ ,  $\wedge$  and  $\vee$  corresponds to a  $\mathcal{P}^*$  whose operators are just  $\sim$  and  $\wedge$ , such that  $\mathcal{P}$  and  $\mathcal{P}^*$  have the same table — such that  $|[\mathcal{P}]] = |[\mathcal{P}^*]$  for any I — we will have shown that any truth function can be represented by an expression with just  $\sim$  and  $\wedge$ . To see that this is so, where  $\mathcal{P}$  is an atomic  $\mathcal{S}$ , set  $\mathcal{P}^* = \mathcal{S}$ ; where  $\mathcal{P}$  is  $\sim \mathcal{A}$ , set  $\mathcal{P}^* = \sim \mathcal{A}^*$ ; where  $\mathcal{P}$  is  $\mathcal{A} \wedge \mathcal{B}$ , set  $\mathcal{P}^* = \mathcal{A}^* \wedge \mathcal{B}^*$ ; and where  $\mathcal{P}$  is  $\mathcal{A} \vee \mathcal{B}$ , set  $\mathcal{P}^* = \sim (\sim \mathcal{A}^* \wedge \sim \mathcal{B}^*)$ . Suppose the only operators in  $\mathcal{P}$  are  $\sim$ ,  $\wedge$ , and  $\vee$ , and consider an arbitrary interpretation I.

- *Basis:* Where  $\mathcal{P}$  is a sentence letter  $\mathcal{S}$ , then  $\mathcal{P}^*$  is  $\mathcal{S}$ . So  $|[\mathcal{P}]| = |[\mathcal{P}^*]|$ .
- Assp: For any  $i, 0 \le i < k$ , if  $\mathcal{P}$  has i operator symbols, then  $|[\mathcal{P}]| = |[\mathcal{P}^*]|$ .
- Show: If  $\mathcal{P}$  has k operator symbols, then  $|[\mathcal{P}]| = |[\mathcal{P}^*]|$ .

If  $\mathcal{P}$  has k operator symbols, then it is of the form  $\sim \mathcal{A}$ ,  $\mathcal{A} \land \mathcal{B}$ , or  $\mathcal{A} \lor \mathcal{B}$ where  $\mathcal{A}$  and  $\mathcal{B}$  have  $\langle k$  operator symbols.

- (~) Suppose  $\mathcal{P}$  is  $\sim \mathcal{A}$ ; then  $\mathcal{P}^*$  is  $\sim \mathcal{A}^*$ .  $I[\mathcal{P}] = T$  iff  $I[\sim \mathcal{A}] = T$ ; by  $ST(\sim)$ , iff  $I[\mathcal{A}] = F$ ; by assumption iff  $I[\mathcal{A}^*] = F$ ; by  $ST(\sim)$ , iff  $I[\sim \mathcal{A}^*] = T$ ; iff  $I[\mathcal{P}^*] = T$ .
- ( $\wedge$ ) Suppose  $\mathcal{P}$  is  $\mathcal{A} \wedge \mathcal{B}$ ; then  $\mathcal{P}^*$  is  $\mathcal{A}^* \wedge \mathcal{B}^*$ .  $I[\mathcal{P}] = T$  iff  $I[\mathcal{A} \wedge \mathcal{B}] = T$ ; by  $ST'(\wedge)$ , iff  $I[\mathcal{A}] = T$  and  $I[\mathcal{B}] = T$ ; by assumption iff  $I[\mathcal{A}^*] = T$  and  $I[\mathcal{B}^*] = T$ ; by  $ST'(\wedge)$ , iff  $I[\mathcal{A}^* \wedge \mathcal{B}^*] = T$ ; iff  $I[\mathcal{P}^*] = T$ .
- $\begin{array}{l} (\lor) \text{ Suppose } \mathcal{P} \text{ is } A \lor \mathcal{B}; \text{ then } \mathcal{P}^* \text{ is } \sim (\sim \mathcal{A}^* \land \sim \mathcal{B}^*). \ \mathsf{I}[\mathcal{P}] = \mathsf{T} \text{ iff } \mathsf{I}[\mathcal{A} \lor \mathcal{B}] = \mathsf{T}; \text{ by } \mathsf{ST}'(\lor), \text{ iff } \mathsf{I}[\mathcal{A}] = \mathsf{T} \text{ or } \mathsf{I}[\mathcal{B}] = \mathsf{T}; \text{ by assumption iff } \mathsf{I}[\mathcal{A}^*] = \mathsf{T} \\ \text{ or } \mathsf{I}[\mathcal{B}^*] = \mathsf{T}; \text{ by } \mathsf{ST}(\sim), \text{ iff } \mathsf{I}[\sim \mathcal{A}^*] = \mathsf{F} \text{ or } \mathsf{I}[\sim \mathcal{B}^*] = \mathsf{F}; \text{ by } \mathsf{ST}'(\land), \text{ iff } \\ \mathsf{I}[\sim \mathcal{A}^* \land \sim \mathcal{B}^*] = \mathsf{F}; \text{ by } \mathsf{ST}(\sim), \text{ iff } \mathsf{I}[\sim (\sim \mathcal{A}^* \land \sim \mathcal{B}^*)] = \mathsf{T}; \text{ iff } \mathsf{I}[\mathcal{P}^*] = \mathsf{T}. \end{array}$

If  $\mathcal{P}$  has k operator symbols then  $|[\mathcal{P}] = |[\mathcal{P}^*]$ .

*Indct:* For any  $\mathcal{P}$ ,  $I[\mathcal{P}] = I[\mathcal{P}^*]$ .

So if the operators in  $\mathcal{P}$  are  $\sim$ ,  $\wedge$  and  $\vee$ , there is a  $\mathcal{P}^*$  with just operators  $\sim$  and  $\wedge$  that has the same table. Perhaps this was obvious as soon as we saw that  $\sim(\sim \mathcal{A} \wedge \sim \mathcal{B})$  has the same table as  $\mathcal{A} \vee \mathcal{B}$ . Since we can represent any truth function by an expression whose only operators are  $\sim$ ,  $\wedge$  and  $\vee$ , and we can represent any such  $\mathcal{P}$  by a  $\mathcal{P}^*$  whose only operators are  $\sim$  and  $\wedge$ , we can represent any truth function by an expression with just operators  $\sim$  and  $\wedge$ . And, by similar reasoning, we can represent any truth function by expressions whose only operator are  $\sim$  and  $\vee$ . This is left for homework.

In E8.11, we showed that if the operators in  $\mathcal{P}$  are limited to  $\rightarrow$ ,  $\land$ ,  $\lor$ , and  $\leftrightarrow$  then when the interpretation of every atomic is T, the interpretation of  $\mathcal{P}$  is T. Perhaps this is obvious by consideration of the tables. It follows that not every truth function can be represented by expressions whose only operators are  $\rightarrow$ ,  $\land$ ,  $\lor$ , and  $\leftrightarrow$ ; for there is no way to represent a function that is F on the top row, when all the atomics are T. Though it is much more difficult to establish, we showed in E8.20 that any expression whose only operators are  $\sim$  and  $\leftrightarrow$  (with at least four rows in its truth table) has an even number of Ts and Fs under its main operator. It follows that not every truth function can be represented by expressions whose only operators are  $\sim$  and  $\leftrightarrow$ .

E11.1. Use the method of this section to find expressions with tables corresponding to  $\mathcal{P}_1$ ,  $\mathcal{P}_2$ , and  $\mathcal{P}_3$ . Then show on a table that your expression for  $\mathcal{P}_1$  in fact has the same truth function as  $\mathcal{P}_1$ .

| A | $\mathcal{B}$ | С | $\mathcal{P}_1$ | $\mathcal{P}_2$ | $\mathcal{P}_3$ |
|---|---------------|---|-----------------|-----------------|-----------------|
| Т | Т             | т | F               | Т               | F               |
| Т | Т             | F | Т               | Т               | F               |
| Т | F             | Т | Т               | F               | Т               |
| Т | F             | F | F               | F               | F               |
| F | Т             | т | F               | F               | Т               |
| F | Т             | F | Т               | F               | F               |
| F | F             | Т | F               | F               | Т               |
| F | F             | F | T               | F               | Т               |

E11.2. (i) Show that we can represent any truth function by expressions whose only operators are ~ and ∨. (ii) Show that we can represent any truth function by expressions whose only operator is |. Hint: Given what we have shown above, it is enough to show that you can represent expressions whose only operators are ~ and →, or ~ and ∧.

E11.3. Show that it is not possible to represent arbitrary truth functions by expressions whose only operator is  $\sim$ . Hint: it is easy to show by induction that any such expression has at least one T and one F under its main operator.

### **11.2 Unique Readability**

Unique readability is a result like our first case from chapter 8 (p. 387) where the conclusion may seem to obvious to merit argument. We show that every formula of  $\mathcal{L}_{\mathfrak{s}}$  is parsed uniquely. Things are set up so that this is so. But suppose instead of  $FR(\rightarrow)$  we had,

(\*) If  $\mathcal{P}$  and  $\mathcal{Q}$  are formulas, then  $\mathcal{P} \to \mathcal{Q}$  is a *formula*.

without parentheses. Then, for atomics A, B and C, say,  $A \to B$  is a formula so that  $A \to B \to C$  is a formula. But again,  $B \to C$  is a formula so that  $A \to B \to C$  is a formula. So there are different ways to understand the parts of  $A \to B \to C$ . Suppose I[A] = I[B] = I[C] = F. Then on the first account,  $I[A \to B] = T$  so that  $I[A \to B \to C] = F$ . But on the second account,  $I[B \to C] = T$  so that  $I[A \to B \to C] = T$ . Thus it is important for our definitions that there is just one way to understand  $\mathcal{P} \to \mathcal{Q}$ . And we can demonstrate the result. According to unique readability,

T11.3. For any formula  $\mathcal{P}$  of  $\mathcal{L}_s$ , exactly one of the following holds.

- (s)  $\mathcal{P}$  is a sentence letter.
- (~) There is a unique formula  $\mathcal{A}$  such that  $\mathcal{P}$  is  $\sim \mathcal{A}$ .
- $(\rightarrow)$  There are unique formulas  $\mathcal{A}$  and  $\mathcal{B}$  such that  $\mathcal{P}$  is  $(\mathcal{A} \rightarrow \mathcal{B})$ .

We build to this result by some preliminary theorems.

First, ignoring uniqueness,

T11.4. For any formula  $\mathcal{P}$  of  $\mathcal{L}_{\mathfrak{s}}$ , at least one of the following holds: (i)  $\mathcal{P}$  is a sentence letter; (ii) there is a formula  $\mathcal{A}$  such that  $\mathcal{P}$  is  $\sim \mathcal{A}$ ; (iii) there are formulas  $\mathcal{A}$  and  $\mathcal{B}$  such that  $\mathcal{P}$  is  $(\mathcal{A} \to \mathcal{B})$ .

This is a (trivial) induction on the number of operators in  $\mathcal{P}$ .

T11.5. For any formula  $\mathcal{P}$  of  $\mathcal{L}_{\mathfrak{s}}$ , at most one of the following holds: (i)  $\mathcal{P}$  is a sentence letter; (ii) there is a formula  $\mathcal{A}$  such that  $\mathcal{P}$  is  $\sim \mathcal{A}$ ; (iii) there are formulas  $\mathcal{A}$  and  $\mathcal{B}$  such that  $\mathcal{P}$  is  $(\mathcal{A} \to \mathcal{B})$ .

If  $\mathcal{P}$  is a sentence letter it begins with a sentence letter; if  $\mathcal{P}$  is  $\sim \mathcal{A}$  it begins with ' $\sim$ '; and if  $\mathcal{P}$  is  $(\mathcal{A} \to \mathcal{B})$  it begins with '('. (i) Suppose  $\mathcal{P}$  is a sentence letter; then it does not begin with ' $\sim$ ' or '('; so not (ii) and not (iii). Suppose  $\mathcal{P}$  is  $\sim \mathcal{A}$ ; then it does not begin with a sentence letter or '('; so not (i) or (iii). Suppose  $\mathcal{P}$  is  $(\mathcal{A} \to \mathcal{B})$ ; then it does not begin with a sentence letter or ' $\sim$ ' so not (i) or (ii).

By T11.4 and T11.5 together, For any formula  $\mathcal{P}$  of  $\mathcal{L}_s$ , exactly one of, (i)  $\mathcal{P}$  is a sentence letter; (ii) there is a formula  $\mathcal{A}$  such that  $\mathcal{P}$  is  $\sim \mathcal{A}$ ; (iii) there are formulas  $\mathcal{A}$  and  $\mathcal{B}$  such that  $\mathcal{P}$  is  $(\mathcal{A} \to \mathcal{B})$ .

For some expression  $\mathcal{A}$  say  $\mathcal{B}$  is an *initial segment* of  $\mathcal{A}$  just in case there is some  $\mathcal{C}$  such that  $\mathcal{A} = \mathcal{BC}$  — just in case  $\mathcal{A}$  is the concatenation of  $\mathcal{B}$  and  $\mathcal{C}$ . If  $\mathcal{C}$  is a non-empty sequence so that  $\mathcal{B}$  is not all of  $\mathcal{A}$ , then  $\mathcal{B}$  is a *proper* initial segment of  $\mathcal{A}$ . So ' $\mathcal{AB}$ ' is a proper initial segment of ' $\mathcal{ABC}$ '. To make progress on the uniqueness conditions, we show the following.

- T11.6. No proper initial segment of a formula  $\mathcal{A}$  is a formula. Suppose  $\mathcal{A}$  is a formula.
  - *Basis:* If  $\mathcal{A}$  is atomic, then  $\mathcal{A} = \mathcal{BC}$  only if  $\mathcal{A} = \mathcal{C}$  and  $\mathcal{B}$  is empty. But from T11.4 no empty sequence is a formula. So no proper initial segment of  $\mathcal{A}$  is a formula.
  - Assp: For any  $i, 0 \le i < k$ , if A has i operator symbols, then no proper initial segment of A is a formula.
  - Show: If  $\mathcal{A}$  has k operator symbols, then no proper initial segment of  $\mathcal{A}$  is a formula. If  $\mathcal{A}$  has k operator symbols then it is  $\sim \mathcal{P}$  or  $(\mathcal{P} \land \mathcal{Q})$  for formulas  $\mathcal{P}$  and  $\mathcal{Q}$  with < k operator symbols.
    - (~)  $\mathcal{A}$  is  $\sim \mathcal{P}$  for some formula  $\mathcal{P}$ . Suppose some proper initial segment of  $\mathcal{A}$  is a formula; then for some formula  $\mathcal{B}$ ,  $\mathcal{A} = \mathcal{BC}$ .  $\mathcal{B}$  is either empty or starts with '~'; so with T11.4 and T11.5,  $\mathcal{B}$  is  $\sim \mathcal{D}$  for some formula  $\mathcal{D}$ . So  $\mathcal{A} = \sim \mathcal{P} = \sim \mathcal{DC}$ ; so  $\mathcal{P} = \mathcal{DC}$ ; so  $\mathcal{D}$  is a proper initial segment of  $\mathcal{P}$ ; so by assumption,  $\mathcal{D}$  is not a formula. Reject the assumption: no proper initial segment of  $\mathcal{A}$  is a formula.
    - $(\rightarrow)$   $\mathcal{A}$  is  $(\mathcal{P} \rightarrow \mathcal{Q})$ . Suppose some proper initial segment of  $\mathcal{A}$  is a formula; then for some formula  $\mathcal{B}$ ,  $\mathcal{A} = \mathcal{BC}$ .  $\mathcal{B}$  is either empty or

starts with '('; so with with T11.4 and T11.5,  $\mathcal{B}$  is  $(\mathcal{D} \to \mathcal{E})$  for some formulas  $\mathcal{D}$  and  $\mathcal{E}$ ; so  $\mathcal{A} = (\mathcal{P} \to \mathcal{Q}) = (\mathcal{D} \to \mathcal{E})\mathcal{C}$ ; so  $\mathcal{P} \to \mathcal{Q}) = \mathcal{D} \to \mathcal{E})\mathcal{C}$ ; so either  $\mathcal{P} = \mathcal{D}$  or one is a proper initial segment of the other; suppose one is a proper initial segment of the other; then by assumption one or the other is not a formula; this is impossible. So  $\mathcal{P} = \mathcal{D}$ ; so  $\mathcal{Q}) = \mathcal{E}\mathcal{C}$ ; so  $\mathcal{E}$  is a proper initial segment of  $\mathcal{Q}$ ; so by assumption  $\mathcal{E}$  is not a formula. Reject the assumption, no proper initial segment of  $\mathcal{A}$  is a formula.

*Indct:* For any formula A, no proper initial segment of A is a formula.

Observe that we "add" and "subtract" from sequences so that, for example  $\sim \mathcal{P} = \sim \mathcal{Q}$  iff  $\mathcal{P} = \mathcal{Q}$ .

And now we are ready to establish T11.3 for unique readability. For any formula  $\mathcal{P}$  of  $\mathcal{L}_4$ , by T11.4 and T11.5, exactly one of,

- (i)  $\mathcal{P}$  is a sentence letter.
- (ii) There is a formula  $\mathcal{A}$  such that  $\mathcal{P}$  is  $\sim \mathcal{A}$ .

Uniqueness: Suppose there is a formula  $\mathcal{B}$  such that  $\sim \mathcal{A} = \sim \mathcal{B}$ ; then  $\mathcal{A} = \mathcal{B}$ . So there is a unique formula  $\mathcal{A}$  such that  $\mathcal{P} = \sim \mathcal{A}$ .

(iii) There are formulas  $\mathcal{A}$  and  $\mathcal{B}$  such that  $\mathcal{P}$  is  $(\mathcal{A} \to \mathcal{B})$ .

Uniqueness: Suppose there are formulas  $\mathcal{C}$  and  $\mathcal{D}$  such that  $(\mathcal{A} \to \mathcal{B}) = (\mathcal{C} \to \mathcal{D})$ ; then  $\mathcal{A} \to \mathcal{B}) = \mathcal{C} \to \mathcal{D}$ ; so either  $\mathcal{A} = \mathcal{C}$  or one is a proper initial segment of the other; but by T11.6, neither is a proper initial segment of the other; so  $\mathcal{A} = \mathcal{C}$ ; so  $\mathcal{B}) = \mathcal{D}$ ; so  $\mathcal{B} = \mathcal{D}$ . So there are unique formulas  $\mathcal{A}$  and  $\mathcal{B}$  such that  $\mathcal{P} = (\mathcal{A} \to \mathcal{B})$ .

Thus T11.3 is established.

E11.4. Demonstrate T11.4 by induction on the length of  $\mathcal{P}$ .

- E11.5. Show unique readability for the terms of  $\mathcal{L}_q$ , that for every term t of  $\mathcal{L}_q$ , exactly one of the following holds,
  - (v) t is a variable.
  - (c) t is a constant.

(f) There are unique function symbol  $\hbar^n$  and terms  $t_1 \dots t_n$  such that  $t = \hbar^n t_1 \dots t_n$ .

Hint: The argument is based on TR; you will want to show that no proper initial segment of a term is a term.

- E11.6. Show unique readability for the formulas of  $\mathcal{L}_q$ , that for every formula  $\mathcal{P}$  of  $\mathcal{L}_q$ , exactly one of the following holds,
  - (s)  $\mathcal{P}$  is a sentence letter.
  - (r) There are unique relation symbol  $\mathcal{R}^n$  and terms  $t_1 \dots t_n$  such that  $\mathcal{P} = \mathcal{R}^n t_1 \dots t_n$ .
  - (~) There is a unique formula  $\mathcal{A}$  such that  $\mathcal{P} = \sim \mathcal{A}$ .
  - $(\rightarrow)$  There are unique formulas  $\mathcal{A}$  and  $\mathcal{B}$  such that  $\mathcal{P} = (\mathcal{A} \rightarrow \mathcal{B})$ .
  - $(\forall)$  There are unique variable x and formula A such that  $\mathcal{P} = \forall x A$ .

Hint: This time the argument is based on FR.

### **11.3 Independence**

As we have seen, axiomatic systems are convenient insofar as their compact form makes reasoning about them relatively easy. Also, theoretically, axiomatic systems are attractive insofar as they expose what is at the base or foundation of logical systems. Given this latter aim, it is natural to wonder whether we could get the same results without one or more of our axioms. Say an axiom or rule is *independent* in a derivation system just in case its omission matters for what can be derived. In particular, then, an axiom is independent in a derivation system if *it* cannot be derived from the other axioms and rules. For suppose otherwise: that it can be derived from the other axioms and rules; then it is a theorem of the derivation system without the axiom, and any result of the system with the axiom can be derived using the theorem in place of the axiom; so the omission of the axiom does not matter for what can be derived, and the axiom is not independent. In this section, we show that A1, A2 and A3 of the sentential fragment of AD are independent of one another.

Say we want to show that A1 is independent of A2 and A3. When we showed, in chapter 8, that the sentential part of AD is weakly sound, we showed that A1, A2, A3 and their consequences have a certain feature — that there is no interpretation where a consequence is false. The basic idea here is to find a sort of "interpretation"

on which A2, A3 and their consequences are sustained, but A1 is not. It follows that A1 is not among the consequences of A2 and A3, and so is independent of A2 and A3. Here is the key point: Any "interpretation" will do. In particular, consider the following tables which define a sort of numerical property for forms involving  $\sim$  and  $\rightarrow$ .



Do not worry about what these tables "say"; it is sufficient that, given a numerical interpretation of the parts, we can always calculate the numerical value N of the whole. Thus, for example,



if N[A] = 0 and N[B] = 2, then  $N[\sim A \rightarrow B] = 0$ . The calculation is straightforward, based on the tables. And similarly for sentential forms of arbitrary complexity. Say a form is *select* iff it takes the value 0 on every numerical interpretation of its parts. (Compare the notion of semantic validity on which a form is valid iff it is T on every interpretation of its parts.) Again, do not worry about what the tables mean. They are constructed for the special purpose of demonstrating independence: We show that every consequence of A2 and A3 is select, but A1 is not. It follows that A1 is not a consequence of A2 and A3.

To see that A3 is select, and that A1 is not, all we have to do is complete the tables.

|                | $\mathcal{A}$ | $\mathcal{B}$ | $ A \rightarrow ($ | $\mathcal{B} \to \mathcal{A})$ | $(\sim \mathcal{B}$ | $\rightarrow$ | $\sim v$ | $(A) \rightarrow$ | $[(\sim \mathcal{L}$ | $3 \rightarrow 1$ | $\mathcal{A}) \to \mathcal{B}]$ |
|----------------|---------------|---------------|--------------------|--------------------------------|---------------------|---------------|----------|-------------------|----------------------|-------------------|---------------------------------|
|                | 0             | 0             | 0                  | 0                              | 1                   | 2             | 1        | 0                 | 1                    | 2                 | 0                               |
|                | 0             | 1             | 2                  | 2                              | 1                   | 2             | 1        | 0                 | 1                    | 2                 | 0                               |
|                | 0             | 2             | 0                  | 0                              | 0                   | 2             | 1        | 0                 | 0                    | 0                 | 2                               |
| $(\mathbf{G})$ | 1             | 0             | 0                  | 2                              | 1                   | 2             | 1        | 0                 | 1                    | 2                 | 0                               |
| (0)            | 1             | 1             | 0                  | 2                              | 1                   | 2             | 1        | 0                 | 1                    | 2                 | 0                               |
|                | 1             | 2             | 2                  | 0                              | 0                   | 2             | 1        | 0                 | 0                    | 2                 | 0                               |
|                | 2             | 0             | 0                  | 2                              | 1                   | 2             | 0        | 0                 | 1                    | 0                 | 0                               |
|                | 2             | 1             | 0                  | 0                              | 1                   | 2             | 0        | 0                 | 1                    | 0                 | 2                               |
|                | 2             | 2             | 0                  | 0                              | 0                   | 0             | 0        | 0                 | 0                    | 2                 | 0                               |

Since A1 has twos in the second and sixth rows, A1 is not select. Since A3 has zeros in every row, it is select. Alternatively, for A1, we might have reasoned as follows,

Suppose  $N[\mathcal{A}] = 0$  and  $N[\mathcal{B}] = 1$ . Then by  $A1(\rightarrow)$ ,  $N[\mathcal{B} \rightarrow \mathcal{A}] = 2$ ; so by  $A1(\rightarrow)$  again,  $N[\mathcal{A} \rightarrow (\mathcal{B} \rightarrow \mathcal{A})] = 2$ . Since there is such an assignment,  $\mathcal{A} \rightarrow (\mathcal{B} \rightarrow \mathcal{A})$  is not select.

And the result is the same. To see that A2 is select, again, it is enough to complete the table — it is painful, but we can do it:

| $\mathcal{A}$ | $\mathcal{B}$ | С | $(\mathcal{A} \rightarrow$ | $(\mathcal{B} \rightarrow$ | $\mathcal{C})) \rightarrow$ | $((\mathcal{A} \rightarrow$ | $\mathcal{B}) \rightarrow$ | $(\mathcal{A} \to \mathcal{C}))$ |
|---------------|---------------|---|----------------------------|----------------------------|-----------------------------|-----------------------------|----------------------------|----------------------------------|
| 0             | 0             | 0 | 0                          | 0                          | 0                           | 0                           | 0                          | 0                                |
| 0             | 0             | 1 | 2                          | 2                          | 0                           | 0                           | 2                          | 2                                |
| 0             | 0             | 2 | 2                          | 2                          | 0                           | 0                           | 2                          | 2                                |
| 0             | 1             | 0 | 2                          | 2                          | 0                           | 2                           | 0                          | 0                                |
| 0             | 1             | 1 | 2                          | 2                          | 0                           | 2                           | 0                          | 2                                |
| 0             | 1             | 2 | 0                          | 0                          | 0                           | 2                           | 0                          | 2                                |
| 0             | 2             | 0 | 0                          | 0                          | 0                           | 2                           | 0                          | 0                                |
| 0             | 2             | 1 | 0                          | 0                          | 0                           | 2                           | 0                          | 2                                |
| 0             | 2             | 2 | 0                          | 0                          | 0                           | 2                           | 0                          | 2                                |
| 1             | 0             | 0 | 2                          | 0                          | 0                           | 2                           | 0                          | 2                                |
| 1             | 0             | 1 | 0                          | 2                          | 0                           | 2                           | 0                          | 2                                |
| 1             | 0             | 2 | 0                          | 2                          | 0                           | 2                           | 0                          | 0                                |
| 1             | 1             | 0 | 0                          | 2                          | 0                           | 2                           | 0                          | 2                                |
| 1             | 1             | 1 | 0                          | 2                          | 0                           | 2                           | 0                          | 2                                |
| 1             | 1             | 2 | 2                          | 0                          | 0                           | 2                           | 0                          | 0                                |
| 1             | 2             | 0 | 2                          | 0                          | 0                           | 0                           | 2                          | 2                                |
| 1             | 2             | 1 | 2                          | 0                          | 0                           | 0                           | 2                          | 2                                |
| 1             | 2             | 2 | 2                          | 0                          | 0                           | 0                           | 0                          | 0                                |
| 2             | 0             | 0 | 0                          | 0                          | 0                           | 0                           | 0                          | 0                                |
| 2             | 0             | 1 | 0                          | 2                          | 0                           | 0                           | 0                          | 0                                |
| 2             | 0             | 2 | 0                          | 2                          | 0                           | 0                           | 0                          | 0                                |
| 2             | 1             | 0 | 0                          | 2                          | 0                           | 0                           | 0                          | 0                                |
| 2             | 1             | 1 | 0                          | 2                          | 0                           | 0                           | 0                          | 0                                |
| 2             | 1             | 2 | 0                          | 0                          | 0                           | 0                           | 0                          | 0                                |
| 2             | 2             | 0 | 0                          | 0                          | 0                           | 0                           | 0                          | 0                                |
| 2             | 2             | 1 | 0                          | 0                          | 0                           | 0                           | 0                          | 0                                |
| 2             | 2             | 2 | 0                          | 0                          | 0                           | 0                           | 0                          | 0                                |

(H)

So both A2 and A3 are select. But now we are in a position to show,

#### T11.7. A1 is independent of A2 and A3.

Consider any derivation  $\langle Q_1, Q_2 \dots Q_n \rangle$  where there are no premises, and the only axioms are instances of A2 and A3. By induction on line number, for any *i*,  $Q_i$  is select.

- *Basis:*  $Q_1$  is an instance of A2 or A3, and as we have just seen, instances of A2 and A3 are select. So  $Q_1$  is select.
- Assp: For any  $i, 0 \le i < k, Q_i$  is select.
- Show:  $Q_k$  is select.

 $Q_k$  is an instance of A2 or A3 or arises from previous lines by MP. If  $Q_k$  is an instance of A2 or A3, then by reasoning as in the basis,  $Q_k$  is select. If  $Q_k$  arises from previous lines by MP, then the derivation has some lines,

 $\begin{array}{ll} a. & \mathcal{B} \\ b. & \mathcal{B} \to \mathcal{C} \\ k. & \mathcal{C} & a, b \text{ MP} \end{array}$ 

where a, b < k and  $\mathcal{C}$  is  $\mathcal{Q}_k$ . By assumption,  $\mathcal{B}$  and  $\mathcal{B} \to \mathcal{C}$  are select. But by A1( $\rightarrow$ ), both  $\mathcal{B}$  and  $\mathcal{B} \to \mathcal{C}$  evaluate to 0 only in the case when  $\mathcal{C}$  also evaluates to 0; so if both  $\mathcal{B}$  and  $\mathcal{B} \to \mathcal{C}$  are select, then  $\mathcal{C}$  is select as well. So  $\mathcal{Q}_k$  is select.

*Indct:* For any n,  $Q_n$  is select.

So A1 cannot be derived from A2 and A3 — which is to say, A1 is independent of A2 and A3.

E11.7. Use the following tables to show that A2 is independent of A1 and A3.

$$A2(\sim) \qquad \begin{array}{c|c} \mathcal{P} & \sim \mathcal{P} \\ \hline 0 & 1 \\ 2 & 1 \end{array} \qquad A2(\rightarrow) \qquad \begin{array}{c|c} \mathcal{P} & \mathcal{Q} & \mathcal{P} \to \mathcal{Q} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 2 \\ \hline 0 & 2 & 1 \\ \hline 1 & 0 & 0 \\ 1 & 1 & 2 \\ 1 & 2 & 0 \\ \hline 2 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 2 & 0 \end{array}$$

E11.8. Use the table method to show that A3 is independent of A1 and A2. That is, (i) find appropriate tables for  $\sim$  and  $\rightarrow$ , and (ii) use your tables to show by induction that A3 is independent of A1 and A2. Hint: You do not need three-valued interpretations, and have already done the work in E8.14.

### **11.4 Isomorphic Models**

Interpretations are *isomorphic* when they are structurally similar. Say a function f from  $r^n$  to s is *onto* set s just in case for each  $o \in s$  there is some  $(m_1 \dots m_n) \in r^n$  such that  $\langle (m_1 \dots m_n), o \rangle \in f$ ; a function is onto set s when it "reaches" every member of s. Then,

IS For some language  $\mathcal{L}$ , interpretation I is *isomorphic* to interpretation I' iff there is a 1:1 function  $\iota$  (iota) from the universe of I onto the universe of I' where: for any sentence letter  $\mathcal{S}$ ,  $I[\mathcal{S}] = I'[\mathcal{S}]$ ; for any constant c, I[c] = m iff  $I'[c] = \iota(m)$ ; for any relation symbol  $\mathcal{R}^n$ ,  $\langle m_a \dots m_b \rangle \in I[\mathcal{R}^n]$  iff  $\langle \iota(m_a) \dots \iota(m_b) \rangle \in$  $I'(\mathcal{R}^n)$ ; and for any function symbol  $\hbar^n$ ,  $\langle \langle m_a \dots m_b \rangle$ ,  $o \rangle \in I[\hbar^n]$  iff  $\langle \iota(m_a) \dots$  $\iota(m_b) \rangle$ ,  $\iota(o) \rangle \in I'[\hbar^n]$ .

If I is isomorphic to I', we write,  $I \cong I'$ . Notice that the condition on constants requires just that  $\iota(I[c]) = I'[c]$ ; applying  $\iota$  to the thing assigned to c by I, results in the thing assigned to c by I'. And similarly, the condition on function symbols requires that  $\iota(I[\hbar^n]\langle m_a \dots m_b \rangle) = I'[\hbar^n]\langle \iota(m_a) \dots \iota(m_b) \rangle$ ; for we have  $I[\hbar^n]\langle m_a \dots m_b \rangle = 0$ , and  $\iota(0) = I'[\hbar^n]\langle \iota(m_a) \dots \iota(m_b) \rangle$ . We might think of the two interpretations as already existing, and *finding* a function  $\iota$  to exhibit them as isomorphic. Alternatively, given an interpretation I, and function  $\iota$  from the universe of I onto some set U', we might think of I' as resulting from application of  $\iota$  to I.

Here are some examples. In the first, it is perhaps particularly obvious that I and I' have the required structural similarity.

|     | U :  | Rover        | Fido         | Morris       | Sylvester    |
|-----|------|--------------|--------------|--------------|--------------|
| (I) |      | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
|     | U' : | Ralph        | Fredo        | Manny        | Salvador     |

 $U = \{Rover, Fido, Morris, Sylvester\}$ . As represented by the arrows, function  $\iota$  maps these onto a disjoint set U'. Then given I as below on the left, the corresponding isomorphic interpretation is I' as on the right.

| I[r] = Rover                                                                                | I'[r] = Ralph                                                                 |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| I[m] = Morris                                                                               | I'[m] = Manny                                                                 |
| $I[D] = \{ \text{Rover, Fido} \}$                                                           | $I'[D] = \{ \text{Ralph, Fredo} \}$                                           |
| $I[C] = \{\text{Morris, Sylvester}\}\$                                                      | $I'[C] = \{Manny, Salvador\}$                                                 |
| $I[P] = \{ \langle \text{Rover, Morris} \rangle, \langle \text{Fido, Sylvester} \rangle \}$ | $I'[P] = \{ \langle Ralph, Manny \rangle, \langle Fredo, Salvador \rangle \}$ |

On interpretation I, where Rover and Fido are dogs, and Morris and Sylvester are cats, we have that every dog pursues at least one cat. And, supposing that Ralph and Fredo are dogs, and Manny and Salvador are cats, the same properties and relations are preserved on I' — with only the particular individuals changed.

For a second case, let U be the same, but U' the very same set, only permuted or shuffled so that each object in U has a mate in U'.

|     | U :  | Rover        | Fido         | Morris       | Sylvester    |
|-----|------|--------------|--------------|--------------|--------------|
| (J) |      | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
|     | U' : | Rover        | Morris       | Fido         | Sylvester    |

So  $\iota$  maps members of U to members of the very same set. Then given I as before, the corresponding isomorphic interpretation is I' is as follows.

| I[r] = Rover                                                                                | l'[r] = Rover                                                                                |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| I[m] = Morris                                                                               | I'[m] = Fido                                                                                 |
| $I[D] = \{ \text{Rover, Fido} \}$                                                           | $I'[D] = \{$ Rover, Morris $\}$                                                              |
| $I[C] = \{\text{Morris, Sylvester}\}\$                                                      | $l'[C] = \{$ Fido, Sylvester $\}$                                                            |
| $I[P] = \{ \langle \text{Rover, Morris} \rangle, \langle \text{Fido, Sylvester} \rangle \}$ | $I'[P] = \{ \langle \text{Rover, Fido} \rangle, \langle \text{Morris, Sylvester} \rangle \}$ |

This time, there is no simple way to understand l'[D] as the set of all dogs, and l'[C] as the set of all cats. And we cannot say that the interpretation of P reflects dogs pursuing cats. But Morris *plays the same role* in l' as Fido in l; and similarly Fido plays the same role in l' as Morris in l. Thus, on l', each thing in the interpretation of D is such that it stands in the relation P to at least one thing in the interpretation of C — and this is just as in interpretation l.

A final example switches to  $\mathscr{L}_{NT}$  and has an infinite U. We let U be the set  $\mathbb{N}$  of natural numbers, U' be the set  $\mathbb{P}$  of positive integers, and  $\iota$  be the function n + 1.

Then where N is the standard interpretation for symbols of  $\mathcal{L}_{\mathrm{NT}}^{<}$ 

$$\begin{split} \mathsf{N}[\emptyset] &= 0\\ \mathsf{N}[<] &= \{ \langle \mathsf{m}, \mathsf{n} \rangle \mid \mathsf{m}, \mathsf{n} \in \mathbb{N}, \text{ and } \mathsf{m} \text{ is less than } \mathsf{n} \}\\ \mathsf{N}[S] &= \{ \langle \mathsf{m}, \mathsf{n} \rangle \mid \mathsf{m}, \mathsf{n} \in \mathbb{N}, \text{ and } \mathsf{n} \text{ is the successor of } \mathsf{m} \}\\ \mathsf{N}[+] &= \{ \langle \langle \mathsf{m}, \mathsf{n} \rangle, \mathsf{o} \rangle \mid \mathsf{m}, \mathsf{n}, \mathsf{o} \in \mathbb{N}, \text{ and } \mathsf{m} \text{ plus } \mathsf{n} \text{ equals } \mathsf{o} \} \end{split}$$

we obtain N' as follows,

$$\begin{split} N'[\emptyset] &= 1\\ N'[<] &= \{\langle m+1, n+1 \rangle \mid m, n \in \mathbb{N}, \text{ and } m \text{ is less than } n \}\\ N'[S] &= \{\langle m+1, n+1 \rangle \mid m, n \in \mathbb{N}, \text{ and } n \text{ is the successor of } m \}\\ N'[+] &= \{\langle \langle m+1, n+1 \rangle, o+1 \rangle \mid m, n, o \in \mathbb{N}, \text{ and } m \text{ plus } n \text{ equals } o \} \end{split}$$

Observe that anything in N' is taken from  $\mathbb{P}$ . In this case, we build N' explicitly by the rule for isomorphisms — simply finding  $\iota(m) = m + 1$  from the corresponding element of N.

#### **11.4.1** Isomorphism implies Equivalence

Given these examples, perhaps it is obvious that when interpretations are isomorphic, they make all the same formulas true.<sup>2</sup> Say,

EE For some language  $\mathcal{L}$ , interpretations I and I' are *elementarily equivalent* iff for any formula  $\mathcal{P}$ ,  $I[\mathcal{P}] = T$  iff  $I'[\mathcal{P}] = T$ .

If I is elementarily equivalent to I', write  $I \equiv I'$ . We show that isomorphic interpretations are elementarily equivalent. This is straightforward given a matched pair of results, of the sort we have often seen before.

T11.8. For some language  $\mathcal{L}$ , if interpretations  $D \cong H$ , and assignments d for D and h for H are such that for any x,  $\iota(d[x]) = h[x]$ , then for any term t,  $\iota(D_d[t]) = H_h[t]$ .

Suppose  $D \cong H$ , and corresponding assignments d and h are such that for any  $x, \iota(d(x)) = h(x)$ . By induction on the number of operator symbols in t.

- *Basis:* If t has no function symbols, then it is a variable or a constant. If t is a variable x, then by TA(v),  $D_d[x] = d(x)$ ; so  $\iota(D_d[x]) = \iota(d[x])$ ; but we have supposed  $\iota(d[x]) = h[x]$ ; and by TA(v) again,  $h[x] = H_h[x]$ ; so  $\iota(D_d[x]) = H_h[x]$ . If t is a constant c, then by TA(c),  $D_d[c] = D[c]$ ; so  $\iota(D_d[c]) = \iota(D[c])$ ; but since  $D \cong H$ ,  $\iota(D[c]) = H[c]$ ; and by TA(c)again,  $H[c] = H_h[c]$ ; so  $\iota(D_d[c]) = H_h[c]$ .
- Assp: For any  $i, 0 \le i < k$  if t has i function symbols, then  $\iota(\mathsf{D}_{\mathsf{d}}[t]) = \mathsf{H}_{\mathsf{h}}[t]$ .
- Show: If t has k function symbols, then  $\iota(D_d[t]) = H_h[t]$ .

If t has k function symbols, then it is of the form  $\hbar^n t_1 \dots t_n$  for relation symbol  $\hbar^n$  and terms  $t_1 \dots t_n$  with < k function symbols. Then  $\mathsf{D}_{\mathsf{d}}[t] = \mathsf{D}_{\mathsf{d}}[\hbar^n t_1 \dots t_n]$ ; by TA(f),  $\mathsf{D}_{\mathsf{d}}[\hbar^n t_1 \dots t_n] = \mathsf{D}[\hbar^n] \langle \mathsf{D}_{\mathsf{d}}[t_1]$   $\dots \mathsf{D}_{\mathsf{d}}[t_n] \rangle$ . So  $\iota(\mathsf{D}_{\mathsf{d}}[t]) = \iota(\mathsf{D}[\hbar^n] \langle \mathsf{D}_{\mathsf{d}}[t_1] \dots \mathsf{D}_{\mathsf{d}}[t_n] \rangle)$ ; but since  $\mathsf{D} \cong$ H,  $\iota(\mathsf{D}[\hbar^n] \langle \mathsf{D}_{\mathsf{d}}[t_1] \dots \mathsf{D}_{\mathsf{d}}[t_n] \rangle) = \mathsf{H}[\hbar^n] \langle \iota(\mathsf{D}_{\mathsf{d}}[t_1]) \dots \iota(\mathsf{D}_{\mathsf{d}}[t_n]) \rangle$ ; and by assumption,  $\iota(\mathsf{D}_{\mathsf{d}}[t_1]) = \mathsf{H}_{\mathsf{h}}[t_1]$ , and  $\dots$  and  $\iota(\mathsf{D}_{\mathsf{d}}[t_n]) = \mathsf{H}_{\mathsf{h}}[t_n]$ ; so  $\mathsf{H}[\hbar^n] \langle \iota(\mathsf{D}_{\mathsf{d}}[t_1]) \dots \iota(\mathsf{D}_{\mathsf{d}}[t_n]) \rangle = \mathsf{H}[\hbar^n] \langle \mathsf{H}_{\mathsf{h}}[t_1] \dots \mathsf{H}_{\mathsf{h}}[t_n] \rangle$ ; and by TA(f),  $\mathsf{H}[\hbar^n] \langle \mathsf{H}_{\mathsf{h}}[t_1] \dots \mathsf{H}_{\mathsf{h}}[t_n] \rangle = \mathsf{H}_{\mathsf{h}}[\hbar^n t_1 \dots t_n]$ ; which is just  $\mathsf{H}_{\mathsf{h}}[t]$ ; so  $\iota(\mathsf{D}_{\mathsf{d}}[t]) = \mathsf{H}_{\mathsf{h}}[t]$ .

<sup>&</sup>lt;sup>2</sup>In *Reason, Truth and History*, Hilary Putnam makes this point to show that truth values of sentences are not sufficient to fix the interpretation of a language. As we shall see in this section, the technical point is clear enough. It is another matter whether it bears the philosophical weight he means for it to bear!

*Indct:* For any t,  $\iota(\mathsf{D}_{\mathsf{d}}[t]) = \mathsf{H}_{\mathsf{h}}[t]$ .

So when D and H are isomorphic, and for any variable x,  $\iota$  maps d[x] to h[x], then for any term t,  $\iota$  maps D<sub>d</sub>[t] to H<sub>h</sub>[t].

Now we are in a position to extend the result to one for satisfaction of formulas. If D and H are isomorphic, and for any variable x,  $\iota$  maps d[x] to h[x], then a formula  $\mathscr{P}$  will be satisfied on D with d just in case it is satisfied on H with h.

T11.9. For some language  $\mathcal{L}$ , if interpretations  $D \cong H$ , and assignments d for D and h for H are such that for any x,  $\iota(d[x]) = h[x]$ , then for any formula  $\mathcal{P}$ ,  $D_d[\mathcal{P}] = S$  iff  $H_h[\mathcal{P}] = S$ .

By induction on the number of operators in  $\mathcal{P}$ . Suppose  $D \cong H$ .

- *Basis:* Suppose  $\mathcal{P}$  has no operator symbols and d and h are such that for any  $x, \iota(d[x]) = h[x]$ . If  $\mathcal{P}$  has no operator symbols, then it is sentence letter  $\mathscr{S}$  or an atomic  $\mathcal{R}^n t_1 \dots t_n$  for relation symbol  $\mathcal{R}^n$  and terms  $t_1 \dots t_n$ . Suppose the former; then by SF(s),  $D_d[\mathscr{S}] = S$  iff  $D[\mathscr{S}] = T$ ; since  $D \cong H$  iff  $H[\mathscr{S}] = T$ ; by SF(s), iff  $H_h[\mathscr{S}] = S$ . Suppose the latter; by SF(r),  $D_d[\mathscr{R}^n t_1 \dots t_n] = S$  iff  $\langle D_d[t_1] \dots D_d[t_n] \rangle \in D[\mathscr{R}^n]$ ; since  $D \cong H$ , iff  $\langle \iota(D_d[t_1]) \dots \iota(D_d[t_n]) \rangle \in H[\mathscr{R}^n]$ ; since  $D \cong H$  and  $\iota(d[x]) = h[x]$ , by T11.8, iff  $\langle H_h[t_1] \dots H_h[t_n] \rangle \in H[\mathscr{R}^n]$ ; by SF(r), iff  $H_h[\mathscr{R}^n t_1 \dots t_n] = S$ .
- Assp: For any  $i, 0 \le i < k$ , for d and h such that for any  $x, \iota(d[x]) = h[x]$ and  $\mathcal{P}$  with *i* operator symbols,  $D_d[\mathcal{P}] = S$  iff  $H_h[\mathcal{P}] = S$ .
- Show: For d and h such that for any x,  $\iota(d[x]) = h[x]$  and  $\mathscr{P}$  with k operator symbols,  $D_d[\mathscr{P}] = S$  iff  $H_h[\mathscr{P}] = S$ . If  $\mathscr{P}$  has k operator symbols, then it is of the form  $\iota A \to \mathscr{P}$  or

If  $\mathcal{P}$  has k operator symbols, then it is of the form  $\sim \mathcal{A}$ ,  $\mathcal{A} \rightarrow \mathcal{B}$ , or  $\forall x \mathcal{A}$  for variable x and formulas  $\mathcal{A}$  and  $\mathcal{B}$  with < k operator symbols. Suppose for any x,  $\iota(d[x]) = h[x]$ .

- (~) Suppose  $\mathcal{P}$  is of the form  $\sim \mathcal{A}$ . Then  $\mathsf{D}_{\mathsf{d}}[\mathcal{P}] = \mathsf{S}$  iff  $\mathsf{D}_{\mathsf{d}}[\sim \mathcal{A}] = \mathsf{S}$ ; by  $\mathsf{SF}(\sim)$ , iff  $\mathsf{D}_{\mathsf{d}}[\mathcal{A}] \neq \mathsf{S}$ ; by assumption, iff  $\mathsf{H}_{\mathsf{h}}[\mathcal{A}] \neq \mathsf{S}$ ; by  $\mathsf{SF}(\sim)$ , iff  $\mathsf{H}_{\mathsf{h}}[\sim \mathcal{A}] = \mathsf{S}$ ; iff  $\mathsf{H}_{\mathsf{h}}[\mathcal{P}] = \mathsf{S}$ .
- $(\rightarrow)$  Homework.
- ( $\forall$ ) Suppose  $\mathcal{P}$  is of the form  $\forall x \mathcal{A}$ . Then  $D_d[\mathcal{P}] = S$  iff  $D_d[\forall x \mathcal{A}] = S$ ; by SF( $\forall$ ), iff for any  $m \in U_D$ ,  $D_d(x|m)[\mathcal{A}] = S$ . Similarly,  $H_h[\mathcal{P}] = S$ iff  $H_h[\forall x \mathcal{A}] = S$ ; by SF( $\forall$ ), iff for any  $n \in U_H$ ,  $H_h(x|n)[\mathcal{A}] = S$ . (i)

Suppose  $H_h[\mathcal{P}] = S$  but  $D_d[\mathcal{P}] \neq S$ ; then any  $n \in U_H$  is such that  $H_{h(x|n)}[\mathcal{A}] = S$ , but there is some  $m \in U_D$  such that  $D_{d(x|m)}[\mathcal{A}] \neq S$ . From the latter, insofar as d(x|m) and  $h(x|\iota(m))$  have each member related by  $\iota$ , the assumption applies and,  $H_{h(x|\iota(m))}[\mathcal{A}] \neq S$ ; so there is an  $n \in U_H$  such that  $H_{h(x|n)}[\mathcal{A}] \neq S$ ; this is impossible; reject the assumption: if  $H_h[\mathcal{P}] = S$ , then  $D_d[\mathcal{P}] = S$ . (ii) Similarly, [by homework] if  $D_d[\mathcal{P}] = S$ , then  $H_h[\mathcal{P}] = S$ . Hint: given h(x|n), there must be an m such that  $\iota(m) = n$ ; then d(x|m) and h(x|n) are related so that the assumption applies.

For d and h such that for any x,  $\iota(d[x]) = h[x]$  and  $\mathcal{P}$  with k operator symbols,  $D_d[\mathcal{P}] = S$  iff  $H_h[\mathcal{P}] = S$ .

*Indct:* For d and h such that for any x,  $\iota(d[x]) = h[x]$ , and any  $\mathcal{P}$ ,  $\mathsf{D}_{\mathsf{d}}[\mathcal{P}] = \mathsf{S}$  iff  $\mathsf{H}_{\mathsf{h}}[\mathcal{P}] = \mathsf{S}$ .

As often occurs, the most difficult case is for the quantifier. The key is that the assumption applies to  $D_d[\mathcal{P}]$  and  $H_h[\mathcal{P}]$  for *any* assignments d and h related so that for any x,  $\iota(d[x]) = h[x]$ . Supposing that d and h are so related, there is no reason to think that d(x|m) and h remain in that relation. The problem is solved with a corresponding modification to h: with d(x|m); we modify h so that the assignment to x simply is  $\iota(m)$ . Thus d(x|m) and  $h(x|\iota(m))$  are related so that the assumption applies.

Now it is a simple matter to show that isomorphic models are elementarily equivalent.

T11.10. If  $D \cong H$ , then  $D \equiv H$ .

Suppose  $D \cong H$ . By TI,  $D[\mathcal{P}] \neq T$  iff there is some assignment d such that  $D_d[\mathcal{P}] \neq S$ ; since  $D \cong H$ , where d and h are related as in T11.9, iff  $H_h[\mathcal{P}] \neq S$ ; by TI, iff  $H[\mathcal{P}] \neq T$ . So  $D[\mathcal{P}] = T$  iff  $H[\mathcal{P}] = T$ ; and  $D \equiv H$ .

Thus it is only the structures of interpretations up to isomorphism that matter for the truth values of formulas. And such structures are completely sufficient to determine truth values of formulas. It is another question whether truth values of formulas are sufficient to determine models, even up to isomorphism.

\*E11.9. Complete the proof of T11.9. You should set up the complete induction, but may refer to the text, as the text refers to homework.

E11.10. (i) Explain what truth value the sentence  $\forall x (Dx \rightarrow \exists y (Cy \land Pxy))$  has on interpretation I and then I' in example (I). Explain what truth values it has on I and then I' in example (J). (ii) Explain what truth value the sentence  $S\emptyset + S\emptyset = SS\emptyset$  has on interpretations N and N' in example (K). Are these results as you expect? Explain.

#### **11.4.2** When Equivalence implies Isomorphism

It turns out that when the universe of discourse is finite, elementary equivalence is sufficient to show isomorphism. Suppose  $U_D$  is finite and interpretations D and H are elementarily equivalent, so that every formula has the same truth value on the two interpretations. We find a sequence of formulas which contain sufficient information to show that D and H are isomorphic.

For some language  $\mathcal{L}$ , suppose  $D \equiv H$  and  $U_D = \{m_1, m_2 \dots m_n\}$ . For an enumeration  $x_1, x_2 \dots$  of the variables, consider some assignment d such that  $d[x_1] = m_1, d[x_2] = m_2$ , and  $\dots$  and  $d[x_n] = m_n$ , and let  $\mathcal{C}_0$  be the open formula,

$$[(x_1 \neq x_2 \land x_1 \neq x_3 \land \ldots \land x_1 \neq x_n) \land (x_2 \neq x_3 \land \ldots \land x_2 \neq x_n) \land (x_{n-1} \neq x_n)] \land \forall v (v = x_1 \lor v = x_2 \lor \ldots \lor v = x_n)$$

with appropriate parentheses. You should see this expression on analogy with quantity expressions from chapter 5 on translation. Its existential closure, that is,  $\exists x_1 \exists x_2 \dots x_n C_0$  is true just when there are exactly *n* things.

Now consider an enumeration,  $A_1, A_2...$  of those atomic formulas in  $\mathcal{L}$  whose only variables are  $x_1...x_n$ . And set  $\mathcal{C}_i = \mathcal{C}_{i-1} \wedge A_i$  if  $\mathsf{D}_{\mathsf{d}}[A_i] = \mathsf{S}$ , and otherwise,  $\mathcal{C}_i = \mathcal{C}_{i-1} \wedge \sim A_i$ . It is easy to see that for any i,  $\mathsf{D}_{\mathsf{d}}[\mathcal{C}_i] = \mathsf{S}$ . The argument is by induction on i.

T11.11. For any i,  $\mathsf{D}_{\mathsf{d}}[\mathcal{C}_i] = \mathsf{S}$ .

Basis: For any a and b such that  $1 \le a, b \le n$  and  $a \ne b$ , since  $x_a$  and  $x_b$ are assigned distinct members of U<sub>D</sub>, D<sub>d</sub>[ $x_a = x_b$ ]  $\ne$  S; so by SF(~), D<sub>d</sub>[ $x_a \ne x_b$ ] = S; so by repeated applications of SF( $\land$ ), D<sub>d</sub>[ $(x_1 \ne x_2 \land x_1 \ne x_3 \land \ldots \land x_1 \ne x_n) \land (x_2 \ne x_3 \land \ldots \land x_2 \ne x_n) \land (x_{n-1} \ne x_n)$ ] = S. And since each member of U<sub>D</sub> is assigned to some variable in  $x_1 \ldots x_n$ , for any m  $\in$  U<sub>D</sub>, there is some  $a, 1 \le a \le n$  such that D<sub>d</sub>( $v \mid m$ )[ $v = x_a$ ] = S. So by repeated applications of SF( $\lor$ ), for any m  $\in$  U<sub>D</sub>, D<sub>d</sub>( $v \mid m$ )[ $v = x_1 \lor v = x_2 \lor \ldots v = x_n$ ] = S; so by SF( $\forall$ ), D<sub>d</sub>[ $\forall v (v = x_1 \lor v = x_2 \lor \ldots v = x_n)$ ] = S; so by SF( $\land$ ), D<sub>d</sub>[ $\mathcal{C}_0$ ] = S.

Assp: For any 
$$i, 0 \le i < k$$
,  $D_d[\mathcal{C}_i] = S$ .  
Show:  $D_d[\mathcal{C}_k] = S$ .

 $C_k$  is of the form  $C_{k-1} \wedge A_k$  or  $C_{k-1} \wedge A_k$ . In the first case, by assumption,  $D_d[C_{k-1}] = S$ , and by construction,  $D_d[A_k] = S$ ; so by  $SF(\Lambda)$ ,  $D_d[C_{k-1} \wedge A_k] = S$ ; which is to say,  $D_d[C_k] = S$ . In the second case, again  $D_d[C_{k-1}] = S$ ; and by construction,  $D_d[A_k] \neq S$ ; so by  $SF(\Lambda)$ ,  $D_d[\sim A_k] = S$ ; so by  $SF(\Lambda)$ ,  $D_d[C_{k-1} \wedge A_k] = S$ ; which is to say,  $D_d[C_k] = S$ .

*Indct:* For any *i*,  $D_d[\mathcal{C}_i] = S$ .

So these formulas, though increasingly long, are all satisfied on assignment d.

Now, for the specification of an isomorphism between the interpretations, we set out to show there is a corresponding assignment h on which all the same expressions are satisfied. First, for any  $\mathcal{C}_i$ , consider its existential closure,  $\exists x_1 \dots \exists x_n \mathcal{C}_i$ . It is easy to see that for any  $\mathcal{C}_i$ ,  $H[\exists x_1 \dots \exists x_n \mathcal{C}_i] = T$ . Suppose otherwise; then since  $D \equiv H$ ,  $D[\exists x_1 \dots \exists x_n \mathcal{C}_i] \neq T$ ; so by TI, there is some assignment d' such that  $D_{d'}[\exists x_1 \dots \exists x_n \mathcal{C}_i] \neq S$ ; so, since the closure of  $\mathcal{C}_i$  has no free variables, by T8.4,  $D_d[\exists x_1 \dots \exists x_n \mathcal{C}_i] \neq S$ ; so by repeated application of  $SF(\exists)$ ,  $D_d[\mathcal{C}_i] \neq S$ ; but by T11.11, this is impossible; reject the assumption:  $H[\exists x_1 \dots \exists x_n \mathcal{C}_i] = T$ . When the existential is not satisfied on d, as we remove the quantifiers, in each case, the resultant formula without a quantifier is unsatisfied on d(x|m) for any  $m \in U_D$ ; so it is unsatisfied when m = d[x] — so that the formula without the quantifier is unsatisfied on the original d. Observe that there are thus exactly *n* members of  $U_H$ :  $H[\exists x_1 \dots \exists x_n \mathcal{C}_0] = T$ ; and, as we have already noted, this can be the case iff there are exactly *n* members of  $U_H$ .

Now for some assignment h', let h range over assignments that differ from h' at most in assignment to  $x_1 \ldots x_n$ . Set  $\Omega_i = \{h \mid H_h[\mathcal{C}_i] = S\}$ , and  $\Omega = \bigcap_{i \ge 0} \Omega_i$ . Observe: (i) No  $\Omega_i$  is empty. Since  $H[\exists x_1 \ldots \exists x_n \mathcal{C}_i] = T$ , by TI, for any assignment h\*,  $H_{h^*}[\exists x_1 \ldots \exists x_n \mathcal{C}_i] = S$ ; so  $H_{h'}[\exists x_1 \ldots \exists x_n \mathcal{C}_i] = S$ ; so by repeated applications of SF( $\exists$ ), there is some h such that  $H_h[\mathcal{C}_i] = S$ . When the quantifiers come off, the result is some assignment that differs at most in assignments to  $x_1 \ldots x_n$  and so some assignment in  $\Omega_i$ . (ii) For any  $j \ge i$ ,  $\Omega_j \subseteq \Omega_i$ . Suppose otherwise; then there is some h such that  $h \in \Omega_j$  but  $h \notin \Omega_i$ ; so by construction,  $H_h[\mathcal{C}_j] = S$  but  $H_h[\mathcal{C}_i] \ne S$ ; if j = i this is impossible; so suppose j > i; then  $\mathcal{C}_j$  is of the sort,  $\mathcal{C}_i \land \mathcal{B}_{i+1} \land \mathcal{B}_{i+2} \land \ldots \land \mathcal{B}_j$  where  $\mathcal{B}_{i+1} \ldots \mathcal{B}_j$  are either atomics or negated atomics; so by repeated application of SF( $\land$ ),  $H_h[\mathcal{C}_i] = S$ ; this is impossible; reject the assumption:  $\Omega_j \subseteq \Omega_i$ . (iii) Finally, there are at most finitely many assignments of the sort h. Since any h differs from h' at most in assignments to  $x_1 \dots x_n$ , and there are just *n* members of U<sub>H</sub>, there are  $n^n$  assignments of the sort h.

From these results it follows that  $\Omega$  is non-empty. Suppose otherwise. Then for any h, there is some  $\Omega_i$  such that  $h \notin \Omega_i$ . But there are only finitely many assignments of the sort h. So we may consider finitely many  $\Omega_a \dots \Omega_b$  from which for any h there is some  $\Omega_i$  such that  $h \notin \Omega_i$ . But where each subscript in  $a \dots b$  is  $\leq b$ , for each  $\Omega_i, \Omega_b \subseteq \Omega_i$ ; and since each h is missing from at least one  $\Omega_i$ , we have that  $\Omega_b$  is therefore empty.  $\Omega_b$  must lack each of the assignments missing from prior members of the sequence. But this is impossible; reject the assumption:  $\Omega$  is not empty. So we have what we wanted: any h in  $\Omega$  is an assignment that satisfies every  $\mathcal{C}_i$ .

Now we are ready to specify a mapping for our isomorphism! Indeed, we are ready to show,

T11.12. If  $D \equiv H$  and  $U_D$  is finite, then  $D \cong H$ .

Suppose  $D \equiv H$  and  $U_D$  is finite. Then there are  $\Omega$  and formulas  $\mathcal{C}_i$  as above. For some particular  $h \in \Omega$ , for any  $i, 1 \leq i \leq n$ , let  $\iota(d[x_i]) = h[x_i]$ . Since  $h \in \Omega$ , for any  $\mathcal{C}_i$ ,  $H_h[\mathcal{C}_i] = S$ . So  $H_h[\mathcal{C}_0] = S$ . So h assigns each  $x_i$  to a different member of  $U_H$ , and  $\iota$  is onto  $U_H$ , as it should be. We now set out to show that the other conditions for isomorphism are met.

- Sentence letters. Since  $D \equiv H$ , for any sentence letter  $\mathscr{S}$ ,  $D[\mathscr{S}] = T$ ; iff  $H[\mathscr{S}] = T$ ; so  $D[\mathscr{S}] = H[\mathscr{S}]$ .
- Constants. We require that for any constant c,  $D[c] = m_i$  iff  $H[c] = \iota(m_i)$ . (i) For some constant c, suppose  $D[c] = m_i$ . Since  $d[x_i] = m_i$ ,  $\iota(m_i) = \iota(d[x_i]) = h[x_i]$ . By TA(c),  $D_d[c] = D[c] = m_i$ ; and by TA(v),  $D_d[x_i] = d[x_i] = m_i$ ; so  $D_d[c] = D_d[x_i]$ ; so  $\langle D_d[c], D_d[x_i] \rangle \in D[=]$ ; so by SF(r),  $D_d[c = x_i] = S$ ; so  $c = x_i$  is a conjunct in some  $\mathcal{C}_n$ ; but  $H_h[\mathcal{C}_n] = S$ ; so by repeated applications of SF( $\land$ ),  $H_h[c = x_i] = S$ ; so by SF(r),  $\langle H_h[c], H_h[x_i] \rangle \in H[=]$ ; so  $H_h[c] = H_h[x_i]$ ; but by TA(c),  $H_h[c] = H[c]$ , and by TA(v),  $H_h[x_i] = h[x_i]$ ; so  $H[c] = h[x_i]$ ; so  $H[c] = \iota(m_i)$ .

(ii) Suppose  $D[c] \neq m_i$ . As before,  $\iota(m_i) = h[x_i]$ ; and  $D_d[x_i] = m_i$ . But by TA(c),  $D_d[c] = D[c]$ ; so  $D_d[c] \neq m_i$ ; so  $D_d[c] \neq D_d[x_i]$ ; so  $\langle D_d[c], D_d[x_i] \rangle \notin D[=]$ ; so by SF(r),  $D_d[c = x_i] \neq S$ ; so  $c \neq x_i$  is a conjunct in some  $C_n$ ; but  $H_h[C_n] = S$ ; so by repeated applications of SF( $\land$ ),  $H_h[c \neq x_i] = S$ ; so by SF( $\sim$ ), and SF(r),  $\langle H_h[c], H_h[x_i] \rangle \notin H[=]$ ; so  $H_h[c] \neq H_h[x_i]$ ; but by TA(c),  $H_h[c] = H[c]$ , and by TA(v),  $H_h[x_i] = h[x_i]$ ; so  $H[c] \neq h[x_i]$ ; so  $H[c] \neq \iota(m_i)$ . *Relation Symbols.* We require that for any relation symbol  $\mathcal{R}^n$ ,  $\langle \mathsf{m}_a \dots \mathsf{m}_b \rangle \in \mathsf{D}[\mathcal{R}^n]$ iff  $\langle \iota(\mathsf{m}_a) \dots \iota(\mathsf{m}_b) \rangle \in \mathsf{H}(\mathcal{R}^n)$ . (i) Suppose  $\langle \mathsf{m}_a \dots \mathsf{m}_b \rangle \in \mathsf{D}[\mathcal{R}^n]$ . Since  $\mathsf{d}[x_a] = \mathsf{m}_a$ , and ... and  $\mathsf{d}[x_b] = \mathsf{m}_b$  we have,  $\iota(\mathsf{m}_a) = \iota(\mathsf{d}[x_a]) = \mathsf{h}[x_a]$ , and ... and  $\iota(\mathsf{m}_b) = \iota(\mathsf{d}[x_b]) = \mathsf{h}[x_b]$ , and also by TA(v),  $\mathsf{D}_\mathsf{d}[x_a] = \mathsf{m}_a$ , and ... and  $\mathsf{D}_\mathsf{d}[x_b] = \mathsf{m}_b$ ; so  $\langle \mathsf{D}_\mathsf{d}[x_a], \dots \mathsf{D}_\mathsf{d}[x_b] \rangle \in \mathsf{D}[\mathcal{R}^n]$ ; so by SF(r),  $\mathsf{D}_\mathsf{d}[\mathcal{R}^n x_a \dots x_b] = \mathsf{S}$ ; so  $\mathcal{R}^n x_a \dots x_b$  is a conjunct of some  $\mathcal{C}_n$ ; but  $\mathsf{H}_\mathsf{h}[\mathcal{C}_n] =$  $\mathsf{S}$ ; so by repeated applications of SF( $\land$ ),  $\mathsf{H}_\mathsf{h}[\mathcal{R}^n x_a \dots x_b] = \mathsf{S}$ ; so by SF(r),  $\langle \mathsf{H}_\mathsf{h}[x_a], \dots \mathsf{H}_\mathsf{h}[x_b] \rangle \in \mathsf{H}[\mathcal{R}^n]$ ; but by TA(v),  $\mathsf{H}_\mathsf{h}[x_a] = \mathsf{h}[x_a] = \iota(\mathsf{m}_a)$ , and  $\dots$  and  $\mathsf{H}_\mathsf{h}[x_b] = \mathsf{h}[x_b] = \iota(\mathsf{m}_b)$ ; so  $\langle \iota(\mathsf{m}_a) \dots \iota(\mathsf{m}_b) \rangle \in \mathsf{H}[\mathcal{R}^n]$ .

(ii) Suppose  $\langle m_a \dots m_b \rangle \notin D[\mathcal{R}^n]$ . As before,  $\iota(m_a) = h[x_a]$ , and ... and  $\iota(m_b) = h[x_b]$ ; similarly,  $D_d[x_a] = m_a$ , and ... and  $D_d[x_b] = m_b$ ; so  $\langle D_d[x_a], \dots D_d[x_b] \rangle \notin D[\mathcal{R}^n]$ ; so by SF(r),  $D_d[\mathcal{R}^n x_a \dots x_b] \neq S$ ; and  $\sim \mathcal{R}^n x_a \dots x_b$  is a conjunct of some  $\mathcal{C}_n$ ; but  $H_h[\mathcal{C}_n] = S$ ; so by repeated applications of SF( $\land$ ),  $H_h[\sim \mathcal{R}^n x_a \dots x_b] = S$ ; so by SF( $\sim$ ) and SF(r),  $\langle H_h[x_a], \dots H_h[x_b] \rangle \notin H[\mathcal{R}^n]$ ; but as before,  $H_h[x_a] = \iota(m_a)$ , and ... and  $H_h[x_b] = \iota(m_b)$ ; so  $\langle \iota(m_a) \dots \iota(m_b) \rangle \notin H[\mathcal{R}^n]$ .

Function symbols. We require that for any function symbol  $\hbar^n$ ,  $\langle \langle m_a \dots m_b \rangle, m_c \rangle \in D[\hbar^n]$  iff  $\langle \iota(m_a) \dots \iota(m_b) \rangle, \iota(m_c) \rangle \in H[\hbar^n]$ . (i) Suppose  $\langle \langle m_a \dots m_b \rangle, m_c \rangle \in D[\hbar^n]$ . Since  $d[x_a] = m_a$ , and ... and  $d[x_b] = m_b$ , and  $d[x_c] = m_c$ , we have,  $\iota(m_a) = \iota(d[x_a]) = h[x_a]$ , and ... and  $\iota(m_b) = \iota(d[x_b]) = h[x_b]$ , and  $\iota(m_c) = \iota(d[x_c]) = h[x_c]$ ; and also by TA(v),  $D_d[x_a] = m_a$ , and ... and  $D_d[x_b] = m_b$ , and  $D_d[x_c] = m_c$ ; so  $\langle \langle D_d[x_a] \dots D_d[x_b] \rangle, D_d[x_c] \rangle \in D[\hbar^n]$ ; so  $D[\hbar^n] \langle D_d[x_a] \dots D_d[x_b] \rangle = D_d[x_c]$ ; so by TA(f),  $D_d[\hbar^n x_a \dots x_b] = D_d[x_c]$ ; so  $\langle D_d[\hbar^n x_a \dots x_b] = x_c$  is a conjunct of some  $\mathcal{C}_n$ ; but  $H_h[\mathcal{C}_n] = S$ ; so by repeated applications of SF( $\wedge$ ),  $H_h[\hbar^n x_a \dots x_b] = H_h[x_c]$ ; but by TA(f),  $H_h[\hbar^n x_a \dots x_b] = H[\hbar^n] \langle H_h[x_a] \dots H_h[x_b] \rangle$ ; so  $H[\hbar^n] \langle H_h[x_a] \dots H_h[x_b] \rangle = H_h[x_c]$ ; so  $\langle \langle u(m_a) \dots u(m_b) \rangle, u(m_c) \rangle \in H[\hbar^n]$ .

(ii) Suppose  $\langle \langle \mathsf{m}_a \dots \mathsf{m}_b \rangle, \mathsf{m}_c \rangle \notin \mathsf{D}[\hbar^n]$ . As before,  $\iota(\mathsf{m}_a) = \mathsf{h}[x_a]$ , and ... and  $\iota(\mathsf{m}_b) = \mathsf{h}[x_b]$ , and  $\iota(\mathsf{m}_c) = \mathsf{h}[x_c]$ ; and also  $\mathsf{D}_{\mathsf{d}}[x_a] = \mathsf{m}_a$ , and ... and  $\mathsf{D}_{\mathsf{d}}[x_b] = \mathsf{m}_b$ , and  $\mathsf{D}_{\mathsf{d}}[x_c] = \mathsf{m}_c$ ; so  $\langle \langle \mathsf{D}_{\mathsf{d}}[x_a] \dots \mathsf{D}_{\mathsf{d}}[x_b] \rangle, \mathsf{D}_{\mathsf{d}}[x_c] \rangle \notin$  $\mathsf{D}[\hbar^n]$ ; so  $\mathsf{D}[\hbar^n] \langle \mathsf{D}_{\mathsf{d}}[x_a] \dots \mathsf{D}_{\mathsf{d}}[x_b] \rangle \neq \mathsf{D}_{\mathsf{d}}[x_c]$ ; so by TA(f),  $\mathsf{D}_{\mathsf{d}}[\hbar^n x_a \dots x_b]$  $\neq \mathsf{D}_{\mathsf{d}}[x_c]$ ; so  $\langle \mathsf{D}_{\mathsf{d}}[\hbar^n x_a \dots x_b], \mathsf{D}_{\mathsf{d}}[x_c] \rangle \notin \mathsf{D}[=]$ ; so by SF(r),  $\mathsf{D}_{\mathsf{d}}[\hbar^n x_a \dots x_b]$  $= x_c] \neq \mathsf{S}$ ; so  $\hbar^n x_a \dots x_b \neq x_c$  is a conjunct of some  $\mathcal{C}_n$ ; but  $\mathsf{H}_{\mathsf{h}}[\mathcal{C}_n] = \mathsf{S}$ ; so by repeated applications of SF( $\land$ ),  $H_h[\hbar^n x_a \dots x_b \neq x_c] = S$ ; so by SF( $\sim$ ) and SF(r),  $\langle H_h[\hbar^n x_a \dots x_b], H_h[x_c] \rangle \notin H[=]$ ; so  $H_h[\hbar^n x_a \dots x_b] \neq$  $H_h[x_c]$ ; but by TA(f),  $H_h[\hbar^n x_a \dots x_b] = H[\hbar^n]\langle H_h[x_a] \dots H_h[x_b] \rangle$ ; and  $H[\hbar^n]\langle H_h[x_a] \dots H_h[x_b] \rangle \neq H_h[x_c]$ ; so  $\langle \langle H_h[x_a] \dots H_h[x_b] \rangle, H_h[x_c] \rangle \notin H[\hbar^n]$ ; but as before,  $H_h[x_a] = \iota(m_a)$ , and  $\dots H_h[x_b] = \iota(m_b)$ , and  $H_h[x_c] = \iota(m_c)$ ; so  $\langle \langle \iota(m_a) \dots \iota(m_b) \rangle, \iota(m_c) \rangle \notin H[\hbar^n]$ .

Thus elementary equivalence is sufficient for isomorphism in the case where the universe of discourse is finite. This is an interesting result! Consider any interpretation D with a finite  $U_D$ , and the set of formulas  $\Delta$  (Delta) true on D. By our result, any other model H that makes all the formulas in  $\Delta$  true — any H such that  $D \equiv H$  — is such that D is isomorphic to H. As we shall shortly see, the situation is not so straightforward when  $U_D$  is infinite.

### **11.5** Compactness and Isomorphism

Compactness takes the link between syntax and semantics from adequacy, and combines it with the finite length of derivations. The result is simple enough, and puts us in a position to obtain a range of further conclusions.

ST A set  $\Sigma$  of formulas is *satisfiable* iff it has a model.  $\Sigma$  is *finitely satisfiable* iff every finite subset of it has a model.

Now compactness draws a connection between satisfiability, and finite satisfiability,

T11.13. A set of formulas  $\Sigma$  is satisfiable iff it is finitely satisfiable. (*compactness*)

(i) Suppose  $\Sigma$  is satisfiable, but not finitely satisfiable. Then there is some M such that  $M[\Sigma] = T$ ; but there is a finite  $\Sigma' \subseteq \Sigma$  such that any M' has  $M'[\Sigma'] \neq T$ ; so  $M[\Sigma'] \neq T$ ; so there is a formula  $\mathcal{P} \in \Sigma'$  such that  $M[\mathcal{P}] \neq T$ ; but since  $\Sigma' \subseteq \Sigma$ ,  $\mathcal{P} \in \Sigma$ ; so  $M[\Sigma] \neq T$ . This is impossible; reject the assumption: if  $\Sigma$  is satisfiable, then it is finitely satisfiable.

(ii) Suppose  $\Sigma$  is finitely satisfiable, but not satisfiable. By T10.17, if  $\Sigma$  is consistent, then it has a model M. But since  $\Sigma$  is not satisfiable, it has no model; so it is not consistent; so there is some formula  $\mathcal{A}$  such that  $\Sigma \vdash \mathcal{A}$  and  $\Sigma \vdash \sim \mathcal{A}$ ; consider derivations of these results, and the set  $\Sigma^*$  of premises of these derivations; since derivations are finite,  $\Sigma^*$  is finite; and since  $\Sigma^*$  includes all the premises,  $\Sigma^* \vdash \mathcal{A}$  and  $\Sigma^* \vdash \sim \mathcal{A}$ ; so by soundness,  $\Sigma^* \vDash \mathcal{A}$  and  $\Sigma^* \vDash \sim \mathcal{A}$ ; since  $\Sigma$  is finitely satisfiable, there must be some model M<sup>\*</sup>

such that  $M^*[\Sigma^*] = T$ ; then by QV,  $M^*[\mathcal{A}] = T$  and  $M^*[\sim \mathcal{A}] = T$ . But by T7.5, there is no M<sup>\*</sup> and  $\mathcal{A}$  such that  $M^*[\mathcal{A}] = T$  and  $M^*[\sim \mathcal{A}] = T$ . This is impossible; reject the assumption: if  $\Sigma$  is finitely satisfiable, then it is satisfiable.

This theorem puts us in a position to reason from finite satisfiability to satisfiability. And the results of such reasoning may be startling. Consider again the standard interpretation N1 for  $\mathcal{L}_{ND}^{<}$ 

$$\begin{split} \mathsf{N}[\emptyset] &= 0\\ \mathsf{N}[<] &= \{\langle \mathsf{m},\mathsf{n} \rangle \mid \mathsf{m},\mathsf{n} \in \mathbb{N}, \text{ and } \mathsf{m} \text{ is less than } \mathsf{n} \}\\ \mathsf{N}[S] &= \{\langle \mathsf{m},\mathsf{n} \rangle \mid \mathsf{m},\mathsf{n} \in \mathbb{N}, \text{ and } \mathsf{n} \text{ is the successor of } \mathsf{m} \}\\ \mathsf{N}[+] &= \{\langle \langle \mathsf{m},\mathsf{n} \rangle, \mathsf{o} \rangle \mid \mathsf{m},\mathsf{n},\mathsf{o} \in \mathbb{N}, \text{ and } \mathsf{m} \text{ plus } \mathsf{n} \text{ equals } \mathsf{o} \}\\ \mathsf{N}[\times] &= \{\langle \langle \mathsf{m},\mathsf{n} \rangle, \mathsf{o} \rangle \mid \mathsf{m},\mathsf{n},\mathsf{o} \in \mathbb{N}, \text{ and } \mathsf{m} \text{ times } \mathsf{n} \text{ equals } \mathsf{o} \} \end{split}$$

Let  $\Sigma$  include all the sentences true on N. Now consider a language  $\mathcal{L}'$  like  $\mathcal{L}_{NT}^{\leq}$  but with the addition of a single constant *c*. And consider a set of sentences,

$$\Sigma' = \Sigma \cup \{ \emptyset < c, S\emptyset < c, SS\emptyset < c, SSS\emptyset < c, SSSS\emptyset < c \dots \}$$

that is like  $\Sigma$  but with the addition of sentences asserting that *c* is greater than each integer. Clearly there is no such individual on the standard interpretation N. A finite subset of  $\Sigma'$  can have at most finitely many of these sentences as members. Thus a finite subset of  $\Sigma'$  is a subset of,

$$\Sigma \cup \{\emptyset < c, S\emptyset < c, SS\emptyset < c \dots \overbrace{SS \dots S}^{nS's} \emptyset < c\}$$

for some *n*. But any such set is finitely satisfiable: Simply let the interpretation N' be like N but with N[c] = n + 1. It follows from T11.13 that  $\Sigma'$  has a model M'. But, further, by reasoning as for T10.16, a model M like M' but without the assignment to *c* is a model of  $\mathscr{L}_{NT}^{<}$  for all the sentences in  $\Sigma$ . So N  $\equiv$  M. But N  $\ncong$  M. For there must be a member of U<sub>M</sub> with infinitely many members of U<sub>M</sub> that stand in the < relation to it. [Clean this up.]

It is worth observing that we have demonstrated the existence of a model for the completely nonstandard M by appeal to the more standard models M' for finite subsets of  $\Sigma'$ , through the compactness theorem. Also, it is now clear that there can be no analog to the result of the previous section for models with an infinite domain: For models with an infinite domain, elementary equivalence does not in general imply isomorphism. In the next section, we begin to see just how general this phenomenon is.

#### 11.6 Submodels and Löwenheim-Skolem

The construction for the adequacy theorem gives us a countable model for any consistent set of sentences. Already, this suggests that sentences for some models do not always have the same size domain. Suppose  $\Sigma$  has a model I. Then by T10.4,  $\Sigma$  is consistent; so by T10.17,  $\Sigma$  has a model M — where the universe of this latter model is constructed of disjoint sets of integers. But this means that if  $\Sigma$  has a model at all, then it has a countable model, for we might order the members of U<sub>M</sub> by, say, their least elements into a countable series. In fact, we might set up a function  $\iota$  from each set in U<sub>M</sub> to its least element, to establish an isomorphic interpretation M\* whose universe just *is* a set of integers. Then by T11.10, M\*[ $\Sigma$ ] = T. So consider any model whose universe is not countable; it must be elementarily equivalent to one whose universe is a countable set of integers. But, of course, there is no one-to-one map from an uncountable universe to a countable one, so the models are not isomorphic.

This sort of result is strengthened in an interesting way by the Löwenheim-Skolem theorems. In the first form, we show that every model has a *submodel* with a countable domain.

#### 11.6.1 Submodels

SM A model M of a language  $\mathcal{L}$  is a *submodel* of model N (M  $\subseteq$  N) iff

- 1.  $U_M \subseteq U_N$ ,
- 2. For any sentence letter  $\mathscr{S}$ ,  $M[\mathscr{S}] = N[\mathscr{S}]$ ,
- 3. For any constant c of  $\mathcal{L}$ , M(c) = N(c),
- For any function symbol h<sup>n</sup> of L and any ⟨a<sub>1</sub>...a<sub>n</sub>⟩ from the members of U<sub>M</sub>, ⟨⟨a<sub>1</sub>...a<sub>n</sub>⟩, b⟩ ∈ M(h<sup>n</sup>) iff ⟨⟨a<sub>1</sub>...a<sub>n</sub>⟩, b⟩ ∈ N(h<sup>n</sup>),
- 5. For any relation symbol  $\mathcal{R}^n$  of  $\mathcal{L}$  and any  $\langle a_1 \dots a_n \rangle$  from the members of  $U_M$ ,  $\langle a_1 \dots a_n \rangle \in M(\mathcal{R}^n)$  iff  $\langle a_1 \dots a_n \rangle \in N(\mathcal{R}^n)$ .

The interpretation of  $\hbar^n$  and of  $\Re^n$  on M are the *restrictions* of their respective interpretations on N. Observe that a submodel is completely determined, once its domain is given. A submodel is not well defined if it does not include objects for the interpretation of the constants, and the closure of its functions.

ES Say d is a variable assignment into the members of  $U_M$ . Then M is an *elementary submodel* of N iff  $M \subseteq N$  and for any formula  $\mathcal{P}$  of  $\mathcal{L}$  and any such d,  $M_d[\mathcal{P}] = S$  iff  $N_d[\mathcal{P}] = S$ .

If M is an elementary submodel of N, we write,  $M \prec N$ . First,

T11.14. If  $M \prec N$  then for any sentence  $\mathcal{P}$  of  $\mathcal{L}, M[\mathcal{P}] = T$  iff  $N[\mathcal{P}] = T$ .

Suppose  $M \prec N$  and consider some sentence  $\mathcal{P}$ . By TI,  $M[\mathcal{P}] = T$  iff  $M_d[\mathcal{P}] = S$  for every assignment d into  $U_M$ ; since  $\mathcal{P}$  is a sentence, by T8.4, iff for some particular assignment h,  $M_h[\mathcal{P}] = S$ ; since  $M \prec N$ , iff  $N_h[\mathcal{P}] = S$ ; since  $\mathcal{P}$  is a sentence, by T8.4, iff  $N_d[\mathcal{P}] = S$  for every d into  $U_N$ ; by TI, iff  $N[\mathcal{P}] = T$ . So  $M[\mathcal{P}] = T$  iff  $N[\mathcal{P}] = T$ .

This much is clear. It is not so easy demonstrate the conditions under which a submodel is an elementary submodel. We make a beginning with the following theorems.

T11.15. Suppose  $M \subseteq N$  and d is a variable assignment into  $U_M$ . Then for any term t,  $M_d[t] = N_d[t]$ .

By induction on the number of function symbols in *t*. Suppose  $M \subseteq N$  and d is a variable assignment into  $U_M$ .

- *Basis:* Suppose t has no function symbols. Then t is a variable x or a constant c. (i) Suppose t is a constant c. Then  $M_d[t]$  is  $M_d[c]$ ; by TA(c) this is M[c]; and since  $M \subseteq N$ , this is N[c]; by TA(c) again, this is  $N_d[c]$ ; which is just  $N_d[t]$ . (ii) Suppose t is a variable x. Then  $M_d[t]$  is  $M_d[x]$ ; by TA(v), this is d[x] and by TA(v) again, this is  $N_d[x]$ ; which is just  $N_d[t]$ .
- Assp: For any  $i, 0 \le i < k$ , if t has i function symbols, then  $M_d[t] = N_d[t]$ .
- Show: If t has k function symbols,  $M_d[t] = N_d[t]$ .

If t has k function symbols, then it is of the form  $\hbar^n t_1 \dots t_n$  for some terms  $t_1 \dots t_n$  with < k function symbols. So  $M_d[t]$  is  $M_d[\hbar^n t_1 \dots t_n]$ ; by TA(f) this is  $M[\hbar^n]\langle M_d[t_1], \dots M_d[t_n] \rangle$ ; since  $M \subseteq N$ , with the assumption, this is  $N[\hbar^n]\langle N_d[t_1], \dots N_d[t_n] \rangle$ ; by TA(f), this is  $N_d[\hbar^n t_1 \dots t_n]$ ; which is just  $N_d[t]$ .

*Indct:* For any term t,  $M_d[t] = N_d[t]$ .

T11.16. Suppose that  $M \subseteq N$  and that for any formula  $\mathcal{P}$  and every variable assignment d such that  $N_d[\exists x \mathcal{P}] = S$  there is an  $m \in U_M$  such that  $N_{d(x|m)}[\mathcal{P}] = S$ . Then  $M \prec N$ . Suppose  $M \subseteq N$  and that for any formula  $\mathcal{P}$  and every variable assignment d such that  $N_d[\exists x \mathcal{P}] = S$  there is an  $m \in U_M$  such that  $N_{d(x|m)}[\mathcal{P}] = S$ . We show by induction on the number of operators in  $\mathcal{P}$ , that for d any assignment into the members of  $U_M$ ,  $M_d[\mathcal{P}] = S$  iff  $N_d[\mathcal{P}] = S$ .

- Basis: If  $\mathcal{P}$  is atomic then it is either a sentence letter  $\mathscr{S}$  or an atomic of the form  $\mathcal{R}^n t_1 \dots t_n$  for some relation symbol  $\mathcal{R}^n$  and terms  $t_1 \dots t_n$ . (i) Suppose  $\mathcal{P}$  is  $\mathscr{S}$ . Then  $M_d[\mathcal{P}] = S$  iff  $M_d[\mathscr{S}] = S$ ; by SF(s), iff  $M[\mathscr{S}] = T$ ; since  $M \subseteq N$ , iff  $N[\mathscr{S}] = T$ ; by SF(s), iff  $N_d[\mathscr{S}] = S$ ; iff  $N_d[\mathcal{P}] = S$ . (ii) Suppose  $\mathcal{P}$  is  $\mathcal{R}^n t_1 \dots t_n$ . Then  $M_d[\mathcal{P}] = S$  iff  $M_d[\mathcal{R}^n t_1 \dots t_n] = S$ ; by SF(r) iff  $\langle M_d[t_1], \dots, M_d[t_n] \rangle \in M[\mathcal{R}^n]$ ; since  $M \subseteq N$  with T11.15 iff  $\langle N_d[t_1], \dots, N_d[t_n] \rangle \in N[\mathcal{R}^n]$ ; by SF(r) iff  $N_d[\mathcal{R}^n t_1 \dots t_n] = S$ ; iff  $N_d[\mathcal{P}] = S$ .
- Assp: For any  $i, 0 \le i < k$ , for d any assignment into the members of U<sub>M</sub>, if  $\mathcal{P}$  has i operator symbols, then  $M_d[\mathcal{P}] = S$  iff  $N_d[\mathcal{P}] = S$ .
- Show: If  $\mathcal{P}$  has k operator symbols, then for d any assignment into the members of  $U_M$ ,  $M_d[\mathcal{P}] = S$  iff  $N_d[\mathcal{P}] = S$ . If  $\mathcal{P}$  has k operator symbols, then it is of the form  $\sim \mathcal{A}$ ,  $\mathcal{A} \rightarrow \mathcal{B}$  or  $\exists x \mathcal{A}$  for variable x and formulas A and  $\mathcal{B}$  with < k operator symbols (treating universally quantified expressions as equivalent to existentially quantified ones). Let d be an assignment into the members of  $U_M$ .
  - $\begin{array}{ll} (\sim) \mbox{ Suppose $\mathcal{P}$ is $\sim}A. \ \ M_d[\mathcal{P}] \ = \ S \ \ iff \ M_d[\sim \mathcal{A}] \ = \ S; \ by \ SF(\sim) \ iff \ M_d[\mathcal{A}] \neq S; \ by \ assumption \ iff \ N_d[\mathcal{A}] \neq S; \ by \ SF(\sim) \ iff \ N_d[\sim \mathcal{A}] \ = \ S; \ iff \ N_d[\mathcal{P}] \ = \ S. \end{array}$
  - $(\rightarrow)$  Homework.
  - (∃) Suppose P is ∃xA. (i) Suppose M<sub>d</sub>[P] = S; then M<sub>d</sub>[∃xA] = S; so by SF(∃), there is some o ∈ U<sub>M</sub> such that M<sub>d(x|o)</sub>[A] = S; so since d(x|o) is an assignment into the members of U<sub>M</sub>, by assumption, N<sub>d(x|o)</sub>[A] = S; so by SF(∃), N<sub>d</sub>[∃xA] = S; so N<sub>d</sub>[P] = S. (ii) Suppose N<sub>d</sub>[P] = S; then N<sub>d</sub>[∃xA] = S; so by the assumption of the theorem, there is an m ∈ U<sub>M</sub> such that N<sub>d(x|m)</sub>[A] = S; since d(x|m) is an assignment into the members of U<sub>M</sub>, by assumption M<sub>d(x|m)</sub>[A] = S; so by SF(∃), M<sub>d</sub>[∃xA] = S; so M<sub>d</sub>[P] = S. So M<sub>d</sub>[P] = S; so by SF(∃), M<sub>d</sub>[∃xA] = S; so M<sub>d</sub>[P] = S.

In any case, if  $\mathcal{P}$  has k operator symbols,  $M_d[\mathcal{P}] = S$  iff  $N_d[\mathcal{P}] = S$ .

*Indct:* For any  $\mathcal{P}$ ,  $M_d[\mathcal{P}] = S$  iff  $N_d[\mathcal{P}] = S$ .

So the result works, only so long as the quantifier case is guaranteed by "witnesses" for each existential claim in the universe of the submodel. The Löwenheim Skolem Theorem takes advantage of what we have done by producing a model in which these witnesses are present.

#### 11.6.2 Downward Löwenheim-Skolem

The Löwenheim Skolem Theorem takes advantage of what we have just done by producing a model in which the required witnesses are present.

 $U_M$  Consider some model N and suppose a well-ordering of the objects of  $U_N$ . We construct a countable submodel M as follows. Let  $A_0$  be a countable subset of  $U_N$ . We construct a series  $A_0, A_1, A_2 \dots$  For a formula of the form  $\exists x \mathcal{P}$  in the language  $\mathcal{L}$ , and a variable assignment d into  $A_i$ , let d' be like d for the initial segment that assigns to variables free in  $\mathcal{P}$ , and after assigns to a constant object  $m_0$  in  $A_0$ . Then for any  $\mathcal{P}$  and d such that  $N_d[\exists x \mathcal{P}] = S$ , find the first object o in the well-ordering of  $U_N$  such that  $N_{d'(x|o)}[\mathcal{P}] = S$ . To form  $A_{i+1}$ , augment  $A_i$  with all the objects obtained this way. Because there are countably many formulas, and countably many initial segments of the variable assignments, countable, Let  $U_M$  be  $\bigcup_{i\geq 0} A_i$ . Again, if each  $A_i$  is countable,  $U_M$  is countable.

There may be uncountably many variable assignments into a given  $A_i$ . However, for a given formula  $\mathcal{P}$ , no matter how may assignments there may be on which it is satisfied, there can be at most countably many initial segments of the sort d'. So at most countably many objects are added. The functions from formulas and variable assignments to individuals are *Skolem* functions, and we consider the closure of A under the set of all Skolem functions.

T11.17. With  $U_M$  constructed as above, a submodel M of N is well-defined.

Clearly  $U_M \subseteq U_N$ . For constants, consider the case when  $\exists x \mathcal{P} \text{ is } \exists x (x = c)$ ; then at any stage *i*,  $M_{d'(x|o)}[x = c] = S$  iff o = M[c]. So M[c] is a member of  $A_{i+1}$  and so of  $U_M$ . Similarly, for functions, consider the case when  $\exists x \mathcal{P}$  is  $\exists x (\hbar^n v_1 \dots v_n = x)$  for some function symbol  $\hbar^n$  and variables  $v_1 \dots v_n$  and x. For any d, consider some d' which assigns objects to each of the variables  $v_1 \dots v_n$ ; then there there is some  $A_i$  such that d' is an assignment into it; so by construction,  $A_{i+1}$  includes an object o such that  $N_{d'(x|o)}[\hbar^n v_1 \dots v_n = x] = S$ . But this must be the object  $N[\hbar^n] \langle N_{d'}[v_1], \dots N_{d'}[v_1] \rangle$ .

T11.18. For any model N there is an  $M \prec N$  such that M has a countable domain. (*Löwenheim-Skolem*)

To show  $M \prec N$  by T11.16, it remains to show that for any formula  $\mathcal{P}$  and every variable assignment d such that  $N_d[\exists x \mathcal{P}] = S$  there is an  $m \in U_M$ such that  $N_{d(x|m)}[\mathcal{P}] = S$ . But this is easy. Suppose  $N_d[\exists x \mathcal{P}] = S$ ; then where d and d' agree on assignments to all the free variables in  $\mathcal{P}$ , by T8.4,  $N_{d'}[\exists x \mathcal{P}] = S$ . But all assignments from d' are elements of some  $A_i$ ; so by construction there is object m such that  $N_{d'(x|m)}[\mathcal{P}] = S$  in  $A_{i+1}$  and so in  $U_M$ ; and since d and d' agree on their assignments to all the free variables in  $\mathcal{P}$ , by T8.4,  $N_{d(x|m)}[\mathcal{P}] = S$ .

[applications]

#### 11.6.3 Upward Löwenheim-Skolem

# Part IV

# Logic and Arithmetic: Incompleteness and Computability

# Introductory

In Part III we showed that our semantical and syntactical logical notions are related as we want them to be: exactly the same arguments are semantically valid as are provable. So,

(A)  $\Gamma \vdash \mathcal{P}$  iff  $\Gamma \models \mathcal{P}$ 

Thus our derivation system is both sound and adequate, as it should be. In this part, however, we encounter a series of limiting results — with particular application to arithmetic and computing.

First, it is natural to think mathematics is characterized by proofs and derivations. Thus, one might anticipate that there would be some system of premises  $\Delta$  such that for any  $\mathcal{P}$  in  $\mathcal{L}_{NT}$ , we would have,

(B) 
$$\Delta \vdash \mathcal{P} \quad \text{iff} \quad \mathsf{N}[\mathcal{P}] = \mathsf{T}$$

where N is the standard interpretation of number theory. Note the difference between our claims. In (A) derivations are matched to entailments; in (B) derivations (and so entailments) are matched to truths on an interpretation. Perhaps inspired by suspicions about the existence or nature of numbers, one might expect that derivations would even entirely replace the notion of mathematical truth. And Q or PA may already seem to be deductive systems as in (B). But we shall see that there can be no such deductive system. From Gödel's first incompleteness theorem, under certain constraints, no consistent deductive system has as consequences either  $\mathcal{P}$  or  $\sim \mathcal{P}$  for every  $\mathcal{P}$  of  $\mathcal{L}_{NT}$ ; any such theory is (negation) *incomplete*. But then, subject to those constraints, any consistent deductive system must omit some truths of arithmetic from among its consequences.<sup>3</sup>

Suppose there is no one-to-one map between truths of arithmetic and consequences of our theories. Rather, we propose a theory R(eal) whose consequences

<sup>&</sup>lt;sup>3</sup>Gödel's groundbreaking paper is "On the Formally Undecidable Propositions of *Principia Mathematica* and Related Systems."

are unproblematically true, and another theory I(deal) whose consequences outrun those of R and whose literal truth is therefore somehow suspect. Perhaps R is sufficient only for something like basic arithmetic, whereas I seems to quantify over all members of a far-flung infinite domain. Even though not itself a vehicle for truth, theory I may be useful under certain circumstances. Suppose,

- (a) For any  $\mathcal{P}$  in the scope of R, if  $\mathcal{P}$  is not true, then  $R \vdash \sim \mathcal{P}$
- (b) I extends R: If  $R \vdash \mathcal{P}$  then  $I \vdash \mathcal{P}$
- (c) *I* is *consistent*: There is no  $\mathcal{P}$  such that  $I \vdash \mathcal{P}$  and  $I \vdash \sim \mathcal{P}$

Then theory *I* may be treated as a tool for achieving results in the scope of *R*: Suppose  $\mathcal{P}$  is a result in the scope of *R*, and  $I \vdash \mathcal{P}$ ; then by consistency,  $I \not\vdash \sim \mathcal{P}$ ; and because *I* extends *R*,  $R \not\vdash \sim \mathcal{P}$ ; so by (a),  $\mathcal{P}$  is true. This is (a sketch of) the famous 'Hilbert program' for mathematics, which aims to make sense of infinitary mathematics based not on the truth but rather the consistency of theory *I*.

Because consistency is a syntactical result about proof systems, not itself about far-flung mathematical structures, one might have hoped for proofs of consistency from real, rather than ideal, theories. But Gödel's second incompleteness theorem tells us that derivation systems extending PA cannot prove even their own consistency. So a weaker "real" theory will not be able to prove the consistency of PA and its extensions. But this seems to remove a demonstration of (c) and so to doom the Hilbert strategy.<sup>4</sup>

Even though no one derivation system has as consequences every mathematical truth, derivations remain useful, and mathematicians continue to do proofs! Given that we care about them, there is a question about the automation of proofs. Say a property or relation is *effectively decidable* iff there is an algorithm or program that for any given case, decides in a finite number of steps whether the property or relation applies. Abstracting from the limitations of particular computing devices, we shall

<sup>&</sup>lt;sup>4</sup>We are familiar with the Pythagorean Theorem according to which the hypotenuse and sides of a right triangle are such that  $a^2 = b^2 + c^2$ . In the 1600s Fermat famously proposed that there are no integers a, b, c such that  $a^n = b^n + c^n$  for n > 2; so, for example, there are no a, b, c such that  $a^3 = b^3 + c^3$ . In 1995 Andrew Wiles proved that this is so. But Wiles's proof requires some fantastically abstract (and difficult) mathematics. Even if Wiles's abstract theory (I) is not *true* Hilbert could still accept the demonstration of Fermat's (real) theorem so long as I is shown to be *consistent*. Gödel's result seems to doom this strategy. Of course, one might simply accept Wiles's proof on the ground that his advanced mathematics is *true* so that its consequences are true as well. But this is a topic in philosophy of mathematics, not logic! See, for example, Shapiro, *Thinking About Mathematics* for an introduction to options in the philosophy of mathematics. Our limiting results may very well stimulate interest in that field!

identify a class of relations which are decidable. A corollary of Gödel's first theorem is that validity in systems like *ND* and *AD* is not among the decidable relations. Thus there are interesting limits on the decidable relations — where it is possible also to look back through this lense at Gödel's first theorem.

Chapter 12 lays down background required for chapters that follow. It begins with a discussion of *recursive functions*, and concludes with a few essential results, including a demonstration of the incompleteness of arithmetic. Chapters 13 and 14 deepen and extend those results in different ways. Chapter 13 includes Gödel's own argument for incompleteness from the construction of a sentence such that neither it nor its negation is provable, along with demonstration of the second incompleteness theorem. Chapter 14 again shows that there must exist a sentence such that neither it nor its negation is provable, but this time in association with an account of computability. Chapter 12 is required for either chapter 13 or chapter 14; but those chapters may be taken in either order.

## Chapter 12

# **Recursive Functions and Q**

A formal *theory* consists of a language, with some axioms and proof system. Q and PA are example theories. A theory T is (negation) *complete* iff for any sentence  $\mathcal{P}$  in its language  $\mathcal{L}$ , either  $T \vdash \mathcal{P}$  or  $T \vdash \sim \mathcal{P}$ . Observe again that a derivation system is adequate when it proves every entailment of some premises. Our standard logic does that. Granting then, the adequacy of the logic, negation completeness is a matter of premises proving a sufficiently robust set of consequences — proving consequences which include  $\mathcal{P}$  or  $\sim \mathcal{P}$  for every  $\mathcal{P}$  in the language.

Let us pause to consider why completeness matters. From E8.27, as soon as a language  $\mathcal{L}$  has an interpretation I, for any sentence  $\mathcal{P}$  in  $\mathcal{L}$ , either  $I[\mathcal{P}] = T$  or  $I[\sim \mathcal{P}] = T$ . So if we set out to characterize by means of a theory the sentences that are true on some interpretation, our theory is bound to omit some sentences unless it is such that for any  $\mathcal{P}$ , either  $T \vdash \mathcal{P}$  or  $T \vdash \sim \mathcal{P}$ . To the extent that we desire a characterization of all true sentences in some domain, of arithmetic or whatever, a complete theory is a desirable theory.<sup>1</sup>

By itself negation completeness is no extraordinary thing. Consider a theory whose language has just two sentence letters A and B, along with the usual sentential operators and rules. The axioms of our theory are just A and  $\sim B$ . On a truth table, there is just one row were these axioms are both true, and on that row, any  $\mathcal{P}$  in the language is either T or F, so that one of  $\mathcal{P}$  or  $\sim \mathcal{P}$  is T.

<sup>&</sup>lt;sup>1</sup>We thus restrict ourselves to consideration of *sentences* as theorems — or, equivalently treat open formulas as equivalent to their universal closures (see p. 489)
So for any  $\mathcal{P}$ , either  $A, \sim B \vDash \mathcal{P}$  or  $A, \sim B \vDash \sim \mathcal{P}$ . But from the adequacy of the derivation system if  $\Gamma \vDash \mathcal{P}$ , then  $\Gamma \vdash \mathcal{P}$  (T10.11, p. 485); so for any  $\mathcal{P}$ , either  $A, \sim B \vdash \mathcal{P}$  or  $A, \sim B \vdash \sim \mathcal{P}$ . So our little theory with its restricted language is negation complete. Contrast this with a theory that has the same language and rules, but A as its only axiom. In this case, it is easy to see from truth tables that, say,  $A \nvDash B$  and  $A \nvDash \sim B$ . But by soundness, if  $\Gamma \vdash \mathcal{P}$  then  $\Gamma \vDash \mathcal{P}$  (T10.3, p. 472); it follows that  $A \nvDash B$  and  $A \nvDash \sim B$ . So this theory is not negation complete.

These theories are not very interesting. However, let  $\mathcal{L}_{NT}^{S+}$  be a language like  $\mathcal{L}_{NT}$  whose only function symbols are *S* and + (without ×), and let  $\mathcal{L}_{NT}^{\times}$  be a language like  $\mathcal{L}_{NT}$  whose only function symbol is × (without *S* and +). Then there is a complete theory for the arithmetic of  $\mathcal{L}_{NT}^{S+}$  (*Presburger Arithmetic*), and a complete theory for the arithmetic of  $\mathcal{L}_{NT}^{\times}$  (*Skolem Arithmetic*).<sup>2</sup> These are interesting and powerful theories. So, again, by itself negation completeness is not so extraordinary.

However there is no complete theory for the arithmetic of  $\mathcal{L}_{NT}$  which includes all of S, + and  $\times$ . It turns out that theories are something like superheros. In the ordinary case, a complete, and so a "happy" life is at least within reach. However, as theories acquire certain powers, they take on a "fatal flaw" just because of their powers — where this flaw makes completeness unattainable. On its face, theory Q does not appear particularly heroic. We have seen already in E7.21 that  $Q \not\vdash x \times y =$  $y \times x$  and  $Q \not\vdash \sim (x \times y = y \times x)$ . So Q is negation incomplete. PA which does prove  $x \times y = y \times x$  along with other standard results in arithmetic might seem a more likely candidate for heroism. But Q includes already features sufficient to generate the flaw which appears also in any theories, like PA, which have at least all the powers of Q. It is our task to identify this flaw.

It turns out that a system with the powers of Q including S, + and × can express and capture all the *recursive* functions — and a system with these powers must have the fatal flaw. Thus, in this chapter we focus on the recursive functions, and associate them with powers of our formal systems. We begin in 12.1 saying what recursive functions are; then in 12.2 and 12.3 we show that Q expresses and captures the recursive functions; 12.4 extends the range of recursive functions to include a function

<sup>&</sup>lt;sup>2</sup>For demonstration of completeness for Presburger Arithmetic, see Fisher, *Formal Number Theory and Computability* chapter 7 along with Boolos, Burgess and Jeffrey, *Computability and Logic* chapter 24.

that identifies proofs. Finally, from these results, section 12.5 concludes with some applications, including the incompleteness of arithmetic.

# **12.1 Recursive Functions**

In chapter 6 (p. 318) for Q and PA we had axioms of the sort,

```
a. x + \emptyset = x

b. x + Sy = S(x + y)

and

c. x \times \emptyset = \emptyset

d. x \times Sy = (x \times y) + x
```

These enable us to derive x + y and  $x \times y$  for arbitrary values of x and y. Thus, by (a) 2 + 0 = 2; so by (b) 2 + 1 = 3; and by (b) again, 2 + 2 = 4; and so forth. From the values at any one stage, we are in a position to calculate values at the next. And similarly for multiplication. From E6.35 on p. 319, all this should be familiar.

While axioms thus supply effective means for calculating the values of these functions, the functions themselves might be similarly *identified* or *specified*. So, given a successor function suc(x), we may identify the functions plus(x, y):

a. plus(x, 0) = x

b. plus(x, suc(y)) = suc(plus(x, y))

and times(x, y):

c. times(x, 0) = 0

d. times(x, suc(y)) = plus(times(x, y), x)

For ease of reading, let us typically revert to the more ordinary notation S, + and x for these functions, though we stick with the (emphasized) sans serif font. We have been thinking of functions as certain complex sets. Thus the plus function is a set with elements {...  $\langle \langle 2, 0 \rangle, 2 \rangle, \langle \langle 2, 1 \rangle, 3 \rangle, \langle \langle 2, 2 \rangle, 4 \rangle \dots$ }. Our specification picks out this set. From the first clause, plus(x, y) has  $\langle \langle 2, 0 \rangle, 2 \rangle$  as a member; given this,  $\langle \langle 2, 1 \rangle, 3 \rangle$  is a member; and so forth. So the two clauses work together to specify the plus function. And similarly for times.

But these are not the only sets which may be specified this way. Thus the standard factorial fact(x):

- e. fact(0) = S0
- f.  $fact(Sy) = fact(y) \times Sy$

Again, we will often revert to the more typical x! notation. Zero factorial is one. And the factorial of Sy multiplies  $1 \times 2 \times ... \times y$  by Sy. Similarly power(x, y):

- g. power(x, 0) = S0
- h.  $power(x, Sy) = power(x, y) \times x$

Any number to the power of zero is one  $(x^0 = 1)$ . And then  $x^{Sy}$  multiplies  $x^y = x \times x \dots \times x$  (y times) by another x.

We shall be interested in a class of functions, the *recursive* functions, which may be specified (in part) by this strategy. To make progress, we turn to a general account in five stages.

### **12.1.1 Initial Functions**

Our examples have simply taken suc(x) as given. Similarly, we shall require a stock of *initial functions*. There are initial functions of three different types.

First, we shall continue to include suc(x) among the initial functions. So  $suc(x) = \{(0, 1), (1, 2), (2, 3) \dots\}$ .

Second, zero(x) is a function which returns zero for any input value. So  $zero(x) = \{ \langle 0, 0 \rangle, \langle 1, 0 \rangle, \langle 2, 0 \rangle \dots \}.$ 

Finally, for any  $1 \le k \le j$ , we require a collection of *identity* functions  $idnt_k^j(x_1 \dots x_j)$ . Each  $idnt_k^j$  function has j places and simply returns the value from the  $k^{th}$  place. Thus  $idnt_2^3(4, 5, 6) = 5$ . So,  $idnt_2^3 = \{\dots \langle \langle 1, 2, 3 \rangle, 2 \rangle \dots \langle \langle 4, 5, 6 \rangle, 5 \rangle \dots \}$ . And in the simplest case,  $idnt_1^1(x) = x$ .

#### 12.1.2 Composition

In our examples, we have let one function be *composed* from others — as when we consider times(x, suc(y)) or the like. Say  $\vec{x}$ ,  $\vec{y}$  and  $\vec{z}$  represent (possibly empty) sequences of variables  $x_1 \dots x_n$ ,  $y_1 \dots y_n$  and  $z_1 \dots z_n$ .

CM Let  $g(\vec{y})$  and  $h(\vec{x}, w, \vec{z})$  be any functions. Then  $f(\vec{x}, \vec{y}, \vec{z})$  is defined by *composition* from  $g(\vec{y})$  and  $h(\vec{x}, w, \vec{z})$  iff  $f(\vec{x}, \vec{y}, \vec{z}) = h(\vec{x}, g(\vec{y}), \vec{z})$ .

So  $h(\vec{x}, w, \vec{z})$  gets its value in the w-place from  $g(\vec{y})$ . Here is a simple example: f(y, z) = zero(y)+z results by composition from substitution of zero(y) into plus(w, z); so plus(w, z) gets its value in the w-place from zero(y). The result is the set with members,  $\{\ldots \langle \langle 2, 0 \rangle, 0 \rangle, \langle \langle 2, 1 \rangle, 1 \rangle, \langle \langle 2, 2 \rangle, 2 \rangle \ldots \}$ . Given, say, input  $\langle 2, 2 \rangle$ , zero(y) takes the input 2 and supplies a zero to the first place of the plus(x, y) function; then from plus(x, y) the result is a sum of 0 and 2 which is 2. And similarly in other cases. In contrast, zero(x + y) has members  $\{\ldots \langle \langle 2, 0 \rangle, 0 \rangle, \langle \langle 2, 1 \rangle, 0 \rangle, \langle \langle 2, 2 \rangle, 0 \rangle \ldots \}$ . You should see how this works.

#### 12.1.3 Recursion

For each of our examples, plus(x, y), times(x, y), fact(y), and power(x, y), the value of the function is set for y = 0 and then for suc(y) given its value for y. These illustrate the method of recursion. Put generally,

RC Given some functions  $g(\vec{x})$  and  $h(\vec{x}, y, u)$ ,  $f(\vec{x}, y)$  is defined by *recursion* when,

 $f(\vec{x}, 0) = g(\vec{x})$  $f(\vec{x}, Sy) = h(\vec{x}, y, f(\vec{x}, y))$ 

We adopt the general scheme so that we can operate on recursive functions in a consistent way. However the general scheme includes flexibility that is not always required. In the cases of plus, times and power,  $\vec{x}$  reduces to a simple variable x; for fact,  $\vec{x}$  disappears altogether, so that the function  $g(\vec{x})$  reduces to a constant. And, as we shall see, the function  $h(\vec{x}, y, u)$  need not depend on each of its variables x, y and u.

However, by clever use of our initial functions, it is possible to see each of our sample functions on this pattern. Thus for plus(x, y), set  $gplus(x) = idnt_1^1(x)$  and  $hplus(x, y, u) = suc(idnt_2^3(x, y, u))$ . Then,

- a'  $plus(x, 0) = idnt_1^1(x)$
- b'  $plus(x, Sy) = suc(idnt_3^3(x, y, plus(x, y)))$

plus(x, 0) is set to gplus(x) and plus(x, Sy) to hplus( $\vec{x}$ , y, plus(x, y)). And these work as they should:  $idnt_1^1(x) = x$  and  $suc(idnt_3^3(x, y, plus(x, y)))$  is the same as suc(plus(x, y)). So we recover the conditions (a) and (b) from above.

Similarly, for times(x, y), we can let gtimes(x) = zero(x) and  $htimes(x, y, u) = plus(idnt_3^3(x, y, u), x)$ . Then,

- c' times(x, 0) = zero(x)
- d' times(x, Sy) = plus(idnt<sub>3</sub><sup>3</sup>(x, y, times(x, y)), x)

So times(x, 0) = 0 and times(x, Sy) = plus(times(x, y), x)), and all is well. Observe that we would obtain the same result with htimes(x, y, u) = plus(u, idnt<sub>1</sub><sup>3</sup>(x, y, u)) or perhaps, plus(idnt<sub>3</sub><sup>3</sup>(x, y, u), idnt<sub>1</sub><sup>3</sup>(x, y, u)). The role of the identity functions in these formulations is to preserve h as a function of x, y and u, even where not each place is required — as the y-place is not required for times, and so to adhere to the official form which makes h(x, y, u) a function of all the variables to achieve the desired result.

In the case of fact(y), there are no places to the  $\vec{x}$  vector. So gfact is reduced to a zero-place function, that is, to a constant, and hfact to a function of y and u.

In contrast, for times(x, y),  $\vec{x}$  retains one place, so gtimes(x) is not reduced to a constant; rather gtimes(x) = zero(x) remains a full-fledged function — only one which returns the same value for every value of x. For fact(y), set gfact = suc(0) and hfact(y, u) = times(u, suc(y)). Again, identity functions work to preserve h as a function y, and u, even where not each place is required, in order to adhere to the official form. However, there is no requirement that the places be picked out by identity functions! In this case, each variable is used in a natural way, so identity functions are not required. It is left as an exercise to show that gfact and hfact identify the same function as constraints (e), (f), and to then to find gpower(x) and hpower(x, y, u).

# 12.1.4 Regular Minimization

So far, the method of our examples is easily matched to the capacities of computing devices. To find the value of a recursive function, begin by finding values for y = 0, and then calculate other values, from one stage to the next. But this is just what computing devices do well. So, for example, in the syntax of the Ruby language,<sup>3</sup> given some functions g(x) and h(x, y, u),

l. def recfunc(a,b)
 k = g(a)
 3. for y in 0..b-1
 (B)
 4. k = h(a,y,k)
 5. end
 6. return k
 7. end

Using g(a) this program calculates the value of k for input (a,0). And then, given the current value of y, and of k for input (a,y), repeatedly uses h to calculate k for the next value of y, until it finally reaches and returns the value of k for input (a,b). Observe that the calculation of recfunc(a,b) requires exactly b iterations before it completes.

But there is a different repetitive mechanism available for computing devices — where this mechanism does not begin with a fixed number of iterations. Suppose we have some function g(a,b) with values g(a,0), g(a,1), g(a,2)... where for each a there are at least some values of b such that g(a,b) = 0. For any value of a, suppose we want the least b such that g(a,b) = 0. Then we might reason as follows.

<sup>&</sup>lt;sup>3</sup>Ruby is convenient insofar as it is interpreted and so easy to run, and available at no cost on multiple platforms (see http://www.ruby-lang.org/en/downloads/). We depend only on very basic features familiar from most any exposure to computing.

# **The Recursion Theorem**

One may wonder whether our specification f(x, y) by recursion from  $g(\vec{x})$  and  $h(\vec{x}, y, u)$  results in a unique function. However it is possible to show that it does.

- RT Suppose  $g(\vec{x})$  and  $h(\vec{x}, y, u)$  are total functions on  $\mathbb{N}$ ; then there exists a unique function  $f(\vec{x}, y)$  such that,
  - (r) For any  $\vec{x}$  and  $y \in \omega$ ,
    - a.  $f(\vec{x}, 0) = g(\vec{x})$
    - b.  $f(\vec{x}, suc(y)) = h(\vec{x}, y, f(\vec{x}, y))$

We identify this function as a union of functions which may be constructed by means of g and h. The *domain* of a total function from  $r^n$  to s is always  $r^n$ ; for a partial function, the domain of the function is that subset of  $r^n$  whose members are matched by the function to members of s (for background see the set theory reference p. 117). Say a (maybe partial) function  $s(\vec{x}, y)$  is *acceptable* iff,

i. If  $\langle \vec{x}, 0 \rangle \in dom(s)$ , then  $s(\vec{x}, 0) = g(\vec{x})$ 

ii. If  $\langle \vec{x}, suc(n) \rangle \in dom(s)$ , then  $\langle \vec{x}, n \rangle \in dom(s)$  and  $s(\vec{x}, suc(n)) = h(\vec{x}, n, s(\vec{x}, n))$ 

A function with members  $\{\langle \langle \vec{x}, 0 \rangle, g(\vec{x}) \rangle, \langle \langle \vec{x}, 1 \rangle, h(\vec{x}, 0, g(\vec{x})) \rangle\}$  would satisfy (i) and (ii). A function which satisfies (r) is acceptable, though not every function which is acceptable satisfies (r); we show that exactly one acceptable function satisfies (r). Let F be the collection of all acceptable functions, and f be  $\bigcup F$ . Thus  $\langle \langle \vec{x}, n \rangle, a \rangle \in f$  iff  $\langle \langle \vec{x}, n \rangle, a \rangle$  is a member of some acceptable s; iff  $s(\vec{x}, n) = a$  for some acceptable s. We sketch reasoning to show that f has the right features.

- I. For any acceptable s and s', if  $\langle \langle \vec{x}, n \rangle, a \rangle \in s$  and  $\langle \langle \vec{x}, n \rangle, b \rangle \in s'$ , then a = b. By induction on n: Suppose  $\langle \langle \vec{x}, 0 \rangle, a \rangle \in s$  and  $\langle \langle \vec{x}, 0 \rangle, b \rangle \in s'$ ; then by (i),  $a = b = g(\vec{x})$ . Assume that if  $\langle \langle \vec{x}, k \rangle, a \rangle \in s$  and  $\langle \langle \vec{x}, k \rangle, b \rangle \in s'$  then a = b. Show that if  $\langle \langle \vec{x}, suc(k) \rangle, c \rangle \in s$  and  $\langle \langle \vec{x}, suc(k) \rangle, d \rangle \in s'$  then c = d. Suppose  $\langle \langle \vec{x}, suc(k) \rangle, c \rangle \in s$  and  $\langle \langle \vec{x}, suc(k) \rangle, d \rangle \in s'$ . Then by (ii)  $c = h(\vec{x}, k, s(\vec{x}, k))$  and  $d = h(\vec{x}, k, s'(\vec{x}, k))$ . But by by assumption  $s(\vec{x}, k) = s'(\vec{x}, k)$ ; so c = d.
- II. dom(f) includes every  $\langle \vec{x}, n \rangle$ . By induction on n: For any  $\vec{x}$ ,  $\{\langle \langle \vec{x}, 0 \rangle, g(\vec{x}) \rangle\}$  is itself an acceptable function. Assume that for any  $\vec{x}$ ,  $\langle \vec{x}, k \rangle \in \text{dom}(f)$ . Show that for any  $\vec{x}$ ,  $\langle \vec{x}, \text{suc}(k) \rangle \in \text{dom}(f)$ . Suppose otherwise, and consider a function,  $s = f \cup \{\langle \langle \vec{x}, \text{suc}(k) \rangle, h(\vec{x}, k, f(\vec{x}, k)) \rangle\}$ . But we may show that s so defined is an acceptable function; and since s is acceptable, it is a subset of f; so  $\langle \vec{x}, \text{suc}(k) \rangle \in \text{dom}(f)$ . Reject the assumption.
- III. Now by (I), if  $\langle \langle \vec{x}, n \rangle, a \rangle \in f$  and  $\langle \langle \vec{x}, n \rangle, b \rangle \in f$ , then a = b; so f is a function; and by (II) the domain of f includes every  $\langle \vec{x}, n \rangle$ ; by construction it is easy to see that f is itself acceptable. From these, f satisfies (r). Suppose some f' also satisfies (r); then f' is acceptable; so by construction, f' is a subset of f; but since f' satisfies (r), it's domain includes every  $\langle \vec{x}, n \rangle$ ; so f' = f. So (r) is uniquely satisfied.

\*We employ *weak* induction from the induction schemes reference p. 388. Enderton, *Elements of* Set Theory, and Drake and Singh, *Intermediate Set Theory*, include nice discussions of this result.

1. def minfunc(a)
2. y = 0
3. until g(a,y) == 0
(C)
4. y = y+1
5. end
7. return y
8. end

This program begins with y = 0 and tests each value of g(a, y) until it returns a value of 0. Once it finds this value, minfunc(a) is set equal to y. Given g(a,b), then, minfunc(a) calculates a function which returns some value of y for any input value a.

But, as before, we might reason similarly to *specify* functions so calculated. For this, recall that a function is *total* iff it is defined on all members of its domain. Say a function  $g(\vec{x}, y)$  is *regular* iff it is total and for all values of  $\vec{x}$  there is at least one y such that  $g(\vec{x}, y) = 0$ . Then,

RM If  $g(\vec{x}, y)$  is a regular function, the function  $f(\vec{x}) = \mu y[g(\vec{x}, y)]$  which for each  $\vec{x}$  takes as its value the least y such that  $g(\vec{x}, y) = 0$  is defined by *regular* minimization from  $g(\vec{x}, y)$ .

For a simple example, consider a domain which consists of nonempty sets of integers with g(x, y) such that g(x, y) = 0 if  $y \in x$  and otherwise g(x, y) = 1. Then for any set x,  $f(x) = \mu y[g(x, y)]$  is the least element of x.

## **12.1.5** Final Definition

Finally, our sample functions are *cumulative*. Thus plus(x, y) depends on suc(x); times(x, y), on plus(x, y), and so forth. We are thus led to our final account.

- RF A function  $f_k$  is *recursive* iff there is a series of functions  $f_0, f_1..., f_k$  such that for any  $i \le k$ ,
  - (i)  $f_i$  is an initial function suc(x), zero(x) or idnt<sup>1</sup><sub>k</sub>(x<sub>1</sub>...x<sub>i</sub>).
  - (c) There are a, b < i such that  $f_i(\vec{x}, \vec{y}, \vec{z})$  results by composition from  $f_a(\vec{y})$ and  $f_b(\vec{x}, w, \vec{z})$ .
  - (r) There are a, b < i such that  $f_i(\vec{x}, y)$  results by recursion from  $f_a(\vec{x})$  and  $f_b(\vec{x}, y, u)$ .
  - (m) There is some a < i such that  $f_i(\vec{x})$  results by regular minimization from  $f_a(\vec{x}, y)$ .

If there is a series of functions  $f_0, f_1..., f_k$  such that for any  $i \le k$ , just (i), (c) or (r), then (PR)  $f_k$  is *primitive recursive*.

So any recursive function results from a series of functions each of which satisfies one of these conditions. And such a series demonstrates that its members are recursive. For a simple example, plus is primitive recursive.

|     | 1. $idnt_1^1(x)$                                               | initial function |
|-----|----------------------------------------------------------------|------------------|
|     | 2. $idnt_3^3(x, y, u)$                                         | initial function |
| (D) | 3. suc(w)                                                      | initial function |
|     | <ol> <li>suc(idnt<sup>3</sup><sub>3</sub>(x, y, u))</li> </ol> | 2,3 composition  |
|     | 5. $plus(x, y)$                                                | 1,4 recursion    |

From this list by itself, one might reasonably wonder whether plus(x, y), so defined, is the addition function we know and love. What follows, given primitive recursive functions  $idnt_1^1(x)$  and  $suc(idnt_3^3(x, y, u))$  is that a primitive recursive function results by recursion from them. It turns out that this is the addition function. It is left as an exercise to exhibit times(x, y), fact(x) and power(x, y) as primitive recursive as well.

- \*E12.1. (a) Show that the proposed gfact and hfact(y, u) result in conditions (e) and (f). Then (b) produce a definition for power(x, y) by finding functions gpower(x), and hpower(x, y, u) and then show that they have the same result as conditions (g) and (h).
- E12.2. Generate a sequence of functions sufficient to show that power(x, y) is primitive recursive.
- E12.3. Install some convenient version of Ruby on your computing platform (see <a href="http://www.ruby-lang.org/en/downloads/">http://www.ruby-lang.org/en/downloads/</a>) and open recursive1.rb from the text website (<a href="http://rocket.csusb.edu/~troy/int-ml.html">http://rocket.csusb.edu/~troy/int-ml.html</a>). Extend the sequence of functions started there to include fact(x) and power(x,y). Calculate some values of these functions and print the results, along with your program (do not worry if these latter functions run slowly for even moderate values of x and y). This assignment does not require any particular computing expertise especially, there should be no appeal to functions except from earlier in the chain. (This exercise suggests a point, to be developed in chapter 14, that recursive functions are computable.)

# **12.2 Expressing Recursive Functions**

Having identified the recursive functions, we turn now to the first of two powers to be associated with theory incompleteness. In this case, it is an *expressive* power. Say a theory is *sound* iff its axioms are true and its proof system is sound. So all the theorems of a sound theory are true. Then we shall be able to show that if a theory is sound and its interpreted language *expresses* all the recursive functions, it must be negation incomplete. In this section, then, we show that  $\mathcal{L}_{NT}$ , on its standard interpretation, expresses the recursive functions.

#### **12.2.1** Definition and Basic Results

For a language  $\mathcal{L}$  and interpretation I, suppose that for each  $m \in U$ , a variablefree term  $\overline{m}$  is such that, in the sense of definition AI,  $I(\overline{m}) = m$  — so for any variable assignment d,  $I_d[\overline{m}] = m$ . The simplest way for this to happen is if each  $m \in U$  has exactly one constant assigned to it; then for any  $m, \overline{m}$  is the constant to which m is assigned. But the standard interpretation for number theory N also has the special feature that variable-free terms are assigned to each member of U. On this interpretation different variable-free terms may be assigned the same object (as  $SS\emptyset$  and  $S\emptyset + S\emptyset$  are each assigned 2). However, on the standard interpretation for number theory, for any n, we simply take as  $\overline{n}, S \dots S\emptyset$  with n repetitions of the successor operator. So  $\overline{0}$  abbreviates the term  $\emptyset, \overline{1}$  the term  $S\emptyset$ , etc.

Given this, we shall say that a formula  $\mathcal{R}(x)$  expresses a relation R(x) on interpretation I, just in case if  $m \in R$  then  $I[\mathcal{R}(\overline{m})] = T$  and if  $m \notin R$  then  $I[\sim \mathcal{R}(\overline{m})] = T$ . So the formula is true when the individual is a member of the relation and false when it is not. To express a relation on an interpretation, a formula must "say" which individuals fall under the relation. Expressing a relation is closely related to translation. A formula  $\mathcal{R}(x)$  expresses a relation R(x) when every sentence  $\mathcal{R}(\overline{m})$  is a good translation of the sentence  $m \in R$  on the single intended interpretation I (compare chapter 5). So there is a single intended interpretation I, and a corresponding class of good translations when  $\mathcal{R}(x)$  expresses R(x) on the interpretation I. Thus, generalizing,

EXr For any language  $\mathcal{L}$ , interpretation I, and objects  $m_1 \dots m_n \in U$ , relation  $R(x_1 \dots x_n)$  is *expressed* by formula  $\mathcal{R}(x_1 \dots x_n)$  iff,

- (i) If  $\langle m_1 \dots m_n \rangle \in R$  then  $I[\mathcal{R}(\overline{m}_1 \dots \overline{m}_n)] = T$
- (ii) If  $\langle m_1 \dots m_n \rangle \not\in R$  then  $I[\sim \mathcal{R}(\overline{m}_1 \dots \overline{m}_n)] = T$

Similarly, a one-place function f(x) has members of the sort  $\langle x, v \rangle$  and so is really a kind of two-place relation. Thus to express a function f(x), we require a formula  $\mathcal{F}(x, v)$  where if  $\langle m, a \rangle \in f$ , then  $I[\mathcal{F}(\overline{m}, \overline{a})] = T$ . It would be natural to go on to require that if  $\langle m, a \rangle \notin f$  then  $I[\sim \mathcal{F}(\overline{m}, \overline{a})] = T$ . However this is not necessary once we build in another feature of functions — that they have a *unique* output for each input value. Thus we shall require,

- EXf For any language  $\mathcal{L}$ , interpretation I, and objects  $m_1 \dots m_n$ ,  $a \in U$ , function  $f(x_1 \dots x_n)$  is *expressed* by formula  $\mathcal{F}(x_1 \dots x_n, v)$  iff,
  - $\text{ if } \langle \langle m_1 \dots m_n \rangle, a \rangle \in f \text{ then }$ 
    - (i)  $I[\mathcal{F}(\overline{m}_1 \dots \overline{m}_n, \overline{a})] = T$
    - (ii)  $I[\forall z (\mathcal{F}(\overline{m}_1 \dots \overline{m}_n, z) \rightarrow z = \overline{a})] = T$

From (i),  $\mathcal{F}$  is true for  $\overline{a}$ ; from (ii) any z for for which it is true is identical to  $\overline{a}$ .

Let us illustrate these definitions with some first applications. First, on any interpretation with the required variable-free terms, the formula x = y expresses the equality relation EQ(x, y). For if  $\langle m, n \rangle \in EQ$  then  $I[\overline{m}] = I[\overline{n}]$  so that  $I[\overline{m} = \overline{n}] = T$ ; and if  $\langle m, n \rangle \notin EQ$  then  $I[\overline{m}] \neq I[\overline{n}]$  so that  $I[\overline{m} \neq \overline{n}] = T$ . This works because I[=]just is the equality relation  $EQ^4$  Similarly, on the standard interpretation N for number theory, suc(x) is expressed by Sx = v, plus(x, y) by x + y = v, and times(x, y) by  $x \times y = v$ . Taking just the addition case, suppose  $\langle \langle m, n \rangle, a \rangle \in plus$ ; then  $N[\overline{m} + \overline{n} = \overline{a}] = T$ . And because addition is a function,  $N[\forall z((\overline{m} + \overline{n} = z) \rightarrow z = \overline{a})] = T$ . Again, this works because N[+] just is the plus function. And similarly in the other cases. Put more generally,

T12.1. For an interpretation with the required variable-free terms assigned to members of the universe: (a) If  $\mathcal{R}$  is a relation symbol and R is a relation, and  $I[\mathcal{R}] = R(x_1 \dots x_n)$ , then  $R(x_1 \dots x_n)$  is expressed by  $\mathcal{R}x_1 \dots x_n$ . And (b) if  $\hbar$  is a function symbol and h is a function and  $I[\hbar] = h(x_1 \dots x_n)$  then  $h(x_1 \dots x_n)$  is expressed by  $\hbar x_1 \dots x_n = v$ .

It is possible to argue semantically for these claims. However, as for translation, we take the project of demonstrating expression to be one of *providing* or supplying relevant formulas. So the theorem is immediate.

<sup>&</sup>lt;sup>4</sup>Observe that inside the square brackets '=' is a relation symbol of the object language whose interpretation is built into I; outside square brackets '=' is a metalinguistic symbol used to indicate equality.

Also, as we have suggested, (i) and (ii) of condition EXf taken together are sufficient to generate a condition like EXr(ii). Recall from the set theory reference (p. 117) that a function is *total* just in case it has an output for any input.

T12.2. Suppose total function  $f(x_1 \dots x_n)$  is expressed by formula  $\mathcal{F}(x_1 \dots x_n, y)$ ; then if  $\langle \langle \mathsf{m}_1 \dots \mathsf{m}_n \rangle, \mathsf{a} \rangle \notin \mathsf{f}, \mathsf{I}[\sim \mathcal{F}(\overline{\mathsf{m}}_1 \dots \overline{\mathsf{m}}_n, \overline{\mathsf{a}})] = \mathsf{T}.$ 

For simplicity, consider just a one-place function f(x). Suppose f(x) is expressed by  $\mathcal{F}(x, y)$  and  $\langle m, a \rangle \notin f$ . Then since f is total, there is some b such that  $\langle m, b \rangle \in f$  for  $a \neq b$  and so  $\langle a, b \rangle \notin EQ$ . Suppose  $I[\sim \mathcal{F}(\overline{m}, \overline{a})] \neq T$ ; then by TI, for some d,  $I_d[\sim \mathcal{F}(\overline{m}, \overline{a})] \neq S$ ; let h be a particular assignment of this sort; so  $I_h[\sim \mathcal{F}(\overline{m}, \overline{a})] \neq S$ ; so by SF( $\sim$ ),  $I_h[\mathcal{F}(\overline{m}, \overline{a})] = S$ .

But since  $\langle \mathbf{m}, \mathbf{b} \rangle \in \mathbf{f}$  by EXf(ii),  $I[\forall z(\mathcal{F}(\overline{\mathbf{m}}, z) \to z = \overline{\mathbf{b}})] = T$ ; so by TI, for any d,  $I_d[\forall z(\mathcal{F}(\overline{\mathbf{m}}, z) \to z = \overline{\mathbf{b}})] = S$ ; so  $I_h[\forall z(\mathcal{F}(\overline{\mathbf{m}}, z) \to z = \overline{\mathbf{b}})] = S$ ; so by SF( $\forall$ ),  $I_{h(z|a)}[\mathcal{F}(\overline{\mathbf{m}}, z) \to z = \overline{\mathbf{b}}] = S$ ; so since  $I_h[\overline{\mathbf{a}}] = \mathbf{a}$ , by T10.2,  $I_h[\mathcal{F}(\overline{\mathbf{m}}, \overline{\mathbf{a}}) \to \overline{\mathbf{a}} = \overline{\mathbf{b}}] = S$ ; so by SF( $\rightarrow$ ),  $I_h[\mathcal{F}(\overline{\mathbf{m}}, \overline{\mathbf{a}})] \neq S$  or  $I_h[\overline{\mathbf{a}} = \overline{\mathbf{b}}] = S$ ; so  $I_h[\overline{\mathbf{a}} = \overline{\mathbf{b}}] = S$ ; but  $I_h[\overline{\mathbf{a}}] = \mathbf{a}$  and  $I_h[\overline{\mathbf{b}}] = \mathbf{b}$ ; so by SF(r),  $\langle \mathbf{a}, \mathbf{b} \rangle \in I[=]$ ; so  $\langle \mathbf{a}, \mathbf{b} \rangle \in EQ$ . This is impossible; reject the assumption: If f(x) is expressed by  $\mathcal{F}(x, y)$  and  $\langle \mathbf{m}, \mathbf{a} \rangle \notin f$ , then  $I[\sim \mathcal{F}(\overline{\mathbf{m}}, \overline{\mathbf{a}})] = T$ .

So if both  $\langle m, a \rangle \notin f$  and  $I[\sim \mathcal{F}(\overline{m}, \overline{a})] \neq T$ , with condition EXf(i), we end up with an assignment where both  $I_h[\mathcal{F}(\overline{m}, \overline{a})] = S$  and  $I_h[\mathcal{F}(\overline{m}, \overline{b})] = S$ . But this violates the uniqueness constraint EXf(ii). So if  $\langle m, a \rangle \notin f$  then  $I[\sim \mathcal{F}(\overline{m}, \overline{a})] = T$ . So this gives us the same kind of constraint for functions as for relations.

E12.4. Provide semantic arguments to prove both parts of T12.1. So, for the first part assume that  $I[\mathcal{R}(x_1 \dots x_n)] = R(x_1 \dots x_n)$ . Then show (i) if  $\langle m_1 \dots m_n \rangle \in R$  then  $I[\mathcal{R}(\overline{m}_1 \dots \overline{m}_n)] = T$ ; and (ii) if  $\langle m_1 \dots m_n \rangle \notin R$  then  $I[\sim \mathcal{R}(\overline{m}_1 \dots \overline{m}_n)] = T$ . And similarly for the second part based on EXf, where you may treat  $\langle \langle m_1 \dots m_n \rangle, a \rangle$  as the same object as  $\langle m_1 \dots m_n, a \rangle$ .

## 12.2.2 Core Result

So far, on interpretation N, we have been able to express the relation eq, and the functions, suc, plus, and times. But our aim is to show that, on the standard interpretation N of  $\mathcal{L}_{NT}$ , every recursive function  $f(\vec{x})$  is expressed by some formula  $\mathcal{F}(\vec{x}, v)$ .

But it is not obvious that this can be done. At least some functions must remain inexpressible in any language that has a countable vocabulary, and so in  $\mathcal{L}_{NT}$ . We shall see a concrete example later in the chapter. For now, consider a straightforward

diagonal argument. By reasoning as from T10.7 (p. 478) there is an enumeration of all the formulas in a countable language. Isolate just formulas  $\mathcal{P}_0$ ,  $\mathcal{P}_1$ ,  $\mathcal{P}_2$ ...that express functions of one variable, and consider the functions  $f_0(x)$ ,  $f_1(x)$ ,  $f_2(x)$ ...so expressed. These are all the expressible functions of one variable. Consider a grid with the functions listed down the left-hand column, and their values for each integer from left-to-right.

|          | 0                  | 1          | 2        |  |
|----------|--------------------|------------|----------|--|
| $f_0(x)$ | $f_0(0)$           | $f_0(1)$   | $f_0(2)$ |  |
| $f_1(x)$ | f <sub>1</sub> (0) | $f_1(1)$   | $f_1(2)$ |  |
| $f_2(x)$ | f <sub>2</sub> (0) | $f_{2}(1)$ | $f_2(2)$ |  |
| ÷        |                    |            |          |  |

Moving along the diagonal, consider a function  $f_d(x)$  such that for any n,  $f_d(n) = f_n(n) + 1$ . So  $f_d(x)$  is  $\{\langle 0, f_0(0) + 1 \rangle, \langle 1, f_1(1) + 1 \rangle, \langle 2, f_2(2) + 1 \rangle, \ldots \}$ . So for any integer n, this function finds the value of  $f_n$  along the diagonal, and adds one. But  $f_d(x)$  cannot be any of the expressible functions. It differs from  $f_0(x)$  insofar as  $f_d(0) \neq f_0(0)$ ; it differs from  $f_1(x)$  insofar as  $f_d(1) \neq f_1(1)$ ; and so forth. So  $f_d(x)$  is an inexpressible function. Though it has a unique output for every input value, there is no finite formula sufficient to express it.

We have already seen that plus(x, y) and times(x, y) are expressible in  $\mathcal{L}_{NT}$ . But there is no obvious mechanism in  $\mathcal{L}_{NT}$  to express, say, fact(x). Given that not all functions are expressible, it is a significant matter, then, to see that all the recursive functions are expressible with interpretation N in  $\mathcal{L}_{NT}$ . Our main argument shall be an induction on the sequence of recursive functions. For one key case, we defer discussion into the next section.

T12.3. On the standard interpretation N of  $\mathcal{L}_{NT}$ , each recursive function  $f(\vec{x})$  is expressed by some formula  $\mathcal{F}(\vec{x}, v)$ .

For any recursive function  $f_a$  there is a sequence of functions  $f_0, f_1...f_a$  such that each member is an initial function or arises from previous members by composition, recursion or regular minimization. By induction on functions in this sequence.

*Basis:*  $f_0$  is an initial function suc(x), zero(x), or  $idnt_k^j(x_1 \dots x_j)$ .

- (s)  $f_0$  is suc(x). Then by T12.1,  $f_0$  is expressed by  $\mathcal{F}(x, v) =_{def} Sx = v$ .
- (z)  $f_0$  is zero(x). Then  $f_0$  is expressed by  $\mathcal{F}(x, v) =_{def} x = x \land v = \emptyset$ . Suppose  $\langle m, a \rangle \in$  zero. Then since a is zero,  $N[\overline{m} = \overline{m} \land \overline{a} = \emptyset] = T$ .

And any z that is zero is equal to a — so that  $N[\forall z (\overline{m} = \overline{m} \land z = \emptyset \rightarrow z = \overline{a})] = T$ .

- (i)  $f_0 \text{ is idnt}_k^j(x_1 \dots x_j)$ . Then  $f_0 \text{ is expressed by } \mathcal{F}(x_1 \dots x_j, v) =_{def} (x_1 = x_1 \wedge \dots \wedge x_j = x_j) \wedge x_k = v$ .<sup>5</sup> Suppose  $\langle \langle \mathsf{m}_1 \dots \mathsf{m}_j \rangle, \mathsf{a} \rangle \in \text{idnt}_k^j$ . Then since  $\mathsf{a} = \mathsf{m}_k$ ,  $\mathsf{N}[(\overline{\mathsf{m}}_1 = \overline{\mathsf{m}}_1 \wedge \dots \wedge \overline{\mathsf{m}}_j = \overline{\mathsf{m}}_j) \wedge \overline{\mathsf{m}}_k = \overline{\mathsf{a}}] = \mathsf{T}$ . And any  $z = \mathsf{m}_k$  is equal to  $\mathsf{a}$ — so that  $\mathsf{N}[\forall z((\overline{\mathsf{m}}_1 = \overline{\mathsf{m}}_1 \wedge \dots \wedge \overline{\mathsf{m}}_j = \overline{\mathsf{m}}_j \wedge \overline{\mathsf{m}}_k = z) \rightarrow z = \overline{\mathsf{a}})] = \mathsf{T}$ .
- Assp: For any  $i, 0 \le i < k$ ,  $f_i(\vec{x})$  is expressed by some  $\mathcal{F}(\vec{x}, v)$
- Show:  $f_k(x)$  is expressed by some  $\mathcal{F}(\vec{x}, v)$ .

 $f_k$  is either an initial function or arises from previous members by composition, recursion or regular minimization. If it is an initial function then as in the basis. So suppose  $f_k$  arises from previous members.

- (c) f<sub>k</sub>(x, y, z) arises by composition from g(y) and h(x, w, z). By assumption g(y) is expressed by some 𝔅(y, w) and h(x, w, z) by 𝓛(x, w, z, v); then their composition f(x, y, z) is expressed by 𝔅(x, y, z, v) =<sub>def</sub> ∃w[𝔅(y, w) ∧ 𝓛(x, w, z, v)]. For simplicity, consider a case where x and z drop out and y is a single variable y; so 𝔅(y, v) =<sub>def</sub> ∃w[𝔅(y, w) ∧ 𝓛(w, v)]. Suppose ⟨m, a⟩ ∈ f<sub>k</sub>; then by composition there is some b such that ⟨m, b⟩ ∈ g and ⟨b, a⟩ ∈ h. Because 𝔅 and 𝓛 express g and h, N[𝔅(m, b)] = T and N[𝓛(b, ā)] = T; so N[𝔅(m, b) ∧ 𝓛(b, ā)] = T, and N[∃w(𝔅(m, w) ∧ 𝓛(w, ā))] = T. Further, by expression, N[∀z(𝔅(m, z) → z = b)] = T and N[∀z(𝓛(b, z) → z = ā)] = T; so that for a given m, there is just one w = b and so one z = a to satisfy 𝔅(m, w) ∧ 𝓛(w, z) and N[∀z(∃w(𝔅(m, w) ∧ 𝓛(w, z)) → z = ā)] = T.
- (r) f<sub>k</sub>(x, y) arises by recursion from g(x) and h(x, y, u). By assumption g(x) is expressed by some G(x, v) and h(x, y, u) is expressed by H(x, y, u, v). And the expression of f<sub>k</sub>(x, y) in terms of G and H utilizes Gödel's β-function, as developed in the next section.
- (m)  $f_k(\vec{x})$  arises by regular minimization from  $g(\vec{x}, y)$ . By assumption,  $g(\vec{x}, y)$  is expressed by some  $\mathscr{G}(\vec{x}, y, z)$ . Then  $f_k(\vec{x})$  is expressed by  $\mathscr{F}(\vec{x}, v) =_{def} \mathscr{G}(\vec{x}, v, \emptyset) \land (\forall y < v) \sim \mathscr{G}(\vec{x}, y, \emptyset)$ . Suppose  $\vec{x}$  reduces to a single variable and  $\langle m, a \rangle \in f$ ; then  $\langle \langle m, a \rangle, 0 \rangle \in g$  and for any

<sup>&</sup>lt;sup>5</sup>Perhaps it will have occurred to the reader that  $idnt_2^3(x, y, z)$ , say, is expressed by  $x = x \land z = z \land y = v$  as well as  $x = x \land y = y \land z = z \land y = v$  — where the first is relatively "efficient" insofar as it saves a conjunct. But we are after a different "efficiency" of notation and demonstration, where the formulation above serves our purposes nicely.

n < a,  $\langle \langle \mathbf{m}, \mathbf{n} \rangle, \mathbf{0} \rangle \notin \mathbf{g}$ . So because  $\mathscr{G}$  expresses  $\mathbf{g}$ , N[ $\mathscr{G}(\overline{\mathbf{m}}, \overline{\mathbf{a}}, \emptyset) \land (\forall y < \overline{\mathbf{a}}) \sim \mathscr{G}(\overline{\mathbf{m}}, y, \emptyset)$ ] = T. And the result is unique: for any  $\mathbf{k} < \mathbf{a}$ , N[ $\mathscr{G}(\overline{\mathbf{m}}, \overline{\mathbf{k}}, \emptyset)$ ]  $\neq$  T; so when  $z < \mathbf{a}$ , the value of the conjunction N[ $\mathscr{G}(\overline{\mathbf{m}}, z, \emptyset) \land (\forall y < z) \sim \mathscr{G}(\overline{\mathbf{m}}, y, \emptyset)$ ]  $\neq$  T. And since N[ $\mathscr{G}(\overline{\mathbf{m}}, \overline{\mathbf{a}}, \emptyset)$ ] = T, N[ $\sim \mathscr{G}(\overline{\mathbf{m}}, \overline{\mathbf{a}}, \emptyset)$ ]  $\neq$  T, and any case where  $\mathbf{k} > \mathbf{a}$  has N[( $\forall y < \overline{\mathbf{k}}$ )  $\sim \mathscr{G}(\overline{\mathbf{m}}, y, \emptyset)$ ]  $\neq$  T; so the conjunction N[ $\mathscr{G}(\overline{\mathbf{m}}, z, \emptyset) \land (\forall y < z) \sim \mathscr{G}(\overline{\mathbf{m}}, y, \emptyset)$ ]  $\neq$  T. So the only case in which  $\mathscr{F}(\overline{\mathbf{m}}, z) = \mathscr{G}(\overline{\mathbf{m}}, z, \emptyset) \land (\forall y < z) \sim \mathscr{G}(\overline{\mathbf{m}}, y, \emptyset)$  is satisfied when z is  $\mathbf{a}$ , and N[ $\forall z (\mathscr{F}(\overline{\mathbf{m}}, z) \to z = \overline{\mathbf{a}}$ ] = T.

*Indct:* Any recursive  $f(\vec{x})$  is expressed by some  $\mathcal{F}(\vec{x}, v)$ 

Some of the reasoning is merely sketched — however, the general idea should be clear. There might be formulas other than the stated  $\mathcal{F}(\vec{x}, v)$  to express a recursive  $f(\vec{x})$  — for example, if  $\mathcal{F}(\vec{x}, v)$  expresses  $f(\vec{x})$ , then so does  $\mathcal{F}(\vec{x}, v) \land \mathcal{A}$  for any logical truth  $\mathcal{A}$ . We shall see an important alternative in the following. Let us say that  $\mathcal{F}(\vec{x}, v)$  so-described is the *original* formula by which  $f(\vec{x})$  is expressed. It remains to fill out the case for the recursion clause. This is the task of the next section.

- \*E12.5. From T13.3 there is some formula to express any recursive function: the argument by induction works by showing how to *construct* a formula for each recursive function. Following the method of our induction, write down formulas to express the following recursive functions.
  - a. suc(zero(x))
  - b.  $idnt_2^3(x, suc(zero(x)), z)$

Hint: As setup for the compositions, give each function a different output variable, where the output to one is the input to the next.

\*E12.6. Fill out semantic reasoning to demonstrate that proposed (original) formulas satisfy the conditions for expression for the (z), (i), (c) and (m) clauses to T12.3. For case (m), rather than go to the unabbreviated form for the bounded quantifier it will be fine to anticipate T12.6 to apply the (obvious) semantic clause directly. Hints: So, for example, for (c) you will apply semantic definitions to show that  $N[\exists w(\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, \overline{a}))] = T$  and that  $N[\forall z (\exists w(\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, z)) \rightarrow z = \overline{a})] = T$ ; in places you may find that T10.2 will smooth the result; and for (m) at one stage it will be helpful to observe that for any n, n < a < n = a < n > a and reason separately for each case.

#### **12.2.3** The $\beta$ -Function

Suppose a recursive function f(m, n) = a. Then for the given value of m, there is a sequence  $k_0, k_1 \dots k_n$  with  $k_n = a$ , such that  $k_0$  takes some initial value, and each of the other members is specially related to the one before. Thus, in the simple case of plus(m, n), if m = 2 then  $k_0 = 2$ , and each  $k_i$  is the successor of the one before. So corresponding to 2 + 5 = 7 is the sequence,

2 3 4 5 6 7

whose first member is set by gplus(2), where subsequent members result from the one before by plus(2, Sy) = hplus(2, y, plus(2, y)), whose last member is 7. And, generalizing, we shall be in a position to express recursive functions if we can express the existence of *sequences* of integers so defined. We shall be able to say  $f(\overline{m}, \overline{n}) = \overline{a}$  if we can say "there is a sequence whose first member is g(m), with members related one to another by f(m, Sy) = h(m, y, f(m, y)), whose  $n^{th}$  member is a." This is a mouthful. And  $\mathcal{L}_{NT}$  is not obviously equipped to do it. In, particular,  $\mathcal{L}_{NT}$  has straightforward mechanisms for asserting the existence of integers — but on its face, it is not clear how to assert the existence of the arbitrary sequences which result from the recursion clause.

But Gödel shows a way out. We have already seen an instance of the general strategy we shall require in our discussion of Gödel numbering from chapter 10 (p. 478). In that case, we took a sequence of integers (keyed to vocabulary),  $g_0, g_1 \dots g_n$  and collected them into a single Gödel number  $G = 2^{g_0} \times 3^{g_1} \times \ldots \times \pi_n^{g_n}$  where 2,  $3 \dots \pi_n$  are the first *n* primes. By the fundamental theorem of arithmetic, any number has a unique prime factorization, so the original sequence is recovered from *G* by factoring to find the power of 2, the power of 3 and so forth. So the single integer *G* represents the original sequence. And  $\mathcal{L}_{NT}$  has no problem expressing the existence of a single integer! Unfortunately, however, this particular way out is unavailable to us insofar as it involves exponentiation, and the resources of  $\mathcal{L}_{NT}$  so-far include only S, + and  $\times$ .<sup>6</sup>

All the same, within the resources of  $\mathcal{L}_{NT}$ , by the Chinese remainder theorem (whose history reaches to ancient China), there must be *pairs* of integers sufficient to represent any sequence. Consider the *remainder* function rm(x, y) which returns the remainder after x is divided by y. The *remainder* of x divided by y equals z just in case z < y and for some w, x = (y × w) + z. Then let,

<sup>&</sup>lt;sup>6</sup>Some treatments begin with a language including exponentiation precisely in order to smooth the exposition at this stage. But our results are all the more interesting insofar as even the relatively weak  $\mathcal{L}_{NT}$  retains powers sufficient for the fatal flaw.

$$\beta(\mathbf{p},\mathbf{q},\mathbf{i}) =_{def} rm[\mathbf{p}, \mathbf{S}(\mathbf{q} \times \mathbf{S}(\mathbf{i}))]$$

So for some fixed values of p and q the  $\beta$  function yields different remainders for different values of i. By the Chinese remainder theorem, for any sequence  $k_0, k_1 \dots k_n$  there are some p and q such that for  $i \leq n$ ,  $\beta(p, q, i) = k_i$ . So p and q together code the sequence, and the  $\beta$ -function returns member  $k_i$  as a function of p, q and i. Intuitively, when we divide p by  $S(q \times S(i))$ , for  $i \leq n$ , the result is a series of n + 1 remainders. The theorem tells us that *any* series  $k_0, k_1 \dots k_n$  may be so represented (see the beta function reference).

Here is a simple example. Suppose  $k_0$ ,  $k_1$  and  $k_2$  are 5, 2, 3. So the last subscript in the series n = 2. As developed in the beta function reference, the proof of the remainder theorem asks us first to find s = max(n, 5, 2, 3) = 5, and then to set q = s! = 120. So  $\beta(p, q, i) = rm[p, S(120 \times S(i))]$ . So as i ranges between 0 and n = 2, we are looking at,

But 121, 241 and 361 so constructed must have no common factor other than 1; and the remainder theorem then tells us that as p varies between 0 and  $121 \times 241 \times 361 - 1 = 10527120$  the remainders take on every possible sequence of remainder values. But the remainders will be values up to 120, 240 and 360, which is to say, q = s! is large enough that our simple sequence must therefore appear among the sequences of remainders. In this case, p = 5219340 gives rm(p, 121) = 5, rm(p, 241) = 3 and rm(p, 361) = 2. There may be easier ways to generate this sequence. But there is no shortage of integers (!) so there are no worries about using large ones, and by this method Gödel gives a perfectly general way to represent the arbitrary finite sequence.

And we can express the  $\beta$ -function with the resources of  $\mathcal{L}_{NT}$ . Thus, for  $\beta(p, q, i)$ ,

$$\mathcal{B}(p,q,i,v) =_{\text{def}} (\exists w \le p) [p = (S(q \times Si) \times w) + v \land v < S(q \times Si)]$$

So v is the remainder after p is divided by  $S(q \times Si)$ . And for appropriate choice of p and q, the variable v takes on the values k<sub>0</sub> through k<sub>n</sub> as i runs through the values  $\emptyset$  to n.

Now return to our claim that when a recursive function f(m, n) = a there is a sequence  $k_0, k_1 \dots k_n$  with  $k_n = a$  such that  $k_0$  takes some initial value, and each of the other members is related to the one before according to some other recursive function. More officially, a function  $f(\vec{x}, y) = z$  just in case there is a sequence  $k_0, k_1 \dots k_y$  with,

## Arithmetic for the *Beta* Function

Say rm(c, d) is the remainder of c/d. For a sequence,  $d_0$ ,  $d_1 \dots d_n$ , let |D| be the product  $d_0 \times d_1 \times \dots \times d_n$ . We say  $d_0$ ,  $d_1 \dots d_n$  are *relatively prime* if no two members have a common factor other than 1. Then,

I. For any relatively prime sequence  $d_0, d_1 \dots d_n$ , the sequences of remainders  $rm(c, d_0), rm(c, d_1) \dots rm(c, d_n)$  as c runs from 0 to |D| - 1 are all different from each other.

Suppose otherwise. Then there are  $c_1$  and  $c_2$ ,  $0 \le c_1 < c_2 < |D|$ such that  $rm(c_1, d_0)$ ,  $rm(c_1, d_1)...rm(c_1, d_n)$  is the same as  $rm(c_2, d_0)$ ,  $rm(c_2, d_1)...rm(c_2, d_n)$ . So for each  $d_i$ ,  $rm(c_1, d_i) = rm(c_2, d_i)$ ; say  $c_1 = ad_i + r$  and  $c_2 = bd_i + r$ ; then since the remainders are equal,  $c_2 - c_1 = bd_i - ad_i$ ; so each  $d_i$  divides  $c_1 - c_2$  evenly. So each  $d_i$  collects a distinct set of prime factors of  $c_2 - c_1$ ; and since  $c_2 - c_1$  is divided by any product of its primes,  $c_2 - c_1$  is divided by |D|. So  $|D| \le c_2 - c_1$ . But  $0 \le c_1 < c_2 < |D|$  so  $c_2 - c_1 < |D|$ . Reject the assumption: The sequences of remainders as c runs from 0 to |D| - 1 are distinct.

II. The sequences of remainders  $rm(c, d_0)$ ,  $rm(c, d_1)$ ... $rm(c, d_n)$  as c runs from 0 to |D| - 1 are all the possible sequences of remainders.

There are  $d_i$  possible remainders a number might have when divided by  $d_i$ ,  $(0, 1, \ldots, d_i - 1)$ . But if  $rm(c, d_0)$  takes  $d_0$  possible values,  $rm(c, d_1)$  may take its  $d_1$  values for each value of  $rm(c, d_0)$ ; etc. So the there are |D| possible sequences of remainders. But as c runs from 0 to |D| - 1, by (I), there are |D| different sequences. So there are all the possible sequences.

III. Let s be the maximum of  $n, k_0, k_1 \dots k_n$ . Then for  $0 \le i < n$ , the numbers  $d_i = s!(i + 1) + 1$  are each greater than any  $k_i$  and are relatively prime.

Since s is the the maximum of n,  $k_0, k_1 \dots k_n$ , the first is obvious. To see that the d<sub>i</sub> are relatively prime, suppose otherwise. Then for some j, k,  $1 \le j < k \le n + 1$ , s!j + 1 and s!k + 1 have a common factor p. But any number up to s leaves remainder 1 when dividing s!j + 1; so p > s. And since p divides s!j + 1 and s!k + 1 it divides their difference, s!(k - j); but if p divides s!, then it does not evenly divide s!j + 1; so p does not divide s!; so p divides k - j. But  $1 \le j < k \le n + 1$ ; so  $k - j \le n$ ; so  $p \le n$ ; so  $p \le s$ . Reject the assumption: the d<sub>i</sub> are relatively prime.

IV. For any  $k_0, k_1 \dots k_n$ , we can find a pair of numbers p, q such that for  $i \le n$ ,  $\beta(p, q, i) = k_i$ .

With s as above, set q = s!, and let  $\beta(p, q, i) = rm(p, q(i + 1) + 1)$ . By (III), for  $0 \le i \le n$  the numbers  $q_i = q(i + 1) + 1$  are relatively prime. So by (II), there are all the possible sequences of remainders as p ranges from 0 to |D|-1. And since by (III) each of the  $q_i$  is greater than any  $k_i$ , the sequence  $k_0, k_1 \dots k_n$  is among the possible sequences of remainders. So there is some p such that the  $k_i$  are rm(p, q(i + 1) + 1).

- (i)  $k_0 = g(\vec{x})$
- (ii) if i < y, then  $k_{Si} = h(\vec{x}, i, k_i)$
- (iii)  $k_y = z$

Put in terms of the  $\beta$ -function, this requires,  $f(\vec{x}, y) = z$  just in case there are some p, q such that,

- (i)  $\beta(\mathbf{p},\mathbf{q},\mathbf{0}) = \mathbf{g}(\mathbf{x})$
- (ii) if i < y, then  $\beta(p, q, Si) = h(\vec{x}, i, \beta(p, q, i))$
- (iii)  $\beta(\mathbf{p},\mathbf{q},\mathbf{y}) = \mathbf{z}$

By assumption,  $g(\vec{x})$  is expressed by some  $\mathscr{G}(\vec{x}, v)$  and  $h(\vec{x}, y, u)$  by some  $\mathscr{H}(\vec{x}, y, u, v)$ . So we can express the combination of these conditions as follows.  $f(\vec{x}, y)$  is expressed by  $\mathscr{F}(\vec{x}, y, z) =_{def}$ 

$$\exists p \exists q \{ \exists v [\mathcal{B}(p,q,\emptyset,v) \land \mathcal{G}(\vec{x},v)] \land \\ (\forall i < y) \exists u \exists v [\mathcal{B}(p,q,i,u) \land \mathcal{B}(p,q,Si,v) \land \mathcal{H}(\vec{x},i,u,v)] \land \\ \mathcal{B}(p,q,y,z) \}$$

So  $\mathscr{G}$  is satisfied by the first member; then for any i < y,  $\mathscr{H}$  is satisfied by the  $i^{th}$  member and and its successor; and the  $y^{th}$  member of the series is z.

In the case of factorial, we have  $\mathscr{G}(v) =_{def} (v = S\emptyset)$  and  $\mathscr{H}(y, u, v) =_{def} (v = Sy \times u)$ . So the factorial function is expressed by  $\mathscr{F}(y, z) =_{def}$ 

$$\begin{aligned} \exists p \exists q \{ \exists v [\mathcal{B}(p,q,\emptyset,v) \land v = S\emptyset] \land \\ (\forall i < y) \exists u \exists v [\mathcal{B}(p,q,i,u) \land \mathcal{B}(p,q,Si,v) \land v = Si \times u] \land \\ \mathcal{B}(p,q,y,z) \} \end{aligned}$$

This expression is long — particularly if expanded to unabbreviate the  $\beta$ -function, but it is just right. If  $\langle n, a \rangle \in fac$ , then  $N[\mathcal{F}(\overline{n}, \overline{a})] = T$  and the expression satisfies uniqueness as well. And similarly in the general case. So with  $\mathcal{L}_{NT}$  we satisfy the recursive clause for T12.3. So its demonstration is complete, and  $\mathcal{L}_{NT}$  has the resources to express any recursive function.

E12.7. Suppose  $k_0$ ,  $k_1$ ,  $k_2$  and  $k_3$  are 3, 4, 0, 2. By the method of the text, find values of p and q so that  $\beta(i) = k_i$ . Use your values of p and q to calculate  $\beta(p, q, 0)$ ,  $\beta(p, q, 1)$ ,  $\beta(p, q, 2)$  and  $\beta(p, q, 3)$ . You will need some programmable device to search for the value of p. In Ruby, a routine along the following lines, with numerical values for a, b, c and d should suffice.

```
1. def loop
2. p = 0
3. until p % a == 3 and p % b == 4 and p % c == 0 and p % d == 2
4. p = p+1
5. puts "p = #{p}"
6. end
7. return p
8. end
9. puts "p = #{loop}"
In Puby x % y returns the remainder of x divided by y. So, for this row
```

In Ruby x % y returns the remainder of x divided by y. So, for this routine, you insert the denominators and then search (by brute force) for the value of p that returns the right remainders. Be prepared for it to take a while!

- E12.8. Produce a formula to show that  $\mathcal{L}_{NT}$  expresses the plus function by the initial functions with the beta function. You need not reduce the beta form to its primitive expression!
- E12.9. Say a function  $f_k$  is *simple* iff there is a series of functions  $f_0, f_1 \dots f_k$  such that for any  $i \le k$ ,
  - (b)  $f_0$  is plus(x, y)
  - (r) There are a, b < i such that  $f_i(\vec{x}, \vec{y})$  is  $plus(f_a(\vec{x}), f_b(\vec{y}))$

Show that on the standard interpretation N of  $\mathcal{L}_{NT}$  each simple  $f(\vec{x})$  is expressed by some formula  $\mathcal{F}(\vec{x}, v)$ . You may appeal to T10.2 as appropriate — and your reasoning may have the "quick" character of T12.3. Hint: (r) yields functions by a sort of "double" composition.

# **12.3 Capturing Recursive Functions**

The second of the powers to be associated with theory incompleteness has to do with the theory's *proof* system. In section 12.5 we shall be able to show that if a theory is consistent and *captures* recursive functions, then it is negation incomplete. In this

section, we show that Q, and so any theory that includes Q, captures the recursive functions.

### 12.3.1 Definition and Basic Results

Where expression requires that if objects stand in a given relation, then a corresponding formula be true, capture requires that when objects stand in a relation, a corresponding formula be *provable* in the theory.

- CP For any language  $\mathcal{L}$ , interpretation I, objects  $m_1 \dots m_n$ ,  $a \in U$  and theory T,
- (r) Relation  $R(x_1 \dots x_n)$  is *captured* by formula  $\mathcal{R}(x_1 \dots x_n, y)$  in T just in case,

(i) If  $\langle \mathsf{m}_1 \dots \mathsf{m}_n \rangle \in \mathsf{R}$  then  $T \vdash \mathcal{R}(\overline{\mathsf{m}}_1 \dots \overline{\mathsf{m}}_n)$ 

- (ii) If  $\langle \mathsf{m}_1 \dots \mathsf{m}_n \rangle \notin \mathsf{R}$  then  $T \vdash \sim \mathcal{R}(\overline{\mathsf{m}}_1 \dots \overline{\mathsf{m}}_n)$
- (f) Function  $f(x_1 \dots x_n)$  is *captured* by formula  $\mathcal{F}(x_1 \dots x_n, y)$  in T just in case,

if  $\langle \langle m_1 \dots m_n \rangle, a \rangle \in f$  then

- (i)  $T \vdash \mathcal{F}(\overline{m}_1 \dots \overline{m}_n, \overline{a})$
- (ii)  $T \vdash \forall z (\mathcal{F}(\overline{\mathsf{m}}_1 \dots \overline{\mathsf{m}}_n, z) \rightarrow z = \overline{\mathsf{a}})$

As a first result, and to see how these definitions work, it is easy to see that in a theory at least as strong as Q, conditions (f.i) and (f.ii) combine to yield a result like (r.ii).

T12.4. If *T* includes Q and total function  $f(x_1 \dots x_n)$  is captured by formula  $\mathcal{F}(x_1 \dots x_n, y)$  so that conditions (f.i) and (f.ii) hold, then if  $\langle \langle \mathsf{m}_1 \dots \mathsf{m}_n \rangle, \mathsf{a} \rangle \notin \mathsf{f}$  then  $T \vdash \sim \mathcal{F}(\overline{\mathsf{m}}_1 \dots \overline{\mathsf{m}}_n, \overline{\mathsf{a}})$ .

Suppose  $f(x_1 ... x_n)$  is captured by  $\mathcal{F}(x_1 ... x_n, y)$  and  $\langle \langle m_1 ... m_n \rangle, a \rangle \notin f$ . Then, since f is total, there is some  $b \neq a$  such that  $\langle \langle m_1 ... m_n \rangle, b \rangle \in f$ ; so by (f.i),  $T \vdash \mathcal{F}(\overline{m}_1 ... \overline{m}_n, \overline{b})$ ; and instantiating (f.ii) to  $\overline{a}, T \vdash \mathcal{F}(\overline{m}_1 ... \overline{m}_n, \overline{a}) \rightarrow \overline{a} = \overline{b}$ . But since  $a \neq b$ , and T includes Q, by T8.14,  $T \vdash \overline{a} \neq \overline{b}$ ; so by MT,  $T \vdash \sim \mathcal{F}(\overline{m}_1 ... \overline{m}_n, \overline{a})$ .

Our aim is to show that recursive functions are captured in Q. In chapter 8, we showed that Q correctly decides atomic sentences of  $\mathcal{L}_{NT}$ . As a preliminary to showing that Q captures the recursive functions, in this section we extend that result to show that Q correctly decides a broadened range of sentences.

To understand the result to which we build in this section, we need to identify some important subclasses of formulas in  $\mathcal{L}_{NT}$ : the  $\Delta_0$ ,  $\Sigma_1$  and  $\Pi_1$  formulas.

- $\Delta_0$  (b) If  $\mathcal{P}$  is of the form s = t, s < t or  $s \le t$  for terms s and t, then  $\mathcal{P}$  is a  $\Delta_0$  formula.
  - (s) If  $\mathcal{P}$  and  $\mathcal{Q}$  are  $\Delta_0$  formulas, then so are  $\sim \mathcal{P}$ , and  $(\mathcal{P} \to \mathcal{Q})$ .
  - (q) If  $\mathcal{P}$  is a  $\Delta_0$  formula, then so are  $(\forall x \leq t)\mathcal{P}$  and  $(\forall x < t)\mathcal{P}$  where x does not appear in t.
  - (c) Nothing else is a  $\Delta_0$  formula.
- $\Sigma_1$  A formula is *strictly*  $\Sigma_1$  iff it is of the form  $\exists x_1 \exists x_2 \dots \exists x_n \mathcal{P}$  for  $\Delta_0 \mathcal{P}$ . A formula is  $\Sigma_1$  iff it is equivalent to a strictly  $\Sigma_1$  formula.
- $\Pi_1$  A formula is *strictly*  $\Pi_1$  iff it is of the form  $\forall x_1 \forall x_2 \dots \forall x_n \mathcal{P}$  for  $\Delta_0 \mathcal{P}$ . A formula is  $\Pi_1$  iff it is equivalent to a strictly  $\Pi_1$  formula.

Given the soundness and adequacy of our derivation systems, we may understand equivalence in either the semantic or syntactical sense so that  $\mathcal{P}$  and  $\mathcal{Q}$  are equivalent just in case  $\models \mathcal{P} \leftrightarrow \mathcal{Q}$  or  $\vdash \mathcal{P} \leftrightarrow \mathcal{Q}$ . A  $\Delta_0$  formula is (trivially) both  $\Sigma_1$  and  $\Pi_1$ insofar as it is preceded by a block of zero unbounded quantifiers. We allow the usual abbreviations and so  $\land$ ,  $\lor$  and  $\leftrightarrow$  and bounded existential quantifiers. So, for example,  $n \neq \emptyset \land (\exists v \leq n)(SS\emptyset \times v = n)$  is  $\Delta_0$  by a tree that works like ones we have seen many times before.



It turns out that this formula is true just in case *n* is an even number other than zero. For a  $\Delta_0$  formula, all is as usual, except quantifiers are bounded. Its existential quantification,

(E)  $\exists n [\emptyset < n \land (\exists v \le n) (SS\emptyset \times v = n)]$ 

is strictly  $\Sigma_1$ , for it consists of an (in this case single) unbounded existential quantifier followed by a  $\Delta_0$  formula. This sentence asserts the existence of an even number other than zero. Observe that,

(F) 
$$k = k \land \exists n [\emptyset < n \land (\exists v \le n) (SS\emptyset \times v = n)]$$

is not strictly  $\Sigma_1$ . For it does not have the existential quantifier attached as main operator to a  $\Delta_0$  formula. However, by standard quantifier placement rules, the unbounded existential quantifier can be pulled out to the front to form an equivalent strictly  $\Sigma_1$  sentence. Because (F) is equivalent to a sentence that is strictly  $\Sigma_1$ , it too is  $\Sigma_1$ . Finally, by reasoning as for QN in ND, observe that the negation of a  $\Sigma_1$ formula is not  $\Sigma_1$  — rather it is  $\Pi_1$ , and the negation of a  $\Pi_1$  formula is  $\Sigma_1$ .

We shall show that Q correctly decides  $\Delta_0$  sentences: if  $\mathcal{P}$  is  $\Delta_0$  and  $\mathsf{N}[\mathcal{P}] = \mathsf{T}$ then  $Q \vdash_{ND} \mathcal{P}$ , and if  $\mathsf{N}[\mathcal{P}] \neq \mathsf{T}$  then  $Q \vdash_{ND} \sim \mathcal{P}$ . Further, Q proves true  $\Sigma_1$ sentences: if  $\mathcal{P}$  is  $\Sigma_1$  and  $\mathsf{N}[\mathcal{P}] = \mathsf{T}$ , then  $Q \vdash_{ND} \mathcal{P}$ . Observe that for a  $\Sigma_1$  formula  $\mathcal{P}$ , if  $\mathsf{N}[\mathcal{P}] \neq \mathsf{T}$ , then  $\mathsf{N}[\sim \mathcal{P}] = \mathsf{T}$ — but  $\sim \mathcal{P}$  is not  $\Sigma_1$ . So, though we show Q correctly decides  $\Delta_0$  sentences and proves true  $\Sigma_1$  sentences, we will not have shown that Q proves  $\sim \mathcal{P}$  when  $\mathsf{N}[\mathcal{P}] \neq \mathsf{T}$  and so not have shown that Q decides all  $\Sigma_1$  sentences.

We begin with some preliminary theorems to set up the main result. These are not hard, but need to be wrapped up before we can attack the main problem. First some semantic theorems that work like derived clauses to SF for inequalities and bounded quantifiers. We could not obtain these in chapter 7 because they rely on theorems from chapter 8 (and since they are not inductions, they did not belong in chapter 8). However, we introduce them now in order to make progress.

T12.5. On the standard interpretation N for  $\mathscr{L}_{NT}$ , (i)  $N_d[s \le t] = S$  iff  $N_d[s] \le N_d[t]$ , and (ii)  $N_d[s < t] = S$  iff  $N_d[s] < N_d[t]$ .

(i) By abv Nd[ $s \le t$ ] = S iff Nd[ $\exists v(v + s = t)$ ] = S, where v is not free in s or t; by SF( $\exists$ ), iff there is some m  $\in$  U such that Nd(v|m)[v + s = t] = S. But d(v|m)[v] = m; so by TA(v), Nd(v|m)[v] = m; so by TA(f), Nd(v|m)[v + s] = N[+](m, Nd(v|m)[s]) = m + Nd(v|m)[s]. So by SF(r), Nd(v|m)[v + s = t] = S iff (m + Nd(v|m)[s], Nd(v|m)[t])  $\in$  N[=]; iff m + Nd(v|m)[s] = Nd(v|m)[t]. But since v is not free in s or t, d and d(v|m) make the same assignments to variables free in s and t; so by T8.3, Nd[s] = Nd(v|m)[s] and Nd[t] = Nd(v|m)[t]; so m + Nd(v|m)[s] = Nd(v|m)[t] iff m + Nd[s] = Nd[t]; and there exists such an m just in case Nd[s]  $\leq$  Nd[t]. So Nd[ $s \leq$  t] = S iff Nd[s]  $\leq$  Nd[t].

(ii) is homework.

As an immediate corollary,  $N_d[s \le t] \ne S$  just in case  $N_d[s] > N_d[t]$ ; and similarly for >.

T12.6. On the standard interpretation N for  $\mathcal{L}_{NT}$ , (i)  $N_d[(\forall x \le t)\mathcal{P}] = S$  iff for every  $m \le N_d[t], N_{d(x|m)}[\mathcal{P}] = S$  and (ii),  $N_d[(\forall x < t)\mathcal{P}] = S$  iff for every  $m < N_d[t], N_{d(x|m)}[\mathcal{P}] = S$ .

(i) By abv  $N_d[(\forall x \le t)\mathcal{P}] = S$  iff  $N_d[\forall x(x \le t \to \mathcal{P})] = S$  where x does not appear in t; by  $SF(\forall)$ , iff for any  $m \in U$ ,  $N_{d(x|m)}[x \le t \to \mathcal{P}] = S$ ; by  $SF(\to)$ , iff for any  $m \in U$ ,  $N_{d(x|m)}[x \le t] \neq S$  or  $N_{d(x|m)}[\mathcal{P}] = S$ ; which is to say, iff for any  $m \in U$ , if  $N_{d(x|m)}[x \le t] = S$ , then  $N_{d(x|m)}[\mathcal{P}] = S$ . But d(x|m)[x] = m; so  $N_{d(x|m)}[x] = m$ ; and since x is not free in t, d and d(x|m)agree on assignments to variables free in t; so by T8.3,  $N_{d(x|m)}[t] = N_d[t]$ ; so with T12.5,  $N_{d(x|m)}[x \le t] = S$  iff  $m \le N_d[t]$ ; so  $N_d[(\forall x \le t)\mathcal{P}] = S$  iff for any m, if  $m \le N_d[t]$ , then  $N_{d(x|m)}[\mathcal{P}] = S$ .

(ii) is homework.

T12.7. On the standard interpretation N for  $\mathcal{L}_{NT}$ , (i)  $N_d[(\exists x \leq t)\mathcal{P}] = S$  iff for some  $m \leq N_d[t], N_{d(x|m)}[\mathcal{P}] = S$  and (ii),  $N_d[(\exists x < t)\mathcal{P}] = S$  iff for some  $m < N_d[t], N_{d(x|m)}[\mathcal{P}] = S$ .

Homework

We are finally ready for the results to which we have been building: First, Q correctly decides  $\Delta_0$  sentences of  $\mathcal{L}_{NT}$ .

T12.8. For any  $\Delta_0$  sentence  $\mathcal{P}$ , if  $\mathsf{N}[\mathcal{P}] = \mathsf{T}$ , then  $\mathsf{Q} \vdash_{ND} \mathcal{P}$ , and if  $\mathsf{N}[\mathcal{P}] \neq \mathsf{T}$ , then  $\mathsf{Q} \vdash_{ND} \sim \mathcal{P}$ .

By induction on the number of operators in  $\mathcal{P}$ .

- *Basis:* If  $\mathcal{P}$  is an an atomic  $\Delta_0$  sentence it is  $t = s, t \leq s$  or t < s. So by T8.14, if  $\mathsf{N}[\mathcal{P}] = \mathsf{T}, \mathsf{Q} \vdash_{ND} \mathcal{P}$ , and if  $\mathsf{N}[\mathcal{P}] \neq \mathsf{T}, \mathsf{Q} \vdash_{ND} \sim \mathcal{P}$ .
- *Assp:* For any  $i, 0 \le i < k$ , if a  $\Delta_0$  setteence  $\mathscr{P}$  has *i* operator symbols, then if  $\mathsf{N}[\mathscr{P}] = \mathsf{T}, \mathsf{Q} \vdash_{\mathsf{ND}} \mathscr{P}$  and if  $\mathsf{N}[\mathscr{P}] \neq \mathsf{T}, \mathsf{Q} \vdash_{\mathsf{ND}} \sim \mathscr{P}$ .
- Show: If a  $\Delta_0$  sentence  $\mathcal{P}$  has k operator symbols, then if  $\mathsf{N}[\mathcal{P}] = \mathsf{T}, Q \vdash_{ND} \mathcal{P}$  and if  $\mathsf{N}[\mathcal{P}] \neq \mathsf{T}, Q \vdash_{ND} \sim \mathcal{P}$ .

If a  $\Delta_0$  sentence  $\mathcal{P}$  has k operator symbols, then it is of the form  $\sim \mathcal{A}, \mathcal{A} \rightarrow \mathcal{B}, (\forall x \leq t)\mathcal{A}$  or  $(\forall x < t)\mathcal{A}$  where  $\mathcal{A}, \mathcal{B}$  have < k operator symbols and x does not appear in t.

- (~)  $\mathcal{P}$  is ~ $\mathcal{A}$ . (i) Suppose N[ $\mathcal{P}$ ] = T; then N[~ $\mathcal{A}$ ] = T; so by T8.6, N[ $\mathcal{A}$ ]  $\neq$  T; so by assumption, Q  $\vdash_{ND} \sim \mathcal{A}$ ; so Q  $\vdash_{ND} \mathcal{P}$ . (ii) Suppose N[ $\mathcal{P}$ ]  $\neq$  T; then N[~ $\mathcal{A}$ ]  $\neq$  T; so by T8.6, N[ $\mathcal{A}$ ] = T; so by assumption Q  $\vdash_{ND} \mathcal{A}$ ; so by DN, Q  $\vdash_{ND} \sim \sim \mathcal{A}$ ; so Q  $\vdash_{ND} \sim \mathcal{P}$ .
- $(\rightarrow) \ \mathcal{P} \text{ is } \mathcal{A} \rightarrow \mathcal{B}. \ (i) \text{ Suppose } \mathsf{N}[\mathcal{A} \rightarrow \mathcal{B}] = \mathsf{T}; \text{ then by T8.6, } \mathsf{N}[\mathcal{A}] \neq \mathsf{T} \text{ or } \mathsf{N}[\mathcal{B}] = \mathsf{T}. \text{ So by assumption, } \mathsf{Q} \vdash_{ND} \sim \mathcal{A} \text{ or } \mathsf{Q} \vdash_{ND} \mathcal{B}. \text{ So by } \lor \mathsf{I} \text{ twice} \mathsf{Q} \vdash_{ND} \sim \mathcal{A} \lor \mathcal{B} \text{ or } \mathsf{Q} \vdash_{ND} \sim \mathcal{A} \lor \mathcal{B}; \text{ so } \mathsf{Q} \vdash_{ND} \sim \mathcal{A} \lor \mathcal{B}; \text{ so by Impl,} \mathsf{Q} \vdash_{ND} \mathcal{A} \rightarrow \mathcal{B}. \text{ Part (ii) is homework.}$
- $(\forall \leq) \mathcal{P}$  is  $(\forall x \leq t)\mathcal{A}(x)$ . Since  $\mathcal{P}$  is a sentence, x is the only variable free in  $\mathcal{A}$ ; in particular, since x does not appear in t, t must be variable-free; so  $N_d[t] = N[t]$  and where N[t] = n, by T8.13,  $Q \vdash_{ND} t = \overline{n}$ ; so by =E,  $Q \vdash_{ND} \mathcal{P}$  just in case  $Q \vdash_{ND} (\forall x \leq \overline{n})\mathcal{A}(x)$ .

(i) Suppose  $N[\mathcal{P}] = T$ ; then  $N[(\forall x \leq t)\mathcal{A}(x)] = T$ ; so by TI, for any d,  $N_d[(\forall x \leq t)\mathcal{A}(x)] = S$ ; so by T12.6, for any  $m \leq N_d[t], N_{d(x|m)}[\mathcal{A}(x)] = S$ ; so where  $N_d[t] = N[t] = n$ , for any  $m \leq n$ ,  $N_{d(x|m)}[\mathcal{A}(x)] = S$ ; but  $N_d[\overline{m}] = m$ , so with T10.2, for any  $m \leq n$ ,  $N_d[\mathcal{A}(\overline{m})] = S$ ; since x is the only variable free in  $\mathcal{A}$ ,  $\mathcal{A}(\overline{m})$  is a sentence; so with T8.5, for any  $m \leq n$ ,  $N[\mathcal{A}(\overline{m})] = T$ ; so  $N[\mathcal{A}(\emptyset)] = T$  and  $N[\mathcal{A}(\overline{1})] = T$  and  $N[\mathcal{A}(\overline{n})] = T$ ; so by assumption,  $Q \vdash_{ND} \mathcal{A}(\emptyset)$  and  $Q \vdash_{ND} \mathcal{A}(\overline{1})$  and ... and  $Q \vdash_{ND} \mathcal{A}(\overline{n})$ ; so by T8.21,  $Q \vdash_{ND} (\forall x \leq \overline{n})\mathcal{A}(x)$ ; so with our preliminary result,  $Q \vdash_{ND} \mathcal{P}$ .

(ii) Suppose  $N[\mathcal{P}] \neq T$ ; then  $N[(\forall x \leq t)\mathcal{A}(x)] \neq T$ ; so by TI, for some d,  $N_d[(\forall x \leq t)\mathcal{A}(x)] \neq S$ ; so by T12.6, for some  $m \leq N_d[t], N_{d(x|m)}[\mathcal{A}(x)] \neq S$ ; so where  $N_d[t] = N[t] = n$ , for some  $m \leq n, N_{d(x|m)}[\mathcal{A}(x)] \neq S$ ; but  $N_d[\overline{m}] = m$ , so with T10.2, for some  $m \leq n, N_d[\mathcal{A}(\overline{m})] \neq S$ ; so by TI, for some  $m \leq n, N[\mathcal{A}(\overline{m})] \neq T$ ; so by assumption for some  $m \leq n, Q \vdash_{ND} \sim \mathcal{A}(\overline{m})$ ; so by T8.20,  $Q \vdash_{ND} (\exists x \leq \overline{n}) \sim \mathcal{A}(x)$ ; so by bounded quantifier negation (BQN),  $Q \vdash_{ND} \sim (\forall x \leq \overline{n})\mathcal{A}(x)$ ; so with our preliminary result,  $Q \vdash_{ND} \sim \mathcal{P}$ .

 $(\forall <)$  homework.

*Indct:* So for any  $\Delta_0$  sentence  $\mathcal{P}$ , if  $\mathsf{N}[\mathcal{P}] = \mathsf{T}$ , then  $\mathsf{Q} \vdash_{ND} \mathcal{P}$ , and if  $\mathsf{N}[\mathcal{P}] \neq \mathsf{T}$ , then  $\mathsf{Q} \vdash_{ND} \sim \mathcal{P}$ .

And now, Q proves true  $\Sigma_1$  sentences.

T12.9. For any (strict)  $\Sigma_1$  sentence  $\mathcal{P}$  if  $\mathsf{N}[\mathcal{P}] = \mathsf{T}$ , then  $\mathsf{Q} \vdash_{ND} \mathcal{P}$ .

This is a simple induction on the number of unbounded existential quantifiers in  $\mathcal{P}$ . Hint: If  $\mathcal{P}$  has no unbounded existential quantifiers, then it is  $\Delta_0$ . Otherwise, if  $\exists x \mathcal{P}$  is true, it will be easy to show that for some m,  $\mathcal{P}(\overline{m})$  is true; you can then apply your assumption, and  $\exists I$ .

*Corollary*: For any  $\Sigma_1$  sentence  $\mathcal{P}$ , if  $\mathsf{N}[\mathcal{P}] = \mathsf{T}$ , then  $\mathsf{Q} \vdash_{ND} \mathcal{P}$ . Suppose a  $\Sigma_1 \mathcal{P}$  is such that  $\mathsf{N}[\mathcal{P}] = \mathsf{T}$ ; then by equivalence there is some strict  $\Sigma_1 \mathcal{P}^*$  such that  $\mathsf{N}[\mathcal{P}^*] = \mathsf{T}$ ; so by the main theorem,  $\mathsf{Q} \vdash_{ND} \mathcal{P}^*$ ; and by equivalence again,  $\mathsf{Q} \vdash_{ND} \mathcal{P}$ .

This completes what we set out to show in this subsection. These results should seem intuitive: Q proves results about particular numbers, 1 + 1 = 2 and the like. But  $\Delta_0$  sentences assert (potentially complex) particular facts about numbers — and we show that Q proves any  $\Delta_0$  sentence. Similarly, any  $\Sigma_1$  sentence is true *because* of some particular fact about numbers; since Q proves that particular fact, it is sufficient to prove the  $\Sigma_1$  sentence.

- E12.10. Complete the demonstration of T12.5 T12.7 by showing the remaining parts. These should be straightforward, given parts worked in the text.
- \*E12.11. (i) Complete the demonstration of T12.8 by finishing the remaining cases. You should set up the entire argument, but may appeal to the text for parts already completed, as the text appeals to homework. (ii) Show directly cases (∃ ≤) and (∃ <).</p>

E12.12. Provide an argument to demonstrate T12.9.

#### 12.3.2 Basic Result

We now set out to show that Q captures all the recursive functions. We begin showing that the original formulas by which we have expressed recursive functions are  $\Sigma_1$ . After that, we get our result in in two forms. First a straightforward basic version. However, this version gets a result slightly weaker than the one we would like. But it is easily strengthened to the final form.

First, then, an argument that the original formulas by which we have expressed recursive functions are  $\Sigma_1$ . This argument merely reviews the strategy from T12.3 for expression to show that each formula is equivalent to a strictly  $\Sigma_1$  formula and so is  $\Sigma_1$ .

T12.10. The original formula by which any recursive function is expressed is  $\Sigma_1$ .

By induction on the sequence of recursive functions.

- *Basis:* From T12.3, suc(x) is originally expressed by Sx = v; zero(x) by  $x = x \land v = \emptyset$  and  $idnt_{k}^{j}(x_{1} \dots x_{j})$  by  $(x_{1} = x_{1} \land \dots \land x_{j} = x_{j}) \land x_{k} = v$ . These are all  $\Delta_{0}$ , and therefore  $\Sigma_{1}$ .
- Assp: For any any  $i, 0 \le i < k$ , the original formula  $\mathcal{F}(\vec{x}, v)$  by which  $f_i(\vec{x})$  is expressed is  $\Sigma_1$
- Show: The original formula  $\mathcal{F}(\vec{x}, v)$  by which  $f_k(\vec{x})$  is expressed is  $\Sigma_1$  $f_k$  is either an initial function or arises from previous members by composition, recursion or regular minimization. If it is an initial function, then as in the basis. So suppose  $f_k$  arises from previous members.
  - (c)  $f_k(\vec{x}, \vec{y}, \vec{z})$  arises by composition from  $g(\vec{y})$  and  $h(\vec{x}, w, \vec{z})$ . By assumption  $g(\vec{y})$  is expressed by some  $\Sigma_1$  formula equivalent to  $\exists \vec{j} \mathscr{G}(\vec{y}, w)$  and  $h(\vec{x}, w, \vec{z})$  by a  $\Sigma_1$  formula equivalent to  $\exists \vec{k} \mathscr{H}(\vec{x}, w, \vec{z}, v)$  where  $\mathscr{G}$  and  $\mathscr{H}$  are individually  $\Delta_0$ . Then their original composition  $\mathscr{F}(\vec{x}, \vec{y}, \vec{z}, v)$  is equivalent to  $\exists w [\exists \vec{j} \mathscr{G}(\vec{y}, w) \land \exists \vec{k} \mathscr{H}(\vec{x}, w, \vec{z}, v)]$ ; and by standard quantifier placement rules, this is equivalent to  $\exists w \exists \vec{j} \exists \vec{k} [\mathscr{G}(\vec{y}, w) \land \mathscr{H}(\vec{x}, w, \vec{z}, v)]$ ; where this is  $\Sigma_1$ .
  - (r)  $f_k(\vec{x}, y)$  arises by recursion from  $g(\vec{x})$  and  $h(\vec{x}, y, u)$ . By assumption  $g(\vec{x})$  is expressed by some  $\Sigma_1$  formula  $\exists \vec{j} \mathscr{G}(\vec{x}, v)$  and  $h(\vec{x}, y, u)$  by  $\exists \vec{k} \mathscr{H}(\vec{x}, y, u, v)$ . And, as before, the  $\beta$ -function  $\mathscr{B}(p, q, i, v)$  is expressed by,

$$(\exists w \le p)[p = (S(q \times Si) \times w) + v \land v < S(q \times Si)]$$

where this is  $\Delta_0$ . Then the original formula  $\mathcal{F}(\vec{x}, y, z)$  by which  $f_k(\vec{x}, y)$  is expressed is equivalent to,

 $\exists p \exists q \{ \exists v [\mathcal{B}(p,q,\emptyset,v) \land \exists \vec{j} \mathcal{G}(\vec{x},v)] \land$ 

 $(\forall i < y) \exists u \exists v [\mathcal{B}(p,q,i,u) \land \mathcal{B}(p,q,Si,v) \land \exists \vec{k} \mathcal{H}(\vec{x},i,u,v)] \land \mathcal{B}(p,q,y,z) \}$ 

This time, standard quantifier placement rules are not enough to identify the formula as  $\Sigma_1$ . We can pull the initial v and  $\vec{j}$  quantifiers out. And the  $\vec{k}$  quantifiers come out with the u and v quantifiers. The problem is getting these past the bounded universal i quantifier.

For this, we use a sort of trick: For a simplified case, consider  $(\forall i < y) \exists v \mathcal{P}(i, v)$ ; this requires that for each i < y there is at least one v

that makes  $\mathcal{P}(i, v)$  true; for each i < y consider the least such v, and let a be the greatest member of this collection. Then  $(\forall i < y)(\exists v < \bar{a})\mathcal{P}(i, v)$  is equivalent to the original expression — for there is an i < a to satisfy  $\mathcal{P}$  just in case there is some i to satisfy  $\mathcal{P}$ . And therefore, no matter what y may be,  $\exists j(\forall i < y)(\exists v < j)\mathcal{P}(i, v)$  is true iff the original expression is true. So the existential quantifier comes past the bounded universal, leaving behind a bounded existential "shadow." Thus the existential u, v and  $\vec{k}$  quantifiers come to the front, and the result is  $\Sigma_1$ .

- (m)  $f_k(\vec{x})$  arises by regular minimization from  $g(\vec{x}, y)$ . By assumption,  $g(\vec{x}, y)$  is expressed by some  $\exists \vec{j} \mathscr{G}(\vec{x}, y, z)$ . Then the original expression by which  $f_k(\vec{x})$  is expressed is equivalent to  $\exists \vec{j} \mathscr{G}(\vec{x}, v, \emptyset) \land (\forall y < v) \sim \exists \vec{j} \mathscr{G}(\vec{x}, y, \emptyset)$ ; but since  $\mathscr{G}$  expresses a function,  $\sim \exists \vec{j} \mathscr{G}(\vec{x}, y, \emptyset)$ just when  $\exists z [\exists \vec{j} \mathscr{G}(\vec{x}, y, z) \land z \neq \emptyset]$ ; so the original expression is equivalent to,  $\exists \vec{j} \mathscr{G}(\vec{x}, v, \emptyset) \land (\forall y < v) \exists z [\exists \vec{j} \mathscr{G}(\vec{x}, y, z) \land z \neq \emptyset]$ . The first set of j quantifiers come directly to the front, and the second set, together with the z quantifier come out, as in the previous case, leaving bounded existential quantifiers behind. So the result is  $\Sigma_1$ .
- *Indct:* The original formula by which any recursive function is expressed is  $\Sigma_1$ .

It is not proper to drag an existential quantifier out past a universal quantifier; however, it is legitimate to drag an existential past a *bounded* universal, with a bounded existential quantifier left behind as "shadow" or "witness."

Now for our main result. Here is the sense in which our result is weaker than we might like: Rather than Q, let us suppose we are in a system  $Q_s$ , *strengthened* Q, which has (as an axiom or) a theorem *uniqueness of remainder* as follows,

$$\forall y [((\exists w \le m)[m = Sn \times w + \overline{a} \land \overline{a} < Sn] \land (\exists w \le m)[m = Sn \times w + y \land y < Sn]) \rightarrow \overline{a} = y]$$

If  $\overline{a}$  is the remainder of m/(n+1) and y is the remainder of m/(n+1) then  $\overline{a} = y$ . As we shall see, PA is a system of this sort (see *Def*[*rm*] in chapter 13) though, insofar as m and n are free variables rather than numerals, Q is not. Notice that m and n are free in this formulation; if they are instantiated to p and  $q \times Si$  respectively, from uniqueness for remainder there immediately follows a parallel uniqueness result for the  $\beta$ -function.

$$\forall y [(\mathcal{B}(p,q,i,\overline{a}) \land \mathcal{B}(p,q,i,y)) \to \overline{a} = y]$$

Further, if  $\langle \langle \mathbf{p}, \mathbf{q}, \mathbf{i} \rangle, \mathbf{a} \rangle \in \beta$  then since  $\mathcal{B}$  expresses the  $\beta$ -function, N[ $\mathcal{B}(\mathbf{\overline{p}}, \mathbf{\overline{q}}, \mathbf{\overline{i}}, \mathbf{\overline{a}})$ ] = T; and since  $\mathcal{B}$  is  $\Delta_0$ , by T12.8, Q  $\vdash_{ND} \mathcal{B}(\mathbf{\overline{p}}, \mathbf{\overline{q}}, \mathbf{\overline{i}}, \mathbf{\overline{a}})$ . From this, with uniqueness, it is immediate that Q<sub>s</sub>  $\vdash_{ND} \forall y[\mathcal{B}(\mathbf{\overline{p}}, \mathbf{\overline{q}}, \mathbf{\overline{i}}, y) \rightarrow y = \mathbf{\overline{a}}]$ . So  $\mathcal{B}$  captures  $\beta$  in Q<sub>s</sub>.

Now we are positioned to offer a perfectly straightforward argument for capture of the recursive functions in  $Q_s$ . Again our main argument is an induction on the sequence of recursive functions. We show that  $Q_s$  captures the initial functions, and then that it captures functions from composition, recursion and regular minimization.

T12.11. On the standard interpretation N for  $\mathcal{L}_{NT}$ , any recursive function is captured in Q<sub>s</sub> by the original formula by which it is expressed.

By induction on the sequence of recursive functions.

*Basis:*  $f_0$  is an initial function suc(x), zero(x), or idnt<sup>j</sup><sub>k</sub>(x<sub>1</sub>...x<sub>j</sub>).

(s) The original formula  $\mathcal{F}(x, v)$  by which suc(x) is expressed is Sx = v. Suppose  $\langle m, a \rangle \in suc$ .

(i) Since Sx = v expresses suc(x), N[Sm̄ = ā] = T; so, since it is Δ<sub>0</sub>, by T12.8, Q ⊢<sub>ND</sub> Sm̄ = ā; so Q<sub>s</sub> ⊢<sub>ND</sub> F(m̄, ā).
(ii) Reason as follows,

1.  $S\overline{m} = \overline{a}$  from (i) 2.  $S\overline{m} = j$  A  $(g, \rightarrow I)$ 3.  $j = \overline{a}$  1,2 =E 4.  $S\overline{m} = j \rightarrow j = \overline{a}$  2-3  $\rightarrow I$ 5.  $\forall z (S\overline{m} = z \rightarrow z = \overline{a})$  4  $\forall I$ 

So  $Q_s \vdash_{ND} \forall z [\mathcal{F}(\overline{\mathsf{m}}, z) \to z = \overline{\mathsf{a}}].$ 

- (oth) It is left as homework to show that  $\operatorname{zero}(x)$  is captured by  $x = x \wedge v = \emptyset$  and  $\operatorname{idnt}_{k}^{j}(x_{1} \dots x_{j})$  by  $(x_{1} = x_{1} \wedge \dots \wedge x_{j} = x_{j}) \wedge x_{k} = v$ .
- Assp: For any  $i, 0 \le i < k$ ,  $f_i(\vec{x})$  is captured in  $Q_s$  by the original formula by which it is expressed.
- Show:  $f_k(\vec{x})$  is captured in  $Q_s$  by the original formula by which it is expressed.  $f_k$  is either an initial function or arises from previous members by composition, recursion or regular minimization. If it is an initial function, then as in the basis. So suppose  $f_k$  arises from previous members.
  - (c)  $f_k(\vec{x}, \vec{y}, \vec{z})$  arises by composition from  $g(\vec{y})$  and  $h(\vec{x}, w, \vec{z})$ . By assumption  $g(\vec{y})$  is captured by some  $\mathscr{G}(\vec{y}, w)$  and  $h(\vec{x}, w, \vec{z})$  by  $\mathscr{H}(\vec{x}, w, \vec{z}, v)$ ; the original formula  $\mathscr{F}(\vec{x}, \vec{y}, \vec{z}, v)$  by which the composition  $f(\vec{x}, \vec{y}, \vec{z})$

is expressed is  $\exists w[\mathscr{G}(\vec{y}, w) \land \mathscr{H}(\vec{x}, w, \vec{z}, v)]$ . For simplicity, consider a case where  $\vec{x}$  and  $\vec{z}$  drop out and  $\vec{y}$  is a single variable y. Suppose  $\langle m, a \rangle \in f_k$ ; then by composition there is some b such that  $\langle m, b \rangle \in g$ and  $\langle b, a \rangle \in h$ .

(i) Since  $\langle \mathsf{m}, \mathsf{a} \rangle \in \mathsf{f}_{\mathsf{k}}$ , and  $\mathcal{F}(y, v)$  expresses  $\mathsf{f}, \mathsf{N}[\mathcal{F}(\overline{\mathsf{m}}, \overline{\mathsf{a}})] = \mathsf{T}$ ; so, since  $\mathcal{F}(y, v)$  is  $\Sigma_1$ , by T12.9,  $\mathsf{Q}_{\mathsf{s}} \vdash_{ND} \mathcal{F}(\overline{\mathsf{m}}, \overline{\mathsf{a}})$ .

(ii) Since  $\mathscr{G}(y, w)$  captures g(y) and  $\mathscr{H}(w, v)$  captures h(w), by assumption  $Q_s \vdash_{ND} \forall z (\mathscr{G}(\overline{m}, z) \rightarrow z = \overline{b})$  and  $Q_s \vdash_{ND} \forall z (\mathscr{H}(\overline{b}, z) \rightarrow z = \overline{a})$ . It is then a simple derivation for you to show that  $Q_s \vdash_{ND} \forall z (\exists w [\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, z)] \rightarrow z = \overline{a})$ .

(r) f<sub>k</sub>(x, y) arises by recursion from g(x) and h(x, y, u). By assumption g(x) is captured by some G(x, v) and h(x, y, u) by H(x, y, u, v); the original formula F(x, y, z) by which f<sub>k</sub>(x, y) is expressed is,

 $\exists p \exists q \{ \exists v [\mathcal{B}(p,q,\emptyset,v) \land \mathcal{G}(\vec{x},v)] \land (\forall i < y) \exists u \exists v [\mathcal{B}(p,q,i,u) \land \mathcal{B}(p,q,Si,v) \land \mathcal{H}(\vec{x},i,u,v)] \land \mathcal{B}(p,q,y,z) \}$ 

Suppose  $\vec{x}$  reduces to a single variable and  $\langle m, n, a \rangle \in f_k$ . (i) Then since  $\mathcal{F}(x, y, z)$  expresses  $f, N[\mathcal{F}(\overline{m}, \overline{n}, \overline{a})] = T$ ; so, since  $\mathcal{F}(x, y, z)$ is  $\Sigma_1$ , by T12.9,  $Q_s \vdash_{ND} \mathcal{F}(\overline{m}, \overline{n}, \overline{a})$ . And (ii) by T12.12, immediately following,  $Q_s \vdash_{ND} \forall w[\mathcal{F}(\overline{m}, \overline{n}, w) \rightarrow w = \overline{a}]$ .

(m)  $f_k(\vec{x})$  arises by regular minimization from  $g(\vec{x}, y)$ . By assumption,  $g(\vec{x}, y)$  is captured by some  $\mathscr{G}(\vec{x}, y, z)$ ; the original formula by  $\mathscr{F}(\vec{x}, v)$ by which  $f_k(\vec{x})$  is expressed is  $\mathscr{G}(\vec{x}, v, \emptyset) \land (\forall y < v) \sim \mathscr{G}(\vec{x}, y, \emptyset)$ . Suppose  $\vec{x}$  reduces to a single variable and  $\langle m, a \rangle \in f_k$ .

(i) Since  $\langle \mathsf{m}, \mathsf{a} \rangle \in \mathsf{f}_{\mathsf{k}}$ , and  $\mathcal{F}(x, v)$  expresses  $\mathsf{f}, \mathsf{N}[\mathcal{F}(\overline{\mathsf{m}}, \overline{\mathsf{a}})] = \mathsf{T}$ ; so since  $\mathcal{F}(x, v)$  is  $\Sigma_1$ , by T12.9,  $\mathsf{Q}_{\mathsf{s}} \vdash_{ND} \mathcal{F}(\overline{\mathsf{m}}, \overline{\mathsf{a}})$ .

(ii) Reason as follows,

| 1.   | $\mathscr{G}(\overline{m},\overline{a},\emptyset) \land (\forall y < \overline{a}) \sim \mathscr{G}(\overline{m},y,\emptyset)$                                | from (i)                                         |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 2.   | $\underline{j} < \overline{\mathbf{a}} \lor \underline{j} = \overline{\mathbf{a}} \lor \overline{\mathbf{a}} < \underline{j}$                                 | <b>T8.</b> 19                                    |
| 3.   | $ \mathcal{G}(\overline{m}, j, \emptyset) \land (\forall y < j) \sim \mathcal{G}(\overline{m}, y, \emptyset) $                                                | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$ |
| 4.   | $j < \overline{a}$                                                                                                                                            | A $(c, \sim I)$                                  |
| 5.   | $\mathscr{G}(\overline{m}, j, \emptyset)$                                                                                                                     | 3 ∧E                                             |
| 6.   | $(\forall y < \overline{a}) \sim \mathscr{G}(\overline{m}, y, \emptyset)$                                                                                     | $1 \land E$                                      |
| 7.   | $\sim \mathscr{G}(\overline{m}, j, \emptyset)$                                                                                                                | 6,4 (∀E)                                         |
| 8.   |                                                                                                                                                               | 5,7 ⊥I                                           |
| 9.   | j≮ā                                                                                                                                                           | 4-8 ∼I                                           |
| 10.  | $\overline{\overline{a}} < j$                                                                                                                                 | A $(c, \sim I)$                                  |
| 11.  | $\mathscr{G}(\overline{m},\overline{a},\emptyset)$                                                                                                            | $1 \land E$                                      |
| 12.  | $(\forall y < j) \sim \mathscr{G}(\overline{m}, y, \emptyset)$                                                                                                | 3 ∧E                                             |
| 13.  | $\sim \mathscr{G}(\overline{m}, \overline{a}, \emptyset)$                                                                                                     | 12,10 (∀E)                                       |
| 14.  |                                                                                                                                                               | 11,13 ⊥I                                         |
| 15.  | a ≠ j                                                                                                                                                         | 10-14 ~I                                         |
| 16.  | $j = \overline{a}$                                                                                                                                            | 2,9,15 DS                                        |
| 17.  | $[\mathscr{G}(\overline{m}, j, \emptyset) \land (\forall y < j) \sim \mathscr{G}(\overline{m}, y, \emptyset)] \to j = \overline{a}$                           | $3-16 \rightarrow I$                             |
| 18.  | $\forall z ([\mathscr{G}(\overline{m}, z, \emptyset) \land (\forall y < z) \sim \mathscr{G}(\overline{m}, y, \emptyset)] \rightarrow z = \overline{a})$       | 17 ∀I                                            |
| So ( | $\mathbf{Q}_{\mathbf{s}} \vdash_{ND} \forall z ([\mathscr{G}(\overline{m}, z, \emptyset) \land (\forall y < z) \sim \mathscr{G}(\overline{m}, y, \emptyset))$ | $\emptyset)] \to z = \overline{a}).$             |

*Indct:* Any recursive  $f(\vec{x})$  is captured by the original formula by which it is expressed in Q<sub>s</sub>.

For this argument, we simply rely on the ability of Q to prove particular truths, and so the  $\Sigma_1$  sentences that express recursive functions. The uniqueness clauses are not  $\Sigma_1$ , so we have to show them directly. The case for recursion remains outstanding, and is addressed in the theorem immediately following.

T12.12. Suppose  $f(\vec{x}, y)$  results by recursion from functions  $g(\vec{x})$  and  $h(\vec{x}, y, u)$  where  $g(\vec{x})$  is captured by some  $\mathscr{G}(\vec{x}, v)$  and  $h(\vec{x}, y, u)$  by  $\mathscr{H}(\vec{x}, y, u, v)$ . Then for the original expression  $\mathscr{F}(\vec{x}, y, z)$  of  $f(\vec{x}, y)$ , if  $\langle \langle m_1 \dots m_b, n \rangle, a \rangle \in f$ ,  $Q_s \vdash \forall w [\mathscr{F}(\overline{m}_1 \dots \overline{m}_b, \overline{n}, w) \rightarrow w = \overline{a}]$ .

Suppose  $\vec{x}$  reduces to a single variable and  $\langle m, n, a \rangle \in f$ . When  $\langle m, n, a \rangle \in f$ , there are  $k_0 \dots k_n$  such that  $k_n = a$ ;  $k_0 = g(m)$ ; for  $0 \le i < n$ , there are p, q such that  $\beta(p,q,i) = k_i$ ;  $\beta(p,q,Si) = k_{Si}$ ; and  $h(m,i,k_i) = k_{Si}$ . The argument is by induction on the value of n from f(m,n) = a. Observe that  $\mathcal{F}$  is long, and we shall better be able to manage the formulas given its general form  $\exists p \exists q [\mathcal{P} \land \mathcal{Q} \land \mathcal{B}]$ . Also, given the structure of the definition for this recursion clause, it will be convenient to lapse

into induction scheme III from the induction schemes reference on p. 388, making the assumption for a single member of the series n, and then showing that it holds for the next. Thus, beginning with the basis, we then assume  $Q_s \vdash \forall w[\mathcal{F}(\overline{m}, \overline{n}, w) \rightarrow w = \overline{k}_n]$ , and show  $Q_s \vdash \forall w[\mathcal{F}(\overline{m}, S\overline{n}, w) \rightarrow w = \overline{k}_{Sn}]$ .

- Basis: Suppose n = 0. From capture,  $Q_s \vdash_{ND} \forall z [\mathscr{G}(\overline{n}, z) \rightarrow z = \overline{k}_0]$ . By uniqueness of remainder (and generalizing on p and q),  $Q_s \vdash_{ND} \forall p \forall q \forall y [(\mathscr{B}(p, q, \emptyset, \overline{k}_0) \land \mathscr{B}(p, q, \emptyset, y)) \rightarrow \overline{k}_0 = y]$ .  $\mathscr{F}$  is of the sort,  $\exists p \exists q \{ \exists v [\mathscr{B}(p, q, \emptyset, v) \land \mathscr{G}(\overline{x}, v)] \land \mathscr{Q} \land \mathscr{B}(p, q, \emptyset, z) \}$ . You need to show  $Q_s \vdash \forall w [\exists p \exists q \{ \exists v [\mathscr{B}(p, q, \emptyset, v) \land \mathscr{G}(\overline{n}, v)] \land \mathscr{Q} \land \mathscr{B}(p, q, \emptyset, w) \} \rightarrow w = \overline{k}_0]$ . This is straightforward. So  $Q_s \vdash \forall w [\mathscr{F}(\overline{m}, \emptyset, w) \rightarrow w = \overline{k}_0]$ .
- Assp:  $Q_s \vdash \forall w [\mathcal{F}(\overline{\mathsf{m}}, \overline{\mathsf{n}}, w) \to w = \overline{\mathsf{k}}_{\mathsf{n}}]$
- Show:  $Q_{s} \vdash \forall w [\mathcal{F}(\overline{\mathsf{m}}, S\overline{\mathsf{n}}, w) \rightarrow w = \overline{\mathsf{k}}_{\mathsf{Sn}}]$

From capture,  $Q_s \vdash_{ND} \forall w [\mathcal{H}(\overline{m}, \overline{n}, \overline{k}_n, w) \rightarrow w = \overline{k}_{Sn}]$ . And again we make an appeal to uniqueness:

| 1.<br>2.<br>3.                                                                                                                                                                      | $ \begin{aligned} &\forall w [\mathcal{F}(\overline{m},\overline{n},w) \to w = \overline{k}_{n}] \\ &\forall w [\mathcal{H}(\overline{m},\overline{n},\overline{k}_{n},w) \to w = \overline{k}_{Sn}] \\ &\forall p \forall q \forall y [(\mathcal{B}(p,q,S\overline{n},\overline{k}_{Sn}) \land \mathcal{B}(p,q,S\overline{n},y)) \to \overline{k}_{Sn} = y] \end{aligned} $                                                                                                                                                                                                                                                             | by assumption<br>by capture<br>uniqueness                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.                                                                                                                                                                                  | $\mathcal{F}(\overline{m}, S\overline{n}, j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$                                                                                                                                 |
| 5.<br>6.                                                                                                                                                                            | $\exists p \exists q [\mathcal{P}(p,q,\overline{m}) \land \mathcal{Q}(p,q,\overline{m},S\overline{n}) \land \mathcal{B}(p,q,S\overline{n},j)] \\ \exists q [\mathcal{P}(p,q,\overline{m}) \land \mathcal{Q}(p,q,\overline{m},S\overline{n}) \land \mathcal{B}(p,q,S\overline{n},j)]$                                                                                                                                                                                                                                                                                                                                                     | 4 abv<br>A ( <i>g</i> , 5∃E)                                                                                                                                                     |
| 7.                                                                                                                                                                                  | $ \left  \begin{array}{c} \mathcal{P}(p,q,\overline{m}) \land \mathcal{Q}(p,q,\overline{m},S\overline{n}) \land \mathcal{B}(p,q,S\overline{n},j) \right. $                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A $(g, 6\exists E)$                                                                                                                                                              |
| <ol> <li>8.</li> <li>9.</li> <li>10.</li> <li>11.</li> <li>12.</li> <li>13.</li> </ol>                                                                                              | $ \begin{array}{ c c c c c } \exists v [\mathcal{B}(p,q,\emptyset,v) \land \mathscr{G}(\overline{m},v)] \\ (\forall i < S\overline{n}) \exists u \exists v [\mathcal{B}(p,q,i,u) \land \mathcal{B}(p,q,Si,v) \land \mathcal{H}(\overline{m},i,u,v)] \\ & \mathcal{B}(p,q,S\overline{n},j) \\ & \overline{n} < S\overline{n} \\ & \exists u \exists v [\mathcal{B}(p,q,\overline{n},u) \land \mathcal{B}(p,q,S\overline{n},v) \land \mathcal{H}(\overline{m},\overline{n},u,v)] \\ & &  \exists v [\mathcal{B}(p,q,\overline{n},u) \land \mathcal{B}(p,q,S\overline{n},v) \land \mathcal{H}(\overline{m},\overline{n},u,v)] \end{array} $ | $7 \land E (\mathcal{P})$<br>$7 \land E (\mathcal{Q})$<br>$7 \land E$<br>T8.14<br>$9,11 (\forall E)$<br>$A (g, 12 \exists E)$                                                    |
| 14.                                                                                                                                                                                 | $ \begin{bmatrix} \mathcal{B}(p,q,\bar{n},u) \land \mathcal{B}(p,q,S\bar{n},v) \land \mathcal{H}(\bar{m},\bar{n},u,v) \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A (g, 13∃E)                                                                                                                                                                      |
| <ol> <li>15.</li> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> </ol> | $ \begin{vmatrix} \mathcal{B}(p,q,\bar{n},u) \\ (\forall i < \bar{n}) \exists u \exists v [\mathcal{B}(p,q,i,u) \land \mathcal{B}(p,q,Si,v) \land \mathcal{H}(\bar{m},i,u,v)] \\ \mathcal{F}(\bar{m},\bar{n},u) \\ u = \bar{k}_n \\ \mathcal{H}(\bar{m},\bar{n},u,v) \\ \mathcal{H}(\bar{m},\bar{n},\bar{k}_n,v) \\ v = \bar{k}_{Sn} \\ \mathcal{B}(p,q,S\bar{n},v) \\ \mathcal{B}(p,q,S\bar{n},\bar{k}_{Sn}) \\ j = \bar{k}_{Sn} \\ j = \bar{k}_{Sn} \\ j = \bar{k}_{Sn} \end{vmatrix} $                                                                                                                                                | 14 ∧E<br>9 with T8.21<br>8,16,15 with ∃I<br>1,17 with ∀E<br>14 ∧E<br>19,18 =E<br>2,20 with ∀E<br>14 ∧E<br>22,21 =E<br>3,10,23 with ∀E<br>13,14-24 ∃E<br>12,13-25 ∃E<br>6,7-26 ∃E |
| 28.                                                                                                                                                                                 | $\begin{vmatrix} j & \overline{s} \\ j & \overline{k}_{Sn} \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5,6-27 ∃E                                                                                                                                                                        |
| 29.<br>30.                                                                                                                                                                          | $ \begin{aligned} \mathcal{F}(\overline{\mathbf{m}}, S\overline{\mathbf{n}}, j) &\to j = \overline{\mathbf{k}}_{Sn} \\ \forall w[\mathcal{F}(\overline{\mathbf{m}}, S\overline{\mathbf{n}}, w) \to w = \overline{\mathbf{k}}_{Sn}] \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                       | 4-28 →I<br>29 ∀I                                                                                                                                                                 |

Lines 8 - 10 of show the content of the assumptions on 4 - 7 which are too long to display in expanded form. Once we are able to show  $\mathcal{F}(\overline{m}, \overline{n}, u)$  at (17), the inductive assumption lets us "pin" u onto  $\overline{k}_n$ . Then uniqueness conditions for  $\mathcal{H}$  and  $\mathcal{B}$  allow us to move to unique outputs for  $\mathcal{H}$  and  $\mathcal{B}$  and so for  $\mathcal{F}$ . Line 16 perhaps obviously follows from (9), but its derivation may be obscure: by T8.14,  $Q \vdash \overline{0} < S\overline{n}$  and ... and  $Q \vdash \overline{n-1} < S\overline{n}$ ; so where  $\mathcal{A}$  is the formula quantified on (9) by  $(\forall E)$ ,  $Q \vdash \mathcal{A}(\overline{0})$  and ... and  $Q \vdash \mathcal{A}(\overline{n-1})$ ; then with

T8.21 it follows that  $\mathbf{Q} \vdash (\forall i < \overline{\mathsf{n}}) \mathcal{A}(i)$ .

*Indct:* For any n,  $Q_s \vdash_{ND} \forall w [\mathcal{F}(\overline{m}, \overline{n}, w) \rightarrow w = \overline{k}_n]$ .

Observe that in both the basis and show clauses we require the generalized uniqueness for  $\mathcal{B}$ : this is because it is being applied inside assumptions for  $\exists E$ , where pand q are arbitrary variables, not numerals  $\overline{p}$  and  $\overline{q}$ , to which the ordinary notion of capture for  $\mathcal{B}$  would apply. So  $\forall w[\mathcal{F}(\overline{m},\overline{n},w) \rightarrow w = \overline{a}]$ . So we satisfy the recursive clause for T12.11. So the theorem is proved. And we have shown that  $Q_s$  has the resources to capture any recursive function.

This theorem has a number of attractive features: We show that recursive functions are captured directly by the original formulas by which they are expressed. A byproduct is that recursive functions are captured by  $\Sigma_1$  formulas. The argument is a straightforward induction on the sequence of recursive functions, of a type we have seen before. But we do not show that recursive functions are captured in Q. It is that to which we now turn.

- \*E12.13. Complete the demonstration of T12.11 by completing the remaining cases, including the basis and part (ii) of the case for composition.
- \*E12.14. Produce a derivation to show the basis of T12.12.
- E12.15. Return to the simple functions from from E12.9. Show that on the standard interpretation N of  $\mathcal{L}_{NT}$  each simple function  $f(\vec{x})$  is captured in Q<sub>s</sub> by the formula used to express it. Restrict appeal to external theorems just to your result from E12.9 and T8.14 as appropriate.

#### **12.3.3** The result strengthened

T12.11 shows that the recursive functions are captured in  $Q_s$  by their  $\Sigma_1$  original expressers. As we have suggested, this argument is easily strengthened to show that the recursive functions are captured in Q. To do so, we give up the capture by original expressers, though we retain the result that the recursive functions are captured by  $\Sigma_1$  formulas.

In the previous section, we appealed to uniqueness of remainder for the  $\beta$ -function. In Q<sub>s</sub>, the original formula  $\mathcal{B}$  captures the  $\beta$ -function, and gives a strengthened uniqueness result important for T12.12. But we can simulate this effect by some easy theorems. Recall that the  $\beta$ -function is originally expressed by a  $\Delta_0$  formula  $\mathcal{B}$ . T12.13. If a total function  $f(\vec{x})$  is expressed by a  $\Delta_0$  formula  $\mathcal{F}(\vec{x}, v)$ , then  $\mathcal{F}'(\vec{x}, v) =_{def} \mathcal{F}(\vec{x}, v) \land (\forall z \leq v) [\mathcal{F}(\vec{x}, z) \rightarrow z = v]$  is  $\Delta_0$  and captures f in Q.

Suppose a total  $f(\vec{x})$  is expressed by a  $\Delta_0$  formula  $\mathcal{F}(\vec{x}, v)$ . Suppose  $\vec{x}$  reduces to a single variable and  $\langle m, a \rangle \in f$ . (a) Then,  $N[\mathcal{F}(\overline{m}, \overline{a})] = T$ ; and since  $\mathcal{F}$  is  $\Delta_0$ , by T12.8,  $Q \vdash_{ND} \mathcal{F}(\overline{m}, \overline{a})$ . (b) Suppose  $n \neq a$ ; then  $\langle m, n \rangle \notin f$ ; so with T12.2,  $N[\sim \mathcal{F}(\overline{m}, \overline{n})] = T$  and  $N[\mathcal{F}(\overline{m}, \overline{n})] \neq T$ ; so by T12.8,  $Q \vdash_{ND} \sim \mathcal{F}(\overline{m}, \overline{n})$ .

(i) From (a),  $Q \vdash \mathcal{F}(\overline{m}, \overline{a})$ . And  $\vdash \overline{a} = \overline{a}$ , so  $\vdash \mathcal{F}(\overline{m}, \overline{a}) \rightarrow \overline{a} = \overline{a}$ ; and from (b), for  $q < a, Q \vdash \sim \mathcal{F}(\overline{m}, \overline{q})$ ; so trivially,  $Q \vdash \mathcal{F}(\overline{m}, \overline{q}) \rightarrow \overline{q} = \overline{a}$ ; so for any  $p \le a, Q \vdash \mathcal{F}(\overline{m}, \overline{p}) \rightarrow \overline{p} = \overline{a}$ ; so by T8.21,  $Q \vdash (\forall z \le \overline{a})(\mathcal{F}(\overline{m}, z) \rightarrow z = \overline{a})$ . So with  $\land I, Q \vdash \mathcal{F}(\overline{m}, \overline{a}) \land (\forall z \le \overline{a})(\mathcal{F}(\overline{m}, z) \rightarrow z = \overline{a})$ ; which is to say,  $Q \vdash \mathcal{F}'(\overline{m}, \overline{a})$ .

(ii) Hint: You need to show  $Q \vdash \forall w([\mathcal{F}(\overline{m}, w) \land (\forall z \leq w)(\mathcal{F}(\overline{m}, z) \rightarrow z = w)] \rightarrow w = \overline{a})$ . Take as premises  $\mathcal{F}(\overline{m}, \overline{a}) \land (\forall z \leq \overline{a})(\mathcal{F}(\overline{m}, z) \rightarrow z = \overline{a})$  from (i), along with  $j \leq \overline{a} \lor \overline{a} \leq j$  from T8.19.

So if conditions (a) and (b) are met,  $\mathcal{F}'$  captures f.  $\mathcal{F}'$  is not the same as the original  $\mathcal{F}$  to express the function. Still, since the  $\Delta_0 \mathcal{B}$  expresses the  $\beta$ -function,  $\mathcal{B}'$ captures it in Q.

Intuitively, the second conjunct of  $\mathcal{F}'$  asserts explicitly that at most one v satisfies  $\mathcal{F}'$ . Thus it is not surprising that formulas of the sort  $\mathcal{F}'$  yield a uniqueness result.

T12.14. For  $\mathcal{F}'(\vec{x}, v) =_{def} \mathcal{F}(\vec{x}, v) \land (\forall z \le v) [\mathcal{F}(\vec{x}, z) \to z = v]$  as above, for any n,  $Q \vdash \forall \vec{x} \forall y [(\mathcal{F}'(\vec{x}, \overline{n}) \land \mathcal{F}'(\vec{x}, y)) \to y = \overline{n}].$ 

Suppose  $\vec{x}$  reduces to a single variable and reason as follows,

| 1.  | $ \forall x (x \le \overline{n} \lor \overline{n} \le x) $                                               | <b>T8</b> .19         |
|-----|----------------------------------------------------------------------------------------------------------|-----------------------|
| 2.  | $\mathcal{F}'(j,\overline{n})\wedge\mathcal{F}'(j,k)$                                                    | A $(g \rightarrow I)$ |
| 3.  | $\mathcal{F}(j,\overline{n}) \land (\forall z \leq \overline{n})(\mathcal{F}(j,z) \to z = \overline{n})$ | $2 \land E$ (unabv)   |
| 4.  | $\mathcal{F}(j,k) \land (\forall z \le k) (\mathcal{F}(j,z) \to z = k)$                                  | $2 \wedge E$ (unabv)  |
| 5.  | $k \leq \overline{n} \vee \overline{n} \leq k$                                                           | 1 ∀E                  |
| 6.  | $k \leq \overline{n}$                                                                                    | A ( $g \ 5 \lor E$ )  |
| 7.  | $(\forall z \le \overline{n})(\mathcal{F}(j, z) \to z = \overline{n})$                                   | 3 ∧E                  |
| 8.  | $\mathcal{F}(j,k) \to k = \overline{n}$                                                                  | 7,6 (∀E)              |
| 9.  | $\mathcal{F}(j,k)$                                                                                       | 4 ∧E                  |
| 10. | $ k = \overline{n}$                                                                                      | $8,9 \rightarrow E$   |
| 11. | $\boxed{\overline{n}} \leq k$                                                                            | A ( $g \ 5 \lor E$ )  |
|     |                                                                                                          |                       |
| 12. | $k = \overline{n}$                                                                                       |                       |
| 13. | $k = \overline{n}$                                                                                       | 5,6-10,11-12 ∨E       |
| 14. | $(\mathcal{F}'(j,\overline{n}) \land \mathcal{F}'(j,k)) \to k = \overline{n}$                            | 2-13 →I               |
| 15. | $\forall y [(\mathcal{F}'(j,\overline{n}) \land \mathcal{F}'(j,y)) \to y = \overline{n}]$                | 14 ∀I                 |
| 16. | $\forall x \forall y [(\mathcal{F}'(x,\overline{n}) \land \mathcal{F}'(x,y)) \to y = \overline{n}]$      | 15 ∀I                 |

Reasoning for the second subderivation is similar to the first.

So where p, q and v are universally quantified we shall have,  $\mathbf{Q} \vdash \forall p \forall q \forall v [(\mathcal{B}'(p, q, \overline{\mathbf{m}}, \overline{\mathbf{n}}) \land \mathcal{B}'(p, q, \overline{\mathbf{m}}, v)) \rightarrow v = \overline{\mathbf{n}}]$ . This is what we had before except applied to  $\mathcal{B}'$  rather than  $\mathcal{B}$ .

Observe also that insofar as  $\mathcal{F}'(\vec{x}, v)$  is built on an  $\mathcal{F}(\vec{x}, v)$  that expresses  $f(\vec{x})$ ,  $\mathcal{F}'(\vec{x}, v)$  continues to expresses  $f(\vec{x})$ . Perhaps this is obvious given what  $\mathcal{F}'$  says. However, we can argue for the result directly.

T12.15. If  $\mathcal{F}(\vec{x}, v)$  expresses a total  $f(\vec{x})$ , then  $\mathcal{F}'(\vec{x}, v) = \mathcal{F}(\vec{x}, v) \land (\forall z \le v) [\mathcal{F}(\vec{x}, z) \rightarrow z = v]$  expresses  $f(\vec{x})$ .

Suppose  $\vec{x}$  reduces to a single variable and total f(x) is expressed by  $\mathcal{F}(x, v)$ . Suppose  $\langle m, a \rangle \in f$ . (a) By expression,  $N[\mathcal{F}(\overline{m}, \overline{a})] = T$ . (b) Suppose  $n \neq a$ ; then  $\langle m, n \rangle \notin f$ ; so with T12.2,  $N[\sim \mathcal{F}(\overline{m}, \overline{n})] = T$ .

(i) Suppose  $N[\mathcal{F}'(\overline{m}, \overline{a})] \neq T$ . This is impossible. You will need applications of T12.6 and T10.2; observe that for  $n \leq a$  either n = a or n < a (so that  $n \neq a$ ).

(ii) Suppose  $N[\forall w([\mathcal{F}(\overline{m}, w) \land (\forall z \le w)(\mathcal{F}(\overline{m}, z) \to z = w)] \to w = \overline{a})] \neq T$ . This is impossible. This time, you will be able to reason that for any n either n = a or  $n \ne a$ .

And now we are in a position to recover the main result, except that the recursive functions are captured in Q rather than  $Q_s$ .

T12.16. Any recursive function is captured by a  $\Sigma_1$  formula in Q

The  $\beta$ -function is total and expressed by a  $\Delta_0$  formula  $\mathcal{B}(p,q,i,v)$ ; so by T12.15 and T12.13 there is a  $\Delta_0$  formula  $\mathcal{B}'(p,q,i,v)$  that expresses and captures it in Q. For any  $f(\vec{x})$  originally expressed by  $\mathcal{F}(\vec{x},v)$ , let  $\mathcal{F}^{\dagger}$  be like  $\mathcal{F}$  except that instances of  $\mathcal{B}$  are replaced by  $\mathcal{B}'$ . Since  $\mathcal{B}'$  is  $\Delta_0$ ,  $\mathcal{F}^{\dagger}$  remains  $\Sigma_1$ .

The argument is now a matter of showing that demonstrations of T12.3, T12.11 and T12.12 go through with application to these formulas and in Q. But the argument is nearly trivial: everything is the same as before with formulas of the sort  $\mathcal{F}^{\dagger}$  replacing  $\mathcal{F}$ .

Be clear that expressions of the sort  $\mathcal{F}^{\dagger}$  might appear all along in the show part of T12.3, T12.11 and T12.12. Expressions from the basis do not involve  $\mathcal{B}$ . It is included by recursion; after that, composition and regular minimization might be applied to expressions of any sort, and so to ones which involve  $\mathcal{B}$  as well.

As in for the case of expression, formulas other than  $\mathcal{F}^{\dagger}(\vec{x}, v)$  might capture the recursive functions — for example, if  $\mathcal{F}^{\dagger}(\vec{x}, v)$  captures  $f(\vec{x})$ , then so does  $\mathcal{F}^{\dagger}(\vec{x}, v) \wedge \mathcal{A}$  for any theorem  $\mathcal{A}$ . Let us say that  $\mathcal{F}^{\dagger}(\vec{x}, v)$  is the *canonical* formula that captures  $f(\vec{x})$  in Q. Of course, the canonical formula which captures  $f(\vec{x})$  need not be the same as the corresponding original formula — for the  $\beta$ -function is not captured by its original formula (and so any formula which includes a  $\beta$ -function fails to be original). Because the  $\beta$ -function is captured by a  $\Delta_0$  formula we do, however, retain the result that every recursive function is captured in Q by some  $\Sigma_1$  formula.

For the rest of this chapter, unless otherwise noted, when we assert the existence of a formula to express or some capture recursive function, we shall have in mind the *canonical* formula. Thus a function is expressed and captured by the same formula.

E12.16. Provide an argument to demonstrate (ii) of T12.13.

E12.17. Finish the derivation for T12.14 by completing the second subderivation.

E12.18. Complete the demonstration of T12.15.
\*E12.19. Work carefully through the demonstration of T12.16 by setting up revised arguments T12.3<sup>†</sup>, T12.11<sup>†</sup> and T12.12<sup>†</sup>. As feasible, you may simply explain how parts differ from the originals.

# **12.4 More Recursive Functions**

Now that we have seen what the recursive functions are, and the powers of our logical systems to express and capture recursive functions, we turn to extending their range. In fact, in this section, we shall generate a series of functions that are *primitive* recursive. In addition to the initial functions, so far, we have seen that plus, times, fact and power are primitive recursive. As we increase the range of (primitive) recursive functions, it immediately follows that our logical systems have the power to express and capture all the same functions.

# **12.4.1** Preliminary Functions

We begin with some simple primitive recursive functions that will serve as a foundation for things to come.

**Predecessor with cutoff.** Set the predecessor of zero to zero itself, and for any other value to the one before. Since pred(y) is a one-place function, gpred is a constant, in this case, gpred = 0. And  $hpred = idnt_1^2(y, u)$ . So, as we expect for pred(y),

pred(0) = 0pred(suc(y)) = y

So predecessor is a primitive recursive function.

Subtraction with cutoff. When  $y \ge x$ , subc(x, y) = 0. Otherwise subc(x, y) = x-y. For subc(x, y), set gsubc $(x) = idnt_1^1(x)$ . And  $hsubc(x, y, u) = pred(idnt_3^3(x, y, u))$ . So,

subc(x, 0) = xsubc(x, suc(y)) = pred(subc(x, y))

So as y increases by one, the difference decreases by one. Informally, indicate subc(x, y) = (x - y).

Absolute value. absval(x - y) = (x - y) + (y - x). So we find the absolute value of the difference between x and y by doing the subtraction with cutoff both ways. One direction yields zero. The other yields the value we want. So the sum comes out to the absolute value. This is a function with two arguments (only separated by '-' rather than comma to remind us of the nature of the function). This function results entirely by composition, without a recursion clause. Informally, we indicate absolute value in the usual way, absval(x - y) = |x - y|.

**Sign.** The function sg(y) is zero when y is zero and otherwise one. For sg(y), set gsg = 0. And  $hsg(y, u) = suc(zero(idnt_1^2(y, u)))$ . So,

$$\begin{split} sg(0) &= 0\\ sg(suc(y)) &= suc(zero(y)) \end{split}$$

So the sign of any successor is just the successor of zero, which is one.

**Converse sign.** The function csg(y) is one when y is zero and otherwise zero. So it inverts sg. For csg(y), set gcsg = suc(0). And  $hcsg(y, u) = zero(idnt_1^2(y, u))$ . So,

csg(0) = suc(0)csg(suc(y)) = zero(y)

So the converse sign of any successor is just zero. Informally, we indicate the converse sign with a bar,  $\overline{sg}(y)$ .

E12.20. Consider again your file recursive1.rb from E12.3. Extend your sequence of functions to include pred(x), subc(x,y), absval(x - y), sg(x), and csg(x). Calculate some values of these functions and print the results, along with your program. Again, there should be no appeal to functions except from earlier in the chain.

### **12.4.2** Characteristic Functions

The characteristic function  $ch_{R}(\vec{x})$  of a relation R takes the value 0 when  $\vec{x} \in R$  and 1 when  $\vec{x} \notin R$ .

(CF) For any function  $p(\vec{x})$ ,  $sg(p(\vec{x}))$  is the *characteristic* function of the relation R such that  $\vec{x} \in R$  iff  $sg(p(\vec{x})) = 0$ .

So a characteristic function for relation R takes the value 0 if  $R(\vec{x})$  is true, and 1 if  $R(\vec{x})$  is not true.<sup>7</sup> A (*primitive*) *recursive* property or relation is one that has a (primitive) recursive characteristic function. When a function p already takes just the values 0 and 1 so that sg(p( $\vec{x}$ )) = p( $\vec{x}$ ), we generally omit sg from our specifications.

These definitions immediately result in corollaries to T12.3 and T12.16.

T12.3 (corollary). On the standard interpretation N of  $\mathcal{L}_{NT}$ , each recursive relation  $R(\vec{x})$  is expressed by some formula  $\mathcal{R}(\vec{x})$ .

Suppose  $R(\vec{x})$  is a recursive relation; then has a recursive and so total characteristic function  $ch_{R}(\vec{x})$ ; so by T12.3 there is some formula  $\mathcal{R}(\vec{x}, y)$  that expresses  $ch_{R}(\vec{x})$ . So in the case where  $\vec{x}$  reduces to a single variable, if  $m \in R$ , then  $\langle m, 0 \rangle \in ch_{R}$ ; and by expression,  $I[\mathcal{R}(\overline{m}, \emptyset)] = T$ ; and if  $m \notin R$ , then  $\langle m, 0 \rangle \notin ch_{R}$ , so that with T12.2,  $I[\sim \mathcal{R}(\overline{m}, \emptyset)] = T$ . So, generally,  $\mathcal{R}(\vec{x}, \emptyset)$  expresses  $R(\vec{x})$ .

T12.16 (corollary). Any recursive relation is captured by a  $\Sigma_1$  formula in Q.

Suppose  $R(\vec{x})$  is a recursive relation; then it has a recursive and so total characteristic function  $ch_{R}(\vec{x})$ ; so by T12.16 there is some  $\Sigma_{1}$  formula  $\mathcal{R}(\vec{x}, y)$  that captures  $ch_{R}(\vec{x})$ . So in the case where  $\vec{x}$  reduces to a single variable, if  $m \in R$ , then  $\langle m, 0 \rangle \in ch_{R}$ ; and by capture  $T \vdash \mathcal{R}(\overline{m}, \emptyset)$ ; and if  $m \notin R$ , then  $\langle m, 0 \rangle \notin ch_{R}$ ; so by capture with T12.4,  $T \vdash \sim \mathcal{R}(\overline{m}, \emptyset)$ . So, generally  $\mathcal{R}(\vec{x}, \emptyset)$  captures  $R(\vec{x})$ .

So our results for the expression and capture of recursive functions extend directly to the expression and capture of recursive relations: a recursive relation has a recursive characteristic function; as such, the function is expressed and captured; so, as we have just seen, the corresponding relation is expressed and captured.

**Equality.** Say  $t(\vec{x})$  is a *recursive term* just in case it is a variable, constant, or a recursive function. Then for any recursive terms  $s(\vec{x})$  and  $t(\vec{y})$ ,  $EQ(s(\vec{x}), t(\vec{y}))$  — typically rendered  $s(\vec{x}) = t(\vec{y})$ , is a recursive relation with characteristic function  $ch_{EQ}(\vec{x}, \vec{y}) = sg|s(\vec{x}) - t(\vec{y})|$ . When  $s(\vec{x})$  is equal to  $t(\vec{y})$ , the absolute value of the difference is zero so the value of sg is zero. But when  $s(\vec{x})$  is other than  $t(\vec{y})$ , the absolute value of the difference is other than zero, so value of sg is one. And, supposing that  $s(\vec{x})$  and  $t(\vec{x})$  are recursive, this characteristic function is a composition of recursive functions. So the result is recursive. So  $s(\vec{x}) = t(\vec{y})$  is a recursive relation.

<sup>&</sup>lt;sup>7</sup>It is perhaps more common to reverse the values of zero and one for the characteristic function. However, the choice is arbitrary, and this choice is technically convenient.

A couple of observations: First, be clear that EQ is the standard relation we all know and love. The trick is to show that it is recursive. We are not *given* that EQ is a recursive relation — so we demonstrate that it is, by showing that it has a recursive characteristic function. Second, one might think that we could express  $f(\vec{x}) = g(\vec{y})$  by some relatively simple expression that would compose expressions for the functions with equality as,  $\exists u \exists v [\mathcal{F}(\vec{x}, u) \land \mathcal{G}(\vec{y}, v) \land u = v]$ . This would be fine. However we have offered a general account which, as is often the case for these things, need not be the most efficient. Where  $sg[f(\vec{x}) - g(\vec{y})]$  is expressed and captured by some  $\vartheta(\vec{x}, \vec{y}, v)$  our approach, which works by modification of the characteristic function, generates the relatively complex,  $\mathscr{E}(\vec{x}, \vec{y}) =_{def} \vartheta(\vec{x}, \vec{y}, \emptyset)$ .

**Inequality.** The relation  $LEQ(s(\vec{x}), t(\vec{y}))$  has characteristic function  $sg(s(\vec{x}) \div t(\vec{y}))$ . When  $s(\vec{x}) \le t(\vec{y}), s(\vec{x}) \div t(\vec{y}) = 0$ ; so sg = 0; Otherwise the value is 1. The relation  $LESS(s(\vec{x}), t(\vec{y}))$  has characteristic function  $sg(suc(s(\vec{x})) \div t(\vec{y}))$ . When  $s(\vec{x}) < t(\vec{y})$ ,  $suc(s(\vec{x})) \div t(\vec{y}) = 0$ ; so sg = 0. Otherwise the value is 1. These are typically represented  $s(\vec{x}) \le t(\vec{y})$  and  $s(\vec{x}) < t(\vec{y})$ .

With equality and inequality, we have atomic recursive relations. And we set out to exhibit ones that are more complex in the usual way.

**Truth functions.** Suppose  $P(\vec{x})$  and  $Q(\vec{x})$  are recursive relations. Then NEG( $P(\vec{x})$ ) and DSJ( $P(\vec{x}), Q(\vec{x})$ ) are recursive relations. Suppose  $ch_P(\vec{x})$  and  $ch_Q(\vec{x})$  are the characteristic functions of  $P(\vec{x})$  and  $Q(\vec{x})$ .

NEG(P( $\vec{x}$ )) (typically  $\sim P(\vec{x})$ ) has characteristic function  $\overline{sg}(ch_P(\vec{x}))$ . When  $P(\vec{x})$  does not obtain, the characteristic function of  $P(\vec{x})$  takes value one, so the converse sign goes to zero. And when when  $P(\vec{x})$  does obtain, its characteristic function is zero, so the converse sign is one — which is as it should be.

DSJ(P( $\vec{x}$ ), Q( $\vec{y}$ )) (typically P( $\vec{x}$ )  $\vee$  Q( $\vec{y}$ )) has characteristic function ch<sub>P</sub>( $\vec{x}$ )  $\times$  ch<sub>Q</sub>( $\vec{y}$ ). When one of P( $\vec{x}$ ) or Q( $\vec{y}$ ) is true, the disjunction is true; but in this case, at least one characteristic function, and so the product of functions goes to zero. If neither P( $\vec{x}$ ) nor Q( $\vec{y}$ ) is true, the disjunction is not true; in this case, both characteristic functions, and so the product of functions take the value one.

Other truth functions are definable in the same terms as for negation and disjunction. So, for example,  $MP(P(\vec{x}), Q(\vec{y}))$  that is,  $P(\vec{x}) \rightarrow Q(\vec{y})$  is just  $\sim P(\vec{x}) \lor Q(\vec{y})$ .

**Bounded quantifiers:** Consider a relation  $s(\vec{x}, z) = (\exists y \leq z) P(\vec{x}, z, y)$  which obtains when there is a y less than or equal to z such that  $P(\vec{x}, z, y)$ . As usual, y is distinct from the bound z (compare the language of arithmetic reference). But z may

appear as a variable of the relation P (as for *factor* or *prime number* just below); so we give it a place in our general form. Given  $ch_P(\vec{x}, z, y)$ , consider a further relation  $R(\vec{x}, z, v)$  corresponding to  $(\exists y \leq v)P(\vec{x}, z, y)$ . So R treats the bound as a separate variable, and will let us reason by induction as the bound ranges from 0 to z. If we can find  $ch_B(\vec{x}, z, v)$  then  $ch_S(\vec{x}, z)$  is automatic as  $ch_B(\vec{x}, z, z)$ . For this  $ch_B(\vec{x}, z, v)$  set,

 $gch_{R}(\vec{x}, z) = ch_{P}(\vec{x}, z, 0)$  $hch_{R}(\vec{x}, z, v, u) = u \times ch_{P}(\vec{x}, z, Sv)$ 

In the simple case where  $\vec{x}$  drops out,  $ch_R(z, 0) = ch_P(z, 0)$ . And  $ch_R(z, Sv) = ch_R(z, v) \times ch_P(z, Sv)$ . In the case where v is a successor, the result is,

 $ch_{P}(z, v) = ch_{P}(z, 0) \times ch_{P}(z, 1) \times \ldots \times ch_{P}(z, v)$ 

Think of these as grouped to the left. So the result has  $ch_R(z, n) = 1$  unless and until one of the members is zero, and then stays zero. So the function for R(z, n)goes to zero just in case P(z, v) is true for some value between 0 and n. So set  $ch_S(\vec{x}, z) = ch_R(\vec{x}, z, z)$  — so the characteristic function for the bounded quantifier runs the R function up to the bound z.

For  $(\exists y < z) P(\vec{x}, z, y)$ , it simplest simply to take  $(\exists y \le z)(y \ne z \land P(\vec{x}, z, y))$ . For  $(\forall z \le y) P(\vec{x}, z)$  and  $(\forall z < y) P(\vec{x}, z)$ , we may consider  $\sim (\exists z \le y) \sim P(\vec{x}, z)$ ; and similarly in the other case. And we are done by previous results.

**Least element:** Let  $m(\vec{x}, z) = (\mu y \le z)P(\vec{x}, z, y)$  be the least  $y \le z$  such that  $P(\vec{x}, z, y)$  if one exists, and otherwise z. Again, the bound may be a variable free in P. Then if  $P(\vec{x}, z, y)$  is a recursive relation,  $(\mu y \le z)P(\vec{x}, z, y)$  is a recursive function. First take  $R(\vec{x}, z, v)$  for  $(\exists y \le v)P(\vec{x}, z, y)$  and  $ch_R(\vec{x}, z, v)$  as described above. So  $ch_R(\vec{x}, z, v)$  goes to 0 when P is true for some  $j \le v$ . Then, second, we introduce a function  $q(\vec{x}, z, v)$  whose output is the value of  $(\mu y \le v)P(\vec{x}, z, y)$ . Given this, very much as before,  $m(\vec{x}, z)$  is automatic as  $q(\vec{x}, z, z)$ . For  $q(\vec{x}, z, v)$  set,

 $gq(\vec{x}, z) = zero(ch_{R}(\vec{x}, z, 0))$ hq( $\vec{x}, z, v, u$ ) = u + ch\_{R}( $\vec{x}, z, v$ )

So in the simple case where  $\vec{x}$  drops out, q(z, 0) = 0; for the least  $y \le 0$  that satisfies any P(z, y) can only be 0. And then  $q(z, Sv) = q(z, v) + ch_{R}(z, v)$ . The result is,

 $q(z, Sn) = 0 + ch_{R}(z, 0) + ... + ch_{R}(z, n)$ 

where  $ch_R$  is 1 until it hits a member that is P and then goes to 0 and stays there. Set the first member to the side. Then since this series starts with v = 0 and ends with v = n it has Sn members. So if all the values are 1 it evaluates to Sn. If there is some a such that  $ch_R(z, a)$  is zero, then all the members prior to it are 1 and the sum is a. So set  $m(\vec{x}, z) = q(\vec{x}, z, z)$ , so that we take the sum up to the limit z. Observe that  $(\mu y \le z)P(\vec{x}, z, y) = z$  does not require that  $P(\vec{x}, z, z)$  — only that no a < z is such that  $P(\vec{x}, z, a)$ .

**Selection by cases.** Suppose  $f_0(\vec{x}) \dots f_k(\vec{x})$  are recursive functions and  $c_0(\vec{x}) \dots c_k(\vec{x})$  are mutually exclusive recursive relations. Then  $f(\vec{x})/c_0 \dots c_k$  defined as follows is recursive.

$$f(\vec{x}) = \begin{cases} f_0(\vec{x}) \text{ if } c_0(\vec{x}) \\ f_1(\vec{x}) \text{ if } c_1(\vec{x}) \\ \vdots \\ f_k(\vec{x}) \text{ if } c_k(\vec{x}) \\ and \text{ otherwise } a \end{cases}$$

Observe that,  $f(\vec{x}) =$ 

$$[\overline{sg}(ch_{c_0}(\vec{x})) \times f_0(\vec{x}) + \overline{sg}(ch_{c_1}(\vec{x})) \times f_1(\vec{x}) + \ldots + \overline{sg}(ch_{c_k}(\vec{x})) \times f_k(\vec{x})] + [ch_{c_0}(\vec{x}) \times ch_{c_1}(\vec{x}) \times \ldots \times ch_{c_k}(\vec{x}) \times a]$$

works as we want. Each of the first terms in this sum is 0 unless the  $c_i$  is met in which case  $\overline{sg}(ch_{c_i}(\vec{x}))$  is 1 and the term goes to  $f_i(\vec{x})$ . The final term is 0 unless no condition  $c_i$  is met, in which case it is a. So  $f(\vec{x})$  is a composition of recursive functions, and itself recursive.

We turn now to some applications that will be particularly useful for things to come. In many ways, the project is like a cool translation exercise — pitched at the level of functions.

**Factor.** Let FCTR(m, n) be the relation that obtains between m and n when m + 1 evenly divides n (typically, m | n). Division is by m + 1 to avoid worries about division by zero.<sup>8</sup> Then m | n is recursive. This relation is defined as follows.

$$(\exists y \le n)(Sm \times y = n)$$

Observe that this makes (the predecessor of) both 1 and n factors of n, and any number a factor of zero. Since each part is recursive, the whole is recursive. The argument is from the parts to the whole:  $Sm \times y = n$  has a recursive characteristic

<sup>&</sup>lt;sup>8</sup>In fact, this is a (minor) complication at this stage, but it will be helpful down the road. See p. 644n11.

function; so the bounded quantification has a recursive characteristic function; so the factor relation is recursive.

**Prime number.** Say PRIME(n) is true just when n is a prime number. This property is defined as follows.

$$n > 1 \land (\forall j < n)[j \mid n \rightarrow (Sj = 1 \lor Sj = n)]$$

So n is greater than 1 and the successor of any number that divides it is either  $\overline{1}$  or n itself.

**Prime sequence.** Say the primes are  $\pi_0$ ,  $\pi_1$ ... Let the value of the function pi(n) (usually  $\pi(n)$ ) be  $\pi_n$ . Then  $\pi(n)$  is defined by recursion as follows.

$$\begin{split} gpi &= suc(suc(0)) \\ hpi(y,u) &= (\mu y \leq u! + 1)(u < y \land \text{PRIME}(y)) \end{split}$$

So the first prime,  $\pi(0) = 2$ . And  $\pi(Sn) = (\mu y \le \pi(n)! + 1)(\pi(n) < y \land \text{PRIME}(y))$ . So at any stage, the next prime is the least prime which is greater than  $\pi(n)$ . This depends on the point that all the primes  $\le \pi_n$  are included in the product  $\pi(n)!$  Let  $p(n) = \pi_0 \times \pi_1 \times \ldots \times \pi_n$ . By a standard argument (see G2 in the arithmetic for Gödel numbering reference, p. 480), p(n) + 1 is not divisible by any of the primes up to  $\pi_n$ ; so either p(n) + 1 is itself prime, or there is some prime greater than  $\pi_n$  but less than p(n) + 1. But since  $\pi(n)!$  is a product including all the primes up to  $\pi_n$ ,  $p(n) \le \pi(n)!$ ; so either  $\pi(n)! + 1$  is prime or there is a prime greater than  $\pi_n$  but less than  $\pi(n)! + 1$  — and the next prime is sure to appear in the specified range.

**Prime exponent.** Let exp(n, i) be the (possibly 0) exponent of  $\pi_i$  in the unique prime factorization of n. Then exp(n, i) is recursive. This function may be defined as follows.

$$(\mu x \leq n)[\text{pred}(\pi^x_i) \mid n \land \text{pred}(\pi^{x+1}_i) \nmid n]$$

And, of course,  $\pi_i$  is just  $\pi(i)$ . Observe that no exponent in the prime factorization of n is greater than n itself — for any  $x \ge 2$ ,  $x^n \ge n$  — so the bound is safe. This function returns the first x such that  $\pi_i^x$  divides n but  $\pi_i^{x+1}$  does not.

**Prime length.** Say a prime  $\pi_a$  is *included* in the factorization of n just in case there is some  $b \ge a$  and e > 0 such that (the predecessor of)  $\pi_b^e$  is a factor of n. So we think of a prime factorization as,

$$\boldsymbol{\pi}_0^{\mathbf{e}_0} \times \boldsymbol{\pi}_1^{\mathbf{e}_1} \times \ldots \times \boldsymbol{\pi}_b^{\mathbf{e}_b}$$

where  $e_b > 0$ , but exponents for prior members of the series may be zero or not. Then len(n) is the number of primes included in the prime factorization of n; so len(0) = len(1) = 0 and otherwise, since the series of primes begins with zero, len(n) = b + 1. For this set,

$$len(n) =_{def} (\mu y \le n) (\forall z : y \le z \le n) exp(n, z) = 0$$

Officially:  $(\mu y \le n)(\forall z \le n)[z \ge y \rightarrow exp(n, z) = 0]$ . So we find the least y such that none of the primes between  $\pi_y$  and  $\pi_n$  are part of the factorization of n; but then all of the primes prior to it are members of the factorization so that y numbers the length of the factorization. This depends on its being the case that  $n < \pi_n$  so that primes greater than or equal  $\pi_n$  are never included in the factorization of n.

- E12.21. Returning to your file recursive1.rb from E12.3 and E12.20, extend the sequence of functions to include the characteristic function for FCTR(m, n). You will need to begin with cheq(a,b) for the characteristic function of a = b and then the characteristic function of Sm x y = n. Then you will require a function like ch<sub>R</sub>(m, n, v) corresponding to  $(\exists y \le v)(Sm \times y = n)$ . Calculate some values of these functions and print the results, along with your program.
- E12.22. Continue in your file recursive1.rb to build the characteristic function for PRIME(n). You will have to build gradually to this result (where the universal quantifier appears as  $\sim (\exists j \le n)(j \ne n \land \sim P)$ . You will need chless(a,b) and then chneg(a), chdsj(a,b), chimp(a,b), and chand(a,b) for the relevant truth functions. With these in hand, you can build a function chp(n,j) corresponding to  $j \ne n \lor \sim (j \mid n \rightarrow (Sj = 0 \lor Sj = n))$ . And with that, you can obtain a function like  $R(n, j, \nu)$  and then the characteristic function of the bounded existential. Then, finally, build prime(n). Calculate some values of these functions and print the results, along with your program.

- E12.23. Continue in your file recursive1.rb to generate lcm(m, n) the least common multiple of Sm and Sn that is,  $(\mu y \le Sm \times Sn)[y > 0 \land m | y \land n | y]$ . For this you will need the characteristic function of  $y > 0 \land m | y \land n | y$ ; and then one like  $ch_{R}(m, n, v)$  corresponding to  $(\exists y \le v)[y > 0 \land m | y \land n | y]$ . Then you will be able to find the function like q(m, n, v) corresponding to  $(\mu y \le v)[y > 0 \land m | y \land n | y]$  and finally the lcm.
- E12.24. Provide definitions for the recursive functions rm(m, n) and qt(m, n) for the remainder and quotient of m/n + 1.
- \*E12.25. Functions  $f_1(\vec{x}, y)$  and  $f_2(\vec{x}, y)$  are defined by *simultaneous* (mutual) recursion just in case,

$$f_1(\vec{x},0) = g_1(\vec{x})$$

 $f_2(\vec{x},0) = g_2(\vec{x})$ 

 $f_1(\vec{x},Sy) = h_1(\vec{x},y,f_1(\vec{x},y),f_2(\vec{x},y))$ 

 $f_2(\vec{x},Sy) = h_2(\vec{x},y,f_1(\vec{x},y),f_2(\vec{x},y))$ 

Show that  $f_1$  and  $f_2$  so defined are recursive. Hint: Let  $F(\vec{x}, y) = \pi_0^{f_1(\vec{x}, y)} \times \pi_1^{f_2(\vec{x}, y)}$ ; then find  $G(\vec{x})$  in terms of  $g_1$  and  $g_2$ , and  $H(\vec{x}, y, u)$  in terms of  $h_1$  and  $h_2$  so that  $F(\vec{x}, 0) = G(\vec{x})$  and  $F(\vec{x}, Sy) = H(\vec{x}, y, F(\vec{x}, y))$ . So  $F(\vec{x}, y)$  is recursive. Then  $f_1(\vec{x}, y) = \exp(F(\vec{x}, y), 0)$  and  $f_2(\vec{x}, y) = \exp(F(\vec{x}, y), 1)$ ; so  $f_1$  and  $f_2$  are recursive.

# 12.4.3 Arithmetization

Our aim in this section is to assign numbers to to expressions and sequences of expressions in  $\mathcal{L}_{NT}$  and build a (primitive) recursive property PRFQ(m, n) which is true just in case m numbers a sequence of expressions that is a proof of the expression numbered by n. This requires a number of steps. In this part, we develop at least the notion of a *sentential* proof which should be sufficient for the general idea. The next section develops details for the the full quantificational case.

**Gödel numbers.** We begin with a strategy familiar from 10.2.2 and 10.3.2 (to which you may find it helpful to refer), now adapted to  $\mathcal{L}_{NT}$ . The idea is to assign numbers to symbols and expressions of  $\mathcal{L}_{NT}$ . Then we shall be able to operate on the associated numbers by means of ordinary numerical functions. Insofar as the

variable symbols in any quantificational language are countable, they are capable of being sorted into series,  $x_0, x_1 \dots$  Supposing that this is done, begin by assigning to each symbol  $\alpha$  in  $\mathcal{L}_{NT}$  an integer  $g[\alpha]$  called its *Gödel Number*.

| a. | g[(] = 3             |    | f.                 |   | $g[\forall] = 13$   |
|----|----------------------|----|--------------------|---|---------------------|
| b. | g[)] = 5             |    | g                  | • | $g[\emptyset] = 15$ |
| c. | $g[\sim] = 7$        |    | h                  |   | g[S] = 17           |
| d. | $g[\rightarrow] = 9$ |    | i.                 |   | g[+] = 19           |
| e. | g[=] = 11            |    | j.                 |   | $g[\times] = 21$    |
|    |                      | k. | $g[x_i] = 23 + 2i$ | i |                     |

So, for example,  $g[x_5] = 23 + 2 \times 5 = 33$ . Clearly each symbol gets a unique Gödel number, and Gödel numbers for individual symbols are odd positive integers.<sup>9</sup>

Now we are in a position to assign a Gödel number to each formula as follows: Where  $\alpha_0, \alpha_1 \dots \alpha_n$  are the symbols, in order from left to right, in some expression Q,

$$g[\mathcal{Q}] = 2^{g[\alpha_0]} \times 3^{g[\alpha_1]} \times 5^{g[\alpha_2]} \times \ldots \times \pi_n^{g[\alpha_n]}$$

where 2, 3, 5... $\pi_n$  are the first *n* prime numbers. So, for example,  $g[x_0 \times x_5] = 2^{23} \times 3^{21} \times 5^{33}$ . This is a big integer. But it is an integer, and different expressions get different Gödel numbers. Given a Gödel number, we can find the corresponding expression by finding its prime factorization; then if there are twenty-three 2s in the factorization, the first symbol is  $x_0$ ; if there are twenty-one 3s, the second symbol is  $\times$ ; and so forth. Notice that numbers for individual symbols are odd, where numbers for expressions are even.

Now consider a sequence of expressions,  $Q_0$ ,  $Q_1 \dots Q_n$  (as in an axiomatic derivation). These expressions have Gödel numbers  $g_0, g_1, \dots, g_n$ . Then,

$$\mathbf{\pi}_0^{g_0} \times \mathbf{\pi}_1^{g_1}, \times \mathbf{\pi}_2^{g_2} \times \ldots \times \mathbf{\pi}_n^{g_n}$$

is the *super* Gödel number for the sequence  $Q_0$ ,  $Q_1 \dots Q_n$ . Again, given a super Gödel number, we can find the corresponding expressions by finding its prime factorization; then, if there are  $g_0$  2s, we can proceed to the prime factorization of  $g_0$ , to discover the symbols of the first expression; and so forth. Observe that super Gödel numbers are even, but are distinct from Gödel numbers for expressions, insofar as the exponent of 2 in the factorization of any expression is odd (the first element of any expression is a symbol and so has an odd number); and the exponent of 2 in the

<sup>&</sup>lt;sup>9</sup>There are many ways to do this, we pick just one.

factorization of any super Gödel number is even (the first element of a sequence is an expression and so has an even number).

Recall that  $\exp(n, i)$  returns the exponent of  $\pi_i$  in the prime factorization of n. So for a Gödel number n,  $\exp(n, i)$  returns the code of  $\alpha_i$ ; and for a super Gödel number n,  $\exp(n, i)$  returns the code of  $\mathcal{Q}_i$ .

Where  $\mathcal{P}$  is any expression, let  $\lceil \mathcal{P} \rceil$  be its Gödel number; and  $\lceil \mathcal{P} \rceil$  the standard numeral for its Gödel number. Indicate individual symbol codes with angle quotes around the symbol. So  $\langle \emptyset \rangle = 15$  but  $\lceil \emptyset \rceil = 2^{15}$  — for we take the number of the bracketed *expression*.

**Concatenation.** Suppose m and n number expressions or sequences of expressions. Then the function cncat(m, n) — ordinarily indicated  $m \star n$ , returns the Gödel number of the expression or sequence with Gödel number m followed by the expression or sequence with Gödel number n. So  $\lceil x \times y \rceil \star \rceil = \rceil = \lceil x \times y = z \rceil$ , for some numbered variables x, y and z. This function is (primitive) recursive. Recall that len(n) is recursive and returns the number of distinct prime factors of n. Set  $m \star n$  to,

 $(\mu x \leq B_{m,n})[x \geq 1 \land (\forall i < len(m))\{exp(x,i) = exp(m,i)\} \land (\forall i < len(n))\{exp(x,i+len(m)) = exp(n,i)\}]$ 

We search for the least number x (greater than or equal to one) such that exponents of initial primes in its factorization match the exponents of primes in m and exponents of primes later match eponents of primes in n. The bounded quantifiers take i < len(m) and i < len(n) insofar as len returns the number of primes, but exp(x, i) starts the list of primes at 0; so if len(m) = 3, its primes are  $\pi_0$ ,  $\pi_1$  and  $\pi_2$ . So the first len(m) exponents of x are the same as the exponents in m, and the next len(n) exponents of x are the same as the exponents in n.

To ensure that the function is recursive, we use the bounded least element quantifier as main operator, where  $B_{m,n}$  is the bound under which we search for x. In this case it is sufficient to set

$$\mathsf{B}_{\mathsf{m},\mathsf{n}} = \left(\pi_{\mathsf{len}(\mathsf{m}) + \mathsf{len}(\mathsf{n})}^{\mathsf{m}+\mathsf{n}}\right)^{\mathsf{len}(\mathsf{m}) + \mathsf{len}(\mathsf{n})}$$

The idea is that all the primes in x will be  $\leq \pi_{\text{len}(m)+\text{len}(n)}$ . And any exponent in the factorization of m must be  $\leq m$  and any exponent for n must be  $\leq n$ ; so that m + n is greater than any exponent in the factorization of x. So B results from multiplying a prime larger than any in x to a power greater than that of any in x together as many times as there are primes in x; so x must be smaller than B.

Observe that corresponding to association for multiplication  $(m \star n) \star o = m \star (n \star o)$ ; so we often drop parentheses for the concatenation operation. Also the requirement that  $m \star n \ge 1$  does not usually matter since we will be interested in cases with m, n > 1; it does, however have the advantage that  $m \star n$  is always equivalent to the product of its primes — where this will smooth results down the road (see, for example T13.47i,m).

**Terms and Atomics.** TERM(n) is true iff n is the Gödel number of a term. Think of the trees on which we show that an expression is a term. Put formally, for any term  $t_n$ , there is a *term sequence*  $t_0$ ,  $t_1 \dots t_n$  such that each expression is either,

a. Ø

- b. a variable
- c.  $St_i$  where  $t_i$  occurs earlier in the sequence
- d.  $+t_i t_j$  where  $t_i$  and  $t_j$  occur earlier in the sequence
- e.  $\times t_i t_i$  where  $t_i$  and  $t_i$  occur earlier in the sequence

where we represent terms in unabbreviated form. A term is the last element of such a sequence. Let us try to say this.

First, VAR(n) is true just in case n is the Gödel number of a variable — conceived as an expression, rather than a symbol. Then VAR is (primitive) recursive. Set,

$$VAR(n) =_{def} (\exists x \le n)(n = 2^{23+2x})$$

If there is such an x, then n must be the Gödel number of a variable. And it is clear that this x is less than n itself. So the result is recursive.

Now TERMSEQ(m, n) is true when m is the super Gödel number of a sequence of terms whose last member has Gödel number n. For TERMSEQ(m, n) set,

```
\begin{split} & \exp(m, \operatorname{len}(m) \stackrel{\cdot}{\to} 1) = n \wedge m > 1 \wedge (\forall k < \operatorname{len}(m)) \{ \\ & \exp(m, k) = \ulcorner \emptyset \urcorner \lor \operatorname{VAR}(\exp(m, k)) \lor \\ & (\exists j < k)[\exp(m, k) = \ulcorner S \urcorner \star \exp(m, j)] \lor \\ & (\exists i < k)(\exists j < k)[\exp(m, k) = \ulcorner + \urcorner \star \exp(m, i) \star \exp(m, j)] \lor \\ & (\exists i < k)(\exists j < k)[\exp(m, k) = \ulcorner \times \urcorner \star \exp(m, i) \star \exp(m, j)] \} \end{split}
```

Recall that len(m) returns the number of primes in the prime factorization of m; so supposing that m is other than zero or one,  $len(m) \ge 1$  and if there is one prime it

is  $\pi_0$ , if there are two primes they are  $\pi_0$  and  $\pi_1$ , etc. So the last member of the sequence has Gödel number n and any member of the sequence is a constant or a variable, or made up in the usual way by prior members.

Then set TERM(n) as follows,

 $\text{TERM}(n) =_{\text{def}} (\exists x \leq B_n) \text{TERMSEQ}(x, n)$ 

If some x numbers a term sequence for n, then n is a term. In this case, Gödel numbers of all prior members in a standard sequence ending in n are less than n. Further, the number of members in the sequence is the same as the number of variables and constants together with the number of function symbols in the term (one member for each variable and constant, and another corresponding to each function symbol); so the number of members in the sequence is the same as len(n); so all the primes in the sequence are <  $\pi_{len(n)}$ . So multiply  $\pi_{len(n)}^n$  together len(n) times and set  $B_n = (\pi_{len(n)}^n)^{len(n)}$ . We take a prime  $\pi_{len(n)}$  greater than all the primes in the sequence, and multiply it together as many times as there are members of the sequence. The result must be greater than x, the number of the term sequence.

Finally ATOMIC(n) is true iff n is the number of an atomic formula. The only atomic formulas of  $\mathcal{L}_{NT}$  are of the form  $=t_1t_2$ . So it is sufficient to set,

$$\mathsf{ATOMIC}(n) =_{\mathrm{def}} (\exists x \le n) (\exists y \le n) [\mathsf{TERM}(x) \land \mathsf{TERM}(y) \land n = \ulcorner = \urcorner \star x \star y]$$

Clearly the numbers of  $t_1$  and  $t_2$  are  $\leq n$  itself.

**Formulas.** WFF(n) is to be true iff n is the number of a (well-formed) formula. Again, think of the tree by which a formula is formed. There is a sequence of which each member is,

- a. an atomic
- b.  $\sim \mathcal{P}$  for some previous member of the sequence  $\mathcal{P}$
- c.  $(\mathcal{P} \to \mathcal{Q})$  for previous members of the sequence  $\mathcal{P}$  and  $\mathcal{Q}$
- d.  $\forall x \mathcal{P}$  for some previous member of the sequence  $\mathcal{P}$  and variable x

So, on the model of what has gone before, we let FORMSEQ(m, n) be true when m is the super Gödel number of a sequence of formulas whose last member has Gödel number n. For FORMSEQ(m, n) set, 
$$\begin{split} &\exp(m, \operatorname{len}(m) \stackrel{\cdot}{\to} 1) = n \wedge m > 1 \wedge (\forall k < \operatorname{len}(m)) \{ \\ &\operatorname{ATOMIC}(\exp(m, k)) \lor \\ &(\exists j < k)[\exp(m, k) = \ulcorner \sim \urcorner \star \exp(m, j)] \lor \\ &(\exists i < k)(\exists j < k)[\exp(m, k) = \ulcorner (\urcorner \star \exp(m, i) \star \ulcorner \rightarrow \urcorner \star \exp(m, j) \star \ulcorner) \urcorner] \lor \\ &(\exists i < k)(\exists j < n)[\lor R(j) \wedge \exp(m, k) = \ulcorner \lor \urcorner \star j \star \exp(m, i)] \} \end{split}$$

So a formula is the last member of a sequence each member of which is an atomic, or formed from previous members in the usual way. Clearly the number of a variable in an expression with number n is itself  $\leq n$ . Then,

WFF(n) =<sub>def</sub> ( $\exists x \leq B_n$ )FORMSEQ(x, n)

An expression is a formula iff there is a formula sequence of which it is the last member. Again, Gödel numbers of prior formulas in a standard sequence are  $\leq n$ . And there are as many members of the sequence as there are atomics and operator symbols in the formula numbered n. So all the primes are  $\leq \pi_{len(n)}$ ; so multiply  $\pi_{len(n)}^{n}$  together len(n) times and set  $B_n = (\pi_{len(n)}^{n})^{len(n)}$ .

**Sentential Proof.** PRFADS(m, n) is to be true iff m is the super Gödel number of a sequence of formulas that is a (sentential) proof of the formula with Gödel number n. We revert to the relatively simple axiomatic system of chapter 3. So, for example, A1 is of the sort,  $(\mathcal{P} \to (\mathcal{Q} \to \mathcal{P}))$ , and the only rule is MP. For the sentential case we need, AXIOMADS(n) true when n is the number of an axiom. For this,

 $\begin{aligned} &\text{AXIOMAD1}(n) =_{def} \quad (\exists x \leq n)(\exists y \leq n)[\text{WFF}(x) \land \text{WFF}(y) \land n = \lceil (\neg \star x \star \rceil \rightarrow \neg \star \rceil (\neg \star y \star \rceil \rightarrow \neg \star x \star \rceil)) \rceil \\ &\text{AXIOMAD2}(n) =_{def} \quad \text{Homework.} \\ &\text{AXIOMAD3}(n) =_{def} \quad \text{Homework.} \end{aligned}$ 

Then,

 $AXIOMADS(n) =_{def} AXIOMAD1(n) \lor AXIOMAD2(n) \lor AXIOMAD3(n)$ 

In the next section, we will add all the logical axioms plus the axioms for Q. But this is all that is required for proofs of theorems of sentential logic.

Now cnd(n, o) = m when  $n = \lceil \mathcal{P} \rceil$ ,  $o = \lceil \mathcal{Q} \rceil$  and  $m = \lceil (\mathcal{P} \rightarrow \mathcal{Q}) \rceil$ ; for good measure we include neg(n) and unv(v, n). And MP(m, n, o) is true when the formula with Gödel number o follows from ones with numbers m and n.

$$cnd(n, o) = \lceil (\neg \star n \star \rceil \to \neg \star o \star \rceil) \rceil$$

$$\begin{split} \mathsf{neg}(\mathsf{n}) &= \ulcorner \sim \urcorner \star \mathsf{n} \\ \mathsf{unv}(\mathsf{v},\mathsf{n}) &= \ulcorner \forall \urcorner \star \mathsf{v} \star \mathsf{n} \\ \\ \mathsf{MP}(\mathsf{m},\mathsf{n},\mathsf{o}) &=_{\mathrm{def}} \mathsf{cnd}(\mathsf{n},\mathsf{o}) = \mathsf{m} \end{split}$$

So for MP, m numbers the conditional, n its antecedent, and o the consequent.

And PRFADS(m, n) when m is the super Gödel number of a sequence that is a proof whose last member has Gödel number n. This works like TERMSEQ and FORMSEQ. For PRFADS set,

$$\begin{split} & \exp(m, \operatorname{len}(m) \stackrel{\cdot}{\rightarrow} 1) = n \land m > 1 \land (\forall k < \operatorname{len}(m)) \{ \\ & \text{AXIOMADS}(\exp(m, k)) \lor \\ & (\exists i < k)(\exists j < k) \mathsf{MP}(\exp(m, i), \exp(m, j), \exp(m, k)) \} \end{split}$$

So every formula is either an axiom or follows from previous members by MP. It is a significant matter to have shown that there is such a function! Again, in the next section, we will extend this notion to include the rule Gen.

This construction for PRFADS exhibits the essential steps that are required for the parallel relation PRFQ(m, n) for theorems of Q. That discussion is taken up in the following section, and adds considerable detail. It is not clear that the detail is required for understanding results to follow — though of course, to the extent that those results rely on the recursive PRFQ relation, the detail underlies *proof* of the results!

E12.26. Find Gödel numbers for each of the following. Treat the first as an expression, rather than as simple symbol; the last is a sequence of expressions. For the latter two, you need not do the calculation!

 $x_2$   $x_0 = x_1$   $x_0 = x_1, \emptyset = x_0, \emptyset = x_1$ 

- E12.27. Complete the cases for AXIOMAD2(n) and AXIOMAD3(n).
- E12.28. In chapter 8 we define the notion of a *normal* sentential form (p. 393). Supposing that our numbering system is modified to include  $\lceil \lor \rceil$  and  $\lceil \land \rceil$  and using ATOMIC from above, define a recursive relation NORM(n) for  $\mathcal{L}_{NT}$ . Hint: You will need a formula sequence to do this.

## **12.4.4** Completing the Construction

Quantifier rules for derivations include axioms like (A4),  $(\forall v \mathcal{P} \to \mathcal{P}_4^v)$  where term *s* is free for variable v in  $\mathcal{P}$ . This is easy enough to apply in practice. But it takes some work to represent. We tackle the problem piece-by-piece.

**Substitution in terms.** Say  $t = \lceil t \rceil$ ,  $v = \lceil v \rceil$ , and  $s = \lceil s \rceil$  for some terms *s*, *t*, and variable *v*. Then TERMSUB(t, v, s, u) is true when u is the Gödel number of  $t_s^v$ . For this, we begin with a term sequence (with Gödel number m) for *t*, and consider a parallel sequence, not necessarily a term sequence (with Gödel number n), that includes modified versions of the terms in the sequence with Gödel number m. For TSUBSEQ(m, n, t, v, s, u) set,

 $\begin{aligned} & \text{TERMSEQ}(m, t) \land \text{len}(m) = \text{len}(n) \land \exp(n, \text{len}(n) \doteq 1) = u \land (\forall k < \text{len}(m)) \{ \\ & [\exp(m, k) = \lceil \emptyset \rceil \land \exp(n, k) = \lceil \emptyset \rceil ] \lor \\ & [\text{VAR}(\exp(m, k)) \land \exp(m, k) \neq v \land \exp(n, k) = \exp(m, k)] \lor \\ & [\text{VAR}(\exp(m, k)) \land \exp(m, k) = v \land \exp(n, k) = s] \lor \\ & (\exists i < k)[\exp(m, k) = \lceil S \rceil \star \exp(m, i) \land \exp(n, k) = \lceil S \rceil \star \exp(n, i)] \lor \\ & (\exists i < k)(\exists j < k)[\exp(m, k) = \lceil + \rceil \star \exp(m, i) \star \exp(m, j) \land \exp(n, k) = \lceil + \rceil \star \exp(n, i) \star \exp(n, j)] \lor \\ & (\exists i < k)(\exists j < k)[\exp(m, k) = \lceil \times \rceil \star \exp(m, i) \star \exp(m, j) \land \exp(n, k) = \lceil \times \rceil \star \exp(n, i) \star \exp(n, j)] \end{aligned}$ 

So the sequence for  $t_4^v$  (numbered by n) is like one of our "unabbreviating trees" from chapter 2. In any place where the sequence for t (numbered by m) numbers  $\emptyset$ , the sequence for  $t_4^v$  numbers  $\emptyset$ . Where the sequence for t numbers a variable other than v, the sequence for  $t_4^v$  numbers the same variable. But where the sequence for t numbers variable v, the sequence for  $t_4^v$  numbers  $\vartheta$ . Then later parts are built out of prior in parallel. The second sequence may not itself be a *term* sequence, insofar as it need not include all the antecedents to  $\vartheta$  (just as an unabbreviating tree would not include all the parts of a resultant term or formula).

Now set TERMSUB(t, v, s, u) as follows,

$$\mathsf{TERMSUB}(\mathsf{t},\mathsf{v},\mathsf{s},\mathsf{u}) =_{\mathsf{def}} (\mathsf{\exists}\mathsf{x} \leq \mathsf{X})(\mathsf{\exists}\mathsf{y} \leq \mathsf{Y})\mathsf{TSUBSEQ}(\mathsf{x},\mathsf{y},\mathsf{t},\mathsf{v},\mathsf{s},\mathsf{u})$$

In this case, reasoning as for WFF, the Gödel numbers in a standard sequence with number m are less than t and numbers in the sequence with number n less than u. And primes in the sequence range up to  $\pi_{len(t)}$ . So it is sufficient to set  $X = (\pi_{len(t)}^{t})^{len(t)}$  and  $Y = (\pi_{len(t)}^{u})^{len(t)}$ .

Substitution in atomics. Say  $p = \lceil \mathcal{P} \rceil$ ,  $v = \lceil v \rceil$ , and  $s = \lceil s \rceil$  for some atomic formula  $\mathcal{P}$ , variable v and term s. Then ATOMSUB(p, v, s, q) is true when q is the Gödel number of  $\mathcal{P}_s^v$ . The condition is straightforward given TERMSUB. For ATOMSUB(p, v, s, q),

 $(\texttt{Ja} \leq p)(\texttt{Ja}' \leq q)(\texttt{Jb}' \leq q)[\texttt{Term}(a) \land \texttt{Term}(b) \land p = \ulcorner = \urcorner \star a \star b \land \texttt{Termsub}(a, v, s, a') \land \texttt{Termsub}(b, v, s, b') \land q = \ulcorner = \urcorner \star a' \star b']$ 

 $\mathcal{P}_4^v$  simply substitutes into the terms on either side of the equal sign.

Substitution into formulas. Where  $p = \lceil \mathcal{P} \rceil$ ,  $v = \lceil v \rceil$ , and  $s = \lceil s \rceil$  for an arbitrary formula  $\mathcal{P}$ , variable v and term s, FORMSUB(p, v, s, q) is true when q is the Gödel number of  $\mathcal{P}_{s}^{v}$ . In the general case,  $\mathcal{P}_{s}^{v}$  is complicated insofar as s replaces only *free* instances of v. Again, we build a parallel sequence with number n. No replacements are carried forward in subformulas beginning with a quantifier binding instances of variable v. For FSUBSEQ(m, n, p, v, s, q) set,

 $\begin{aligned} & \text{FORMSEQ}(m, p) \land \text{len}(m) = \text{len}(n) \land \exp(n, \text{len}(n) - 1) = q \land (\forall k < \text{len}(m)) \\ & [\text{ATOMIC}(\exp(m, k)) \land \text{ATOMSUB}(\exp(m, k), v, s, \exp(n, k))] \lor \\ & (\exists i < k)[\exp(m, k) = \text{neg}(\exp(m, i)) \land \exp(n, k) = \text{neg}(\exp(n, i))] \lor \\ & (\exists i < k)(\exists j < k)[\exp(m, k) = \text{cnd}(\exp(m, i), \exp(m, j)) \land \exp(n, k) = \text{cnd}(\exp(n, i), \exp(n, j))] \lor \\ & (\exists i < k)(\exists j < p)[\text{VAR}(j) \land j \neq v \land \exp(m, k) = \text{unv}(j, \exp(m, i)) \land \exp(n, k) = \text{unv}(j, \exp(n, i))] \lor \\ & (\exists i < k)(\exists j < p)[\text{VAR}(j) \land j \neq v \land \exp(m, k) = \text{unv}(j, \exp(m, i)) \land \exp(n, k) = \exp(m, k)] \end{aligned}$ 

So substitutions are made in atomics, and carried forward in the parallel sequence — so long as no quantifier binds variable v, at which stage, the sequence reverts to the form without substitution.

And FORMSUB(p, v, s, q) is,

 $\texttt{FORMSUB}(p, v, s, q) \ =_{\texttt{def}} \ (\textbf{\textbf{B}} x \leq X)(\textbf{\textbf{B}} y \leq Y)\texttt{FSUBSEQ}(x, y, p, v, s, q)$ 

Again, set  $X = \left(\pi_{len(p)}^{p}\right)^{len(p)}$  and  $Y = \left(\pi_{len(p)}^{q}\right)^{len(p)}$ .

Given FORMSUB(p, v, s, q), there is a corresponding function formusb(p, v, s) =  $(\mu q \le Z)$ FORMSUB(p, v, s, q). In this case, the number of symbols in  $\mathcal{P}_4^v$  is sure to be no greater than the number of symbols in  $\mathcal{P}$  times the number of symbols in  $\mathfrak{s}$ . And any symbol is  $\mathfrak{s}$  or an element of  $\mathcal{P}$ ; so the Gödel number of each symbol is no greater than the maximum of p and s and thus p + s. So it is sufficient to set  $Z = \left(\pi_{\text{len}(p) \times \text{len}(s)}^{p+s}\right)^{\text{len}(p) \times \text{len}(s)}$ . Again, we take a prime at least great as that of any symbol, to a power greater than that of any exponent, and multiply it as many times as there are symbols.

**Free and bound variables.** FREE(p, v) is true when v is the Gödel number of a variable that is free in a term or formula with Gödel number p. For a given variable  $x_i$  initially assigned number 23 + 2i,  $\lceil x_i \rceil = 2^{23+2i}$ ; and  $\lceil x_{i+1} \rceil \times 2^2 = 2^{23+2i+2i}$  is the number of the next variable. In particular then, for v the number of a variable,  $v \times 2^2$  (that is  $v \times 4$ ) numbers a different variable. The idea is that if there is some change in an expression upon substitution of a variable different from v, then v must have been free in the original expression. For terms and formulas respectively,

```
\begin{aligned} \mathsf{FREEt}(t, \mathsf{v}) \ =_{\mathrm{def}} & \sim \mathsf{TERMSUB}(t, \mathsf{v}, \mathsf{v} \times 4, t) \\ \mathsf{FREEf}(\mathsf{p}, \mathsf{v}) \ =_{\mathrm{def}} & \sim \mathsf{FORMSUB}(\mathsf{p}, \mathsf{v}, \mathsf{v} \times 4, \mathsf{p}) \end{aligned}
```

So v is free if the result upon substitution is other than the original expression.

Given FREEf(p, v), it is a simple matter to specify SENT(n) true when n numbers a sentence.

 $\texttt{SENT}(n) =_{\texttt{def}} \texttt{WFF}(n) \land (\forall x < n)[\texttt{VAR}(x) \rightarrow \thicksim{\texttt{FREEf}(n, x)}]$ 

So n numbers a sentence if it numbers a formula and nothing is a number of a variable free in the formula numbered by n.

Finally, suppose  $s = \lceil s \rceil$  and  $v = \lceil v \rceil$ ; then FREEFOR(s, v, u) is true iff s is free for v in the formula numbered by u. For this, we set up a modified formula sequence, that identifies just "admissable" subformulas — ones where s is free for v in the formula numbered by u. For FFSEQ(m, s, v, u) set,

$$\begin{split} & \exp(m, \operatorname{len}(m) \stackrel{\cdot}{\rightarrow} 1) = u \wedge m > 1 \wedge (\forall k < \operatorname{len}(m)) \{ \\ & \operatorname{ATOMIC}(\exp(m, k)) \vee \\ & (\exists j < k)[\exp(m, k) = \operatorname{neg}(\exp(m, j))] \vee \\ & (\exists i < k)(\exists j < k)[\exp(m, k) = \operatorname{cnd}(\exp(m, i), \exp(m, j))] \vee \\ & (\exists p \leq u)[\mathsf{WFF}(p) \wedge \exp(m, k) = \operatorname{unv}(v, p)] \vee \\ & (\exists i < k)(\exists j \leq u)[\mathsf{VAR}(j) \wedge j \neq v \wedge (\sim \mathsf{FREEt}(s, j) \vee \sim \mathsf{FREEf}(\exp(m, i), v)) \wedge \exp(m, k) = \operatorname{unv}(j, \exp(m, i))] \} \end{split}$$

If the main operator of a subformula Q binds variable v, then no variables in s are bound upon substitution, because there are no substitutions — as only free instances of v are replaced; observe that this Q need not appear earlier in the sequence, as any formula with the v quantifier satisfies the condition. Alternatively, if the main operator binds a different variable, we require either that the variable is not free in s(so that no instances are bound upon substitution) or that v is not free in Q (so that there are no substitutions). Given this,

 $\mathsf{FREEFOR}(s,v,u) =_{\mathsf{def}} (\exists x \leq \mathsf{B}_u) \mathsf{FFSEQ}(x,s,v,u)$ 

In this case, every member of the sequence for FFSEQ is a member of the FORMSEQ for u so  $B_u$  may be set as before.

**Proofs.** After all this work, we are finally ready for all the axioms of AD and of Q. AXIOMAD4(n) obtains when n is the Gödel number of an instance of A4. Intuitively, AXIOMAD4(n) just in case there is an s such that,

 $(\exists p \le n)(\exists v \le n)[wFF(p) \land VAR(v) \land TERM(s) \land FREEFOR(s, v, p) \land n = cnd(unv(v, p), formsub(p, v, s))]$ 

So there is a formula  $\mathcal{P}$ , variable v and term s where s is free for v in  $\mathcal{P}$ ; and the axiom is of the form,  $(\forall v \mathcal{P} \to \mathcal{P}_s^v)$ . Unfortunately, our statement is inadequate insofar as s is left free. We cannot simply supply a prefix  $\exists s$  as the result would not be recursively specified. It is tempting to add a bounded  $(\exists s \leq n)$  with the idea that the number of s must be smaller than the number of  $\mathcal{P}_s^v$ . This almost works. The difficulty is the (rarely encountered) situation where the quantified variable v is not free in  $\mathcal{P}$  (as when a quantifier is added to some  $\mathcal{P}$  that is already a sentence); in this case,  $\mathcal{P}_s^v$  is just  $\mathcal{P}$ , and there is nothing to say that s is less than n. Here is a way to do the job. Set AXIOMAD4(n) as,

$$\begin{split} (\exists p \leq n)(\exists v \leq n)\{ & \text{WFF}(p) \land \text{VAR}(v) \land [\\ (\sim & \text{FREE}(v,p) \land n = \text{cnd}(unv(v,p),p)) \lor \\ (\exists s \leq n)(\text{FREE}(v,p) \land \text{TERM}(s) \land \text{FREEFOR}(s,v,p) \land n = \text{cnd}(unv(v,p),\text{formsub}(p,v,s))] \} \end{split}$$

When  $\sim$ FREE(v, p), p = formsub(p, v, s); and when FREE(v, p), s  $\leq$  formsub(p, v, s). Either way, n is set to cnd(unv(v, p), formsub(p, v, s)). The result, then is primitive recursive and equivalent to our original intuitive specification.

Given what we have done, AXIOMAD5(n) is straightforward. GEN(m, n) holds when n is the Gödel number of a formula that follows by Gen from a formula with Gödel number m. And axioms for equality are not hard. A couple are worked as examples. For AXIOMAD6(n),

 $\texttt{AXIOMAD6}(n) \ =_{\texttt{def}} \ (\textbf{\exists} v \le n)[\texttt{VAR}(v) \land n = v \star \ulcorner = \urcorner \star v]$ 

For "simplicity" I drop the unabbreviated style of the original formulas. Axiom seven is of the sort,  $(x_i = y) \rightarrow (\hbar^n x_1 \dots x_i \dots x_n = \hbar^n x_1 \dots y \dots x_n)$  for relation symbol  $\hbar$  and variables  $x_1 \dots x_n$  and y. In  $\mathcal{L}_{NT}$  the function symbol is S, + or  $\times$ . Because just a single replacement is made, we do not want to use TERMSUB. However, we are in a position simply to list all the combinations in which one variable is replaced. So, for AXIOMAD7(n),  $\begin{aligned} (\exists s \le n)(\exists t \le n)(\exists x \le n)(\exists y \le n)\{\text{VAR}(x) \land \text{VAR}(y) \land n = \ulcorner(=\urcorner \star x \star y \star \urcorner \rightarrow = \urcorner \star s \star t \star \urcorner) \urcorner \land \\ ([s = \ulcornerS \urcorner \star x \land t = \ulcornerS \urcorner \star y] \lor \\ (\exists z < n)[\text{VAR}(z) \land ((s = \urcorner + \urcorner \star x \star z \land t = \urcorner + \urcorner \star y \star z) \lor (s = \urcorner + \urcorner \star z \star x \land t = \urcorner + \urcorner \star z \star y))] \lor \\ (\exists z < n)[\text{VAR}(z) \land ((s = \urcorner x \urcorner \star x \star z \land t = \urcorner x \urcorner \star y \star z) \lor (s = \urcorner x \land x \land t = \urcorner x \urcorner x \land t = \urcorner x \urcorner x \lor y)]) \end{aligned}$ 

So there is a term s and a term t which replaces one instance of x in s with y. Then the axiom is of the sort  $=xy \rightarrow =st$ . Axiom eight is similar. It is stated in terms of atomics of the sort  $\mathcal{R}^n x_1 \dots x_n$  for relation symbol  $\mathcal{R}$  and variables  $x_1 \dots x_n$ . In  $\mathcal{L}_{NT}$  the relation symbol is the equals sign, so these atomics are of the form, x = y. Again, because just a single replacement is made, we do not want to use FORMSUB. However, we may proceed by analogy with AXIOMAD7. This is left as an exercise. Thus we have a complete AXIOMAD and with that PRFAD. For the latter, it is convenient to introduce a relation ICON(m, n, 0) true when the formula with Gödel number o is an *immediate consequence* of ones numbered m and n

$$\mathsf{ICON}(\mathsf{m},\mathsf{n},\mathsf{o}) =_{\mathsf{def}} \mathsf{MP}(\mathsf{m},\mathsf{n},\mathsf{o}) \lor (\mathsf{m} = \mathsf{n} \land \mathsf{GEN}(\mathsf{n},\mathsf{o}))$$

The axioms of Q are particular sentences. So, for example, axiom Q2 is of the sort,  $(Sx = Sy) \rightarrow (x = y)$ . Let x and y be  $x_0$  and  $x_1$  respectively. Then,

$$AXIOMQ2(n) =_{def} n = \lceil (Sx = Sy) \rightarrow (x = y) \rceil$$

For "ease of reading," I do not reduce it to unabbreviated form. Other axioms of Q may be treated in the same way. And now it is straightforward to produce AXIOMQ(n) and PRFQ(m, n).

It is worth noting that with AXIOMPA7(n),

$$\begin{split} (\textbf{J}p \leq n)(\textbf{J}v \leq n)[\text{WFF}(p) \land \text{VAR}(v) \land n = \\ & \text{cnd}(\text{neg}(\text{cnd}(\text{formsub}(p, v, \lceil \mathcal{O} \rceil), \text{neg}(\text{unv}(v, \text{cnd}(p, \text{formsub}(p, v, \lceil \mathcal{S} \rceil \star v))))), \text{unv}(v, p))] \end{split}$$

we have also AXIOMPA(n) and PRFPA(m, n) for PA.<sup>10</sup>

It is a significant matter to have found these functions. Now we put them to work.

\*E12.29. (i) Complete the construction with recursive relations for AXIOMAD5(n), GEN(m, n), AXIOMAD8(n), and so AXIOMAD(n) and PRFAD(m, n). (ii) Complete the remaining axioms for Robinson arithmetic, and then AXIOMQ(n) and PRFQ(m, n). (iii) Construct also AXIOMQP(n), like AXIOMQ less AXIOMQ7, and then AXIOMPA(n) and PRFPA(m, n).

<sup>10</sup>If you follow it out, the last line above unpacks to,

```
\lceil (\sim (\urcorner * \text{ formsub}(\mathsf{p},\mathsf{v},\ulcorner \emptyset \urcorner) * \ulcorner \to \sim \forall \urcorner * \mathsf{v} * \ulcorner (\urcorner * \mathsf{p} * \ulcorner \to \urcorner * \text{ formsub}(\mathsf{p},\mathsf{v},\ulcorner S \urcorner * \mathsf{v}) * \ulcorner)) \to \forall \urcorner * \mathsf{v} * \mathsf{p} * \ulcorner) \urcorner
```

which numbers instances of PA7 (where the conjunction is unpacked to its primitive form).

E12.30. Supposing now that our numbering system is modified to include  $\lceil \lor \rceil$ ,  $\lceil \land \rceil$ and  $\lceil \exists \urcorner$ , and with the obvious modification of FORMSEQ to accommodate the new operators and with functions dsj, cnj and exs, construct function UNABBSEQ(m, n, p, q) such that m numbers a formula sequence for p (which may contain abbreviations) and n numbers a sequence whose last member is the unabbreviated version of p. Then construct UNABB(p, q) where q is the number of the unabbreviation of p. Hint you may want to think again about "unabbreviating trees" from chapter 2 along with FSUBSEQ as a model.

# 12.5 Essential Results

In this section, we develop some first fruits of our labor. We shall need some initial theorems, important in their own right. With these theorems in hand, our results follow in short order. The results are developed and extended in later chapters. But it is worth putting them on the table at the start. (And some results at this stage provide a fitting cap to our labors.) We have expended a great deal of energy showing that, under appropriate conditons, recursive functions can be expressed and captured, and then that there exist certain recursive functions and relations including PRFQ. Now we put these results to work.

## **12.5.1 Preliminary Theorems**

A couple of definitions: If f is a function from (an initial segment of) N onto some set — so that the objects in the set are f(0), f(1)... say f *enumerates* the members of the set. A set is *recursively* enumerable if there is a recursive function that enumerates it. Also, say T is a *recursively axiomatized* formal theory if there is a recursive relation PRFT(m, n) which holds just in case m is the super Gödel number of a proof in T of the formula with Gödel number n. We have seen that Q is recursively axiomatized; but so is PA and any reasonable theory whose axioms and rules are recursively described.

T12.17. If T is a recursively axiomatized formal theory then the set of theorems of T is recursively enumerable.

Consider pairs (p, t) where p numbers a proof of the theorem numbered t, each such pair itself associated with a number,  $2^p \times 3^t$ . Then there is a recursive function from the integers to these *codes* as follows.

 $\text{code}(0) = \mu z (\exists p < z) (\exists t < z) [z = 2^p \times 3^t \land \text{PRFT}(p, t)]$ 

# First Results of Chapter 12

- T12.1 For an interpretation with the required variable-free terms: (a) If  $\mathcal{R}$  is a relation symbol and R is a relation, and  $I[\mathcal{R}] = R(x_1 \dots x_n)$ , then  $R(x_1 \dots x_n)$  is expressed by  $\mathcal{R}x_1 \dots x_n$ . And (b) if  $\hbar$  is a function symbol and h is a function and  $I[\hbar] = h(x_1 \dots x_n)$  then  $h(x_1 \dots x_n)$  is expressed by  $\hbar x_1 \dots x_n = v$ .
- T12.2 Suppose total function  $f(x_1...x_n)$  is expressed by formula  $\mathcal{F}(x_1...x_n, y)$ ; then if  $\langle \langle \mathsf{m}_1...\mathsf{m}_n \rangle, \mathsf{a} \rangle \notin \mathsf{f}, \mathsf{I}[\sim \mathcal{F}(\overline{\mathsf{m}}_1...\overline{\mathsf{m}}_n, \overline{\mathsf{a}})] = \mathsf{T}.$
- T12.3 On the standard interpretation N of  $\mathcal{L}_{NT}$ , each recursive function  $f(\vec{x})$  is expressed by some formula  $\mathcal{F}(\vec{x}, v)$ . Corollary: On the standard interpretation N of  $\mathcal{L}_{NT}$ , each recursive relation  $R(\vec{x})$  is expressed by some formula  $\mathcal{R}(\vec{x})$ .
- T12.4 If *T* includes Q and total function  $f(x_1 ... x_n)$  is captured by formula  $\mathcal{F}(x_1 ... x_n, y)$  so that conditions (f.i) and (f.ii) hold, then if  $\langle \langle \mathsf{m}_1 ... \mathsf{m}_n \rangle, \mathsf{a} \rangle \notin \mathsf{f}$  then  $T \vdash \sim \mathcal{F}(\overline{\mathsf{m}}_1 ... \overline{\mathsf{m}}_n, \overline{\mathsf{a}})$ .
- T12.5 On the standard interpretation N for  $\mathcal{L}_{NT}$ , (i)  $N_d[s \le t] = S$  iff  $N_d[s] \le N_d[t]$ , and (ii)  $N_d[s < t] = S$  iff  $N_d[s] < N_d[t]$ .
- T12.6 On the standard interpretation N for  $\mathcal{L}_{NT}$ , (i)  $N_d[(\forall x \le t)\mathcal{P}] = S$  iff for every  $m \le N_d[t], N_{d(x|m)}[\mathcal{P}] = S$  and (ii),  $N_d[(\forall x < t)\mathcal{P}] = S$  iff for every  $m < N_d[t], N_{d(x|m)}[\mathcal{P}] = S$ .
- T12.7 On the standard interpretation N for  $\mathcal{L}_{NT}$ , (i)  $N_d[(\exists x \leq t)\mathcal{P}] = S$  iff for some  $m \leq N_d[t], N_{d(x|m)}[\mathcal{P}] = S$  and (ii),  $N_d[(\exists x < t)\mathcal{P}] = S$  iff for some  $m < N_d[t], N_{d(x|m)}[\mathcal{P}] = S$ .
- T12.8 For any  $\Delta_0$  sentence  $\mathscr{P}$ , if  $\mathsf{N}[\mathscr{P}] = \mathsf{T}$ , then  $Q \vdash_{ND} \mathscr{P}$ , and if  $\mathsf{N}[\mathscr{P}] \neq \mathsf{T}$ , then  $Q \vdash_{ND} \sim \mathscr{P}$ .
- T12.9 For any  $\Sigma_1$  sentence  $\mathcal{P}$  if  $\mathsf{N}[\mathcal{P}] = \mathsf{T}$ , then  $\mathsf{Q} \vdash_{ND} \mathcal{P}$ .
- T12.10 The original formula by which any recursive function is expressed is  $\Sigma_1$ .
- T12.11 On the standard interpretation N for  $\mathcal{L}_{NT}$ , any recursive formula is captured by the original formula by which it is expressed in Q<sub>s</sub>.
- T12.12 Suppose  $f(\vec{x}, y)$  results by recursion from functions  $g(\vec{x})$  and  $h(\vec{x}, y, u)$  where  $g(\vec{x})$  is captured by some  $\mathscr{G}(\vec{x}, z)$  and  $h(\vec{x}, y, u)$  by  $\mathscr{H}(\vec{x}, y, u, z)$ . Then for the original expression  $\mathscr{F}(\vec{x}, y, z)$  of  $f(\vec{x}, y)$ , if  $\langle \langle m_1 \dots m_b, n \rangle, a \rangle \in f$ ,  $Q_s \vdash \forall w[\mathscr{F}(\overline{m}_1 \dots \overline{m}_b, \overline{n}, w) \rightarrow w = \overline{a}]$ .
- T12.13 If a total function  $f(x_1 \dots x_n)$  is expressed by a  $\Delta_0$  formula  $\mathcal{F}(x_1 \dots x_n, y)$ , then there is a  $\Delta_0$  formula  $\mathcal{F}'$  that captures f in Q.
- T12.14 For  $\mathcal{F}'(\vec{x}, y) =_{def} \mathcal{F}(\vec{x}, y) \land (\forall z \leq y) [\mathcal{F}(\vec{x}, z) \rightarrow z = y]$ , and for any n,  $\mathbf{Q} \vdash \forall \vec{x} \forall y [(\mathcal{F}'(\vec{x}, \overline{n}) \land \mathcal{F}'(\vec{x}, y)) \rightarrow y = \overline{n}].$
- T12.15 If  $\mathcal{F}(\vec{x}, y)$  expresses a total  $f(\vec{x})$ , then  $\mathcal{F}'(\vec{x}, y) = \mathcal{F}(\vec{x}, y) \land (\forall z < y)[\mathcal{F}(\vec{x}, z) \rightarrow z = y]$  expresses  $f(\vec{x})$ .
- T12.16 Any recursive function is captured by a  $\Sigma_1$  formula in Q. Corollary: Any recursive relation is captured by a  $\Sigma_1$  formula in Q.

$$code(Sn) = \mu z(\exists p < z)(\exists t < z)[z > code(n) \land z = 2^p \times 3^t \land PRFT(p, t)]$$

So 0 is associated with the least integer that codes a proof of a sentence, 1 with the next, and so forth. Then,

$$enum(n) = exp(code(n), 1)$$

returns the Gödel number of theorem n in this ordering.

Recall that  $\pi_1$  is 3; so exp(code(n), 1) returns the number of the proved formula. A given theorem might appear more than once in the enumeration, corresponding to codes with different proofs of it, but this is no problem, as each theorem appears in some position(s) of the list. Observe that we have, for the first time, made use of regular minimization — so that this function is recursive but not *primitive* recursive. Supposing that *T* has an infinite number of theorems, there is always some z at which the characteristic function upon which the minimization operates returns zero — so that the function is well-defined. So the theorems of a recursively axiomatized formal theory *T* are recursively enumerable.

Suppose we add that *T* is consistent and negation complete. Then there is a recursive relation THRMT(p) true just of numbers for theorems of *T*: Intuitively, we can enumerate the theorems; then if *T* is consistent and negation complete, for any sentence  $\mathcal{P}$ , exactly one of  $\mathcal{P}$  or  $\sim \mathcal{P}$  must show up in the enumeration. So we can search through the list until we find either  $\mathcal{P}$  or  $\sim \mathcal{P}$  — and if the one we find is  $\mathcal{P}$ , then  $\mathcal{P}$  is a theorem. In particular, we find  $\mathcal{P}$  or  $\sim \mathcal{P}$  at the position,  $\mu n[\text{enum}(n) = \lceil \mathcal{P} \rceil \lor \text{enum}(n) = \lceil \sim \mathcal{P} \rceil]$ . Recall that if p is the number of a formula  $\mathcal{P}$ , neg(p) is the number of  $\sim \mathcal{P}$ . Then,

T12.18. For any recursively axiomatized, consistent, negation complete formal theory T there is a recursive relation THRMT(p) true just in case p numbers a theorem of T. Set,

$$pos(p) = \mu n([\sim SENT(p) \land n = 0] \lor [SENT(p) \land (enum(n) = p \lor enum(n) = neg(p))])$$

THRMT(p) 
$$=_{def}$$
 enum(pos(p)) = p

First, pos(p) takes one of three values: if p does not number a sentence it is just 0; if p appears in the enumeration of theorems it is the position of p; and if neg(p) appears in the enumeration of theorems, it is the position of neg(p). Then THRMT(p) is true

just in case pos takes the second option — just in case p numbers a sentence and p rather than neg(p) appears in the enumeration of theorems. Observe that pos(p) returns 0 both when p does not number a sentence, and when p is the number of the first theorem in the enumeration. But when pos(p) = 0, enum(pos(p)) always numbers the first theorem of the enumeration — so that if p is not the number of a sentence THRMT(p) is false, and when p is the number of the first theorem it is true (as it should be). Again, we appeal to regular minimization. It is only because T is negation complete that the function to which the minimization operator applies is regular. So long as p numbers a sentence, the characteristic function for the second square brackets is sure to go to zero for one disjunct or the other, and when p does not number a sentence, the function for the first square brackets goes to zero. So the function is well-defined.

Now consider a formula  $\mathcal{P}(x)$  with free variable x. The *diagonalization* of  $\mathcal{P}$  is the formula  $\exists x (x = \overline{\mathcal{P}^{\neg}} \land \mathcal{P}(x))$ . So the diagonalization of  $\mathcal{P}$  is true just when  $\mathcal{P}$  applies to its own Gödel number. To understand this nomenclature, consider a grid with formulas listed down the left in order of their Gödel numbers and the integer Gödel numbers across the top.

|                      | а                                            | b                                            | С                                                     | • • • |
|----------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------|-------|
| $\mathcal{P}_{a}(x)$ | $\boldsymbol{\mathcal{P}}_{a}(\overline{a})$ | $\mathscr{P}_{a}(\overline{b})$              | $\mathscr{P}_{a}(\overline{c})$                       |       |
| $\mathcal{P}_{b}(x)$ | $\mathscr{P}_{b}(\overline{a})$              | $\boldsymbol{\mathscr{P}}_{b}(\overline{b})$ | $\mathscr{P}_{b}(\overline{c})$                       |       |
| $\mathcal{P}_{c}(x)$ | $\mathscr{P}_{c}(\overline{a})$              | $\mathscr{P}_{c}(\overline{b})$              | $\boldsymbol{\mathscr{P}_{c}}(\overline{\mathbf{c}})$ |       |
| :                    |                                              |                                              |                                                       |       |

So, going down the main diagonal, formulas are of the sort  $\mathcal{P}_n(\overline{n})$  where the formula numbered n is applied to its Gödel number n.

Let num(n) be the Gödel number of the standard numeral for n. So,

 $num(0) = \lceil \emptyset \rceil$  $num(Sy) = \lceil S \rceil \star num(y)$ 

So num is (primitive) recursive. Now diag(n) is the Gödel number of the diagonalization of the formula with Gödel number n.

diag(n) 
$$=_{def} \exists x (x = \forall \star num(n) \star \forall \land \forall \star n \star \forall) \forall$$

It should be clear enough how to unabbreviate  $\lceil \exists \rceil$  and  $\lceil \land \rceil$ . Since diag(n) is recursive, for any theory *T* extending Q there is a formula Diag(x, y) that captures it. So if diag(m) = n, then  $T \vdash Diag(\overline{m}, \overline{n})$  and  $T \vdash \forall z[Diag(\overline{m}, z) \rightarrow z = \overline{n}]$ .

T12.19. Let T be any theory that extends Q. Then for any formula  $\mathcal{F}(y)$  containing just the variable y free, there is a sentence  $\mathcal{H}$  such that  $T \vdash \mathcal{H} \leftrightarrow \mathcal{F}(\overline{\lceil \mathcal{H} \rceil})$ . The *Diagonal Lemma*.

Suppose *T* extends Q; since diag(n) is recursive, there is a formula Diag(x, y) that captures diag. Let  $\mathcal{A}(x) =_{def} \exists y [\mathcal{F}(y) \land Diag(x, y)]$  and  $\mathbf{a} = \lceil \mathcal{A} \rceil$ , the Gödel number of  $\mathcal{A}$ . Intuitively,  $\mathcal{A}$  says  $\mathcal{F}$  applies to the diagonalization of *x*. Then set  $\mathcal{H} =_{def} \exists x (x = \overline{\mathbf{a}} \land \exists y [\mathcal{F}(y) \land Diag(x, y)])$  and  $\mathbf{h} = \lceil \mathcal{H} \rceil$ , the Gödel number of  $\mathcal{H}$ .  $\mathcal{H}$  is the diagonalization of  $\mathcal{A}$ ; so diag( $\mathbf{a}$ ) =  $\mathbf{h}$ . Intuitively, then  $\mathcal{H}$  says that  $\mathcal{F}$  applies to the diagonalization of  $\mathcal{A}$ , which is just to say that according to  $\mathcal{H}, \mathcal{F}(\lceil \mathcal{H} \rceil)$ . Reason as follows.

| 1.  | $\mathcal{H} \leftrightarrow \exists x (x = \overline{a} \land \exists y [\mathcal{F}(y) \land Diag(x, y)])$            | from def $\mathcal H$                               |
|-----|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 2.  | $Diag(\overline{a},\overline{h})$                                                                                       | from capture                                        |
| 3.  | $\forall z (Diag(\overline{\mathbf{a}}, z) \to z = \overline{\mathbf{h}})$                                              | from capture                                        |
| 4.  | $\mathcal{H}$                                                                                                           | $\mathbf{A}\left(g\leftrightarrow\mathbf{I}\right)$ |
| 5.  | $\exists x (x = \overline{\mathbf{a}} \land \exists y [\mathcal{F}(y) \land Diag(x, y)])$                               | $1,4 \leftrightarrow E$                             |
| 6.  | $ j = \overline{a} \land \exists y [\mathcal{F}(y) \land Diag(j, y)] $                                                  | A ( $g$ 5 $\exists$ E)                              |
| 7.  | $j = \overline{a}$                                                                                                      | 6 ^E                                                |
| 8.  | $\exists y [\mathcal{F}(y) \land Diag(j, y)]$                                                                           | $6 \land E$                                         |
| 9.  | $\mathcal{F}(k) \wedge Diag(j,k)$                                                                                       | A ( $g \ 8\exists E$ )                              |
| 10. | $      \mathcal{F}(k)$                                                                                                  | 9 ∧E                                                |
| 11. | $ $ $Diag(j,k)$                                                                                                         | 9 ∧E                                                |
| 12. | $Diag(\overline{\mathbf{a}},k)$                                                                                         | 11,7 =E                                             |
| 13. | $Diag(\overline{a},k) \rightarrow k = \overline{h}$                                                                     | 3 ∀E                                                |
| 14. | $      k = \overline{h}$                                                                                                | $13,12 \rightarrow E$                               |
| 15. | $      \mathcal{F}(\overline{h})$                                                                                       | 10,14 = E                                           |
| 16. | $\mathcal{F}(\bar{h})$                                                                                                  | 8,9-15 ∃E                                           |
| 17. | $\left  \mathcal{F}(\bar{h}) \right $                                                                                   | 5,6-16 ∃E                                           |
| 18. | $\mathcal{F}(\bar{h})$                                                                                                  | A $g \leftrightarrow I$                             |
| 19. | $\mathcal{F}(\overline{h}) \wedge Diag(\overline{a},\overline{h})$                                                      | 18,2 ∧I                                             |
| 20. | $\exists y [\mathcal{F}(y) \land Diag(\overline{\mathbf{a}}, y)]$                                                       | 19 ∃I                                               |
| 21. | $\overline{a} = \overline{a}$                                                                                           | =I                                                  |
| 22. | $\overline{\mathbf{a}} = \overline{\mathbf{a}} \wedge \exists y [\mathcal{F}(y) \wedge Diag(\overline{\mathbf{a}}, y)]$ | 21,20 ∧I                                            |
| 23. | $\exists x (x = \overline{\mathbf{a}} \land \exists y [\mathcal{F}(y) \land Diag(x, y)])$                               | 22 ∃I                                               |
| 24. | $ \mathcal{H} $                                                                                                         | $1,23 \leftrightarrow E$                            |
| 25. | $\mathcal{H} \leftrightarrow \mathcal{F}(\bar{h})$                                                                      | 4-17,18-24 ↔I                                       |
| 26. | $\mathcal{H} \leftrightarrow \mathcal{F}(\overline{\ulcorner \mathcal{H} \urcorner})$                                   | 25 abv                                              |
| ~ ~ |                                                                                                                         |                                                     |

If n is such that f(n) = n, then n is said to be a *fixed point* for f. And by a (possibly strained) analogy,  $\mathcal{H}$  is said to be a "fixed point" for  $\mathcal{F}(y)$ .

Now we are very close to the incompleteness of arithmetic. As a final preliminary,

T12.20. For no consistent theory T that extends Q is there a recursive relation THRMT(n) that is true just in case n is a Gödel number of a theorem of T.

Consider a consistent theory extending Q; and suppose there is a recursive relation THRMT(n) true just in case n numbers a theorem of T. Since T extends Q and THRMT is recursive, with T12.16 there is some formula Thrmt(y) that captures THRMT, and so a formula  $\sim Thrmt(y)$ . And again since T extends Q, by the diagonal lemma T12.19, there is a formula  $\mathcal{H}$  with Gödel number  $\lceil \mathcal{H} \rceil = h$  such that,

$$T \vdash \mathcal{H} \leftrightarrow \sim Thrmt(\overline{\ulcorner \mathcal{H} \urcorner})$$

Suppose  $T \not\vdash \mathcal{H}$ ; then  $\mathcal{H}$  is not a theorem of T so that  $h \notin \mathsf{THRMT}$ ; so by capture,  $T \vdash \sim Thrmt(\overline{\ulcorner\mathcal{H}}\urcorner)$ ; so by  $\leftrightarrow \mathsf{E}, T \vdash \mathcal{H}$ . This is impossible; reject the assumption:  $T \vdash \mathcal{H}$ . But then  $\mathcal{H}$  is a theorem of T; so  $h \in \mathsf{THRMT}$ ; so by capture,  $T \vdash Thrmt(\overline{\ulcorner\mathcal{H}}\urcorner)$ ; so by NB,  $T \vdash \sim \mathcal{H}$ , and T is inconsistent; but by hypothesis, T is consistent. Reject the original assumption: there is no recursive relation THRMT.

Given a recursive THRMT there is  $\sim Thrmt$ ; but we show there is no such THRMT; so we have not yet found a sentence  $\mathscr{G}$  such that PA  $\vdash \mathscr{G} \leftrightarrow \sim Thrmt(\overline{\ulcorner}\mathscr{G}\urcorner)$ . That waits for the next chapter. From T12.18 any recursively axiomatized, consistent, *negation complete* formal theory has a recursive relation THRMT(n) true just in case n numbers a theorem. But from T12.20 for no consistent theory extending Q is there such a relation. This already suggests results to follow.

- E12.31. Let T be any theory extending Q and SBTHT(n) a recursive function such that if SBTHT(n) then n numbers a theorem of T (one such function is sure to be THRMADS(n) for the theorems of sentential logic). Use the diagonal lemma to find a sentence  $\mathcal{H}$  such that  $T \vdash \mathcal{H}$  but  $\lceil \mathcal{H} \rceil \notin$  SBTHT. Demonstrate your results.
- \*E12.32. Let *T* be any theory that extends Q. For any formulas  $\mathcal{F}_1(y)$  and  $\mathcal{F}_2(y)$ , generalize the diagonal lemma to find sentences  $\mathcal{H}_1$  and  $\mathcal{H}_2$  such that,

$$T \vdash \mathcal{H}_1 \leftrightarrow \mathcal{F}_1(\overline{\ulcorner \mathcal{H}_2 \urcorner})$$
$$T \vdash \mathcal{H}_2 \leftrightarrow \mathcal{F}_2(\overline{\ulcorner \mathcal{H}_1 \urcorner})$$

Demonstrate your result. Hint: You will want to generalize the notion of diagonalization so that the *alternation* of formulas  $\mathcal{F}_1(z)$ ,  $\mathcal{F}_2(z)$ , with a formula  $\mathcal{P}$  is  $\exists w \exists x \exists y (w = \overline{\lceil \mathcal{P} \rceil} \land x = \overline{\lceil \mathcal{F}_2 \rceil} \land y = \overline{\lceil \mathcal{F}_1 \rceil} \land \exists z (\mathcal{F}_1(z) \land \mathcal{P}))$ . Then you can find a recursive function  $\operatorname{alt}(p, f_1, f_2)$  whose output is the number of the alternation of formulas numbered p,  $f_1$  and  $f_2$ , where this function is captured by some formula  $\operatorname{Alt}(w, x, y, z)$  that itself has Gödel number a. Then  $\operatorname{alt}(\overline{a}, \overline{f}_1, \overline{f}_2)$  and  $\operatorname{alt}(\overline{a}, \overline{f}_2, \overline{f}_1)$  number the formulas you need for  $\mathcal{H}_1$  and  $\mathcal{H}_2$ .

E12.33. Use your version of the diagonal lemma from E12.32 to provide an alternate demonstration of T12.20. Hint: You will be able to set up sentences such that the first says the second is not a theorem, while the second says the first is a theorem.

## **12.5.2** First Applications

Here are three quick results from our theorems. Do not let the simplicity of their proof (if the proof can seem simple after all we have done) distract from the significance of their content!

### The Incompleteness of Arithmetic.

We are finally ready for the incompleteness of arithmetic.

T12.21. No consistent, recursively axiomatizable theory extending Q is negation complete.

Consider a theory T that is a consistent, recursively axiomatizable extension of Q. Then since T consistent and extends Q, by T12.20, there is no recursive relation THRMT(n) true iff n is the Gödel number of a theorem. Suppose T is negation complete; then since T is also consistent and recursively axiomatized, by T12.18 there is a recursive relation THRMT(n) true iff n is the Gödel number of a theorem. This is impossible, reject the assumption: T is not negation complete. It immediately follows that Q and PA are not negation complete. But similarly for *any* consistent recursively axiomatizable theory that extends Q. We already knew that there were formulas  $\mathcal{P}$  such that  $Q \not\vdash \mathcal{P}$  and  $Q \not\vdash \sim \mathcal{P}$ . But we did not already have this result for PA; and we certainly did not have the result generally for recursively axiomatizable theories extending Q.

There are other ways to obtain this result. We explore Gödel's own strategy in the next chapter. And we shall see an approach from computability in chapter 14. However, this first argument is sufficient to establish the point.

# **The Decision Problem**

It is a short step from the result that if Q is consistent, then no recursive relation identifies the theorems of Q, to the result that if Q is consistent, then no recursive relation identifies the theorems of predicate logic.

T12.22. If Q is consistent, then no recursive relation THRMPL(n) is true iff n numbers a theorem of predicate logic.

Suppose otherwise, that Q is consistent and some recursive relation THRMPL(N) is true iff n numbers a theorem of predicate logic. Let  $\mathcal{Q}$  be the conjunction of the axioms of Q; then  $\mathcal{P}$  is a theorem of Q iff  $\vdash \mathcal{Q} \rightarrow \mathcal{P}$ . Let  $q = \lceil \mathcal{Q} \rceil$ ; then,

THRMQ(n) 
$$=_{def}$$
 THRMPL(cnd(q, n))

defines a recursive function true iff n numbers a theorem of Q. But, given the consistency of Q, by T12.20, there is no function THRMQ(n). Reject the assumption, if Q is consistent, then there is no recursive relation THRMPL(n) true iff n numbers a theorem of predicate logic.

And, of course, given that Q *is* consistent, it follows that no recursive relation numbers the theorems of predicate logic. From T12.20 no recursive relation numbers the theorems of Q. Now we see that this result extends to the theorems of predicate logic. At at this stage, these results may seem to be a sort of curiosity about what recursive functions do. They gain significance when, as we have already hinted can be done, we identify the recursive functions with the *computable* functions in chapter 14.

#### Tarski's Theorems

A couple of related theorems fall under this heading. Say TRUE(n) is true iff n numbers a true sentence of some language  $\mathcal{L}$ . We do not assume that TRUE(n) is recursive only that, by definition, it applies to numbers of true sentences. Suppose True(x)expresses TRUE(n). Then by expression,  $I[True(\overline{\ulcornerP}\urcorner)] = T$  iff  $\ulcornerP\urcorner \in TRUE$ ; and this iff  $I[\mathcal{P}] = T$ . So, with some manipulation,

$$\mathsf{I}[True(\overline{\ulcorner \mathcal{P} \urcorner}) \leftrightarrow \mathcal{P}] = \mathsf{T}$$

Let us say T is a *truth theory* for language  $\mathcal{L}$ , iff for any sentence of  $\mathcal{L}$ , T proves this result.

$$T \vdash True(\overline{\ulcorner \mathcal{P} \urcorner}) \leftrightarrow \mathcal{P}$$

Nothing prevents theories of this sort. However, a first theorem is to the effect that theories in our range cannot be theories of truth for their own language  $\mathcal{L}$ .

T12.23. No recursively axiomatized consistent theory extending Q is a theory of truth for its own language  $\mathcal{L}$ .

Suppose otherwise, that a recursively axiomatized consistent T extending Q is a theory of truth for its own  $\mathcal{L}$ . Since T extends Q, by the diagonal lemma, there is a sentence  $\mathcal{F}$  (a false or liar sentence) such that

$$T \vdash \mathcal{F} \leftrightarrow \sim True(\overline{\ulcorner \mathcal{F} \urcorner})$$

But since T is a truth theory,  $T \vdash True(\overline{\ulcorner\mathcal{F}}) \leftrightarrow \mathcal{F}$ ; so  $T \vdash True(\overline{\ulcorner\mathcal{F}}) \leftrightarrow \sim True(\overline{\ulcorner\mathcal{F}})$ ; so T is inconsistent. Reject the assumption: T is not a truth theory for its language  $\mathcal{L}$ .

This theorem explains our standard jump to the metalanguage when we give conditions like ST and SF. Nothing prevents stating truth conditions — trouble results when a theory purports to give conditions for all the sentences in its own language.

A second theorem takes on the slightly stronger (but still plausible) assumption that Q is a sound theory, so that all of its theorems are true. Under this condition, there is trouble even expressing a truth predicate for language  $\mathcal{L}$  in that language  $\mathcal{L}$ .

T12.24. If Q is sound, and  $\mathcal{L}$  includes  $\mathcal{L}_{NT}$  then there is no *True* to express true in  $\mathcal{L}$ .

Suppose otherwise, that Q is sound and some formula True(x) expresses TRUE(n) in  $\mathcal{L}$ ; since Q is a theory that extends Q, by the diagonal lemma, there is a sentence  $\mathcal{F}$  such that  $Q \vdash \mathcal{F} \leftrightarrow \sim True(\overline{\ulcorner \mathcal{F} \urcorner})$ ; since the theorems of Q are true,  $N[\mathcal{F} \leftrightarrow \sim True(\overline{\ulcorner \mathcal{F} \urcorner})] = T$ ; so with a bit of manipulation,

 $\mathsf{N}[\mathcal{F}] = \mathsf{T} \text{ iff } \mathsf{N}[\sim True(\overline{\ulcorner \mathcal{F} \urcorner})] = \mathsf{T}; \text{ iff } \mathsf{N}[True(\overline{\ulcorner \mathcal{F} \urcorner})] \neq \mathsf{T}$ 

(i) Suppose  $N[True(\overline{\mathcal{F}})] \neq T$ ; then by expression,  $\mathcal{F} \not\in TRUE$ , so that  $N[\mathcal{F}] \neq T$ ; so by the above equivalence,  $N[True(\overline{\mathcal{F}})] = T$ ; reject the assumption. (ii) So  $N[True(\overline{\mathcal{F}})] = T$ ; but then by the equivalence,  $N[\mathcal{F}] \neq T$ ; so  $\mathcal{F} \not\in \mathcal{F} \notin \mathcal{F}$  so by expression,  $N[\sim True(\overline{\mathcal{F}})] = T$ ; so  $N[True(\overline{\mathcal{F}})] \neq T$ ; this is impossible.

Reject the original assumption: no formula True(x) expresses TRUE(n).

Observe that some numerical properties are both expressed and captured — as the recursive relations. And if a property can be captured by a recursively axiomatized consistent theory extending Q, then it can be expressed.<sup>11</sup> As we have seen, even though THRMQ(n) is a relation on the integers, it is not not a recursive relation. It can however be *expressed* by the formula,  $\exists x Prfq(x, n)$ . In the following (T14.10) we show that that every function captured by a consistent recursively axiomatized theory extending Q is recursive; it follows that THRMQ(n) is expressed but not captured. And now we have seen a relation TRUE(n) not even expressed in  $\mathcal{L}_{NT}$ .

This is a decent start into the results of Part IV of the text. In the following, we turn to deepening and extending them in different directions.

- E12.34. Use the alternate version of the diagonal lemma from E12.32 to provide alternate demonstrations of T12.23 and T12.24. Include the "bit of minipulation" left out of the text for T12.24.
- E12.35. For each of the following concepts, explain in an essay of about two pages, so that (college freshman) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.

<sup>&</sup>lt;sup>11</sup>Since we use the same canonical formulas for expression and capture, it is perhaps obvious that canonical capture in a *sound* theory implies expression. Further, from T14.10 if a function can be captured by a consistent recursively axiomatized theory extending Q it is recursive; so by T12.3 it is expressed on the standard interpretation N for  $\mathcal{L}_{NT}$ .

# **Final Results of Chapter 12**

- T12.17 If T is a recursively axiomatized formal theory then the set of theorems of T is recursively enumerable.
- T12.18 For any recursively axiomatized, consistent, negation complete formal theory T there is a recursive relation THRMT(n) true just in case n numbers a theorem of T.
- T12.19 Let T be any theory that extends Q. Then for any formula  $\mathcal{F}(y)$  containing just the variable y free, there is a sentence  $\mathcal{H}$  such that  $T \vdash \mathcal{H} \leftrightarrow \mathcal{F}(\overline{\ulcorner\mathcal{H}}\urcorner)$ . The *Diagonal Lemma*.
- T12.20 For no consistent theory T that extends Q is there a recursive relation THRMT(n) that is true just in case n is a Gödel number of a theorem of T.
- T12.21 No consistent, recursively axiomatizable extension of Q is negation complete. The *incompleteness of arithmetic*.
- T12.22 If Q is consistent, then no recursive relation THRMPL(n) is true iff n numbers a theorem of predicate logic
- T12.23 No recursively axiomatized consistent theory extending Q is a theory of truth for its own language  $\mathcal{L}$ .
- T12.24 If Q is sound, and  $\mathcal{L}$  includes  $\mathcal{L}_{NT}$  then there is no *True* to express TRUE in  $\mathcal{L}$ .
  - a. The recursive functions and the role of the beta function in their expression and capture.
  - b. The essential elements from this chapter contributing to the proof of the incompleteness of arithmetic.
  - c. The essential elements from this chapter contributing to the proof of that no recursive relation identifies the theorems of predicate logic
  - d. The essential elements from this chapter contributing to the proof of Tarski's theorem.

# **Chapter 13**

# **Gödel's Theorems**

We have seen a demonstration of the incompleteness of arithmetic. In this chapter, we take another run at that result, this time by Gödel's original strategy of producing sentences that are true iff not provable. This enables us to extend and deepen the incompleteness result, and puts us in a position to take up Gödel's second incompleteness theorem, according to which theories (of a certain sort) are not sufficient for demonstrations of *consistency*.

# 13.1 Gödel's First Theorem

Recall that the diagonalization of a formula  $\mathcal{P}(x)$  is  $\exists x(x = \overline{\mathcal{P}} \land \mathcal{P}(x))$ . In addition, there is a recursive function diag(n) which numbers the diagonalization of the formula with number n and, if T is recursively axiomatized, a recursive relation PRFT(m, n) true when m numbers a proof of the formula with number n. Our previous argument for incompleteness required PRFT(m, n) for T12.17, and a Diag(x, y) to capture diag(n) for the diagonal lemma. Under the assumption that there is a THRMT and so a formula  $\sim Thrmt$ , we applied the diagonal lemma to obtain an  $\mathcal{H}$  such that  $T \vdash \mathcal{H} \leftrightarrow \sim Thrmt(\overline{\mathcal{H}}\overline{\mathcal{H}})$ ; but this is impossible — so that there is no THRMT. And from this we argued that there must be a sentence such that neither it nor its negation is provable — without any suggestion what that sentence might be. This time, by related methods, we construct a particular sentence such that neither it nor its negation is provable.

### **13.1.1** Semantic Version

Consider some recursively axiomatized theory *T* whose language includes  $\mathcal{L}_{NT}$ . Since PRFT(m, n) and diag(n) are recursive, they are *expressed* by some formulas Prft(x, y) and Diag(x, y). Let  $\mathcal{A}(z) =_{def} \sim \exists x \exists y (Prft(x, y) \land Diag(z, y))$ , and  $a = \ulcorner \mathcal{A} \urcorner$ . So  $\mathcal{A}$  says nothing numbers a proof of the diagonalization of a formula with number *z*. Then,

$$\mathcal{G} =_{def} \exists z (z = \overline{a} \land \sim \exists x \exists y (Prft(x, y) \land Diag(z, y)))$$

So  $\mathscr{G}$  is the diagonalization of  $\mathscr{A}$ , and intuitively  $\mathscr{G}$  "says" that nothing numbers a proof of it. Let  $g = \lceil \mathscr{G} \rceil$ . Observe that  $\mathscr{G}$  is defined relative to *Prft* for *T*; so each *T* yields its own Gödel sentence (if it were not ugly, we might sensibly introduce subscripts  $\mathscr{G}_T$ ). Thus,

T13.1. For any recursively axiomatized theory T whose language includes  $\mathcal{L}_{NT}$ ,  $\mathcal{G}$  is true iff it is unprovable in T (N[ $\mathcal{G}$ ] = T iff T  $\nvDash \mathcal{G}$ ).

Consider a recursively axiomatized theory *T* whose language includes  $\mathcal{L}_{NT}$ and the formula  $\mathscr{G}$  as described above. Skipping some steps, (i) Suppose  $N[\mathscr{G}] = T$ ; then for any d,  $N_d[\mathscr{G}] = S$ ; so with T10.2,  $N_d[\sim \exists x \exists y(Prft(x, y) \land Diag(\overline{a}, y))] = S$ ; so there are no m, n such that  $N[Prft(\overline{m}, \overline{n})] = T$  and  $N[Diag(\overline{a}, \overline{n})] = T$ ; so by expression, there are no m, n such that  $\langle m, n \rangle \in$ PRFT and  $\langle a, n \rangle \in$  diag; but diag(a) = g; so no m numbers a proof of  $\mathscr{G}$ , which is to say  $T \not\vdash \mathscr{G}$ . (ii) Suppose  $N[\mathscr{G}] \neq T$ ; then there is some d such that  $N_d[\mathscr{G}] \neq S$  and for any  $n \in N$ ,  $N_{d(z|n)}[z = \overline{a} \land \neg \exists x \exists y(Prft(x, y) \land Diag(z, y))] \neq S$ ; so by T10.2,  $N_d[\sim \exists x \exists y(Prft(x, y) \land Diag(\overline{a}, y))] \neq S$ ; so  $N_d[\exists x \exists y(Prft(x, y) \land Diag(\overline{a}, \overline{n}))] = S$ ; so there are m and n such that both  $Prft(\overline{m}, \overline{n})$  and  $Diag(\overline{a}, \overline{n})$  are S on N with d; so  $N[\sim Prft(\overline{m}, \overline{n})] \neq T$  and  $N[\sim Diag(\overline{a}, \overline{n})] \neq$ T; and by expression  $\langle m, n \rangle \in PRFT$  and  $\langle a, n \rangle \in$  diag; but again, diag(a) = g; so  $\langle m, g \rangle \in PRFT$ ; so  $T \vdash \mathscr{G}$ ; so by transposition, if  $T \not\vdash \mathscr{G}$ , then  $N[\mathscr{G}] = T$ .

It is not a difficult exercise to fill in the details. Intuitively this result should seem right. Suppose  $\mathcal{G}$  "says" that it is unprovable: then if it is true it is unprovable; and if it is unprovable it is true; so it is true iff it is unprovable.

Now suppose that T is a recursively axiomatized, and *sound* theory (so that its theorems are true), whose language includes  $\mathcal{L}_{NT}$ . Then T is negation incomplete.

T13.2. If *T* is a recursively axiomatized sound theory whose language includes  $\mathcal{L}_{NT}$ , then *T* is negation incomplete.

Suppose *T* is a recursively axiomatized theory whose language includes  $\mathcal{L}_{NT}$ ; then there is a sentence  $\mathscr{G}$  to which the conditions for T13.1 apply. (i) Suppose  $T \vdash \mathscr{G}$ ; then, since *T* is sound,  $\mathscr{G}$  is true; so by T13.1,  $T \nvDash \mathscr{G}$ ; reject the assumption,  $T \nvDash \mathscr{G}$ . Suppose  $T \vdash \sim \mathscr{G}$ ; then since *T* is sound,  $\sim \mathscr{G}$  is true; so  $\mathscr{G}$  is not true; so by T13.1,  $T \vdash \mathscr{G}$ ; so by soundness again,  $\mathscr{G}$  is true; reject the assumption:  $T \nvDash \sim \mathscr{G}$ .

So  $\mathscr{G}$  is a sentence such that if *T* is a recursively axiomatized sound theory whose language includes  $\mathscr{L}_{NT}$ , neither  $\mathscr{G}$  nor its negation is a theorem. And, from T13.1, given that  $\mathscr{G}$  is unprovable, if *T* is a recursively axiomatized theory whose language includes  $\mathscr{L}_{NT}$ , then  $\mathscr{G}$  is a *true* non-theorem. This version of the incompleteness result depends on the ability to express  $\mathscr{G}$ , together with the soundness of theory *T*.

## 13.1.2 Syntactic Version

Gödel's first theorem is usually presented with the capture and consistency, rather than the expression and soundness constraints. We turn now to a version of this first sort which, again, builds a particular sentence such that neither it nor its negation is provable.

Since PRFT(m, n) and diag(n) are recursive, in theories extending Q they are *captured* by canonical formulas Prft(x, y) and Diag(x, y). As before, let  $A(z) =_{def} \sim \exists x \exists y (Prft(x, y) \land Diag(z, y))$ , and  $a = \lceil A \rceil$ . So A says nothing numbers a proof of the diagonalization of a formula with number z. Then,

$$\mathscr{G} =_{def} \exists z (z = \overline{a} \land \sim \exists x \exists y (Prft(x, y) \land Diag(z, y)))$$

So  $\mathcal{G}$  is the diagonalization of  $\mathcal{A}$ ; let g be the Gödel number of  $\mathcal{G}$ . This time, we shall be able to establish in T the relation between  $\mathcal{G}$  and its proof. Reasoning as for the diagonal lemma,

T13.3. Let T be any recursively axiomatized theory extending Q; then  $T \vdash \mathscr{G} \leftrightarrow \sim \exists x Prft(x, \overline{\ulcorner \mathscr{G} \urcorner}).$ 

Since *T* is recursively axiomatized, there is a recursive PRFT and since *T* extends Q there are *Prft* and *Diag* that capture PRFT and diag. From the definition of  $\mathscr{G}$ ,  $T \vdash \mathscr{G} \Leftrightarrow \exists z(z = \overline{a} \land \neg \exists x \exists y [Prft(x, y) \land Diag(z, y)])$ ; from capture  $T \vdash Diag(\overline{a}, \overline{g})$ ; and  $T \vdash \forall z (Diag(\overline{a}, z) \rightarrow z = \overline{g})$ . From these it follows that  $T \vdash \mathscr{G} \Leftrightarrow \neg \exists x Prft(x, \overline{g})$ ; which is to say,  $T \vdash \mathscr{G} \leftrightarrow \neg \exists x Prft(x, \overline{\neg} \overline{\neg})$  (homework).

From the diagonal lemma, under appropriate conditions, given a formula  $\mathcal{F}(y)$ , there is some  $\mathcal{H}$  such that  $T \vdash \mathcal{H} \leftrightarrow \mathcal{F}(\overline{\mathcal{H}})$ . Under the assumption that there is THRMT, we applied this to show there would be some  $\mathcal{H}$  such that  $T \vdash \mathcal{H} \leftrightarrow \sim Thrmt(\overline{\mathcal{H}})$ . This led to contradiction. In this case, however, we show that there really is a particular sentence  $\mathcal{G}$  such that  $T \vdash \mathcal{G} \leftrightarrow \sim \exists x Prft(x, \overline{\mathcal{G}})$ .

Our idea is to show that if T is a consistent, recursively axiomatized theory extending Q, then  $T \not\vdash \mathcal{G}$  and  $T \not\vdash \sim \mathcal{G}$ . The first is easy enough.

T13.4. If T is a consistent, recursively axiomatized theory extending Q, then  $T \not\vdash \mathcal{G}$ .

Suppose *T* is a consistent recursively axiomatized theory extending Q. Suppose  $T \vdash \mathcal{G}$ ; then since *T* is recursively axiomatized, for some m, PRFT(m, g); and since *T* extends Q, by capture,  $T \vdash Prft(\overline{m}, \overline{g})$ ; so by  $\exists I, T \vdash \exists x Prft(x, \overline{g})$ , which is to say,  $T \vdash \exists x Prft(x, \overline{\mathcal{G}})$ . But since  $T \vdash \mathcal{G}$ , by T13.3,  $T \vdash \sim \exists x Prft(x, \overline{\mathcal{G}})$ . So *T* is inconsistent; reject the assumption:  $T \not\vdash \mathcal{G}$ .

That is the first half of what we are after. But we can't quite get that if T is a consistent, recursively axiomatized theory extending Q, then  $T \not\vdash \sim \mathcal{G}$ . Rather, we need a strengthened notion of consistency. Say a theory T is  $\omega$ -incomplete iff for some  $\mathcal{P}(x), T$  can prove each  $\mathcal{P}(\overline{m})$  but T cannot go on to prove  $\forall x \mathcal{P}(x)$ . Equivalently, T is  $\omega$ -incomplete iff for every m, it can prove each  $T \vdash \sim \mathcal{P}(\overline{\mathsf{m}})$  but  $T \not\vdash \sim \exists x \mathcal{P}(x)$ . We have seen that Q is  $\omega$ -incomplete: we can prove, say  $\overline{n} \times \overline{m} = \overline{m} \times \overline{n}$  for every m and n, but cannot go on to prove the corresponding universal generalization  $\forall x \forall y (x \times y = y \times x)$ . Say T is  $\omega$ -inconsistent iff for some  $\mathcal{P}(x)$ , T proves each  $\mathcal{P}(\overline{\mathsf{m}})$  but also proves  $\sim \forall x \mathcal{P}(x)$ . Equivalently, T is  $\omega$ -inconsistent iff for every m, it can prove each  $T \vdash \sim \mathcal{P}(\overline{\mathsf{m}})$  and  $T \vdash \exists x \mathcal{P}(x)$ .  $\omega$ -incompleteness is a theoretical weakness — there are some things true but not provable. But  $\omega$ -inconsistency is a theoretical disaster: It is not possible for the theorems of an  $\omega$ -inconsistent theory all to be true on any interpretation (assuming some  $\overline{m}$  for each  $m \in U$ ).  $\omega$ -inconsistency is not itself inconsistency — for we do not have any sentence such that  $T \vdash \mathcal{P}$  and  $T \vdash \sim \mathcal{P}$ . But inconsistent theories are automatically  $\omega$ -inconsistent — for from contradiction all consequences follow (including each  $\mathcal{P}(\overline{\mathsf{m}})$  and also  $\sim \forall x \mathcal{P}(x)$ ); transposing,  $\omega$ -consistent theories are consistent. Now we show,

T13.5. If T is an  $\omega$ -consistent, recursively axiomatized theory extending Q, then  $T \not\vdash \sim \mathscr{G}$ .

Suppose *T* is an  $\omega$ -consistent recursively axiomatized theory extending Q. Suppose  $T \vdash \sim \mathscr{G}$ ; since *T* is  $\omega$ -consistent, it is consistent, so  $T \not\vdash \mathscr{G}$ ; so since *T* is recursively axiomatized, for all m,  $\langle m, g \rangle \notin \mathsf{PRFT}$ ; and since *T* extends Q, by capture,  $T \vdash \sim Prft(\overline{m}, \overline{g})$ ; and since T is  $\omega$ -consistent,  $T \not\vdash \exists x Prft(x, \overline{g})$ ; which is to say,  $T \not\vdash \exists x Prft(x, \overline{\lceil \mathcal{G} \rceil})$ . But since  $T \vdash \sim \mathcal{G}$ , by T13.3 with NB,  $T \vdash \exists x Prft(x, \overline{\lceil \mathcal{G} \rceil})$ . This is impossible; reject the assumption:  $T \not\vdash \sim \mathcal{G}$ .

So if a recursively axiomatized theory extending Q has the relevant *consistency* properties, then it is negation incomplete. Further, insofar as T canonically captures the recursive functions, it expresses the recursive functions; so by T13.1,  $\mathscr{G}$  is true iff  $T \nvDash \mathscr{G}$ . So if T is a consistent recursively axiomatized theory extending Q, then  $\mathscr{G}$  is both unprovable and true.

This is roughly the form in which Gödel proved the incompleteness of arithmetic in 1931: If T is a consistent, recursively axiomatized theory extending Q, then  $T \not\vdash \mathscr{G}$ ; and if T is an  $\omega$ -consistent, recursively axiomatized theory extending Q, then  $T \not\vdash \sim \mathscr{G}$ . Since we believe that standard theories including Q and PA are consistent and  $\omega$ -consistent, this sufficient for the incompleteness of arithmetic.

E13.1. Fill in the details for the argument of T13.1.

\*E13.2. Complete the demonstration of T13.3 by providing a derivation to show  $T \vdash \mathcal{G} \leftrightarrow \sim \exists x Prft(x, \lceil \mathcal{G} \rceil)$ . The demonstration for the diagonal lemma is a model, though steps will be adapted to the particular form of these sentences.

## 13.1.3 Rosser's Sentence

But it is possible to drop the special assumption of  $\omega$ -consistency by means of a sentence somewhat different from  $\mathscr{G}$ .<sup>1</sup> Recall that neg(n) is the Gödel number of the negation of the sentence with number n. So PRFT(m, n) =<sub>def</sub> PRFT(m, neg(n)) obtains when m numbers a proof of the negation of the sentence numbered n. Since it is recursive, it is captured by some  $\overline{Prft}(x, y)$ . Set,

$$RPrft(x, y) =_{def} Prft(x, y) \land (\forall w \le x) \sim Prft(w, y)$$

So RPrft(x, y) just in case x numbers a proof of the sentence numbered y and no number less than or equal to x is a proof of the negation of that sentence. Now, working as before, set  $A'(z) =_{def} \sim \exists x \exists y (RPrft(x, y) \land Diag(z, y))$ , and  $a = \lceil A' \rceil$ . So A' says nothing numbers an *R*-proof of the diagonalization of a formula with number z. Then,

<sup>&</sup>lt;sup>1</sup>Barkley Rosser, "Extensions of Some Theorems of Gödel and Church."
$\mathcal{R} =_{def} \exists z (z = \overline{a} \land \sim \exists x \exists y (RPrft(x, y) \land Diag(z, y)))$ 

So  $\mathcal{R}$  is the diagonalization of  $\mathcal{A}'$ ; let r be the Gödel number of  $\mathcal{R}$ . And  $\mathcal{R}$  has the key syntactic property just like  $\mathcal{G}$ . Again, reasoning as we did for the diagonal lemma,

T13.6. Let T be any recursively axiomatized theory extending Q; then  $T \vdash \mathcal{R} \leftrightarrow \sim \exists x RPrft(x, \overline{\neg \mathcal{R}} \neg)$ .

You can show this just as for T13.3.

Now the first half of the incompleteness result is straightforward.

T13.7. If T is a consistent, recursively axiomatized theory extending Q, then  $T \not\vdash \mathcal{R}$ .

Suppose *T* is a consistent recursively axiomatized theory extending *Q*. Suppose  $T \vdash \mathcal{R}$ ; then since *T* is recursively axiomatized, for some m, PRFT(m, r); and since *T* extends *Q*, by capture,  $T \vdash Prft(\overline{m}, \overline{r})$ . But by consistency,  $T \not\vdash \sim \mathcal{R}$ ; so for all n, and in particular all  $n \leq m, \langle n, r \rangle \notin \overline{PRFT}$ ; so by capture,  $T \vdash \sim \overline{Prft}(\overline{n}, \overline{r})$ ; so by T8.21,  $T \vdash (\forall w \leq \overline{m}) \sim \overline{Prft}(w, \overline{r})$ ; so  $T \vdash Prft(\overline{m}, \overline{r}) \land (\forall w \leq \overline{m}) \sim \overline{Prft}(w, \overline{r})$ ; so  $T \vdash Prft(\overline{m}, \overline{r}) \land (\forall w \leq \overline{m}) \sim \overline{Prft}(w, \overline{r})$ ; so  $T \vdash RPrft(\overline{m}, \overline{r})$ , which is to say,  $T \vdash \exists x RPrft(x, \overline{r\mathcal{R}})$ . But since  $T \vdash \mathcal{R}$ , by T13.6,  $T \vdash \sim \exists x RPrft(x, \overline{r\mathcal{R}})$ ; so *T* is inconsistent. This is impossible; reject the assumption:  $T \not\vdash \mathcal{R}$ .

So, with consistency, it is not much harder to prove  $T \vdash \exists x RPrft(x, \lceil \mathcal{R} \rceil)$  from the assumption that  $T \vdash \mathcal{R}$  than to prove  $T \vdash \exists x Prft(x, \lceil \mathcal{G} \rceil)$  from the assumption that  $T \vdash \mathcal{G}$ .

Reasoning for the other direction is somewhat more involved, but still straightforward.

T13.8. If T is a consistent, recursively axiomatized theory extending Q, then  $T \not\vdash \sim \mathcal{R}$ .

Suppose *T* is a consistent recursively axiomatized theory extending Q. Suppose  $T \vdash \sim \mathcal{R}$ . Then since *T* is recursively axiomatized, for some m,  $\langle m, r \rangle \in \overline{\mathsf{PRFT}}$ ; and since *T* extends Q, by capture,  $T \vdash \overline{Prft}(\overline{m}, \overline{r})$ . By consistency,  $T \not\vdash \mathcal{R}$ ; so for any n, and in particular, any  $n \leq m$ ,  $\langle n, r \rangle \notin \mathsf{PRFT}$ ; so by capture,  $T \vdash \sim Prft(\overline{n}, \overline{r})$ ; and by T8.21,  $T \vdash (\forall w \leq \overline{m}) \sim Prft(w, \overline{r})$ . Now reason as follows.

| 1.  | $\sim \mathcal{R}$                                                                    | from T               |
|-----|---------------------------------------------------------------------------------------|----------------------|
| 2.  | $\overline{Prft}(\overline{m},\overline{r})$                                          | capture              |
| 3.  | $(\forall w \leq \overline{m}) \sim Prft(w, \overline{r})$                            | capture and T8.21    |
| 4.  | $\mathcal{R} \leftrightarrow \sim \exists x RPrft(x, \bar{\mathbf{r}})$               | from T13.6           |
| 5.  | $\exists x RPrft(x, \bar{r})$                                                         | 1,4 NB               |
| 6.  | $\exists x [Prft(x,\bar{r}) \land (\forall w \le x) \sim \overline{Prft}(w,\bar{r})]$ | 5 abv                |
| 7.  | $\Pr{ft(j,\bar{r})} \land (\forall w \le j) \sim \overline{Prft}(w,\bar{r})]$         | A $(g, 6\exists E)$  |
| 8.  | $j \leq \overline{m} \vee \overline{m} \leq j$                                        | <b>T8.</b> 19        |
| 9.  | $j \leq \overline{m}$                                                                 | A ( $g \ 8 \lor E$ ) |
| 10. | $Prft(j,\bar{r})$                                                                     | $7 \wedge E$         |
| 11. | $\sim Prft(j,\bar{r})$                                                                | 3,9 (¥E)             |
| 12. |                                                                                       | 10,11 ⊥I             |
| 13. | $\boxed{\overline{m}} \leq j$                                                         | A $(g, 8 \lor E)$    |
| 14. | $(\forall w \leq j) \sim \overline{Prft}(w, \overline{r})]$                           | $7 \wedge E$         |
| 15. | $  \sim \overline{Prft}(\overline{\mathbf{m}},\overline{\mathbf{r}})$                 | 14,13 (¥E)           |
| 16. |                                                                                       | 2,15 ⊥I              |
| 17. | ⊥                                                                                     | 8,9-12,13-16 ∨E      |
| 18. | L<br>L                                                                                | 6,7-17 ∃E            |

So  $T \vdash \bot$ , that is  $T \vdash Z \land \sim Z$  and T is inconsistent. Reject the assumption,  $T \nvDash \sim \mathcal{R}$ .

In the previous case, with  $\mathscr{D}$ , we had no way to convert  $\exists x Prft(x, \overline{g})$  to a contradiction with  $\sim Prft(\overline{0}, \overline{g}), \sim Prft(\overline{1}, \overline{g})...;$  that is why we needed  $\omega$ -consistency. We can, however, move from  $\sim Prft(\overline{0}, \overline{r}), \sim Prft(\overline{1}, \overline{r}) ... \sim Prft(\overline{m}, \overline{r})$  to a *bounded* quantification ( $\forall w \leq \overline{m}$ )  $\sim Prft(w, \overline{r})$  or equivalently  $\sim (\exists w \leq \overline{m}) Prft(w, \overline{r})$ . Then the special nature of  $\mathscr{R}$  aids the argument: From  $RPrft(j, \overline{r})$  suppose  $j \leq m$ ; then  $Prft(j, \overline{r})$  and we contradict the bounded quantification in the usual way. Suppose  $j \geq m$ ; then RPrft is designed so that nothing less than j (including  $\overline{m}$ ) numbers a proof of neg(r); but we have  $\overline{Prft}(\overline{m}, \overline{r})$  from the assumption. So  $T \nvDash \mathscr{R}$  and  $T \nvDash \sim \mathscr{R}$ 

Let us close this section with some reflections on what we have shown. First,

Q is sound  $\Longrightarrow$  Q is  $\omega$ -consistent  $\Longrightarrow$  Q is consistent

So our results are progressively stronger, as the assumptions have become correspondingly weaker. But,

capture  $\implies$  expression

So the second requirement is increased as we move from expression to capture.

Second, we have not shown that there are truths of  $\mathcal{L}_{NT}$  not provable in any recursively axiomatizable, consistent theory extending Q. Rather, what we have shown is that for any recursively axiomatizable consistent theory extending Q, there are some truths of  $\mathcal{L}_{NT}$  not provable in that theory. For a given recursively axiomatizable theory, there will be a given relation PRFT(m, n) and Prft(x, y) depending on the particular axioms of that theory — and so unique sentences  $\mathcal{G}$  and  $\mathcal{R}$  constructed as above. In particular, given that a theory cannot prove, say,  $\mathcal{R}$ , we might simply *add*  $\mathcal{R}$  to its axioms; then of course there is a derivation of  $\mathcal{R}$  from the axioms of the revised theory! But then the new theory will generate a new relation PRFT(m, n) and a new Prft(x, y) and so a new unprovable sentence  $\mathcal{R}'$ . So any theory extending Q is negation incomplete.

But it is worth a word about what are theories extending Q. Any such theory should build in equivalents of the  $\mathcal{L}_{NT}$  vocabulary  $\emptyset$ , S, +, and  $\times$  — and should have a predicate *Nat*(*x*) to identify a class of objects to count as the numbers. Then if the theory makes the axioms of Q true on these objects, it is incomplete. Straightforward extensions of Q are ones like PA which simply add to its axioms. But ordinary ZF set theory also falls into this category — for it is possible to define a class of sets, say,  $\emptyset$ ,  $\{\emptyset, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset, \{\emptyset\}\}\}, \dots$  where any n is the set of all the numbers prior to it, along with operations on sets which obey the axioms of Q.<sup>2</sup> It follows that ZF is negation incomplete. In contrast, the domain for the standard theory of real numbers has all the entities required to do arithmetic. However that theory does not have a predicate *Nat*(*x*) to pick out the natural numbers, and cannot recapitulate the theory of natural numbers on any subclass of its domain. So our incompleteness theorem does not get a grip, and in fact the theory of real numbers is demonstrably complete. Observe, though, that it is a *weakness* in this theory of real numbers, its inability to specify a certain class that makes room for its completeness.<sup>3</sup>

#### E13.3. Demonstrate T13.6.

<sup>&</sup>lt;sup>2</sup>For discussion, see any introduction to set theory, for example, Enderton, *Elements of Set Theory*, chapter 4.

<sup>&</sup>lt;sup>3</sup>There are real numbers 0 and 1; so it is natural to identify the integers with 0, 0 + 1, 0 + 1 + 1 and so forth. The difficulty is to define a property within the theory of real numbers that picks out just the members of this series, as we have been able to define infinite recursive properties in  $\mathcal{L}_{NT}$ . The completeness of the theory of real numbers was originally proved by Tarski, and is discussed in books on model theory, for example, Hodges *A Shorter Model Theory*, theorems 2.7.2 and 7.4.4.

# **13.2** Gödel's Second Theorem: Overview

We turn now to Gödel's second incompleteness theorem on the unprovability of consistency. The discussion is divided into four main parts. First, in this section, Gödel's second theorem is proved subject to three *derivability conditions*. Then we turn to the derivability conditions themselves. The first is easy. But the second and third require extended discussion. There is some background (section 13.3). Then discussion of the second condition (section 13.4), and the third condition (section 13.5). This completes the proof. We conclude with some reflections and consequences from our results (section 13.6). There are alternative approaches to the second theorem (for references see section 3 of Raatikainen, "Gödel's Incompleteness Theorems"). Our's is a straight-ahead development of the standard approach based on the derivability conditions. This is, surely, a natural place to start. Textbooks ordinarily end their discussion of the second theorem with the demonstration from the derivability conditions, offering just some general perspective on how the conditions are to be obtained.<sup>4</sup> However, even if you decide to bypass the details, this general perspective will be enhanced if you have some object at which to "wave" as you pass them by.

For this discussion we switch to theories including PA. The result is that that PA and its its extensions cannot prove their own consistency. The reason for this switch will become vivid in demonstration of the derivability conditions — as many arguments that would have been by induction are forced into the theory and so are by IN. Coinciding with the move to PA we revert to considering original rather than canonical formulas to capture recursive functions: this avoids some complication, and since PA has all the resources of  $Q_s$ , all our incompleteness results are preserved.<sup>5</sup>

**Main argument.** We have seen that for recursively axiomatized theories there is a recursive relation PRFT(m, n). Since it is recursive, in theories extending Q, this relation is captured by a corresponding Prft(x, y). Let

<sup>&</sup>lt;sup>4</sup>So, for example, "the details of this are long and tedious, and will not be discussed here" (George and Velleman, *Philosophies of Mathematics*, 201; and "the proofs of the [second and third derivability conditions] are omitted from virtually all books on the level of this one, not because they involve any terribly difficult new ideas, but because the innumerable routine verifications they — and especially the last — require would take up too much time and patience" (Boolos, Burgess and Jeffrey, *Computability and Logic*, 234.) The only other (relatively) complete development in English that I have been able to track down is Tourlakis, *Lectures in Logic and Set Theory: I.* 

<sup>&</sup>lt;sup>5</sup>But the argument goes through for certain theories weaker than PA. Of relevance to Hilbert, it goes through for *primitive recursive arithmetic* (PRA) — whose theorems are like those of PA with application of the induction schema restricted to only  $\Pi_1$  formulas. Though he is not entirely clear, arguably, PRA is Hilbert's real theory R (see p. 547). We set aside such details.

$$Prvt(y) =_{def} \exists x Prft(x, y)$$

So Prvt(y) just when something numbers a proof of the formula numbered y — when the formula numbered by y is provable. Insofar as the quantifier is unbounded, there is no suggestion that there is a corresponding recursive relation — in fact, we have seen in T12.20 that no recursive relation is true just of numbers for the theorems of Q. Let,

$$Cont =_{def} \sim Prvt(\overline{\ulcorner \emptyset = S\emptyset \urcorner})$$

So *Cont* is true just in case there is no proof  $\overline{0} = \overline{1}$ . There are different ways to express consistency, but for theories extending Q this does as well as any other. Let T extend Q. Suppose T is inconsistent; then it proves anything; so  $T \vdash \overline{0} = \overline{1}$ . Suppose  $T \vdash \overline{0} = \overline{1}$ ; since T extends Q,  $T \vdash \overline{0} \neq \overline{1}$ ; so T proves a contradiction and is inconsistent. So T is inconsistent iff  $T \vdash \overline{0} = \overline{1}$ ; and, transposing, T is consistent iff  $T \not\vdash \overline{0} = \overline{1}$  (for further discussion see 13.6.1).

The second theorem is this simple result: Under certain conditions, if T is consistent, then  $T \nvDash Cont$ . If it is consistent, then T cannot prove its own consistency. Suppose the first theorem applies to T, and suppose we could show,

$$(**) \qquad T \vdash Cont \to \sim Prvt(\overline{\ulcorner \mathcal{G} \urcorner})$$

Then, given what has gone before, we could make the following very simple argument. Suppose T is a recursively axiomatized theory extending Q.

By T13.3,  $T \vdash \mathcal{G} \leftrightarrow \sim \exists x Prft(x, \ulcorner \mathcal{G} \urcorner)$ , which is to say,  $T \vdash \mathcal{G} \leftrightarrow \sim Prvt(\ulcorner \mathcal{G} \urcorner)$ ; from this and (\*\*),  $T \vdash Cont \rightarrow \mathcal{G}$ ; so if  $T \vdash Cont$  then  $T \vdash \mathcal{G}$ ; but from the first theorem (T13.4), if T is consistent, then  $T \nvDash \mathcal{G}$ ; so if T is consistent,  $T \nvDash Cont$ .

So the argument reduces to showing (\*\*). Observe that, in reasoning for T13.4 we have already shown,

$$T ext{ is consistent} \Longrightarrow T \not\vdash \mathcal{G}$$

So the argument reduces to showing that *T proves* what we have already seen is so. There is nothing mysterious about this: *Cont*, *Prvt* and the like are formulas, and so just the sort of thing to which our proof apparatus applies.

Let us abbreviate  $Prvt(\overline{\neg \mathcal{P}} \neg)$  by  $\Box \mathcal{P}$ . Observe that this obscures the corner quotes. Still, we shall find it useful. So we need  $T \vdash Cont \rightarrow \neg \Box \mathcal{G}$ , which is

just to say,  $T \vdash \sim \Box(\overline{0} = \overline{1}) \rightarrow \Box \mathscr{G}$ . Suppose *T* satisfies the following *derivability conditions*.

- D1. If  $T \vdash \mathcal{P}$  then  $T \vdash \Box \mathcal{P}$
- D2.  $T \vdash \Box(\mathcal{P} \to \mathcal{Q}) \to (\Box \mathcal{P} \to \Box \mathcal{Q})$
- D3.  $T \vdash \Box \mathcal{P} \rightarrow \Box \Box \mathcal{P}$

Then we shall be able to show  $T \vdash Cont \rightarrow \sim \Box \mathcal{G}$ .

The utility of  $\Box$  in this context is that D1 - D3 are exactly the conditions that define a standard modal logic, K4 — and it is not surprising that *provability* should correspond to a kind of necessity.<sup>6</sup> There is an elegant natural derivation system for this modal logic. For this you might check out Roy, Natural Derivations for Priest §2 (but in the nomenclature there borrowed from Priest, the system is  $NK\tau$ ). However rather than explain and introduce a new derivation system, we obtain a version of K4 simply by adding A1 - A3 and MP from  $AD_s$  to D1 - D3. So K4 has D1 as a new rule, and D2 and D3 as new axioms. Since A1 - A3 and MP remain, we have all the theorems from before. Thus, as a simple example,

(A) 
$$\begin{array}{c} 1. \quad \sim \mathcal{P} \to (\mathcal{P} \to \mathcal{Q}) \\ 2. \quad \Box[\sim \mathcal{P} \to (\mathcal{P} \to \mathcal{Q})] \\ 3. \quad \Box[\sim \mathcal{P} \to (\mathcal{P} \to \mathcal{Q})] \to [\Box \sim \mathcal{P} \to \Box(\mathcal{P} \to \mathcal{Q})] \\ 4. \quad \Box \sim \mathcal{P} \to \Box(\mathcal{P} \to \mathcal{Q}) \\ \end{array} \begin{array}{c} \text{T3.9} \\ 1 \text{ D1} \\ \text{D2} \\ 3.2 \text{ MP} \end{array}$$

So in this system  $\vdash \Box \sim \mathcal{P} \rightarrow \Box(\mathcal{P} \rightarrow \mathcal{Q}).$ 

Now, given that  $T \vdash \mathcal{G} \rightarrow \sim \exists x Prft(x, \forall \mathcal{G} \forall)$  from T13.3 we shall be able to show that  $T \vdash Cont \rightarrow \sim \Box \mathcal{G}$ .

T13.9. Let *T* be a recursively axiomatized theory extending Q. Then supposing *T* satisfies the derivability conditions and so the K4 logic of provability,  $T \vdash Cont \rightarrow \sim Prvt(\overline{\ulcornerG}\urcorner)$ .

<sup>&</sup>lt;sup>6</sup>While K4 correctly represents these principles, it is not a complete logic of provability. We get a complete system if we add to K4 a rule according to which from  $\Box \mathcal{P} \rightarrow \mathcal{P}$  we may infer  $\mathcal{P}$ . For discussion see subsection 13.6.2 and Boolos, *The Logic of Provability*.

| 1.  | $\mathscr{G} \to \sim \Box \mathscr{G}$                                                                                                                                                                  | from T13.3    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 2.  | $\Box(\mathscr{G} \to \sim \Box \mathscr{G})$                                                                                                                                                            | 1 D1          |
| 3.  | $\Box(\mathscr{G} \to {\sim} \Box \mathscr{G}) \to (\Box \mathscr{G} \to \Box {\sim} \Box \mathscr{G})$                                                                                                  | D2            |
| 4.  | $\Box \mathcal{G} \to \Box {\sim} \Box \mathcal{G}$                                                                                                                                                      | 3,2 MP        |
| 5.  | $\Box \sim \Box \mathscr{G} \to \Box (\Box \mathscr{G} \to \overline{0} = \overline{1})$                                                                                                                 | (A)           |
| 6.  | $\Box \mathscr{G} \to \Box (\Box \mathscr{G} \to \overline{0} = \overline{1})$                                                                                                                           | 4,5 T3.2      |
| 7.  | $\Box(\Box \mathscr{G} \to \overline{0} = \overline{1}) \to (\Box \Box \mathscr{G} \to \Box(\overline{0} = \overline{1}))$                                                                               | D2            |
| 8.  | $\Box \mathscr{G} \to (\Box \Box \mathscr{G} \to \Box (\overline{0} = \overline{1}))$                                                                                                                    | 6,7 T3.2      |
| 9.  | $[\Box \mathscr{G} \to (\Box \Box \mathscr{G} \to \Box (\overline{0} = \overline{1}))] \to [(\Box \mathscr{G} \to \Box \Box \mathscr{G}) \to (\Box \mathscr{G} \to \Box (\overline{0} = \overline{1}))]$ | A2            |
| 10. | $(\Box \mathcal{G} \to \Box \Box \mathcal{G}) \to (\Box \mathcal{G} \to \Box (\overline{0} = \overline{1}))$                                                                                             | 9,8 MP        |
| 11. | $\Box \mathcal{G} \to \Box \Box \mathcal{G}$                                                                                                                                                             | D3            |
| 12. | $\Box \mathscr{G} \to \Box (\overline{0} = \overline{1})$                                                                                                                                                | 10,11 MP      |
| 13. | $[\Box \mathscr{G} \to \Box (\overline{0} = \overline{1})] \to [\sim \Box (\overline{0} = \overline{1}) \to \sim \Box \mathscr{G}]$                                                                      | <b>T3.</b> 13 |
| 14. | $\sim \Box(\bar{0}=\bar{1}) \rightarrow \sim \Box \mathscr{G}$                                                                                                                                           | 13,12 MP      |
|     |                                                                                                                                                                                                          |               |

Which is to say,  $T \vdash Cont \rightarrow \sim Prvt(\overline{\ulcorner \mathcal{G} \urcorner})$ .

As usual for an axiomatic derivation, the reasoning is not entirely transparent. However we are at the stage where, given the derivability conditions, T proves the result. Given this, reason as before,

T13.10. Let T be a recursively axiomatized theory extending Q. Then supposing T satisfies the derivability conditions, if T is consistent,  $T \nvDash Cont$ .

Suppose *T* is a recursively axiomatized theory extending Q that satisfies the derivability conditions. Then by T13.9,  $T \vdash Cont \rightarrow \sim Prvt(\overline{\ulcorner \mathcal{G} \urcorner})$ ; and by T13.3,  $T \vdash \mathcal{G} \leftrightarrow \sim Prvt(\overline{\ulcorner \mathcal{G} \urcorner})$ ; so  $T \vdash Cont \rightarrow \mathcal{G}$ ; so if  $T \vdash Cont$  then  $T \vdash \mathcal{G}$ ; but from the first incompleteness theorem (T13.4), if *T* is consistent, then  $T \nvDash \mathcal{G}$ ; so if *T* is consistent,  $T \nvDash Cont$ .

One might wonder about the significance of this theorem: If T were inconsistent, it *would* prove *Cont*. So a failure to prove *Cont* is no reason to think that T is inconsistent. And a proof of *Cont* might itself be an indication of inconsistency! The interesting point here results from using one theory to prove the consistency of another. Recall the main Hilbert strategy as outlined in the introduction to Part IV; a key component is the demonstration by means of some real theory R that an ideal theory I is consistent. But, supposing that PA cannot prove its own consistency, we can be sure that no *weaker* theory can prove the consistecy of PA. And if PA cannot prove even the consistency of PA, then PA and theories weaker than PA cannot be used to prove the consistency of theories *stronger* than PA.<sup>7</sup> So a leg of the Hilbert

<sup>&</sup>lt;sup>7</sup>And the same goes for Hilbert's PRA (see note 5).

strategy seems to be removed. Observe, however, that the theorem does not show that the consistency of PA is unprovable: a theory stronger than PA at least in some respects might still prove the consistency of PA.<sup>8</sup> This may be a straightforward theorem of the second theory. Of course, as a means of demonstrating consistency such an argument may seem problematic insofar as one requires some reason for thinking the second theory sound which does not already attach to the first, and so already show that the first theory is consistent.

Another theorem is easy to show, and left as an exercise.

T13.11. Let *T* be a recursively axiomatized theory extending Q. Then supposing *T* satisfies the derivability conditions and so the K4 logic of provability,  $T \vdash Cont \leftrightarrow \sim Prvt(\overline{\lceil Cont \rceil})$ .

Hints: (i) Show that  $T \vdash Cont \rightarrow \sim \Box Cont$ ; you can do this starting with  $Cont \rightarrow \sim \Box \mathscr{G}$  from T13.9 and  $\sim \Box \mathscr{G} \rightarrow \mathscr{G}$  from T13.3. Then (ii) show  $T \vdash \sim \Box Cont \rightarrow Cont$ ; for this, use T3.39 with T3.9 to show  $T \vdash \overline{0} = \overline{1} \rightarrow Cont$ ; then you should be able to obtain  $\sim \Box Cont \rightarrow \sim \Box(\overline{0} = \overline{1})$  which is to say  $\sim \Box Cont \rightarrow Cont$ . Together these give the desired result.

From this theorem, supposing the derivability conditions, *Cont* is another  $\mathcal{P}$  which, like  $\mathscr{G}$ , is such that  $T \vdash \mathcal{P} \leftrightarrow \sim Prvt(\overline{\ulcorner\mathcal{P}}\urcorner)$ ; so *Cont* is another fixed point for  $\sim Prvt(x)$ . It follows that *Cont* is another sentence such that both it and its negation are unprovable. Interestingly, *Cont* uses the notion of provability, but is not constructed so as to say anything about its *own* provability — and so this instance of incompleteness does not depend on self-reference for the unprovable sentence.

We have shown that the second theorem holds for a theory if it meets the derivability conditions. But this is not to show that the theorem holds for any theories! In order to tie the result to something concrete, we turn now to showing that PA meets the derivability conditions, and so that PA, and theories extending PA, satisfy the theorem.

Demonstration of the first condition is simple.

T13.12. Suppose *T* is a recursively axiomatized theory extending Q. Then if  $T \vdash \mathcal{P}$ , then  $T \vdash \Box \mathcal{P}$ .

<sup>&</sup>lt;sup>8</sup>G. Gentzen shows this very thing, "The Consistency of Elementary Number Theory," and "New Version of the Consistency Proof for Elementary Number Theory," both in *The Collected Papers of Gehard Gentzen*, ed. Szabo. See also Gentzen, "The Concept of Infinite in Mathematics" also in Szabo, along with Pohlers, *Proof Theory*, chpater 1, and Takeuti, *Proof Theory*, §12.

Suppose  $T \vdash \mathcal{P}$ ; then since T is recursively axiomatized, for some m, PRFT $(m, \lceil \mathcal{P} \rceil)$ ; and since T extends Q, there is a *Prft* that captures PRFT; so  $T \vdash Prft(\overline{m}, \lceil \mathcal{P} \rceil)$ ; so by  $\exists I, T \vdash \exists x Prft(x, \lceil \mathcal{P} \rceil)$ ; so  $T \vdash Prvt(\lceil \mathcal{P} \rceil)$ ; so  $T \vdash \Box \mathcal{P}$ .

The next conditions are considerably more difficult. We build gradually to the required results in PA.

E13.4. (i) Produce derivations to show both parts of T13.11. (ii) Use your result to demonstrate that T is negation incomplete — that if T is recursively axiomatized theory extending Q that satisfies the derivability conditions, then if T is consistent,  $T \nvDash Cont$ , and if T is  $\omega$ -consistent,  $T \nvDash \sim Cont$ .

# 13.3 The Derivability Conditions: Background

In this section we develop some results required for demonstration of derivability conditions two and three. We proceed by introducing functions and relations into PA by *definition*, and then proving some results about them.

## **13.3.1** Remarks on Definition

So far, we have taken a language, as  $\mathcal{L}_q$  or  $\mathcal{L}_{NT}$  as basic, and introduced any additional symbols, for example  $\leq$ , as means of *abbreviation* for expressions in the original language. But in more complex contexts — especially involving function symbols, it will be convenient to *extend* the language by the definition of new symbols. Thus given a theory T in language  $\mathcal{L}$ , we might introduce symbols and corresponding axioms to obtain T' and  $\mathcal{L}'$  as follows,

| Symbol    | Axiom                                                                             | Condition                                                                       |
|-----------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Э         | $\exists x \mathcal{P} \leftrightarrow \sim \forall x \sim \mathcal{P}$           |                                                                                 |
| $\leq$    | $x \le y \leftrightarrow \exists z (z + x = y)$                                   |                                                                                 |
| $\oslash$ | $y = \oslash \leftrightarrow \forall x (x \notin y)$                              | $T \vdash \exists ! y \forall x (x \notin y)$                                   |
| S         | $y = Sx \leftrightarrow \forall z [z \in y \leftrightarrow (z \in x \lor z = x)]$ | $T \vdash \exists ! y \forall z [z \in y \leftrightarrow (z \in x \lor z = x)]$ |

We are familiar with the first two cases. Strictly, the first lists an axiom schema, representing different axioms for different instances of  $\mathcal{P}$ . So far, we have thought of

# **Additional Theorems of PA** \*T13.13. The following are theorems of PA: (a) $PA \vdash (r \leq s \land s \leq t) \rightarrow r \leq t$ (b) $PA \vdash (r < s \land s < t) \rightarrow r < t$ (c) $PA \vdash (r \leq s \land s < t) \rightarrow r < t$ (d) $PA \vdash \emptyset < t$ (e) $PA \vdash \emptyset < St$ (f) $PA \vdash t \neq \emptyset \leftrightarrow \emptyset < t$ (g) $PA \vdash t > \emptyset \rightarrow \exists y (t = Sy)$ y not in t. (h) $PA \vdash t < St$ (i) $PA \vdash St = s \rightarrow t < s$ (j) $PA \vdash s \leq t \leftrightarrow Ss \leq St$ (k) $PA \vdash s < t \leftrightarrow Ss < St$ (1) $PA \vdash s < t \leftrightarrow Ss < t$ (m) $PA \vdash s \leq t \Leftrightarrow s < t \lor s = t$ (n) $PA \vdash s < St \leftrightarrow s < t \lor s = t$ (o) $PA \vdash s \leq St \leftrightarrow s \leq t \lor s = St$ (p) $PA \vdash s < t \lor s = t \lor t < s$ (q) $PA \vdash s \leq t \lor t < s$ (r) $PA \vdash s \leq t \Leftrightarrow t \neq s$ (s) $PA \vdash t < s \rightarrow t \neq s$ (t) $PA \vdash (s \le t \land t \le s) \rightarrow s = t$ (u) $PA \vdash s \leq s + t$ (v) $PA \vdash r < s \leftrightarrow r + t < s + t$ (w) $PA \vdash r < s \leftrightarrow r + t < s + t$ (x) $PA \vdash (r \leq s \land t \leq u) \rightarrow r + t \leq s + u$ (y) $PA \vdash (r < s \land t \leq u) \rightarrow r + t < s + u$ (z) $PA \vdash \emptyset < t \rightarrow s \leq s \times t$ (aa) $PA \vdash r \leq s \rightarrow r \times t \leq s \times t$ (ab) $PA \vdash r \times s > \emptyset \rightarrow s > \emptyset$ (ac) PA $\vdash$ $(r > \overline{1} \land s > \emptyset) \rightarrow r \times s > s$ (ad) $PA \vdash (t > \emptyset \land r < s) \rightarrow r \times t < s \times t$ (ae) $PA \vdash (r < s \land t < u) \rightarrow r \times t < s \times u$ (af) $PA \vdash \forall x [(\forall z < x) \mathcal{P}_x^{\chi} \to \mathcal{P}] \to \forall x \mathcal{P}$ strong induction (a) (ag) $\mathrm{PA} \vdash \mathcal{P}_{\emptyset}^{\mathfrak{X}} \land \forall \mathfrak{x} [(\forall \mathfrak{z} \leq \mathfrak{x}) \mathcal{P}_{\mathfrak{z}}^{\mathfrak{X}} \to \mathcal{P}_{\mathfrak{S}\mathfrak{x}}^{\mathfrak{X}}] \to \forall \mathfrak{x} \mathcal{P}$ strong induction (b) (ah) $PA \vdash \exists x \mathcal{P} \to \exists x [\mathcal{P} \land (\forall x < x) \sim \mathcal{P}_{x}^{x}]$ least number principle

Some of these are related to results we obtained in chapter 8 for Q. But there results were of the sort, for any n,  $Q \vdash t < \overline{n} \lor t = \overline{n} \lor \overline{n} < t$ ; with PA, the induction is in the logic rather than in the metalanguage, and we obtain the universal quantifier (or rather, an arbitrary term which may be a free variable) in the object formula.

these as *abbreviations* — and as such the listed axioms are of the sort  $\mathcal{Q} \leftrightarrow \mathcal{Q}$  with the abbreviated form on one side, and the unabbreviated on the other. A theory is not extended by the addition of an "axiom" of this sort. But is possible to see the symbols as *new* vocabulary. In all four cases T' includes a new axiom. The last two require also a uniqueness condition in the original T. For these, let  $\exists ! y \mathcal{P}(y)$  abbreviate  $\exists y [\mathcal{P}(y) \land \forall z (\mathcal{P}(z) \rightarrow z = y)]$  or equivalently  $\exists y \mathcal{P}(y) \land \forall y \forall z [(\mathcal{P}(y) \land \mathcal{P}(z)) \rightarrow y = z]$  so that *exactly one* thing is  $\mathcal{P}$ . Then the cases for a constant and function symbol are standard examples from set theory, where zero and successor are defined (the condition for successor sets  $Sx = x \cup \{x\}$  so that the members of Sx are x and all the members of x). The details of the examples are not important; we illustrate only the idea of definition. We begin with a formal account, and extend it in different directions.

#### **Basic Account**

Consider some theory T and language  $\mathcal{L}$ . We will consider a language  $\mathcal{L}'$  extended with some new symbol and theory T' extended with the corresponding axiom. There are separate cases for a relation symbol, operator symbol, constant symbol and function symbol.

*Relation symbol.* To introduce a new relation symbol  $\Re \vec{x}$  we require an axiom in the extended theory such that,

$$T' \vdash \mathcal{R}(\vec{x}) \leftrightarrow \mathcal{Q}(\vec{x})$$

where  $\mathcal{Q}(\vec{x})$  is in  $\mathcal{L}$ . Then for a formula  $\mathcal{F}'$  including the new symbol, there should be a conversion  $\mathfrak{C}$  such that  $\mathfrak{C}[\mathcal{F}'] = \mathcal{F}$  for  $\mathcal{F}$  in the original  $\mathcal{L}$ , and

$$T' \vdash \mathcal{F}'$$
 iff  $T \vdash \mathfrak{C}[\mathcal{F}']$ 

So  $\mathbb{C}[\mathcal{F}']$  is like our unabbreviated formula, always available in the original T when  $\mathcal{F}'$  is a theorem of T'. The conversion for a relation  $\mathcal{R}\vec{s}$  is straightforward. Make sure the bound variables of  $\mathcal{Q}$  do not overlap the variables of  $\vec{s}$ . Then  $\mathbb{C}[\mathcal{F}'] = \mathcal{F}'_{\mathcal{Q}(\vec{s})}^{\mathcal{R}\vec{s}}$ . So, from the example above,

$$T' \vdash x \le y \Leftrightarrow \exists z (z + x = y).$$

So  $\mathcal{R}(x, y) = x \le y$  and  $\mathcal{Q}(x, y) = \exists z(z + x = y)$ . Suppose  $\mathcal{F}' = \forall z(a \le z)$ . Then we want to instantiate x and y from the axiom to a and z. But z is not free for y in the axiom. We solve the problem by revising bound variables; so  $T' \vdash x \le$   $y \leftrightarrow \exists w(w + x = y)$  and then  $T' \vdash a \leq z \leftrightarrow \exists w(w + a = z)$ . So  $\mathbb{C}[\mathcal{F}']$  replaces  $(a \leq z)$  in  $\mathcal{F}'$  with  $\exists w(w + a = z)$  to obtain  $\forall z \exists w(w + a = z)$ .

*Operator symbol.* Extend notation in the obvious way so that  $\mathcal{O}[\bar{\mathcal{P}}]$  indicates that operator symbol  $\mathcal{O}$  operates on formulas  $\mathcal{P}_1 \dots \mathcal{P}_n$ . To introduce a new operator symbol  $\mathcal{O}[\bar{\mathcal{P}}]$  we require axioms in the extended theory such that,

$$T' \vdash \mathcal{O}[\vec{\mathcal{P}}] \leftrightarrow \mathcal{Q}[\vec{\mathcal{P}}]$$

where  $\mathscr{Q}[\vec{\mathscr{P}}]$  is an expression in  $\mathscr{L}$ . Again for  $\mathscr{F}'$  including the new symbol, there should be a conversion  $\mathfrak{C}$  such that  $\mathfrak{C}[\mathscr{F}'] = \mathscr{F}$  for  $\mathscr{F}$  in the original  $\mathscr{L}$  and  $T' \vdash \mathscr{F}'$  iff  $T \vdash \mathfrak{C}[\mathscr{F}']$ . This time set  $\mathfrak{C}[\mathscr{F}'] = \mathscr{F}'_{\mathscr{Q}[\vec{\mathscr{P}}]}^{\mathscr{O}[\vec{\mathscr{P}}]}$ . Thus, from example above, we are given  $T' \vdash \exists z Rxz \leftrightarrow \sim \forall z \sim Rxz$ . Suppose  $\mathscr{F}' = \forall x \exists z Rxz$ . Then  $\mathfrak{C}[\mathscr{F}'] = \forall x \sim \forall z \sim Rxz$ .

*Constant symbol.* To introduce a new constant symbol we require an axiom in the extended theory, along with a condition in the original theory such that,

$$T' \vdash y = c \leftrightarrow \mathcal{Q}(y)$$
 and  $T \vdash \exists ! y \mathcal{Q}(y)$ 

Again for a formula  $\mathcal{F}'$  including the new symbol, we expect a conversion  $\mathfrak{C}$  such that  $\mathfrak{C}[\mathcal{F}'] = \mathcal{F}$ , where  $T' \vdash \mathcal{F}'$  iff  $T \vdash \mathfrak{C}[\mathcal{F}]$ . Let z be a variable that does not appear in  $\mathcal{F}'$  or  $\mathcal{Q}$ . Then

$$\mathfrak{C}[\mathcal{F}'] = \exists z \left( \mathcal{Q}(z) \land \mathcal{F}'_{z}^{c} \right)$$

So, from the example above, we are given  $T' \vdash y = \emptyset \leftrightarrow \forall x (x \notin y)$ ; suppose  $\mathcal{F}' = \exists x (\emptyset \in x)$ . Then z is a variable that does not appear in  $\mathcal{F}'$  or  $\mathcal{Q}$  — in  $\exists x (\emptyset \in x)$  or  $\forall x (x \notin y)$ . So  $\mathbb{C}[\mathcal{F}'] = \exists z [\forall x (x \notin z) \land \exists x (z \in x)]$ .

*Function symbol.* To introduce a function symbol, there is an axiom and condition,

$$T' \vdash y = h\vec{x} \leftrightarrow \mathcal{Q}(\vec{x}, y)$$
 and  $T \vdash \exists! y \mathcal{Q}(\vec{x}, y)$ 

The conversion for a function symbol works like that for constants when a single instance of  $\hbar \vec{s}$  appears in  $\mathcal{F}'$ . Again, make sure the bound variables of  $\mathcal{Q}$  do not overlap the variables of  $\vec{s}$  and let z be a variable that does not appear in  $\mathcal{F}'$  or in  $\mathcal{Q}$ . Then it is sufficient to set  $\mathbb{C}[\mathcal{F}'] = \exists z (\mathcal{Q}(\vec{s}, z) \land \mathcal{F}'_z^{\hbar \vec{s}})$ . In general, however,  $\mathcal{F}'$  may include multiple instances of  $\hbar$ , including one in the scope of another. For the general case, begin where  $\mathcal{F}'$  is an atomic  $\mathcal{R}' = \mathcal{R}t_1 \ldots t_n$  and  $t_1 \ldots t_n$  may involve instances of  $\hbar \vec{s}$ . Order instances of  $\hbar \vec{s}$  in  $\mathcal{R}'$  from the left (or, on a chapter 2 tree, from the bottom) into a list  $\hbar \vec{s}_1, \hbar \vec{s}_2, \ldots \hbar \vec{s}_m$ , so that when i < j, no  $\hbar \vec{s}_i$ 

appears in the scope of  $h\vec{s}_j$ . Then set  $\mathcal{R}_0 = \mathcal{R}'$ , and for  $i \ge 1$ ,  $\mathcal{R}_i = \exists z (\mathcal{Q}(\vec{s}_i, z) \land (\mathcal{R}_{i-1})_z^{h\vec{s}_i})$ . Then  $\mathfrak{C}[\mathcal{R}'] = \mathcal{R}_m$  and for an arbitrary  $\mathcal{F}'$ ,  $\mathfrak{C}[\mathcal{F}'] = \mathcal{F}'_{\mathcal{R}_m}^{\mathcal{R}'}$ . So, for example, if  $\mathcal{R}' = \mathcal{R}_0 = Rh^2h^2xyh^2yz$ , the tree is as follows,



So instances of hqr are ordered  $\langle h^2h^2xyh^2yz, h^2xy, h^2yz \rangle$ . Then we use Q to replace instances of h, working our way up through the tree. So,

$$\mathcal{R}_{0} = Rh^{2}h^{2}xyh^{2}yz$$
$$\mathcal{R}_{1} = \exists u[\mathcal{Q}h^{2}xyh^{2}yzu \wedge Ru]$$
$$\mathcal{R}_{2} = \exists v(\mathcal{Q}xyv \wedge \exists u[\mathcal{Q}vh^{2}yzu \wedge Ru])$$
$$\mathcal{R}_{3} = \exists w[\mathcal{Q}yzw \wedge \exists v(\mathcal{Q}xyv \wedge \exists u[\mathcal{Q}vwu \wedge Ru])]$$

 $\mathcal{R}_1$  uses  $\mathcal{Q}$  to replace all of  $h^2h^2xyh^2yz$ , operating on the terms  $h^2xy$  and  $h^2yz$ .  $\mathcal{R}_2$  uses  $\mathcal{Q}$  to replace  $h^2xy$  in  $\mathcal{R}_1$ , and  $\mathcal{R}_3$  uses  $\mathcal{Q}$  to replace  $h^2yz$  in  $\mathcal{R}_2$ . Observe that free variables are the same as in  $\mathcal{R}'$ .

To show that this works, that  $T' \vdash \mathcal{F}'$  iff  $T \vdash \mathcal{F}$  we need a couple of theorems. The idea is to show that  $T' \vdash \mathcal{F}' \leftrightarrow \mathcal{F}$  and then that  $T' \vdash \mathcal{F}$  iff  $T \vdash \mathcal{F}$ . Together, these give the result we want. First,

T13.14. For a defined symbol, with its associated axiom and conversion procedure,  $T' \vdash \mathcal{F}' \leftrightarrow \mathcal{F}.$ 

(r) For a relation symbol, we are given  $T' \vdash \Re \vec{x} \leftrightarrow \mathcal{Q}(\vec{x})$ ; then so long as the bound variables of  $\mathcal{Q}$  do not overlap the variables of  $\Re \vec{s}$  (which we guarantee by reasoning as for T3.27)  $\vec{s}$  is free for  $\vec{x}$  in  $\mathcal{Q}$ , so  $T' \vdash \Re \vec{s} \leftrightarrow \mathcal{Q}(\vec{s})$ ; so by T9.9,  $T' \vdash \mathscr{F}' \leftrightarrow \mathscr{F}'_{\mathcal{Q}(\vec{s})}^{\mathscr{R}\vec{s}}$ ; so  $T' \vdash \mathscr{F}' \leftrightarrow \mathscr{F}$ .

(o) For an operator symbol, we are given  $T' \vdash \mathcal{O}[\vec{\mathcal{P}}] \leftrightarrow \mathcal{Q}[\vec{\mathcal{P}}]$ ; so by T9.9,  $T' \vdash \mathcal{F}' \leftrightarrow \mathcal{F}'_{\mathcal{Q}[\vec{\mathcal{P}}]}$ ; so  $T' \vdash \mathcal{F}' \leftrightarrow \mathcal{F}$ .

(c) The case for constants is left as an exercise.

(f) For a function symbol  $\hbar$ , begin with a derivation to show  $T' \vdash \mathcal{R}_{i-1} \Leftrightarrow \mathcal{R}_i$ . Given  $\mathcal{R}_{i-1}[\hbar(\vec{s})]$ ,  $\mathcal{R}_i(\vec{s})$  is  $\exists z (\mathcal{Q}(\vec{s}, z) \land \mathcal{R}_{i-1}[z])$ . We have as an axiom that  $T' \vdash y = \hbar \vec{x} \Leftrightarrow \mathcal{Q}(\vec{x}, y)$ .

| 1.  | $\mathcal{R}_{i-1}[\hbar(\vec{s})]$                                                                            | $\mathbf{A}\left(g\leftrightarrow\mathbf{I}\right)$ |
|-----|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 2.  | $h(\vec{s}) = h(\vec{s}) \leftrightarrow \mathcal{Q}(\vec{s}, h(\vec{s}))$                                     | from $T'$                                           |
| 3.  | $h\vec{s} = h\vec{s}$                                                                                          | =I                                                  |
| 4.  | $Q(\vec{s}, h(\vec{s}))$                                                                                       | $2,3 \leftrightarrow E$                             |
| 5.  | $\mathcal{Q}(ec{s}, h(ec{s})) \wedge \mathcal{R}_{i-1}[h(ec{s})]$                                              | 1,4 ∧I                                              |
| 6.  | $\exists z (\mathcal{Q}(\vec{s}, z) \land \mathcal{R}_{i-1}[z])$                                               | 5 ∃I                                                |
| 7.  | $\exists z(\mathcal{Q}(\vec{s},z) \land \mathcal{R}_{i-1}[z])$                                                 | $\mathbf{A}\left(g\leftrightarrow\mathbf{I}\right)$ |
| 8.  | $\mathbb{Q}(\vec{\mathfrak{s}},j)\wedge \mathcal{R}_{i-1}[j]$                                                  | A (g 7 $\exists$ E)                                 |
| 9.  | $Q(\vec{s}, j)$                                                                                                | 8 ^E                                                |
| 10. | $j = h(\vec{s}) \leftrightarrow \mathcal{Q}(\vec{s}, j)$                                                       | from $T'$                                           |
| 11. | $j = h(\vec{s})$                                                                                               | $10,9 \leftrightarrow E$                            |
| 12. | $\mathcal{R}_{i-1}[j]$                                                                                         | $8 \land E$                                         |
| 13. | $\left  \mathcal{R}_{i-1}[h(\vec{s})] \right $                                                                 | 11,12 =E                                            |
| 14. | $\mathcal{R}_{i-1}[h(\vec{s})]$                                                                                | 7,8-13 ∃E                                           |
| 15. | $\mathcal{R}_{i-1}[h(\vec{s})] \leftrightarrow \exists z (\mathcal{Q}(\vec{s}, z) \land \mathcal{R}_{i-1}[z])$ | 1-6,7-14 ↔I                                         |

Things are arranged so that the variables of  $\vec{s}$  are not bound upon substitution into  $\mathcal{Q}$ . So instances of the axiom at (2) and (10) and  $\exists I$  at (6) satisfy constraints. So  $T' \vdash \mathcal{R}_{i-1} \leftrightarrow \mathcal{R}_i$ ; and by repeated applications of this theorem,  $T' \vdash \mathcal{R}' \leftrightarrow \mathcal{R}_m$ ; so by T9.9,  $T' \vdash \mathcal{F}' \leftrightarrow \mathcal{F}'_{\mathcal{R}_m}^{\mathcal{R}'}$ ; so  $T' \vdash \mathcal{F}' \leftrightarrow \mathcal{F}$ .

So far, so good, but this only says what the extended T' proves — that the richer T' proves  $\mathcal{F}'$  iff it proves  $\mathcal{F}$ . But we want to see that T' proves  $\mathcal{F}'$  iff the original T proves  $\mathcal{F}$ . We bridge the gap between T and T' by an additional theorem.

T13.15. For a T and  $\mathcal{L}$ , given a defined symbol with its associated axiom, and for any formula  $\mathcal{F}$  in the original  $\mathcal{L}$ ,  $T' \vdash \mathcal{F}$  iff  $T \vdash \mathcal{F}$ .

Since T' proves everything T proves, the direction from right to left is obvious. So suppose  $T' \vdash \mathcal{F}$ ; by soundness,  $T' \models \mathcal{F}$ ; we show  $T \models \mathcal{F}$ ; so that, by adequacy,  $T \vdash \mathcal{F}$ . To show  $T \models \mathcal{F}$ , suppose there is a model M such that M[T] = T; our aim is to show  $M[\mathcal{F}] = T$ .

(r) Relation symbol. Extend M to a model M' like M except that for arbitrary d,  $\langle d[x_1] \dots d[x_n] \rangle \in M'[\mathcal{R}]$  iff  $M_d[\mathcal{Q}(x_1 \dots x_n)] = S$ ; iff  $M'_d[\mathcal{Q}(x_1 \dots x_n)] = S$  (the latter by T10.15 since M and M' agree on assignments to symbols in  $\mathcal{Q}$ ). Since M' and M agree on assignments to symbols other than  $\mathcal{R}$ , by T10.15 M'[T] = T. And M'[ $\mathcal{R}\vec{x} \leftrightarrow \mathcal{Q}(\vec{x})$ ] = T: suppose otherwise; then by TI there is some d such that M'<sub>d</sub>[ $\mathcal{R}x_1 \dots x_n \leftrightarrow \mathcal{Q}(x_1 \dots x_n)$ ]  $\neq$  S; so by SF( $\leftrightarrow$ ), M'<sub>d</sub>[ $\mathcal{R}x_1 \dots x_n$ ]  $\neq$  S and M'<sub>d</sub>[ $\mathcal{Q}(x_1 \dots x_n)$ ] = S (or the other way around); so  $\langle d[x_1] \dots d[x_n] \rangle \notin M'[\mathcal{R}]$  and M'<sub>d</sub>[ $\mathcal{Q}(x_1 \dots x_n)$ ] = S; but by construction, this is impossible; and similarly in the other case; reject the assumption, M'[ $\mathcal{R}\vec{x} \leftrightarrow \mathcal{Q}(\vec{x})$ ] = T. So M'[T'] = T; so since  $T' \models \mathcal{F}$ , M'[ $\mathcal{F}$ ] = T; and by T10.15 again, M[ $\mathcal{F}$ ] = T; and since this reasoning applies for arbitrary M,  $T \models \mathcal{F}$ .

(o) Operator symbol. We we do not usually think of the specification for an operator as part of an interpretation and, so long as this is so, cannot extend an interpretation for operator symbols as above. Still, it is possible to provide an equivalent to the usual formulation on which operator symbols are interpreted. For any  $\mathcal{P}$  and M, let  $|\mathcal{P}|_{M}$  be the set of all variable assignments on which  $\mathcal{P}$  is satisfied. So  $\mathcal{P}$  is T when  $|\mathcal{P}|_{\mathsf{M}}$  is the set of all assignments, and  $\mathcal{P}$  is F when  $|\mathcal{P}|_{\mathsf{M}}$  is the empty set. We have understood the interpretation of a relation symbol as a set of tuples - and so as a specification of the set of interpretations on which the relation symbol is satisfied. After that, for an *n*-place operator  $\mathcal{O}, \mathsf{M}[\mathcal{O}]$  is a function with members  $\langle \langle V_1 \dots V_n \rangle, V \rangle$ where  $V_1 \ldots V_n$  and V are sets of assignments; and  $\mathcal{O}[\mathcal{P}_1 \ldots \mathcal{P}_n]$  is satisfied on d just in case  $d \in M[\mathcal{O}]\langle |\mathcal{P}_1|_{M} \dots |\mathcal{P}_n|_{M} \rangle$ . So, for example, conjunction is a function that takes  $|\mathcal{P}_1|_M$  and  $|\mathcal{P}_2|_M$  to  $|\mathcal{P}_1|_M \cap |\mathcal{P}_2|_M$  — a conjunction  $\mathcal{P}_1 \wedge \mathcal{P}_2$  is satisfied on d just in case d is among the assignments that satisfy both  $\mathcal{P}_1$  and  $\mathcal{P}_2$ . And an existential x-quantifier takes  $|\mathcal{P}|_{\mathsf{M}}$  to the set of all assignments that have an x-variant in  $|\mathcal{P}|_{M}$ .

Now extend M to a model M' like M except that  $d \in M'[\mathcal{O}]\langle |\mathcal{P}_1|_M \dots |\mathcal{P}_n|_M \rangle$ iff  $M_d[\mathcal{Q}(\mathcal{P}_1 \dots \mathcal{P}_n)] = S$ ; iff  $M'_d[\mathcal{Q}(\mathcal{P}_1 \dots \mathcal{P}_n)] = S$  (this by a simple extension of T10.15). Again since M' and M agree on assignments to symbols other than  $\mathcal{O}$ , with T10.15, M'[T] = T. And  $M'[\mathcal{O}(\vec{\mathcal{P}}) \leftrightarrow \mathcal{Q}(\vec{\mathcal{P}})] = T$ : suppose otherwise; then by TI there is some d such that  $M'_d[\mathcal{O}(\vec{\mathcal{P}}) \leftrightarrow \mathcal{Q}(\vec{\mathcal{P}})] \neq$ S; so by SF( $\leftrightarrow$ ),  $M'_d[\mathcal{O}(\vec{\mathcal{P}})] \neq S$  and  $M'_d[\mathcal{Q}(\vec{\mathcal{P}})] = S$  (or the other way around); from the second, by construction,  $d \in M'[\mathcal{O}]\langle |\mathcal{P}_1|_M \dots |\mathcal{P}_n|_M \rangle$ ; so  $M'_d[\mathcal{O}(\vec{\mathcal{P}})] = S$ ; this is impossible; and similarly in the other direction; reject the assumption:  $M'[\mathcal{O}(\vec{\mathcal{P}}) \leftrightarrow \mathcal{Q}(\vec{\mathcal{P}})] = T$ . So M'[T'] = T; so since  $T' \models \mathcal{F}$ ,

<sup>&</sup>lt;sup>9</sup>These examples are illustrative. For the primitive operators, let  $\overline{|\mathcal{P}|}_{M}$  be the complement of  $|\mathcal{P}|_{M}$ . Then  $|\sim \mathcal{P}|_{M} = \overline{|\mathcal{P}|}_{M}, |\mathcal{P} \to \mathcal{Q}|_{M} = \overline{|\mathcal{P}|}_{M} \cup |\mathcal{Q}|_{M}$ , and  $d \in |\forall x \mathcal{P}|_{M}$  just in case all of its x-variants are in  $|\mathcal{P}|_{M}$ .

 $M'[\mathcal{F}] = T$ ; and by T10.15 again,  $M[\mathcal{F}] = T$ ; and since this reasoning applies for arbitrary M,  $T \models \mathcal{F}$ .

(c) The case for constants is left as an exercise.

(f) Function symbol. Since  $T \vdash \exists ! y \mathcal{Q}(\vec{x}, y)$ , by soundness  $T \models \exists ! y \mathcal{Q}(\vec{x}, y)$ ; so since M[T] = T,  $M[\exists ! y \mathcal{Q}(\vec{x}, y)] = T$ ; so by TI, for any d,  $M_d[\exists ! y \mathcal{Q}(\vec{x}, y)]$ = S, and there is exactly one  $m \in U$  such that  $M_{d(y|m)}[\mathcal{Q}(\vec{x}, y)] = S$ . Extend M to a model M' like M except that for arbitrary d,  $\langle \langle d[x_1] \dots d[x_n] \rangle$ ,  $m \rangle \in$  $M'[\hbar]$  iff  $M_{d(y|m)}[\mathcal{Q}(x_1 \dots x_n, y)] = S$ ; by T10.15 iff  $M'_{d(y|m)}[\mathcal{Q}(x_1 \dots x_n, y)]$ = S. Since M' and M agree on assignments to symbols other than  $\hbar$ , by T10.15 M'[T] = T. And  $M'[y = \hbar \vec{x} \leftrightarrow \mathcal{Q}(\vec{x}, y)] = T$ : suppose otherwise; then by TI there is some h such that  $M'_h[y = \hbar \vec{x} \leftrightarrow \mathcal{Q}(\vec{x}, y)] \neq S$ ; so by SF( $\leftrightarrow$ ),  $M'_h[y = \hbar \vec{x}] \neq S$  and  $M'_h[\mathcal{Q}(\vec{x}, y)] = S$  (or the other way around). Where for some a, h(y) = a, h = h(y|a), and  $M'_{h(y|a)}[\mathcal{Q}(x_1 \dots x_n, y)] = S$ ; so by construction with TA(f),  $M'_h[\hbar x_1 \dots x_n] = a$ ; and since h(y) = a,  $M'_h[y] = a$ ; so  $M'_h[y = \hbar x_1 \dots x_n] = S$ ; this is impossible; and similarly in the other case; reject the assumption,  $M'[y = \hbar \vec{x} \leftrightarrow \mathcal{Q}(\vec{x}, y)] = T$ . So M'[T'] = T; so since  $T' \models \mathcal{F}$ ,  $M'[\mathcal{F}] = T$ ; and by T10.15 again,  $M[\mathcal{F}] = T$ ; and since this reasoning applies for arbitrary M,  $T \models \mathcal{F}$ .

These reasonings work insofar as M and M' give the same results for a Q in the original  $\mathcal{L}$ . It is, in fact, important to show that the specifications are consistent — that we do not both assert and deny that some objects are in the interpretation of a symbol. But this is easily done. Here one case and the start for another.

(r) The specification for a relation symbol is consistent: Suppose otherwise; that is, suppose there are some assignments d and h such that  $\langle \langle d[x_1] \dots d[x_n] \rangle, m \rangle \in M'[\hbar]$  and  $\langle \langle h[x_1] \dots h[x_n] \rangle, m \rangle \notin M'[\hbar]$  but  $d[x_1] = h[x_1]$  and  $\dots$  and  $d[x_n] = h[x_n]$ . From the first,  $M_{d(y|m)}[\mathcal{Q}(x_1 \dots x_n, y)] = S$ ; from the second,  $M_{h(y|m)}[\mathcal{Q}(x_1 \dots x_n, y)] \neq S$ ; but d(y|m) and h(y|m) make the same assignments to variables free in  $\mathcal{Q}(\vec{x}, y)$ ; so by T8.4,  $M_{d(y|m)}[\mathcal{Q}(\vec{x}, y)] =$  $M_{h(y|m)}[\mathcal{Q}(\vec{x}, y)]$ ; so  $M_{h(y|m)}[\mathcal{Q}(\vec{x}, y)] = S$ ; reject the assumption: if  $d[x_1] =$  $h[x_1]$  and  $\dots$  and  $d[x_n] = h[x_n]$  and  $\langle \langle d[x_1] \dots d[x_n] \rangle, m \rangle \in M'[\hbar]$  then  $\langle \langle h[x_1] \dots h[x_n] \rangle, m \rangle \in M'[\hbar]$ .

(o) The specification for an operator symbol is consistent: Suppose otherwise; that is, suppose  $d \in M'[\mathcal{O}]\langle |\mathcal{A}_1|_{M'} \dots |\mathcal{A}_n|_{M'} \rangle$  and  $d \notin M'[\mathcal{O}]\langle |\mathcal{B}_1|_{M'} \dots |\mathcal{B}_n|_{M'} \rangle$  but  $|\mathcal{A}_1|_{M'} = |\mathcal{B}_1|_{M'}$  and  $\dots$  and  $|\mathcal{A}_n|_{M'} = |\mathcal{B}_n|_{M'}$ . From the first,  $M'_d[\mathcal{Q}(\mathcal{A}_1 \dots \mathcal{A}_n)] = S$  and from the second,  $M'_d[\mathcal{Q}(\mathcal{B}_1 \dots \mathcal{B}_n)] \neq S$ . Now reasoning is similar except with T9.10 instead of T8.4.

And now our desired result is simple. The basic idea is that for some T and  $\mathcal{L}$  with a defined constant, relation symbol or function symbol, from T13.14  $T' \vdash \mathcal{F}' \leftrightarrow \mathcal{F}$  and from T13.15  $T' \vdash \mathcal{F}$  iff  $T \vdash \mathcal{F}$ ; so that  $T' \vdash \mathcal{F}'$  iff  $T \vdash \mathcal{F}$ . Put more generally,

T13.16. For some defined symbols, with their associated axioms and conversion procedures,  $T' \vdash \mathcal{F}'$  iff  $T \vdash \mathcal{F}$ .

Consider a sequence of formulas  $\mathcal{F}_0 \dots \mathcal{F}_n$  and theories  $T_0 \dots T_n$  ordered according to the number of new symbols where for any  $i, \mathcal{F}_i = \mathfrak{C}[\mathcal{F}_{i+1}]$ . By our results,  $T_{i+1} \vdash \mathcal{F}_{i+1} \Leftrightarrow \mathcal{F}_i$ , and  $T_{i+1} \vdash \mathcal{F}_i$  iff  $T_i \vdash \mathcal{F}_i$ . It follows that  $T_{i+1} \vdash \mathcal{F}_{i+1}$  iff  $T_i \vdash \mathcal{F}_i$ . And by a simple induction,  $T_n \vdash \mathcal{F}_n$  iff  $T_0 \vdash \mathcal{F}_0$ , which is to say  $T' \vdash \mathcal{F}'$  iff  $T \vdash \mathcal{F}$ .

In the following, we will be clear about when new symbols and associated axioms are introduced, and about the conditions under which this may be done. In light of the results we have achieved however, we will not generally distinguish between a theory and its definitional extensions.

It is worth remarking on the increased requirement for definition relative to capture. In particular, for a function, capture requires  $T \vdash \forall z [\mathcal{F}(\overline{m}_1 \dots \overline{m}_n, z) \rightarrow z = \overline{a}]$ . For definition, from uniqueness, the comparable condition is  $T \vdash \forall y \forall z [(\mathcal{F}(\vec{x}, y) \land \mathcal{F}(\vec{x}, z)) \rightarrow y = z]$ . So definition builds in a sort of generality not required in the other case. Q is great about proving particular facts — but not so great when it comes to generality (this was a sticking point about the shift between Q and Q<sub>s</sub> in chapter 12 (p. 577 and below). But this is just the sort of thing PA is fitted to do.<sup>10</sup>

- E13.5. Supposing that  $T' \vdash y = h^2 uv \Leftrightarrow \mathcal{Q}(u, v, y)$  use the method of the text to find  $\mathfrak{C}[A \land Bh^2h^2xy]$ .
- E13.6. (i) From the definitions in p. 637n9 and the standard abbreviations, show that the conditions in the main text for  $\land$  and  $\exists$  obtain. (ii) What is the condition for  $\lor$ ? Hint: it should not involve complement.
- \*E13.7. Show T13.13af and T13.13ah. Hard core: show each of the results in T13.13.

<sup>&</sup>lt;sup>10</sup>Is definition so described *necessary* for reasoning to follow? We might continue to think in terms of abbreviation — or even unabbreviated formulas themselves, so that there are no *new* symbols. Even so, the conditions on such formulas would be like those for definition, so that the overall argument would remain the same.

E13.8. (i) Complete the unfinished cases for constants in T13.14 and T13.15. (ii) Show consistency results for operator, relation and constant symbols.

### **First applications**

Here are a couple of quick results that will be helpful as we move forward. First, if PA defines some functions  $h(\vec{x}, w, \vec{z})$  and  $g(\vec{y})$ , then PA defines their composition  $f(\vec{x}, \vec{y}, \vec{z}) = h(\vec{x}, g(\vec{y}), \vec{z})$ . We introduce a definition and then show that the condition is met. This pattern will repeat many times.

- T13.17. If PA defines some  $h(\vec{x}, w, \vec{z})$  and  $g(\vec{y})$ , then PA defines  $f(\vec{x}, \vec{y}, \vec{z}) = h(\vec{x}, g(\vec{y}), \vec{z})$ . Suppose PA defines some  $h(\vec{x}, w, \vec{z})$  and  $g(\vec{y})$ . Let,
  - $Def[f(\vec{x}, \vec{y}, \vec{z})] \text{ PA} \vdash v = f(\vec{x}, \vec{y}, \vec{z}) \leftrightarrow v = h(\vec{x}, g(\vec{y}), \vec{z}).$  Then,

(i) PA  $\vdash \exists v[v = h(\vec{x}, g(\vec{v}), \vec{z})]$ 1.  $h(\vec{x}, g(\vec{y}), \vec{z}) = h(\vec{x}, g(\vec{y}), \vec{z})$ =I2.  $\exists v [v = h(\vec{x}, g(\vec{y}), \vec{z})]$ 1 **∃**I (ii) PA  $\vdash \forall u \forall v [(u = h(\vec{x}, g(\vec{y}), \vec{z}) \land v = h(\vec{x}, g(\vec{y}), \vec{z})) \rightarrow u = v]$ 1.  $|j = h(\vec{x}, g(\vec{y}), \vec{z}) \wedge k = h(\vec{x}, g(\vec{y}), \vec{z})$ A  $(g \rightarrow I)$ 2.  $|j = h(\vec{x}, g(\vec{y}), \vec{z})|$  $1 \land E$ 3.  $| k = h(\vec{x}, g(\vec{y}), \vec{z})$  $1 \land E$ 4. | j = k2.3 = E5.  $(j = h(\vec{x}, g(\vec{y}), \vec{z}) \land k = h(\vec{x}, g(\vec{y}), \vec{z})) \rightarrow j = k$  $1-4 \rightarrow I$ 6.  $|\forall v[(j = h(\vec{x}, g(\vec{y}), \vec{z}) \land v = h(\vec{x}, g(\vec{y}), \vec{z})) \rightarrow j = v]$ 5 ∀I 7.  $\forall u \forall v [(u = h(\vec{x}, g(\vec{y}), \vec{z}) \land v = h(\vec{x}, g(\vec{y}), \vec{z})) \rightarrow u = v]$ 6 ∀I So PA  $\vdash \exists ! v[v = h(\vec{x}, g(\vec{y}), \vec{z})]$  and PA defines  $f(\vec{x}, \vec{y}, \vec{z})$ .

In addition, we can introduce a function for *minimization*. The idea is to set  $v = \mu y \mathcal{Q}(\vec{x}, y) \leftrightarrow [\mathcal{Q}(\vec{x}, v) \land (\forall z < v) \sim \mathcal{Q}(\vec{x}, z)]$ . In the ordinary case, a new function symbol h is introduced with an axiom of the sort  $v = h\vec{x} \leftrightarrow \mathcal{Q}(\vec{x}, v)$  under the condition  $T \vdash \exists ! v \mathcal{Q}(\vec{x}, v)$ . But, in this case, the situation is simplified by the following theorem.

T13.18. If  $PA \vdash \exists v \mathcal{Q}(\vec{x}, v)$ , then  $PA \vdash \exists !v[\mathcal{Q}(\vec{x}, v) \land (\forall z < v) \sim \mathcal{Q}(\vec{x}, v)]$ . (i) Suppose  $PA \vdash \exists v \mathcal{Q}(\vec{x}, v)$ . Then by the least number principle T13.13ah,  $PA \vdash \exists v[\mathcal{Q}(\vec{x}, v) \land (\forall z < v) \sim \mathcal{Q}(\vec{x}, v)]$ .

So under the condition  $\exists v \mathcal{Q}(\vec{x}, v)$ , we have  $\exists ! v [\mathcal{Q}(\vec{x}, v) \land (\forall z < v) \sim \mathcal{Q}(\vec{x}, v)]$ . As from the strengthened capture result (chapter 12, p. 583) this is because the bounded quantifier builds in that at most one thing satisfies the expression. Thus we may define functions for minimization and bounded minimization under revised conditions. Let,

$$Def[\mu v \mathcal{Q}(\vec{x}, v)] PA \vdash v = \mu v \mathcal{Q}(\vec{x}, v) \leftrightarrow [\mathcal{Q}(\vec{x}, v) \land (\forall z < v) \sim \mathcal{Q}(\vec{x}, v)]$$
  
(i) PA  $\vdash \exists v [\mathcal{Q}(\vec{x}, v) \land (\forall z < v) \sim \mathcal{Q}(\vec{x}, v)].$   
(ii)  $\forall u \forall v [(\mathcal{Q}(\vec{x}, u) \land (\forall z < u) \sim \mathcal{Q}(\vec{x}, z) \land \mathcal{Q}(\vec{x}, v) \land (\forall z < v) \sim \mathcal{Q}(\vec{x}, z)) \rightarrow u = v]$ 

But given T13.18, these conditions are met so long as  $PA \vdash \exists v Q(\vec{x}, v)$ .

And,

$$Def[(\mu y \le z) \mathcal{Q}(\vec{x}, z, y)] \text{ PA} \vdash v = (\mu y \le z) \mathcal{Q}(\vec{x}, z, y) \leftrightarrow v = \mu y [y = z \lor \mathcal{Q}(\vec{x}, z, y)]$$
  
Let  $m(\vec{x}, z) = \mu y [y = z \lor \mathcal{Q}(\vec{x}, z, y)]$  then we require,

(i) 
$$PA \vdash \exists v (v = m(\vec{x}, z))$$
  
(ii)  $PA \vdash \forall u \forall v ([u = m(\vec{x}, z) \land v = m(\vec{x}, z)] \rightarrow u = v)$ 

These conditions are trivially met so long as  $m(\vec{x}, z)$  is defined; and for this, the existential condition  $PA \vdash \exists y [y = z \lor Q(\vec{x}, z, y)]$  follows immediately from  $PA \vdash z = z$ ; so the conditions for bounded minimization are automatically satisfied.

Given these notions, we may write down some immediate, simple results.

\*T13.19. Let 
$$m(\vec{x}) = \mu v Q(\vec{x}, v)$$
; then,

- (a)  $\text{PA} \vdash \mathcal{Q}(\vec{x}, m(\vec{x})) \land (\forall z < m(\vec{x})) \sim \mathcal{Q}(\vec{x}, z)$
- (b)  $PA \vdash Q(\vec{x}, m(\vec{x}))$
- (c)  $PA \vdash (\forall z < m(\vec{x})) \sim \mathcal{Q}(\vec{x}, z)$
- (d)  $PA \vdash Q(\vec{x}, v) \rightarrow m(\vec{x}) \leq v$

Because it is always possible to switch bound variables so that  $\mathcal{Q}$  is converted to an equivalent  $\mathcal{Q}'$  whose bound variables do not overlap with variables free in  $m(\vec{x})$ , we simply assume  $m(\vec{x})$  is free for v in  $\mathcal{Q}(\vec{x}, v)$  (and we will generally make this move). Thus (a) follows from the definition  $v = m(\vec{x}) \leftrightarrow [\mathcal{Q}(\vec{x}, v) \land (\forall z < v) \sim \mathcal{Q}(\vec{x}, v)]$  with v instantiated to  $m(\vec{x})$  together with  $m(\vec{x}) = m(\vec{x})$ . Both conjuncts, and so (b) and (c) follow from (a). And (d) can be done in eight or nine lines with (c).

Of these, (a) - (c) simply observe that the definition applies to the function defined. From (d), the least v such that  $\mathcal{Q}(\vec{x}, v)$  is always  $\leq$  an arbitrary v such that  $\mathcal{Q}(\vec{x}, v)$ . In addition, a couple of results for bounded minimization.

T13.20. The following result in PA,

- (a)  $PA \vdash (\mu y \leq \emptyset) \mathcal{Q}(\vec{x}, \emptyset, y) = \emptyset$
- (b) If  $PA \vdash (\exists v \leq t(u))\mathcal{Q}(\vec{x}, u, v)$  then (i) PA defines  $\mu v \mathcal{Q}(\vec{x}, u, v)$  and (ii)  $PA \vdash (\mu v \leq t(u))\mathcal{Q}(\vec{x}, u, v) = \mu v \mathcal{Q}(\vec{x}, u, v).$

Hints: (a) follows easily from the definition. For (b), the existential for (i) follows simply from  $(\exists v \leq t(u)) \mathcal{Q}(\vec{x}, u, v)$ . For (ii),

| 1.                                                                                                                                                                                                                         | $(\exists v \le t(u)) \mathcal{Q}(\vec{x}, u, v)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Р                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.                                                                                                                                                                                                                         | $n(\vec{x}, u) = (\mu v \le t(u))\mathcal{Q}(\vec{x}, u, v)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | abv                                                                                                                                                                                                                                                                                    |
| 3.                                                                                                                                                                                                                         | $n(\vec{x}, u) = \mu v[v = t(u) \lor \mathcal{Q}(\vec{x}, u, v)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 def                                                                                                                                                                                                                                                                                  |
| 4.                                                                                                                                                                                                                         | $n(\vec{x}, u) = t(u) \lor \mathcal{Q}(\vec{x}, u, n(\vec{x}, u))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 T13.19b                                                                                                                                                                                                                                                                              |
| 5.                                                                                                                                                                                                                         | $Q(\vec{x}, u, j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A $(g \ 1(\exists E))$                                                                                                                                                                                                                                                                 |
| 6.                                                                                                                                                                                                                         | $j \leq t(u)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                        |
| 7.                                                                                                                                                                                                                         | $j < t(u) \lor j = t(u)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 T13.13m                                                                                                                                                                                                                                                                              |
| 8.                                                                                                                                                                                                                         | j = t(u)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A ( $g 7 \lor E$ )                                                                                                                                                                                                                                                                     |
| 9.                                                                                                                                                                                                                         | $t(u) = n(\vec{x}, u) \lor t(u) \neq n(\vec{x}, u)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>T3.</b> 1                                                                                                                                                                                                                                                                           |
| 10.                                                                                                                                                                                                                        | $t(u) = n(\vec{x}, u)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A ( $g 9 \lor E$ )                                                                                                                                                                                                                                                                     |
| 11.                                                                                                                                                                                                                        | $\left  \begin{array}{c} \mathcal{Q}(\vec{x}, u, t(u)) \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5,8 =E                                                                                                                                                                                                                                                                                 |
| 12.                                                                                                                                                                                                                        | $\left  \begin{array}{c} \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11,10 =E                                                                                                                                                                                                                                                                               |
| 13.                                                                                                                                                                                                                        | $t(u) \neq n(\vec{x}, u)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A ( $g 9 \lor E$ )                                                                                                                                                                                                                                                                     |
| 14.                                                                                                                                                                                                                        | $\left  \begin{array}{c} \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4,13 DS                                                                                                                                                                                                                                                                                |
| 15.                                                                                                                                                                                                                        | $Q(\vec{x}, u, n(\vec{x}, u))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9,10-12,13-14 ∨E                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                        |
| 16.                                                                                                                                                                                                                        | j < t(u)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A ( $g 7 \lor E$ )                                                                                                                                                                                                                                                                     |
| 16.<br>17.                                                                                                                                                                                                                 | $\begin{vmatrix} j < t(u) \\ \hline j = t(u) \lor \mathcal{Q}(\vec{x}, u, j) \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A (g 7∨E)<br>5 ∨I                                                                                                                                                                                                                                                                      |
| 16.<br>17.<br>18.                                                                                                                                                                                                          | $\begin{vmatrix} j < t(u) \\ j = t(u) \lor \mathcal{Q}(\vec{x}, u, j) \\ n(\vec{x}, u) \le j \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A (g 7∨E)<br>5 ∨I<br>3,17 T13.19d                                                                                                                                                                                                                                                      |
| 16.<br>17.<br>18.<br>19.                                                                                                                                                                                                   | $ \begin{vmatrix} j < t(u) \\ \hline j = t(u) \lor \mathcal{Q}(\vec{x}, u, j) \\ n(\vec{x}, u) \le j \\ n(\vec{x}, u) < t(u) \end{vmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A (g 7∨E)<br>5 ∨I<br>3,17 T13.19d<br>18,16 T13.13c                                                                                                                                                                                                                                     |
| <ol> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> </ol>                                                                                                                                                | $ \begin{array}{ c c } j < t(u) \\ \hline j = t(u) \lor \mathcal{Q}(\vec{x}, u, j) \\ n(\vec{x}, u) \le j \\ n(\vec{x}, u) < t(u) \\ n(\vec{x}, u) \ne t(u) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A (g 7∨E)<br>5 ∨I<br>3,17 T13.19d<br>18,16 T13.13c<br>19 T13.13s                                                                                                                                                                                                                       |
| <ol> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> </ol>                                                                                                                                   | $ \begin{array}{ c c } j < t(u) \\ \hline j = t(u) \lor \mathcal{Q}(\vec{x}, u, j) \\ n(\vec{x}, u) \le j \\ n(\vec{x}, u) < t(u) \\ n(\vec{x}, u) \ne t(u) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A (g 7∨E)<br>5 ∨I<br>3,17 T13.19d<br>18,16 T13.13c<br>19 T13.13s<br>4,20 DS                                                                                                                                                                                                            |
| <ol> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> </ol>                                                                                                                      | $ \begin{vmatrix} j < t(u) \\ \hline j = t(u) \lor \mathcal{Q}(\vec{x}, u, j) \\ n(\vec{x}, u) \le j \\ n(\vec{x}, u) < t(u) \\ n(\vec{x}, u) \ne t(u) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \end{vmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A $(g \ 7 \lor E)$<br>5 $\lor I$<br>3,17 T13.19d<br>18,16 T13.13c<br>19 T13.13s<br>4,20 DS<br>7,8-15,16-21 $\lor E$                                                                                                                                                                    |
| <ol> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> </ol>                                                                                                         | $ \begin{vmatrix} j < t(u) \\ \hline j = t(u) \lor \mathcal{Q}(\vec{x}, u, j) \\ n(\vec{x}, u) \le j \\ n(\vec{x}, u) < t(u) \\ n(\vec{x}, u) \ne t(u) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \\ (\forall w < n(\vec{x}, u)) \sim [w = t(u) \lor \mathcal{Q}(\vec{x}, u, w)] $                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A (g 7∨E)<br>5 ∨I<br>3,17 T13.19d<br>18,16 T13.13c<br>19 T13.13s<br>4,20 DS<br>7,8-15,16-21 ∨E<br>3 T13.19c                                                                                                                                                                            |
| <ol> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> </ol>                                                                                            | $ \begin{vmatrix} j < t(u) \\ \hline j = t(u) \lor \mathcal{Q}(\vec{x}, u, j) \\ n(\vec{x}, u) \le j \\ n(\vec{x}, u) < t(u) \\ n(\vec{x}, u) \ne t(u) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \\ (\forall w < n(\vec{x}, u)) \sim [w = t(u) \lor \mathcal{Q}(\vec{x}, u, w)] \\ \boxed{l} < n(\vec{x}, u) \end{cases} $                                                                                                                                                                                                                                                                                                                                                                                                                                  | A $(g \ 7 \lor E)$<br>5 $\lor I$<br>3,17 T13.19d<br>18,16 T13.13c<br>19 T13.13s<br>4,20 DS<br>7,8-15,16-21 $\lor E$<br>3 T13.19c<br>A $(g (\forall I))$                                                                                                                                |
| <ol> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> </ol>                                                                               | $\begin{vmatrix} j < t(u) \\ j = t(u) \lor \mathcal{Q}(\vec{x}, u, j) \\ n(\vec{x}, u) \le j \\ n(\vec{x}, u) < t(u) \\ n(\vec{x}, u) \ne t(u) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \\ (\forall w < n(\vec{x}, u)) \sim [w = t(u) \lor \mathcal{Q}(\vec{x}, u, w)] \\   l < n(\vec{x}, u) \\ \sim [l = t(u) \lor \mathcal{Q}(\vec{x}, u, l)] \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                            | A $(g \ 7 \lor E)$<br>5 $\lor I$<br>3,17 T13.19d<br>18,16 T13.13c<br>19 T13.13s<br>4,20 DS<br>7,8-15,16-21 $\lor E$<br>3 T13.19c<br>A $(g (\forall I))$<br>23,24 $(\forall E)$                                                                                                         |
| <ol> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> </ol>                                                                  | $ \begin{vmatrix} j < t(u) \\ \hline j = t(u) \lor \mathcal{Q}(\vec{x}, u, j) \\ n(\vec{x}, u) \le j \\ n(\vec{x}, u) < t(u) \\ n(\vec{x}, u) \ne t(u) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \\ (\forall w < n(\vec{x}, u)) \sim [w = t(u) \lor \mathcal{Q}(\vec{x}, u, w)] \\ \hline   l < n(\vec{x}, u) \\ \sim [l = t(u) \lor \mathcal{Q}(\vec{x}, u, l)] \\ l \ne t(u) \land \sim \mathcal{Q}(\vec{x}, u, l) \end{cases} $                                                                                                                                                                                                                                                                                                                          | A $(g \ 7 \lor E)$<br>5 $\lor I$<br>3,17 T13.19d<br>18,16 T13.13c<br>19 T13.13s<br>4,20 DS<br>7,8-15,16-21 $\lor E$<br>3 T13.19c<br>A $(g (\forall I))$<br>23,24 $(\forall E)$<br>25 DeM                                                                                               |
| <ol> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> </ol>                                                     | $\begin{vmatrix} j < t(u) \\ \hline j = t(u) \lor \mathcal{Q}(\vec{x}, u, j) \\ n(\vec{x}, u) \le j \\ n(\vec{x}, u) < t(u) \\ n(\vec{x}, u) \ne t(u) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \\ (\forall w < n(\vec{x}, u)) \sim [w = t(u) \lor \mathcal{Q}(\vec{x}, u, w)] \\ \hline   l < n(\vec{x}, u) \\ \sim [l = t(u) \lor \mathcal{Q}(\vec{x}, u, l)] \\ l \ne t(u) \land \sim \mathcal{Q}(\vec{x}, u, l) \\ \sim \mathcal{Q}(\vec{x}, u, l) \end{aligned}$                                                                                                                                                                                                                                                                                       | A $(g \ 7 \lor E)$<br>5 $\lor I$<br>3,17 T13.19d<br>18,16 T13.13c<br>19 T13.13s<br>4,20 DS<br>7,8-15,16-21 $\lor E$<br>3 T13.19c<br>A $(g (\forall I))$<br>23,24 $(\forall E)$<br>25 DeM<br>26 $\land E$                                                                               |
| <ol> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> </ol>                           | $\begin{vmatrix} j < t(u) \\ \hline j = t(u) \lor \mathcal{Q}(\vec{x}, u, j) \\ n(\vec{x}, u) \le j \\ n(\vec{x}, u) < t(u) \\ (\vec{x}, u, u) \ne t(u) \\ (\vec{x}, u, n(\vec{x}, u)) \\ (\vec{x}, u, n(\vec{x}, u)) \\ (\forall w < n(\vec{x}, u)) \sim [w = t(u) \lor \mathcal{Q}(\vec{x}, u, w)] \\ \hline   l < n(\vec{x}, u) \\ \sim [l = t(u) \lor \mathcal{Q}(\vec{x}, u, l)] \\ l \ne t(u) \land \sim \mathcal{Q}(\vec{x}, u, l) \\ \sim \mathcal{Q}(\vec{x}, u, l) \\ (\forall w < n(\vec{x}, u)) \sim \mathcal{Q}(\vec{x}, u, w) \end{aligned}$                                                                                                                                                                                                                                            | A $(g \ 7 \lor E)$<br>5 $\lor I$<br>3,17 T13.19d<br>18,16 T13.13c<br>19 T13.13s<br>4,20 DS<br>7,8-15,16-21 $\lor E$<br>3 T13.19c<br>A $(g (\forall I))$<br>23,24 $(\forall E)$<br>25 DeM<br>26 $\land E$<br>24-27 $(\forall I)$                                                        |
| <ol> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> <li>29.</li> </ol>                           | $ \begin{vmatrix} j < t(u) \\ j = t(u) \lor \mathcal{Q}(\vec{x}, u, j) \\ n(\vec{x}, u) \leq j \\ n(\vec{x}, u) < t(u) \\ n(\vec{x}, u) \neq t(u) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \\ (\forall w < n(\vec{x}, u)) \sim [w = t(u) \lor \mathcal{Q}(\vec{x}, u, w)] \\   l < n(\vec{x}, u) \\ \sim [l = t(u) \lor \mathcal{Q}(\vec{x}, u, l)] \\ l \neq t(u) \land \sim \mathcal{Q}(\vec{x}, u, l) \\ \sim \mathcal{Q}(\vec{x}, u, l) \\ (\forall w < n(\vec{x}, u)) \sim \mathcal{Q}(\vec{x}, u, w) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \land (\forall w < n(\vec{x}, u)) \sim \mathcal{Q}(\vec{x}, u, w) $                                                                                                                                   | A $(g \ 7 \lor E)$<br>5 $\lor I$<br>3,17 T13.19d<br>18,16 T13.13c<br>19 T13.13s<br>4,20 DS<br>7,8-15,16-21 $\lor E$<br>3 T13.19c<br>A $(g (\forall I))$<br>23,24 $(\forall E)$<br>25 DeM<br>26 $\land E$<br>24-27 $(\forall I)$<br>22,28 $\land I$                                     |
| <ol> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> <li>29.</li> <li>30.</li> </ol>              | $ \begin{vmatrix} j < t(u) \\ j = t(u) \lor \mathcal{Q}(\vec{x}, u, j) \\ n(\vec{x}, u) \leq j \\ n(\vec{x}, u) < t(u) \\ n(\vec{x}, u) \neq t(u) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \\ (\forall w < n(\vec{x}, u)) \sim [w = t(u) \lor \mathcal{Q}(\vec{x}, u, w)] \\ \end{vmatrix} \\ \begin{vmatrix} l < n(\vec{x}, u) \\ \sim [l = t(u) \lor \mathcal{Q}(\vec{x}, u, l)] \\ l \neq t(u) \land \sim \mathcal{Q}(\vec{x}, u, l) \\ \sim \mathcal{Q}(\vec{x}, u, l) \\ (\forall w < n(\vec{x}, u)) \sim (\forall w < n(\vec{x}, u)) \sim \mathcal{Q}(\vec{x}, u, w) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \land (\forall w < n(\vec{x}, u)) \sim \mathcal{Q}(\vec{x}, u, w) \\ n(\vec{x}, u) = \mu v \mathcal{Q}(\vec{x}, u, v) \end{aligned} $ | A $(g \ 7 \lor E)$<br>5 $\lor I$<br>3,17 T13.19d<br>18,16 T13.13c<br>19 T13.13s<br>4,20 DS<br>7,8-15,16-21 $\lor E$<br>3 T13.19c<br>A $(g (\forall I))$<br>23,24 $(\forall E)$<br>25 DeM<br>26 $\land E$<br>24-27 $(\forall I)$<br>22,28 $\land I$<br>29 def                           |
| <ol> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> <li>29.</li> <li>30.</li> <li>31.</li> </ol> | $ \begin{vmatrix} j < t(u) \\ \hline j = t(u) \lor \mathcal{Q}(\vec{x}, u, j) \\ n(\vec{x}, u) \leq j \\ n(\vec{x}, u) < t(u) \\ n(\vec{x}, u) \neq t(u) \\ \mathcal{Q}(\vec{x}, u, n(\vec{x}, u)) \\ (\forall w < n(\vec{x}, u)) \sim [w = t(u) \lor \mathcal{Q}(\vec{x}, u, w)] \\ \hline   l < n(\vec{x}, u) \\ \sim [l = t(u) \lor \mathcal{Q}(\vec{x}, u, l)] \\ l \neq t(u) \land \sim \mathcal{Q}(\vec{x}, u, l) \\ \sim \mathcal{Q}(\vec{x}, u, l) \\ (\forall w < n(\vec{x}, u)) \sim (\forall w < n(\vec{x}, u)) \sim \mathcal{Q}(\vec{x}, u, w) \\ n(\vec{x}, u) = \mu v \mathcal{Q}(\vec{x}, u, v) \end{cases} $                                                                                                                                                                          | A $(g \ 7 \lor E)$<br>5 $\lor I$<br>3,17 T13.19d<br>18,16 T13.13c<br>19 T13.13s<br>4,20 DS<br>7,8-15,16-21 $\lor E$<br>3 T13.19c<br>A $(g (\forall I))$<br>23,24 $(\forall E)$<br>25 DeM<br>26 $\land E$<br>24-27 $(\forall I)$<br>22,28 $\land I$<br>29 def<br>1,5-30 ( $\exists E$ ) |

t(u) is the bound, there is a  $j \le t(u)$  such that  $Q(\vec{x}, u, j)$ , and  $n(\vec{x}, u)$  is the least  $v \le t(u)$  such that  $Q(\vec{x}, u, v)$ . Recall that, generally, when  $n(\vec{x}, u) = t(u)$ ,  $n(\vec{x}, u)$  need not be such that  $Q(\vec{x}, u, n(\vec{x}, u))$ ; but if  $j = t(u) = n(\vec{x}, u)$ , we have from the premise that  $Q(\vec{x}, u, n(\vec{x}, u))$ . And in any case when  $n(\vec{x}, u)$  is other than the bound,  $Q(\vec{x}, u, n(\vec{x}, u))$ . In each case, then,

the least v such that  $Q(\vec{x}, u, v)$  is the same as  $n(\vec{x}, u)$ .

From T13.20a it does not matter about Q, the least y under the bound  $\emptyset$  is always  $\emptyset$ . T13.20b converts between a bounded minimization and one without a bound; thus when T13.20b applies, results from from T13.19 for unbounded minimization apply to the bounded case.

\*E13.9. Produce the quick derivation to show T13.19d.

E13.10. Complete the unfinished parts of T13.20.

## **13.3.2** Definitions for recursive functions

Our aim is to show  $T \vdash Cont \rightarrow \sim Prvt(\overline{\ulcorner \mathcal{G} \urcorner})$  — where this corresponds to our previous result that if T is consistent, then  $T \nvDash \mathcal{G}$ . For this it is no surprise that we shall want to define and manipulate functions corresponding to the recursive functions of chapter 12. Thus we begin by showing that PA defines relations and functions corresponding to recursive relations and functions.

Insofar as we understand what a theorem of PA *is*, not all of the *demonstrations* are required to *understand* the argument — and some may obscure the overall flow. Thus, for our main argument, we often list results (with hints), shifting demonstrations into exercises and answers to exercises. To retain demonstration of results, a great many exercises are in fact worked in the answers section. Also since the only constant in  $\mathcal{L}_{NT}$  is  $\emptyset$ , there is no need to reserve letters for constants. Thus it is convenient to suppose that all of  $a \dots z$  are variables of the language.

#### The core result

The main argument is an induction on the sequence of recursive functions. However, with an eye to the  $\beta$ -function, we begin showing that PA defines remainder rm(m, n) and quotient qt(m, n) functions corresponding to m/(n + 1). Division is by n + 1 to avoid the possibility of division by zero.<sup>11</sup>

\**Def*[*rm*] Let  $PA \vdash v = rm(m, n) \leftrightarrow (\exists w \leq m)[m = Sn \times w + v \land v < Sn].$ 

<sup>&</sup>lt;sup>11</sup>A choice is made: Another option is define the functions so that an arbitrary value is assigned for division by zero (as for example Boolos, *The Logic of Provability*, p. 27). Our selection makes for somewhat unintuitive statements of that which is intuitively true — rather than (relatively) intuitive statements including that which is intuitively undefined or false.

(i) PA  $\vdash \exists x (\exists w \leq m) [m = Sn \times w + x \land x < Sn]$ . Hint: This is an argument by IN on *m*. It is easy to show  $\exists x (\exists w \leq \emptyset) [\emptyset = Sn \times w + x \land x < Sn]$ , from  $\emptyset = Sn \times \emptyset + \emptyset \land \emptyset < Sn$  with ( $\exists$ I) and  $\exists$ I. Then you want to show that if the result holds for *j*, it holds for *Sj*. For remainder *k*, *k* < *n* ∨ *k* = *n*. In the first case *Sj* is divided by leaving the quotient *l* the same, and incrementing *k*; in the second case *Sj* is divided by *Sl* with remainder zero.

(ii)  $PA \vdash \forall x \forall y [((\exists w \le m)[m = Sn \times w + x \land x < Sn] \land (\exists w \le m)[m = Sn \times w + y \land y < Sn]) \rightarrow x = y]$ . Hint: This does not require IN, but is an involved derivation all the same. Once you instantiate the bounded existential quantifiers to quotients *p* with remainder *j* and *q* with remainder *k*, you have  $p < q \lor p = q \lor q < p$ . When p = q, j = k follows easily with cancellation for addition. And the other cases contradict. So, if p < q, you will be able to set up an *l* such that Sl + p = q, and show  $j \not \leq Sn$ . And similarly in the other case.

Def[qt] Let  $PA \vdash v = qt(m, n) \Leftrightarrow m = Sn \times v + rm(m, n)$ .

(i) PA  $\vdash \exists x[m = Sn \times x + rm(m, n)]$ . Hint: By =I, rm(m, n) = rm(m, n); so with Def[rm],  $(\exists w \leq m)[m = Sn \times w + rm(m, n) \wedge rm(m, n) < Sn]$ ; and the result follows easily.

(ii)  $PA \vdash \forall x \forall y [(m = Sn \times x + rm(m, n) \land m = Sn \times y + rm(m, n)) \rightarrow x = y]$ . Hint: This is easy with cancellation laws for addition and multiplication.

 $Def[\beta] \text{ PA} \vdash \beta(p,q,i) = rm(p,q \times Si).$ 

Since this is a composition of functions, immediate from T13.17.

Observe that, from the definition,  $PA \vdash v = \beta(p,q,i) \Leftrightarrow (\exists w \leq p)[p = S(q \times Si) \times w + v \land v < S(q \times Si)]$ , which is to say  $PA \vdash v = \beta(p,q,i) \Leftrightarrow \mathcal{B}(p,q,i,v)$ , where  $\mathcal{B}$  is the original formula to express the beta function.

And now our main argument that PA defines relations and functions corresponding to recursive relations and functions. The main result is for functions; relations follow as an easy corollary. But we shall not be able to show that PA defines relations and functions corresponding to *all* the recursive relations and functions: Say an application of regular minimization to generate  $f(\vec{x})$  from  $g(\vec{x}, y)$  is (PA) *friendly* just in case PA  $\vdash \exists y \mathscr{G}(\vec{x}, y, \emptyset)$  where  $\mathscr{G}(\vec{x}, y, v)$  is the original formula that expresses and captures  $g(\vec{x}, y)$ ; and a recursive function is (PA) *friendly* just in case it is an initial function or arises by applications of composition, recursion or friendly regular minimization. Observe that all *primitive* recursive functions are automatically friendly insofar as they involve no applications of minimization at all.

\*T13.21. For any friendly recursive function  $\mathbf{r}(\vec{\mathbf{x}})$  and original formula  $\mathcal{R}(\vec{x}, v)$  by which it is expressed and captured, PA defines a function  $\mathbf{r}(\vec{x})$  such that PA  $\vdash$  $v = \mathbf{r}(\vec{x}) \leftrightarrow \mathcal{R}(\vec{x}, v)$ .

By induction on the sequence of recursive functions.

*Basis:*  $r_0(\vec{x})$  is an initial function suc(x), zero(x) or  $idnt_k^j(x_1 \dots x_j)$ .

(s)  $r_0(\vec{x})$  is suc(x). Let  $PA \vdash v = suc(x) \leftrightarrow Sx = v$ . But Sx = v is the original formula Suc(x, v) by which suc(x) is expressed and captured; so  $PA \vdash v = suc(x) \leftrightarrow Suc(x, v)$ . And by reasoning as follows,

1. 
$$\begin{vmatrix} Sx = Sx \\ \exists y(Sx = y) \end{vmatrix}$$
 = I  
2.  $\begin{vmatrix} Sx = f \\ \exists y(Sx = y) \end{vmatrix}$  = I  
3.  $\begin{vmatrix} Sx = f \\ Sx = f \\ Sx = f \end{vmatrix}$  = I  
4.  $\begin{vmatrix} f \\ f = k \\ Sx = k \\ f = k \end{vmatrix}$  = I  
5.  $(Sx = f \land Sx = k) \rightarrow f = k$   
6.  $\forall z[(Sx = f \land Sx = z) \rightarrow f = z]$  = S  $\forall I$   
7.  $\forall y \forall z[(Sx = y \land Sx = z) \rightarrow y = z]$  = 6  $\forall I$ 

 $PA \vdash \exists ! y(Sx = y)$ . So PA defines suc(x).

- (z)  $r_0(\vec{x})$  is zero(x). Let  $PA \vdash v = zero(x) \leftrightarrow x = x \land v = \emptyset$ . Then  $PA \vdash v = zero(x) \leftrightarrow Zero(x, v)$ . And by (homework) PA defines zero(x).
- (i)  $r_0(\vec{x})$  is  $idnt_k^j(x_1...x_j)$ . Let  $PA \vdash v = idnt_k^j(x_1...x_j) \Leftrightarrow (x_1 = x_1 \land ... \land x_j = x_j) \land x_k = v$ . Then  $PA \vdash v = idnt_k^j(x_1...x_j) \Leftrightarrow Idnt_k^j(x_1...x_j, v)$ . And by (homework) PA defines  $idnt_k^j(x_1...x_j)$ .
- Assp: For any  $i, 0 \le i < k$ , and  $r_i(\vec{x})$  with  $\mathcal{R}_i(\vec{x}, v)$ , PA defines  $r_i(\vec{x})$  such that  $PA \vdash v = r_i(\vec{x}) \leftrightarrow \mathcal{R}_i(\vec{x}, v)$ .
- Show: PA defines  $r_k(\vec{x})$  such that  $PA \vdash v = r_k(\vec{x}) \leftrightarrow \mathcal{R}_k(\vec{x}, v)$ .

 $r_k(\vec{x})$  is either an initial function or arises by composition, recursion or PA friendly regular minimization. If  $r_k(\vec{x})$  is an initial function, then reason as in the basis. So suppose one of the other cases.

(c)  $r_k(\vec{x}, \vec{y}, \vec{z})$  is  $h(\vec{x}, g(\vec{y}), \vec{z})$  for some  $h_i(\vec{x}, w, \vec{z})$  and  $g_j(\vec{y})$  where i, j < k. By assumption PA defines  $\hbar(\vec{x}, w, \vec{z})$  such that  $PA \vdash v = \hbar(\vec{x}, w, \vec{z})$  $\leftrightarrow \mathcal{H}(\vec{x}, w, \vec{z}, v)$  and PA defines  $g(\vec{y})$  such that  $PA \vdash w = g(\vec{y}) \leftrightarrow$   $\mathscr{G}(\vec{y}, w)$ . Let PA  $\vdash r_k(\vec{x}, \vec{y}, \vec{z}) = \hbar(\vec{x}, g(\vec{y}), \vec{z})$ . Then by T13.17 PA defines  $r_k$ . And, where the original  $\mathscr{R}_k$  is of the sort  $\exists w[\mathscr{G}(\vec{y}, w) \land \mathscr{H}(\vec{x}, w, \vec{z}, v)]$ , PA  $\vdash v = r_k(\vec{x}, \vec{y}, \vec{z}) \leftrightarrow \mathscr{R}_k(\vec{x}, \vec{y}, \vec{z}, v)$ . Thus, dropping  $\vec{x}$  and  $\vec{z}$  and reducing  $\vec{y}$  to a single variable,

| 1.  | r(y) = h(g(y))                                                                   | def                                                 |
|-----|----------------------------------------------------------------------------------|-----------------------------------------------------|
| 2.  | $v = h(w) \leftrightarrow \mathcal{H}(w, v)$                                     | by assp                                             |
| 3.  | $w = g(y) \leftrightarrow \mathscr{G}(y, w)$                                     | by assp                                             |
| 4.  | v = r(y)                                                                         | $\mathbf{A}\left(g\leftrightarrow\mathbf{I}\right)$ |
| 5.  | v = h(g(y))                                                                      | 1,4 =E                                              |
| 6.  | g(y) = g(y)                                                                      | =I                                                  |
| 7.  | $g(y) = g(y) \leftrightarrow \mathcal{G}(y, g(y))$                               | 3 ∀E                                                |
| 8.  | $\mathcal{G}(y, g(y))$                                                           | 7,6 ↔E                                              |
| 9.  | h(g(y)) = h(g(y))                                                                | =I                                                  |
| 10. | $h(g(y)) = h(g(y)) \leftrightarrow \mathcal{H}(g(y), h(g(y)))$                   | 2 ∀E                                                |
| 11. | $\mathcal{H}(g(y), h(g(y)))$                                                     | $10,9 \leftrightarrow E$                            |
| 12. | $\mathcal{H}(g(y), v)$                                                           | 11,5 =E                                             |
| 13. | $\mathscr{G}(y, g(y)) \wedge \mathscr{H}(g(y), v)$                               | 8,12 ∧I                                             |
| 14. | $\exists w [\mathscr{G}(y,w) \land \mathscr{H}(w,v)]$                            | 13 ∃I                                               |
| 15. | $\exists w [\mathscr{G}(y,w) \land \mathscr{H}(w,v)]$                            | $\mathbf{A}\left(g\leftrightarrow\mathbf{I}\right)$ |
| 16. | $\mathscr{G}(y,j)\wedge \mathscr{H}(j,v)$                                        | A ( $g$ 15 $\exists$ E)                             |
| 17. | $j = g(y) \leftrightarrow \mathscr{G}(y, j)$                                     | 3 ∀E                                                |
| 18. | $\mathscr{G}(y,j)$                                                               | 16 ∧E                                               |
| 19. | j = g(y)                                                                         | 17,18 $\leftrightarrow$ E                           |
| 20. | $v = \hbar(j) \leftrightarrow \mathcal{H}(j, v)$                                 | 2 ∀E                                                |
| 21. | $\mathcal{H}(j,v)$                                                               | 16 ∧E                                               |
| 22. | v = h(j)                                                                         | $20,21 \leftrightarrow E$                           |
| 23. | v = h(g(y))                                                                      | 22,19 =E                                            |
| 24. | v = r(y)                                                                         | 1,23 =E                                             |
| 25. | v = r(y)                                                                         | 15,16-24 ∃E                                         |
| 26. | $v = r(y) \leftrightarrow \exists w [\mathscr{G}(y, w) \land \mathscr{H}(w, v)]$ | 4-14,15-25 ↔I                                       |

In the first subderivation, as usual, we suppose that quantifiers are arranged so that substitutions are allowed — and in particular so that g(y) is free for w in  $\mathcal{H}(w, v)$  and  $\mathcal{G}(y, w)$ . And with dropped variables restored we have that  $PA \vdash v = r_k(\vec{x}, \vec{y}, \vec{z}) \leftrightarrow \exists w[\mathcal{G}(\vec{y}, w) \land \mathcal{H}(\vec{x}, w, \vec{z}, v)]$  which is to say,  $PA \vdash v = r_k(\vec{x}) \leftrightarrow \mathcal{R}_k(\vec{x}, v)$ .

(r)  $r_k(\vec{x}, y)$  arises by recursion from some  $g_i(\vec{x})$  and  $h_j(\vec{x}, y, u)$  where i, j < k. By assumption PA defines  $g(\vec{x})$  such that PA  $\vdash v = g(\vec{x}) \Leftrightarrow \mathscr{G}(\vec{x}, v)$  and PA defines  $\hbar(\vec{x}, y, u)$  such that PA  $\vdash v = \hbar(\vec{x}, y, u) \Leftrightarrow$ 

$$\mathcal{H}(\vec{x}, y, u, v). \text{ Let PA} \vdash z = r_k(\vec{x}, y) \leftrightarrow$$
$$\exists p \exists q [\beta(p, q, \emptyset) = g(\vec{x}) \land (\forall i < y) \hbar(\vec{x}, i, \beta(p, q, i)) = \beta(p, q, Si) \land \beta(p, q, y) = z]$$

By the argument of the next section, PA defines  $r(\vec{x}, y)$ . And where the original  $\mathcal{R}(\vec{x}, y, z) =$ 

 $\begin{aligned} \exists p \exists q \{ \exists v [\mathcal{B}(p,q,\emptyset,v) \land \mathcal{G}(\vec{x},v)] \land (\forall i < y) \exists u \exists v [\mathcal{B}(p,q,i,u) \land \mathcal{B}(p,q,Si,v) \land \mathcal{H}(\vec{x},i,u,v)] \land \\ \mathcal{B}(p,q,y,z) \} \end{aligned}$ 

we require  $PA \vdash z = r_k(\vec{x}, y) \leftrightarrow \mathcal{R}_k(\vec{x}, y, z)$ . Here is the argument from left to right.

| 1.<br>2.<br>3.                                                                                                                               | $\begin{aligned} v &= \beta(p,q,i) \leftrightarrow \mathcal{B}(p,q,i,v) \\ v &= g(\vec{x}) \leftrightarrow \mathcal{G}(\vec{x},v) \\ v &= h(\vec{x},y,u) \leftrightarrow \mathcal{H}(\vec{x},y,u,v) \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | def β<br>assp<br>assp                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 4.                                                                                                                                           | $z = r(\vec{x}, y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$                                                                                               |
| 5.<br>6.                                                                                                                                     | $ \exists p \exists q [\beta(p,q,\emptyset) = g(\vec{x}) \land (\forall i < y) \hbar(\vec{x}, i, \beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q,y) = z ] \\ [\beta(a,b,\emptyset) = g(\vec{x}) \land (\forall i < y) \hbar(\vec{x}, i, \beta(a,b,i)) = \beta(a,b,Si) \land \beta(a,b,y) = z ] $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 def <i>r</i><br>A ( <i>g</i> 5∃E)                                                                                                           |
| <ol> <li>7.</li> <li>8.</li> <li>9.</li> <li>10.</li> <li>11.</li> <li>12.</li> <li>13.</li> <li>14.</li> </ol>                              | $ \begin{array}{l} \beta(a,b,\emptyset) = g(\vec{x}) \\ \mathfrak{G}(\vec{x},g(\vec{x})) \\ \mathfrak{B}(a,b,\emptyset,\beta(a,b,\emptyset)) \\ \mathfrak{B}(a,b,\emptyset,g(\vec{x})) \\ \mathfrak{B}(a,b,\emptyset,g(\vec{x})) \land \mathfrak{G}(\vec{x},g(\vec{x})) \\ \mathfrak{I}v[\mathfrak{B}(a,b,\emptyset,v) \land \mathfrak{G}(\vec{x},v)] \\ (\forall i < y)\hbar(\vec{x},i,\beta(a,b,i)) = \beta(a,b,Si) \\  l < y \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $6 \land E$<br>from 2<br>from 1<br>7,9 =E<br>10,8 $\land I$<br>11 $\exists I$<br>6 $\land E$<br>A (g ( $\forall I$ ))                         |
| <ol> <li>15.</li> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>22.</li> <li>22.</li> </ol> | $ \begin{split} & \left[ \begin{array}{c} \mathbb{A}(\vec{x}, l, \beta(a, b, l)) = \beta(a, b, Sl) \\ & \mathcal{B}(a, b, l, \beta(a, b, l)) \\ & \mathcal{B}(a, b, Sl, \beta(a, b, Sl)) \\ & \mathcal{H}(\vec{x}, l, \beta(a, b, l), \mathbb{A}(\vec{x}, l, \beta(a, b, l))) \\ & \mathcal{H}(\vec{x}, l, \beta(a, b, l), \beta(a, b, Sl)) \\ & \mathcal{B}(a, b, l, \beta(a, b, l)) \land \mathcal{B}(a, b, Sl, \beta(a, b, Sl)) \land \mathcal{H}(\vec{x}, l, \beta(a, b, l), \beta(a, b, Sl)) \\ & \mathcal{B}(a, b, l, \beta(a, b, l)) \land \mathcal{B}(a, b, Sl, \beta(a, b, Sl)) \land \mathcal{H}(\vec{x}, l, \beta(a, b, l), \beta(a, b, Sl)) \\ & \mathcal{B}(a, b, l, \mu) \land \mathcal{B}(a, b, Sl, \nu) \land \mathcal{H}(\vec{x}, l, u, \nu)] \\ & (\forall i < y) \exists u \exists v [\mathcal{B}(a, b, i, u) \land \mathcal{B}(a, b, Si, v) \land \mathcal{H}(\vec{x}, i, u, v)] \\ & \beta(a, b, y) = z \end{split} $ | 13,14 ( $\forall$ E)<br>from 1<br>from 1<br>from 3<br>18,15 =E<br>16,17,19 $\land$ I<br>20 $\exists$ I<br>14-21 ( $\forall$ I)<br>6 $\land$ E |
| 23.<br>24.                                                                                                                                   | $ \begin{array}{c} \mathcal{B}(a,b,y,\beta(a,b,y)) \\ \mathcal{B}(a,b,y,z) \\ \mathcal{B}(a,b,y,z) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | from 1<br>23,22 =E                                                                                                                            |
| 25.<br>26.                                                                                                                                   | $ \exists v [\mathcal{B}(a, b, \emptyset, v) \land \mathcal{G}(x, v)] \land  (\forall i < y) \exists u \exists v [\mathcal{B}(a, b, i, u) \land \mathcal{B}(a, b, Si, v) \land \mathcal{H}(\vec{x}, i, u, v)] \land \mathcal{B}(a, b, y, z)  \exists p \exists q \{\exists v [\mathcal{B}(p, q, \emptyset, v) \land \mathcal{G}(\vec{x}, v)] \land  (\forall i < y) \exists v \exists v [\mathcal{B}(p, q, \emptyset, v) \land \mathcal{G}(\vec{x}, v)] \land $                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12,22,24 ∧I                                                                                                                                   |
| 27.                                                                                                                                          | $ \begin{array}{c} (\forall i < y) \exists u \exists v [\mathcal{B}(p,q,i,u) \land \mathcal{B}(p,q,S_i,v) \land \mathcal{H}(x,i,u,v)] \land \mathcal{B}(p,q,y,z) \} \\ \mathcal{R}(\vec{x},y,z) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25 ∃I<br>26 def                                                                                                                               |
| 28.                                                                                                                                          | $\mathcal{R}(\vec{x}, y, z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5,6-27 ∃E                                                                                                                                     |
| 29.                                                                                                                                          | $z = \mathfrak{r}(\vec{x}, y) \rightarrow \mathcal{R}(\vec{x}, y, z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $4-28 \rightarrow I$                                                                                                                          |

The other direction is left as an exercise.

- (m)  $f_k(\vec{x})$  arises by friendly regular minimization from  $g(\vec{x}, y)$ . By assumption PA defines  $g(\vec{x}, y)$  such that PA  $\vdash v = g(\vec{x}, y) \leftrightarrow \mathscr{G}(\vec{x}, y, v)$ where  $\mathscr{G}$  is the original formula to express and capture g. Let PA  $\vdash r_k(\vec{x}) = \mu y \mathscr{G}(\vec{x}, y, \emptyset)$ . Since the minimization is friendly, PA  $\vdash \exists y \mathscr{G}(\vec{x}, y, \emptyset)$ ; so by T13.19, PA defines  $r_k(\vec{x})$ . And by definition, PA  $\vdash v = r_k(\vec{x}) \leftrightarrow \mathscr{G}(\vec{x}, v, \emptyset) \land (\forall y < v) \sim \mathscr{G}(\vec{x}, y, \emptyset)$ . So PA  $\vdash v = r_k(\vec{x}) \leftrightarrow \mathscr{R}_k(\vec{x}, v)$ .
- *Indct:* For any friendly recursive function  $r(\vec{x})$  and the original formula  $\mathcal{R}(\vec{x}, v)$  by which it is expressed and captured, PA defines a function  $r(\vec{x})$  such that  $PA \vdash v = r(\vec{x}) \leftrightarrow \mathcal{R}(\vec{x}, v)$  (subject to the recursion clause).

\*E13.11. Complete the justifications for Def[rm] and Def[qt].

\*E13.12. Complete the unfinished cases to T13.21. You should set up the entire induction, but may refer to the text as the text refers unfinished cases to homework.

### **The Recursion Clause**

We turn now to a series of results with the aim of showing that PA defines r in the case when r arises by recursion. This will require a series of definitions and results in PA. Some of the functions so defined parallel ones that will result from recursive functions. However, insofar as we have not yet proved the core result, we cannot use it! So we are showing directly that PA gives the required results.

**Uniqueness.** It will be easiest to begin with the uniqueness clause. Where  $\mathcal{F}(\vec{x}, y, v)$  is our formula,

 $\exists p \exists q [\beta(p,q,\emptyset) = g(\vec{x}) \land (\forall i < y) h(\vec{x},i,\beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q,y) = z]$ 

we want  $PA \vdash \forall m \forall n[(\mathcal{F}(\vec{x}, y, m) \land \mathcal{F}(\vec{x}, y, n)) \rightarrow m = n]$ . The argument is structured very much as for the parallel uniqueness case in Q (T12.12) except that the argument is in PA and so by IN, and uniqueness conditions are simplified by the use of function symbols. The argument is simplified — but that does not mean that it is simple!

T13.22. With  $\mathcal{F}(\vec{x}, y, v)$  as described above,  $PA \vdash \forall m \forall n[(\mathcal{F}(\vec{x}, y, m) \land \mathcal{F}(\vec{x}, y, n)) \rightarrow m = n].$ 

# First theorems of chapter 13

- T13.1 For any recursively axiomatized theory T whose language includes  $\mathscr{L}_{NT}$ ,  $\mathscr{G}$  is true iff it is unprovable in T (iff  $T \nvDash \mathscr{G}$ ).
- T13.2 If T is a recursively axiomatized sound theory whose language includes  $\mathcal{L}_{NT}$ , then T is negation incomplete.
- T13.3 Let T be any recursively axiomatized theory extending Q; then  $T \vdash \mathcal{G} \leftrightarrow \sim \exists x Prft(x, \lceil \mathcal{G} \rceil)$ .
- T13.4 If T is a consistent, recursively axiomatized theory extending Q, then  $T \not\vdash \mathcal{G}$ .
- T13.5 If T is an  $\omega$ -consistent, recursively axiomatized theory extending Q, then  $T \not\vdash \sim \mathscr{G}$ .
- T13.6 Let T be any recursively axiomatized theory extending Q; then  $T \vdash \mathcal{R} \leftrightarrow \sim \exists x R Prft(x, \lceil \mathcal{R} \rceil)$ .
- T13.7 If T is a consistent, recursively axiomatized theory extending Q, then  $T \not\vdash \mathcal{R}$ .
- T13.8 If *T* is a consistent, recursively axiomatized theory extending Q, then  $T \not\vdash \sim \mathcal{R}$ .
- T13.9 Let *T* be a recursively axiomatized theory extending Q. Then supposing *T* satisfies the derivability conditions and so the K4 logic of provability,  $T \vdash Cont \rightarrow \sim Prvt(\overline{\lceil g \rceil})$ .
- T13.10 Let T be a recursively axiomatized theory extending Q. Then supposing T satisfies the derivability conditions, if T is consistent,  $T \nvDash Cont$ .
- T13.11 Let T be a recursively axiomatized theory extending Q. Then supposing T satisfies the derivability conditions and so the K4 logic of provability,  $T \vdash Cont \leftrightarrow \sim Prvt(\overline{[Cont]})$ .
- T13.12 Suppose T is a recursively axiomatized theory extending Q. Then if  $T \vdash \mathcal{P}$ , then  $T \vdash \Box \mathcal{P}$ .
- T13.13 This lists a number of straightforward theorems of PA.
- T13.14 For a defined symbol, with its associated axiom and conversion procedure,  $T' \vdash \mathcal{F}' \leftrightarrow \mathcal{F}$ .
- T13.15 For a *T* and  $\mathcal{L}$ , given a defined symbol with its associated axiom, and for any formula  $\mathcal{F}$  in the original  $\mathcal{L}$ ,  $T' \vdash \mathcal{F}$  iff  $T \vdash \mathcal{F}$ .
- T13.16 For some defined symbols, with their associated axioms and conversion procedures,  $T' \vdash \mathcal{F}'$  iff  $T \vdash \mathcal{F}$ .
- T13.17 If PA defines some  $h(\vec{x}, w, \vec{z})$  and  $g(\vec{y})$ , then PA defines  $f(\vec{x}, \vec{y}, \vec{z}) = h(\vec{x}, g(\vec{y}), \vec{z})$ .
- T13.18 If  $PA \vdash \exists v \mathcal{Q}(\vec{x}, v)$ , then  $PA \vdash \exists ! v [\mathcal{Q}(\vec{x}, v) \land (\forall z < v) \sim \mathcal{Q}(\vec{x}, v)]$ .
- T13.19 Where  $m(\vec{x}) = \mu v \mathcal{Q}(\vec{x}, v)$ , (a) PA  $\vdash \mathcal{Q}(\vec{x}, m(\vec{x})) \land (\forall z < m(\vec{x})) \sim \mathcal{Q}(\vec{x}, z)$ ; (b) PA  $\vdash \mathcal{Q}(\vec{x}, m(\vec{x}))$ ; (c) PA  $\vdash (\forall z < m(\vec{x})) \sim \mathcal{Q}(\vec{x}, z)$ ; (d) PA  $\vdash \mathcal{Q}(\vec{x}, v) \rightarrow m(\vec{x}) \le v$ .
- T13.20 (a)  $PA \vdash (\mu y \leq \emptyset) \mathcal{Q}(\vec{x}, \emptyset, y) = \emptyset$ ; (b) if  $PA \vdash (\exists v \leq t(u)) \mathcal{Q}(\vec{x}, u, v)$  then (i) PA defines  $\mu v \mathcal{Q}(\vec{x}, u, v)$  and (ii)  $PA \vdash (\mu v \leq t(u)) \mathcal{Q}(\vec{x}, u, v) = \mu v \mathcal{Q}(\vec{x}, u, v)$ .

For the zero case you need to show  $\forall m \forall n [(\mathcal{F}(\vec{x}, \emptyset, m) \land \mathcal{F}(\vec{x}, \emptyset, n)) \rightarrow m = n]$ . This is simple enough and left as an exercise. Given the zero case, here is the main argument by IN.

1.  $\forall m \forall n [(\mathcal{F}(\vec{x}, \emptyset, m) \land \mathcal{F}(\vec{x}, \emptyset, n)) \rightarrow m = n]$ zero case 2.  $\forall m \forall n [(\mathcal{F}(\vec{x}, j, m) \land \mathcal{F}(\vec{x}, j, n)) \to m = n]$  $A(g \rightarrow I)$ 3.  $\mathcal{F}(\vec{x}, Sj, u) \land \mathcal{F}(\vec{x}, Sj, v)$ A  $(g \rightarrow I)$ 4.  $\exists p \exists q [\beta(p,q,\emptyset) = g(\vec{x}) \land (\forall i < Sj) \hbar(\vec{x},i,\beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q,Sj) = u]$  $3 \wedge E$ 5.  $\exists p \exists q [\beta(p,q,\emptyset) = g(\vec{x}) \land (\forall i < Sj) \hbar(\vec{x},i,\beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q,Sj) = v]$  $3 \land E$  $\beta(a, b, \emptyset) = g(\vec{x}) \land (\forall i < Sj) h(\vec{x}, i, \beta(a, b, i)) = \beta(a, b, Si) \land \beta(a, b, Sj) = u$ A  $(g 4\exists E)$ 6. 7.  $\beta(a, b, \emptyset) = g(\vec{x})$ 6 ∧E  $(\forall i < Sj)\hbar(\vec{x}, i, \beta(a, b, i)) = \beta(a, b, Si)$ 8.  $6 \land E$ 9.  $\beta(a, b, Sj) = u$ 6 ∧E 10.  $\beta(c,d,\emptyset) = g(\vec{x}) \land (\forall i < Sj) h(\vec{x},i,\beta(c,d,i)) = \beta(c,d,Si) \land \beta(c,d,Sj) = v$ A  $(g 5 \exists E)$ 11.  $\beta(c, d, \emptyset) = g(\vec{x})$ 10 ∧E  $(\forall i < Sj) \hbar(\vec{x}, i, \beta(c, d, i)) = \beta(c, d, Si)$ 12. 10 ∧E 13.  $\beta(c, d, Sj) = v$ 10 ∧E 14. i < SiT13.13h 15.  $h(\vec{x}, j, \beta(a, b, j)) = \beta(a, b, Sj)$ 8,14 (∀E) 16  $h(\vec{x}, j, \beta(c, d, j)) = \beta(c, d, Sj)$ 12.14 (∀E) 17. k < jA  $(g (\forall I))$ k < Sj18. 17, T13.13n 19.  $h(\vec{x}, k, \beta(a, b, k)) = \beta(a, b, Sk)$ 8,18 (∀E) 20.  $(\forall i < j) h(\vec{x}, i, \beta(a, b, i)) = \beta(a, b, Si)$ 17-19 (∀I) 21.  $\beta(a, b, j) = \beta(a, b, j)$ =I22.  $\beta(a, b, \emptyset) = g(\vec{x}) \land (\forall i < j) \hbar(\vec{x}, i, \beta(a, b, i)) = \beta(a, b, Si) \land \beta(a, b, j) = \beta(a, b, j)$ 7,20,21 ∧I 23.  $\exists p \exists q [\beta(p,q,\emptyset) = g(\vec{x}) \land (\forall i < j) h(\vec{x}, i, \beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q,j) = \beta(a,b,j)]$ 22 FI 24.  $\mathcal{F}(\vec{x}, j, \beta(a, b, j))$ 23 abv 25. k < jA  $(g (\forall I))$  $k < S_i$ 25, T13.13n 26. 27.  $h(\vec{x}, k, \beta(c, d, k)) = \beta(c, d, Sk)$ 12,26 (∀E)  $(\forall i < j) h(\vec{x}, i, \beta(c, d, i)) = \beta(c, d, Si)$ 28. 25-27 (¥I) 29.  $\beta(c, d, j) = \beta(c, d, j)$ =I30.  $\beta(c,d,\emptyset) = g(\vec{x}) \land (\forall i < j) h(\vec{x},i,\beta(c,d,i)) = \beta(c,d,Si) \land \beta(c,d,j) = \beta(c,d,j)$ 11,28,29 ∧I 31.  $\exists p \exists q [\beta(p,q,\emptyset) = g(\vec{x}) \land (\forall i < j) \hbar(\vec{x}, i, \beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q,j) = \beta(c,d,j)]$ 30 ∃I 32.  $\mathcal{F}(\vec{x}, j, \beta(c, d, j))$ 31 abv  $\beta(a, b, j) = \beta(c, d, j)$ 33. 2,24,32 ∀E 34.  $h(\vec{x}, j, \beta(c, d, j)) = \beta(a, b, Sj)$ 15.33 = E35.  $\beta(a, b, Sj) = \beta(c, d, Sj)$ 34.16 = E36. u = v9,13,35 = E37. u = v5,10-36 ∃E 38. u = v4,6-37 ∃E 39.  $(\mathcal{F}(\vec{x},Sj,u)\wedge\mathcal{F}(\vec{x},Sj,v))\rightarrow u=v$  $3-38 \rightarrow I$  $\forall m \forall n [(\mathcal{F}(\vec{x}, Sj, m) \land \mathcal{F}(\vec{x}, Sj, n)) \to m = n]$ 40. 39 ∀I 41.  $\forall m \forall n [(\mathcal{F}(\vec{x}, j, m) \land \mathcal{F}(\vec{x}, j, n)) \rightarrow m = n] \rightarrow \forall m \forall n [(\mathcal{F}(\vec{x}, Sj, m) \land \mathcal{F}(\vec{x}, Sj, n)) \rightarrow m = n]$  $2-40 \rightarrow I$  $42. | \forall y \{\forall m \forall n [(\mathcal{F}(\vec{x}, y, m) \land \mathcal{F}(\vec{x}, y, n)) \rightarrow m = n] \rightarrow \forall m \forall n [(\mathcal{F}(\vec{x}, Sy, m) \land \mathcal{F}(\vec{x}, Sy, n)) \rightarrow m = n] \}$ 41 ∀I 43.  $\forall y \forall m \forall n [(\mathcal{F}(\vec{x}, y, m) \land \mathcal{F}(\vec{x}, y, n)) \rightarrow m = n]$ 1,42 IN 44.  $\forall m \forall n [(\mathcal{F}(\vec{x}, y, m) \land \mathcal{F}(\vec{x}, y, n)) \rightarrow m = n]$ 43 ∀E

As before, the key to this argument is attaining  $\mathcal{F}(\vec{x}, j, \beta(a, b, j))$  and  $\mathcal{F}(\vec{x}, j, \beta(c, d, j))$  on lines (24) and (32). From these the assumption on (2) comes into play, and the result follows with other equalities.

\*E13.13. Complete the demonstration for T13.22 by completing the demonstration of the zero case.

**Existence.** Considerably more difficult is the existential condition. To show this, we must show the Chinese remainder theorem in PA. Though we have resources to state the  $\beta$ -function, we do not yet have all that is required to duplicate reasoning from the beta function reference (for example, factorial). Thus we shall have to proceed in a different way. In particular, we specially depend on the *least common multiple* of a sequence of values. Again, we build by a series of results.

First, subtraction with cutoff. The definition is not recursive as before. However the effect is the same: x - y works like subtraction when  $x \ge y$ , and otherwise goes to  $\emptyset$ .

\*
$$Def[-]$$
 PA  $\vdash v = x - y \leftrightarrow x = y + v \lor (x < y \land v = \emptyset)$   
(i) PA  $\vdash \exists v[x = y + v \lor (x < y \land v = \emptyset)]$   
(ii) PA  $\vdash \forall m \forall n[([x = y + m \lor (x < y \land m = \emptyset)] \land [x = y + n \lor (x < y \land n = \emptyset)]) \rightarrow m = n]$ 

The proof of (i) and (ii) is left as an exercise. So PA defines ( $\dot{-}$ ). And it proves a series of intuitive results.

\*T13.23. The following result in PA:

- (a)  $PA \vdash a \ge b \rightarrow a = b + (a \doteq b)$
- (b)  $PA \vdash b \ge a \rightarrow a \div b = \emptyset$
- (c)  $PA \vdash a \div b \le a$
- (d) PA  $\vdash (a \leq r \land r \leq s) \rightarrow r \doteq a \leq s \doteq a$
- (e) PA  $\vdash$   $(a \leq r \land r < s) \rightarrow r \doteq a < s \doteq a$
- \*(f)  $PA \vdash a > b \rightarrow a \doteq b > \emptyset$
- (g)  $PA \vdash a \div \emptyset = a$
- (h)  $PA \vdash Sa \div a = \overline{1}$

- (i)  $PA \vdash a > \emptyset \rightarrow a \div \overline{1} < a$
- (j)  $PA \vdash a \ge Sb \rightarrow a \div b = S(a \div Sb)$
- (k)  $PA \vdash a = Sa \div \overline{1}$
- \*(1)  $PA \vdash a \ge c \rightarrow (a \div c) + b = (a + b) \div c$
- (m)  $PA \vdash (a \ge b \land b \ge c) \rightarrow a \div (b \div c) = (a \div b) + c$
- \*(n)  $PA \vdash (a \div b) \div c = a \div (b + c)$
- (o)  $PA \vdash (a + c) \div (b + c) = a \div b$
- \*(p)  $PA \vdash a \times (b \div c) = a \times b \div a \times c$

Hints. (f): with the assumption you can get both a = Sj + b and a = b + (a - b); then you have what you need with T6.68. (l): with the assumption  $a \ge c$  you have also  $a + b \ge c$ ; so that both a = c + (a - c) and a + b = c + [(a + b) - c]; then =E and T6.68 do the work. (m): You can get this with a couple applications of (l). (n): First,  $a \ge b + c \lor a < b + c$ ; in the second case,  $a \ge b \lor a < b$ ; in each of these cases, both sides equal  $\emptyset$ ; for the first main option, you will be able to show that (b + c) + [(a - b) - c] = (b + c) + [a - (b + c)] and apply T6.68. (p): First  $a = \emptyset \lor a > \emptyset$ ; in the first case, both sides equal  $\emptyset$ ; then in the second case,  $b \ge c \lor b < c$ ; again in the first of these cases, both sides equal  $\emptyset$ ; in the last case, you will be able to show ac + a(b - c) = ac + (ab - ac) and apply T6.68.

Many of these state standard results for subtraction — except where the inequalities are required to protect against cases when  $a \div b$  goes to  $\emptyset$ . (a) and (b) extract basic information from the definition upon which rest depend. (c) - (k) are simple subtraction facts. And (l) - (p) are some results for association and distribution.

Next *factor*. Again, consistent with remainder and quotient, we say m|n when m + 1 divides n.

 $Def[|] PA \vdash m|n \leftrightarrow \exists q(Sm \times q = n)$ 

Since factor is a relation, no condition is required over and above the axiom so that the definition is good as it stands. And, again, PA proves a series of results. These are reasonably intuitive. Observe, however that our choice to divide by m + 1 means that, as in T13.24a below,  $\emptyset|a$ .

\*T13.24. The following result in PA:

- (a)  $PA \vdash \emptyset | a$
- (b)  $PA \vdash a | Sa$
- (c)  $PA \vdash a | \emptyset$
- (d)  $PA \vdash a | b \rightarrow a | (b \times c)$
- (e)  $PA \vdash (a > \emptyset \land b > \emptyset) \rightarrow [(a \div \overline{1})|c \land (b \div \overline{1})|d \rightarrow (ab \div \overline{1})|cd]$
- (f)  $PA \vdash (a|Sb \land b|c) \rightarrow a|c$
- \*(g)  $PA \vdash a|b \rightarrow [a|(b+c) \leftrightarrow a|c]$
- (h)  $PA \vdash (b \ge c \land a|b) \rightarrow [a|(b \div c) \leftrightarrow a|c]$
- (i)  $PA \vdash b > a \rightarrow b \nmid Sa$
- (j)  $PA \vdash a | b \leftrightarrow rm(b, a) = \emptyset$
- \*(k)  $PA \vdash rm[a + (y \times Sd), d] = rm(a, d)$
- \*(1)  $PA \vdash Sd \times z \leq a \rightarrow z \leq qt(a, d)$
- \*(m)  $PA \vdash a \ge y \times Sd \rightarrow rm[a \doteq (y \times Sd), d] = rm(a, d)$

Hints. (g): The assumption a|b gives  $Sa \times j = b$ ; then a|(b + c) gives  $Sa \times k = b + c$ ; you will have to show  $j \le k$  so that l + j = k; a|c follows with these; then a|c gives  $Sa \times k = c$  and you will be able to substitute for both b and c to get  $(Sa \times j) + (Sa \times k) = b + c$ ; the result follows with this. (k): From the assumption you have  $a = (Sd \times j) + r \wedge r < Sd$ ; and if you assert  $a + (y \times Sd) = a + (y \times Sd)$  by =I you should be able to show  $a + (y \times Sd) = Sd \times (j + y) + r \wedge r < Sd$ ; then with  $j + y \le a + (y \times Sd)$  you can apply ( $\exists$ I) and the definition. (l): With r = rm(a, d) and q = qt(a, d) by Def[qt] you have  $a = Sd \times q + r \wedge r < Sd$ ; assume  $Sd \times z \le a$  for  $\rightarrow$ I and z > q for  $\sim$ I; then you should be able to show  $a < Sd \times z$  to contradict the assumption for  $\rightarrow$ I. (m): Again let r = rm(a, d) and q = qt(a, d); then by Def[qt] you have  $a = Sd \times q + r \wedge r < Sd$ ; assume  $a \ge y \times Sd$  for  $\rightarrow$ I; you should be able to show  $a \div (y \times Sd) = Sd(q \div y) + r \wedge r < Sd$  toward  $(\exists w < a \div (y \times Sd))[a \div (y \times Sd) = Sd \times w + r \wedge r < Sd]$  by ( $\exists$ I), to apply Def[rm].

So (a) (the successor of)  $\emptyset$  divides any number; (b) (the successor of) *a* divides *Sa*; and (c) any number divides into  $\emptyset$  zero times. (d) if *a* divides *b* then it divides  $b \times c$ ; (e) where subtraction compensates for successor, if *a* divides *c* and *b* divides *d*, *ab* divides *cd*; and (f) if *a* divides *Sb* and (the successor of) *b* divides *c*, then *a* divides *c*. (g) is like (b + c)/a = b/a + c/a so that dividing the sum breaks into dividing the members; (h) is the comparable principle for subtraction. From (i) if b > a, then (the successor of) *b* does not divide *Sa*. (j) makes the obvious connection between reminder and factor. In (k) the remainder of the second part  $(y \times Sd)$  is  $\emptyset$  so that the remainder of the sum is just whatever there is from the first rm(a, d); (m) is the comparable principle for subtraction. The intervening (l) is required for (m) and tells us that if *z* multiples of (the successor of) *d* come to  $\leq a$ , then  $z \leq qt(a, d)$  — since the quotient maximizes the multiples of (the successor of) *d* that are  $\leq a$ .

And now PA defines relations *prime* and *relatively prime*. Prime has its usual sense. And numbers are relatively prime when they have no common divisor other than one — though they may not therefore individually be prime. Though division is by successor, these notions are given their usual sense by adjusting the numbers that are said to "divide."

 $Def[Pr] PA \vdash Pr(n) \leftrightarrow \overline{1} < n \land \forall x[x|n \to (x = \emptyset \lor Sx = n)]$ 

$$Def[Rp] \text{ PA} \vdash Rp(a, b) \leftrightarrow \forall x[(x|a \land x|b) \rightarrow x = \emptyset]$$

Since these are relations, no condition is required over and above the axioms. For any b we get  $Rp(\overline{1}, b)$  since the only number that divides both  $\overline{1}$  and b is (the successor of)  $\emptyset$ . And  $Rp(\emptyset, \overline{1})$ : anything divides  $\emptyset$ , so (the successor of)  $\emptyset$  divides  $\emptyset$ ; and the only number that divides  $S\emptyset$  is (the successor of)  $\emptyset$ . But for  $a \neq \emptyset$  (and so  $Sa \neq \overline{1}$ ),  $\sim Rp(\emptyset, Sa)$ , for when  $a \neq \emptyset$ , both  $\emptyset$  and Sa are divided by (the successor of) a and so by a number other than (the successor of)  $\emptyset$ .

It will be helpful to introduce a couple of subsidiary notions. When G(a, b, i) we say that *i* is *good*, and d(a, b) is (zero or) the *least* such good when *a* and *b* are greater than zero.

$$Def[G]$$
 PA  $\vdash G(a, b, i) \Leftrightarrow \exists x \exists y (ax + i = by)$ 

$$Def[d] PA \vdash d(a, b) = \mu v[(a > \emptyset \land b > \emptyset) \to G(a, b, Sv)]$$
  
(i) PA 
$$\vdash \exists v[(a > \emptyset \land b > \emptyset) \to G(a, b, Sv)]$$

Begin with  $b = \emptyset \lor b > \emptyset$  and go for the existentially quantified goal. In the second case, there is some l such that b = Sl and it is easy to show  $a \times \emptyset + b = b \times \overline{1}$  and generalize.

If a or b is not greater than  $\emptyset$  then d(a, b) is just  $\emptyset$ . Otherwise, the notion is more significant.

Again, PA proves a series of results. Observe again that if we are interested in whether a prime divides some b we are interested in whether  $Pr(Sa) \wedge a|b$  since it is the successor that is divided into b.

\*T13.25. The following result in PA:

- (a)  $PA \vdash \sim Pr(\emptyset)$
- (b)  $PA \vdash \sim Pr(\overline{1})$
- (c)  $PA \vdash Pr(\overline{2})$
- \*(d)  $PA \vdash \forall x[x > \overline{1} \rightarrow \exists z(Pr(Sz) \land z|x)]$
- \*(e)  $PA \vdash Rp(a, b) \leftrightarrow \sim \exists x [Pr(Sx) \land x | a \land x | b]$
- (f)  $PA \vdash \forall x \forall y [G(a, b, x) \rightarrow G(a, b, x \times y)]$
- \*(g)  $PA \vdash (a > \emptyset \land b > \emptyset) \rightarrow \forall x \forall y [(G(a, b, x) \land G(a, b, y) \land x \ge y) \rightarrow G(a, b, x \div y)]$
- \*(h)  $PA \vdash [Rp(a, b) \land a > \emptyset \land b > \emptyset] \rightarrow G(a, b, \overline{1})$
- \*(i)  $PA \vdash [Pr(Sa) \land a | (b \times c)] \rightarrow (a | b \lor a | c)$

Hints. (c): This is straightforward with T13.24i. (d): You can do this by the second form of strong induction T13.13ag; the zero case is trivial; to reach  $\forall x\{(\forall y \leq x)[y > \overline{1} \rightarrow \exists z(Pr(Sz) \land z|y)] \rightarrow [Sx > \overline{1} \rightarrow \exists z(Pr(Sz) \land z|Sx)]\}$  assume  $(\forall y \leq k)[y > \overline{1} \rightarrow \exists z(Pr(Sz) \land z|y)]$  and  $Sk > \overline{1}$ ; then Sk is prime or not; if it is prime, the result is immediate; if it is not, you will be able to show  $Sj \leq k$  and apply the assumption. (e): From left to right, under the assumption for  $\leftrightarrow I$  assume  $\exists x[Pr(Sx) \land x|a \land x|b]$  and  $Pr(Sj) \land j|a \land j|b$  for  $\sim I$  and  $\exists E$ ; then you should be able to show that  $\overline{1} < Sj$  and  $\overline{1} \not\leq Sj$ ; in the other direction, under the assumption for  $\leftrightarrow I$  and then  $j|a \land j|b$  for  $\rightarrow I$ ,  $j = \emptyset \lor j > \emptyset$  by T13.13f; the latter is impossible, which gives the result you want. (g): Under the assumptions

 $a > \emptyset \land b > \emptyset$  and then  $G(a, b, i) \land G(a, b, j) \land i \ge j$  for  $\rightarrow$ I and then ap + i = bq and ar + j = bs for  $\exists E$ , starting with  $(bq + bar) + (bsa \div bs) = (bq + bar) + (bsa \div bs)$  by =I, with some effort, you will be able to show  $a[(p + bs) + (br \div r)] + (i \div j) = b[(q + ar) + (sa \div s)]$  and generalize. (i): Under the assumption  $Pr(Sa) \land a|(b \times c)$  assume  $a \nmid b$  with the idea of obtaining  $a \nmid b \rightarrow a|c$  for Impl; set out to show Rp(b, Sa) for an application of T13.25h to get  $\exists x \exists y[bx + \overline{1} = Sa \times y]$ ; with this, you will have  $bp + \overline{1} = Sa \times q$  by  $\exists E$ ; and you should be able to show a|cbp and a|(cbp + c) for an application of T13.24g.

T13.25h is important. But the argument is relatively complex; it has the following main stages.

| ] | $(a > \emptyset \land b > \emptyset) \to G(a, b, Sd(a, b))] \land (\forall y < d(a, b)) \sim [(a > \emptyset \land \land b > \emptyset) \to G(a, b, Sy)]$ | def d                                                                                                                                                                                                                                                                                                                                                                          |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ( | $(a > \emptyset \land b > \emptyset) \to G(a, b, Sd(a, b))$                                                                                               | $1 \wedge E$                                                                                                                                                                                                                                                                                                                                                                   |
|   | $Rp(a,b) \land a > \emptyset \land b > \emptyset$                                                                                                         | A $(g \rightarrow I)$                                                                                                                                                                                                                                                                                                                                                          |
|   | Rp(a,b)                                                                                                                                                   | $3 \wedge E$                                                                                                                                                                                                                                                                                                                                                                   |
|   | $\forall x[(x a \land x b) \to x = \emptyset]$                                                                                                            | 4 def                                                                                                                                                                                                                                                                                                                                                                          |
|   | $a > \emptyset \land b > \emptyset$                                                                                                                       | $3 \land E$                                                                                                                                                                                                                                                                                                                                                                    |
|   | G(a,b,Sd(a,b))                                                                                                                                            | $2,6 \rightarrow E$                                                                                                                                                                                                                                                                                                                                                            |
|   | G(a,b,a)                                                                                                                                                  | [a]                                                                                                                                                                                                                                                                                                                                                                            |
|   | G(a,b,b)                                                                                                                                                  | [b]                                                                                                                                                                                                                                                                                                                                                                            |
|   | $\forall x[G(a,b,x) \to d(a,b) x]$                                                                                                                        | [c]                                                                                                                                                                                                                                                                                                                                                                            |
|   | d(a,b) a                                                                                                                                                  | 8,10 ∀E                                                                                                                                                                                                                                                                                                                                                                        |
|   | d(a,b) b                                                                                                                                                  | 9,10 ∀E                                                                                                                                                                                                                                                                                                                                                                        |
|   | $ d(a,b) a \wedge d(a,b) b $                                                                                                                              | 11,12 ∧I                                                                                                                                                                                                                                                                                                                                                                       |
|   | $d(a,b) = \emptyset$                                                                                                                                      | 5,13 ∀E                                                                                                                                                                                                                                                                                                                                                                        |
|   | $G(a, b, \overline{1})$                                                                                                                                   | 7,14 =E                                                                                                                                                                                                                                                                                                                                                                        |
| 1 | $Rp(a,b) \land a > \emptyset \land b > \emptyset] \to G(a,b,\overline{1})$                                                                                | $3-15 \rightarrow I$                                                                                                                                                                                                                                                                                                                                                           |
|   | ſ                                                                                                                                                         | $ \begin{array}{l} a > \emptyset \land b > \emptyset \\ G(a, b, Sd(a, b)) \\ G(a, b, a) \\ G(a, b, a) \\ \forall x[G(a, b, x) \rightarrow d(a, b) x] \\ d(a, b) a \\ d(a, b) a \\ d(a, b) b \\ d(a, b) a \land d(a, b) b \\ d(a, b) = \emptyset \\ G(a, b, \overline{1}) \\ [Rp(a, b) \land a > \emptyset \land b > \emptyset] \rightarrow G(a, b, \overline{1}) \end{array} $ |

Hint. For (c) let q = qt(i, d(a, b)) and r = rm(i, d(a, b)) then from the definitions you have  $i = (Sd(a, b) \times q) + r$  and r < Sd(a, b) and from (1) of the main argument  $(\forall y < d(a, b)) \sim [(a > \emptyset \land b > \emptyset) \rightarrow G(a, b, Sy)];$ then under the assumption G(a, b, i) for  $\rightarrow$ I you should be able to show  $G(a, b, i \div (Sd(a, b) \times q))$  using (6) from the main argument with (f) and (g); but also  $i \div (Sd(a, b) \times q) = r$  so that G(a, b, r). Now the assumption that r is a successor leads to contradiction; so  $r = \emptyset$  and d(a, b)|i.

T13.25(a) - (c) are simple particular facts. From (d) every number greater than one is divided by some prime (which may or may not be itself). From (e), a and b are
relatively prime iff there is no prime that divides them both; in one direction this is obvious — if a prime divides them both, then they are not relatively prime; in the other direction, if some number other than (the successor of) zero divides them both, then some prime of it divides them both. (f) and (g) let you manipulate G; they are required for (h) which is in turn required for (i). (h) is an instance of Bézout's lemma according to which there are x and y such that ax + d = by when d is the greatest common divisor of a and b; if a and b are relatively prime, their greatest common divisor is one. (i) is sometimes known as Euclid's lemma: if Sa is prime and Sa divides  $b \times c$  then Sa divides b or c; if Sa is prime and divides  $b \times c$  then it must appear in the factorization of b or the factorization of c — so that it divides one or the other.

Now *least common multiple*. Given a function m(i),  $lcm\{m(i) | i < k\}$  is the least  $y > \emptyset$  such that for any i < k, Sm(i) divides y. We avoid worries about the case when  $m(i) = \emptyset$  by our usual account of factor. And since  $y > \emptyset$  it is possible to define a predecessor to the least common multiple, helpful when switching between the numerator and denominator of fractions.

\*Def[lcm] lcm{m(i) | i < k} =  $\mu v[v > \emptyset \land (\forall i < k)m(i)|v]$ 

(i)  $PA \vdash \exists x [x > \emptyset \land (\forall i < k)m(i)|x]$ 

Hint: This is an argument by IN on *k*. For the basis, you may assert that  $\overline{1} > \emptyset$ ; then the argument is trivial. For the main argument, under the assumptions  $\exists x [x > \emptyset \land (\forall i < j)m(i)|x]$  for  $\rightarrow$ I and  $a > \emptyset \land (\forall i < j)m(i)|a$  for  $\exists$ E, set out to show  $a \times Sm(j) > \emptyset \land (\forall i < Sj)m(i)|(a \times Sm(j))$  and generalize.

Because *lcm* is defined by minimization, only the existence condition is required. As a matter of notation, let  $l[m]_k = lcm\{m(i) \mid i < k\}$  and, where *m* is understood, let  $l_k = lcm\{m(i) : i < k\}$ .

 $Def[plm] \ v = plm\{m(i) \mid i < k\} \leftrightarrow Sv = lcm\{m(i) \mid i < k\}$ 

- (i)  $PA \vdash \exists v (Sv = l_k)$
- (ii)  $PA \vdash \forall x \forall y [(Sx = l_k \land Sy = l_k) \rightarrow x = y]$

Again, let  $p[m]_k = plm\{m(i) | i < k\}$  and, where *m* is understood,  $p_k = plm\{m(i) | i < k\}$ .

\*T13.26. The following result in PA:

- (a)  $PA \vdash l_{\emptyset} = \overline{1}$
- (b)  $PA \vdash j < k \rightarrow m(j)|l_k$
- \*(c)  $PA \vdash (\forall i < k)m(i)|x \rightarrow p_k|x$
- \*(d)  $\text{PA} \vdash \forall n [(Pr(Sn) \land n | l_k) \rightarrow (\exists i < k)n | Sm(i)]$

Hints. (c): Let  $q = qt(x, p_k)$  and  $r = rm(x, p_k)$ ; assume  $(\forall i < k)m(i)|x$ for  $\rightarrow$ I; you have  $(\forall y < l_k) \sim [y > \emptyset \land (\forall i < k)m(i)|y]$  from def  $l_k$  with T13.19c; you should be able to apply this to show that  $r = \emptyset$  and so that  $p_k|x$ . (d): This is an induction on k. The basis is straightforward given  $l_{\emptyset} = \overline{1}$  from T13.26a; for the main argument, you have  $(\forall i < j)m(i)|l_j$  from def  $l_j$ ; under assumptions  $\forall n[(Pr(Sn) \land n|l_j) \rightarrow (\exists i < j)n|Sm(i)]$  and  $Pr(Sa) \land$  $a|l_{Sj}$  for  $\rightarrow$ I, you should be able to use T13.26c to show  $p_{Sj}|(l_j \times Sm(j))$ ; and from this  $a|l_j \lor a|Sm(j)$ ; in either case, you have your result.

(a) for any function m(i), the least common multiple for i < 0 defaults to 1. (b) applies the definition for the result that when j < k, m(j) divides  $lcm\{m(i) | i < k\}$ . (c) is perhaps best conceived by prime factorization: the least common multiple of some collection has all the primes of its members and no more; but any number into which all the members of the collection divide must include all those primes; so the least common multiple divides it as well. (d) is the related result that if a prime divides the least common multiple of some collection, then it divides some member of the collection.

Finally we arrive at the Chinese Remainder Theorem. Let m(i) be a function such that (successors of) its values are relatively prime; h(i) is a function whose values are to be matched by remainders. Then the theorem tells us that if for all  $i < k, m(i) > \emptyset$  and  $m(i) \ge h(i)$ , and if for all i < j < k, Rp(Sm(i), Sm(j)), then  $\exists p(\forall i < k)rm(p, m(i)) = h(i)$ . So the remainder of p and m(i) matches the value of h(i).

\*T13.27. PA  $\vdash [(\forall i < k)(m(i) > \emptyset \land m(i) \ge h(i)) \land \forall i \forall j(i < j \land j < k \rightarrow Rp(Sm(i), Sm(j)))]$   $\rightarrow \exists p(\forall i < k)rm(p, m(i)) = h(i).$  Let,  $A(k) =_{def} (\forall i < k)(m(i) > \emptyset \land m(i) \ge h(i)) \land \forall i \forall j(i < j \land j < k \rightarrow Rp(Sm(i), Sm(j)))$   $\mathcal{B}(k) =_{def} \exists p(\forall i < k)rm(p, m(i)) = h(i).$ So we want PA  $\vdash \mathcal{A}(k) \rightarrow \mathcal{B}(k)$ . By induction on *n* we show  $\forall n[n \le k \rightarrow Mp(k)]$ 

So we want  $PA \vdash \mathcal{A}(k) \rightarrow \mathcal{B}(k)$ . By induction on *n* we show  $\forall n [n \le k \rightarrow (\mathcal{A}(n) \rightarrow \mathcal{B}(n))]$ . The result follows immediately with  $k \le k$ . Here is the overall structure of the argument:

| 1.  | Ø  | $\leq k \rightarrow (\mathcal{A}(\emptyset) \rightarrow \mathcal{B}(\emptyset))$                                                                                                                                                           | [a]                                             |
|-----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | L  | $a \leq k \to (\mathcal{A}(a) \to \mathcal{B}(a))$                                                                                                                                                                                         | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 3.  |    | $Sa \leq k$                                                                                                                                                                                                                                | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 4.  |    | a < k                                                                                                                                                                                                                                      | 3 T13.131                                       |
| 5.  |    | $a \leq k$                                                                                                                                                                                                                                 | 4 T13.13m                                       |
| 6.  |    | $\mathcal{A}(a) \to \mathcal{B}(a)$                                                                                                                                                                                                        | $2,5 \rightarrow E$                             |
| 7.  |    | $\mathcal{A}(Sa)$                                                                                                                                                                                                                          | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 8.  |    | $ \left  \begin{bmatrix} (\forall i < a)(m(i) > \emptyset \land m(i) \ge h(i)) \land \forall i \forall j((i < j \land j < a) \to Rp(Sm(i), Sm(j))) \end{bmatrix} \to \\ \exists p(\forall i < a)rm(p, m(i)) = h(i) \end{bmatrix} \right  $ | 6 abv                                           |
| 9.  |    | $   (\forall i < Sa)(m(i) > \emptyset \land m(i) \ge h(i)) \land \forall i \forall j((i < j \land j < Sa) \to Rp(Sm(i), Sm(j))) $                                                                                                          | 7 abv                                           |
| 10. |    | $   (\forall i < Sa)(m(i) > \emptyset \land m(i) \ge h(i)) $                                                                                                                                                                               | 9 ∧E                                            |
| 11. |    | $\forall i \forall j((i < j \land j < Sa) \rightarrow Rp(Sm(i), Sm(j)))$                                                                                                                                                                   | 9 ∧E                                            |
| 12. |    | $\exists p(\forall i < a)rm(p, m(i)) = h(i)$                                                                                                                                                                                               | [b]                                             |
| 13. |    | $\left  \left  \left( \forall i < a \right) rm(r, m(i)) = h(i) \right. \right $                                                                                                                                                            | A ( $g$ 12 $\exists$ E)                         |
| 14. |    | $   R_p(l[m]_a, Sm(a)) $                                                                                                                                                                                                                   | [c]                                             |
| 15. |    | $   Sm(a) > \emptyset$                                                                                                                                                                                                                     | T13.13e                                         |
| 16. |    | $      l_a > \emptyset$                                                                                                                                                                                                                    | def $l_a$                                       |
| 17. |    | $   G(l_a, Sm(a), \overline{1}) $                                                                                                                                                                                                          | 14,15,16 T13.25h                                |
| 18. |    | $\left  \begin{array}{c} G(l_a, Sm(a), r + (l_a \div \overline{1}) \times h(a)) \end{array} \right $                                                                                                                                       | 17 T13.25f                                      |
| 19. |    | $\exists x \exists y (l_a \times x + [r + (l_a \div \overline{1}) \times h(a)] = Sm(a) \times y)$                                                                                                                                          | 18 def <i>G</i>                                 |
| 20. |    | $\left  \begin{array}{c} l_a \times b + [r + (l_a \div \overline{1}) \times h(a)] = Sm(a) \times c \end{array} \right $                                                                                                                    | A ( $g$ 19 $\exists$ E)                         |
| 21. |    | $      s = l_a \times (b + h(a)) + r$                                                                                                                                                                                                      | def                                             |
| 22. |    | $    s = Sm(a) \times c + h(a)$                                                                                                                                                                                                            | [d]                                             |
| 23. |    | $     (\forall i < Sa)rm(s, m(i)) = h(i)$                                                                                                                                                                                                  | [e]                                             |
| 24. |    | $   \exists p(\forall i < Sa)rm(p, m(i)) = h(i)$                                                                                                                                                                                           | 23 ∃I                                           |
| 25. |    | $       \mathcal{B}(Sa)$                                                                                                                                                                                                                   | 24 abv                                          |
| 26. |    | $     \mathcal{B}(Sa)$                                                                                                                                                                                                                     | 19,20-25 ∃E                                     |
| 27. |    | $   \mathcal{B}(Sa)$                                                                                                                                                                                                                       | 12,13-26 ∃E                                     |
| 28. |    | $ A(Sa) \to \mathcal{B}(Sa) $                                                                                                                                                                                                              | 7-27 →I                                         |
| 29. |    | $Sa \leq k \rightarrow (\mathcal{A}(Sa) \rightarrow \mathcal{B}(Sa))$                                                                                                                                                                      | 3-28 →I                                         |
| 30. | [a | $a \leq k \to (\mathcal{A}(a) \to \mathcal{B}(a))] \to [Sa \leq k \to (\mathcal{A}(Sa) \to \mathcal{B}(Sa))]$                                                                                                                              | $2-29 \rightarrow I$                            |
| 31. | V  | $n([n \le k \to (\mathcal{A}(n) \to \mathcal{B}(n))] \to [Sn \le k \to (\mathcal{A}(Sn) \to \mathcal{B}(Sn))])$                                                                                                                            | 30 <b>∀</b> I                                   |
| 32. | () | $\forall n \leq k) (\mathcal{A}(n) \to \mathcal{B}(n))$                                                                                                                                                                                    | 1,31 IN                                         |
| 33. | k  | $\leq k$                                                                                                                                                                                                                                   | T13.13m                                         |
| 34. | A  | $\mathfrak{S}(k) 	o \mathfrak{B}(k)$                                                                                                                                                                                                       | 32,33 (¥E)                                      |

Hints. (c): Suppose otherwise; with T13.25e there is a *u* such that  $Pr(Su) \land u|l_a \land u|Sm(a)$ ; then with T13.26d there is a v < a such that u|Sm(v) so that with (11) Rp(Sm(v), Sm(a)). But this is impossible with u|Sm(a), u|Sm(v) and T13.25e. (d): By Def[lcm],  $l_a > \emptyset$  so that  $h(a)l_a > h(a)$ . Then with T13.23a and T13.23p you can show  $s = (l_a \times b + [r + (l_a \div 1) \times h(a)]) + h(a)$  and apply (20). (e): Suppose for  $(\forall I) u < Sa$ ; then  $u < a \lor u = a$ . In the first case, with T13.26b and T13.24d  $m(u)|l_a(b + h(a))$ ; so that there is a *v* such that  $Sm(u)v = l_a(b + h(a))$ ; then using (21) and T13.24k, rm(d, m(u)) =

661

rm(s, m(u)); so that you can apply (13). In the second case, with (22) and T13.24k rm(d, m(u)) = rm(h(u), m(u)); but from (10),  $m(u) \ge h(u)$  and you will be able to show that rm(h(u), m(u)) = h(u).

The core of this derivation is to obtain (21) and (22) and from them (23). For a claim about all i < Sa, s appears in the forms from both (21) and (22). For any i < a and x, m(i) divides  $l_a x$  evenly; so m(i) divides the first term from (21) evenly; so the remainder of m(i) and s is the same as the remainder of m(i) with r — and with (13) this is just h(i). But the multiplier b + h(a) is chosen so that from (20) and (21), we get (22); so when i = a, m(i) divides the first term evenly, and since  $m(i) \ge h(a)$ again the remainder of m(i) and s is h(i). Putting these together, for any i < Sa, the remainder of m(i) and s is h(i). The "trick" to this is in the construction of s so that remainders for i < a stay the same, but the remainder at a is h(a).<sup>12</sup>

For our final result in this section, we require a couple notions for maximum value. First *maxp* for the greatest of a *pair* of values, and then *maxs* for the maximum from a *set*.

 $Def[maxp] PA \vdash maxp(x, y) = \mu v[v \ge x \land v \ge y]$ 

(i)  $PA \vdash \exists v [v \ge x \land v \ge y]$ 

Hint:  $x \ge y \lor y > x$ ; in either case the result is easy.

 $Def[maxs] PA \vdash maxs\{m(i) \mid i < k\} = \mu v[(\forall i < k)m(i) \le v]$ 

(i)  $PA \vdash \exists v [(\forall i < k)m(i) \le v]$ 

Hint: First obtain *maxp* and T13.28a. Then the argument is by IN on k. For the show you will have assumptions of the sort  $(\forall i < j)m(i) \le l$  and a < Sj; then  $a < j \lor a = j$ ; in either case you will be able to show that  $m(a) \le maxp(l, m(j))$ .

So maxp(x, y) is the maximum of x and y, and  $maxs\{m(i) | i < k\}$  is the maximum from m(i) with i < k. As a matter of notation, let  $maxs[m]_k = maxs\{m(i) | i < k\}$  and where m is understood,  $maxs_k = maxs\{m(i) | i < k\}$ . A couple of results are immediate with T13.19b.

T13.28. The following result in PA.

<sup>&</sup>lt;sup>12</sup>For this construction see Boolos, *The Logic of Provability*, 30-31.

- (a)  $PA \vdash maxp(x, y) \ge x \land maxp(x, y) \ge y$
- (b)  $PA \vdash (\forall i < k)m(i) \leq maxs_k$

These simply state the obvious: that the maximum is greater than or equal to the rest. From (a) the maximum is the greater of the the two in the pair; from (b) the maximum is the greatest of the values of the function.

Now we are in a position to generate some results for the  $\beta$  function. With values of q and m(i) as below, we may demonstrate the antecedent to the *CRT* (T13.27), and so obtain its consequent — where this is a result for the  $\beta$ -function.

\*T13.29. PA  $\vdash \exists p \exists q (\forall i < k) \beta(p, q, i) = h(i).$ 

Let  $r =_{def} maxp(k, maxs[h]_k);$ 

 $s =_{def} Sr;$ 

.

 $q =_{\text{def}} lcm\{i \mid i < s\};$ 

$$m(i) =_{def} q \times Si$$

Recall from Def[beta] that  $PA \vdash \beta(p,q,i) = rm(p,q \times Si)$ . And we may reason,

| 1.  | $(\forall i < k)(m(i) > \emptyset \land m(i) \ge h(i))$                  | [i]                    |
|-----|--------------------------------------------------------------------------|------------------------|
| 2.  | $\forall i \forall j [(i < j \land j < k) \rightarrow Rp(Sm(i), Sm(j))]$ | [ii]                   |
| 3.  | $\exists p(\forall i < k)rm(p, m(i)) = h(i)$                             | 1,2 T13.27             |
| 4.  | $m(i) = q \times Si$                                                     | def                    |
| 5.  | $\exists p(\forall i < k)rm(p, q \times Si) = h(i)$                      | 3,4 =E                 |
| 6.  | $\beta(p,q,i) = rm(p,q \times Si)$                                       | def                    |
| 7.  | $\exists p(\forall i < k)\beta(p,q,i) = h(i)$                            | 5,6 =E                 |
| 8.  | $(\forall i < k)\beta(p, q, i) = h(i)$                                   | A ( $g$ 7 $\exists$ E) |
| 9.  | $\exists q (\forall i < k) \beta(p, q, i) = h(i)$                        | 8 ∃I                   |
| 10. | $\exists p \exists q (\forall i < k) \beta(p, q, i) = h(i)$              | 9 ∃I                   |
| 11. | $\exists p \exists q (\forall i < k) \beta(p, q, i) = h(i)$              | 7,8-10 ∃E              |

So the demonstration reduces to that of (i) and (ii), the two conjuncts to the antecedent of *CRT* (T13.27). (i): Under the assumption j < k for ( $\forall$ I) it will be easy to show  $m(j) > \emptyset$ ; then you will be able to use T13.28 to show h(j) < s; but also with T13.26b that r|q and from this that  $s \leq q$  which gives  $s \leq q \times Sj$  and the result you want. (ii): Here is the main outline of the argument.

| 1.                                                                                                                                                                                               | $i < j \land j < k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A $g \rightarrow I$                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.                                                                                                                                                                                               | i < j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 ∧E                                                                                                                                                                                                                                 |
| 3.                                                                                                                                                                                               | j < k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 ∧E                                                                                                                                                                                                                                 |
| 4.                                                                                                                                                                                               | $ \sim Rp(Sm(i), Sm(j)) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A ( $c \sim I$ )                                                                                                                                                                                                                     |
| 5.                                                                                                                                                                                               | $\exists x [Pr(Sx) \land x   S(q \times Si) \land x   S(q \times Sj)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 T13.25e                                                                                                                                                                                                                            |
| 6.                                                                                                                                                                                               | $Pr(Sa) \wedge a   S(q \times Si) \wedge a   S(q \times Sj)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A ( $c$ 5 $\exists$ E)                                                                                                                                                                                                               |
| 7.                                                                                                                                                                                               | Pr(Sa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 ∧E                                                                                                                                                                                                                                 |
| 8.                                                                                                                                                                                               | $  a S(q \times Si)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 ∧E                                                                                                                                                                                                                                 |
| 9.                                                                                                                                                                                               | $  a S(q \times Sj)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 ∧E                                                                                                                                                                                                                                 |
| 10.                                                                                                                                                                                              | a q(j - i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [a]                                                                                                                                                                                                                                  |
| 11.                                                                                                                                                                                              | $  a q \lor a (j \div i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7,10 T13.25i                                                                                                                                                                                                                         |
| 12.                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A ( $g 11 \lor E$ )                                                                                                                                                                                                                  |
| 13.                                                                                                                                                                                              | a q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 R                                                                                                                                                                                                                                 |
| 14.                                                                                                                                                                                              | $    a (j \div i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A ( $g 11 \lor E$ )                                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                      |
| 15.                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [b]                                                                                                                                                                                                                                  |
| 15.<br>16.                                                                                                                                                                                       | $ \begin{vmatrix} a \\ a \end{vmatrix} = \begin{bmatrix} a \\ a \\ a \end{vmatrix} = \begin{bmatrix} a \\ a \\ a \end{bmatrix} =$ | [b]<br>11,12-13,14-15 ∨E                                                                                                                                                                                                             |
| 15.<br>16.<br>17.                                                                                                                                                                                | $ \begin{vmatrix} a &   q \\ a &   q \\ a &   (q \times Si) \end{vmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [b]<br>11,12-13,14-15 ∨E<br>16 T13.24d                                                                                                                                                                                               |
| 15.<br>16.<br>17.<br>18.                                                                                                                                                                         | $ \begin{vmatrix} a &   q \\ a &   q \\ a &   (q \times Si) \\ S(q \times Si) > q \times Si \end{vmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [b]<br>11,12-13,14-15 ∨E<br>16 T13.24d<br>T13.13h                                                                                                                                                                                    |
| 15.<br>16.<br>17.<br>18.<br>19.                                                                                                                                                                  | $ \begin{bmatrix}                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [b]<br>11,12-13,14-15 ∨E<br>16 T13.24d<br>T13.13h<br>18 T13.13m                                                                                                                                                                      |
| <ol> <li>15.</li> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> </ol>                                                                                                         | $ \begin{bmatrix}                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [b]<br>11,12-13,14-15 ∨E<br>16 T13.24d<br>T13.13h<br>18 T13.13m<br>19,8,17 T13.24h                                                                                                                                                   |
| <ol> <li>15.</li> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> </ol>                                                                                            | $\begin{vmatrix} a   q \\ a   q \\ a   q \\ a   (q \times Si) \\ S(q \times Si) > q \times Si \\ S(q \times Si) \ge q \times Si \\ a   (S(q \times Si) \doteq (q \times Si)) \\ a   \overline{1} \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [b]<br>11,12-13,14-15 ∨E<br>16 T13.24d<br>T13.13h<br>18 T13.13m<br>19,8,17 T13.24h<br>20 T13.23h                                                                                                                                     |
| <ol> <li>15.</li> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> </ol>                                                                               | $\begin{vmatrix} a   q \\ a   q \\ a   q \\ a   (q \times Si) \\ S(q \times Si) > q \times Si \\ S(q \times Si) \ge q \times Si \\ a   (S(q \times Si) \doteq (q \times Si)) \\ a   \overline{1} \\ S\emptyset < Sa \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [b]<br>11,12-13,14-15 ∨E<br>16 T13.24d<br>T13.13h<br>18 T13.13m<br>19,8,17 T13.24h<br>20 T13.23h<br>def <i>Pr</i>                                                                                                                    |
| <ol> <li>15.</li> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> </ol>                                                                  | $\begin{vmatrix} & &   \\ & a   q \\ & a   q \\ & a   (q \times Si) \\ & S(q \times Si) > q \times Si \\ & S(q \times Si) \ge q \times Si \\ & a   (S(q \times Si) \doteq (q \times Si)) \\ & a   \overline{1} \\ & S\emptyset < Sa \\ & \emptyset < a \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [b]<br>11,12-13,14-15 ∨E<br>16 T13.24d<br>T13.13h<br>18 T13.13m<br>19,8,17 T13.24h<br>20 T13.23h<br>def <i>Pr</i><br>22 T13.13k                                                                                                      |
| <ol> <li>15.</li> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> </ol>                                                     | $ \begin{bmatrix}     a   q \\     a   q \\     a   (q \times Si) \\     S(q \times Si) > q \times Si \\     S(q \times Si) \ge q \times Si \\     a   (S(q \times Si) \doteq (q \times Si)) \\     a   \overline{1} \\     S\emptyset < Sa \\     \emptyset < a \\     a \neq \overline{1}   \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [b]<br>11,12-13,14-15 ∨E<br>16 T13.24d<br>T13.13h<br>18 T13.13m<br>19,8,17 T13.24h<br>20 T13.23h<br>def <i>Pr</i><br>22 T13.13k<br>23 T13.24i                                                                                        |
| <ol> <li>15.</li> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> </ol>                                        | $ \begin{vmatrix} \neg \\ a   q \\ a   q \\ a   (q \times Si) \\ S(q \times Si) > q \times Si \\ S(q \times Si) \ge q \times Si \\ a   (S(q \times Si) \doteq (q \times Si)) \\ a   \overline{1} \\ S\emptyset < Sa \\ \emptyset < a \\ a \nmid \overline{1} \\ \bot \end{vmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [b]<br>11,12-13,14-15 ∨E<br>16 T13.24d<br>T13.13h<br>18 T13.13m<br>19,8,17 T13.24h<br>20 T13.23h<br>def <i>Pr</i><br>22 T13.13k<br>23 T13.24i<br>21,24 ⊥I                                                                            |
| <ol> <li>15.</li> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> </ol>                           | $ \begin{vmatrix} \neg \\ a   q \\ a   q \\ a   (q \times Si) \\ S(q \times Si) > q \times Si \\ S(q \times Si) \ge q \times Si \\ a   (S(q \times Si) \doteq (q \times Si)) \\ a   \overline{1} \\ S\emptyset < Sa \\ \emptyset < a \\ a \nmid \overline{1} \\ \bot \\ \end{vmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [b]<br>11,12-13,14-15 ∨E<br>16 T13.24d<br>T13.13h<br>18 T13.13m<br>19,8,17 T13.24h<br>20 T13.23h<br>def <i>Pr</i><br>22 T13.13k<br>23 T13.24i<br>21,24 ⊥I<br>5,6-25 ∃E                                                               |
| <ol> <li>15.</li> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> </ol>              | $ \begin{vmatrix} \neg \\ a   q \\ a   q \\ a   (q \times Si) \\ S(q \times Si) > q \times Si \\ S(q \times Si) \ge q \times Si \\ a   (S(q \times Si) \doteq (q \times Si)) \\ a   \overline{1} \\ S\emptyset < Sa \\ \emptyset < a \\ a \nmid \overline{1} \\ \bot \\ Rp(Sm(i), Sm(j)) \end{vmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [b]<br>11,12-13,14-15 ∨E<br>16 T13.24d<br>T13.13h<br>18 T13.13m<br>19,8,17 T13.24h<br>20 T13.23h<br>def <i>Pr</i><br>22 T13.13k<br>23 T13.24i<br>21,24 ⊥I<br>5,6-25 ∃E<br>4-26 ~E                                                    |
| <ol> <li>15.</li> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> </ol> | $ \begin{vmatrix} \neg & \neg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [b]<br>11,12-13,14-15 $\lor$ E<br>16 T13.24d<br>T13.13h<br>18 T13.13m<br>19,8,17 T13.24h<br>20 T13.23h<br>def <i>Pr</i><br>22 T13.13k<br>23 T13.24i<br>21,24 $\bot$ I<br>5,6-25 $\exists$ E<br>4-26 $\sim$ E<br>1-27 $\rightarrow$ I |

Hints. (a): With i < j you will be able to show  $a|(S(q \times Sj) \div S(q \times Si));$ and with some work that  $S(q \times Sj) \div S(q \times Si) = q(j \div i)$ . (b): With i < j, you have  $j \div i > \emptyset$ ; so there is an l such that  $Sl + \emptyset = j \div i$ ; you will be able to show a|Sl and with T13.26b, l|q so with T13.24f, a|q.

Now a theorem that uses this result to show that a  $\beta$ -function for values  $\langle k \rangle$  can always be extended to another like it but with an arbitrary  $k^{th}$  value. We show that given  $\beta(a, b, i)$  there are sure to be p and q such that  $\beta(p, q, i)$  is like  $\beta(a, b, i)$  for  $i \langle k$  and for arbitrary n,  $\beta(p, q, k) = n$ . This is because we may *define* a function hwhich is like  $\beta(a, b, i)$  for  $i \langle k$  and otherwise n — and find p, q such that  $\beta(p, q, i)$ matches it. As a preliminary,

$$Def[h(i)] \text{ PA} \vdash v = h(i) \leftrightarrow [(i < k \land v = \beta(a, b, i)) \lor (i \ge k \land v = n)]$$

- (i)  $PA \vdash \exists v [(i < k \land v = \beta(a, b, i)) \lor (i \ge k \land v = n)]$
- (ii)  $PA \vdash \forall x \forall y [([(i < k \land x = \beta(a, b, i)) \lor (i \ge k \land x = n)] \land [(i < k \land y = \beta(a, b, i)) \lor (i \ge k \land y = n)]) \rightarrow x = y]$

Then,

\*T13.30. PA 
$$\vdash \exists p \exists q [(\forall i < k)\beta(p,q,i) = \beta(a,b,i) \land \beta(p,q,k) = n].$$

Hints: From Def[h(i)] you have  $(k < k \land h(k) = \beta(a, b, k)) \lor (k \ge k \land h(k) = n)$  and  $(l < k \land h(l) = \beta(a, b, l)) \lor (l \ge k \land h(l) = n)$ ; and from T13.29 applied to Sk,  $\exists p \exists q (\forall i < Sk)\beta(p,q,i) = h(i)$ ; then with  $(\forall i < Sk)\beta(c, d, i) = h(i)$  for  $\exists E$ , you will be able to show that  $\beta(c, d, k) = n$  and under l < k for  $(\forall I)$  that  $\beta(c, d, l) = \beta(a, b, l)$ .

For application of this theorem, it is important that free variables are universally quantified. So the theorem is effectively  $\forall k \forall n \forall a \forall b \exists p \exists q [(\forall i < k)\beta(p,q,i) = \beta(a,b,i) \land \beta(p,q,k) = n]$ 

And finally the result we have been after in this section: As before, let  $\mathcal{F}(\vec{x}, y, v)$  be our formula,

 $\exists p \exists q [\beta(p,q,\emptyset) = g(\vec{x}) \land (\forall i < y) \hbar(\vec{x},i,\beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q,y) = v]$ 

Then we want,  $PA \vdash \exists v \mathcal{F}(\vec{x}, y, v)$ .

\*T13.31. For  $\mathcal{F}$  as above, PA  $\vdash \exists v \mathcal{F}(\vec{x}, y, v)$ .

Let  $\mathcal{F}(\vec{x}, y, v)$  be as above; the argument is by IN on y. The zero case is left as an exercise. Here is the main argument.

| 1. $\exists v \mathcal{F}(\vec{x}, \emptyset, v)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | zero case                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 2. $\exists v \mathcal{F}(\vec{x}, j, v)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $A(g \rightarrow I)$                                                                                                                |
| 3.<br>4.<br>$ \begin{aligned} \exists v \exists p \exists q [\beta(p,q,\emptyset) = g(\vec{x}) \land (\forall i < j) \hbar(\vec{x}, i, \beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q,j) = v] \\ \downarrow \beta(a,b,\emptyset) = g(\vec{x}) \land (\forall i < j) \hbar(\vec{x}, i, \beta(a,b,i)) = \beta(a,b,Si) \land \beta(a,b,j) = z \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 abv<br>A (g 3∃E)                                                                                                                  |
| 5.<br>6.<br>7.<br>8.<br>$\begin{vmatrix} \beta(a,b,\emptyset) = g(\vec{x}) \\ (\forall i < j) \hbar(\vec{x}, i, \beta(a, b, i)) = \beta(a, b, Si) \\ \exists p \exists q[(\forall i < Sj) \beta(p, q, i) = \beta(a, b, i) \land \beta(p, q, Sj) = \hbar(\vec{x}, j, \beta(a, b, j))] \\ (\forall i < Sj) \beta(c, d, i) = \beta(a, b, i) \land \beta(c, d, Sj) = \hbar(\vec{x}, j, \beta(a, b, j)) \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 ∧E<br>4 ∧E<br>T13.30 ∀E<br>A (g 7∃E)                                                                                              |
| 9.<br>10.<br>11.<br>12.<br>13.<br>14.<br>$ \begin{array}{l} (\forall i < Sj)\beta(c, d, i) = \beta(a, b, i) \\ \beta(c, d, Sj) = \hbar(\vec{x}, j, \beta(a, b, j)) \\ \emptyset(c, d, \delta) = \beta(a, b, \delta) \\ \beta(c, d, \delta) = \beta(a, b, \delta) \\ \beta(c, d, \delta) = g(\vec{x}) \\ \lfloor l < Sj \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 $\land$ E<br>8 $\land$ E<br>T13.13e<br>9,11 ( $\forall$ E)<br>5,12 =E<br>A (g ( $\forall$ I))                                     |
| 15.<br>16.<br>17.<br>18.<br>19.<br>20.<br>21.<br>15.<br>$\beta(c, d, l) = \beta(a, b, l)$<br>$\beta(c, d, l) = \beta(a, b, Sl)$<br>$\beta(c, d, Sl) = \beta(a, b, Sl)$<br>$\beta(c, d, Sl) = \beta(a, b, Sl)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9,14 ( $\forall$ E)<br>14 T13.13n<br>A (g 16 $\vee$ E)<br>6,17 ( $\forall$ E)<br>17 T13.13k<br>9,19 $\forall$ E<br>18,20 =E         |
| 22.<br>23.<br>24.<br>25.<br>26.<br>27.<br>27.<br>22.<br>23.<br>24.<br>25.<br>24.<br>25.<br>26.<br>27.<br>27.<br>27.<br>28.<br>29.<br>29.<br>20.<br>20.<br>20.<br>20.<br>20.<br>20.<br>20.<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A (g $16\lor E$ )<br>10,22 = E<br>15,23 = E<br>$16,17-21,22-24 \lor E$<br>$14-25 (\forall I)$<br>=I                                 |
| 28.<br>$\begin{vmatrix} \beta(c,d,\emptyset) = g(\vec{x}) \land (\forall i < Sj) \hbar(\vec{x},i,\beta(c,d,i)) = \beta(c,d,Si) \land \beta(c,d,Sj) = \beta(c,d,Sj) \\ \exists v \exists p \exists q [\beta(p,q,\emptyset) = g(\vec{x}) \land (\forall i < Sj) \hbar(\vec{x},i,\beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q,Sj) = v] \\ \exists v \mathcal{F}(\vec{x},Sj,v) \\ \exists v \mathcal{F}(\vec{x},Sj,v) \\ \exists v \mathcal{F}(\vec{x},Sj,v) \\ \exists v \mathcal{F}(\vec{x},Sj,v) \rightarrow \exists v \mathcal{F}(\vec{x},Sj,v) \\ \exists v \mathcal{F}(\vec{x},y,v) \rightarrow \exists v \mathcal{F}(\vec{x},Sj,v) \\ \exists v \mathcal{F}(\vec{x},y,v) \rightarrow \exists v \mathcal{F}(\vec{x},Sy,v)] \\ \exists v \mathcal{F}(\vec{x},y,v) \rightarrow \exists v \mathcal{F}(\vec{x},Sy,v) \\ \exists v \mathcal{F}(\vec{x},y,v) \rightarrow \exists v \mathcal{F}(\vec{x},Sy,v)] \\ \exists v \mathcal{F}(\vec{x},y,v) \rightarrow \exists v \mathcal{F}(\vec{x},y,v) \rightarrow \exists v \mathcal{F}(\vec{x},Sy,v)] \\ \exists v \mathcal{F}(\vec{x},y,v) \rightarrow \exists v \mathcal{F}(\vec{x},Sy,v) \rightarrow \exists v \mathcal{F}(\vec{x},Sy,v)] \\ \exists v \mathcal{F}(\vec{x},y,v) \rightarrow \forall v \mathcal{F}(\vec{x},y,v) \rightarrow \exists v \mathcal{F}(\vec{x},y,v) \rightarrow$ | $13,26,27 \land I$ $28 \exists I$ $29 abv$ $7,8-30 \exists E$ $3,4-31 \exists E$ $2-32 \rightarrow I$ $33 \forall I$ $1 \geq 24 bV$ |
| 55. [ JUS (A, Y, U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,34 111                                                                                                                            |

From the assumption, there are a, b such that the  $\beta$ -function has the right features for every i < j. With T13.30 there are c, d such that the  $\beta$ -function has the right features for i < Sj. The derivation establishes that this is so and generalizes.

This completes the demonstration of T13.21! So for any friendly recursive function  $r(\vec{x})$  and original formula  $\mathcal{R}(\vec{x}, v)$  by which it is expressed and captured, PA defines a function  $r(\vec{x})$  such that PA  $\vdash v = r(\vec{x}) \leftrightarrow \mathcal{R}(\vec{x}, v)$ . In particular, then, PA

666

defines functions corresponding to all the primitive recursive functions from chapter 12.

In addition, say a recursive relation is *friendly* iff it has a friendly characteristic function. Then as a simple corollary, PA defines relations corresponding to each friendly recursive relation, equivalent to the original formulas used to express them.

T13.32. For any friendly recursive relation  $R(\vec{x})$  with characteristic function  $ch_R(\vec{x})$ , PA defines a relation  $\mathbb{R}(\vec{x})$  such that PA  $\vdash \mathbb{R}(\vec{x}) \leftrightarrow ch_R(\vec{x}) = \emptyset$ . As a simple corollary, where  $R(\vec{x})$  is originally captured by  $\mathcal{R}(\vec{x}, \emptyset)$ , PA  $\vdash \mathbb{R}(\vec{x}) \leftrightarrow \mathcal{R}(\vec{x}, \emptyset)$ .

Suppose a friendly recursive relation R has recursive characteristic function  $ch_{R}(\vec{x})$ . Since R is friendly, it has a friendly characteristic function that is defined in PA. Set,

$$\mathsf{PA} \vdash \mathbb{R}(\vec{x}) \leftrightarrow ch_{\mathsf{R}}(\vec{x}) = \emptyset$$

Then PA defines  $\mathbb{R}(\vec{x})$ . In fact, however, for relations defined in chapter 12 we will want to define relations whose structure matches the structure of functions there defined. For this, it will be helpful to obtain the same result by an (informal) induction.

(a) Say an *atomic* recursive relation is one like EQ, LEQ or LESS whose characteristic function does not depend on the characteristic functions of other recursive relations. Then let,

$$PA \vdash \mathbb{R}(\vec{x}) \leftrightarrow ch_{B}(\vec{x}) = \emptyset$$

(b) Now suppose  $PA \vdash \mathbb{P}_1(\vec{x}) \Leftrightarrow ch_{P_1}(\vec{x}) = \emptyset$  and ... and  $PA \vdash \mathbb{P}_n(\vec{x}) \Leftrightarrow ch_{P_n}(\vec{x}) = \emptyset$ . And consider a recursive operator  $OP(P_1(\vec{x}) \dots P_n(\vec{x}))$  with characteristic function  $f(ch_{P_1}(\vec{x}) \dots ch_{P_n}(\vec{x}))$ . Since  $f(ch_{P_1}(\vec{x}) \dots ch_{P_n}(\vec{x}))$  is friendly, PA defines  $f(\vec{x})$ . Let  $c_P(\vec{x}) = \mu v[(\mathbb{P}(\vec{x}) \land v = \emptyset) \lor (\sim \mathbb{P}(\vec{x}) \land v = \overline{1})]$  and set,

$$\mathsf{PA} \vdash \mathcal{O}p(\mathcal{P}_1(\vec{x}) \dots \mathcal{P}_n(\vec{x})) \leftrightarrow f(c_{\mathsf{P}_1}(\vec{x}) \dots c_{\mathsf{P}_n}(\vec{x})) = \emptyset$$

From this axiom,  $\mathcal{O}p$  is defined by an expression including  $c_{P_1} \dots c_{P_n}$  of which  $\mathbb{P}_1 \dots \mathbb{P}_n$  are parts. So it works like the axiom from 13.3.1. But by T13.38 (which we shall see shortly), PA  $\vdash ch_P(\vec{x}) = \emptyset \vee ch_P(\vec{x}) = \overline{1}$ ; and it is easy to see, PA  $\vdash c_P(\vec{x}) = ch_P(\vec{x})$ ; so that PA  $\vdash \mathcal{O}p(\mathbb{P}_1(\vec{x}) \dots \mathbb{P}_n(\vec{x})) \leftrightarrow f(ch_{P_1}(\vec{x}) \dots ch_{P_n}(\vec{x})) = \emptyset$ . Now for any  $\mathsf{R}(\vec{x}) = \mathsf{OP}(\mathsf{P}_1(\vec{x}) \dots \mathsf{P}_n(\vec{x}))$  set,

$$\mathsf{PA} \vdash \mathbb{R}(\vec{x}) \leftrightarrow \mathcal{O}p(\mathbb{P}_1(\vec{x}) \dots \mathbb{P}_n(\vec{x}))$$

Then  $PA \vdash \mathbb{R}(\vec{x}) \leftrightarrow f(ch_{P_1}(\vec{x}) \dots ch_{P_n}(\vec{x})) = \emptyset$ ; which is to say,  $PA \vdash \mathbb{R}(\vec{x}) \leftrightarrow ch_{\mathbb{R}}(\vec{x}) = \emptyset$ .

(d) So for any primitive recursive relation defined in chapter 12,  $PA \vdash \mathbb{R}(\vec{x}) \Leftrightarrow ch_{R}(\vec{x}) = \emptyset$ . Further, with T13.21,  $PA \vdash v = ch_{R}(\vec{x}) \Leftrightarrow \mathcal{R}(\vec{x}, v)$ ; so  $PA \vdash \emptyset = ch_{R}(\vec{x}) \leftrightarrow \mathcal{R}(\vec{x}, \emptyset)$ ; so  $PA \vdash \mathbb{R}(\vec{x}) \leftrightarrow \mathcal{R}(\vec{x}, \emptyset)$ .

So for example, from part (a) we have, say,  $PA \vdash \mathbb{E}q(\vec{x}) \leftrightarrow ch_{EQ}(\vec{x}) = \emptyset$ . For part (b),  $DSJ(P(\vec{x}), Q(\vec{x}))$  has characteristic function times( $ch_P(\vec{x}), ch_Q(\vec{x})$ ); so we set  $PA \vdash \mathbb{D}sj(\mathbb{P}(\vec{x}), \mathcal{Q}(\vec{x})) \leftrightarrow times(ch_P(\vec{x}), ch_Q(\vec{x})) = \emptyset$ ; then where  $R(\vec{x}) = DSJ(P(\vec{x}), Q(\vec{x}))$ ,  $PA \vdash \mathbb{R}(\vec{x}) \leftrightarrow \mathbb{D}sj(\mathbb{P}(\vec{x}), \mathcal{Q}(\vec{x}))$ . Thus PA defines both functions and relations corresponding to the friendly recursive functions and relations, equivalent to the original formulas used to express and capture them.

- \*E13.14. Show (i) and (ii) for *Def*[-]. Then show T13.23 (a) and (o). Hard core: show all of the results in T13.23.
- \*E13.15. Show T13.24d and T13.24i. Hard core: show all of the results in T13.24.
- \*E13.16. Provide a complete demonstration of T13.25h including the justification for *d*. Hard core: Show all of the results from T13.25.
- \*E13.17. Show the condition for *Def*[*lcm*] and provide a demonstration for T13.26d. Hard core: show all of the results for *Def*[*lcm*], *Def*[*plm*] and T13.26.
- \*E13.18. Provide derivations to show each of [a] [e] to complete the derivation for T13.27.
- E13.19. Provide a derivation to show the condition of Def[maxs]. Hard core: Provide justifications for Def[maxs] and Def[maxp]; and show the results in T13.28.
- \*E13.20. Complete the demonstration for T13.29.

## **Font conventions**

At different stages, we employ different fonts for items of different sorts. For the most part, this is straightforward. Here we collect our conventions together.

1. Expressions of symbolic object languages are given in italics; these include the function (lowercase) and relation (first letter uppercase) symbols abbreviated or defined in Q and PA.

function, Relation

2. Objects from the semantic account are indicated by a sans-serif font; these include recursive functions (lowercase) and relations (small-caps) — and bold when special symbols are used.

function, RELATION,

3. The language for description of expressions in the formal object language uses script variables,

 $\mathcal{P}, p$ 

4. The language for description of metalinguistic expressions uses Fraktur variables,

A, a

5. Function and relation symbols introduced into PA from recursive functions and relations by T13.21 and T13.32 have their first character in a "hollow" blackboard bold font — these are not automatically equivalent to ones that may be described in (1), though we may set out to demonstrate equivalence.

function, Relation

- 6. Object expressions for computer languages are given in a typewriter font, Expression
- 7. In addition, for informal inductions italic i, j generally index objects arranged in series, but i, j when the objects are specifically the members of N.

\*E13.21. Show T13.30. Hard core: show the conditions for Def[h(i)].

\*E13.22. Complete the demonstration of T13.31 by showing the zero case.

E13.23. Give the demonstration to show PA  $\vdash \mathcal{O}p(\mathcal{P}_1(\vec{x}) \dots \mathcal{P}_n(\vec{x})) \leftrightarrow f(ch_{\mathsf{P}_1}(\vec{x}) \dots ch_{\mathsf{P}_n}(\vec{x})) = \emptyset$  from (b) of T13.32.

# **13.4** The Second Condition: $\Box(\mathcal{P} \to \mathcal{Q}) \to (\Box \mathcal{P} \to \Box \mathcal{Q})$

We turn now to demonstration of the second derivability condition. Again there is some background — after which demonstration of the condition itself is straightforward. The overall idea is simple: Suppose both  $\Box(\mathcal{P} \to \mathcal{Q})$  and  $\Box \mathcal{P}$ . Then there are j and k such that  $PRFT(j, \ulcorner\mathcal{P} \to \mathcal{Q} \urcorner)$  and  $PRFT(k, \ulcorner\mathcal{P} \urcorner)$ . Intuitively, then,  $I = j \star k \star 2^{\ulcorner\mathcal{Q} \urcorner}$ numbers a proof of  $\mathcal{Q}$  — for we prove  $\mathcal{P} \to \mathcal{Q}$  and  $\mathcal{P}$ , so that  $\mathcal{Q}$  follows immediately as the last line by MP. So  $PRFT(I, \ulcorner\mathcal{Q} \urcorner)$ , and  $\Box \mathcal{Q}$  follows from the assumptions. The task is to prove all of this in PA.

#### **13.4.1** Some Applications

Having shown that PA defines recursive functions, we require some results about them. To start, observe that plus(x, y), say, is defined by a complex expression through recursion, and so is not the same expression as our old friend x + y. Thus it is not obvious that our standard means for manipulation of + apply to *plus*. We could recover our ordinary results if we could show PA  $\vdash x + y = plus(x, y)$ . And similar comments apply to other ordinary functions and relations. Thus initially we seek to show that defined relations functions are equivalent to ones with which we are familiar. Again many details are shifted to exercises and/or answers to exercises.

**Equivalencies.** We begin with equivalences between functions and relations already defined in PA, and ones that result by T13.21 and T13.32. So we begin with functions and relations from  $\mathcal{L}_{NT}$  including  $S, +, \times, =, \leq, <$ , truth functional operators, bounded quantifiers and bounded minimization.

As a preliminary, we require a result that is fundamental to every case where a function is defined by recursion. As above let  $\mathcal{F}(\vec{x}, y, v)$  be,

$$\exists p \exists q [\beta(p,q,\emptyset) = g(\vec{x}) \land (\forall i < y) h(\vec{x},i,\beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q,y) = v]$$

and suppose  $PA \vdash v = f(\vec{x}, y) \leftrightarrow \mathcal{F}(\vec{x}, y, v)$  so that  $f(\vec{x}, y)$  is defined by recursion. Then the standard recursive conditions apply. That is,

- T13.33. Suppose  $f(\vec{x}, y)$  is defined by  $g(\vec{x})$  and  $h(\vec{x}, y, u)$  so that PA  $\vdash v = f(\vec{x}, y) \leftrightarrow \mathcal{F}(\vec{x}, y, v)$ . Then,
  - (a)  $PA \vdash f(\vec{x}, \emptyset) = g(\vec{x})$
  - (b)  $PA \vdash f(\vec{x}, S(y)) = h(\vec{x}, y, f(\vec{x}, y))$

Hint: (a) follows easily in 6 lines with  $\exists p \exists q [\beta(p,q,\emptyset) = g(\vec{x}) \land (\forall i < \emptyset) \mathbb{A}(\vec{x},i,\beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q,\emptyset) = f(\vec{x},\emptyset)]$ . For (b),

| 1.  | $\exists p \exists q [\beta(p,q,\emptyset) = g(\vec{x}) \land (\forall i < Sy)h(\vec{x},i,\beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q,Sy) = f(\vec{x},Sy)]$ | def                     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 2.  | $ \underline{\beta}(a,b,\emptyset) = g(\vec{x}) \land (\forall i < Sy) \hbar(\vec{x},i,\beta(a,b,i)) = \beta(a,b,Si) \land \beta(a,b,Sy) = f(\vec{x},Sy)$     | A ( $g$ 1 $\exists$ E)  |
| 3.  | $(\forall i < Sy)\hbar(\vec{x}, i, \beta(a, b, i)) = \beta(a, b, Si)$                                                                                         | 2 ∧E                    |
| 4.  | y < Sy                                                                                                                                                        | T13.13h                 |
| 5.  | $h(\vec{x}, y, \beta(a, b, y)) = \beta(a, b, Sy)$                                                                                                             | 3,4 (∀E)                |
| 6.  | $\beta(a,b,Sy) = f(\vec{x},Sy)$                                                                                                                               | 2 ^E                    |
| 7.  | $f(\vec{x}, Sy) = h(\vec{x}, y, \beta(a, b, y))$                                                                                                              | 5,6 =E                  |
| 8.  | $\beta(a,b,\emptyset) = g(\vec{x})$                                                                                                                           | 2 ^E                    |
| 9.  | $\left  \right  \left  j < y \right $                                                                                                                         | A ( $g$ ( $\forall$ I)) |
| 10. | j < Sy                                                                                                                                                        | 9 and T13.13h           |
| 11. | $\left  \begin{array}{c} h(\vec{x}, j, \beta(a, b, j)) = \beta(a, b, Sj) \end{array} \right $                                                                 | 3,10 (∀E)               |
| 12. | $(\forall i < y) \hbar(\vec{x}, i, \beta(a, b, i)) = \beta(a, b, Si)$                                                                                         | 9-11 (∀I)               |
| 13. | $\beta(a,b,y) = \beta(a,b,y)$                                                                                                                                 | =I                      |
| 14. | $\beta(a,b,\emptyset) = g(\vec{x}) \land (\forall i < y) \hbar(\vec{x},i,\beta(a,b,i)) = \beta(a,b,Si) \land \beta(a,b,y) = \beta(a,b,y)$                     | 8,12,13 ∧I              |
| 15. | $\exists p \exists q [\beta(p,q,\emptyset) = g(\vec{x}) \land (\forall i < y)h(\vec{x},i,\beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q,y) = \beta(a,b,y)]$    | 14 <b>∃</b> I           |
| 16. | $f(\vec{x}, y) = \beta(a, b, y)$                                                                                                                              | 15 def                  |
| 17. | $\int f(\vec{x}, Sy) = h(\vec{x}, y, f(\vec{x}, y))$                                                                                                          | 7,16 <b>=</b> E         |
| 18. | $f(\vec{x}, S(y)) = h(\vec{x}, y, f(\vec{x}, y))$                                                                                                             | 1,2-17 ∃E               |

The key stages of this argument are at (7) which has the result with  $\beta(a, b, y)$  where we want  $f(\vec{x}, y)$  and then (16) which shows they are one and the same.

From this theorem, our defined functions behave like ones we have seen before, with clauses for the basis and then for successor. This lets us manipulate the functions very much as before. The importance of this point will emerge shortly, in application to recursive cases.

With this theorem we are in a position to show that definitions of functions and relations from chapter 12 are "coordinate" with definitions in PA.

CF The definition of a recursive function is coordinate with its definition in PA iff,

- (i)  $f(\vec{x})$  is an initial function  $init(\vec{x})$  and  $f(\vec{x})$  is  $init(\vec{x})$
- (c)  $f(\vec{x}, \vec{y}, \vec{z})$  is defined from  $g(\vec{y})$  and  $h(\vec{x}, w, \vec{z})$  by composition so that  $f(\vec{x}, \vec{y}, \vec{z})$ =  $h(\vec{x}, g(\vec{y}), \vec{z})$ , and for coordinate  $g(\vec{x})$  and  $h(\vec{x}, w, \vec{z})$ , PA  $\vdash f(\vec{x}, \vec{y}, \vec{z})$  $\leftrightarrow h(\vec{x}, g(\vec{y}), \vec{z})$ .
- (r)  $f(\vec{x}, y)$  is defined from  $g(\vec{x})$  and  $h(\vec{x}, y, u)$  by recursion so that  $f(\vec{x}, 0) = g(\vec{x})$  and  $f(\vec{x}, Sy) = h(\vec{x}, y, f(\vec{x}, y))$  and for coordinate  $g(\vec{x})$  and  $h(\vec{x}, y, u)$ , PA  $\vdash f(\vec{x}, \emptyset) = g(\vec{x})$  and PA  $\vdash f(\vec{x}, Sy) = h(\vec{x}, y, f(\vec{x}, y))$ .
- (m)  $f(\vec{x}, y)$  is defined from  $g(\vec{x}, y)$  by friendly regular minimization so that  $f(\vec{x}) = \mu y[g(\vec{x}, y)]$  and for coordinate  $g(\vec{x}, y)$ , PA  $\vdash f(\vec{x}) = \mu y[g(\vec{x}, y)]$ .
- CR The definition of a recursive relation is coordinate with its definition in PA iff,
  - (a)  $R(\vec{x})$  is an atomic ATOM $(\vec{x})$  and  $R(\vec{x})$  is  $Atom(\vec{x})$ .
  - (o)  $\mathsf{R}(\vec{x})$  is defined from an operator OP and relations  $\mathsf{P}_1(\vec{x}) \dots \mathsf{P}_n(\vec{x})$  so that  $\mathsf{R}(\vec{x})$  is  $\mathsf{OP}(\mathsf{P}_1(\vec{x}) \dots \mathsf{P}_n(\vec{x}))$  and for coordinate  $\mathbb{P}_1(\vec{x}) \dots \mathbb{P}_n(\vec{x})$ ,  $\mathsf{PA} \vdash \mathbb{R}(\vec{x})$  $\leftrightarrow \mathcal{Op}(\mathbb{P}_1(\vec{x}) \dots \mathbb{P}_n(\vec{x}))$ .
- T13.34. (a) For any friendly recursive function  $r(\vec{x})$  and original formula  $\mathcal{R}(\vec{x}, v)$  by which it is expressed and captured, PA defines a coordinate function  $r(\vec{x})$  such that PA  $\vdash v = r(\vec{x}) \leftrightarrow \mathcal{R}(\vec{x}, v)$ . And (b) for any friendly recursive relation  $R(\vec{x})$  with characteristic function  $ch_R(\vec{x})$ , PA defines a coordinate relation  $\mathcal{R}(\vec{x})$ such that PA  $\vdash \mathcal{R}(\vec{x}) \leftrightarrow ch_R(\vec{x}) = \emptyset$ .

The argument is by simple review of arguments for T13.21 and T13.32 together with T13.33.

From this theorem we simply "write down" claims for defined functions and releations directly from the recursive definitions. So, for example from the definition for plus(x, y) on p. 554, PA  $\vdash plus(x, \emptyset) = idnt_1^l(x)$  and PA  $\vdash plus(x, Sy) =$  $suc(idnt_3^3(x, y, plus(x, y)))$ . Again, the defined symbol *plus* is not the same as the primitive symbol +. But now we are in a position to show that the functions are equivalent.

T13.35. The following result in PA.

(a)  $PA \vdash suc(x) = Sx$ 1.  $v = suc(x) \leftrightarrow Sx = v$  def suc 2.  $suc(x) = suc(x) \leftrightarrow Sx = suc(x)$   $1 \forall E$ 3. suc(x) = suc(x) = I4. suc(x) = Sx 2,3 = E

- (b)  $PA \vdash zero(x) = \emptyset$
- (c)  $PA \vdash idnt_k^j(x_1 \dots x_j) = x_k$
- (d)  $PA \vdash plus(x, y) = x + y$
- (e)  $PA \vdash times(x, y) = x \times y$

The first line of (a) is from T13.21. Arguments for (a) - (c) are very much the same and nearly trivial. Arguments for (d) and (e) are by IN. Here is the case for (d) as an example.

| 1.  | $gplus(x) = idnt_1^1(x)$                                             | def from plus, T13.34                           |
|-----|----------------------------------------------------------------------|-------------------------------------------------|
| 2.  | gplus(x) = x                                                         | 1 with T13.35c                                  |
| 3.  | $plus(x, \emptyset) = gplus(x)$                                      | T13.34                                          |
| 4.  | $plus(x, \emptyset) = x$                                             | 3,2 <b>=</b> E                                  |
| 5.  | $x + \emptyset = x$                                                  | <b>T6.</b> 41                                   |
| 6.  | $plus(x, \emptyset) = x + \emptyset$                                 | 4,5 <b>=</b> E                                  |
| 7.  | $\boxed{plus(x, j) = x + j}$                                         | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 8.  | plus(x, Sj) = lplus(x, j, plus(x, j))                                | T13.34                                          |
| 9.  | $lnplus(x, j, u) = suc(idnt_3^3(x, j, u))$                           | def from plus, T13.34                           |
| 10. | lnplus(x, j, u) = Su                                                 | 9 with T13.35a,c                                |
| 11. | Inplus(x, j, plus(x, j)) = S plus(x, j)                              | 10 ∀E                                           |
| 12. | plus(x, Sj) = S plus(x, j)                                           | 8,11 =E                                         |
| 13. | plus(x, Sj) = S(x + j)                                               | 12,7 <b>=</b> E                                 |
| 14. | S(x+j) = x + Sj                                                      | T6.42                                           |
| 15. | plus(x, Sj) = x + Sj                                                 | 13,14 = E                                       |
| 16. | $[plus(x, j) = x + j] \rightarrow [plus(x, Sj) = x + Sj]$            | 7-15 →I                                         |
| 17. | $\forall y([plus(x, y) = x + y] \rightarrow [plus(x, Sy) = x + Sy])$ | 16 ∀I                                           |
| 18. | plus(x, y) = x + y                                                   | 6,17 IN                                         |

Again, we simply write down the expressions on (1) and (9) with T13.34; and on (3) and (8) T13.34 makes the conditions for plus(x, y) work like the ones for x + y — so that with zero and inductive cases, the equivalence results by IN.

So this theorem establishes the equivalences we expect for the defined symbols *suc*, *zero*, *idnt*, *plus* and *times*. Again, +, × and the like are primitive symbols of  $\mathcal{L}_{NT}$  where *plus* and *times* are defined according to our induction from the corresponding recursive functions. Having shown that the functions are equivalent, however, we may manipulate the one with all the results we have achieved for the other.

Some additional results will be facilitated by a couple of auxiliary definitions. pred(y), sg(y) and csg(y) are defined directly, without appeal to recursive functions — but still behave as we expect.

Def[pred] PA  $\vdash$  pred(y) = y  $\div \overline{1}$ 

Since this is a composition of functions, immediate by T13.17.

 $Def[sg] PA \vdash v = sg(y) \leftrightarrow (y = \emptyset \land v = \emptyset) \lor (y > \emptyset \land v = S\emptyset)$ 

- (i)  $PA \vdash \exists v [(y = \emptyset \land v = \emptyset) \lor (y > \emptyset \land v = \overline{1})]$
- (ii) PA  $\vdash \forall u \forall v \{ [((y = \emptyset \land u = \emptyset) \lor (y > \emptyset \land u = \overline{1})) \land ((y = \emptyset \land v = \emptyset) \lor (y > \emptyset \land v = \overline{1})) ] \rightarrow u = v \}$

 $Def[csg] PA \vdash v = csg(y) \leftrightarrow (y = \emptyset \land v = \overline{1}) \lor (y > \emptyset \land v = \emptyset)$ 

- (i)  $PA \vdash \exists v [(y = \emptyset \land v = \overline{1}) \lor (y > \emptyset \land v = \emptyset)]$
- (ii)  $PA \vdash \forall u \forall v \{ [((y = \emptyset \land u = \overline{1}) \lor (y > \emptyset \land u = \emptyset)) \land ((y = \emptyset \land v = \overline{1}) \lor (y > \emptyset \land v = \emptyset)) ] \rightarrow u = v \}$

And some basic results on these notions,

T13.36. The following result in PA.

- (a)  $PA \vdash pred(\emptyset) = \emptyset$
- (b)  $PA \vdash pred(\overline{1}) = \emptyset$
- (c)  $PA \vdash y > \emptyset \rightarrow Spred(y) = y$
- (d)  $PA \vdash pred(Sy) = y$
- (e)  $PA \vdash y = \emptyset \leftrightarrow sg(y) = \emptyset$
- (f)  $PA \vdash y > \emptyset \leftrightarrow sg(y) = \overline{1}$
- (g)  $PA \vdash y = \emptyset \leftrightarrow csg(y) = \overline{1}$
- (h)  $PA \vdash y > \emptyset \Leftrightarrow csg(y) = \emptyset$

(a) - (d) recover from the definition some basic results for *pred*. (e) and (f) extract basic information for the behavior of *sg*; and then (g) and (h) for *csg*.

And given these notions in PA, we can build on them for another set of equivalents. \*T13.37. The following result in PA.

- (a)  $PA \vdash pred(y) = pred(y)$
- \*(b)  $PA \vdash subc(x, y) = x \div y$
- (c)  $PA \vdash absval(x y) = (x y) + (y x)$
- (d)  $PA \vdash sg(y) = sg(y)$
- (e)  $PA \vdash csg(y) = csg(y)$
- \*(f)  $PA \vdash \mathbb{E}q(x, y) \leftrightarrow x = y$
- (g)  $PA \vdash \mathbb{L}eq(x, y) \Leftrightarrow x \leq y$
- (h)  $PA \vdash Less(x, y) \leftrightarrow x < y$
- \*(i)  $PA \vdash Neg(\mathcal{P}(\vec{x})) \leftrightarrow \sim \mathcal{P}(\vec{x})$
- (j)  $\mathsf{PA} \vdash \mathbb{D}sj(\mathbb{P}(\vec{x}), \mathbb{Q}(\vec{y})) \leftrightarrow \mathbb{P}(\vec{x}) \lor \mathbb{Q}(\vec{y})$

Hints. (b): This works in the usual way up to the point in the show stage where you get subc(x, Sj) = pred(x - j); then it will take some work to show x - Sj = pred(x - j); for this begin with  $x \le j \lor x > j$  by T13.13q; the first case is straightforward; for the second, you will be able to show S(x - Sj) = Spred(x - j) and apply T6.40. (f): For this relation, you have  $\mathbb{E}q(x, y) \leftrightarrow sg(absval(x - y)) = \emptyset$  from the def EQ and T13.34; this gives  $\mathbb{E}q(x, y) \leftrightarrow [(x - y) + (y - x)] = \emptyset$ ; now for  $\leftrightarrow I$ , the case from x = y is easy; from  $\mathbb{E}q(x, y)$ , you have  $x \ge y \lor x < y$  from T13.13q; the cases are not hard and similar (since x < y gives  $y \ge x$ ). (i): This is straightforward with  $\mathbb{P}(\vec{x}) \leftrightarrow ch_{\mathsf{P}}(\vec{x}) = \emptyset$  and  $\mathbb{N}eg(\mathbb{P}(\vec{x})) \leftrightarrow csg(ch_{\mathsf{P}}(\vec{x})) = \emptyset$  from NEG with T13.34.

So this theorem delivers the equivalences we expect for *pred*, *subc*, *absval*, *sg*, *csg*, *Eq*, *Leq*, *Less*, *Neg*, and *Dsj*. Given this, we will typically move without comment from some PA  $\vdash$  *Dsj*(*A*, *B*) given from T13.34 to PA  $\vdash$  *A*  $\vee$  *B*. And similarly in other cases.

We pause to remark on a on a simple consequence for characteristic functions. Recall from (CF) that a characteristic function is (officially) of the sort  $sg(p(\vec{x}))$  so that, T13.38. For any recursive characteristic function  $ch_{\mathsf{R}}(\vec{x})$ ,  $\mathsf{PA} \vdash ch_{\mathsf{R}}(\vec{x}) = \emptyset \lor ch_{\mathsf{R}}(\vec{x}) = \overline{1}$ .

From (CF),  $ch_{\mathsf{R}}(\vec{x})$  is of the sort  $sg(p(\vec{x}))$ ; so with T13.34,  $\mathsf{PA} \vdash ch_{\mathsf{R}}(\vec{x}) = sg(p(\vec{x}))$ . The result is nearly immediate with  $\mathsf{PA} \vdash p(\vec{x}) = \emptyset \lor p(\vec{x}) > \emptyset$  and results for sg.

It is worth observing that this theorem, which depends on results for functions through T13.37d, is independent of any applications of T13.32 or T13.34b for relations. There is therefore no problem about appeal to T13.38 in the demonstration of T13.32.

Now reasoning for the bounded quantifiers, bounded minimization and a couple relations built on them.

\*T13.39. The following result in PA.

- \*(a)  $PA \vdash (\exists y \leq z) \mathbb{P}(\vec{x}, z, y) \leftrightarrow (\exists y \leq z) \mathbb{P}(\vec{x}, z, y)$
- (b)  $PA \vdash (\exists y < z) \mathbb{P}(\vec{x}, z, y) \leftrightarrow (\exists y < z) \mathbb{P}(\vec{x}, z, y)$
- (c)  $\text{PA} \vdash (\forall y \leq z) \mathbb{P}(\vec{x}, z, y) \leftrightarrow (\forall y \leq z) \mathbb{P}(\vec{x}, z, y)$
- (d)  $PA \vdash (\forall y < z) \mathbb{P}(\vec{x}, z, y) \leftrightarrow (\forall y < z) \mathbb{P}(\vec{x}, z, y)$
- \*(e)  $\text{PA} \vdash (\mu y \leq z) \mathbb{P}(\vec{x}, z, y) \leftrightarrow (\mu y \leq z) \mathbb{P}(\vec{x}, z, y)$
- (f)  $PA \vdash \mathbb{F}ctr(m, n) \leftrightarrow m|n$
- \*(g)  $PA \vdash Prime(n) \leftrightarrow Pr(n)$

Hints. (a): Recall from chapter 12 that  $\mathbf{s}(\vec{x}, z) = (\exists \mathbf{y} \leq z) \mathbf{P}(\vec{x}, z, y)$  is defined by means of a  $\mathbf{R}(\vec{x}, z, n)$  corresponding to  $(\exists \mathbf{y} \leq n) \mathbf{P}(\vec{x}, z, y)$ ; the main argument is to show by IN that  $\mathbf{PA} \vdash ch_{\mathbf{R}}(\vec{x}, z, n) = \emptyset \Leftrightarrow (\exists y \leq n) \mathbb{P}(\vec{x}, z, y)$ . You have  $\mathbb{P}(\vec{x}, z, y) \Leftrightarrow ch_{\mathbf{P}}(\vec{x}, z, y) = \emptyset$  from T13.32. For the zero case, you have  $ch_{\mathbf{R}}(\vec{x}, z, \emptyset) = gch_{\mathbf{R}}(\vec{x}, z)$ , and  $gch_{\mathbf{R}}(\vec{x}, z) = ch_{\mathbf{P}}(\vec{x}, z, \emptyset)$  from the definitions with T13.34; for the main reasoning, you have  $ch_{\mathbf{R}}(\vec{x}, z, Sj) =$  $\hbar ch_{\mathbf{R}}(\vec{x}, z, j, ch_{\mathbf{R}}(x, z, j))$ , and  $\hbar ch_{\mathbf{R}}(\vec{x}, z, j, u) = times[u, ch_{\mathbf{P}}(\vec{x}, z, suc(j))]$ from the definitions with T13.34; once you have finished the induction, it is a simple matter of applying  $ch_{\mathbf{S}}(\vec{x}, z) = ch_{\mathbf{R}}(\vec{x}, z, z)$  from the definition, and where where  $\mathbb{S}(\vec{x}, z)$  just abbreviates  $(\exists y \leq z) \mathbb{P}(\vec{x}, z, y)$ , applying  $\mathbb{S}(\vec{x}, z) \leftrightarrow ch_{\mathbf{S}}(\vec{x}, z) = \emptyset$  to get  $(\exists y \leq z) \mathbb{P}(\vec{x}, z, y) \leftrightarrow (\exists y \leq z) \mathbb{P}(\vec{x}, z, y)$ . (f) and (g): Given previous results, the left and right sides have nearly matching definitions except that the recursive side includes a bounded quantifier — so that you have to work to show the bound obtains for one direction of the biconditional.

The argument for T13.39e is particularly involved. Recall from chapter 12 that  $m(\vec{x}, z) = (\mu y \le z)P(\vec{x}, z, y)$  is defined by means of  $R(\vec{x}, z, n)$  corresponding to  $(\exists y \le n)P(\vec{x}, z, y)$  and  $q(\vec{x}, z, n)$  corresponding to  $(\mu y \le n)P(\vec{x}, z, y)$ . The main reasoning is by IN to show  $q(\vec{x}, z, n) = (\mu y \le n)P(\vec{x}, z, y)$ ; here are the main outlines of that part.

| 1.  | $\left  q(\vec{x}, z, \emptyset) = (\mu y \le \emptyset) \mathcal{P}(\vec{x}, z, y) \right $                                                                                               | [a]                    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 2.  | $ch_{R}(\vec{x}, z, j) = \emptyset \lor ch_{R}(\vec{x}, z, j) = \overline{1}$                                                                                                              | T13.38                 |
| 3.  | $ch_{R}(\vec{x}, z, j) = \emptyset \leftrightarrow (\exists y \leq j) \mathbb{P}(x, z, y)$                                                                                                 | from T13.39a           |
| 4.  | $q(\vec{x}, z, Sj) = hq(\vec{x}, z, j, q(\vec{x}, z, j))$                                                                                                                                  | T13.33b                |
| 5.  | $hq(\vec{x}, z, j, u) = plus(u, ch_{R}(\vec{x}, z, j))$                                                                                                                                    | def from least, T13.34 |
| 6.  | $hq(\vec{x}, z, j, u) = u + ch_{R}(\vec{x}, z, j)$                                                                                                                                         | 5 T13.35d              |
| 7.  | $hq(\vec{x}, z, j, q(\vec{x}, z, j)) = q(\vec{x}, z, j) + ch_{R}(\vec{x}, z, j)$                                                                                                           | 6 ∀E                   |
| 8.  | $q(\vec{x}, z, Sj) = q(\vec{x}, z, j) + ch_{R}(\vec{x}, z, j)$                                                                                                                             | 4,7 <b>=</b> E         |
| 9.  | $ \underline{q}(\vec{x}, z, j) = (\mu y \le j) \mathbb{P}(\vec{x}, z, y) $                                                                                                                 | A $(g \rightarrow I)$  |
| 10. | $\left  a = q(\vec{x}, z, j) \right $                                                                                                                                                      | abv                    |
| 11. | $b = q(\vec{x}, z, Sj)$                                                                                                                                                                    | abv                    |
| 12. | $b = a + ch_{R}(\vec{x}, z, j)$                                                                                                                                                            | 8,10,11 =E             |
| 13. | $a = (\mu y \le j) \mathbb{P}(\vec{x}, z, y)$                                                                                                                                              | 9,10 =E                |
| 14. | $a = \mu y [y = j \lor \mathcal{P}(\vec{x}, z, y)]$                                                                                                                                        | 13 def                 |
| 15. | $  (\forall w < a)[w \neq j \land \sim \mathbb{P}(\vec{x}, z, w)]$                                                                                                                         | 14 T13.19c             |
| 16. | $a = j \vee \mathbb{P}(\vec{x}, z, a)$                                                                                                                                                     | 14 T13.19b             |
| 17. | a = j                                                                                                                                                                                      | A ( $g \ 16 \lor E$ )  |
| 18. | $\left  \right  \sim \mathbb{P}(\vec{x}, z, j) \vee \mathbb{P}(\vec{x}, z, j)$                                                                                                             | <b>T3.</b> 1           |
| 19. | $\left  \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                                                  | A ( $g \ 18 \lor E$ )  |
| 20. | $\left  \begin{array}{c} \\ \end{array} \right  \left[ b = Sj \lor \mathcal{P}(\vec{x}, z, b) \right] \land (\forall w < b) (w \neq Sj \land \sim \mathcal{P}(\vec{x}, z, w))$             | [b]                    |
| 21. | $\left  \begin{array}{c} \left  \right  \left  \mathcal{P}(\vec{x}, z, j) \right  \right $                                                                                                 | A ( $g18\vee E$ )      |
| 22. | $\left  \begin{array}{c} \\ \end{array} \right  \left  \left[ b = Sj \lor \mathbb{P}(\vec{x}, z, b) \right] \land (\forall w < b)(w \neq Sj \land \sim \mathbb{P}(\vec{x}, z, w)) \right.$ | [c]                    |
| 23. | $\left  \left[ b = Sj \lor \mathbb{P}(\vec{x}, z, b) \right] \land (\forall w < b)(w \neq Sj \land \sim \mathbb{P}(\vec{x}, z, w)) \right.$                                                | 18,19-20,21-22 ∨E      |
| 24. | $\left  \left  \mathbb{P}(\vec{x}, z, a) \right  \right $                                                                                                                                  | A ( $g \ 16 \lor E$ )  |
| 25. | $\left  \begin{array}{c} \left  \left[ b = Sj \lor \mathbb{P}(\vec{x}, z, b) \right] \land (\forall w < b)(w \neq Sj \land \sim \mathbb{P}(\vec{x}, z, w)) \right. \right. \right.$        | [d]                    |
| 26. | $  [b = Sj \lor \mathcal{P}(\vec{x}, z, b)] \land (\forall w < b)(w \neq Sj \land \sim \mathcal{P}(\vec{x}, z, w))$                                                                        | 16,17-23,24-25 ∨E      |
| 27. | $b = \mu y[y = Sj \lor \mathbb{P}(\vec{x}, z, j)]$                                                                                                                                         | 26 def $\mu$           |
| 28. | $b = (\mu y \le Sj) \mathbb{P}(\vec{x}, z, y)$                                                                                                                                             | 27 def                 |
| 29. | $\left  q(\vec{x}, z, Sj) = (\mu y \le Sj) \mathbb{P}(\vec{x}, z, y) \right $                                                                                                              | 28 abv                 |
| 30. | $[q(\vec{x}, z, j) = (\mu y \le j) \mathbb{P}(\vec{x}, z, y)] \rightarrow [q(\vec{x}, z, Sj) = (\mu y \le Sj) \mathbb{P}(\vec{x}, z, y)]$                                                  | 9-29 →I                |
| 31. | $ \forall n([q(\vec{x}, z, n) = (\mu y \le n) \mathbb{P}(\vec{x}, z, y)] \rightarrow [q(\vec{x}, z, Sn) = (\mu y \le Sn) \mathbb{P}(\vec{x}, z, y)] ) $                                    | 30 ∀I                  |
| 32. | $\left  q(\vec{x}, z, n) = (\mu y \le n) \mathbb{P}(\vec{x}, z, y) \right $                                                                                                                | 1,31 IN                |

Hints: The zero case (a) is straightforward with T13.20a; for (b) you will be

able to show that b = Sj; for (c) and (d) you will be able to show b = a. And the final result is nearly automatic from this.

T13.39 delivers the equivalences we expect for the bounded quantifiers, bounded minimization, factor and prime.

At this stage, we have defined in PA functions, relations and operators corresponding to all the recursive functions, relations and operators. And in simple cases we have established equivalences to functions, relations and operators already defined. Thus supposing T is a theory including PA, we are in a position simply to write down the following.

T13.40. The following are theorems of PA:

(a)  $PA \vdash Axiomadl(n) \leftrightarrow (\exists p \le n)(\exists q \le n)[Wff(p) \land Wff(q) \land n = cnd(p, cnd(q, p)]$ 

and similarly for the other axioms

- (b)  $PA \vdash Axiompa(n) \leftrightarrow Axiomad1(n) \lor \ldots \lor Axiomq1(n) \lor \ldots \lor Axiompa7(n)$
- (c)  $PA \vdash Mp(m, n, o) \leftrightarrow cnd(n, o) = m$
- (d)  $PA \vdash Gen(m, n) \leftrightarrow (\exists v \leq n) [Var(v) \land n = unv(v, m)]$
- (e)  $PA \vdash Icon(m, n, o) \leftrightarrow Mp(m, n, o) \lor (m = n \land Gen(n, o))$
- (f)  $PA \vdash Prft(m, n) \leftrightarrow exp(m, len(m) \div \overline{1}) = n \land m > \overline{1} \land (\forall k < len(m))[Axiomt(exp(m, k)) \lor (\exists i < k)(\exists j < k) Icon(exp(m, i), exp(m, j), exp(m, k))]$

These follow directly from our results with recursive definitions. So for example, the definition MP, with T13.34 gives us, say, PA  $\vdash Mp(m, n, o) \Leftrightarrow \mathbb{E}q(cnd(n, o), m)$ ; then with T13.37f, we arrive at (c). And similarly in other cases.

Where Mp, *cnd* and the like are defined relative to corresponding recursive functions, it is important that the *operators* in expressions above are the ordinary operators of  $\mathcal{L}_{NT}$ . Thus we shall be able to manipulate the expressions in the usual ways. We shall find these results useful for the following!

- E13.24. Produce derivations to show T13.33a and T13.35e. Hard core: show the remaining cases from T13.35.
- E13.25. Show (i) of the condition for *Def*[*pred*] and then T13.36c. Hard core: Show each of the conditions for *Def*[*pred*], *Def*[*sg*] and *Def*[*csg*] and all of the results in T13.36.

- \*E13.26. Show a, g and j from T13.37. Hard core: Demonstrate each of the results in T13.37.
- \*E13.27. Show T13.39a. Hard core: show T13.38 along with each of the results in T13.39.

**Further results.** T13.40 gives us functions in PA corresponding to all the ones from chapter 12. Now we require the ability to manipulate them. Thus we begin with some results for exponentiation, factorial and the like, and continue through to complex notions including Wff and *formsub*. At this stage, we are acquiring results, not by demonstrating equivalence to expressions already defined (since there are no such expressions already defined), but by showing them directly for symbols defined for the recursive functions.

\*T13.41. The following are theorems of PA.

- (a) (i)  $PA \vdash m^{\emptyset} = \overline{1}$ (ii)  $PA \vdash m^{Sn} = m^n \times m$
- (b)  $PA \vdash m^{\overline{1}} = m$
- (c)  $PA \vdash \overline{2}^{\overline{2}} = \overline{4}$
- (d)  $PA \vdash a > \emptyset \rightarrow \emptyset^a = \emptyset$
- (e)  $PA \vdash m^a \times m^b = m^{a+b}$
- (f)  $PA \vdash m \ge n \to m^a \ge n^a$
- (g)  $PA \vdash pred(m^b)|m^{a+b}$
- (h)  $PA \vdash (a > \emptyset \land m > \overline{1}) \rightarrow pred(m^{a+b}) \nmid m^b$
- (i)  $PA \vdash m > \emptyset \rightarrow m^a > \emptyset$
- (j)  $PA \vdash (m > \emptyset \land a \ge b) \to m^a \ge m^b$
- (k)  $PA \vdash (m > \overline{1} \land a > b) \rightarrow m^a > m^b$
- (1)  $PA \vdash a > \emptyset \rightarrow m^a \ge m$
- \*(m)  $PA \vdash m > \overline{1} \rightarrow a < m^a$

(n)  $PA \vdash m > \overline{1} \rightarrow (m^a = m^b \rightarrow a = b)$ 

Hints: (a) is from the definition of power and prior results. For (c) take a look at E6.35e. (e) uses IN on the value of b and (f) uses IN on a. (g) is straightforward with cases for  $m^b = \emptyset$  and  $m^b > \emptyset$ . (i), (j), (k) and (m) are by IN. For (n),  $a < b \lor a = b \lor b < a$ ; but the first and last are impossible.

(a) gives the recursive conditions from which the rest follow. Then (b) - (n) are basic results that should be accessible from ordinary arithmetic.

\*T13.42. The following are theorems of PA.

- (a) (i)  $PA \vdash fact(\emptyset) = \overline{1}$ (ii)  $PA \vdash fact(Sn) = fact(n) \times Sn$
- (b)  $PA \vdash fact(\overline{1}) = \overline{1}$
- (c)  $PA \vdash fact(n) > \emptyset$
- (d)  $PA \vdash (\forall y < n)y | fact(n)$
- \*(e)  $(\exists y \leq fact(n) + \overline{1})[n < y \land Pr(y)]$

Hints: (a) is from the definition of fact and prior results. (c) and (d) are straightforward by IN. Reasoning for (e) is like (G2) in the arithmetic for Gödel numbering reference once you realize that all the primes less than n are included in *fact*(n).

These are some basic results for factorial. Again (a) gives the recursive conditions from which the rest follow. (b) is a simple particular fact; and the result from (c) is obvious. (d) is a consequence of the way the factorial includes successors of all the numbers less than it. We will be able to take advantage of (e) immediately below.

\*T13.43. The following are theorems of PA.

- (a) (i)  $PA \vdash pi(\emptyset) = \overline{2}$ (ii)  $PA \vdash pi(Sn) = (\mu y \leq fact(pi(n)) + \overline{1})[pi(n) < y \land Pr(y)]$
- (b)  $(\exists y \leq fact(pi(n)) + \overline{1})[pi(n) < y \land Pr(y)]$
- (c)  $PA \vdash pi(Sn) = \mu y[pi(n) < y \land Pr(y)]$
- (d)  $PA \vdash pi(n) < pi(Sn) \land Pr(pi(Sn))$

- (e)  $PA \vdash (\forall w < pi(Sn)) \sim [pi(n) < w \land Pr(w)]$
- (f)  $PA \vdash Pr(pi(n))$
- (g)  $PA \vdash pi(n) > \overline{1}$
- (h)  $PA \vdash pi(n)^a > \emptyset$
- (i)  $PA \vdash a > \emptyset \rightarrow pi(n)^a > \overline{1}$
- (j)  $PA \vdash Spred(pi(n)^a) = pi(n)^a$
- (k)  $PA \vdash (\forall m < n) pi(m) < pi(n)$
- (1)  $\text{PA} \vdash (\forall m \leq n) Sm < pi(n)$
- \*(m)  $PA \vdash \forall y [Pr(y) \rightarrow \exists j pi(j) = y]$
- \*(n)  $PA \vdash m \neq n \rightarrow pred(pi(m)) \nmid pi(n)^a$
- (o) PA  $\vdash m \neq n \rightarrow pred(pi(m)^{Sb}) \nmid pi(n)^a$
- \*(p)  $PA \vdash [m \neq n \land pred(pi(m)^b)|(s \times pi(n)^a)] \rightarrow pred(pi(m)^b)|s$

Hints: (a) is from definition pi and prior results. (b) is from T13.42e; (c) applies T13.20.b; and then (d) and (e) are by T13.19(b) and (c). (f), (k) and (l) are simple inductions. (m) is by using IN on *i* to show  $(\forall y \le pi(i))[Pr(y) \rightarrow \exists j pi(j) = y]$ ; the result then follows easily with (l). Under the assumption for  $\rightarrow$ I, (n) is by IN on *a*. For (o) you will be able to show that if  $pred(pi(m)^{Sb})|pi(n)^a$  then  $pred(pi(m))|pi(n)^a$  and use (n). For (p) under the assumption for  $\rightarrow$ I you will be able to show  $i \le b \rightarrow pred(pi(m)^i)|s$  by induction on *i*; the result then follows easily with  $b \le b$ .

These are some basic results from prime sequences. (a) gives the basic recursive conditions. (b) is an existential result; then (c) extracts the successor condition from bounded to unbounded minimization; this allows application of the definition in (d) and (e). (f) - (j) are some simple consequences of the fact that pi(n) is prime. Then the primes are ordered (k). And (l) each prime is greater than the successor of its index. (m) every prime appears as some pi(j). And (n) - (p) echo results for factor except combined with primes and exponentiation.

(b) and then (c) - (e) are a first instance of a pattern we shall see repeatedly: Given a bounded condition  $a = (\mu x \le t)\mathcal{P}(x)$  of the sort that arises from a recursive definition, we show there exists some  $\mathcal{P}(x)$  less than or equal to the bound; this allows

application of T13.20.b to "extract" the bounded to an unbounded minimization, and then T13.19 to obtain  $\mathcal{P}(\alpha)$ ; this forms the basis for further results.

In order to manipulate *exp*, it will be convenient to introduce a function *ex*, that finds the least exponent x such that  $pi(i)^x$  does *not* divide Sn.

### $Def[ex] ex(n,i) = \mu x [pred(pi(i)^x) \nmid Sn]$

(i)  $PA \vdash \exists x [pred(pi(i)^x) \nmid Sn]$ 

| 1. | $pi(i) > \overline{1}$               | T13.43g   |
|----|--------------------------------------|-----------|
| 2. | $Sn < pi(i)^{Sn}$                    | 1 T13.41m |
| 3. | $Spred(pi(i)^{Sn}) = pi(i)^{Sn}$     | T13.43j   |
| 4. | $Sn < Spred(pi(i)^{Sn})$             | 2,3 =E    |
| 5. | $n < pred(pi(i)^{Sn})$               | 4 T13.13k |
| 6. | $pred(pi(i)^{Sn}) \nmid Sn$          | 5 T13.24i |
| 7. | $\exists x [pred(pi(i)^x) \nmid Sn]$ | 6 ∃I      |

\*T13.44. The following are theorems of PA.

(a) 
$$PA \vdash exp(n,i) = (\mu x \le n)[pred(pi(i)^x)|n \land pred(pi(i)^{x+1}) \nmid n]$$

(b)  $PA \vdash exp(\emptyset, i) = \emptyset$ 

\*(c) 
$$PA \vdash exp(Sn, i) = \mu x[pred(pi(i)^{x})|Sn \land pred(pi(i)^{x+1}) \nmid Sn]$$

- (d) PA  $\vdash pred(pi(i)^{exp(Sn,i)})|Sn \wedge pred(pi(i)^{exp(Sn,i)+\overline{1}}) \nmid Sn$
- (e)  $PA \vdash (\forall w < exp(Sn, i)) \sim [pred(pi(i)^w) | Sn \land pred(pi(i)^{w+1}) \nmid Sn]$
- (f)  $\text{PA} \vdash [pred(pi(i)^a | Sn \land pred(pi(i)^{a+\overline{1}} \nmid Sn] \rightarrow exp(Sn, i) = a$
- (g)  $PA \vdash exp(m, j) \leq m$
- (h)  $PA \vdash j \ge n \to exp(Sn, j) = \emptyset$
- (i)  $PA \vdash exp(pi(i)^p, i) = p$
- (j)  $PA \vdash i \neq j \rightarrow exp(pi(i)^p, j) = \emptyset$
- (k)  $PA \vdash pred(pi(i)) | Sm \leftrightarrow exp(Sm, i) \ge \overline{1}$
- \*(1)  $PA \vdash \exists q[pi(i)^{exp(Sn,i)} \times q = Sn \wedge pred(pi(i)) \nmid q \wedge \forall y(y \neq i \rightarrow exp(q, y)) = exp(Sn, y))]$

#### \*(m) $PA \vdash exp(Sm \times Sn, i) = exp(Sm, i) + exp(Sn, i)$

Hints: (a) is from definition exp and prior results. (c) is by  $PA \vdash (\exists x \leq Sn)[pred(pi(i)^x)|Sn \land pred(pi(i)^{x+\overline{1}}) \nmid Sn]$  and then T13.20b;  $ex(n,i) = \emptyset \lor ex(n,i) > \emptyset$ ; in the latter case, the trick is to generalize on the number prior to ex(n,i). (f) is by showing that  $a = \mu x[pred(pi(i)^x)|Sn \land pred(pi(i)^{x+\overline{1}}) \nmid Sn]$ . (l): from  $pred(pi(i)^{exp(Sn,i)})|Sn$  there is a *j* such that  $pi(i)^{exp(Sn,i)} \times j = Sn$ ; the hard part is to show  $k \neq i \rightarrow exp(j,k) = exp(Sn,k)$  — for this, it will be helpful to establish that *j* is a successor. (m): toward an application of T13.44f it will be easy to establish that  $pred(pi(i)^{exp(Sm,i)+exp(Sn,i)})|(Sm \times Sn)$ ; for the other conjunct, it will be helpful to begin with a couple applications of T13.44l.

(a) is from the definition. (b) is the standard result with bound  $\emptyset$ . (c) extracts the successor case from the bounded to an unbounded minimization; this allows application of the definition in (d) and (e). From (f) the reasoning goes the other way around: not only does the condition apply to the exponent, but if the condition applies to some a, then a is the exponent. Then (g) the exponent of some prime in the factorization of m cannot be greater than m; and (h) a prime whose index is greater than or equal to n does not divide into Sn. (i) and (j) make an obvious connection for the exponent of a prime, and (k) between exponent and factor. According (l) once you divide Sn by pi(i) exp(Sn, i) times you are left with a q such that pi(i) does not divide into it any more, and such that the exponents of all the other primes remain the same as in Sn. From (m) the  $i^{th}$  exponent of a product sums the  $i^{th}$  exponents of its factors.

\*T13.45. The following are theorems of PA.

- (a)  $\text{PA} \vdash len(n) = (\mu y \le n) (\forall z \le n) [z \ge y \to exp(n, z) = \emptyset]$
- (b)  $PA \vdash len(\emptyset) = \emptyset$
- (c)  $PA \vdash len(Sn) = \mu y (\forall z \le Sn)[z \ge y \to exp(Sn, z) = \emptyset]$
- (d)  $\text{PA} \vdash (\forall z \leq Sn)[z \geq len(Sn) \rightarrow exp(Sn, z) = \emptyset]$
- (e)  $PA \vdash (\forall w < len(Sn)) \sim (\forall z \le Sn)[z \ge w \rightarrow exp(Sn, z) = \emptyset]$
- (f)  $PA \vdash len(\overline{1}) = \emptyset$
- (g)  $PA \vdash len(m) > \emptyset \rightarrow m > \overline{1}$
- \*(h)  $PA \vdash exp(m, l) > \emptyset \rightarrow len(m) > l$

- (i)  $PA \vdash (\forall k > l)exp(Sm, k) = \emptyset \rightarrow len(Sm) \leq Sl$
- (j)  $PA \vdash m > \overline{1} \rightarrow len(m) > \emptyset$
- \*(k)  $PA \vdash p > \emptyset \rightarrow len(pi(i)^p) = Si$ 
  - (1)  $PA \vdash (\forall z \ge len(n))exp(n, z) = \emptyset$
- \*(m)  $PA \vdash len(n) = Sl \rightarrow exp(n, l) \ge \overline{1}$

Hints: (a) is from definition length and prior results. (c) follows with T13.44h and existentially generalizing on Sn itself. (f) is by application of (c). Under the assumption for  $\rightarrow$ I, (h) divides into cases for  $m = \emptyset$  and  $m > \emptyset$ ; for the latter, suppose  $len(m) \neq i$ ; then you will be able to make use of (d). (j) is straightforward with T13.25d and ultimately (h) above. For (k), begin with  $len(pi(i)^p) < Si \lor len(pi(i)^p) = Si \lor len(pi(i)^p) > Si$  by T13.13p; the first is easily eliminated with T13.45h; then, supposing  $len(pi(i)^p) > Si$ , you will be able to obtain a contradiction using T13.45e. (l): under the assumption  $a \ge len(n)$  for ( $\forall$ I), either  $n = \emptyset$  or  $n > \emptyset$ ; the first case is easy; for the second, there is some m such that n = Sm; your main reasoning will be to show  $exp(Sm, a) = \emptyset$ . (m): under the assumption for  $\rightarrow$ I, the case when  $n = \emptyset$  is impossible; so there is some m such that n = Sm; with this, suppose  $exp(Sm, l) \not\geq \overline{1}$ ; then you you will be able to show, contrary to your assumption that len(Sm) = l.

Again (a) is from the definition and (b) gives the standard result for bound  $\emptyset$ . (c) extracts the successor case from bounded to unbounded minimization; (d) and (e) then apply the definition. (f) is a simple particular result; and then (g) is an immediate consequence of (b) and (f). From (h) if an exponent of some prime in the factorization of *m* is greater than zero, that prime is involved in the factorization of *m*; (j) gives the biconditional from (g); (k) gives the length for a prime to any power; and from (l) primes  $\geq$  the length of *n* must all have exponent  $\emptyset$ . Length is set up so that it finds the first prime such that it and all the ones after have exponent zero; so (m) the prime prior to the length has exponent  $> \overline{1}$ .

For the rest of this section including results for concatenation to follow, it will be helpful to introduce a couple of auxiliary notions. First, exc(m, n, i) which (indirectly) takes the value of the  $i^{th}$  exponent in the concatenation of m and n.

$$PA \vdash exc(m, n, i) = (\mu y \le exp(m, i) + exp(n, i \doteq len(m)))$$
$$([i < len(m) \land y = exp(m, i)] \lor [i \ge len(m) \land y = exp(n, i \doteq len(m))])$$

Since the definition is by bounded minimization, no condition is required. The idea is simply to set y to one or the other of exp(m, i) or exp(n, i - len(m)) so that y takes the value of the  $i^{th}$  exponent in the concatenation of m and n. Then val(n, i) returns the product of the first i primes in the factorization of n.

 $PA \vdash val(n, \emptyset) = \overline{1}$  $PA \vdash val(n, Sy) = val(n, y) \times pi(y)^{exp(n, y)}$ 

Similarly  $val^*(m, n, i)$  is defined by recursion as follows.

 $PA \vdash val^*(m, n, \emptyset) = \overline{1}$  $PA \vdash val^*(m, n, Sy) = val^*(m, n, y) \times pi(y)^{exc(m, n, y)}$ 

So  $val^*(m, n, i)$  returns the product of the first *i* primes in the factorization of the concatenation of *m* and *n*. Here are some results for these notions. Let l = len(m) + len(n).

\*T13.46. The following are theorems of PA.

- (a)  $PA \vdash exc(m, n, i) = \mu y([i < len(m) \land y = exp(m, i)] \lor [i \ge len(m) \land y = exp(n, i len(m))])$
- (b)  $PA \vdash i < len(m) \rightarrow exc(m, n, i) = exp(m, i)$
- (c)  $PA \vdash i \ge len(m) \rightarrow exc(m, n, i) = exp(n, i len(m))$
- (d)  $PA \vdash val^*(m, n, i) > \emptyset$
- \*(e)  $PA \vdash (\forall i \geq a) pred(pi(i)) \nmid val^*(m, n, a)$
- \*(f)  $PA \vdash (\forall j < i)exp(val^*(m, n, i), j) = exc(m, n, j)$
- \*(g)  $PA \vdash (\forall i < len(m))[exp(val^*(m, n, l), i) = exp(m, i)] \land$  $(\forall i < len(n))[exp(val^*(m, n, l), i + len(m)) = exp(n, i)]$
- \*(h)  $PA \vdash [pi(l)^{m+n}]^l \ge val^*(m, n, l)$ 
  - (i)  $PA \vdash val(m, i) > \emptyset$
  - (j)  $PA \vdash len(val(a, j)) \leq j$
- (k)  $PA \vdash len(val(a, j)) \leq len(a)$
- (1)  $PA \vdash (\forall i < k)exp(m, i) = exp(val(m, k), i)$
- (m)  $\text{PA} \vdash (\forall i < k) exp(a, i) = exp(b, i) \rightarrow val(a, k) = val(b, k)$

- \*(n)  $x \ge len(Sn) \to val(Sn, x) = Sn$ corollary: PA  $\vdash val(Sn, len(Sn)) = Sn$
- \*(o)  $\text{PA} \vdash [len(n) \le q \land (\forall k < len(n))exp(n,k) \le r] \rightarrow [pi(q)^r]^q \ge val(n, len(n))$ Hints: (e) is by IN on a. (f) is by IN on i; in the show under  $(\forall j <$  $i)exp(val^*(m, n, i), j) = exc(m, n, j)$  and a < Si you will have separate cases for a < i and a = i. (g) is straightforward with applications of (f), (b) and (c). For (h) you may obtain  $i < l \rightarrow [pi(l)^{m+n}]^i > val^*(m, n, i)$  by induction on *i*; in the show, the main task is to obtain exc(m, n, i) < m + n; the result then follows with previously established inequalities. (j) is easy with a result like (e). For (n) you will be able to show  $\forall x \forall n [len(Sn) <$  $x \rightarrow val(Sn, x) = Sn$  by induction on x: the  $\emptyset$ -case is straightforward; then under the inductive assumption with  $len(Sa) \leq Sx$  for  $\rightarrow I$  you have  $len(Sa) \leq x \vee len(Sa) = Sx$ ; the first case is straightforward; the second is an extended argument — you will be able to apply T13.441 to obtain an Sr whose prime factorization is like that of Sa but without pi(x); show that  $len(Sr) \leq x$  so that from the assumption, val(Sr, x) = Sr; then val(Sa, Sx) = Sa is straightforward. For (o) under the assumption for  $\rightarrow I$ , you will be able to get  $i \leq q \rightarrow [pi(q)^r]^i \geq val(n, i)$  by IN.

(a) extracts *exc* from the bounded to unbounded minimization; (b) and (c) apply the definition. (d) is obvious. (e) results because  $val^*(m, n, a)$  is a product of primes prior to pi(a) so that greater primes do not divide it. Then (f) the exponents in  $val^*$  are like the exponents in *exc*. This gives us (g) that the exponents in  $val^*$  are like the exponents in *m* and *n*. But (h)  $val^*$  is constructed so that an induction enables a natural comparison of exponents. Then (m) - (o) are related results for *val*.

In cases to follow, the comparison of exponents from (h) and the closely related (o) will be crucial for finding bounds and so extracting results from bounded minimization.

We are now ready for some results about concatenation. Say m \* n is the defined correlate to m \* n and as above l = len(m) + len(n).

\*T13.47. The following are theorems of PA.

(a) (i)  $PA \vdash m * n = (\mu x \leq B_{m,n})[x \geq \overline{1} \land (\forall i < len(m))\{exp(x,i) = exp(m,i)\} \land (\forall i < len(n))\{exp(x,i+len(m)) = exp(n,i)\}]$ (ii)  $PA \vdash B_{m,n} = [pi(l)^{m+n}]^l$ 

- (b)  $PA \vdash m * n = \mu x [x \ge \overline{1} \land (\forall i < len(m)) \{ exp(x, i) = exp(m, i) \} \land (\forall i < len(n)) \{ exp(x, i + len(m)) = exp(n, i) \} ]$
- (c)  $PA \vdash m * n \ge \overline{1} \land (\forall i < len(m)) \{ exp(m * n, i) = exp(m, i) \} \land (\forall i < len(n)) \{ exp(m * n, i + len(m)) = exp(n, i) \}$
- (d)  $PA \vdash (\forall w < m * n) \sim [w \ge \overline{1} \land (\forall i < len(m)) \{exp(w, i) = exp(m, i)\} \land (\forall i < len(n)) \{exp(w, i + len(m)) = exp(n, i)\}]$
- \*(e)  $PA \vdash len(m * n) \geq l$
- \*(f)  $PA \vdash len(m * n) = l$
- (g)  $PA \vdash exp(m * n, i + len(m)) = exp(n, i)$
- (h)  $PA \vdash (a * b) * c = a * (b * c)$
- (i)  $PA \vdash n \leq \overline{1} \rightarrow Sm * n = Sm$
- (j)  $PA \vdash n \le \overline{1} \to n * Sm = Sm$
- (k)  $PA \vdash (len(c) = len(d) \land Sa * c = Sb * d) \rightarrow Sa = Sb$ corollary:  $PA \vdash Sa * c = Sb * c \rightarrow Sa = Sb$
- (1)  $PA \vdash (len(c) = len(d) \land c * Sa = d * Sb) \rightarrow Sa = Sb$ corolary:  $PA \vdash c * Sa = c * Sb \rightarrow Sa = Sb$
- \*(m)  $PA \vdash val(Sm * Sn, a) = val(Sm, a) * val(Sn, a len(Sm))$ 
  - (n)  $PA \vdash (\forall y \leq len(n))[val(m * n, y + len(m)) \geq val(m, len(m))]$ corollary:  $PA \vdash m * n \geq m$
  - (o)  $PA \vdash (\forall y \leq len(n))[val(m * n, y + len(m)) \geq val(n, y)]$ corollary:  $PA \vdash m * n \geq n$

Hints: (a) is from the definition concatenation with prior results. (b) uses T13.46h. (e) divides into cases for  $len(n) = \emptyset$  and  $len(n) > \emptyset$ ; and within the first, again, cases for  $len(m) = \emptyset$  and  $len(m) > \emptyset$ . For (f) show  $len(m * n) \le l$  and apply (e); for the main argument (which will be long!) assume  $len(m * n) \le l$ ; then you will be able to apply T13.44l and show that the *q* so obtained contradicts T13.47d. (h) where l = len(a) + len(b) + len(c), you will be able to show  $(\forall i < l)exp((a * b) * c), i) = exp(a * (b * c), i)$ . (k)

and (l) are straightforward with T13.47c. For (m) you will be able to show  $(\forall i < a)exp(Sm * Sn, i) = exp(val(Sm, a) * val(Sn, a - len(Sm)), i)$  and so val(Sm \* Sn, a) = val(val(Sm, a) \* val(Sn, a - len(Sm)), a); and from this the result you want. (n) and (o) are by induction on y (with the bounded quantifier unabbreviated to the associated conditional).

(a) is from the definition. T13.46h enables us to extract m \* n from bounded to unbounded minimization to get (b) and then (c) and (d). (e) and (f) establish that the length of m \* n sums the lengths of m and n. (h) is an association result — and with this, we typically ignore parentheses in concatenations much as we have done for association with addition. (k) and (l) enable a sort of cancellation law for concatenation. (n) and (o) apply results from T13.46m and T13.46n for relative values of m \* n.

The idea for application of T13.46h to get (b) is the same as behind the intuitive account of the bound from chapter 12:  $pi(l)^{m+n}$  is greater than every term in the factorization of m \* n; so  $[pi(l)^{m+n}]^i$  remains greater than  $val^*(m, n, i)$ ; and  $val^*(m, n, l)$  is therefore both under the bound and satisfies the condition for m \* n— so that the existential condition is satisfied, and we may extract the bounded to an unbounded minimization. Once this is accomplished, we are most of the way home.

To manipulate Termseq it will be convenient to let,

 $\begin{array}{lll} A(s,x) &=& exp(s,x) = \lceil \emptyset \urcorner \lor \forall Var(exp(s,x)) \\ B(s,x) &=& (\exists j < x)exp(s,x) = \lceil S \urcorner * exp(s,j) \\ C(s,x) &=& (\exists i < x)(\exists j < x)exp(s,x) = \lceil + \rceil * exp(s,i) * exp(s,j) \\ D(s,x) &=& (\exists i < x)(\exists j < x)exp(s,x) = \lceil \times \rceil * exp(s,i) * exp(s,j) \end{array}$ 

\*T13.48. The following are theorems of PA.

- (a)  $PA \vdash \mathbb{T}ermseq(m,t) \Leftrightarrow exp(m, len(m) \div \overline{1}) = t \land m > \overline{1} \land (\forall k < len(m))[A(m,k) \lor B(m,k) \lor C(m,k) \lor D(m,k)]$
- (b) (i)  $PA \vdash Term(t) \Leftrightarrow (\exists x \leq B_t) Termseq(x, t)$ (ii)  $PA \vdash B_t = [pi(len(t))^t]^{len(t)}$
- (c)  $PA \vdash Var(t) \Leftrightarrow (\exists x \leq t)(t = \overline{2}^{\overline{23} + \overline{2}x})$
- (d)  $PA \vdash Var(t) \rightarrow len(t) = \overline{1}$
- (e)  $PA \vdash \mathbb{T}ermseq(m, t) \rightarrow (\forall k < len(m))exp(m, k) > \overline{1}$
- (f)  $PA \vdash \mathbb{T}erm(t) \rightarrow t > \overline{1}$

- (g)  $PA \vdash t = \lceil \emptyset \rceil \rightarrow \mathbb{T}ermseq(\overline{2}^t, t)$
- (h)  $PA \vdash Var(t) \rightarrow Termseq(\overline{2}^t, t)$
- \*(i)  $\mathbf{PA} \vdash \mathbb{T}ermseq(m,t) \rightarrow \mathbb{T}ermseq(m * \overline{2}^{\lceil S \rceil * t}, \lceil S \rceil * t)$
- (j)  $PA \vdash [Termseq(m,t) \land Termseq(n,q)] \rightarrow Termseq(m*n*\overline{2}^{\top+\neg*t*q}, \top+\neg*t*q)$ t\*q)
- (k)  $PA \vdash [Termseq(m,t) \land Termseq(n,q)] \rightarrow Termseq(m * n * \overline{2}^{\lceil \times \rceil} * t * q, \overline{\lceil \times \rceil} * t * q)$
- \*(1)  $PA \vdash \mathbb{T}ermseq(m, t) \rightarrow \forall x (\forall k < len(m)) \{ len(exp(m, k)) \le x \rightarrow \exists n [Termseq(n, exp(m, k)) \land (\forall i < len(n)) exp(n, i) \le exp(m, k) \land len(n) \le len(exp(m, k)) ] \}$
- (m)  $PA \vdash \mathbb{T}ermseq(m, t) \rightarrow \mathbb{T}erm(t)$
- \*(n)  $PA \vdash \mathbb{T}ermseq(m, t) \rightarrow (\forall i < len(m))\mathbb{T}erm(exp(m, i))$
- (o)  $PA \vdash \mathbb{T}erm(\overline{\ulcorner}\emptyset\urcorner)$
- (p)  $PA \vdash Var(v) \rightarrow [Term(v) \land Term(\overline{\ulcornerS} \lor v)]$

Hints: (e) is straightforward by an extended  $\vee E$ . (g) - (k) are disjunctive but straightforward. (l) is by induction on x: under the assumption  $\mathbb{T}ermseq(m, t)$  the basis is straightforward; then, under the inductive assumption along with a < len(m) for ( $\forall$ )I and  $len(exp(m, a)) \leq Sx$  for  $\rightarrow$ I, apply (a); the derivation is then a (long!) argument by cases where you will be able to apply (g)-(k). (m) follows easily with T13.460. For (n) under the assumption for  $\rightarrow$ I, you will be able to show  $\forall k[k < len(m) \rightarrow \exists x(\mathbb{T}ermseq(x, exp(m, k))]$  by strong induction; the result follows easily.

(a), (b) and (c) are from the definitions term sequence and term and variable with prior results. (d), (e) and (f) are simple results. (g) - (k) generate term sequences. (l) yields (m), that anything with a term sequence is a term; the rest follow from that.

From its definition,  $\mathbb{T}erm(t)$  does not immediately follow from  $\mathbb{T}ermseq(m, t)$  insofar as the sequence might build in extraneous terms not required for t — with the result that m is not less than  $B_n$ . The general idea for these theorems is that given a term sequence, there is a *standard* term sequence containing just the elements you would have included in a chapter 4 tree, adequate to yield  $\mathbb{T}erm(t)$ . Thus we move from the existence of a term sequence through (l) to a term sequence of the right sort,

and so to (m). Something new happens in (l) insofar as the induction is not on the length of m but on the length of its *exponents*.

We continue with some results for Formseq and Wff that are closely related to T13.48. Let,

\*T13.49. The following are theorems of PA.

- (a)  $PA \vdash Formseq(m, p) \Leftrightarrow exp(m, len(m) \div \overline{1}) = p \land m > \overline{1} \land (\forall k < len(m))[E(m,k) \lor F(m,k) \lor G(m,k) \lor H(p,m,k)]$
- (b) (i)  $PA \vdash Wff(p) \Leftrightarrow (\exists x \leq B_p) Formseq(x, p)$ (ii)  $PA \vdash B_p = [pi(len(p))^p]^{len(p)}$
- (c)  $PA \vdash Atomic(p) \leftrightarrow (\exists x \le p)(\exists y \le p)[Term(x) \land Term(y) \land p = \overline{\neg} * x * y$
- (d)  $\text{PA} \vdash \mathbb{F}ormseq(m, p) \rightarrow (\forall k < len(m))exp(m, k) > \overline{1}$
- (e)  $PA \vdash Wff(p) \rightarrow p > \overline{1}$
- (f)  $PA \vdash Atomic(p) \rightarrow Formseq(\overline{2}^p, p)$
- (g)  $PA \vdash Formseq(m, p) \rightarrow Formseq(m * \overline{2}^{meg(p)}, meg(p))$
- (h) PA  $\vdash [Formseq(m, p) \land Formseq(n, q)] \rightarrow Formseq(m * n * \overline{2}^{cnd(p,q)})$
- (i)  $\text{PA} \vdash [\operatorname{Formseq}(m, p) \land \operatorname{var}(v)] \rightarrow \operatorname{Formseq}(m * \overline{2}^{\operatorname{unv}(v, p)}, \operatorname{unv}(v, p))$
- (j)  $PA \vdash Formseq(m, p) \rightarrow \forall x (\forall k < len(m)) \{ len(exp(m, k)) \le x \rightarrow \exists n [Formseq(n, exp(m, k)) \land (\forall i < len(n)) exp(n, i) \le exp(m, k) \land len(n) \le len(exp(m, k)) ] \}$
- (k)  $PA \vdash Formseq(m, p) \rightarrow Wff(p)$
- (1)  $\text{PA} \vdash \mathbb{F}ormseq(m, p) \rightarrow (\forall i < len(m)) \mathbb{W}ff(exp(m, i))$
- (m)  $PA \vdash Atomic(p) \rightarrow Wff(p)$
- (n)  $PA \vdash Wff(p) \rightarrow Wff(meg(p))$

- (o)  $PA \vdash [Wff(p) \land Wff(q)] \rightarrow Wff(cnd(p,q))$
- (p)  $PA \vdash [Wff(p) \land Var(v)] \rightarrow Wff(unv(v, p))$

Hints: For each of (a) - (l), see the parallel theorems for T13.48. The others are nearly trivial.

Again, from its definition, Wff(p) does not immediately follow from Formseq(m, p) insofar as the sequence might build in extraneous elements not required for p — with the result that m is not less than  $B_p$ . And again the general idea is that given a formula sequence, there is a *standard* formula sequence containing just the elements you would have included in a chapter 4 tree, adequate to yield Wff(n). Thus we move from the existence of a formula sequence through (j) to a formula sequence of the required sort.

Continuing roughly in the order of chapter 12 we move on to some substitution results for terms and atomics. Let,

| I(m,n,k)         | = | $exp(m,k) = \overline{\lceil \emptyset \rceil} \wedge exp(n,k) = \overline{\lceil \emptyset \rceil}$                       |
|------------------|---|----------------------------------------------------------------------------------------------------------------------------|
| J(v,m,n,k)       | = | $Var(exp(m,k)) \land exp(m,k) \neq v \land exp(n,k) = exp(m,k)$                                                            |
| K(v, s, m, n, k) | = | $Var(exp(m,k)) \wedge exp(m,k) = v \wedge exp(n,k) = s$                                                                    |
| L(m,n,k)         | = | $(\exists i < k)[exp(m,k) = \overline{\lceil S \rceil} * exp(m,i) \land exp(n,k) = \overline{\lceil S \rceil} * exp(n,i)]$ |
| M(m,n,k)         | = | $(\exists i < k)(\exists j < k)[exp(m,k) = \overline{r+\gamma} * exp(m,i) * exp(m,j) \land$                                |
|                  |   | $exp(n,k) = \overline{r+r} * exp(n,i) * exp(n,j)]$                                                                         |
| N(m, n, k)       | = | $(\exists i < k)(\exists j < k)[exp(m,k) = \forall x \forall x exp(m,i) * exp(m,j) \land$                                  |
|                  |   | $exp(n,k) = \overline{r \times r} * exp(n,i) * exp(n,j)]$                                                                  |

\*T13.50. The following are theorems of PA.

- (a) PA  $\vdash \mathbb{T}subseq(m, n, t, v, s, u) \Leftrightarrow \mathbb{T}ermseq(m, t) \land \mathbb{l}en(m) = \mathbb{l}en(n) \land exp(n, \mathbb{l}en(n) \div \overline{1}) = u \land (\forall k < \mathbb{l}en(m))(I(m, n, k) \lor J(v, m, n, k) \lor K(v, s, m, n, k) \lor L(m, n, k) \lor M(m, n, k) \lor N(m, n, k))$
- (b) (i)  $PA \vdash \mathbb{T}ermsub(t, v, s, u) \Leftrightarrow (\exists x \leq X_t)(\exists y \leq Y_{t,u})\mathbb{T}subseq(x, y, t, v, s, u)$ (ii)  $PA \vdash X_t = [pi(len(t))^t]^{len(t)}$ (iii)  $PA \vdash Y_{t,u} = [pi(len(t))^u]^{len(t)}$
- (c)  $PA \vdash Atomsub(p, v, s, q) \leftrightarrow (\exists a \leq p)(\exists b \leq p)(\exists a' \leq q)(\exists b' \leq q)[Term(a) \land Term(b) \land p = \overline{\ulcorner=\urcorner} * a * b \land Termsub(a, v, s, a') \land Termsub(b, v, s, b') \land q = \overline{\ulcorner=\urcorner} * a' * b']$
- (d)  $PA \vdash [Term(s) \land Tsubseq(m, n, t, v, s, u)] \rightarrow (\forall j < len(n))Term(exp(n, j))$ corollary:  $PA \vdash [Term(s) \land Termsub(t, v, s, u)] \rightarrow Term(u)$

- (e)  $PA \vdash [Term(s) \land Atomsub(p, v, s, q)] \rightarrow Atomic(q)$
- (f)  $PA \vdash t = \overline{\ulcorner \emptyset \urcorner} \to \mathbb{T}subseq(\overline{2}^t, \overline{2}^t, t, v, s, t)$
- (g)  $\text{PA} \vdash (Var(t) \land t \neq v) \rightarrow Tsubseq(\overline{2}^t, \overline{2}^t, t, v, s, t)$
- (h)  $\text{PA} \vdash (\mathbb{V}ar(t) \land t = v) \rightarrow \mathbb{T}subseq(\overline{2}^t, \overline{2}^s, t, v, s, s)$
- \*(i)  $PA \vdash \mathbb{T}subseq(m, n, t, v, s, u) \rightarrow \mathbb{T}subseq(m * \overline{2}^{\lceil S \rceil * t}, n * \overline{2}^{\lceil S \rceil * u}, \lceil S \rceil * u)$
- (j)  $PA \vdash [\mathbb{T}subseq(m, n, t, v, s, u) \land \mathbb{T}subseq(m', n', t', v, s, u')] \rightarrow \mathbb{T}subseq(m*m'*2^{\overline{\Gamma+\neg}*t*t'}, n*n'*2^{\overline{\Gamma+\neg}*u*u'}, \overline{\Gamma+\neg}*t*t', v, s, \overline{\Gamma+\neg}*u*u')$
- (k)  $PA \vdash [\mathbb{T}subseq(m, n, t, v, s, u) \land \mathbb{T}subseq(m', n', t', v, s, u')] \rightarrow \mathbb{T}subseq(m*m'*\overline{2}^{\lceil \times \rceil * t * t'}, n * n'*\overline{2}^{\lceil \times \rceil * u * u'}, \overline{\lceil \times \rceil} * t * t', v, s, \overline{\lceil \times \rceil} * u * u')$
- \*(1)  $PA \vdash Tsubseq(m, n, t, v, s, u) \rightarrow Termsub(t, v, s, u)$
- \*(m)  $PA \vdash [Term(t) \land Term(s)] \rightarrow \exists u[Termsub(t, v, s, u) \land len(u) \leq len(t) \times len(s) \land (\forall k < len(u))exp(u, k) \leq t + s]$
- \*(n)  $PA \vdash [Atomic(p) \land Term(s)] \rightarrow \exists q [Atomsub(p, v, s, q) \land len(q) \le len(p) \times len(s) \land (\forall k < len(q))exp(q, k) \le p + s]$

Hints: For (1) let  $\mathcal{P}(m, n, v, s, k) = \exists a \exists b [Tsubseq(a, b, exp(m, k), v, s, exp(n, k)) \land len(a) \leq len(exp(m, k)) \land$   $(\forall i < len(a))(exp(a, i) \leq exp(m, k) \land exp(b, i) \leq exp(n, k))]$ ; then under the assumption for  $\rightarrow$ I, show  $\forall x (\forall k < len(m))[len(exp(m, k) \leq x \rightarrow \mathcal{P}]$  by IN; the result follows from this. Similarly, for (m) let  $\mathcal{P}(m, i, v, s) = \exists x \exists y \exists u [Tsubseq(x, y, exp(m, i), v, s, u) \land len(u) \leq len(exp(m, i)) \land len(s) \land (\forall k < len(u))exp(u, k) \leq exp(m, i) + s]$ ; under the assumption  $Term(t) \land Term(s)$  given Termseq(m, t) you will be able to show  $\forall i [i < len(m) \rightarrow \mathcal{P}]$  by strong induction on i (with extended disjunctions in both the basis and show); the result follows easily from this.

Some substitution results for formulas are closely related to the previous theorem. Let,

- \*T13.51. The following are theorems of PA.
  - (a) PA  $\vdash \mathbb{F}subseq(m, n, p, v, s, q) \leftrightarrow [\mathbb{F}ormseq(m, p) \land \mathbb{I}en(m) = \mathbb{I}en(n) \land exp(n, \mathbb{I}en(n) \div \overline{1}) = q \land (\forall k < \mathbb{I}en(m))(O(v, s, m, n, k) \lor P(m, n, k) \lor Q(m, n, k) \lor R(p, m, n, k) \lor S(p, m, n, k))]$
  - (b) (i)  $PA \vdash Formsub(p, v, s, q) \leftrightarrow (\exists x \leq X_p)(\exists y \leq Y_{p,q}) Fsubseq(x, y, p, v, s, q)$ (ii)  $PA \vdash X_p = [pi(len(p))^p]^{len(p)}$ (iii)  $PA \vdash Y_{p,q} = [pi(len(p))^q]^{len(p)}$
  - (c) (i)  $PA \vdash formusb(p, v, s) = (\mu q \le Z_{p,s}) \mathbb{F}ormsub(p, v, s, q)$ (ii)  $PA \vdash Z_{p,s} = [pi(len(p) \times len(s))^{p+s}]^{len(p) \times len(s)}$
  - (d)  $PA \vdash [Term(s) \land Fsubseq(m, n, p, v, s, q)] \rightarrow (\forall j < len(n)) Wff(exp(n, j))$ corollary:  $PA \vdash [Term(s) \land Formsub(p, v, s, q)] \rightarrow Wff(q)$
  - (e) PA  $\vdash [Atomic(p) \land Atomsub(p, v, s, q)] \rightarrow \mathbb{F}subseq(\overline{2}^p, \overline{2}^q, p, v, s, q)$
  - (f)  $\text{PA} \vdash \mathbb{F}subseq(m, n, p, v, s, q) \rightarrow \mathbb{F}subseq(m * \overline{2}^{neg(p)}, n * \overline{2}^{neg(q)}, neg(p), v, s, neg(q))$
  - (g)  $PA \vdash [\mathbb{F}subseq(m, n, p, v, s, q) \land \mathbb{F}subseq(m', n', p', v, s, q')] \rightarrow \mathbb{F}subseq(m*m' * \overline{2}^{cnd(p,p')}, n * n' * \overline{2}^{cnd(q,q')}, cnd(p, p'), v, s, cnd(q, q'))$
  - (h)  $PA \vdash [\mathbb{F}subseq(m, n, p, v, s, q) \land \mathbb{V}ar(u) \land u \neq v] \rightarrow \mathbb{F}subseq(m \ast \overline{2}^{unv(u, p)}, n \ast \overline{2}^{unv(u, q)}, unv(u, p), v, s, unv(u, q))$
  - (i)  $PA \vdash [\mathbb{F}subseq(m, n, p, v, s, q) \land \mathbb{V}ar(u) \land u = v] \rightarrow \mathbb{F}subseq(m * \overline{2}^{\mathbb{V}nv(u, p)}, n * \overline{2}^{\mathbb{V}nv(u, p)}, \mathbb{V}nv(u, p), v, s, \mathbb{V}nv(u, p))$
  - (j)  $PA \vdash \mathbb{F}subseq(m, n, p, v, s, q) \rightarrow \mathbb{F}ormsub(p, v, s, q)$
  - (k)  $PA \vdash [Wff(p) \land Term(s)] \rightarrow \exists q [Formsub(p, v, s, q) \land len(q) \le len(p) \times len(s) \land (\forall k < len(q))exp(q, k) \le p + s]$

- (1)  $\text{PA} \vdash [Wff(p) \land Term(s)] \rightarrow Formsub(p, v, s, formsub(p, v, s))$
- (m)  $PA \vdash [Wff(p) \land Term(s)] \rightarrow Wff(formsub(p, v, s))$

Hints: For (a) - (k) see the parallel results from T13.50. (l) follows easily with (k).

Finally we extend our results by means of a pair of matched theorems whose results are related to unique readability for terms and then formulas (see chapter 11, p. 522).

\*T13.52. The following result in PA.

First, as a preliminary to T13.52f and then T13.53g it will be helpful to show the following. We are thinking of  $c * a * c_1 * b * c_2$  as for example,  $\overline{\lceil \rceil} * a * \overline{\rceil} * b * \overline{\rceil}$ . Let,

```
l_1 = len(c)
              l_2 = len(c) + len(a)
              l_3 = \operatorname{len}(c) + \operatorname{len}(a) + \operatorname{len}(c_1)
              l_4 = \operatorname{len}(c) + \operatorname{len}(a) + \operatorname{len}(c_1) + \operatorname{len}(b)
              l = len(c) + len(a) + len(c_1) + len(b) + len(c_2)
*(a) a. |\forall u[(\mathcal{P}(u) \land len(u) \le x) \rightarrow (\forall k < len(u) \sim \mathcal{P}(val(u, k))]
            b. val(c, j) * val(a, j - l_1) * val(c_1, j - l_2) * val(b, j - l_3) * val(c_2, j - l_4) = c * d * c_1 * e * c_2
                                                                                                                                                                                Р
            c. \mathcal{P}(a) \land \mathcal{P}(b) \land \mathcal{P}(d) \land \mathcal{P}(e)
                                                                                                                                                                                 Р
            d. \forall v(\mathcal{P}(v) \to v > \overline{1})
                                                                                                                                                                                 Ρ
            e. |len(c)| = 1 \land c_1 > \emptyset \land c_2 > \emptyset \land len(c_1) \le 1 \land len(c_2) \le 1
                                                                                                                                                                                 Р
            f. j < l \land Sx \ge l
                                                                                                                                                                                 Р
            g. 🔟
```

So these premises are inconsistent. As a corollary, when  $c_1 = c_2 = \overline{1}$  their lengths go to zero and by T13.46n for any x,  $val(c_1, x) = val(c_2, x) = \overline{1}$  so that these terms drop out of the concatenations and the theorem reduces to a version where (b) is  $val(c, j) * val(a, j - l_1) * val(b, j - l_3) = c * d * e$ , and the only substantive conjunct of (e) is the first.

(b) 
$$PA \vdash [Term(a) \land Term(b)] \rightarrow [\overline{\ulcornerS} \urcorner * a = \overline{\ulcornerS} \urcorner * b \rightarrow a = b]$$

- (c)  $\text{PA} \vdash \mathbb{T}erm(\overline{\lceil S \rceil} * a) \rightarrow \exists r[\overline{\lceil S \rceil} * a = \overline{\lceil S \rceil} * r \land \mathbb{T}erm(r)]$
- (d)  $PA \vdash \mathbb{T}erm(\overline{r+r}*a) \rightarrow \exists r \exists s[\overline{r+r}*a = \overline{r+r}*r*s \land \mathbb{T}erm(r) \land \mathbb{T}erm(s)]$
- (e)  $PA \vdash \mathbb{T}erm(\overline{\lceil \times \rceil} * a) \rightarrow \exists r \exists s [\overline{\lceil \times \rceil} * a = \overline{\lceil \times \rceil} * r * s \land \mathbb{T}erm(r) \land \mathbb{T}erm(s)]$
- \*(f)  $PA \vdash Term(t) \rightarrow (\forall k < len(t)) \sim Term(val(t,k))$
- (g)  $\underline{PA} \vdash [\mathbb{T}erm(a) \land \mathbb{T}erm(b) \land \mathbb{T}erm(c) \land \mathbb{T}erm(d)] \rightarrow [\overline{\vdash} \neg \ast a \ast b = \overline{\vdash} \neg \ast c \ast d \rightarrow (a = c \land b = d)]$
- (h)  $PA \vdash [\mathbb{T}erm(a) \land \mathbb{T}erm(b) \land \mathbb{T}erm(c) \land \mathbb{T}erm(d)] \rightarrow [\overline{\ulcorner \times \urcorner} * a * b = \overline{\ulcorner \times \urcorner} * c * d \rightarrow (a = c \land b = d)]$
- (i)  $PA \vdash [Term(a) \land Term(b) \land Term(c) \land Term(d)] \rightarrow [\overline{\neg \neg} * a * b = \overline{\neg \neg} * c * d \rightarrow (a = c \land b = d)]$

Hints: For (a) suppose  $j \leq l_1$ , this leads to contradiction so that  $j \geq l_1$  and you can "pick off" the first conjunct from premise (b) to get  $val(a, j \div l_1) * val(c_1, j \div l_2) * val(b, j \div l_3) * val(c_2, j \div l_4) = d * c_1 * e * c_2$ ; suppose  $j < l_2$ , again this leads to contradiction so that  $j \geq l_2$ ; either  $len(d) < len(a) \lor len(a) = len(a) \lor len(a) \lor len(a)$ ; the first and last lead to contradiction and with the other you will be able to pick off another conjunct; continue to  $j \geq l$ , which contradicts the last premise. For (f) show  $\forall t[(Term(t) \land len(t) \le x) \rightarrow (\forall k < len(t)) \sim Term(val(t, k))]$  by induction on x; the zero case is easy; then under the inductive assumption with  $Term(a) \land len(a) \le Sx$  for  $\rightarrow$ I and j < len(a) for ( $\forall$ I) you will be able to show  $j > \emptyset$ ; then with Termseq(m, a) the argument is an extended disjunction from  $A(m, len(m) \div 1) \lor B(m, len(m) \div 1) \lor C(m, len(m) \div 1) \lor D(m, len(m) \div 1)$ ; you can assume Term(val(a, j)) and reach contradiction in each case.

Returning to our original results for unique readability, reasoning for (c) - (e) is like that for T11.3 - T11.5. Then (f) is like T11.6. And there are the parallel results for formulas.

\*T13.53. The following are theorems of PA.

- (a)  $\text{PA} \vdash [Wff(p) \land Wff(q)] \rightarrow [meg(p) = meg(q) \rightarrow p = q]$
- (b)  $PA \vdash [Wff(p)) \land Var(u) \land Wff(q) \land Var(v)] \rightarrow [unv(u, p) = unv(v, q) \rightarrow (u = v \land p = q)]$

(c) 
$$\text{PA} \vdash Wff(\overline{r=r} * a) \rightarrow \exists r \exists s [\overline{r=r} * a = \overline{r=r} * r * s \land Term(r) \land Term(s)]$$

- (d)  $\text{PA} \vdash Wff(\overline{\lceil \sim \rceil} * p) \rightarrow \exists r[\overline{\lceil \sim \rceil} * p = meg(r) \land Wff(r)]$
- (e)  $PA \vdash Wff(\overline{\lceil \rceil} * p) \rightarrow \exists r \exists s[\overline{\lceil \rceil} * p = cnd(r, s) \land Wff(r) \land Wff(s)]$
- (f)  $\mathsf{PA} \vdash \mathbb{W}ff(\overline{\ulcorner} \forall \urcorner * p) \to \exists w \exists r[\overline{\ulcorner} \forall \urcorner * p = \mathit{unv}(w, r) \land \mathbb{V}ar(w) \land \mathbb{W}ff(r)]$

- (g)  $PA \vdash Wff(p) \rightarrow (\forall k < len(p)) \sim Wff(val(p,k))$
- \*(h)  $PA \vdash [Wff(p)) \land Wff(q) \land Wff(a) \land Wff(b)] \rightarrow [cnd(p,q) = cnd(a,b) \rightarrow (p = a \land q = b)]$ 
  - (i)  $\text{PA} \vdash [Wff(cnd(p,q)) \land Wff(p)] \rightarrow Wff(q)$
- \*(j)  $PA \vdash Axiompa(p) \rightarrow Wff(p)$
- (k)  $PA \vdash \mathbb{P}rvpa(p) \rightarrow \mathbb{W}ff(p)$

Hint: Reasoning for (g) is like T13.52f. Reasoning for (i) is like the final uniqueness part of T11.3; the result is straightforward, starting with (e) — though with  $\overline{\phantom{r}} \rightarrow \overline{\phantom{r}} * q = \overline{\phantom{r}} \rightarrow \overline{\phantom{r}} * s$ , for an application of T13.47l, you will need to worry about the case  $q = \emptyset$ . Beginning with T13.40, (j) and (k) are not hard.

In the following we shall assume results like (j) - (k) for theories extending PA — though, of course, our prime example just *is* PA. Insofar as theories are recursively defined, some such results should be in the offing.

- \*E13.28. Show (e) and (j) from T13.41. Hard core: show each of the results from T13.41.
- \*E13.29. Show (d) and (e) from T13.42. Hard core: show each of the results from T13.42.
- \*E13.30. Show (k) and (l) from T13.43. Hard core: show each of the results from T13.43.
- \*E13.31. Show (c) and (f) from T13.44. Hard core: show each of the results from T13.44.
- \*E13.32. Show (f) and (l) from T13.45. Hard core: show each of the results from T13.45.
- \*E13.33. Show (a) and (b) from T13.46. Hard core: show each of the results from T13.46.

- \*E13.34. Show (b) and (e) from T13.47. Hard core: show each of the results from T13.47.
- \*E13.35. Show (j) and the unfinished cases for the *C* disjunct in (l) and (n). Hard core: show each of the results from T13.48.
- E13.36. Work (g) from T13.49 including at least the *A* and *B* cases. Hard core: show each of the results from T13.49.
- \*E13.37. Work the *K* and *M* cases from T13.501. Hard core: show each of the results from T13.50.
- E13.38. Work j from T13.51 including at least the *O* case. Hard core: show each of the results from T13.51.
- \*E13.39. Work the case marked "similarly" on line 115 of T13.52a and the *D* case from T13.52f. Hard core: show each of the results from T13.52.
- \*E13.40. Show (g) including at least the *A* case, and (k) from T13.53. Hard core: show each of the results from T13.53.

## 13.4.2 The result

After all our preparation, we are ready to turn to the second condition, that  $PA \vdash \Box(\mathcal{P} \to \mathcal{Q}) \to (\Box \mathcal{P} \to \Box \mathcal{Q})$ . Again, given both  $\Box(\mathcal{P} \to \mathcal{Q})$  and  $\Box \mathcal{P}$  the idea is that there are j and k such that PRFT(j,  $\Box \mathcal{P} \to \mathcal{Q} \Box$ ) and PRFT(k,  $\Box \mathcal{P} \Box$ ) so that  $I = j \star k \star 2^{\Box \mathcal{Q} \Box}$  numbers a proof of  $\mathcal{Q}$ . As it turns out, it will be convenient to have the result in a form with free variables,  $PA \vdash Prvt(cnd(p,q)) \to (Prvt(p) \to Prvt(q))$ ; the second condition then follows as an immediate corollary.

Observe that we have on the table expressions of the sort, +, *Plus* and *plus* — where the first is a primitive symbol of  $\mathcal{L}_{NT}$ , the second the original relation to capture the recursive function plus, and the last a function symbol defined from the recursive function. In view of demonstrated equivalences, we will tend to slide between them without notice. So, for example, given that  $\langle \langle 2, 2 \rangle, 4 \rangle \in \text{plus}$ , by capture PA  $\vdash Plus(\overline{2}, \overline{2}, \overline{4})$ ; and by demonstrated equivalences, PA  $\vdash \overline{2} + \overline{2} = \overline{4}$  and PA  $\vdash plus(\overline{2}, \overline{2}) = \overline{4}$ .

\*T13.54. PA  $\vdash Prvt(cnd(p,q)) \rightarrow (Prvt(p) \rightarrow Prvt(q))$ . Corollary: PA  $\vdash \Box(\mathcal{P} \rightarrow \mathcal{Q}) \rightarrow (\Box \mathcal{P} \rightarrow \Box \mathcal{Q})$ .

| 1.              | $\mathbb{P}rvt(cnd(p,q))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.              | Wff(cnd(p,q))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 T13.53k                                       |
| 3.              | $ \mathbb{P}rvt(p) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A $(g \rightarrow I)$                           |
| 4               | $W^{\mathcal{H}}(\mathbf{n})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 T12 52k                                       |
| 4.              | $W_{jj}(p)$<br>Wff(q)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 4 T12 53                                      |
| 6               | $\begin{bmatrix} v \\ y \\ y \end{bmatrix} \begin{pmatrix} q \\ r \\ q \end{pmatrix} = \begin{bmatrix} v \\ r \\ q \\ r \\ q \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T13 40c e                                       |
| 7               | $\frac{1}{2} \mathbb{P}_{rff}(v, cnd(n, a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 aby                                           |
| 8               | $= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{i} \left( \frac{1}{2}, \frac{1}{2} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 abv                                           |
| 9               | $\left  \frac{1}{Prft(i,cnd(n,a))} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $A(g, 7 \exists E)$                             |
| 10.             | $\left  \begin{array}{c} 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $A(g 8 \exists E)$                              |
| 11              | $    = \frac{1}{1 - i + k + \overline{2}^q}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dof                                             |
| 11.             | $   l = j * k * 2 $ $ avn(i) [low(i) \div \overline{1}] = cnd(n, q) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 T13 40f                                       |
| 12.             | $axp(j, ien(j) - 1) = cha(p,q)$ $axp(k \ lan(k) - 1) = p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 113.401<br>10 T13 40f                         |
| 13.             | $exp(k, ven(k) - 1) - p$ $exp(l \ len(i) + len(k)) - a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 113.401<br>11 T13 47c f                      |
| 15 <i>a</i>     | $\begin{bmatrix} \exp(i, \operatorname{ren}(j) + \operatorname{ren}(k)) - q \\ \operatorname{Icon}[\exp(i - 1], \exp(k - 1), $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6 12 13 14 = F                                  |
| 16              | $(\forall i < len(i))[exp(i, icn(i)) = exp(i, icn(i)) = i(i, icn(i))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11  T 13 47c                                    |
| 17              | $(\forall i < ven(k))[exp(i, i) = exp(j, i)]$<br>$(\forall i < ven(k))[exp(i, i) = exp(k, i)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11 T13.47c                                      |
| 18              | $exp(l, len(i) \rightarrow \overline{1}) = exp(i, len(i) \rightarrow \overline{1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $16 \text{ T}13.45\text{h}(\forall \text{E})$   |
| 19.             | exp(l, len(i)) + len(k) - 1 = exp(k, len(k) - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17 T13.45h (∀E)                                 |
| $20^b$          | $I_{con}[exp(l, len(i) \div \overline{1}), exp(l, len(i) + len(k) \div \overline{1}), exp(l, len(i) + len(k))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15.18.19 =E                                     |
| 21.             | $(\forall i < len(j))[Axiom(exp(l,i)) \lor (\exists m < i)(\exists n < i)Icon(exp(l,m), exp(l,i))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,16 T13.40f                                    |
| 22.             | $       (\forall i < len(k))[Axiom(exp(l, len(j) + i)) \lor$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |
|                 | $(\exists m < i)(\exists n < i) \mathbb{I}con(exp(l, \mathbb{I}en(j) + m), exp(l, \mathbb{I}en(j) + n), exp(l, \mathbb{I}en(j) + i))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,17 T13.40f                                   |
| 23 <sup>c</sup> | $(\forall i : len(j) \le i < len(j) + len(k))[Axiom(exp(l,i)) \lor$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |
|                 | $(\exists m < i)(\exists n < i) \mathbb{I}_{con}(exp(l, m), exp(l, n), exp(l, i))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | from 22                                         |
| 24.             | x < len(l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A $(g (\forall I))$                             |
| 25.             | $\left  \left  \left  \left  \left  \left[ x < len(i) \lor len(j) < x < len(i) + len(k) \lor x = len(j) + len(k) \right] \right  \right  \right  \leq 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.24 T13.47f                                   |
| 26.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A (g 25∨E)                                      |
| 27.             | $ \left  \begin{array}{c}   \\   \\   \\   \\   \\   \\   \\   \\   \\   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21,26 (∀E)                                      |
| 28.             | $\left  \left  \left  \left  \left  \frac{1}{len(j)} \le x < len(j) + len(k) \right  \right  \right  \le x \le len(j) + len(k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A ( <i>g</i> 25∨E)                              |
| 29.             | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23,28 (¥E)                                      |
| 30.             | x = len(j) + len(k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A ( <i>g</i> 25∨E)                              |
| 31              | $\left\  \left\  \left\  \left[ (\exists m < x)(\exists n < x) \right] \right\ _{con(exp(l m) exp(l n) exp(l x))} \right\ _{con(exp(l m) exp(l x))}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.30                                           |
| 32.             | $Axiom(exp(l, x)) \lor (\exists m < x)(\exists n < x) [con(exp(l, m), exp(l, n), exp(l, n), exp(l, x))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20,00<br>31 ∨I                                  |
| 33              | $\int \int dr \log(qr(l, r)) \vee (\exists m < r) (\exists n < r) \mathbb{I}_{con}(qr(l, m), qr(l, n), qr(l, r))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25.26-31 VE                                     |
| 21d             | $\left( \forall x \in I_{nn}(l) \setminus \{d_{nn}(u, nn)\} \setminus \{d_{nn}$ | 23,20 31 VE                                     |
| 34              | $(\forall x < ven(t))[Axtom(exp(t, x)) \lor (\exists m < x)(\exists n < x)]con(exp(t, m), exp(t, n), exp(t, x))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24-33 (VI)<br>5 T13 40e                         |
| 36              | $\left  \begin{array}{c} q > b \\ l_{en}(\overline{2}^{q}) - \overline{1} \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35 T13 45k                                      |
| 37              | $ \begin{bmatrix} len(l) > 1 \\ len(l) > 1 \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11 36 T13 47f                                   |
| 38.             | $l > \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37 T13.45g                                      |
| 39.             | $exp(l, len(l) \div \overline{1}) = q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14 T13.47f                                      |
| 40.             | $     exp(l, len(l) - \overline{1}) = q \land l > \overline{1} \land$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |
|                 | $(\forall x < len(l))[Axiom(exp(l, x)) \lor (\exists m < x)(\exists n < x) Icon(exp(l, m), exp(l, n), exp(l, x))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39,38,34 ∧I                                     |
| 41.             | $      \mathbb{P}rft(l,q)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40 T13.40f                                      |
| 42.             | $      \mathbb{P}_{rvt}(q)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41 ∃I                                           |
| 43.             | $\left  \right  \left  \frac{1}{Prvt(q)} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8,10-42 ∃E                                      |
| 44              | $\mathbb{P}_{rvt}(a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.9-43 E                                        |
| 15              | $\mathbb{P}_{rvt}(n) \to \mathbb{P}_{rvt}(a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3_44 →1                                         |
| 45.             | $  = m(p) + m(q)$ $\mathbb{D}_{m(q)}(p, q) \rightarrow \mathbb{D}_{m(q)}(p) \rightarrow \mathbb{D}_{m(q)}(p)^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 45 51                                         |
| 46°             | $\mathbb{L}\operatorname{rvi}(\operatorname{cna}(p,q)) \to [\mathbb{L}\operatorname{rvi}(p) \to \mathbb{L}\operatorname{rvi}(q)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1-45 →1                                         |

This derivation is long, and skips steps; but it should be enough for you to see how the argument works — and to fill in the details if you choose. First, at (a), under assumptions for  $\rightarrow$ I, there are derivations numbered *j*, *k* and a longer sequence numbered *l*. And the the last member of this longer sequence is an immediate consequence of last members from the derivations numbered *j* and *k*. At (b) the results from (12) are all applied to the sequence numbered *l*; so the last sentence in the longer sequence is an immediate consequence of its earlier members. At (c), the different fragments of the longer sequence have the character of a proof. And at (d), the whole sequence numbered *l* has the character of a proof. Finally, at (e) we observe that this longer sequence yields  $\mathbb{P}rvt(q)$  and discharge the assumptions for the result that  $\mathbb{P}rvt(cnd(p,q)) \rightarrow [\mathbb{P}rvt(p) \rightarrow \mathbb{P}rvt(q)]$  so that with T13.34  $PA \vdash Prvt(cnd(p,q)) \rightarrow (Prvt(p) \rightarrow Prvt(q))$ .

But then we have  $Prvt(cnd(\overline{\mathcal{P}}, \overline{\mathcal{Q}})) \to [Prvt(\overline{\mathcal{P}}) \to Prvt(\overline{\mathcal{Q}})]$  as an instance, and by capture,  $Prvt(\overline{\mathcal{P}} \to \mathcal{Q}) \to [Prvt(\overline{\mathcal{P}}) \to Prvt(\overline{\mathcal{Q}})]$  so that  $PA \vdash \Box(\mathcal{P} \to \mathcal{Q}) \to (\Box \mathcal{P} \to \Box \mathcal{Q})$ . Thus the second derivability condition is established.

\*E13.41. As a start to a complete demonstration of T13.54, provide a demonstration through part (c) that does not skip any steps. You may find it helpful to divide your demonstration into separate parts for (a), (b) and then for lines (21), (22) and (23). Hard core: complete the entire derivation.

# **13.5** The Third Condition: $\Box \mathcal{P} \rightarrow \Box \Box \mathcal{P}$

To show the third condition, that  $PA \vdash \Box \mathcal{P} \rightarrow \Box \Box \mathcal{P}$ , it is sufficient to show  $PA \vdash \mathcal{Q} \rightarrow \Box \mathcal{Q}$ . For when  $\mathcal{Q}$  is  $\Box \mathcal{P}$ , the result is immediate. Further,  $\Box \mathcal{P}$  is  $Prvt(\overline{\ulcorner \mathcal{P} \urcorner})$  and  $Prvt(\overline{\ulcorner \mathcal{P} \urcorner})$  is  $\Sigma_1$ . So it is sufficient to show that for any  $\Sigma_1$  sentence  $\mathcal{Q}$ ,  $PA \vdash \mathcal{Q} \rightarrow \Box \mathcal{Q}$ .

We begin with some additional applications. Then we focus what needs to be shown by an alternate characterization of  $\Sigma_1$  formulas, along with some results about substitutions. Finally we will be in a position to show the third condition.

### **13.5.1** More applications

Recall that where  $p = \lceil \mathcal{P} \rceil$ ,  $v = \lceil v \rceil$ , and  $s = \lceil s \rceil$ , formsub(p, v, s) returns the Gödel number of  $\mathcal{P}_s^v$ . In addition, num(n) returns the Gödel number of the standard

## Second theorems of chapter 13

- T13.21. For any friendly recursive function  $r(\vec{x})$  and original formula  $\mathcal{R}(\vec{x}, v)$  by which it is expressed and captured, PA defines a function  $r(\vec{x})$  such that PA  $\vdash v = r(\vec{x}) \leftrightarrow \mathcal{R}(\vec{x}, v)$ . This theorem depends on conditions for the recursion clause and so on T13.22 and T13.31.
- T13.22. Where  $\mathcal{F}(\vec{x}, y, v)$  is the formula for recursion,  $PA \vdash \forall m \forall n[(\mathcal{F}(\vec{x}, y, m) \land \mathcal{F}(\vec{x}, y, n)) \rightarrow m = n].$
- T13.23 T13.26. T13.23 Results for  $a \doteq b$ . T13.24 results for a|b. T13.25 results for Pr(a) and Rp(a). T13.26 results for lcm(a).
- T13.27. PA  $\vdash [(\forall i < k)(m(i) > \emptyset \land m(i) > h(i)) \land \forall i \forall j(i < j \land j < k \rightarrow Rp(Sm(i), Sm(j)))] \rightarrow \exists p(\forall i < k)rm(p, m(i)) = h(i)$  (CRT).
- T13.28 T13.30. T13.28 results for *maxp* and *maxs*. T13.29 PA  $\vdash \exists p \exists q (\forall i < k) \beta(p, q, i) = h(i)$ . T13.30 PA  $\vdash \exists p \exists q [(\forall i < k) \beta(p, q, i) = \beta(r, s, i) \land \beta(p, q, k) = n]$ .
- T13.31. PA  $\vdash \exists v \exists p \exists q [\beta(p,q,\emptyset) = g(\vec{x}) \land (\forall i < y)h(\vec{x},i,\beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q,y) = v].$
- T13.32. For any friendly recursive relation  $\mathsf{R}(\vec{x})$  with characteristic function  $\mathsf{ch}_{\mathsf{R}}(\vec{x}), \mathsf{PA} \vdash \mathbb{R}(\vec{x}) \Leftrightarrow ch_{\mathsf{R}}(\vec{x}) = \emptyset$ . And for a recursive operator  $\mathsf{OP}(\mathsf{P}_1(\vec{x}) \dots \mathsf{P}_n(\vec{x}))$  with characteristic function  $f(\mathsf{ch}_{\mathsf{P}_1}(\vec{x}) \dots \mathsf{ch}_{\mathsf{P}_n}(\vec{x})), \mathsf{PA} \vdash \mathcal{O}p(\mathbb{P}_1(\vec{x}) \dots \mathbb{P}_n(\vec{x})) \Leftrightarrow f(ch_{\mathsf{P}_1}(\vec{x}) \dots ch_{\mathsf{P}_n}(\vec{x})) = \emptyset$ . Corollary: where  $\mathsf{R}(\vec{x})$  is originally captured by  $\mathcal{R}(\vec{x}, \emptyset), \mathsf{PA} \vdash \mathbb{R}(\vec{x}) \leftrightarrow \mathcal{R}(\vec{x}, \emptyset)$ .
- T13.33. Suppose  $f(\vec{x}, y)$  is defined by  $g(\vec{x})$  and  $h(\vec{x}, y, u)$  so that PA  $\vdash v = f(\vec{x}, y) \leftrightarrow \mathcal{F}(\vec{x}, y, v)$ ; then, (i)  $f(\vec{x}, \emptyset) = g(\vec{x})$  and (ii)  $f(\vec{x}, S(y)) = h(\vec{x}, y, f(\vec{x}, y))$ .
- T13.34. (a) For any friendly recursive function  $r(\vec{x})$  and original formula  $\mathcal{R}(\vec{x}, v)$  by which it is expressed and captured, PA defines a coordinate function  $r(\vec{x})$  such that PA  $\vdash v =$  $r(\vec{x}) \leftrightarrow \mathcal{R}(\vec{x}, v)$ . And (b) for any friendly recursive relation  $R(\vec{x})$  with characteristic function  $ch_{\mathsf{R}}(\vec{x})$ , PA defines a coordinate relation  $\mathcal{R}(\vec{x})$  such that PA  $\vdash \mathcal{R}(\vec{x}) \leftrightarrow ch_{\mathsf{R}}(\vec{x}) = \emptyset$ .
- T13.35 T13.37. T13.35 equivalences for *suc*, *zero*, *idnt*<sup>J</sup><sub>k</sub>, *plus* and *times*. T13.36 results for *pred*, *sg* and *csg*. T13.37 Equivalences for *pred*, *subc*, *absval*, *sg*, *csg*, *Eq*, *Leq*, *Less*, *Neg*, and Dsj.
- T13.38. PA proves a characteristic function takes the value  $\emptyset$  or  $\overline{1}$ .
- T13.39. Equivalences for  $(\exists y \leq z), (\exists y < z), (\forall y \leq z), (\forall y < z), (\mu y \leq z), \mathbb{F}$ *ctr*, and  $\mathbb{P}$ *rime*.
- T13.40 T13.44. T13.40 first applications to recursive functions. T13.41 Results for  $m^a$ . T13.42 results for *fact*. T13.43 results for *pi*. T13.44 results for *exp*.
- T13.45 T13.51. T13.45 results for *len*. T13.46 results for *val*. T13.47 results for *m* \* *n*. T13.48 results for *Termseq*. T13.49 results for *Formseq*. T13.50 results for *Tsubseq*. T13.51 results for *Fsubseq*.

T13.52 - T13.53. T13.52 on unique readability. T13.53 results for Wff and Prvpa.

T13.54. PA  $\vdash \Box(\mathcal{P} \to \mathcal{Q}) \to (\Box \mathcal{P} \to \Box \mathcal{Q}).$  — D2

numeral for n, and gvar(n) is the Gödel number of variable  $x_n$ . So formsub(p, gvar(n), num(y)) is a function which returns the number of the formula that substitutes a numeral for the value (number) assigned to y into the place of  $x_n$ . So, for example, if y is assigned the value of 2, then formsub(p, gvar(n), num(y)) returns  $\lceil \mathcal{P}_2^{x_n} \rceil$ . And PA defines *formsub*(*p*, *gvar*(*n*), *mum*(*y*)). We require some results for these notions.

First, a pair of theorems with some results for substitutions into terms and then formulas.

T13.55. The following are theorems of PA.

- (a)  $PA \vdash \mathbb{F}ree_t(t, v) \leftrightarrow \sim \mathbb{T}ermsub(t, v, v \times \overline{4}, t)$
- (b)  $PA \vdash Var(v) \rightarrow Term(v \times \overline{4}) \land v \times \overline{4} \neq v$
- (c)  $PA \vdash exp(m,k) = \overline{\ulcorner} \emptyset \urcorner \rightarrow \sim [J(v,m,n,k) \lor K(v,s,m,n,k) \lor L(m,n,k) \lor M(m,n,k) \lor N(m,n,k)]$
- (d)  $PA \vdash [Var(exp(m,k)) \land exp(m,k) \neq v] \rightarrow \sim [I(m,n,k) \lor K(v,s,m,n,k) \lor L(m,n,k) \lor M(m,n,k) \lor N(m,n,k)]$
- (e)  $PA \vdash [Var(exp(m,k)) \land exp(m,k) = v] \rightarrow \sim [I(m,n,k) \lor J(v,m,n,k) \lor L(m,n,k) \lor M(m,n,k) \lor N(m,n,k)]$
- (f)  $PA \vdash exp(m,k) = \overline{\ulcornerS} \urcorner *a \rightarrow \sim [I(m,n,k) \lor J(v,m,n,k) \lor K(v,s,m,n,k) \lor M(m,n,k) \lor N(m,n,k)]$
- (g)  $PA \vdash exp(m,k) = \overline{\vdash} + \overline{\dashv} * a \rightarrow \sim [I(m,n,k) \lor J(v,m,n,k) \lor K(v,s,m,n,k) \lor L(m,n,k) \lor N(m,n,k)]$
- (h)  $PA \vdash exp(m,k) = \overline{\ulcorner \times \urcorner} * a \rightarrow \sim [I(m,n,k) \lor J(v,m,n,k) \lor K(v,s,m,n,k) \lor L(m,n,k) \lor M(m,n,k)]$
- \*(i)  $PA \vdash [Termsub(t, v, s, q) \land Termsub(t, v, s, r)] \rightarrow q = r$
- (j)  $\text{PA} \vdash [Atomsub(p, v, s, q) \land Atomsub(p, v, s, r)] \rightarrow q = r$
- (k)  $PA \vdash [Term(t) \land Term(s)] \rightarrow [\sim Free_t(t, v) \rightarrow Termsub(t, v, s, t)]$
- (1)  $\text{PA} \vdash \mathbb{T}erm(s) \rightarrow [Atomsub(p, v, v \times \overline{4}, p) \rightarrow Atomsub(p, v, s, p)]$
- (m)  $PA \vdash [Term(t) \land Var(v)] \rightarrow [(Free_t(t, v) \land Termsub(t, v, s, u)) \rightarrow s \leq u]$

\*(n)  $PA \vdash Var(v) \rightarrow [(\sim Atomsub(p, v, v \times \overline{4}, p) \land Atomsub(p, v, s, q)) \rightarrow s \leq q]$ 

Hints: (i) Under assumptions for  $\rightarrow$ I and ( $\exists$ E) you have  $\mathbb{T}subseq(m, n, t, v, s, q)$  and  $\mathbb{T}subseq(m', n', t, v, s, r)$ ; with this show  $\forall k[k < len(m) \rightarrow (\forall x < len(m'))(exp(m, k) = exp(m', x) \rightarrow exp(n, k) = exp(n', x))]$  by strong induction; the result follows easily from this. (k) Under assumptions for  $\rightarrow$ I and then  $\exists$ E, you have both  $\mathbb{T}subseq(m, n, t, v, v \times \overline{4}, t)$  and  $\mathbb{T}subseq(m', n', t, v, s, u)$  with goal t = u; by strong induction show  $\forall k[k < len(m) \rightarrow (\forall x < len(m'))(exp(m, k) = exp(m', k) \rightarrow (exp(m, k) = exp(n, k) \rightarrow exp(m', x) = exp(n', x)))]$ ; then the result follows easily. (m) Under assumptions for  $\rightarrow$ I and  $\exists$ E you have  $\mathbb{T}ermsub(m, n, t, v, v \times \overline{4}, r)$  and  $\mathbb{T}ermsub(m', n', t, v, s, u)$  where  $r \neq t$  with goal  $s \leq u$ ; by strong induction show  $\forall k(k < len(m) \rightarrow (\forall x < len(m'))[exp(m, k) = exp(m', x) \rightarrow (exp(m, k) \neq exp(n, k) \rightarrow s \leq exp(n'x))]$ ; the result follows.

- T13.56. The following are theorems of PA.
  - (a)  $PA \vdash \mathbb{F}ree_f(p, v) \leftrightarrow \sim \mathbb{F}ormsub(p, v, v \times \overline{4}, p)$
  - (b)  $PA \vdash Atomic(exp(m,k) \rightarrow \sim [P(m,n,k) \lor Q(m,n,k) \lor R(v, p, m, n, k) \lor S(v, p, m, n, k)]$
  - (c)  $PA \vdash exp(m,k) = \overline{\ulcorner \sim \urcorner} *a \rightarrow \sim [O(v,s,m,n,k) \lor Q(m,n,k) \lor R(v,p,m,n,k) \lor S(v,p,m,n,k)]$
  - (d)  $PA \vdash exp(m,k) = \overline{}(\neg *a \rightarrow \sim [O(v,s,m,n,k) \lor P(m,n,k) \lor R(v,p,m,n,k) \lor S(v,p,m,n,k)]$
  - (e)  $PA \vdash [Var(j) \land exp(m,k) = \overline{\ulcorner \forall \urcorner} * j * a \land j \neq v] \rightarrow \sim [O(v,s,m,n,k) \lor P(m,n,k) \lor Q(m,n,k) \lor S(v,p,m,n,k)]$
  - (f)  $PA \vdash [Var(j) \land exp(m,k) = \overline{\ulcorner \forall \urcorner} * j * a \land j = v] \rightarrow \sim [O(v,s,m,n,k) \lor P(m,n,k) \lor Q(m,n,k) \lor R(v,p,m,n,k)]$
  - (g)  $PA \vdash [Formsub(p, v, s, q) \land Formsub(p, v, s, r)] \rightarrow q = r$
  - (h)  $\text{PA} \vdash [Wff(p) \land Term(s)] \rightarrow [Formsub(p, v, s, q) \rightarrow formusb(p, v, s) = q]$
  - (i)  $PA \vdash [Wff(p) \land Term(s)] \rightarrow [\sim Free_f(p, v) \rightarrow formsub(p, v, s) = p]$ corollary: If x is not free in  $\mathcal{P}$ , then  $PA \vdash formsub(\overline{\ulcornerP\urcorner}, \overline{\ulcornerx\urcorner}, y) = \overline{\ulcornerP\urcorner}$

(j)  $PA \vdash [Wff(p) \land Term(s) \land Var(v)] \rightarrow [Free_f(p, v) \rightarrow s \leq formsub(p, v, s)]$ Hint: See the corresponding members of T13.55.

We are now positioned for some results related to Gen and A4. Let  $gvar(n) =_{def} 2^{23+2n}$  be the Gödel number of variable  $x_n$ , and numseq(n) be as follows.

 $PA \vdash numseq(\emptyset) = pi(\emptyset)^{mum(\emptyset)}$  $PA \vdash numseq(Sy) = numseq(y) \times pi(Sy)^{mum(Sy)}$ 

We shall be able to show that numseq(n) numbers a term sequence for mum(n). In addition let,

| T(m,k)           | = | Atomic(exp(m,k))                                                                                                       |
|------------------|---|------------------------------------------------------------------------------------------------------------------------|
| U(m,k)           | = | $(\exists j < k)[exp(m,k) = neg(exp(m,j))]$                                                                            |
| V(m,k)           | = | $(\exists i < k)(\exists j < k)[exp(m,k) = cnd(exp(m,i),exp(m,j))]$                                                    |
| W(u, v, m, k)    | = | $(\exists p \leq u)[Wff(p) \land exp(m,k) = unv(v,p)]$                                                                 |
| X(u, v, s, m, k) | = | $(\exists i < k)(\exists j \le u)[Var(j) \land j \ne v \land (\sim Free_t(s, j) \lor \sim Free_f(exp(m, i), v)) \land$ |
|                  |   | exp(m,k) = unv(j, exp(m,i))                                                                                            |

T13.57. The following are theorems of PA.

- (a)  $PA \vdash \mathbb{F} fseq(m, s, v, u) \leftrightarrow [exp(m, len(m) 1) = u \land m > \overline{1} \land (\forall k < len(m))(T(m, k) \lor U(m, k) \lor V(m, k) \lor W(u, v, m, k) \lor X(u, v, s, m, k))]$
- (b) (i)  $PA \vdash \mathbb{F}reefor(s, v, u) \Leftrightarrow (\exists x \leq B_u) \mathbb{F}fseq(x, s, v, u)$ (ii)  $PA \vdash B_u = [pi(len(u))^u]^{len(u)}$
- (c)  $PA \vdash Axiomad4(n) \leftrightarrow (\exists p \le n)(\exists v \le n) \{ Wff(p) \land Var(v) \land [$  $(\sim Free_f(v, p) \land n = cnd(unv(v, p), p)) \lor$  $(\exists s \le n)(Free_f(v, p) \land Term(s) \land Freefor(s, v, p) \land n = cnd(unv(v, p), formsub(p, v, s))] \}$
- (d) (i)  $PA \vdash mum(\emptyset) = \overline{\neg \emptyset \neg}$ (ii)  $PA \vdash mum(Sv) = \overline{\neg S \neg} * mum(v)$
- (e)  $PA \vdash gvar(n) = \overline{2}^{\overline{23} + \overline{2} \times n}$
- (f)  $PA \vdash Var(gvar(n))$
- (g)  $PA \vdash gvar(m) = gvar(n) \rightarrow m = n$
- \*(h)  $PA \vdash [Prvt(p) \land Var(v)] \rightarrow Prvt(unv(v, p))$ 
  - (i)  $PA \vdash Axiom(n) \rightarrow Prvt(n)$

- \*(j)  $PA \vdash [Wff(p) \land Var(v)] \rightarrow Freefor(v, v, p)$
- \*(k)  $PA \vdash Axiomad4(n) \leftrightarrow \exists s (\exists p \leq n) (\exists v \leq n) [Wff(p) \land Var(v) \land$

 $\mathbb{T}erm(s) \land \mathbb{F}reefor(s, v, p) \land n = cnd(\mathit{unv}(v, p), formsub(p, v, s))]$ 

- (1)  $PA \vdash mm(x) > \emptyset$
- (m)  $PA \vdash numseq(x) > \overline{1}$
- (n)  $PA \vdash len(num(x)) = Sx$
- \*(o)  $PA \vdash len(numseq(x)) = Sx$
- (p)  $PA \vdash \forall y [y \le x \rightarrow exp(numseq(x), y) = num(y)]$
- (q)  $PA \vdash Var(v) \rightarrow v \neq mum(y)$
- (r)  $PA \vdash Termseq(numseq(x), num(x))$ corollary:  $PA \vdash Term(num(x))$
- (s)  $PA \vdash Termsub(mum(n), v, s, mum(n))$ corollary:  $PA \vdash \sim Free_t(mum(n), v)$
- \*(t)  $PA \vdash [Wff(p) \land Var(v)] \rightarrow Freefor(mum(x), v, p)$
- (u)  $PA \vdash Wff(p) \rightarrow Prvt(cnd(unv(gvar(n), p), formsub(p, gvar(n), num(x))))$

Hint: (p) is by induction on the value of x. For (q) it may help to think about the length of v and mum(y). For (r) to show the bounded quantification for Termseq(numseq(x), mum(x)) you assume j < len(numseq(x)); then  $j = \emptyset \lor j > \emptyset$  and the cases are easy. (s) again, in the argument for the bounded quantifier,  $j = \emptyset \lor j > \emptyset$ .

Effectively, (h) is like Gen. (k) is like the intuitive version of A4 from p. 605. And (u) results with A4 when the substituted term is a numeral (so that associated restrictions are automatically met).

Finally, a theorem with results first for substitution into a conditional, and then for substitution into other substitutions. The latter include matched results for *Termsub*, *Atomsub* and then *Formsub*. Suppose  $x = x_i$  and  $y = x_i$ .

T13.58. The following are theorems of PA.

- (a)  $PA \vdash [Wff(p) \land Wff(q) \land Term(s)] \rightarrow formsub(cnd(p,q), v, s) = cnd(formsub(p, v, s), formsub(q, v, s))$
- \*(b)  $PA \vdash [Term(p) \land v \neq w] \rightarrow \exists q \exists t \exists t' [Termsub(p, v, mum(y), t) \land Termsub(p, w, mum(z), t') \land Termsub(t, w, mum(z), q) \land Termsub(t', v, mum(y), q)]$
- (c)  $PA \vdash [Atomic(p) \land v \neq w] \rightarrow \exists q \exists t \exists t' [Atomsub(p, v, mum(y), t) \land Atomsub(p, w, mum(z), t') \land Atomsub(t, w, mum(z), q) \land Atomsub(t', v, mum(y), q)]$
- \*(d)  $PA \vdash [Wff(p) \land v \neq w] \rightarrow formsub(formsub(p, v, mum(y)), w, mum(z)) = formsub(formsub(p, w, mum(z)), v, mum(y))$
- (e)  $PA \vdash [Term(p) \land Var(w)] \rightarrow \exists q \exists t \exists t' [Termsub(p, v, w, t) \land Termsub(p, v, mum(y), t') \land Termsub(t, w, mum(y), q) \land Termsub(t', w, mum(y), q)]$
- (f)  $PA \vdash [Atomic(p) \land Var(w)] \rightarrow \exists q \exists t \exists t' [Atomsub(p, v, w, t) \land Atomsub(p, v, mum(y), t') \land Atomsub(t, w, mum(y), q) \land Atomsub(t', w, mum(y), q)]$
- (g)  $PA \vdash [Wff(p) \land Var(w)] \rightarrow formsub(formsub(p, v, w), w, mum(y)) = formsub(formsub(p, v, mum(y)), w, mum(y))$
- (h)  $PA \vdash [Term(p) \land Var(w)] \rightarrow \exists q \exists t \exists t' [Termsub(p, v, \overline{\ulcornerS} \urcorner * w, t) \land$  $Termsub(p, v, mum(Sy), t') \land Termsub(t, w, mum(y), q) \land Termsub(t', w, mum(y), q)]$
- (i)  $PA \vdash [Atomic(p) \land Var(w)] \rightarrow \exists q \exists t \exists t' [Atomsub(p, v, \ulcornerS \urcorner * w, t) \land Atomsub(p, v, mum(Sv), t') \land Atomsub(t, w, mum(v), q) \land Atomsub(t', w, mum(v), q)]$
- (j)  $PA \vdash [Wff(p) \land Var(w)] \rightarrow formsub(formsub(p, v, \lceil S \rceil * w), w, mum(y))$ = formsub(formsub(p, v, mum(Sy)), w, mum(y)).

Hints: (b) Let  $\mathcal{P} = \exists q \exists a \exists b \exists c \exists d [Tsubseq(a, b, exp(n, k), w, num(z), q) \land Tsubseq(c, d, exp(n', k'), v, num(y), q)]$ ; show  $\forall x (\forall k < len(m))(\forall k' < len(m'))[len(exp(m, k)) \le x \rightarrow (exp(m, k) = exp(m', k') \rightarrow \mathcal{P})]$  by IN; the result follows. (c) Under the assumption for  $\rightarrow$  I, apply T13.49c and then (b). For (e) let  $\mathcal{P} = \exists q \exists a \exists b \exists c \exists d [Tsubseq(a, b, exp(n, k), w, num(y), q) \land Tsubseq(c, d, exp(n', k'), w, num(y), q)]$ ; show  $\forall x (\forall k < len(m))(\forall k' < len(m'))[len(exp(m, k)) \le x \rightarrow (exp(m, k) = exp(m', k') \rightarrow \mathcal{P})]$  by IN.

Speaking loosely: From (a),  $(\mathcal{P} \to \mathcal{Q})_s^v = \mathcal{P}_s^v \to \mathcal{Q}_s^v$ . From theorems leading up to (d), if  $v \neq w$  then  $(\mathcal{P}_{raun(y)}^v)_{raun(z)}^w = (\mathcal{P}_{raun(z)}^w)_{raun(y)}^v$ . From ones leading to (g),  $(\mathcal{P}_w^v)_{raun(y)}^w = (\mathcal{P}_{raun(y)}^v)_{raun(y)}^w$ . And from ones leading to (j),  $(\mathcal{P}_{Sw}^v)_{raun(y)}^w = (\mathcal{P}_{raun(Sy)}^v)_{raun(y)}^w$ . For these is important that raun(y) is a numeral and so has no variables to be replaced. Arguments combine methods we have seen before; reasoning is straightforward but long.

- \*E13.42. Set up the argument for T13.55k including assertion of the main proposition to be shown by induction; then set up the show part working just the L case. Hard core: finish T13.55k and the rest of the results in T13.55.
- \*E13.43. Set up the argument for T13.56i including assertion of the main proposition to be shown by induction; then set up the show part working just the P case. Hard core: finish T13.56c and the rest of the results in T13.56.
- \*E13.44. Show (s) and (u) from T13.57. Hard core: show the rest of the results from T13.57.
- \*E13.45. Show T13.58a; then set up the argument for T13.58g including assertion of the main proposition to be shown by induction; then set up the show part working just the P case. Hard core: finish T13.58g and the rest of the results in T13.58.

#### 13.5.2 Sigma star.

Our aim is to show  $PA \vdash Q \rightarrow \Box Q$  for any  $\Sigma_1$  sentence Q. Given our minimal resources, the task is simplified if we can give a minimal specification of the  $\Sigma_1$  formulas themselves. Toward this end, we introduce a special class of formulas, the  $\Sigma^*$  formulas; and show that every  $\Sigma_1$  formula is a  $\Sigma^*$  formula.  $\Sigma^*$  formulas are as follows.

 $(\Sigma^{\star})$  For any variables x, y and z,

- (a)  $\emptyset = z, y = z, Sy = z, x + y = z$  and  $x \times y = z$  are strictly  $\Sigma^*$ .
- (s) If  $\mathcal{P}$  and  $\mathcal{Q}$  are strictly  $\Sigma^{\star}$ , then so are  $(\mathcal{P} \vee \mathcal{Q})$ , and  $(\mathcal{P} \wedge \mathcal{Q})$ .
- $(\forall)$  If  $\mathcal{P}$  is strictly  $\Sigma^*$ , then so is  $(\forall x \leq y)\mathcal{P}$  where y does not occur in  $\mathcal{P}$ .

- ( $\exists$ ) If  $\mathcal{P}$  is strictly  $\Sigma^*$ , then so is  $\exists x \mathcal{P}$ .
- (c) Nothing else is strictly  $\Sigma^{\star}$ .

A formula is  $\Sigma^*$  iff it is equivalent to a strictly  $\Sigma^*$  formula.

Given that the existential quantifier comes to the front (as for T12.10), it is perhaps obvious that every  $\Sigma^*$  formula is  $\Sigma_1$ . At any rate, we aim to show the other direction: that every  $\Sigma_1$  formula is provably equivalent a  $\Sigma^*$  formula. Then results which apply to all the  $\Sigma^*$  formulas immediately transfer to the  $\Sigma_1$  formulas. We begin showing that there are  $\Sigma^*$  formulas equivalent to atomic equalities of the sort t = x. Then (depending on an extended notion of *normal* form and a result result according to which  $\Delta_0$  formulas always have equivalent normal forms) we show that there are  $\Sigma^*$ formulas equivalent to  $\Delta_0$  formulas. From this it is a short step to the result that there are  $\Sigma^*$  formulas equivalent to all the  $\Sigma_1$  formulas. First, then, the result for atomic equalities,

T13.59. For any  $\mathcal{P}$  of the form t = x, there is a  $\Sigma^*$  formula  $\mathcal{P}^*$  such that PA  $\vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$ .

By induction on the function symbols in t.

- *Basis:* If t has no function symbols, then it is the constant  $\emptyset$  or a variable y, so  $\mathcal{P}$  is of the form  $\emptyset = x$  or y = x; but these are already  $\Sigma^*$  formulas. So let  $\mathcal{P}^*$  be the same as  $\mathcal{P}$ . Then PA  $\vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$ .
- Assp: For any  $i, 0 \le i < k$ , if t has i function symbols, there is a  $\mathcal{P}^*$  such that  $PA \vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$ .
- Show: If t has k function symbols, there is a  $\mathcal{P}^*$  such that  $PA \vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$ . If t has k function symbols, then it is of the form Sr, r + s or  $r \times s$  for r and s with < k function symbols.
  - (S) t is Sr, so that  $\mathcal{P}$  is Sr = x. Set  $\mathcal{P}^* = \exists z [(r = z)^* \land Sz = x]$ ; then by assumption,  $PA \vdash r = z \leftrightarrow (r = z)^*$ . So reason as follows,

1. 
$$r = z \leftrightarrow (r = z)^{\star}$$
 assp  
2.  $Sr = x$   $A (g \leftrightarrow I)$   
3.  $r = r \wedge Sr = x$  from 2  
4.  $\exists z [r = z \wedge Sz = x]$   $\exists I$   
5.  $\exists z [(r = z)^{\star} \wedge Sz = x]$   $I,4$  with T9.9  
6.  $\exists z [(r = z)^{\star} \wedge Sz = x]$   $A (g \leftrightarrow I)$   
7.  $[(r = z)^{\star} \wedge Sz = x$   $A (g \in \exists E)$   
8.  $[r = z$   $I,7 \leftrightarrow E$   
9.  $Sr = x$  from 7,8  
10.  $Sr = x \leftrightarrow \exists z [(r = z)^{\star} \wedge Sz = x]$   $2-5,6-10 \leftrightarrow I$   
So  $PA \vdash \mathcal{P} \leftrightarrow \mathcal{P}^{\star}$ .  
(+)  $t = s + r$ , so that  $\mathcal{P}$  is  $s + r = x$ . Set  $\mathcal{P}^{\star} = \exists u \exists v [(s = u)^{\star} \wedge (r = v)^{\star} \wedge u + v = x]$ . Then  $PA \vdash \mathcal{P} \leftrightarrow \mathcal{P}^{\star}$ .  
(\*) Similarly.

*Indct:* For any  $\mathcal{P}$  of the form t = x, there is a  $\mathcal{P}^{\star}$  such that  $PA \vdash \mathcal{P} \leftrightarrow \mathcal{P}^{\star}$ .

Now generalize some operations from T8.1. There we said a formula is in *normal* form iff its only operators are  $\lor$ ,  $\land$ , and  $\sim$ , and the only instances of  $\sim$  are immediately prefixed to atomics. Now a formula is in *(extended) normal* form iff its only operators are  $\lor$ ,  $\land$ ,  $\sim$ , or a bounded quantifier, and the only instances of  $\sim$  are immediately prefixed to atomics (which may include inequalities). Again, generalizing from before, where  $\mathcal{P}$  is a normal form, let  $\mathcal{P}'$  be like  $\mathcal{P}$  except that  $\lor$  and  $\land$ , universal and existential quantifiers and, for an atomic  $\mathcal{A}$ ,  $\mathcal{A}$  and  $\sim \mathcal{A}$  are interchanged. So, for example,  $(\exists x \leq p)(x = p \lor x \neq p)' = (\forall x \leq p)(x \neq p \land x > p)$ . Still generalizing, for any  $\Delta_0$  formula whose operators are  $\sim$ ,  $\rightarrow$  and the bounded quantifiers, for atomic  $\mathcal{A}$ , let  $\mathcal{A}^* = \mathcal{A}$ ; and  $[\sim \mathcal{P}]^* = [\mathcal{P}^*]'; (\mathcal{P} \to \mathcal{Q})^* = ([\mathcal{P}^*]' \lor \mathcal{Q}^*);$   $[(\exists x \leq t)\mathcal{P}]^* = (\exists x \leq t)\mathcal{P}^*$  and  $[(\forall x \leq t)\mathcal{P}]^* = (\forall x \leq t)\mathcal{P}^*$  (and similarly for  $(\exists x < t)$  and  $(\forall x < t)$ ). Then as a simple extension to the result from E8.10,

T13.60. For any  $\Delta_0$  formula  $\mathcal{P}$ , there is a normal formula  $\mathcal{P}^*$  such that  $\vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$ .

The demonstration is straightforward extension of the reasoning from E8.9 and E8.10.

We show our result as applied to these normal forms. Thus,

\*T13.61. For any  $\Delta_0$  formula  $\mathcal{P}$  there is a  $\Sigma^*$  formula  $\mathcal{P}^*$  such that  $\mathsf{PA} \vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$ .

From T13.60, for any  $\Delta_0$  formula  $\mathcal{P}$ , there is a normal  $\mathcal{P}^*$  such that  $\vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$ . Now by induction on the number of operators in  $\mathcal{P}^*$ , we show there is a  $\mathcal{P}^*$  such that  $PA \vdash \mathcal{P}^* \leftrightarrow \mathcal{P}^*$ .

- *Basis:* If  $\mathcal{P}^*$  has no operators, then it is an atomic of the sort s = t,  $s \le t$  or s < t.
  - (=)  $\mathcal{P}^*$  is s = t. Set  $\mathcal{P}^* = \exists z [(s = z)^* \land (t = z)^*]$ . By T13.59, PA  $\vdash s = z \Leftrightarrow (s = z)^*$  and PA  $\vdash t = z \Leftrightarrow (t = z)^*$ ; so PA  $\vdash \mathcal{P}^* \Leftrightarrow \mathcal{P}^*$ .
  - ( $\leq$ )  $\mathcal{P}^*$  is  $s \leq t$ , which is to say  $\exists z(z + s = t)$ . By the case immediately above,  $PA \vdash (z + s = t) \leftrightarrow (z + s = t)^*$ . Set  $\mathcal{P}^* = \exists z(z + s = t)^*$ . Then  $PA \vdash \mathcal{P}^* \leftrightarrow \mathcal{P}^*$ . And similarly for <.
- Assp: For any  $i, 0 \le i < k$ , if a normal  $\mathcal{P}^*$  has i operator symbols, then there is a  $\Sigma^*$  formula  $\mathcal{P}^*$  such that  $PA \vdash \mathcal{P}^* \leftrightarrow \mathcal{P}^*$ .
- Show: If a normal  $\mathcal{P}^*$  has k operator symbols, then there is a  $\Sigma^*$  formula  $\mathcal{P}^*$  such that  $PA \vdash \mathcal{P}^* \leftrightarrow \mathcal{P}^*$ .

If  $\mathcal{P}^*$  has k operator symbols, then it is of the form  $\sim \mathcal{A}$ ,  $\mathcal{B} \wedge \mathcal{C}$ ,  $\mathcal{B} \vee \mathcal{C}$ ,  $(\exists x \leq t)\mathcal{B}$ ,  $(\exists x < t)\mathcal{B}$ ,  $(\forall x \leq t)\mathcal{B}$  or  $(\forall x < t)\mathcal{B}$ , where  $\mathcal{A}$  is atomic and  $\mathcal{B}$  and  $\mathcal{C}$  are normal with < k operator symbols.

(~)  $\mathcal{P}^*$  is  $\sim \mathcal{A}$ . (i)  $\mathcal{P}^*$  is  $s \neq t$ . Set  $\mathcal{P}^* = (s < t)^* \lor (t < s)^*$ ; then by assumption,  $PA \vdash s < t \leftrightarrow (s < t)^*$  and  $PA \vdash t < s \leftrightarrow (t < s)^*$ ; and with T13.13p,  $PA \vdash \mathcal{P}^* \leftrightarrow \mathcal{P}^*$ .

(ii)  $\mathcal{P}^*$  is  $s \neq t$ ; set  $\mathcal{P}^* = (t \leq s)^*$ ; then by assumption,  $PA \vdash t \leq s \Leftrightarrow (t \leq s)^*$ ; and with T13.13r,  $PA \vdash \mathcal{P}^* \Leftrightarrow \mathcal{P}^*$ . And similarly for  $\mathcal{P}^* = s \not\leq t$ .

- ( $\wedge$ )  $\mathcal{P}^*$  is  $\mathcal{B} \wedge \mathcal{C}$ . Set  $\mathcal{P}^* = \mathcal{B}^* \wedge \mathcal{C}^*$ ; since  $\mathcal{B}$  and  $\mathcal{C}$  are normal, by assumption  $PA \vdash \mathcal{B} \leftrightarrow \mathcal{B}^*$  and  $PA \vdash \mathcal{C} \leftrightarrow \mathcal{C}^*$ ; so  $PA \vdash \mathcal{P}^* \leftrightarrow \mathcal{P}^*$ . And similarly for  $\vee$ .
- ( $\forall$ )  $\mathcal{P}^*$  is  $(\forall x \leq t)\mathcal{B}$ . Set  $\mathcal{P}^* = \exists z [(t = z)^* \land (\forall x \leq z)\mathcal{B}^*]$ ; by T13.59 PA  $\vdash t = z \leftrightarrow (t = z)^*$  and by assumption, PA  $\vdash \mathcal{B} \leftrightarrow \mathcal{B}^*$ so PA  $\vdash \mathcal{P}^* \leftrightarrow \mathcal{P}^*$ . And, by a related construction, similarly for  $(\forall x < t)\mathcal{B}$ .
- ( $\exists$ )  $\mathcal{P}^*$  is  $(\exists x \leq t)\mathcal{B}$ . Set  $\mathcal{P}^* = \exists x[(x \leq t)^* \land \mathcal{B}^*]$ ; then by assumption PA  $\vdash x \leq t \Leftrightarrow (x \leq t)^*$  and PA  $\vdash \mathcal{B} \Leftrightarrow \mathcal{B}^*$ ; so PA  $\vdash \mathcal{P}^* \leftrightarrow \mathcal{P}^*$ . And similarly for  $(\exists x < t)\mathcal{B}$ .

*Indct:* For any normal  $\mathcal{P}^*$  there is a  $\mathcal{P}^*$  such that  $PA \vdash \mathcal{P}^* \leftrightarrow \mathcal{P}^*$ .

So from T13.60 for any  $\Delta_0$  formula  $\mathcal{P}$ , there is a  $\mathcal{P}^*$  such that  $\vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$ and by the above reasoning,  $PA \vdash \mathcal{P}^* \leftrightarrow \mathcal{P}^*$ . So  $PA \vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$ .

Now it is immediate that for any  $\Sigma_1$  formula  $\mathcal{P}$  there is a  $\Sigma^*$  formula  $\mathcal{P}^*$  such that  $PA \vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$ .

T13.62. For any  $\Sigma_1$  formula  $\mathcal{P}$  there is a  $\Sigma^*$  formula  $\mathcal{P}^*$  such that  $PA \vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$ .

Consider any  $\Sigma_1$  formula  $\mathcal{P}$ . This formula is of the form  $\exists x_1 \dots \exists x_n \mathcal{A}$  for  $\Delta_0$  formula  $\mathcal{A}$ . But by T13.61, there is an  $\mathcal{A}^*$  such that  $P\mathcal{A} \vdash \mathcal{A} \leftrightarrow \mathcal{A}^*$ . Let  $\mathcal{P}^*$  be  $\exists x_1 \dots \exists x_n \mathcal{A}^*$ . Then  $P\mathcal{A} \vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$ .

- E13.46. Povide a demonstration to show T13.60.
- \*E13.47. Fill in the parts of T13.59 and T13.61 that are left as "similarly" to to show that  $PA \vdash \mathcal{P} \leftrightarrow \mathcal{P}^{\star}$ .
- E13.48. Show that for any  $\Sigma^*$  formula  $\mathcal{P}^*$  there is a  $\Sigma_1$  formula  $\mathcal{P}$  such that PA  $\vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$  and so that the  $\Sigma^*$  formulas are the same as the  $\Sigma_1$  formulas.

### 13.5.3 Substitutions

We now define a  $sub(\lceil \mathcal{P} \rceil, \vec{y})$  which substitutes numerals for all the variables free in  $\mathcal{P}$ . Where  $\vec{y}$  is a (possibly empty) sequence of distinct variables, including at least all variables free in  $\mathcal{P}$ , consider an enumeration enum(i) of variable subscripts in  $\vec{y}$  so that enum(i) = y<sub>i</sub> is the subscript of the *i*<sup>th</sup> variable and  $\overline{y}_i$  the numeral corresponding to that subscript; so the variables of  $\vec{y}$  are  $x_{y_1} \dots x_{y_n}$  (perhaps the enumeration is by list where enum(i) = enum(n) when i > n). Then,

$$PA \vdash sub_0(\overline{\neg \mathcal{P}}, \vec{y}) = \overline{\neg \mathcal{P}}$$
$$PA \vdash sub_{Si}(\overline{\neg \mathcal{P}}, \vec{y}) = formsub(sub_i(\overline{\neg \mathcal{P}}, \vec{y}), gvar(\overline{y}_{Si}), mum(x_{y_{Si}}))$$

And PA  $\vdash sub(\overline{\neg \mathcal{P} \neg}, \vec{y}) = sub_n(\overline{\neg \mathcal{P} \neg}, \vec{y})$ . Observe that enum does not appear in the  $\mathcal{L}_{NT}$  expression; rather we use the function to make the specification in which there appears a certain variable  $x_{y_{Si}}$  and numeral  $\overline{y}_{Si}$ . Also,  $sub(\overline{\neg \mathcal{P} \neg}, \vec{y})$  still has as free variables each  $x_{y_{Si}}$  free in  $\mathcal{P}$  but returns the Gödel number of a sentence — the sentence which substitutes into places for free variables numerals for the values assigned to those variables.

From a few quick theorems, so long as  $\vec{y}$  and  $\vec{z}$  include all the free variables of  $\mathcal{P}$ ,  $sub(\overline{\mathcal{P}}, \vec{y}) = sub(\overline{\mathcal{P}}, \vec{z})$ .

T13.63. PA  $\vdash Wff(sub_i(\overline{\neg \mathcal{P} \neg}, \vec{y}))$ . Corollary: PA  $\vdash Wff(sub(\overline{\neg \mathcal{P} \neg}, \vec{y}))$ . By an easy induction.

T13.64. For arbitrary  $\vec{u}$ ,  $\vec{v}$ ,  $sub_i(\overline{\lceil \mathcal{P} \rceil}, x_{x_1} \dots x_{x_i}, \vec{u}) = sub_i(\overline{\lceil \mathcal{P} \rceil}, x_{x_1} \dots x_{x_i}, \vec{v})$ By an easy induction.

\*T13.65. For any i, PA  $\vdash$   $sub_{i+1}(\overline{\ulcornerP}\urcorner, x_a, x_{y_1} \dots x_{y_n}) = sub_{i+1}(\overline{\ulcornerP}\urcorner, x_{y_1} \dots x_{y_i}, x_a, x_{y_{(i+1)}} \dots x_{y_n})$ 

The argument is an induction on the value of *i*. For the show, you need PA  $\vdash$  $sub_{i+2}(\overline{\ulcornerP}\urcorner, x_a, x_{y_1} \dots x_{y_n}) = sub_{i+2}(\overline{\ulcornerP}\urcorner, x_{y_1} \dots x_{y_{i+1}}, x_a, x_{y_{i+2}} \dots x_{y_n})$ . The key to this is that  $sub_{i+2}(\ulcornerP\urcorner, x_{y_1} \dots x_{y_{i+1}}, x_a, x_{y_{i+2}} \dots x_{y_n})$  is,

 $formsub[formsub(sub_i(\overline{\ulcornerP}\urcorner, x_{y_1} \dots x_{y_{i+1}}, x_a, x_{y_{i+2}} \dots x_{y_n}), gvar(\overline{y}_{i+1}), mum(x_{y_{i+1}})), gvar(\overline{y}_a), mum(x_{y_a})]$ 

You will be able to use T13.64 and T13.58d. As a preliminary it will be useful to show that if  $PA \vdash Wff(p)$ , then  $PA \vdash formsub(formsub(p, gvar(\overline{a}), mum(x_a)), gvar(\overline{b}), mum(x_b)) = formsub(formsub(p, gvar(\overline{b}), mum(x_b)), gvar(\overline{a}), mum(x_a)).$ 

T13.65 effectively gives the ability to sort variables from one order into another. Suppose the variables of  $\vec{x}$  are the same as the variables of  $\vec{y}$ . To convert  $\vec{y}$  to  $\vec{x}$ , a straightforward approach is to switch members into the first position in the reverse of their order in  $\vec{x}$  — so for *n* members, at stage *i*, the result is  $x_{x_{Sn-i}} \dots x_{x_n}$ ,  $\vec{y}'$  where  $\vec{y}'$  is like  $\vec{y}$  less the members that precede it. So for a vector with 6 members, at stage 0 we begin with some  $sub(\overline{\lceil \mathcal{P} \rceil}, \vec{y})$ ; then at stage three PA proves this is equivalent to  $sub(\overline{\lceil \mathcal{P} \rceil}, x_{x_4}, x_{x_5}, x_{x_6}, \vec{y}')$ ; and at stage 6 that it is equivalent to  $sub(\overline{\lceil \mathcal{P} \rceil}, \vec{x})$ . This is an induction, but simple enough, so left as an exercise. T13.66. If  $x_a$  is not free in  $\mathcal{P}$ , then  $PA \vdash \mathfrak{sub}_{i+1}(\overline{\neg \mathcal{P} \neg}, x_{y_1} \dots x_{y_i}, x_a, x_{y_{(i+1)}} \dots x_{y_n})$ =  $\mathfrak{sub}_i(\overline{\neg \mathcal{P} \neg}, x_{y_1} \dots x_{y_i}, x_a, x_{y_{(i+1)}} \dots x_{y_n})$ 

In light of T13.64 and T13.65 it is sufficient to show  $PA \vdash sub_{i+1}(\overline{\neg \mathcal{P}}, x_a, x_{y_1} \dots x_{y_i}) = sub_i(\overline{\neg \mathcal{P}}, x_{y_1} \dots x_{y_i}, x_a)$ . The argument is by induction on *i*, where the basis uses  $Wff(\overline{\neg \mathcal{P}}) \wedge \sim \mathbb{F}ree_f(\overline{\neg \mathcal{P}}, gvar(\overline{a})) \wedge \mathbb{T}erm(\mathfrak{num}(x_a))$  by capture and T13.57r, and then T13.56i to establish that  $PA \vdash sub_1(\overline{\neg \mathcal{P}}, x_a, x_{y_1} \dots x_{y_i}) = sub_0(\overline{\neg \mathcal{P}}, x_{y_1} \dots x_{y_n}, x_a)$ .

\*T13.67. If the variables of  $\vec{y}$  and  $\vec{z}$  are ordered by their subscripts and  $\vec{y}$  and  $\vec{z}$  are the same except that  $\vec{z}$  includes some variables not in  $\vec{y}$  (and so not free in  $\mathcal{P}$ ), then PA  $\vdash sub(\overline{\lceil \mathcal{P} \rceil}, \vec{y}) = sub(\overline{\lceil \mathcal{P} \rceil}, \vec{z})$ .

Hint: Where the variables of  $\vec{y}$  are  $x_{y_1} \dots x_{y_m}$  and of  $\vec{z}$  are  $x_{z_1} \dots x_{z_n}$ , let S(i,j) = Si.Sj when  $y_{Si} = z_{Sj}$  and S(i,j) = i.Sj when  $y_{Si} \neq z_{Sj}$ . Then i.j "counts" in the natural way from 0.0 to m.n; and you will be able to show that for any member of this i.j sequence, PA  $\vdash sub_i(\overline{\neg \mathcal{P} \neg}, \vec{y}) = sub_j(\overline{\neg \mathcal{P} \neg}, \vec{z})$ .

And with T13.65 and T13.67, details of the vectors do not matter: Let  $\vec{x}'$  and  $\vec{y}'$  be like  $\vec{x}$  and  $\vec{y}$  except that variables are in standard order, and  $\vec{z}$  be just the free variables of  $\mathcal{P}$  in standard order. Then by T13.65,  $sub(\overline{\ P\ }^{\neg},\vec{x}) = sub(\overline{\ P\ }^{\neg},\vec{x}')$ ; by T13.67,  $sub(\overline{\ P\ }^{\neg},\vec{x}') = sub(\overline{\ P\ }^{\neg},\vec{x}')$ ; by T13.67 again,  $sub(\overline{\ P\ }^{\neg},\vec{z}) = sub(\overline{\ P\ }^{\neg},\vec{y}')$ ; and with T13.65,  $sub(\overline{\ P\ }^{\neg},\vec{y}') = sub(\overline{\ P\ }^{\neg},\vec{y})$ . So PA  $\vdash sub(\overline{\ P\ }^{\neg},\vec{x}) = sub(\overline{\ P\ }^{\neg},\vec{y})$  and we shall not usually worry about details of the vectors.

Then, introducing double brackets as a special notation,

$$Prvt\llbracket \mathcal{P}(\vec{x}) \rrbracket =_{def} Prvt(sub(\ulcorner \mathcal{P} \urcorner, \vec{x}))$$

Where  $\mathcal{P}$  has free variables  $\vec{x}$ ,  $Prvt(\overline{\mathcal{P}^{\neg}})$  asserts the provability of the open formula  $\mathcal{P}(\vec{x})$ . But  $Prvt[\mathcal{P}(\vec{x})]$  itself has all the free variables of  $\mathcal{P}$  and asserts the provability of whatever *sentences* have numerals for the variables free in  $\mathcal{P}$ : so, for example,  $\forall x Prvt[\mathcal{P}(x)]$  asserts the provability of  $\mathcal{P}_{\emptyset}^{x}$ ,  $\mathcal{P}_{S\emptyset}^{x}$ , and so forth. When  $\mathcal{P}$  is a sentence, there are no substitutions to be made, and  $Prvt[\mathcal{P}]$  is the same as  $Prvt(\overline{\mathcal{P}^{\neg}})$ . Thus we set out to show  $PA \vdash \mathcal{P} \rightarrow Prvt[\mathcal{P}]$  for  $\Sigma^{\star}$  formulas. When  $\mathcal{P}$  is a sentence, this gives  $PA \vdash \mathcal{P} \rightarrow Prvt(\overline{\mathcal{P}^{\neg}})$ , which is to be shown.

Finally we shall require also some short theorems in order to manipulate this new notion. There are analogs to D1 and D2, and results for substitution. Each is by a short induction. First, for D1.

### T13.68. If $PA \vdash \mathcal{P}$ , then $PA \vdash Prvt[\![\mathcal{P}]\!]$

Suppose  $PA \vdash \mathcal{P}$ . By induction on the value of n,  $PA \vdash Prvt(sub_n(\overline{\neg \mathcal{P} \neg}, \vec{x}))$ ; the case when i = n gives the desired result.

| Basis: | $sub_0(\overline{\lceil \mathcal{P} \rceil}, \vec{x}) = \overline{\lceil \mathcal{P} \rceil}$ . Since PA $\vdash \mathcal{P}$ , by D1, | $PA \vdash Prvt(\overline{\ulcorner \mathcal{P} \urcorner}); so$ |
|--------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
|        | $PA \vdash Prvt(sub_0(\overline{\ulcorner \mathcal{P} \urcorner}, \vec{x})).$                                                          |                                                                  |
| Assp:  | $PA \vdash Prvt(sub_i(\overline{\ulcorner \mathcal{P} \urcorner}, \vec{x})).$                                                          |                                                                  |
| Show:  | $PA \vdash Prvt(sub_{Si}(\overline{\ulcorner \mathcal{P} \urcorner}, \vec{x})).$                                                       |                                                                  |
|        | 1. $Prvt(sub_i(\overline{P}, \vec{x}))$                                                                                                | assp                                                             |
|        | 2. $Var(gvar(\bar{x}_{Si}))$                                                                                                           | T13.57f                                                          |
|        | 3. $Wff(sub_i(\overline{\mathcal{P}}, \vec{x}))$                                                                                       | T13.63                                                           |
|        | 4. $Prvt[unv(gvar(\overline{x}_{Si}), sub_i(\overline{\neg \mathcal{P}}, \vec{x}))]$                                                   | 1,2 T13.57h                                                      |

| 4 | . $Prvt[unv(gvar(\mathbf{x}_{Si}), sub_i(\mathcal{P}^{-1}, x))]$                                           | 1,2 113.57          |
|---|------------------------------------------------------------------------------------------------------------|---------------------|
| 5 | . $Prvt[cnd(unv(gvar(\bar{x}_{Si}), sub_i(\overline{\ulcornerP}\urcorner, \vec{x})),$                      |                     |
|   | $formsub(sub_i(\overline{\ulcornerP}\urcorner, \vec{x}), gvar(\bar{x}_{Si}), mm(x_{x_{Si}})))]$            | 3 T13.57u           |
| 6 | . $Prvt[unv(gvar(\overline{x}_{Si}), sub_i(\overline{\ulcornerP}, \vec{x}))] \rightarrow$                  |                     |
|   | $Prvt[formsub(sub_i(\overline{\Gamma P^{\neg}}, \vec{x}), gvar(\overline{x}_{Si}), mm(x_{XSi}))]$          | 5 D2                |
| 7 | . $Prvt[formsub(sub_i(\overline{\ulcornerP}\urcorner, \vec{x}), gvar(\overline{x}_{Si}), mm(x_{x_{Si}}))]$ | $4,6 \rightarrow E$ |
| 8 | . $Prvt(sub_{Si}(\overline{\ulcorner \mathcal{P} \urcorner}, \vec{x}))$                                    | 7 def               |

*Indct:* For any n, PA  $\vdash Prvt(sub_n(\overline{\ulcornerP}, \vec{x}))$ 

And an analog to D2,

T13.69. PA  $\vdash Prvt[\![\mathcal{P} \rightarrow \mathcal{Q}]\!] \rightarrow (Prvt[\![\mathcal{P}]\!] \rightarrow Prvt[\![\mathcal{Q}]\!])$ 

We must show  $PA \vdash Prvt(sub(\overline{\ulcorner\mathcal{P}} \rightarrow \mathcal{Q}^{\neg}, \vec{x})) \rightarrow (Prvt(sub(\overline{\ulcorner\mathcal{P}}^{\neg}, \vec{x})) \rightarrow Prvt(sub(\overline{\ulcorner\mathcal{Q}}^{\neg}, \vec{x})))$ . First, by induction,  $PA \vdash sub_i(cnd(\overline{\ulcorner\mathcal{P}}^{\neg}, \overline{\ulcorner\mathcal{Q}}^{\neg}), \vec{x})) = cnd(sub_i(\overline{\ulcorner\mathcal{P}}^{\neg}, \vec{x}), sub_i(\overline{\ulcorner\mathcal{Q}}^{\neg}, \vec{x}))$ . This leads immediately to the desired result.

$$\begin{array}{l} Basis: \ sub_{0}(cnd(\lceil \mathcal{P} \rceil, \lceil \mathcal{Q} \rceil), \vec{x})) = cnd(sub_{0}(\lceil \mathcal{P} \rceil, \vec{x}), sub_{0}(\lceil \mathcal{Q} \rceil, \vec{x})) \\ 1. \ sub_{0}(cnd(\lceil \mathcal{P} \rceil, \lceil \mathcal{Q} \rceil), \vec{x}) = cnd(\lceil \mathcal{P} \rceil, \lceil \mathcal{Q} \rceil) & \text{def} \\ 2. \ sub_{0}(\lceil \mathcal{P} \rceil, \vec{x}) = \lceil \mathcal{P} \rceil & \text{def} \\ 3. \ sub_{0}(\lceil \mathcal{Q} \rceil, \vec{x})) = \lceil \mathcal{Q} \rceil & \text{def} \\ 4. \ sub_{0}(cnd(\lceil \mathcal{P} \rceil, \lceil \mathcal{Q} \rceil), \vec{x}) = cnd(sub_{0}(\lceil \mathcal{P} \rceil, \vec{x}), sub_{0}(\lceil \mathcal{Q} \rceil, \vec{x})) & 1,2,3 = \mathbb{E} \\ Assp: \ PA \vdash sub_{i}(cnd(\lceil \mathcal{P} \rceil, \lceil \mathcal{Q} \rceil), \vec{x})) = cnd(sub_{i}(\lceil \mathcal{P} \rceil, \vec{x}), sub_{i}(\lceil \mathcal{Q} \rceil, \vec{x})) \\ Show: \ PA \vdash sub_{Si}(cnd(\lceil \mathcal{P} \neg, \lceil \mathcal{Q} \rceil), \vec{x})) = cnd(sub_{Si}(\lceil \mathcal{P} \neg, \vec{x}), sub_{Si}(\lceil \mathcal{Q} \rceil, \vec{x})) \end{array}$$

| 1. | $\mathbb{W}ff(sub_i(\overline{\mathcal{P}}, \vec{x})) \wedge \mathbb{W}ff(sub_i(\overline{\mathcal{Q}}, \vec{x}))$                                                  | T13.63      |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2. | $Term(num(x_{x_{Si}}))$                                                                                                                                             | T13.57r     |
| 3. | $sub_{Si}(\overline{\lceil \mathcal{P} \rceil}, \vec{x}) = formsub(sub_i(\overline{\lceil \mathcal{P} \rceil}, \vec{x}), gvar(\overline{x}_{Si}), mum(x_{x_{Si}}))$ | def         |
| 4. | $sub_{Si}(\overline{\lceil Q \rceil}, \vec{x}) = formsub(sub_i(\overline{\lceil Q \rceil}, \vec{x}), gvar(\overline{x}_{Si}), mum(x_{x_{Si}}))$                     | def         |
| 5. | $sub_{Si}(cnd(\overline{\lceil \mathcal{P} \rceil}, \overline{\lceil \mathcal{Q} \rceil}), \vec{x})$                                                                |             |
| 6. | $= formsub(sub_i(cnd(\overline{\mathcal{P}}, \overline{\mathcal{Q}}), \vec{x}), gvar(\bar{x}_{Si}), num(x_{Si}))$                                                   | def         |
| 7. | $= formsub(cnd(sub_i(\overline{\mathcal{P}}, \vec{x}), sub_i(\overline{\mathcal{CQ}}, \vec{x})), gvar(\bar{x}_{Si}), num(x_{X_{Si}}))$                              | assp        |
| 8. | $= cnd(formsub(sub_i(\overline{\mathcal{P}}, \vec{x}), gvar(\bar{x}_{Si}), mm(x_{XSi})),$                                                                           |             |
|    | $formsub(sub_i(\overline{\lceil Q \rceil}, \vec{x}), gvar(\overline{x}_{Si}), mum(x_{x_{Si}}))))$                                                                   | 1,2 T13.58a |
| 9. | $= cnd(sub_{Si}(\overline{\mathcal{P}}, \vec{x}), sub_{Si}(\overline{\mathcal{Q}}, \vec{x}))$                                                                       | 8,3,4 =E    |

*Indct:* For any i, PA  $\vdash$  sub<sub>i</sub>(cnd( $\overline{\ulcornerP}\urcorner, \overline{\ulcornerQ}\urcorner), \vec{x}$ )) = cnd(sub<sub>i</sub>( $\overline{\ulcornerP}\urcorner, \vec{x}$ ), sub<sub>i</sub>( $\overline{\ulcornerQ}\urcorner, \vec{x}$ ))

So PA 
$$\vdash$$
 sub(cnd( $\lceil \mathcal{P} \rceil, \lceil \mathcal{Q} \rceil), \vec{x}$ )) = cnd(sub( $\lceil \mathcal{P} \rceil, \vec{x}$ ), sub( $\lceil \mathcal{Q} \rceil, \vec{x}$ )). Now,

| 1. | $\Pr{vt(sub(\overline{\ulcorner\mathcal{P}\to \mathcal{Q}^{\urcorner}},\vec{x}))}$                                                                                                                                         | A $(g \rightarrow I)$ |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 2. | $Prvt(sub(cnd(\overline{\ulcorner \mathcal{P}}, \overline{\ulcorner \mathcal{Q}}), \vec{x}))$                                                                                                                              | 1 cap                 |
| 3. | $Prvt(cnd(sub(\overline{\ulcorner \mathcal{P} \urcorner}, \vec{x}), sub(\overline{\ulcorner \mathcal{Q} \urcorner}, \vec{x})))$                                                                                            | 2 above               |
| 4. | $Prvt(sub(\overline{\lceil \mathcal{P} \rceil}, \vec{x})) \rightarrow Prvt(sub(\overline{\lceil \mathcal{Q} \rceil}, \vec{x}))$                                                                                            | 3 D2                  |
| 5. | $Prvt(sub(\overline{\ulcorner\mathcal{P}\to \mathcal{Q}^{\urcorner}}, \vec{x})) \to [Prvt(sub(\overline{\ulcorner\mathcal{P}^{\urcorner}}, \vec{x})) \to Prvt(sub(\overline{\ulcorner\mathcal{Q}^{\urcorner}}, \vec{x}))]$ | $2-5 \rightarrow I$   |

Finally a result for substitutions into these expressions. Again, let  $x = x_i$  and  $y = x_j$ .

T13.70. If t is one of  $\emptyset$ , y or Sy and t is free for x in  $\mathcal{P}$ , then  $PA \vdash Prvt[\![\mathcal{P}_t^x]\!] \leftrightarrow Prvt[\![\mathcal{P}]\!]_t^x$ .

Consider the case t = Sy and take the variables in the order  $x, y, \vec{z}$  where x and y do not appear in  $\vec{z}$ .  $Prvt[\![\mathcal{P}_{Sy}^x]\!] = Prvt(sub(\overline{\ulcorner\mathcal{P}_{Sy}^x}\urcorner, x, y, \vec{z}))$ . And  $Prvt[\![\mathcal{P}]\!]_{Sy}^x = Prvt[sub(\overline{\ulcorner\mathcal{P}}\urcorner, x, y, \vec{z})]_{Sy}^x = Prvt[sub(\overline{\ulcorner\mathcal{P}}\urcorner, x, y, \vec{z})_{Sy}^x]$ . Thus it suffices to show  $PA \vdash sub(\overline{\ulcorner\mathcal{P}}_{Sy}^x\urcorner, x, y, \vec{z}) = sub(\overline{\ulcorner\mathcal{P}}\urcorner, x, y, \vec{z})_{Sy}^x$ . By induction,  $PA \vdash sub_n(\overline{\ulcorner\mathcal{P}}_{Sy}^x\urcorner, x, y, \vec{z}) = sub_n(\overline{\ulcorner\mathcal{P}}\urcorner, x, y, \vec{z})_{Sy}^x$ .

Basis: 
$$PA \vdash sub_2(\overline{\lceil \mathcal{P}_{Sy}^x \rceil}, x, y, \vec{z}) = sub_2(\overline{\lceil \mathcal{P} \rceil}, x, y, \vec{z})_{Sy}^x$$

Indet: 
$$\mathrm{PA} \vdash sub_n(\overline{\lceil \mathcal{P}_{Sy}^x \rceil}, x, y, \vec{z}) = sub_n(\overline{\lceil \mathcal{P} \rceil}, x, y, \vec{z})_{Sy}^x$$

Line (4) of the show is justified insofar as x does not appear in  $\vec{z}$ .

Other cases are similar and left for homework.

\*E13.49. (i) Provide a demonstration for T13.65. (ii) Then provide a demonstration for the sorting result that is "simple enough" and so left as an exercise.

\*E13.50. Provide a demonstration for T13.67

E13.51. Complete the demonstration of T13.70 by completing the remaining cases.

#### 13.5.4 The result.

We are finally (!) ready to show that for any  $\Sigma^* \mathcal{P}$ ,  $PA \vdash \mathcal{P} \rightarrow Prvt[\![\mathcal{P}]\!]$ . And this is the result we need for D3. The argument is by induction on the number of operators in a  $\Sigma^*$  formula.

Before we launch into the main argument, a word about substitution. From their original statement, the rules  $\forall I$  and =E result in formulas of the sort  $\mathcal{P}_t^x$  or  $\mathcal{P}_t^t/_s$ . So from, say,  $\forall E$  applied to  $\forall x Prvt[\![\mathcal{P}]\!]$  we get something of the sort  $Prvt[\![\mathcal{P}]\!]_t^x$ . But we need to be careful about what the substitution comes to. In the simplest case,  $Prvt[\![\mathcal{P}(x)]\!]$  is of the sort  $Prvt(formsub(\overline{\ulcorner\mathcal{P}(x)}\urcorner, gvar(\overline{i}), mum(x)))$ , where there is a free x to be replaced by t; but this does not automatically convert to  $Prvt[\![\mathcal{P}(t)]\!]$  insofar as  $\overline{\ulcorner\mathcal{P}(x)}\urcorner$  is a *numeral* and so lacks any free x. But we do have a theorem, T13.70 which tells us that in certain cases PA  $\vdash Prvt[\![\mathcal{P}_t^x]\!] \leftrightarrow Prvt[\![\mathcal{P}]\!]_t^x$ , so that the replacements can be moved across the bracket in the natural way. With this said, we turn to our theorem.

T13.71. For any  $\Sigma^*$  formula  $\mathcal{P}, \mathsf{PA} \vdash \mathcal{P} \to Prvt[\![\mathcal{P}]\!]$ .

By induction on the number of operators in  $\mathcal{P}$ .

- *Basis:* If a  $\Sigma^* \mathcal{P}$  has no operator symbols, then it is an atomic of the sort  $\emptyset = z$ , y = z, Sy = z, x + y = z or  $x \times y = z$ .
  - (S) Suppose  $\mathcal{P}$  is Sy = z. Reason as follows,

| 1. | Sy = Sy                                      | =I                                              |
|----|----------------------------------------------|-------------------------------------------------|
| 2. | $Prvt[\![Sy = Sy]\!]$                        | 1 T13.68                                        |
| 3. | Sy = z                                       | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 4. | $Prvt\llbracket (Sy = z)_{Sy}^{z}\rrbracket$ | 2 abv                                           |
| 5. | $Prvt[[Sy = z]]_{Sy}^{z}$                    | 4 T13.70                                        |
| 6. | $Prvt[\![Sy = z]\!]$                         | 3,5 =E                                          |
| 7. | $Sy = z \to Prvt[\![Sy = z]\!]$              | $3-6 \rightarrow I$                             |

Observe that T13.68 applies to theorems, and so not to formulas under the assumption for  $\rightarrow$ I. Thus we take care to restrict its application to formulas against the main scope line. Also, at (5) we use T13.70 to move the substitution across the bracket. With this done, the substitution on line (4) applies only to the free z of Prvt[[Sy = z]] — that is, to the free z of Prvt(sub([Sy = z], y, z); so that =E applies in a straightforward way to substitute a z back into that place. The argument is similar for  $\emptyset = z$  and y = z.

(+) Suppose  $\mathcal{P}$  is x + y = z. The proof in PA requires appeal to IN, with induction on the value of x in  $\forall y \forall z (x + y = z \rightarrow Prvt[x + y = z])$ . For the basis,

| 1.  |                                                                                                   | <b>T6.5</b> 1         |
|-----|---------------------------------------------------------------------------------------------------|-----------------------|
| 2.  | $Prvt\llbracket \emptyset + y = y\rrbracket$                                                      | 1 T13.68              |
| 3.  | $ (x + y = z)^{x}_{\emptyset} $                                                                   | A $(g \rightarrow I)$ |
| 4.  | $\emptyset + y = z$                                                                               | 3 abv                 |
| 5.  | y = z                                                                                             | 1,4 =E                |
| 6.  | $Prvt\llbracket (\emptyset + y = z)_{y}^{z}\rrbracket$                                            | 2 abv                 |
| 7.  | $Prvt \llbracket \emptyset + y = z \rrbracket_{v}^{z}$                                            | 6 T13.70              |
| 8.  | $Prvt\llbracket \emptyset + y = z\rrbracket$                                                      | 6,5 =E                |
| 9.  | $Prvt\llbracket (x + y = z)^{X}_{\emptyset} \rrbracket$                                           | 8 abv                 |
| 10. | $Prvt[x + y = z]]_{\emptyset}^{x}$                                                                | <b>9</b> T13.70       |
| 11. | $(x + y = z)^{x}_{\emptyset} \rightarrow Prvt[x + y = z]^{x}_{\emptyset}$                         | $3-10 \rightarrow I$  |
| 12. | $(x + y = z \rightarrow Prvt\llbracket x + y = z \rrbracket)_{\emptyset}^{x}$                     | 11 abv                |
| 13. | $\forall y \forall z (x + y = z \rightarrow Prvt\llbracket x + y = z \rrbracket)_{\emptyset}^{x}$ | 12 ∀I                 |
|     |                                                                                                   |                       |

And the inductive stage,

| 14. | $x + Sy = z \leftrightarrow Sx + y = z$                                                                                                        | T6.42,T6.53                                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 15. | $Prvt[[x + Sy = z \to Sx + y = z]]$                                                                                                            | 14 T13.68                                       |
| 16. | $ \forall y \forall z (x + y = z \to Prvt[x + y = z]) $                                                                                        | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 17. | $ (x + y = z)_{Sx}^{x} $                                                                                                                       | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 18. | $\int Sx + y = z$                                                                                                                              | 17 abv                                          |
| 19. | x + Sy = z                                                                                                                                     | 14,18 $\leftrightarrow$ E                       |
| 20. | $    x + Sy = z \rightarrow Prvt[x + y = z]_{Sy}^{y} $                                                                                         | 16 ∀E                                           |
| 21. | $Prvt[x + y = z]]_{Sy}^{y}$                                                                                                                    | $20,19 \rightarrow E$                           |
| 22. | Prvt[x + Sy = z]                                                                                                                               | <b>21 T13.7</b> 0                               |
| 23. | $Prvt\llbracket x + Sy = z\rrbracket \to Prvt\llbracket Sx + y = z\rrbracket$                                                                  | 15 T13.69                                       |
| 24. | Prvt[Sx + y = z]                                                                                                                               | $23,22 \rightarrow E$                           |
| 25. | $\left  Prvt[x + y = z] \right]_{Sx}^{x}$                                                                                                      | 24 T13.70                                       |
| 26. | $[(x+y=z)_{Sx}^{x} \rightarrow Prvt[x+y=z]_{Sx}^{x}$                                                                                           | $17-25 \rightarrow I$                           |
| 27. | $(x + y = z \rightarrow Prvt[x + y = z])_{Sx}^{x}$                                                                                             | 26 abv                                          |
| 28. | $\forall y \forall z (x + y = z \rightarrow Prvt[x + y = z])_{Sx}^{x}$                                                                         | 27 ∀I                                           |
| 29. | $\forall y \forall z (x + y = z \rightarrow Prvt[x + y = z]) \rightarrow \forall y \forall z (x + y = z \rightarrow Prvt[x + y = z])_{Sx}^{x}$ | $16-28 \rightarrow I$                           |
| 30. | $\forall y \forall z (x + y = z \rightarrow Prvt\llbracket x + y = z \rrbracket)$                                                              | 13,29 IN                                        |

We are able to apply the assumption at (16) to get  $Prvt[x + y = z]_{Sy}^{y}$  and convert this into the desired result. So  $PA \vdash x + y = z \rightarrow Prvt[x + y = z]$ .

(×) Suppose  $\mathcal{P}$  is  $x \times y = z$ . The proof in PA requires appeal to IN, on the value of x in  $\forall y \forall z (x \times y = z \rightarrow Prvt[x \times y = z])$ . The zero case is straightforward. Then,

| 1.<br>2.<br>3. | $ \forall y \forall z (x \times y = z \rightarrow Prvt\llbracket x \times y = z \rrbracket)_{\emptyset}^{x} $<br>$ Sx \times y = z \leftrightarrow x \times y + y = z $<br>$ x \times y = v \rightarrow (v + y = z \rightarrow x \times y + y = z) $ | zero case<br>T6.60<br>simple ND                 |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 4.             | $Prvt[[x \times y + y = z \to Sx \times y = z]]$                                                                                                                                                                                                     | 2 T13.68                                        |
| 5.             | $Prvt[[x \times y = v \to (v + y = z \to x \times y + y = z)]]$                                                                                                                                                                                      | 3 T13.68                                        |
| 6.             | $\forall y \forall z (x \times y = z \to Prvt[[x \times y = z]])$                                                                                                                                                                                    | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 7.             | $ (x \times y = z)_{S_x}^x $                                                                                                                                                                                                                         | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 8.             | $\int Sx \times y = z$                                                                                                                                                                                                                               | 7 abv                                           |
| 9.             | $  x \times y + y = z$                                                                                                                                                                                                                               | $2,8 \leftrightarrow E$                         |
| 10.            | $  \exists v(x \times y = v)$                                                                                                                                                                                                                        | =I,∃I                                           |
| 11.            |                                                                                                                                                                                                                                                      | A ( $g$ 10 $\exists$ E)                         |
| 12.            | v + y = z                                                                                                                                                                                                                                            | 9,11 =E                                         |
| 13.            | Prvt[v + y = z]                                                                                                                                                                                                                                      | 12 (+) case                                     |
| 14.            | $Prvt[x \times y = z]]_{v}^{z}$                                                                                                                                                                                                                      | 6,11 ∀E,→E                                      |
| 15.            | $Prvt[x \times y = v]$                                                                                                                                                                                                                               | 14 T13.70                                       |
| 16.            | $Prvt\llbracket x \times y = v \rrbracket \to Prvt\llbracket v + y = z \to x \times y + y = v \rrbracket$                                                                                                                                            | 5 T13.69                                        |
| 17.            | $Prvt[v + y = z \rightarrow x \times y + y = z]$                                                                                                                                                                                                     | $15,16 \rightarrow E$                           |
| 18.            | $Prvt\llbracket v + y = z \rrbracket \rightarrow Prvt\llbracket x \times y + y = z \rrbracket$                                                                                                                                                       | 17 T13.69                                       |
| 19.            | $Prvt[x \times y + y = z]$                                                                                                                                                                                                                           | $18,13 \rightarrow E$                           |
| 20.            | $Prvt[[x \times y + y = z]] \rightarrow Prvt[[Sx \times y = z]]$                                                                                                                                                                                     | 4 T13.69                                        |
| 21.            | $Prvt[[Sx \times y = z]]$                                                                                                                                                                                                                            | $19,20 \rightarrow E$                           |
| 22.            | $Prvt[x \times y = z]]_{Sx}^{x}$                                                                                                                                                                                                                     | 21 T13.70                                       |
| 23.            | $Prvt[x \times y = z]]_{Sx}^{x}$                                                                                                                                                                                                                     | 10,11-22 ∃E                                     |
| 24.            | $[(x \times y = z)_{S_{\mathbf{x}}}^{x} \rightarrow Prvt[[x \times y = z]]_{S_{\mathbf{x}}}^{x}$                                                                                                                                                     | 7-23 →I                                         |
| 25.            | $(x \times y = z \rightarrow Prvt[x \times y = z])^{x}_{Sx}$                                                                                                                                                                                         | 24 abv                                          |
| 26.            | $   \forall y \forall z (x \times y = z \rightarrow Prvt[x \times y = z])_{Sx}^{x} $                                                                                                                                                                 | 25 ∀I                                           |
| 27.            | $\forall y \forall z (x \times y = z \to Prvt[x \times y = z]) \to \forall y \forall z (x \times y = z \to Prvt[x \times y = z])_{Sx}^{x}$                                                                                                           | $6-26 \rightarrow I$                            |
| 28.            | $\forall y \forall z (x \times y = z \to Prvt[x \times y = z])$                                                                                                                                                                                      | 1,27 IN                                         |

The (+) case does not directly apply to  $x \times y + y = z$ . However, having identified  $x \times y$  with variable v we get Prvt[v + y = z], and with the inductive assumption  $Prvt[x \times y = v]$ . These then unpack into  $Prvt[Sx \times y = z]$ . So  $PA \vdash x \times y = z \rightarrow Prvt[x \times y = z]$ .

- Assp: For any  $i, 0 \leq i < k$  if a  $\Sigma^* \mathcal{P}$  has i operator symbols, then  $PA \vdash \mathcal{P} \rightarrow Prvt[\![\mathcal{P}]\!]$ .
- Show: If a  $\Sigma^* \mathcal{P}$  has k operator symbols, then  $PA \vdash \mathcal{P} \rightarrow Prvt[\![\mathcal{P}]\!]$ .

If  $\Sigma^* \mathcal{P}$  has k operator symbols, then it is of the form,  $\mathcal{A} \vee \mathcal{B}$ ,  $\mathcal{A} \wedge \mathcal{B}$ ,  $(\forall x \leq y)\mathcal{A}$  (y not in  $\mathcal{A}$ ), or  $\exists x\mathcal{A}$  for  $\Sigma^* \mathcal{A}$  and  $\mathcal{B}$  with  $\langle k$  operator symbols.

( $\wedge$ )  $\mathcal{P}$  is  $\mathcal{A} \wedge \mathcal{B}$ . Reason as follows.

| 1.  | $\mathcal{A} \to Prvt\llbracket \mathcal{A}\rrbracket$                                                                | by assp                                         |
|-----|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | $\mathcal{B} \to \operatorname{Prvt}[\![\mathcal{B}]\!]$                                                              | by assp                                         |
| 3.  | $\mathcal{A}  ightarrow (\mathcal{B}  ightarrow (\mathcal{A} \land \mathcal{B}))$                                     | <b>T9.</b> 4                                    |
| 4.  | $Prvt\llbracket \mathcal{A} \to (\mathcal{B} \to (\mathcal{A} \land \mathcal{B})) \rrbracket$                         | 3 T13.68                                        |
| 5.  | $\mathcal{A} \wedge \mathcal{B}$                                                                                      | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 6.  | Prvt[[A]]                                                                                                             | 1,5                                             |
| 7.  | Prvt[[B]]                                                                                                             | 2,5                                             |
| 8.  | $Prvt\llbracket \mathcal{A} \rrbracket \to Prvt\llbracket \mathcal{B} \to (\mathcal{A} \land \mathcal{B}) \rrbracket$ | 4 T13.69                                        |
| 9.  | $Prvt\llbracket \mathcal{B} \to (\mathcal{A} \land \mathcal{B})\rrbracket$                                            | $6,8 \rightarrow E$                             |
| 10. | $Prvt\llbracket \mathcal{B} \rrbracket \to Prvt\llbracket \mathcal{A} \land \mathcal{B} \rrbracket$                   | 9 T13.69                                        |
| 11. | $Prvt \llbracket \mathcal{A} \land \mathcal{B} \rrbracket$                                                            | $7,10 \rightarrow E$                            |
| 12. | $(\mathcal{A} \land \mathcal{B}) \to Prvt\llbracket \mathcal{A} \land \mathcal{B}\rrbracket$                          | $5\text{-}11 \rightarrow I$                     |

And similarly for  $\lor$ .

( $\exists$ )  $\mathcal{P}$  is  $\exists x \mathcal{A}$ . Reason as follows.

| $\mathcal{A} \to Prvt\llbracket \mathcal{A}\rrbracket$                                      | by assp                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{A} \to \exists x \mathcal{A}$                                                     | T3.29                                                                                                                                                                                                                                                                                                   |
| $Prvt\llbracket \mathcal{A} \to \exists x \mathcal{A} \rrbracket$                           | 2 T13.68                                                                                                                                                                                                                                                                                                |
| $\exists x \mathcal{A}$                                                                     | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$                                                                                                                                                                                                                                                         |
| A                                                                                           | A (g 4 $\exists$ E)                                                                                                                                                                                                                                                                                     |
| Prvt [[A]]                                                                                  | $1,5 \rightarrow E$                                                                                                                                                                                                                                                                                     |
| $Prvt\llbracket \mathcal{A} \rrbracket \to Prvt\llbracket \exists x \mathcal{A} \rrbracket$ | 3 T13.69                                                                                                                                                                                                                                                                                                |
| $Prvt[\exists x A]$                                                                         | $7,6 \rightarrow E$                                                                                                                                                                                                                                                                                     |
| $Prvt[\exists x \mathcal{A}]$                                                               | 4,5-8 ∃E                                                                                                                                                                                                                                                                                                |
| $\exists x, A \rightarrow D_{m,t} [\exists x, A]$                                           | 50 1                                                                                                                                                                                                                                                                                                    |
|                                                                                             | $ \begin{array}{c} A \rightarrow Prvt[[A]] \\ \hline A \rightarrow \exists x A \\ Prvt[[A \rightarrow \exists x A]] \\ \hline \exists x A \\ \hline Prvt[[A]] \\ Prvt[[A]] \rightarrow Prvt[[\exists x A]] \\ Prvt[[\exists x A]] \\ Prvt[[\exists x A]] \\ Prvt[[\exists x A]] \\ \hline \end{array} $ |

 $\mathcal{A}$  has x free. But  $\exists x \mathcal{A}$  does not, and  $Prvt[\![\exists x \mathcal{A}]\!]$  has the same free variables as  $\exists x \mathcal{A}$ . So the restriction is met for  $\exists E$  at (9).

( $\forall$ )  $\mathcal{P}$  is ( $\forall x \leq y$ ) $\mathcal{A}$ . The argument in PA requires appeal to IN, for induction on the value of y. For the zero case,

| 1.  | $\mathcal{A}^{x}_{\emptyset} \to Prvt\llbracket \mathcal{A}^{x}_{\emptyset}\rrbracket$                                         | by assp                                         |
|-----|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | $\boxed{(\forall x \leq \emptyset) \mathcal{A} \leftrightarrow \mathcal{A}^{x}_{\emptyset}}$                                   | thrm (with T8.21)                               |
| 3.  | $Prvt\llbracket \mathcal{A}^{x}_{\emptyset} \to (\forall x \leq \emptyset) \mathcal{A}\rrbracket$                              | 2 T13.68                                        |
| 4.  | $(\forall x \leq y) \mathcal{A}^{\mathcal{Y}}_{\emptyset}$                                                                     | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 5.  | $(\forall x \leq \emptyset) \mathcal{A}$                                                                                       | 4 abv                                           |
| 6.  | $\mathcal{A}^{X}_{\emptyset}$                                                                                                  | 2,5 ↔E                                          |
| 7.  | $Prvt[\![\mathcal{A}_{\mathcal{A}}^{x}]\!]$                                                                                    | $1,6 \rightarrow E$                             |
| 8.  | $Prvt\llbracket \mathcal{A}_{\emptyset}^{x} \rrbracket \to Prvt\llbracket (\forall x \le \emptyset) \mathcal{A} \rrbracket$    | 3 T13.69                                        |
| 9.  | $\Pr{vt}[\![(\forall x \le \emptyset)A]\!]$                                                                                    | 8,7 →E                                          |
| 10. | $Prvt \llbracket (\forall x \le y) \mathcal{A}^{\mathcal{Y}}_{\mathcal{Q}} \rrbracket$                                         | 9 abv                                           |
| 11. | $\Pr{vt}[(\forall x \le y)A]_{\emptyset}^{y}$                                                                                  | 10 T13.70                                       |
| 12. | $ (\forall x \le y) \mathcal{A}^{y}_{\emptyset} \to Prvt \llbracket (\forall x \le y) \mathcal{A} \rrbracket^{y}_{\emptyset} $ | 5-11 →I                                         |
| 13. | $((\forall x \le y) \mathcal{A} \to Prvt\llbracket (\forall x \le y) \mathcal{A} \rrbracket)_{\emptyset}^{y}$                  | 12 abv                                          |

For (5) and (10) it is important that y in a bound quantifier of the  $\Sigma^*$  formula does not appear in  $\mathcal{A}$ . Now the inductive stage.

| 14. | $ A_{Sy}^{x} \to Prvt[\![A_{Sy}^{x}]\!] $                                                                                                                                                             | by assp                                         |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 15. | $(\forall x \leq Sy) \mathcal{A} \leftrightarrow (\forall x \leq y) \mathcal{A} \land \mathcal{A}_{Sy}^{x}$                                                                                           | with T13.130                                    |
| 16. | $Prvt\llbracket((\forall x \le y)\mathcal{A} \land \mathcal{A}_{Sy}^{x}) \to (\forall x \le Sy)\mathcal{A}\rrbracket$                                                                                 | 15 T13.68                                       |
| 17. | $\left[ (\forall x \le y) \mathcal{A} \to Prvt \llbracket (\forall x \le y) \mathcal{A} \rrbracket \right]$                                                                                           | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 18. | $\left  ((\forall x \le y) \mathcal{A} \land \mathcal{A}_{Sy}^{x}) \to Prvt \llbracket (\forall x \le y) \mathcal{A} \land \mathcal{A}_{Sy}^{x} \rrbracket \right $                                   | 14,17 as for $\land$                            |
| 19. | $\left  \begin{array}{c} (\forall x \leq Sy) \mathcal{A} \end{array} \right $                                                                                                                         | A $(g \rightarrow I)$                           |
| 20. | $\left  \left  (\forall x \leq y) \mathcal{A} \land \mathcal{A}_{Sy}^{x} \right  \right  $                                                                                                            | 15,19 ↔E                                        |
| 21. | $\left\  Prvt \llbracket (\forall x \le y) \mathcal{A} \land \mathcal{A}_{Sv}^{x} \rrbracket \right\ $                                                                                                | $18,20 \rightarrow E$                           |
| 22. | $\left  Prvt\llbracket (\forall x \le y) \mathcal{A} \land \mathcal{A}_{Sy}^{x} \rrbracket \to Prvt\llbracket (\forall x \le Sy) \mathcal{A} \rrbracket \right $                                      | 16 T13.69                                       |
| 23. | $Prvt\llbracket(\forall x \le Sy)A\rrbracket$                                                                                                                                                         | 22,21 →E                                        |
| 24. | $\left\  \operatorname{Prvt}\left[\left(\forall x \leq y\right) \mathcal{A}\right]\right]_{Sy}^{y}$                                                                                                   | 23, T13.70                                      |
| 25. | $ (\forall x \le Sy) \mathcal{A} \to Prvt \llbracket (\forall x \le y) \mathcal{A} \rrbracket_{Sy}^{\mathcal{Y}} $                                                                                    | $19-24 \rightarrow I$                           |
| 26. | $\left  \left( (\forall x \le y) \mathcal{A} \to Prvt \llbracket (\forall x \le y) \mathcal{A} \rrbracket \right)_{S_{Y}}^{Y} \right $                                                                | 25 abv                                          |
| 27. | $((\forall x \le y) \mathcal{A} \to Prvt\llbracket(\forall x \le y) \mathcal{A}\rrbracket) \to ((\forall x \le y) \mathcal{A} \to Prvt\llbracket(\forall x \le y) \mathcal{A}\rrbracket)_{S_{y}}^{y}$ | $17-26 \rightarrow I$                           |
| 28. | $(\forall x \le y) \mathcal{A} \to Prvt \llbracket (\forall x \le y) \mathcal{A} \rrbracket$                                                                                                          | 13,27 IN                                        |
|     |                                                                                                                                                                                                       |                                                 |

So  $PA \vdash (\forall x \leq y) \mathcal{A} \rightarrow Prvt \llbracket (\forall x \leq y) \mathcal{A} \rrbracket$ .

*Indct:* For any  $\Sigma^{\star}$  formula  $\mathcal{P}, \mathsf{PA} \vdash \mathcal{P} \rightarrow Prvt[\![\mathcal{P}]\!]$ .

Now it is a simple matter to pull together our results into the third derivability condition.

T13.72. For any formula  $\mathcal{P}, \mathsf{PA} \vdash \Box \mathcal{P} \rightarrow \Box \Box \mathcal{P}$ 

Consider any formula  $\mathcal{P}$  and the  $\Sigma_1$  sentence  $\Box \mathcal{P}$ . By T13.62, there is a  $(\Box \mathcal{P})^*$  such that  $PA \vdash \Box \mathcal{P} \leftrightarrow (\Box \mathcal{P})^*$ . By T13.71,  $PA \vdash (\Box \mathcal{P})^* \rightarrow Prvt[\![(\Box \mathcal{P})^*]\!]$ . Reason as follows.

1. $(\Box \mathcal{P})^* \to Prvt\llbracket(\Box \mathcal{P})^*\rrbracket$ T13.712. $\Box \mathcal{P} \leftrightarrow (\Box \mathcal{P})^*$ T13.623. $Prvt\llbracket(\Box \mathcal{P})^* \to \Box \mathcal{P}\rrbracket$ 2 T13.684. $Prvt\llbracket(\Box \mathcal{P})^*\rrbracket \to Prvt\llbracket\Box \mathcal{P}\rrbracket$ 3 T13.695. $\Box \mathcal{P} \to Prvt\llbracket\Box \mathcal{P}\rrbracket$ 2,1,4 HS

So PA  $\vdash \Box \mathcal{P} \rightarrow Prvt[\![\Box \mathcal{P}]\!]$ ; and since  $\Box \mathcal{P}$  is a sentence, this is to say, PA  $\vdash \Box \mathcal{P} \rightarrow Prvt(\overline{\ulcorner \Box \mathcal{P} \urcorner})$ ; which is to say, PA  $\vdash \Box \mathcal{P} \rightarrow \Box \Box \mathcal{P}$ .

So, at long last, we have a demonstration of D3 and so, given demonstration of the other conditions, of Gödel's second incompleteness theorem.

It is worth reflecting a bit on what we have accomplished. Beginning in section 13.2 we saw how the second theorem follows from the derivability conditions. The first is easy, the others not. In section 13.3 we introduced the idea of definition in PA and demonstrated that PA defines (friendly) recursive functions. 13.4 moves to demonstration of the second condition. The basic idea is straightforward: To show  $\Box(\mathcal{P} \to \mathcal{Q}) \to (\Box \mathcal{P} \to \Box \mathcal{Q})$ , suppose  $\Box(\mathcal{P} \to \mathcal{Q})$  and  $\Box \mathcal{P}$ ; then there are j and k such that PRFT(j,  $\lceil \mathcal{P} \to \mathcal{Q} \rceil$ ) and PRFT(k,  $\lceil \mathcal{P} \rceil$ ); so  $l = j \star k \star 2^{\lceil \mathcal{Q} \rceil}$  numbers a proof of  $\mathcal{Q}$ . But considerable effort is expended to show that PA has the resources for the relevant results. And we have just completed discussion of the third condition. If you have gotten this far you have seen the theorem proved — or at least how it is proved. Thus you have progressed considerably beyond the initial argument from the derivability conditions. One reason why it is typical to bypass the details is that there are *so many* details — not all themselves mathematically significant. Still, it is interesting to see *how* reasoning from chapter 12 is reflected in PA for the second theorem.

E13.52. Complete the demonstration of T13.71 by completing the remaining cases.

## **13.6** Reflections on the theorem

We conclude this chapter with a couple final reflections and consequences on our results.

#### **13.6.1** Consistency sentences

As is typical for demonstrations of Gödel's second theorem, we have let *Cont* be  $\sim Prvt(\overline{\ulcorner \emptyset = S\emptyset \urcorner})$ . But other sentences would do as well. So, where  $\mathcal{T}$  is any theorem of T, we might let  $Cont_a$  be  $\sim Prvt(\overline{\ulcorner \sim \mathcal{T} \urcorner})$ . In particular, we might simply consider the case where  $\sim \mathcal{T}$  is (equivalent to)  $\bot$  and set  $Cont_a = \sim Prvt(\overline{\ulcorner \bot \urcorner})$ . Then it is easy to see that PA  $\vdash Cont \leftrightarrow Cont_a$ .

 $PA \vdash \emptyset = S\emptyset \leftrightarrow \bot$ ; so with D1,  $PA \vdash Prvt(\overline{\neg \emptyset = S\emptyset \leftrightarrow \bot})$ ; so with D2,  $PA \vdash Prvt(\overline{\neg \emptyset = S\emptyset}) \leftrightarrow Prvt(\overline{\neg \bot})$ ; and contraposing,  $PA \vdash Cont \leftrightarrow Cont_a$ .

Again, one might let  $Cont_b = \neg \exists x (Prvt(x) \land \overline{Prvt}(x))$ , where  $\overline{Prvt}(x)$ ) just in case there is a proof of the negation of the formula with Gödel number x. Then T is consistent just in case there is no proof of a formula and its negation. Again,  $PA \vdash Cont \leftrightarrow Cont_b$ . This time the result requires a bit more work.

We show  $Prvt(\overline{\neg \emptyset = S\emptyset} \neg) \leftrightarrow \exists x (Prvt(x) \land \overline{Prvt}(x))$  and contrapose. First from left to right: Since a contradiction implies anything, PA  $\vdash \emptyset = S\emptyset \rightarrow A$  and PA  $\vdash \emptyset = S\emptyset \rightarrow \sim A$ . Reason as follows.

| 1.             | $\emptyset = S\emptyset \to A$                                                                                                                                                                                                                     | thrm                                    |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 2.             | $\emptyset = S\emptyset \to \sim A$                                                                                                                                                                                                                | thrm                                    |
| 3.<br>4.<br>5. | $ \begin{array}{c} \hline Prvt(\overline{\ulcorner}\emptyset = S\emptyset \to A^{\neg}) \\ Prvt(\overline{\ulcorner}\emptyset = S\emptyset \to \sim A^{\neg}) \\ Prvt(\overline{\ulcorner}\emptyset = S\emptyset^{\neg}) \end{array} \end{array} $ | 1 D1<br>2 D1<br>A ( $g \rightarrow I$ ) |
| 6.             | $Prvt(\overline{\ulcorner}\emptyset = S\emptyset^{\urcorner}) \to Prvt(\overline{\ulcorner}A^{\urcorner})$                                                                                                                                         | 3 D2                                    |
| 7.             | $Prvt(\overline{\ulcorner \emptyset = S\emptyset \urcorner}) \to Prvt(\overline{\ulcorner \sim A \urcorner})$                                                                                                                                      | 4 D2                                    |
| 8.             | $Prvt(\overline{\ulcorner}A\urcorner) \land Prvt(\overline{\ulcorner}\sim A\urcorner)$                                                                                                                                                             | 5,6,7                                   |
| 9.             | $\exists x (Prvt(x) \land \overline{Prvt}(x))$                                                                                                                                                                                                     | 8 ∃I                                    |
| 10.            | $Prvt(\overline{\ulcorner \emptyset = S\emptyset \urcorner}) \to \exists x(Prvt(x) \land \overline{Prvt}(x))$                                                                                                                                      | $7-9 \rightarrow I$                     |
|                |                                                                                                                                                                                                                                                    |                                         |

So PA  $\vdash Prvt(\overline{\neg \emptyset = S\emptyset^{\neg}}) \rightarrow \exists x(Prvt(x) \land \overline{Prvt}(x)).$ 

The other direction is not much more difficult. Insofar as the right-hand side is existentially quantified we shall not be able to depend on capture for any particular sentence. However we can reason with free variables. Working up from the bottom of a tree for  $\mathcal{P}$  say its *(sententially) basic* subformulas are the first subformulas without a truth functional main operator. Then where where  $\mathcal{P}$  has basic subformulas  $\mathcal{A}_1 \dots \mathcal{A}_n$ , let  $\mathcal{A}_1^* \dots \mathcal{A}_n^*$  be some variables  $a_1 \dots a_n$ ;  $\sim \mathcal{P}^*$  is meg(p); and  $(\mathcal{P} \to \mathcal{Q})^*$  is end(p,q). Then where  $\vdash_{ADs} \mathcal{P}$ , we shall be able to show PA  $\vdash$  $Wff(a_1) \land \dots \land Wff(a_n) \to \mathbb{P}rvt(\mathcal{P}^*)$ . Though we shall not go through all the details here, it is simple enough to see how the argument goes: The argument is an induction (of a sort we have seen before). Given an *ADs* derivation of  $\mathcal{P}$ , under the assumption  $Wff(a) \land \ldots \land Wff(b)$ , corresponding to any axiom  $\mathcal{A}$ , we may use the definition to get  $Axiom(\mathcal{A}^*)$  and then T13.57i for  $Prvt(\mathcal{A}^*)$ . Corresponding to an application of MP to some  $\mathcal{P}$  and  $\mathcal{P} \to \mathcal{Q}$ , use T13.54 to convert  $Prvt(cnd(\mathcal{P}^*, \mathcal{Q}^*))$  to  $Prvt(\mathcal{P}^*) \to Prvt(\mathcal{Q}^*)$  and apply MP. As an example, compare the following lines of the sort we might have obtained in chapter 3,

| 1. $A \to (B \to A)$                                 | A1     |
|------------------------------------------------------|--------|
| 2. $[A \to (B \to A)] \to [(A \to B) \to (A \to A)]$ | A2     |
| 3. $(A \to B) \to (A \to A)$                         | 1,2 MP |

and the derived version,

| 0.   | $\mathbb{W}_{ff}(a) \wedge \mathbb{W}_{ff}(b)$                                  | А           |
|------|---------------------------------------------------------------------------------|-------------|
| 1.1. | Axiom(cnd(a, cnd(b, a)))                                                        | 0 def       |
| 1.   | Prvt(cnd(a, cnd(b, a)))                                                         | 1.1 T13.57i |
| 2.1. | Axiom(cnd(cnd[a, cnd(b, a)], cnd[cnd(a, b), cnd(a, a)]))                        | 0 def       |
| 2.   | Prvt(cnd(cnd[a, cnd(b, a)], cnd[cnd(a, b), cnd(a, a)]))                         | 2.1 T13.57i |
| 3.1. | $\mathbb{P}rvt(cnd[a, cnd(b, a)]) \to \mathbb{P}rvt(cnd[cnd(a, b), cnd(a, a)])$ | 2 T13.54    |
| 3.   | Prvt(cnd[cnd(a,b),cnd(a,a)])                                                    | 1,3.1 MP    |
| 4.   | $Wff(a) \land Wff(b) \rightarrow Prvt(cnd[cnd(a, b), cnd(a, a)])$               | 0 - 3 DT    |

And similarly we might show the correlate to T3.9,  $\vdash \sim A \rightarrow (A \rightarrow B)$ , which we record as a theorem.

T13.73. PA  $\vdash Wff(a) \land Wff(b) \rightarrow Prvt(cnd[neg(a), cnd(a, b)]).$ 

But then we may reason as follows.

| 1.  | $\mathcal{W}ff(\overline{\ulcorner \emptyset = S\emptyset \urcorner})$                                                                  | cap                                             |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | $\exists x [Prvt(x) \land \overline{Prvt}(x)]$                                                                                          | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 3.  | $Prvt(j) \land \overline{Prvt}(j)$                                                                                                      | A (g 2 $\exists$ E)                             |
| 4.  | Wff(j)                                                                                                                                  | 3 T13.53                                        |
| 5.  | $\mathbb{P}rvt(cnd[meg(j), cnd(j, \overline{\forall \theta = S\theta^{\neg}})])$                                                        | 1,4 T13.73                                      |
| 6.  | $\mathbb{P}rvt(\operatorname{meg}(j)) \to \mathbb{P}rvt(\operatorname{cnd}(j, \overline{\neg \emptyset = S\emptyset} \overline{\neg}))$ | 5 T13.54                                        |
| 7.  | $\mathbb{P}rvt(cnd(j, \overline{\neg \emptyset = S\emptyset} \neg))$                                                                    | 3,6 ∧E,→E                                       |
| 8.  | $\mathbb{P}rvt(j) \to \mathbb{P}rvt(\overline{\neg \emptyset = S\emptyset} \neg)$                                                       | 7 T13.54                                        |
| 9.  | $Prvt(\overline{\neg \emptyset = S\emptyset^{\neg}})$                                                                                   | 3,8 ∧E,→E                                       |
| 10. | $Prvt(\overline{\neg \emptyset = S\emptyset} \neg)$                                                                                     | 2,3-9 ∃E                                        |
| 11. | $\exists x [Prvt(x) \land \overline{Prvt}(x)] \to Prvt(\overline{\ulcorner \emptyset = S\emptyset \urcorner})$                          | $210 \rightarrow \text{I}$                      |

So PA  $\vdash \exists x [Prvt(x) \land \overline{Prvt}(x)] \rightarrow Prvt(\overline{\ulcorner} \emptyset = S \emptyset \urcorner)$ . Again note that we reason with free variables under the assumption for  $\exists E$ .

Putting the parts together,  $PA \vdash Prvt(\overline{\neg \emptyset = S \emptyset \neg}) \Leftrightarrow \exists x (Prvt(x) \land \overline{Prvt}(x))$ ; and contraposing,  $PA \vdash Cont \Leftrightarrow Cont_b$ . So, to this extent, it does not matter which version of the consistency statement we select. Underlying the point that these different statements are equivalent is that anything follows from a contradiction — so that the one follows from the others.<sup>13</sup>

Having proved PA  $\nvDash$  Cont, we therefore have PA  $\nvDash$  Cont<sub>a</sub> and PA  $\nvDash$  Cont<sub>b</sub>. These are particular sentences which, like  $\mathscr{G}$ , are unprovable. And, now that we have the derivability conditions, with T13.11, neither are their negations provable. They have special interest because because each "says" that PA is consistent.

Still, it is worth asking whether there is some different sentence to express the consistency of PA such that *it* would be provable. Consider, for example a trick related to the Rosser sentence,

$$Prft_{c}(x, y) =_{def} Prft(x, y) \land (\forall v \le x) \sim Prft(v, \ulcorner \emptyset = S \emptyset \urcorner)$$

So  $Prft_c(x, y)$  requires a measure of consistency: it says x numbers a proof of the formula numbered y and no proof numbered less than or equal to x demonstrates inconsistency ( $\emptyset = \overline{1}$ ). Then so long as PA *is* consistent  $Prft_c(x, y)$  continues to capture PRFT(x, y).

- (i) Suppose ⟨m, n⟩ ∈ PRFT. (a) By capture, PA ⊢ Prft(m, n). And (b), since PA is consistent, there is no proof of a contradiction in PA and again by capture, PA ⊢ ~Prft(0, ¬Ø = Sج); PA ⊢ ~Prft(1, ¬Ø = Sج) and ... and PA ⊢ ~Prft(m, ¬Ø = Sج); so with T8.21, PA ⊢ (∀v ≤ m)~Prft(v, ¬Ø = Sج); so PA ⊢ Prft<sub>c</sub>(m, n).
- (ii) Suppose  $\langle \mathsf{m}, \mathsf{n} \rangle \notin \mathsf{PRFT}$ ; then by capture,  $\mathsf{PA} \vdash \sim Prft(\overline{\mathsf{m}}, \overline{\mathsf{n}})$ . So  $\mathsf{PA} \vdash \sim [Prft(\overline{\mathsf{m}}, \overline{\mathsf{n}}) \land (\forall v \leq \overline{\mathsf{m}}) \sim Prft(v, \overline{\ulcorner \emptyset = S\emptyset^{\urcorner}})]$ , which is to say  $\mathsf{PA} \vdash \sim Prft_c(\overline{\mathsf{m}}, \overline{\mathsf{n}})$ .

And, with T12.6,  $Prft_c(x, y)$  expresses PRFT(x, y) as well. Given this, set  $Prvt_c(y) =_{def} \exists x Prft_c(x, y)$ , and  $Cont_c =_{def} \sim Prvt_c( [ \overline{\emptyset} = S \emptyset ])$ . The idea, then is that  $Cont_c$  just in case PA is consistent.

But  $Prvt_c$  is designed so that  $Prvt_c(\overline{\neg \emptyset = S\emptyset})$  is impossible —  $Prvt_c(\overline{\neg \emptyset = S\emptyset})$  requires an x that numbers a proof of  $\emptyset = S\emptyset$  such that no  $v \le x$  numbers a proof of  $\emptyset = S\emptyset$ . This is impossible. So,

<sup>&</sup>lt;sup>13</sup>This equivalence breaks down in a non-classical logic which blocks *ex falso quodlibet*, the principle that from a contradiction anything follows. So, for example, in relevant logic, it might be that there is some A such that  $T \vdash A \land \sim A$  but  $T \nvDash \emptyset = S\emptyset$ . See Priest, *Non-Classical Logics* for an introduction to these matters.

So PA  $\vdash \sim \exists x [Prft(x, \forall \theta = S \theta^{\neg}) \land (\forall v \leq x) \sim Prft(v, \forall \theta = S \theta^{\neg})]$  which is to say PA  $\vdash Cont_c$ . This works because  $Prft_c$  builds in from the start that nothing numbers a proof of  $\theta = S \theta$ .

Intuitively, so long as PA is consistent,  $Prft_c$  works just fine. But if PA is not consistent, then it no longer tracks with proof. Similarly, if PA is consistent, *Cont<sub>c</sub>* plausibly "says" PA is consistent. But if PA is inconsistent then it no longer tracks with consistency. So its provability is, in this sense, uninteresting.

Insofar as  $Cont_c$  is provable it must be that  $Prvt_c$  fails one or more of the derivability conditions. To see how this might be, suppose PA is inconsistent and proofs are ordered according to their Gödel numbers as follows,

$$\mathcal{A} \to \mathcal{B}$$
  $\mathcal{A}$   $\emptyset = S\emptyset$   $\mathcal{B}$ 

Then  $PA \vdash Prvt(\overline{\ B}^{\neg})$ . However we get  $PA \vdash Prvt_c(\overline{\ A} \rightarrow B^{\neg})$  and  $PA \vdash Prvt_c(\overline{\ A}^{\neg})$  but, insofar as the proof of  $\mathcal{B}$  is numbered greater than the proof of  $\emptyset = S\emptyset$ ,  $PA \nvDash Prvt_c(\overline{\ B}^{\neg})$ . In this case, D2 fails, so that our main argument to show  $PA \nvDash Cont$  does not apply to  $Cont_c$ .

#### 13.6.2 Löb's Theorem

If *T* is a recursively axiomatized theory extending Q, by the diagonal lemma there is a sentence  $\mathcal{H}$ , of which  $\mathcal{G}$  is a sample, such that  $T \vdash \mathcal{H} \leftrightarrow \sim Prvt(\overline{\ulcorner\mathcal{H}})$  — that is,  $T \vdash \mathcal{H} \leftrightarrow \sim \Box \mathcal{H}$ . We have seen that such a formula  $\mathcal{H}$  is not provable. But, of course, by the diagonal lemma, there is another sentence  $\mathcal{H}$  such that  $T \vdash \mathcal{H} \leftrightarrow \Box \mathcal{H}$ . In a brief note, "A Problem Concerning Provability" L. Henkin asks whether this  $\mathcal{H}$  is provable. Supposing the first is analogous to the liar, 'this sentence is not true', the latter is like the truth-teller, 'this sentence is true'. An answer to Henkin's question follows immediately from Löb's theorem.

T13.74. Suppose *T* is a recursively axiomatized theory for which the derivability conditions D1 - D3 hold and  $T \vdash \Box \mathcal{P} \rightarrow \mathcal{P}$ , then  $T \vdash \mathcal{P}$ . *Löb's Theorem*.

Suppose *T* is a recursively axiomatized theory for which the derivability conditions hold and  $T \vdash \Box \mathcal{P} \rightarrow \mathcal{P}$ . Then the diagonal lemma obtains as well. Consider  $Prvt(y) \rightarrow \mathcal{P}$ ; this is an expression of the sort  $\mathcal{F}(y)$  to which the diagonal lemma applies; so by the diagonal lemma there is some  $\mathcal{H}$  such that  $T \vdash \mathcal{H} \leftrightarrow (Prvt(\overline{\ulcorner \mathcal{H} \urcorner}) \rightarrow \mathcal{P})$  — that is,  $T \vdash \mathcal{H} \leftrightarrow (\Box \mathcal{H} \rightarrow \mathcal{P})$ . Now reason as follows.

| 1.  | $\Box \mathscr{P} \to \mathscr{P}$                                                                                                                                   | Р            |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 2.  | $\mathcal{H} \leftrightarrow (\Box \mathcal{H} \rightarrow \mathcal{P})$                                                                                             | diag lemma   |
| 3.  | $[\mathcal{H} \to (\Box \mathcal{H} \to \mathcal{P})] \land [(\Box \mathcal{H} \to \mathcal{P}) \to \mathcal{H}]$                                                    | 2 abv        |
| 4.  | $\mathcal{H} \to (\Box \mathcal{H} \to \mathcal{P})$                                                                                                                 | 3 with T3.20 |
| 5.  | $\Box[\mathcal{H} \to (\Box \mathcal{H} \to \mathcal{P})]$                                                                                                           | 4 D1         |
| 6.  | $\Box[\mathcal{H} \to (\Box \mathcal{H} \to \mathcal{P})] \to [\Box \mathcal{H} \to \Box (\Box \mathcal{H} \to \mathcal{P})]$                                        | D2           |
| 7.  | $\Box \mathcal{H} \to \Box (\Box \mathcal{H} \to \mathcal{P})$                                                                                                       | 6,5 MP       |
| 8.  | $\Box(\Box\mathcal{H}\to\mathcal{P})\to(\Box\Box\mathcal{H}\to\Box\mathcal{P})$                                                                                      | D2           |
| 9.  | $\Box \mathcal{H} \to (\Box \Box \mathcal{H} \to \Box \mathcal{P})$                                                                                                  | 7,8 T3.2     |
| 10. | $[\Box \mathcal{H} \to (\Box \Box \mathcal{H} \to \Box \mathcal{P})] \to [(\Box \mathcal{H} \to \Box \Box \mathcal{H}) \to (\Box \mathcal{H} \to \Box \mathcal{P})]$ | A2           |
| 11. | $(\Box \mathcal{H} \to \Box \Box \mathcal{H}) \to (\Box \mathcal{H} \to \Box \mathcal{P})$                                                                           | 10,9 MP      |
| 12. | $\Box \mathcal{H} \to \Box \Box \mathcal{H}$                                                                                                                         | D3           |
| 13. | $\Box \mathcal{H} \to \Box \mathcal{P}$                                                                                                                              | 11,12 MP     |
| 14. | $\Box \mathcal{H} \to \mathcal{P}$                                                                                                                                   | 13,1 T3.2    |
| 15. | $(\Box \mathcal{H} \to \mathcal{P}) \to \mathcal{H}$                                                                                                                 | 3 with T3.19 |
| 16. | ${\mathcal H}$                                                                                                                                                       | 15,14 MP     |
| 17. | $\Box \mathcal{H}$                                                                                                                                                   | 16 D1        |
| 18. | $\mathcal{P}$                                                                                                                                                        | 14,17 MP     |

So  $T \vdash \mathcal{P}$ . Now return to our original question. Suppose  $T \vdash \mathcal{H} \leftrightarrow \Box \mathcal{H}$ ; then  $T \vdash \Box \mathcal{H} \rightarrow \mathcal{H}$ ; so by Löb's theorem,  $T \vdash \mathcal{H}$ . So if T proves  $\mathcal{H} \leftrightarrow \Box \mathcal{H}$ , then T proves  $\mathcal{H}$ .

Löb's theorem is at least surprising! From soundness, if  $\mathcal{P}$  is provable then  $\mathcal{P}$ , so that  $\Box \mathcal{P} \to \mathcal{P}$  is true. One might think that PA would "believe" in its soundness so that any such sentence would be provable. But from the theorem, if PA  $\nvDash \mathcal{P}$ , then PA  $\nvDash \Box \mathcal{P} \to \mathcal{P}$ . So in any case when PA  $\nvDash \mathcal{P}$ , PA does not "know" about its own souncness with respect to  $\mathcal{P}$ . Observe that insofar as  $\Box \mathcal{P} \to \mathcal{P}$  is true, for any case where PA  $\nvDash \mathcal{P}$  we have here another sentence true but not provable.

Löb's theorem depends upon the derivability conditions. Thus perhaps it is not surprising that Löb's theorem both results in and results from Gödel's second theorem: First, the second theorem follows from Löb's result.

Suppose PA is consistent and PA  $\vdash \sim \Box(\overline{0} = \overline{1})$ ; then with  $\lor I$  and Impl, PA  $\vdash \Box(\overline{0} = \overline{1}) \rightarrow \overline{0} = \overline{1}$ ; so by Löb's theorem PA  $\vdash \overline{0} = \overline{1}$ : but PA  $\vdash \overline{0} \neq \overline{1}$ ; so PA is inconsistent. Reject the assumption, PA  $\nvdash \sim \Box(\overline{0} = \overline{1})$ , which is to say PA  $\nvdash$  *Conpa*.

And Löb's theorem follows from the second theorem with consistency.

Suppose PA is consistent and PA  $\vdash \Box \mathcal{P} \rightarrow \mathcal{P}$ . Let  $\sim \mathcal{P}$  be an axiom of an extended theory PA'. Then PA'  $\vdash \Box \mathcal{P} \rightarrow \mathcal{P}$  and PA'  $\vdash \sim \mathcal{P}$ ; so PA'  $\vdash \sim \Box \mathcal{P}$ ; but since it extends PA, PA'  $\vdash \emptyset \neq \overline{1}$ , so PA'  $\vdash \emptyset = \overline{1} \rightarrow \mathcal{P}$  and by D1 with D2, PA'  $\vdash \Box(\emptyset = \overline{1}) \rightarrow \Box \mathcal{P}$ , so PA'  $\vdash \sim \Box \mathcal{P} \rightarrow \sim \Box(\emptyset = \overline{1})$ , which is to say PA'  $\vdash \sim \Box \mathcal{P} \rightarrow Cont'$ ; so PA'  $\vdash Cont'$ . But by the second theorem, if PA' is consistent, then PA'  $\nvDash Cont'$ ; so PA'  $\vdash \circ \mathcal{P}$ } and so PA' is consistent; this is impossible: so PA  $\vdash \mathcal{P}$ .

And we are in a position to make some applications to the logic of provability. With  $\Box \mathcal{P}$  for  $Prvt(\overline{\ulcorner \mathcal{P} \urcorner})$  by the derivability conditions we have shown that K4 is sound in the sense that if  $\vdash_{K_4} \mathcal{P}$ , then PA  $\vdash \mathcal{P}$ . It is natural to ask if the converse is true, whether K4 is complete in the sense that if PA  $\vdash \mathcal{P}$  then  $\vdash_{K_4} \mathcal{P}$ . But K4 is not so complete. To see this let K4LR be like K4 but with the addition of the *Löb rule*,

LR  $\mathcal{P}$  follows from  $\Box \mathcal{P} \to \mathcal{P}$ 

By Löb's theorem, K4LR is sound, so that if  $\vdash_{K4LR} \mathcal{P}$ , then PA  $\vdash \mathcal{P}$ . But by its appeal to the diagonal lemma, the proof of Löb's theorem is not entirely contained within K4. And, in fact, K4LR has theorems that that are not theorems of K4. In particular,  $\vdash_{K4LR} \Box (\Box \mathcal{P} \rightarrow \mathcal{P}) \rightarrow \Box \mathcal{P}$ ,

| 1. | $\Box[\Box(\Box\mathcal{P}\rightarrow\mathcal{P})\rightarrow\Box\mathcal{P}]\rightarrow[\Box\Box(\Box\mathcal{P}\rightarrow\mathcal{P})\rightarrow\Box\Box\mathcal{P}]$ | D2         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 2. | $\Box(\Box \mathcal{P} \to \mathcal{P}) \to (\Box \Box \mathcal{P} \to \Box \mathcal{P})$                                                                               | D2         |
| 3. | $\Box(\Box \mathcal{P} \to \mathcal{P}) \to \Box \Box(\Box \mathcal{P} \to \mathcal{P})$                                                                                | D3         |
| 4. | $\Box[\Box(\Box\mathcal{P}\rightarrow\mathcal{P})\rightarrow\Box\mathcal{P}]\rightarrow[\Box(\Box\mathcal{P}\rightarrow\mathcal{P})\rightarrow\Box\mathcal{P}]$         | 1,2,3 T6.4 |
| 5. | $\Box(\Box \mathcal{P} \to \mathcal{P}) \to \Box \mathcal{P}$                                                                                                           | 4 LR       |

From this,  $PA \vdash \Box(\Box \mathcal{P} \rightarrow \mathcal{P}) \rightarrow \Box \mathcal{P}$ . But by E13.55 just below,  $\not\models_{K4} \Box(\Box \mathcal{P} \rightarrow \mathcal{P}) \rightarrow \Box \mathcal{P}$  so that  $\not\models_{K4} \Box(\Box \mathcal{P} \rightarrow \mathcal{P}) \rightarrow \Box \mathcal{P}$ . So PA proves something that K4 does

not. So K4 is not complete in the sense that if  $PA \vdash \mathcal{P}$  then  $\vdash_{K4} \mathcal{P}$ . In fact K4LR is complete — but that is a discussion for another place (see Boolos, *The Logic of Provability*).<sup>14</sup>

- E13.53. Provide the argument to show that if  $\vdash_{ADs} \mathcal{P}$ , then  $PA \vdash Wff(a_1) \land \ldots \land Wff(a_n) \to \mathbb{P}rvt(\mathcal{P}^*)$ .
- E13.54. In the middle of a restless night dreaming about PA you bolt out of bed. "Eureka!" you cry, "I have discovered a simple means for proving the consistency of arithmetic." Your idea is to show  $PA \vdash \Box(\overline{0} = \overline{1}) \rightarrow \overline{0} = \overline{1}$ ; then from  $PA \vdash \overline{0} \neq \overline{1}$  it follows that  $PA \vdash \sim \Box(\overline{0} = \overline{1})$  and so that  $PA \vdash Conpa$ . Explain why this is one of those ideas that seems better at night than in the cold light of day.
- E13.55. For those with some knowledge of semantics for modal logic: K4 is the normal modal logic with a transitive access relation. Find a K4 interpretation to show  $\not\vDash_{K4} \Box(\Box \mathcal{P} \rightarrow \mathcal{P}) \rightarrow \Box \mathcal{P}$ . Hint: Your interpretation will have infinitely many worlds.
- E13.56. Reasoning for Löb's theorem is closely related to *Curry's paradox*. For this read  $\Box \mathcal{P}$  to say that ' $\mathcal{P}$ ' is *true* rather than that it is provable. Consider some false sentence  $\mathcal{F}$ , as 'I have two heads'. Let  $\mathcal{C}$  be the sentence, "If this sentence is true then  $\mathcal{F}$ " that is, "If ' $\mathcal{C}$ ' is true then  $\mathcal{F}$ ." Take as given,

| D1′. | if $\mathcal{P}$ , then $\Box \mathcal{P}$                                      | truth analog to D1 |
|------|---------------------------------------------------------------------------------|--------------------|
| D2′. | $\Box(\mathcal{P} \to \mathcal{Q}) \to (\Box \mathcal{P} \to \Box \mathcal{Q})$ | truth analog to D2 |
| D3′. | $\Box \mathcal{P} \to \Box \Box \mathcal{P}$                                    | truth analog to D3 |

And as premises,

| 1′. | $\Box \mathcal{F} \to \mathcal{F}$                               | from nature of truth (Tarski's schema T) |
|-----|------------------------------------------------------------------|------------------------------------------|
| 2'. | $\mathcal{C} \leftrightarrow (\Box \mathcal{C} \to \mathcal{F})$ | from the definition of $\mathcal C$      |

Use these principles to show that you have two heads. Reflect on this result: When  $\Box$  indicates provability, we are in a position to deny (1) that PA  $\vdash \Box \mathcal{P} \rightarrow \mathcal{P}$  when PA  $\vdash \sim \mathcal{P}$ . But it may seem less plausible to deny (1'). Supposing you do not have two heads, what do you think is wrong?

<sup>&</sup>lt;sup>14</sup>K4LR is equivalent to a logic (GL) like K4 without the Löb rule but with D3 replaced by  $\Box(\Box \mathcal{P} \rightarrow \mathcal{P}) \rightarrow \Box \mathcal{P}$ . This is the usual form for the logic of provability. We have just seen that K4LR proves anything proved by GL.

- E13.57. For each of the following concepts, explain in an essay of about two pages, so that (college freshman) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.
  - a. The essential elements contributing to the proof (from this chapter) of the incompleteness of arithmetic.
  - b. The essential elements contributing to the demonstration that PA does not prove its own consistency
# Final theorems of chapter 13 T13.55. Further results for *Termsub*. T13.56. Further results for Formsub. T13.57. Results for Gen and A4. T13.58. Results for iterated substitutions. T13.59. For any $\mathcal{P}$ of the form t = x, there is a $\mathcal{P}^{\star}$ such that $PA \vdash \mathcal{P} \leftrightarrow \mathcal{P}^{\star}$ . T13.60. For any $\Delta_0$ formula $\mathcal{P}$ , there is a normal formula $\mathcal{P}^*$ such that $\vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$ . T13.61. For any $\Delta_0$ formula $\mathcal{P}$ there is a $\Sigma^*$ formula $\mathcal{P}^*$ such that $PA \vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$ . T13.62 For any $\Sigma_1$ formula $\mathcal{P}$ there is a $\Sigma^*$ formula $\mathcal{P}^*$ such that $PA \vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$ . T13.63 PA $\vdash Wff(sub_i(\overline{\neg \mathcal{P} \neg}, \vec{y})).$ T13.64 For arbitrary $\vec{u}, \vec{v}, sub_i(\overline{\lceil \mathcal{P} \rceil}, x_{x_1} \dots x_{x_i}, \vec{u}) = sub_i(\overline{\lceil \mathcal{P} \rceil}, x_{x_1} \dots x_{x_i}, \vec{v}).$ T13.65 For any *i*, PA $\vdash$ $\mathfrak{sub}_{i+1}(\overline{\ulcornerP}, x_a, x_{y_1} \dots x_{y_n}) = \mathfrak{sub}_{i+1}(\overline{\ulcornerP}, x_{y_1} \dots x_{y_i}, x_a, x_{y_1} \dots x_{y_n})$ $x_{\mathbf{y}_{(i+1)}} \dots x_{\mathbf{y}_n}$ ). T13.66 If $x_a$ is not free in $\mathcal{P}$ , then PA $\vdash \mathfrak{sub}_{i+1}(\overline{\ulcorner\mathcal{P}}\urcorner, x_{y_1} \dots x_{y_i}, x_a, x_{y_{(i+1)}} \dots x_{y_n}) = \mathfrak{sub}_i(\overline{\ulcorner\mathcal{P}}\urcorner, x_{y_1} \dots x_{y_n})$ $x_{y_1} \ldots x_{y_i}, x_a, x_{y_{(i+1)}} \ldots x_{y_n})$ T13.67 If the variables of $\vec{y}$ and $\vec{z}$ are ordered by their subscripts and $\vec{y}$ and $\vec{z}$ are the same except that $\vec{z}$ includes some variables not in $\vec{y}$ (and so not free in $\mathcal{P}$ ), then PA $\vdash sub(\lceil \mathcal{P} \rceil, \vec{y}) =$ $sub(\overline{\ulcorner \mathcal{P} \urcorner}, \vec{z}).$ T13.68 If $PA \vdash \mathcal{P}$ , then $PA \vdash Prvt[\![\mathcal{P}]\!]$ — analog to D1 T13.69 $PA \vdash Prvt[\mathcal{P} \to \mathcal{Q}] \to (Prvt[\mathcal{P}] \to Prvt[\mathcal{Q}])$ — analog to D2 T13.70 If t is one of $\emptyset$ , y or Sy, then PA $\vdash Prvt[\mathscr{P}_t^x] \leftrightarrow Prvt[\mathscr{P}_t^x]$ . T13.71 For any $\Sigma^*$ formula $\mathscr{P}, \mathsf{PA} \vdash \mathscr{P} \to Prvt[\![\mathscr{P}]\!]$ . T13.72 For any formula $\mathcal{P}, \mathsf{PA} \vdash \Box \mathcal{P} \rightarrow \Box \Box \mathcal{P}$ -D3T13.73 PA $\vdash Wff(a) \land Wff(b) \rightarrow Prvt(cnd[meg(a), cnd(a, b)]).$ T13.74 Suppose T is a recursively axiomatized theory for which the derivability conditions D1 -D3 hold and $T \vdash \Box \mathcal{P} \rightarrow \mathcal{P}$ , then $T \vdash \mathcal{P}$ . Löb's Theorem.

# Chapter 14

# Logic and Computability

In this chapter, we begin with the notion of a Turing machine, and a Turing computable function. It turns out that the Turing computable functions are the same as the recursive functions. Once we have seen this, it is a short step from a problem about computability — the *halting problem*, to another demonstration of essential results. Further, according to Church's thesis, the Turing computable functions, and so the recursive functions, are *all* the algorithmically computable functions. This converts results like T12.22 according to which no recursive relation is true just of (numbers for) theorems of predicate logic, into ones according to which no algorithmically decidable relation is true just of theorems of predicate logic — where this result is much more than a curiosity about an obscure class of functions.

# 14.1 Turing Computable Functions

We begin saying what a Turing machine, and the Turing computable functions are. Then we turn to demonstrations that Turing computable functions are recursive, and recursive functions are Turing computable.

#### 14.1.1 Turing Machines

A Turing machine is a simple device which, despite its simplicity, is capable of computing any recursive function — and capable of computing whatever is computable by the more sophisticated computers with which we are familiar.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>So called after Alan Turing, who originally proposed them hypothetically, prior to the existence of modern computing devices, for purposes much like our own. Turing went on to develop electromechanical machines for code breaking during World War II, and was involved in development of early

We may think of a Turing machine as consisting of a *tape*, *machine head*, and a finite set of *instruction quadruples*.<sup>2</sup>



The tape is a sequence of cells, infinite in two directions, where the cells may be empty or filled with 0 or 1. The machine head, indicated by arrow, reads or writes the contents of a given cell, and moves left or right, one cell at a time. The head is capable of five actions: (L) move left one cell; (R) move right one cell; (B) write a blank; (0) write a zero; (1) write a one. When the head is over a cell it is capable of reading or writing the contents of that cell.

Instruction quadruples are of the sort,  $\langle q_1, C, A, q_2 \rangle$  and constitute a function in the sense that no two quadruples have  $\langle q_1, C \rangle$  the same but  $\langle A, q_2 \rangle$  different. For an instruction quadruple: (q<sub>1</sub>) labels the quadruple; (C) is a possible state or content of the scanned cell; (A) is one of the five actions; (q<sub>2</sub>) is a label for some (other) quadruples. In effect, an instruction quadruple q<sub>1</sub> says, "if the current cell has content C, perform action A and go to instruction q<sub>2</sub>." The machine begins at an instruction with label q<sub>1</sub> = 1, and stops after executing an instruction with q<sub>2</sub> = 0.

For a simple example, consider the following quadruples, along with the tape (A) from above.

2

|     | ⟨1, 0, R, 1⟩                 | if 0 move right                            |
|-----|------------------------------|--------------------------------------------|
| (B) | (1, 1, 0, 1)                 | if 1 write 0                               |
|     | $\langle 1, B, L, 2 \rangle$ | end of word, back up and go to instruction |
|     | $\langle 2, 0, L, 2 \rangle$ | while value is 0, move left                |
|     | $\langle 2, B, R, 0 \rangle$ | end of word, return right and stop         |

The machine begins at label 1. In this case, the head is over a cell with content 1; so from the second instruction the machine writes 0 in that cell and returns to instruction label 1. Because the cell now contains 0, the machine reads 0; so, from instruction 1, the head moves right one space and returns to instruction 1 again. Now the machine reads 0; so it moves right again and goes returns to instruction 1. Because it reads 1, again the machine writes 0 and goes to instruction 1 where it moves right and goes to 1. Now the head is over a blank; so it moves left one cell, and goes to 2. At instruction 2, the head moves left so long as the tape reads 0. When the head reaches a blank, it moves right one space, back over the word, and stops. So the result is,

stored-program computers after the war.

<sup>&</sup>lt;sup>2</sup>Specifications of Turing machines differ somewhat. So, for example, some versions allow instruction quintuples, and allow different symbols on the tape. Nothing about what is computable changes on the different accounts.



In the standard case, we begin with a blank tape except for one or more binary "words" where the words are separated by single blank cells, and the machine head is over the left-most cell of the left-most block. The above example is a simple case of this sort, but also,



And in the usual case the program halts with the head over the leftmost cell of a single word on the tape. A total function  $f(\vec{x})$  is *Turing computable* when, beginning with  $\vec{x}$  on the tape in binary digits, the result is  $f(\vec{x})$ .<sup>3</sup> Thus our little program computes zero(x), beginning with any x, and returning the value 0.

It will be convenient to require that programs are *dextral* (right-handed), in the sense that (a) in executing a program we never write in a cell to the left of the initial cell, or scan a cell more than one to the left of the initial cell; and (b) when the program halts, the head is over the initial cell and the final result begins in the same cell as the initial scanned cell. This does not affect what can be computed, but aids in predicting results when Turing programs are combined. Our little program is dextral.

A program to compute suc(x) is not much more difficult. Let us begin by thinking about what we want the program to do. With a three-digit input word, the desired outputs are,

| 000 | $\implies$ | 001 | 100 | $\implies$        | 101  |
|-----|------------|-----|-----|-------------------|------|
| 001 | $\implies$ | 010 | 101 | $\implies$        | 110  |
| 010 | $\implies$ | 011 | 110 | $\Longrightarrow$ | 111  |
| 011 | $\implies$ | 100 | 111 | $\implies$        | 1000 |

Moving from the right of the input word, we want to turn any one to a zero until we can turn a zero (or a blank) to a one. Here is a way to do that.

 $<sup>^{3}</sup>$ A Turing machine might calculate the values a function that is *partial* in the sense that it does not return a value for every input string. We are particularly interested in total functions.

|     | $\langle 1, 0, R, 1 \rangle$ | move to end of word              |
|-----|------------------------------|----------------------------------|
| (E) | $\langle 1, 1, R, 1 \rangle$ |                                  |
|     | $\langle 1, B, L, 5 \rangle$ |                                  |
|     | $\langle 5, 0, 1, 7 \rangle$ | flip 1 to 0 then 0 or blank to 1 |
|     | $\langle 5, 1, 0, 6 \rangle$ |                                  |
|     | $\langle 5, B, 1, 7 \rangle$ |                                  |
|     | $\langle 6, 0, L, 5 \rangle$ |                                  |
|     | $\langle 7, 0, L, 7 \rangle$ | return to start                  |
|     | $\langle 7, 1, L, 7 \rangle$ |                                  |
|     | $\langle 7, B, R, 0 \rangle$ |                                  |

Do not worry about the gap in instruction labels. Nothing so-far requires instruction labels be sequential. This program moves the head to the right end of the word; from the right, flips one to zero until it finds a zero or blank; once it has acted on a zero or blank, it returns to the start.

So-far, so-good. But there is a problem with this program: In the case when the input is, say,



the output is,



with the first symbol one to the left of the initial position. We turn the first blank to the left of the initial position to a one. So the program is not dextral. The problem is solved by "shifting" the word in the case when it is all ones.

|                | if solid ones shift right    | flip 1 to 0 then 0 to 1      |
|----------------|------------------------------|------------------------------|
|                | $\langle 1, 0, R, 4 \rangle$ | (5, 0, 1, 7)                 |
|                | $\langle 1, 1, R, 1 \rangle$ | (5, 1, 0, 6)                 |
|                | $\langle 1, B, 1, 2 \rangle$ | $\langle 5, B, 1, 7 \rangle$ |
|                | (2, 1, L, 2)                 | $\langle 6, 0, L, 5 \rangle$ |
| $(\mathbf{C})$ | $\langle 2, B, R, 3 \rangle$ |                              |
| (U)            |                              | return to start              |
|                | (3, 1, B, 3)                 | (7, 0, L, 7)                 |
|                | $\langle 3, B, R, 4 \rangle$ | (7, 1, L, 7)                 |
|                |                              | $\langle 7, B, R, 0 \rangle$ |
|                | $\langle 4, 0, R, 4 \rangle$ |                              |
|                | $\langle 4, 1, R, 4 \rangle$ |                              |
|                | $\langle 4, B, L, 5 \rangle$ |                              |

States 5, 6 and 7 are as before. This time we test to see if the word is all ones. If not, the program jumps to 4 where it goes to the end, and to the routine from before. If it gets to the end without encountering a zero, it writes a one, returns to the beginning and deletes the initial symbol — so that the entire word is shifted one to the right. Then it goes to instruction 4 so that it goes to the right and works entirely as before. This time the output from (F) is,



as it should be. It is worthwhile to follow the actual operation of this and the previous program on one of the many Turing simulators available on the web (see E14.1).

More complex is a copy program to take an input x and return x.x. This program has four basic elements.

- (1) A sort of control section which says what to do, depending on what sort of character we have in the original word.
- (2) A program to copy 0; this will write a blank in the original word to "mark the spot"; move right to the second blank (across the blank between words, and to the blank to be filled); write a 0; move left to the original position, and replace the 0.
- (3) Similarly a program to copy 1; this will write a blank in the original word to mark the spot; move right to the second blank; write a 1; move left to the original position, and replace the 1.
- (4) And a program to move the head back to the original position when we are done.

Here is a program to do the job.

|                 | (1) Control                   | (2) <i>Copy</i> 0              | (3) <i>Copy</i> 1              |
|-----------------|-------------------------------|--------------------------------|--------------------------------|
|                 | (1, 0, B, 10)                 | move from blank                | move from blank                |
|                 | ⟨1, 1, B, 20⟩                 | (10, B, R, 11)                 | $\langle 20, B, R, 21 \rangle$ |
|                 | $\langle 1, B, L, 30 \rangle$ |                                |                                |
|                 |                               | right 2 blanks: 0              | right 2 blanks: 1              |
|                 | (4) Finish                    | $\langle 11, 0, R, 11 \rangle$ | (21, 0, R, 21)                 |
|                 | start of word                 | $\langle 11, 1, R, 11 \rangle$ | (21, 1, R, 21)                 |
|                 | (30, 0, L, 30)                | (11, B, R, 12)                 | $\langle 21, B, R, 22 \rangle$ |
|                 | (30, 1, L, 30)                |                                |                                |
|                 | $\langle 30, B, R, 0 \rangle$ | $\langle 12, 0, R, 12 \rangle$ | (22, 0, R, 22)                 |
|                 |                               | $\langle 12, 1, R, 12 \rangle$ | (22, 1, R, 22)                 |
| $(\mathbf{II})$ |                               | (12, B, 0, 13)                 | (22, B, 1, 23)                 |
| (п)             |                               |                                |                                |
|                 |                               | left 2 blanks: 0               | left 2 blanks: 1               |
|                 |                               | (13, 0, L, 13)                 | $\langle 23, 0, L, 23 \rangle$ |
|                 |                               | (13, 1, L, 13)                 | $\langle 23, 1, L, 23 \rangle$ |
|                 |                               | $\langle 13, B, L, 14 \rangle$ | $\langle 23, B, L, 24 \rangle$ |
|                 |                               | (14. 0. L. 14)                 | (24, 0, L, 24)                 |
|                 |                               | (14, 1, L, 14)                 | (24, 1, L, 24)                 |
|                 |                               | (14, B, 0, 15)                 | (24, B, 1, 25)                 |
|                 |                               | next char: return              | next char: return              |
|                 |                               | (15, 0, R, 1)                  | (25, 1, R, 1)                  |

You should be able to follow each stage.

- E14.1. Study the copy program from the text along with the samples zero and suc from the text website (http://rocket.csusb.edu/~troy/int-ml.html). Then, starting with the file blank.rb, create Turing programs to compute the following. It will be best to submit your programs electronically.
  - a. copy(n). Takes input m and returns m.m. This is a simple implementation of the program from the text.
  - b. Create a Turing program to compute pred(n). Hint: Give your function two separate exit paths: One when the input is a string of 0s, returning with the input. In any other case, the output for input n is the predecessor of n. The method simply flips that for successor: From the right, change 0 to 1 until some 1 can be flipped to 0. There is no need to worry about the addition of a possible leading 0 to your result.

c. Create a Turing program to compute  $ident_3^3(x, y, z)$ . For x.y.z observe that z might be longer than x and y put together; but, of course, it is not longer than x, y and z put together. Here is one way to proceed: Move to the start of the third word; use copy to generate x.y.z.z then plug spaces so that you have one long first word, xoyoz.z; you can mark the first position of the long word with a blank (and similarly, each time you write a character, mark the next position to the right with a blank so that you are always writing into the second blank up from the one where the character is read); then it is a simple matter of running a basic copy routine from right-to-left, and erasing junk when you are done.

#### 14.1.2 Turing Computable Functions are Recursive

We turn now to showing that the (dextral) Turing computable functions are the same as the recursive functions. Our first aim is to show that every Turing computable function is recursive. But we begin with the simpler result that there is a recursive enumeration of Turing machines. We shall need this as we go forward, and it will let us compile some important preliminary results along the way.

The method is by now familiar. It will require some work, but we can do it in the same way as we approached recursive functions before. Begin by assigning to each symbol a *Gödel Number*.

| a. | g[B] = 3 | f. | g[L] = 9           |
|----|----------|----|--------------------|
| b. | g[0] = 5 | g. | g[R] = 11          |
| c. | g[1] = 7 | h. | $g[q_i] = 13 + 2i$ |

For a quadruple, say,  $\langle q_1, B, L, q_1 \rangle$ , set  $g = 2^{15} \times 3^3 \times 5^9 \times 7^{15}$ . And for a sequence of quadruples with numbers  $g_0, g_1 \dots g_n$  the super Gödel number  $g_s = 2^{g_0} \times 3^{g_1} \times \dots \times \pi_n^{g_n}$ . Again, for convenience we frequently refer to the individual symbol codes with angle quotes around the symbol, so  $\langle B \rangle = 3$  where  $\lceil B \rceil$ , the number of the expression is  $2^3$ .

Now we define a recursive function and some simple recursive relations,

$$\begin{split} \mathsf{lb}(\mathsf{v}) &= 13 + 2\mathsf{v} \\ \mathsf{LB}(\mathsf{n}) =_{\mathsf{def}} (\exists \mathsf{v} \leq \mathsf{n})(\mathsf{n} = \mathsf{lb}(\mathsf{v})) \\ \mathsf{SYM}(\mathsf{n}) =_{\mathsf{def}} \mathsf{n} = \langle \mathsf{B} \rangle \lor \mathsf{n} = \langle \mathsf{0} \rangle \lor \mathsf{n} = \langle \mathsf{1} \rangle \\ \mathsf{ACT}(\mathsf{n}) =_{\mathsf{def}} \mathsf{sym}(\mathsf{n}) \lor \mathsf{n} = \langle \mathsf{L} \rangle \lor \mathsf{n} = \langle \mathsf{R} \rangle \\ \mathsf{QUAD}(\mathsf{n}) =_{\mathsf{def}} \mathsf{len}(\mathsf{n}) = 4 \land \mathsf{LB}(\mathsf{exp}(\mathsf{n}, \mathsf{0})) \land \mathsf{SYM}(\mathsf{exp}(\mathsf{n}, \mathsf{1})) \land \mathsf{ACT}(\mathsf{exp}(\mathsf{n}, 2)) \land \mathsf{LB}(\mathsf{exp}(\mathsf{n}, 3)) \end{split}$$

lb(v) is the Gödel number of instruction v. Then the relations are true when n is the number for an instruction label, a symbol, an action and a quadruple. In particular, a code for a quadruple numbers a sequence of four symbols of the appropriate sort.

We are now ready to number the Turing machines. For this, adopt a simple modification of our original specification: We have so-far supposed that a Turing machine might lack any given quadruple, say (3, 1, x, y). In case it lacks this quadruple, if the machine reads 1 and is sent to state 3 it simply "hangs" with no place to go. Where q is the largest label in the machine, we now suppose that for any  $p \leq q$ , if no (p, C, x, y) is a member of the machine, the machine is simply supplemented with (p, C, C, p). The effect is as before: In this case, there is a place for the machine to go; but if the machine goes to (p, C, C, p), it remains in that state, repeating it over and over. In the case of label 0, the states are added to the machine, but serve no function, as the zero label forces halt. Further, we suppose that the quadruples in a Turing machine are taken in order, (0, 0, x, y), (0, 1, x, y), (0, B, x, y), (1, 0, x, y), (1, 1, x, y), ... (q, 0, x, y), (q, 1, x, y), (q, B, x, y). So each Turing machine has a unique specification. On this account, a Turing machine halts only when it reaches a state of the sort (x, x, x, 0). And the ordered specification itself guarantees the functional requirement - that there are no two quadruples with the first inputs the same and the latter different. So for TMACH(n),

 $(\exists w < len(n))(len(n) = 3 \times (w + 2)) \land (\forall v, 3 \times v + 2 < len(n))(\forall x \le n) \{ [x = exp(n, 3 \times v) \rightarrow (QUAD(x) \land exp(x, 0) = lb(v) \land exp(x, 1) = (0))] \land [x = exp(n, 3 \times v + 1) \rightarrow (QUAD(x) \land exp(x, 0) = lb(v) \land exp(x, 1) = (1))] \land [x = exp(n, 3 \times v + 2) \rightarrow (QUAD(x) \land exp(x, 0) = lb(v) \land exp(x, 1) = (B))] \}$ 

Given our modifications, the length of a Turing machine must be a non-zero multiple of three including at least the initial labels zero and one. So for some w,  $len(n) = 3 \times (w + 2)$ . Then for each initial label v, there are three quadruples; so there are quadruples  $3 \times v$ ,  $3 \times v + 1$  and  $3 \times v + 2$ , taken in the standard order, and each with initial label v. Since n is a super Gödel number, and each x the number of a quadruple it is the exponents of x that reveal the instruction label and cell content.

But now it is easy to see,

T14.1. There is a recursive enumeration of the Turing machines. Set,

 $mach(0) = \mu z[TMACH(z)]$  $mach(Sn) = \mu z[z > mach(n) \land TMACH(z)]$ 

Since mach(n) is is a recursive function from the natural numbers onto the Turing machines, they are recursively enumerable. While this enumeration is recursive, it is not primitive recursive.

Now, as we work toward a demonstration that Turing computable functions are recursive, let us pause for some key ideas. Consider a tape divided as follows,



We shall code the tape with a pair of numbers. Where at any stage the head divides the tape into left and right parts, first a standard code for the right hand side,  $\lceil 10110 \rceil$ , and second, a code for the left side read from the inside out  $\lceil B01 \rceil$ . Taken as a pair, these numbers record at once contents of the tape, and the position of the head — which is always under the first digit of the coded right number.

Say a dextral Turing machine computes a total function f(n) = m. Let us suppose that we have functions code(n) and decode(m) to move between m and n and their codes (where this requires moving from the numbers m and n through their binary representations, and then to the codes). So we concentrate on the machine itself, and wish to track the status of the Turing machine i given input n for each step j of its operation. In order to track the status of the machine, we shall require functions left(i, n, j), right(i, n, j) to record codes of the left and right portions of the tape, and state(i, n, j) for the current quadruple state of the machine.

First, as we have observed, for any Turing machine, there is a unique quadruple for any instruction label and tape value. Thus, machs(i, m, n) numbers a quadruple as a function of the number of the machine in the enumeration, and Gödel numbers for initial label and tape value. Thus machs(i, m, n) is,

 $(\mu y \leq mach(i))(\exists v < len(mach(i)))[y = exp(mach(i), v) \land exp(y, 0) = m \land exp(y, 1) = n]$ 

So machs(i, m, n) returns the number of that quadruple in machine i whose initial label has number m, and initial value number n. Since the machine is a function, there must be a unique state with those initial values.

In addition, where  $n = a \star b$ , let us adopt a sort of converse to concatenation such that  $a \circ n = b$ .

$$a \circ n = (\mu x \le n)(\forall i < len(n) - len(a))(exp(x, i) = exp(n, len(a) + i))$$

So we want the least x such that its length is the length of n less the length of a, and the values of x at any position i are the same as those of n at len(a) + i. Thus  $a \circ n$  "lops off" the portion whose length is that of a from the expression numbered n.

Recall that our Turing machine is to calculate a function f(n) = m. Initial values of left(i, n, j), right(i, n, j) and state(i, n, j) are straightforward.

$$\begin{split} & \text{left}(i,n,0) = \ulcorner BB \urcorner \\ & \text{right}(i,n,0) = \text{code}(n) \\ & \text{state}(i,n,0) = \text{machs}(i,\langle 1 \rangle, \text{exp}(\text{right}(i,n,0),0)) \end{split}$$

On a dextral machine, the machine never writes to the left of its initial position, and the head never moves more than one position to the left of its initial position; so we simply set the value of the left portion to a couple of blanks. This ensures that there is enough "space" on the left for the machine to operate (and that, for any position of the machine head, there is always a left portion of the tape). The starting right number is just the code of the input to the function. And the initial state value is determined by the input label 1 and the first value on the tape which is coded by the first exponent of right(i, n, 0).

For the successor values,

$$\mathsf{left}(i, n, Sj) = \begin{cases} \mathsf{left}(i, n, j) & \text{if} \quad \mathsf{sYM}(\mathsf{exp}(\mathsf{state}(i, n, j), 2)) \\ 2^{\mathsf{exp}(\mathsf{right}(i, n, j), 0)} \star \mathsf{left}(i, n, j) & \text{if} \quad \mathsf{exp}(\mathsf{state}(i, n, j), 2) = \langle \mathsf{R} \rangle \\ 2^{\mathsf{exp}(\mathsf{left}(i, n, j), 0)} \circ \mathsf{left}(i, n, j) & \text{if} \quad \mathsf{exp}(\mathsf{state}(i, n, j), 2) = \langle \mathsf{L} \rangle \end{cases}$$

If a symbol is written in the current cell, there is no change in the left number. If the head moves to the left or the right, the first value is either appended or deleted, depending on direction. And similarly for right(i, n, Sj) but with separate clauses for each of the symbols that may be written onto the first position. And now the successor value for state is determined by the Turing machine together with the new label and the value under the head after the current action has been performed.

state(i, n, Sj) = machs(i, exp(state(i, n, j), 3), exp(right(i, n, Sj), 0))

The machine jumps to a new state depending on the label and value on the tape. Observe that we are here proceeding by *simultaneous* recursion, defining multiple functions together. It should be clear enough how this works (see E12.25, p. 595).

If the machine enters a zero state then it halts. So set,

 $stop(i, n, j) =_{def} (\mu y \le len(mach(i)))(exp(state(i, n, j), 0) = lb(y))$ 

exp(state(i, n, j), 0) is the number of of the instruction label. So exp(state(i, n, j), 0) = lb(y) when y is the label. Since there always is some such label, exp(state(i, n, j), 0) = lb(y) is regular. And stop(i, n, j) takes the value 0 just in case machine i with input n is halted at step j. When the first member of state(i, n, j) codes zero, the machine is

halted, otherwise it is running. So y takes the value zero just in case the machine is halted.

T14.2. Every Turing computable function is a recursive function. Supposing Turing machine i computes a function f(n),

$$f(n) = decode(right(i, n, \mu j[stop(i, n, j) = 0]))$$

When a dextral Turing machine stops, the value of right is just the code of its output value m; so if we decode right(i, n, j) at that stage, we have the value of the function calculated by the Turing machine. Since the Turing computable function is total, there must be some j where the machine is stopped; so the minimization operates on a regular function. Since this function is recursive, the function calculated by Turing machine i is a recursive function.

- E14.2. Find a recursive function to calculate right(i, n, j). Hint: You might find a combination of  $\star$  and  $\circ$  useful for the case when a symbol is written into the first cell.
- E14.3. Find a recursive function to calculate decode(n).
- E14.4. Suppose a "dual" Turing machine has two tapes, with a machine head for each. Instructions are of the sort  $\langle q_i, C_{t_a}, A_{t_b}, q_j \rangle$  where  $t_a$  and  $t_b$  indicate the relevant tape. Show that every function that is dual Turing computable is recursive.

#### 14.1.3 Recursive Functions are Turing Computable

To show that the recursive functions are identical to the Turing computable functions, we now show that all recursive functions are Turing computable.

T14.3. Every recursive function is Turing computable.

Suppose  $f(\vec{x})$  is a recursive function. Then there is a sequence of recursive functions  $f_0$ ,  $f_1 \dots f_n$  such that  $f_n = f$ , where each member is either an initial function or arises from previous members by composition, recursion, or regular minimization. The argument is by induction on this sequence.

- *Basis:* We have already seen that the initial functions zero(x), suc(x) and  $idnt_k^j$ , as illustrated in E14.1, are Turing computable.
- Assp: For any  $i, 0 \le i < k$ ,  $f_i(\vec{x})$  is Turing computable.
- *Show:*  $f_k(\vec{x})$  is Turing computable.

 $f_k$  is either an initial function or arises from previous members by composition, recursion, or regular minimization. If an initial function, then as in the basis. So suppose  $f_k$  arises from previous members.

- (c)  $f_k(\vec{x}, \vec{y}, \vec{z})$  arises by composition from  $g(\vec{y})$  and  $h(\vec{x}, w, \vec{z})$ . By assumption  $g(\vec{y})$ and  $h(\vec{x}, w, \vec{z})$  are Turing computable. For the simplest case, consider h(g(y)): Chain together Turing programs to calculate g(y) and then h(w) — so the first program operates upon y to calculate g(y) and the second begins where the first leaves off, operating on the result to calculate h(g(y)). A case like h(x, g(y), z) is more complex insofar as g(y) may take up a different number of cells from y: it is sufficient to run a copy to get x.y.z.y; then g(y) to get x.y.z.g(y); then copy for x.y.z.g(y).z and a copy that replaces the last two numbers to get x.g(y).z. Then you can run h. And similarly in other cases.
- (r) f<sub>k</sub>(x, y) arises by recursion from g(x) and h(x, y, u). By assumption g(x) and h(x, y, u) are Turing computable. Recall our little programs from chapter 12 which begin by using g(x) to find f(0) and then use h(x, y, u) repeatedly for y in 0 to b − 1 to find the value of f(x, b) (see, for example, p. 555). For a representative case, consider f(m, b).
  - a. Produce a sequence,

 $m.b.m.b-1.m.b-2\ldots m.2.m.1.m.0.m$ 

This requires a copypair(x, y) that takes m.n and returns m.n.m.n and pred(x). Given m.b on the tape, run copypair to get m.b.m.b (and mark the first m with a blank). Then loop as follows: if the final b is 0, delete it, go to the previous m, and move on to (b); otherwise run pred on the final b, move to previous m, run copypair, and loop.

- b. Run g on the last block of digits m. This gives, m.b.m.b - 1.m.b - 2...m.2.m.1.m.0.f(m, 0)
- c. Back up to the previous m and run h on the concluding three blocks

m.0.f(m, 0). This gives,

m.b.m.b - 1.m.b - 2...m.2.m.1.f(m, 1)

And so forth. Stop when you reach the m with an extra blank (with two blanks in a row). At that stage, we have,  $m^*.b.f(m, b)$ . Fill the first

blank, run  $idnt_3^3$  and you are done. Observe that the original m.b plays no role in the calculation other to serve as the initial template for the series, and then as an end marker on your way back up — there is never a need to apply h to any value greater than b - 1 in the calculation of f(m, b).

- (m)  $f_k(\vec{x})$  arises by regular minimization from  $g(\vec{x}, y)$ . By assumption,  $g(\vec{x}, y)$  is Turing computable. For a representative case, suppose we are given m and want  $\mu y[g(m, y) = 0]$ .
  - a. Given, m, produce m.0.m.0.
  - b. From a tape of the form m.y.m.y loop as follows: Move to the second m; run g on m.y; this gives m.y.g(m, y); check to see if the result is zero; if it is, run idnt<sup>3</sup><sub>2</sub> and you are done (this is the same as deleting the last zero and running idnt<sup>2</sup><sub>2</sub>); if the result is not zero, delete g(m, y) to get m.y; run suc on y; and then a copier to get m.y'.m.y', and loop. The loop halts when it reaches the value of y for which g has output 0 and there must be some such value if g is regular.

*Indct:* Any recursive function  $f(\vec{x})$  is Turing computable.

And from T14.2 together with T14.3, the Turing computable functions are identical to the recursive functions. It is perhaps an "amazing" coincidence — that functions independently defined in these ways should turn out to be identical. And we have here the beginnings of an idea behind Church's thesis which we shall explore in section 14.3.

- E14.5. From exercise E14.1 you should already have Turing programs for suc(x), pred(x), copy(x) and idnt<sub>3</sub><sup>3</sup>(x, y, z). Now produce each of the following, in order, leading up to the recursive addition function. When you require one as part of another simply copy it into the larger file.
  - a. The function, h(x, y, u). For addition, h(x, y, u) is suc(idnt<sub>3</sub><sup>3</sup>(x, y, u)). So this is a simple combination of suc and idnt<sub>3</sub><sup>3</sup>. For addition,  $g(x) = idnt_1^1(x) = x$ , which requires no action; so we will not worry about that.
  - b. The function, copypair. Take a.b and return a.b.a.b. One approach is to produce a simple modification of copy that takes a.b and produces a.b.a. Run this program starting at a, and then another copy of it starting at b.

- c. The function, cascade. This is the program to produce m.n.m.n 1.m.n 2...m.0.m. The key elements are copypair and pred. To prepare for the next stage, you should begin by running copypair and then "damage" the very first m by putting a blank in its first cell. Let the program finish with the head on m at the end.
- d. The function, plus(m, n). g is trivial. So from m at the far right of the sequence, back up two words; check to see if there is an extra blank; if so, run idnt<sup>3</sup><sub>3</sub> and you are done; if not, run h(x, y, u). Though m.n is part of the "cascade" series, we never run h on m.n.u. In a program we may make use of m.n as described, but in damaged form as an end marker for the series.

There are easier ways to do addition on a Turing machine! The obvious strategy is to put m in a location x and n in a location y; run pred on the value in location x and then suc on the value in location y; the result appears in y when pred hits zero. The advantage of our approach is that it illustrates (an important case of) the demonstration that a Turing machine can compute any recursive function.

- E14.6. Produce each of the following, leading up to a Turing program for the function  $\mu y[ch(x = pred(y)) = 0]$ , that is the function which returns the least y such that x equals the predecessor of y — such that the characteristic function of x = pred(y) returns 0.
  - a. The function  $idnt_2^2(x, y)$ . This can be a simple modification of  $idnt_3^3$ .
  - b. The function ch(x = y), which returns 0 when x = y and otherwise 1. This is, of course, a recursive function. But you can get it more efficiently and more directly. To compare numbers, you have to worry about leading zeros that might make equivalent numbers physically distinct. Here is one strategy: From x.y check to see if one or both are all zeros; exit with 1 or 0 in the different cases; if neither works, apply pred to x and to y and return to the start; eventually you will come to a stage where the check for zero returns a result.
  - c. The function ch(x = pred(y)). This is a simple case of composition.
  - d. The function  $\mu y[ch(x = pred(y)) = 0]$ , by the routine discussed in the text.

Of course, for any number except 0, this is nothing but a long-winded equivalent to suc(x). The point, however, is to apply the algorithm for regular

minimization, and so to work through the last stage of the demonstration that recursive functions are Turing computable.

### 14.2 Essential Results

In chapter 12 essential results were built on the diagonal lemma (T12.19). This time, we depend on a *halting problem* with special application to Turing machines. Once we have established the halting problem, results like ones from before follow in short order.

#### 14.2.1 Halting

A Turing machine is a set of quadruples. Things are arranged so that Turing machines do not "hang" in the sense that they reach a state with no applicable instruction. But a Turing machine may go into a loop or routine from which it never emerges. That is, a Turing machine may or may not *halt* in a finite number of steps. So for example, this machine never stops.

(1,0,0,1)
(1,1,1,1)
(1,B,B,1)

For any input it simply repeats forever. This raises the question whether there is a general way to *tell* whether Turing machines halt when started on a given input. This is an issue of significance for computing theory. And, as we shall see, the answer has consequences beyond computing.

The problem divides into narrower "self-halting" and broader "general halting" versions. First, the self-halting problem: By T14.1 there is an enumeration of the Turing machines. Consider an enumeration,  $\Pi_0$ ,  $\Pi_1$ ... of Turing machines for functions with a single free variable and an array as follows,

|     |         | 0                  | 1                         | 2                  | • • • |
|-----|---------|--------------------|---------------------------|--------------------|-------|
|     | Π0      | Π <sub>0</sub> (0) | $\Pi_{0}(1)$              | $\Pi_{0}(2)$       |       |
| (J) | $\Pi_1$ | Π <sub>1</sub> (0) | <b>Π</b> <sub>1</sub> (1) | Π <sub>1</sub> (2) |       |
|     | $\Pi_2$ | Π <sub>2</sub> (0) | $\Pi_{2}(1)$              | Π <sub>2</sub> (2) |       |
|     | :       |                    |                           |                    |       |

We run  $\Pi_0$  on inputs 0, 1...;  $\Pi_1$  on 0, 1...; and so forth. Now ask whether there is a Turing program (that is, a recursive function) to decide in general whether  $\Pi_i$ halts when applied to its own number in the enumeration — a program H(i) such that H(i) = 0 if  $\Pi_i(i)$  halts, and H(i) = 1 if  $\Pi_i(i)$  does not halt. T14.4. There is no Turing machine H(i) such that H(i) = 0 if  $\Pi_i(i)$  halts and H(i) = 1 if it does not.

Suppose otherwise. That is, suppose there is a halting machine H(i) where for any  $\Pi_i(i)$ , H(i) = 0 if  $\Pi_i(i)$  halts and H(i) = 1 if it does not. Chain this program into a simple looping machine  $\Lambda(j)$  defined as follows,

$$\langle q, 0, 0, q \rangle$$

 $\langle q, 1, 1, 0 \rangle$ 

So when j = 0,  $\Lambda$  goes into an infinite loop, remaining in state q forever; when j = 1,  $\Lambda$  halts gracefully with output 1. Let the combination of H and  $\Lambda$  be  $\Delta(i)$ ; so  $\Delta(i)$  calculates  $\Lambda(H(i))$ . On our assumption that there is a Turing machine H(i), the machine  $\Delta$  must appear in the enumeration of Turing machines with some number d.

But this is impossible. Consider  $\Delta(d)$  and suppose  $\Delta(d)$  halts; since  $\Delta$  halts on input d, the halting machine, H(d) = 0; and with this input,  $\Lambda$  goes into the infinite loop; so the composition  $\Lambda(H(d))$  does not halt; and this is just to say  $\Delta(d)$  does not halt. Reject the assumption,  $\Delta(d)$  does not halt. But since  $\Delta(d)$  does not halt, the halting machine H(d) = 1; and with this input,  $\Lambda$  halts gracefully with output 1; so the composition  $\Lambda(H(d))$  halts; and this is just to say  $\Delta(d)$  halts. Reject the original assumption, there is no machine H(i) which says whether an arbitrary  $\Pi_i(i)$  halts.

For this argument, it is important that H is a component of  $\Delta$ . Information about whether  $\Delta$  halts gives information about the behavior of H, and information about the behavior of H, about whether  $\Delta$  halts.

The more general question is whether there is a machine to decide for any  $\Pi_i$  and n whether  $\Pi_i(n)$  halts. But it is immediate that if there is no Turing machine to decide the more narrow self-halting problem, there is no Turing machine to decide this more general version.

T14.5. There is no Turing machine H(i, n) such that H(i, n) = 0 if  $\Pi_i(n)$  halts and H(i, n) = 1 if it does not.

Suppose otherwise. That is, suppose there is a halting machine H(i, n) where for any  $\Pi_i(n)$ , H(i, n) = 0 if  $\Pi_i(n)$  halts and H(i, n) = 1 if it does not. Chain this program after a copier K(n) which takes input n and gives n.n. The combination H(K(i)) decides whether  $\Pi_i(i)$  halts. This is impossible; reject the assumption: There is no such Turing machine H(i, n). And when combined with T14.3 according to which every recursive function is Turing computable, these theorems which tell us that no Turing program is sufficient to solve the halting problem, yield the result that no recursive function solves the halting problem: if a function is recursive, then it is Turing computable; and since it is Turing computable, it does not solve the halting problem. Observe that we may be able to decide in particular cases whether a program halts. No doubt you have been able to do so in particular cases! What we have shown is that there is no perfectly general recursive method to decide whether  $\Pi_i(n)$  halts.

E14.7. Say a function is  $\mu$ -recursive just in case it satisfies the conditions for the recursive functions but without the regularity requirement for minimization. So all the recursive functions are  $\mu$ -recursive, but some  $\mu$ -recursive functions are not recursive. Where every recursive function  $f(\vec{x})$  is *total* in the sense that it returns a value for every  $\vec{x}$ , some  $\mu$ -recursive functions are *partial* insofar as there may be values of  $\vec{x}$  for which they return no value (as occurs when minimization is applied to a  $g(\vec{x}, y)$  that never evaluates to zero). Suppose that the  $\mu$ -recursive functions can be numbered and that there is a  $\mu$ -recursive function emurec(i) to enumerate them; so emurec(i) returns the Gödel number of the i<sup>th</sup> function in the enumeration. (You will have occasion to produce this function in a later exercise.) Show that there is no  $\mu$ -recursive function def(i) such that def(i) = 0 if f<sub>i</sub>(i) is defined and def(i) = 1 if f<sub>i</sub>(i) is undefined. Hint: Let your diagonal function diag(i) =  $\mu y[def(i) = y \land y = 1]$ . We might think of this as the *definition problem*.

#### 14.2.2 The Decision Problem

Recall our demonstration from section 12.5.2 that if Q is consistent then no recursive relation identifies the theorems of predicate logic. With the identity between the recursive functions and the Turing computable functions, this is the same as the result that if Q is consistent then no Turing computable function identifies the theorems of predicate logic. We are now in a position to obtain a related result directly, by means of the halting problem. Recall from chapter 13 (p. 621) that a theory T is  $\omega$ -inconsistent iff for some  $\mathcal{P}(x)$ , T proves each  $\mathcal{P}(\overline{m})$  but also proves  $\neg \forall x \mathcal{P}(x)$ . Equivalently, T is  $\omega$ -inconsistent iff T proves each  $\sim \mathcal{P}(\overline{m})$  but also proves  $\exists x \mathcal{P}(x)$ . We show,

T14.6. If Q is  $\omega$ -consistent, then no Turing computable function thrmpl(n) is such that thrmpl(n) = 0 just in case n numbers a theorem of predicate logic.

Suppose Q is  $\omega$ -consistent, and suppose some Turing computable thrmpl(n) = 0 just in case n numbers a theorem of predicate logic. Consider our recursive function stop(i, n, j) which takes the value 0 iff  $\Pi_i(n)$  is halted. Since it is recursive, stop is captured by some Stop(i, n, j, z) so that,

- (i) If  $\Pi_i(i)$  is halted by step j,  $Q \vdash Stop(\overline{i}, \overline{i}, \overline{j}, \emptyset)$
- (ii) If  $\Pi_i(i)$  never halts,  $Q \vdash \sim Stop(\overline{i}, \overline{i}, \overline{j}, \emptyset)$  for any j

Let  $\mathcal{H}(i) = \exists z Stop(i, i, z, \emptyset)$ . Then if  $\Pi_i(i)$  halts, there is some j such that  $Q \vdash Stop(\overline{i}, \overline{i}, \overline{j}, \emptyset)$ ; so  $Q \vdash \mathcal{H}(\overline{i})$ . And if  $\Pi_i(i)$  never halts, for every j,  $Q \vdash \sim Stop(\overline{i}, \overline{i}, \overline{j}, \emptyset)$ ; so since Q is  $\omega$ -consistent,  $Q \nvDash \mathcal{H}(\overline{i})$ . So where  $\mathcal{Q}$  is a conjunction of the axioms of Q, if  $\Pi_i(i)$  halts  $\vdash \mathcal{Q} \rightarrow \mathcal{H}(\overline{i})$  and if  $\Pi_i(i)$  never halts  $\nvDash \mathcal{Q} \rightarrow \mathcal{H}(\overline{i})$ ; so,

$$\vdash \mathcal{Q} \rightarrow \mathcal{H}(\overline{i})$$
 iff  $\Pi_{i}(i)$  halts

Let  $q = \lceil Q \rceil$  and  $h(i) = \text{formsub}(\lceil \mathcal{H}(i) \rceil, \lceil i \rceil, \text{num}(i))$  — so h(i) is the number of  $\mathcal{H}(\overline{i})$ . Then thrmpl(cnd(q, h(i))) takes the value 0 iff  $Q \rightarrow \mathcal{H}(\overline{i})$  is a theorem, iff  $\Pi_i(i)$  halts. So thrmpl solves the halting problem. This is impossible; reject the assumption: If Q is  $\omega$ -consistent, then there is no Turing computable function that returns the value zero just for numbers of theorems of predicate logic.

And, of course, this result according to which if Q is  $\omega$ -consistent no Turing computable function returns zero just for theorems of predicate logic is equivalent to the result that if Q is  $\omega$ -consistent, then no recursive function returns zero just for theorems of predicate logic.<sup>4</sup>

E14.8. Return again to the  $\mu$ -recursive functions from E13.7. Suppose that in addition to emurec(i) to enumerate the functions there is a  $\mu$ -recursive umurec(i, n) to return the value of  $f_i(n)$  so that umurec(i, n) =  $f_i(n)$ ; say this function is captured in  $Q_s$  by some Umurec(i, n, y) so that if  $f_i(n) = a$  then  $Q \vdash Umurec(\overline{i}, \overline{n}, \overline{a})$  and if  $f_i(n) \neq a$  then  $Q \vdash \sim Umurec(\overline{i}, \overline{n}, \overline{a})$ . Use your result from the definition problem in E14.7 to show that if  $Q_s$  is  $\omega$ -consistent, then no  $\mu$ -recursive function muthrmpl(n) is such that muthrmpl(n) = 0 just in case n numbers a theorem of predicate logic. Hint: Let  $Defined(\overline{i}) =_{def} \exists z Umurec(\overline{i}, \overline{i}, z)$ .

<sup>&</sup>lt;sup>4</sup>This argument, and the parallel one in chapter 12 have the advantage of simplicity. However, this result that no recursive function is true just of the theorems of predicate logic need not be conditional on the consistency (or  $\omega$ -consistency) of Q. For an illuminating version of the strengthened result from the halting problem, see chapter 11 of Boolos et al., *Computability and Logic*.

#### 14.2.3 Incompleteness Again

In T12.21 we saw that no consistent, recursively axiomatizable theory extending Q is negation complete. We shall see this again. However, as described in chapter 13, the incompleteness result comes in different forms. In particular, the one as from chapter 12 which depends on consistency and capture, and another which depends on soundness and expression. We are positioned to see the result in both forms.

#### **Semantic Version**

A key preliminary to the chapter 12 demonstration of incompleteness is T12.20 which applies the diagonal lemma to show that for no consistent theory T extending Q is a recursive relation true of (numbers for) its theorems. This time, by means of the halting result, we show that the *truths* of  $\mathcal{L}_{NT}$  are not recursively enumerable.

T14.7. The set of truths of  $\mathcal{L}_{NT}$  is not recursively enumerable.

Consider again our recursive function stop(i, n, j); since it is recursive, it is expressed by some Stop(i, n, j, z); set  $\mathcal{H}(i) = \exists z Stop(i, i, z, \emptyset)$  and h(i) =formsub( $\lceil \mathcal{H}(i) \rceil, \lceil i \rceil, num(i)$ ) — so h(i) is the number of  $\mathcal{H}(\overline{i})$ . Suppose some  $\Pi_{e}(i)$  enumerates the truths of  $\mathcal{L}_{NT}$ , halting with output 0 if h(i) appears in the enumeration, and with output 1 if neg(h(i)) appears. Exactly one of  $\mathcal{H}(\overline{i})$  or  $\sim \mathcal{H}(\overline{i})$  is true; so the number for one of them will eventually turn up insofar as  $\Pi_{e}$  enumerates all the truths of  $\mathcal{L}_{NT}$ .

(i) Suppose  $N[\mathcal{H}(\overline{i})] = T$ ; then for some m,  $N[Stop(\overline{i}, \overline{i}, \overline{m}, \emptyset)] = T$ ; so  $N[\sim Stop(\overline{i}, \overline{i}, \overline{m}, \emptyset)] \neq T$ ; so by expression,  $\langle \langle i, i, m \rangle, 0 \rangle \in stop$ ; so  $\Pi_i(i)$  stops.

(ii) Suppose  $N[\mathcal{H}(\overline{i})] \neq T$ ; then for any  $m \in U$ ,  $N[Stop(\overline{i}, \overline{i}, \overline{m}, \emptyset)] \neq T$ ; so by expression,  $\langle \langle i, i, m \rangle, 0 \rangle \notin$  stop; so  $\Pi_i(i)$  never stops.

So 
$$N[\mathcal{H}(\overline{i})] = T$$
 iff  $\Pi_i(i)$  halts

Thus by its definition,  $\Pi_{e}(i)$  halts with output 0 iff  $N[\mathcal{H}(\bar{i})] = T$ ; iff  $\Pi_{i}(i)$  halts; so  $\Pi_{e}(i)$  solves the halting problem. This is impossible; there is no such Turing machine. And since no Turing machine enumerates the truths of  $\mathcal{L}_{NT}$ , no recursive function enumerates the truths of  $\mathcal{L}_{NT}$ .

This theorem, together with T12.17 which tells us that if T is a recursively axiomatized formal theory then the set of theorems of T is recursively enumerable, puts us in a position to obtain an incompleteness result mirroring T13.2.

T14.8. If T is a recursively axiomatized sound theory whose language includes  $\mathcal{L}_{NT}$ , then T is negation incomplete.

Suppose *T* is a recursively axiomatized sound theory whose language includes  $\mathcal{L}_{NT}$ . By T12.17, there is an enumeration of the theorems of *T*, and since *T* is sound, all of the theorems in the enumeration are true. But by T14.7, there is no enumeration of all the truths of  $\mathcal{L}_{NT}$ ; so the enumeration of theorems is not an enumeration of all truths; so some true  $\mathcal{P}$  is not among the theorems of of *T*; and since  $\mathcal{P}$  is true,  $\sim \mathcal{P}$  is not true; and since *T* is sound, neither is  $\sim \mathcal{P}$  among the theorems of *T*. So  $T \nvDash \mathcal{P}$  and  $T \nvDash \sim \mathcal{P}$ .

This incompleteness result requires the *soundness* of T, where where soundness is more than mere consistency. But it requires only that the language include  $\mathcal{L}_{NT}$  and so have the power to *express* recursive functions — where this leaves to the side a requirement that T extends Q, and so be able to capture recursive functions.

#### **Syntactic Version**

From the halting problem, we can obtain the other sort of incompleteness result as well. Thus we have a theorem like the combination of T13.4 and T13.5.

T14.9. If *T* is a recursively axiomatized theory extending Q, then there is a sentence  $\mathscr{P}$  such that if *T* is consistent  $T \nvDash \mathscr{P}$ , and if *T* is  $\omega$ -consistent,  $T \nvDash \sim \mathscr{P}$ .

Suppose *T* is a recursively axiomatized theory extending Q. Once again consider stop(i, n, j); since stop is recursive and *T* extends Q, stop is captured in *T* by some *Stop*(*i*, *n*, *j*, *z*); let  $\mathcal{H}(i) = \exists z Stop(i, i, z, \emptyset)$ , and h(i) = formsub( $\ulcorner\mathcal{H}(i)\urcorner, \ulcorneri\urcorner$ , num(i)). Consider a Turing machine  $\Pi_s(i)$  which tests whether successive values of m number a proof of  $\sim \mathcal{H}(\bar{i})$ , halting if some m numbers a proof and otherwise continuing forever — so  $\Pi_s(i)$  evaluates PRFT(m, neg(h(i))) for successive values of m; since *T* is a recursively axiomatized theory, this is a recursive relation so that there must be some such Turing machine. We can think of  $\Pi_s(i)$  as seeking a proof that  $\Pi_i(i)$  does not halt.

Suppose  $\Pi_{s}(s)$  halts. By its definition,  $\Pi_{s}(i)$  halts just in case some m numbers a proof of  $\sim \mathcal{H}(\overline{i})$ ; since  $\Pi_{s}(s)$  halts, then, there is some m such that PRFT(m, neg(h(s))); so  $T \vdash \sim \mathcal{H}(\overline{s})$ . But if  $\Pi_{s}(s)$  halts, for some m,  $\langle \langle s, s, m \rangle, 0 \rangle \in$  stop; so by capture,  $T \vdash Stop(\overline{s}, \overline{s}, \overline{m}, \emptyset)$ ; so  $T \vdash \exists z Stop(\overline{s}, \overline{s}, z, \emptyset)$ , which is to say,  $T \vdash \mathcal{H}(\overline{s})$ . Reject the assumption: if T is consistent,  $\Pi_{s}(s)$  does not halt. (i) Suppose *T* is consistent and  $T \vdash \sim \mathcal{H}(\bar{s})$ ; then for some m, PRFT(m, neg(h(s))); so by its definition,  $\Pi_s(s)$  halts. But since *T* is consistent, as we have just seen,  $\Pi_s(s)$  does not halt. Reject the assumption:  $T \nvDash \sim \mathcal{H}(\bar{s})$ . (ii) Suppose *T* is  $\omega$ -consistent and  $T \vdash \sim \sim \mathcal{H}(\bar{s})$ ; then  $T \vdash \mathcal{H}(\bar{s})$ ; so  $T \vdash \exists z Stop(\bar{s}, \bar{s}, z, \emptyset)$ . But since *T* is  $\omega$ -consistent, it is consistent so that  $\Pi_s(s)$  does not halt; so for any m,  $\langle \langle s, s, m \rangle, 0 \rangle \notin stop$ ; and by capture, for any m,  $T \vdash \sim Stop(\bar{s}, \bar{s}, \overline{m}, \emptyset)$ ; so by  $\omega$ -consistency,  $T \nvDash \exists z Stop(\bar{s}, \bar{s}, z, \emptyset)$ . This is impossible,  $T \nvDash \sim \sim \mathcal{H}(\bar{s})$ 

Again, this is roughly the form in which Gödel first proved the incompleteness of arithmetic. However, as we have seen it is possible to strengthen this version of the result to drop the requirement of  $\omega$ -consistency for the simple result that no consistent, recursively axiomatizable theory extending Q is negation complete.

- E14.9. Use the definition problem for  $\mu$ -recursive functions to show that there is no  $\mu$ -recursive enumeration of the set of truths of  $\mathcal{L}_{NT}$ . Hint: Return to umurec(i, n), *Umurec*(i, n, y) and *Defined*( $\overline{i}$ ) — this time supposing that *Umurec* expresses umurec so that if  $f_i(n) = a$  then N[*Umurec*( $\overline{i}, \overline{n}, \overline{a}$ )] = T and if  $f_i(n) \neq a$  then N[ $\sim Umurec(\overline{i}, \overline{n}, \overline{a})$ ] = T. Suppose there is an enumeration entruth(n) of the truths of  $\mathcal{L}_{NT}$ ; then the characteristic function of entruth{ $\mu$ y[enthrm(y) =  $\lceil Defined(\overline{i}) \rceil \lor$  enthrm(y) =  $\lceil \sim Defined(\overline{i}) \rceil$ ]} =  $\lceil Defined(\overline{i}) \rceil$  is 0 when the minimization finds  $Defined(\overline{i})$  in the enumeration, and otherwise 1.
- E14.10. Use your results for  $\mu$ -recursive functions from other exercises to show that if *T* is a recursively axiomatized theory extending Q<sub>s</sub>, then there is a sentence  $\mathcal{P}$  such that if *T* is consistent  $T \nvDash \mathcal{P}$ , and if *T* is  $\omega$ -consistent,  $T \nvDash \sim \mathcal{P}$ .

## 14.3 Church's Thesis

We have attained a number of negative results, as T14.6 that if Q is  $\omega$ -consistent then no Turing computable function thrmpl(n) returns zero just for numbers of theorems of predicate logic, and from T14.7 that no Turing machine enumerates the truths of  $\mathcal{L}_{NT}$ . These are interesting. But, one might very well think, if no Turing machine computes a function, then we ought simply to compute the function some *other* way. So the significance of our negative results is magnified if the Turing computable functions are, in some sense, the *only* computable functions. If in some important sense the Turing computable functions are the only computable functions, and no Turing machine computes a function, then in the relevant sense the function is not computable. Thus Church's Thesis:

CT The total numerical functions that are effectively computable by some algorithmic method are just the recursive functions.

We want to be clear first, on the *content* of this thesis, and once we know what it says on reasons for thinking that it is true.

#### 14.3.1 The content of Church's thesis

Church's thesis makes a claim about "total numerical functions that are effectively computable by an algorithmic method." Original motivations are from the simple routines we learn in grade school for addition, multiplication, and the like. These effectively compute total numerical functions by an algorithmic method. By themselves, such methods are of interest. However, we mean to include the sorts of methods contemporary computing devices can execute. These are of considerable interest as well. Let us take up the different elements of the proposal in turn.

First, as always, a numerical function is *total* iff it is defined on the entire numerical domain. Arbitrary functions on a finite domain may be finitely specified by listing their members, and then computed by simple lookup. This was our approach with simple, but arbitrary, functions from chapter 4. The question of comuputability becomes interesting when domains are not finite (and from methods like those in the countability reference a function on an infinite domain is always comparable to one that is total). So Church's thesis is a thesis about the computability of total functions.

A function is *effectively computable* iff there is a method for finding its value for any given argument. Correspondingly, a property or relation is *effectively decidable* iff its characteristic function is effectively computable. So methods for addition and multiplication are adequate to calculate the value of the function for any inputs. Or consider a Turing machine programmed to enumerate the theorems of T, stopping with output 0 if it reaches (the number for)  $\mathcal{P}$ , and output 1 if it reaches  $\sim \mathcal{P}$ . If Tis a consistent recursively axiomatized and negation complete theory, then this is an effective method for deciding the theorems of T. If  $\mathcal{P}$  is a theorem, it eventually shows up in the enumeration, and the Turing machine stops with output 0. If  $\mathcal{P}$  is not a theorem,  $\sim \mathcal{P}$  is a theorem, so  $\sim \mathcal{P}$  eventually shows up in the enumeration, and the machine stops with output 1. This was the idea behind T12.18. But if T is not negation complete, this is not an effective method for deciding theorems of T. If  $\mathcal{P}$  is a theorem, it eventually shows up in the enumeration, and the machine stops with output 1. This was the idea behind T12.18. But if T is with output 0. But if  $\mathcal{P}$  is not a theorem and T is not negation complete,  $\sim \mathcal{P}$  might also fail to be a theorem. In this case, the machine continues forever, and does not stop with output 1; so for some arguments, this method does not find the value of the characteristic function, and we have not described an *effective* method for deciding the theorems of this T.

From the start, we may agree that there is some uncertainty about the notion of an *algorithmic* method; so, for example, different texts offer somewhat different definitions. However, as we did for logical validity and soundness in chapter 1, we shall take a particular account as a technical definition — partly as clarified in examples that follow. Difficulties to the side, there does seem to be a relevant core notion: for our purposes an *algorithmic* method is a finitely constrained rule-based procedure (rote, if you will).<sup>5</sup>

There is some vagueness in how much "processing" is allowed in following a rule. So, "write down the value of f(n)" will not do a as a rule for arbitrary f(n); and, less dramatically, an algorithm for multiplication does not typically include instructions for required additions. However, we may take it that if some instructions are sufficient for a computer to calculate a function, then the function is algorithmically computable. Thus that a function is Turing computable is sufficient to show that it is algorithmically computable. Again, standard methods for addition and multiplication are examples of algorithmic procedures. Truth table construction is another example of a method that proceeds by rote in this way. Given the basic tables for the operators, one simply follows the rules to complete the tables and determine validity — and one could program a computer to perform the same task. Thus validity in sentential logic is effectively decidable by an algorithmic method. In contrast, derivations are not an algorithmic method. The strategies are helpful! But, at least in complex cases, there may come a stage where insight or something like lucky guessing is required. And at such a stage, you are not following any rules by rote, and so not following any specific algorithm to reach your result.

And algorithmic methods operate under finite constraints. In general, we shall not worry about how large these constraints may be, so long as they remain finite. Consider first, truth table construction. If this is to be an effective method for determining validity, it should return a result for any sentence. But for any n > 0 there are sentences with that many atomic sentences (for example,  $A_1 \land A_2 \land \ldots \land A_n$ ), so the corresponding table requires  $2^n$  rows. This number may be arbitrarily large and a table may require more paper or memory than are in the entire universe. But, in every case, the limit is finite. So, for our purposes, it qualifies as an effective algo-

<sup>&</sup>lt;sup>5</sup>We have no intention of engaging Wittgenstenian concerns about following a rule. See, for example, Kripke *Wittgenstein on Rules and Private Language*.

rithmic method. Contrast this case with a device, which we may call "god's mind," that stores all the theorems of predicate logic sorted in order of their Gödel numbers. To calculate whether  $\mathcal{P}$  is a theorem, simply search up to the Gödel number of  $\mathcal{P}$  to see if that sentence is in the database: if it is,  $\mathcal{P}$  is a theorem, if it is not  $\mathcal{P}$  is not a theorem. It is not our intent to deny the existence of god, or that one might very well solve mathematical problems by prayer (though this might not go over very well on examinations which require that you show your work)! But, insofar as a device requires infinite memory or the like, it will not for our purposes count as an algorithmic method.

Or consider again a Turing machine programmed to enumerate the theorems of T, stopping with output 0 if it reaches (the number for)  $\mathcal{P}$ , but continuing forever if  $\mathcal{P}$  does not appear. One might suppose the information that  $\mathcal{P}$  is not a theorem is contained already in the fact *that the machine never halts*, and that god or some being with an infinite perspective might very well extract this information from the machine. Perhaps so. But this method is not algorithmic just because it requires the infinite perspective. Still, there are interesting attempts to attain the effect of this latter machine without appeals to god. Consider, first, "Zeno's machine." As before, the machine enumerates theorems, this time flashing a light if  $\mathcal{P}$  appears in the list. However, for some finite time t (say 60 seconds), this machine takes its first step in t/2 seconds, its second step in t/4 seconds, and for any n, step n in  $t/2^n$  seconds. But the sum of  $t/2 + t/4 + \ldots = t$ , and the Turing machine runs through all of infinitely many steps in time t. So start the machine. If the light flashes before t seconds elapse,  $\mathcal{P}$  is a theorem. If t elapses, the machine has run through all of infinitely many steps, so if the light does not flash,  $\mathcal{P}$  is not a theorem.

One might object this proposal reduces to a tautology of the sort, "If such-andsuch (impossible) circumstances obtain, then the theorems are decidable." Great, but who cares? However, we should not reject the general strategy out-of-hand. From even a very basic introduction to special relativity, one is exposed to time dilation effects (for a simple case see the time dilation reference). General relativity allows a related effect. Where special relativity applies just to reference frames moving at constant velocity relative to one another, general relativity allows accelerated frames. And it is at least consistent with the laws of general relativity for one frame to have an infinite elapsed time, while another's time is finite.<sup>6</sup> So, for a Malament-Hogarth (MH) machine, put a Turing machine in the one frame and an observer in the other.

<sup>&</sup>lt;sup>6</sup>Students with the requisite math and physics background might be interested in Hogarth, "Does General Relativity Allow an Observer To View an Eternity In a Finite Time?" See also Earman and Norton, "Forever is a Day," and for the same content, chapter 4 of Earman, *Bangs, Crunches, Whimpers, and Shrieks* (but with additional, though still difficult, setup in earlier chapters of the text).

The Turing machine operates in the usual way in its frame enumerating the theorems forever. If  $\mathcal{P}$  is a theorem, it sends a signal back to the observer's frame that is received within the finite interval. From the observer's perspective, this machine runs through infinitely many operations. So if a signal is received in the finite interval,  $\mathcal{P}$  is a theorem. If no signal is received in the finite interval, then  $\mathcal{P}$  is not a theorem. (And similarly, the MH machine might search for a counterexample to the Goldbach conjecture, or the like.) There is considerable room for debate about whether such a machine is physically possible. But, even if physically realized, it is not *algorithmic*. For we require that an algorithmic method terminates in a finite number of steps.

Church's thesis is thus that the total numerical functions that are effectively computable by some algorithmic method are the the same as the recursive functions. Suppose we obtain a negative result that some function is not algorithmically computable. Even with the finite limits we have placed on memory, number of instructions and the like, the negative result remains of considerable interest: So long as a routine follows definite rules, no (finite) amount of parallel processing, high-speed memory, nanotechnology, and so forth is going to make a difference — the function remains uncomputable.

#### 14.3.2 The basis for Church's thesis

It is widely accepted that Church's thesis is true, but also that it is not susceptible to *proof.* We shall return to the question of proof. There are perhaps three sorts of reasons that have led philosophers, computer scientists and logicians to think it is true. (i) A number of independently defined notions plausibly associated with computability converge on the recursive functions. (ii) No plausible counterexamples — algorithmically computable functions not recursive, have come to light. And (iii) there is a sort of rationale from the nature of an algorithm. This last may verge on, or amount to, demonstration of Church's thesis.

**Independent definitions.** We have already seen that the Turing computable functions are the same as the recursive functions. And we are in a position to close another loop. From T12.16, any recursive function is captured by a recursively axiomatized consistent theory extending Q. But also,

T14.10. Every (total) function that can be captured by a consistent recursively axiomatized theory is recursive.

Suppose a function f(m) = n can be captured in a consistent recursively axiomatized theory T; then there is some  $\mathcal{F}(x, y)$  such that if  $(m, n) \in f$ ,

## **Simple Time Dilation**

It is natural to think that, just as a wave in water approaches a boat faster when the boat is moving is moving toward it than when the boat is moving away, so light would approach an observer faster when she is moving toward it, and more slowly whens she is moving away. But this is not so. The 1887 Michelson-Morley experiment (and many others) verify that the speed of light has the *same* value for all observers. Special relativity takes as foundational:

- 1. The laws of physics may be expressed in equations having the same form in all frames of reference moving at constant velocity with respect to one another.
- 2. The speed of light in free space has the same value for all observers, regardless of their state of motion.

These principles have many counterintuitive consequences. Here is one: Consider a clock which consists of a pulse of light bouncing between two mirrors separated by distance L as in (A) below. Where c is the constant speed of light, the time between ticks is the distance traveled by the pulse divided by its speed L/c.



Now consider the same clock as observed from a reference frame relative to which it is in motion, as in (B). The speed of light remains c (instead of being increased, as one might expect, by the addition of the horizontal component to its velocity). But the distance traveled between ticks is greater than L, so the time between ticks is greater than L/c — which is to say the clock ticks more slowly from the perspective of the second frame.

One might wonder happens if this clock is rotated 90 degrees so that the pulse is bouncing parallel to the direction of motion, or what would happen if time were measured by a pendulum clock. But within a frame, everything is coordinated according to the usual laws: On special relativity, there are coordinated changes to length, mass and the like so that the effect is robust. As observed from a reference frame relative to which the frame is in motion, time, mass, and length are distorted together. For further discussion, consult any textbook on introductory modern physics. then  $T \vdash \mathcal{F}(\overline{\mathbf{m}},\overline{\mathbf{n}})$  and if  $\langle \mathbf{m}, \mathbf{n} \rangle \notin \mathbf{f}$  then  $T \vdash \sim \mathcal{F}(\overline{\mathbf{m}},\overline{\mathbf{n}})$ ; and from the latter, since *T* is consistent,  $T \nvDash \mathcal{F}(\overline{\mathbf{m}},\overline{\mathbf{n}})$ . But since f is a function, if  $\langle \mathbf{m}, \mathbf{n} \rangle \in \mathbf{f}$ , any  $\mathbf{k} \neq \mathbf{n}$  is such that  $\langle \mathbf{m}, \mathbf{k} \rangle \notin \mathbf{f}$ ; so that  $T \nvDash \mathcal{F}(\overline{\mathbf{m}},\overline{\mathbf{k}})$ . Since *T* is recursively axiomatized there is a recursive PRFT. Suppose  $\langle \mathbf{m}, \mathbf{n} \rangle \in \mathbf{f}$ ; then (i) for  $\mathbf{b} = \lceil \mathcal{F}(\overline{\mathbf{m}},\overline{\mathbf{n}}) \rceil$  there is some a such that PRFT(a, b); and (ii) for  $\mathbf{k} \neq \mathbf{n}$ , there is no  $\mathbf{b}' = \lceil \mathcal{F}(\overline{\mathbf{m}},\overline{\mathbf{k}}) \rceil$  such that for some a, PRFT(a, b').

Intuitively, we can find the value of f(m) by searching the theorems until we find one of the sort  $\mathcal{F}(\overline{m},\overline{n})$ ; and from this derive the value n. More formally: First, for the number of  $\mathcal{F}(\overline{m},\overline{n})$ ,

```
numf(m, n) =<sub>def</sub> formsub[formsub(\lceil \mathcal{F}(x, y) \rceil, \lceil x \rceil, num(m)), \lceil y \rceil, num(n)]
```

Recall that formsub(p, v, s) takes the Gödel numbers of a formula  $\mathcal{P}$ , variable x and term s and returns the number of  $\mathcal{P}_{s}^{\chi}$ ; and num(m) returns the Gödel number of the standard numeral for m. So this gives the Gödel number of  $\mathcal{F}(\overline{m},\overline{n})$  as a function of m and n. By (loose) analogy with code from chapter 12 (p. 607),

 $codef(m) =_{def} \mu z[len(z) = 2 \land PRFT(exp(z, 0), numf(m, exp(z, 1)))]$ 

So codef(m) is of the sort  $2^a \times 3^n$ , where a numbers a proof of  $\mathcal{F}(\overline{m}, \overline{n})$ ; that is,  $\exp(z, 0)$  numbers a proof of numf(m,  $\exp(z, 1)$ ). But there is only one n that could result in a proof of  $\mathcal{F}(\overline{m}, \overline{n})$ . So,

 $f(m) = \exp(\text{code}f(m), 1)$ 

And n is easily recovered from codef. So f(m) is a recursive function.

We use the  $\mathcal{F}(x, y)$  that captures f(m) to generate the recursive f(m). So a function is captured in a recursively axiomatized consistent theory iff it is recursive. And increasing the power of a deductive system from Q to PA and beyond does not extend the range of captured functions. So the recursive functions, Turing computable functions and functions captured by a recursively axiomatized consistent theory extending Q are the same.<sup>7</sup>

E14.11. Given that Plus(x, y) captures plus(m, n), apply the method of T14.10 to show that plus is recursive.

<sup>&</sup>lt;sup>7</sup>And there are more. Church himself was originally impressed by an equivalence between his *lambda calculus* and the recursive functions. As additional examples, Markov algorithms are discussed in Mendelson, *Introduction to Mathematical Logic*, §5.5; abacus machines in Boolos et al., *Computability and Logic*, §5; see below for discussion of the Kolmogorov-Uspenskii machine.

**Failure of counterexamples.** Another reason for accepting Church's thesis is the failure to find counterexamples. This may be very much the same point as before: When we set out to define a notion of computability, or compute a function, what we end up with are recursive functions, rather than something other. Of course, god's mind, Zeno's machine, an MH machine, or the like might compute a non-recursive function. Perhaps there are such devices. However, on our account, they are not algorithmic. What we do not seem to have are algorithmic methods for computing non-recursive functions.

But also in this category of reasons to accept Church's thesis is the failure of a natural strategy for showing that Church's thesis is false. Suppose one were to propose that the *primitive* recursive functions are all the computable functions, and so that regular minimization is redundant (perhaps you have had this very idea). Here is a way to see this hypothesis false:

Observe that the primitive recursive functions are recursively enumerable. For this, we introduce a language  $\mathcal{L}_{\mathbb{R}}$  for an alternative representation of the recursive functions. The syntax of this language is developed in the usual way. Symbols are  $Z^1$ ,  $S^1$ ,  $I_i^n$ ,  $Comp^n$  and  $Rec^n$  with parentheses and comma. Then,

- LR (b) If  $\mathcal{P}^n$  is  $Z^1$ ,  $S^1$  or  $I_i^n$  then  $\mathcal{P}^n$  is a formula.
  - (c) If  $\mathcal{P}^m$  and  $\mathcal{Q}_1^n \dots \mathcal{Q}_m^n$  are formulas, then  $Comp^n(\mathcal{P}^m, \mathcal{Q}_1^n \dots \mathcal{Q}_m^n)$  is a *formula*.
  - (r) If  $\mathscr{G}^n$  and  $\mathscr{H}^{n+2}$  are formulas, then  $Rec^{n+1}(\mathscr{G}^n, \mathscr{H}^{n+2})$  is a formula.
  - (cl) Any formula can be formed by repeated application of these rules.

These expressions may be exhibited on trees in the usual way. So, for example,  $Rec^2(I_1^1, Comp^3(S^1, I_3^3))$  is a formula.



These expressions may be interpreted so that each  $\mathcal{P}^n$  represents a recursive function that applies to *n* objects. Say  $\vec{x}$  is  $x_1 \dots x_n$ .

- IR (z)  $I[Z^1](x) = \operatorname{zero}(x)$ (s)  $I[S^1](x) = \operatorname{suc}(x)$ 
  - (i)  $I[I_i^n](\vec{x}) = idnt_i^n(\vec{x})$

(c) 
$$\mathsf{I}[Comp^n(\mathcal{P}^m, \mathcal{Q}_1^n \dots \mathcal{Q}_m^n)](\vec{\mathsf{x}}) = \mathsf{I}[\mathcal{P}^m](\mathsf{I}[\mathcal{Q}_1^n](\vec{\mathsf{x}}) \dots \mathsf{I}[\mathcal{Q}_m^n](\vec{\mathsf{x}}))$$

(r) 
$$\begin{split} &|[Rec^{n+1}(\mathcal{G}^n, \mathcal{H}^{n+2})](\vec{\mathsf{x}}, \mathsf{0}) = \mathsf{I}[G^n](\vec{\mathsf{x}}) \\ &|[Rec^{n+1}(\mathcal{G}^n, \mathcal{H}^{n+2})](\vec{\mathsf{x}}, \mathsf{Sy}) = \mathsf{I}[H^{n+2}](\vec{\mathsf{x}}, \mathsf{y}, \mathsf{I}[Rec^{n+1}(\mathcal{G}^n, \mathcal{H}^{n+2})](\vec{\mathsf{x}}, \mathsf{y})) \end{split}$$

Observe that we apply a generalized version of composition on which  $|[\mathcal{Q}_1^n](\vec{x}) \dots |[\mathcal{Q}_m^n](\vec{x})$  are substituted respectively for the variables of  $|[\mathcal{P}^m]$ . Clearly, a generalized composition results from multiple applications of our familiar singular form. And singular composition can be seen as an instance of the generalized form: Say we have  $\mathcal{P}(u, v, w)$  and  $\mathcal{Q}(u, y, z)$  and want  $\mathcal{P}(u, \mathcal{Q}(u, y, z), w)$ . Let  $\vec{x} = u, w, y, z$  and take  $Comp^4(\mathcal{P}^3, I_1^4, Comp^4(\mathcal{Q}^3, I_1^4, I_3^4, I_4^4), I_2^4)$ . The result applies generalized compositions, and is equivalent to the composition we want.

As an example for IR,  $Rec^2(I_1^1, Comp^3(S^1, I_3^3))$  is plus. Corresponding to the above tree are functions,



where plus(x, y) is  $l[Rec^2(I_1^1, Comp^3(S^1, I_3^3))](x, y)$ . And the conditions for plus are as we expect.

Now a recursive enumeration of the primitive recursive functions is straightforward. From their interpretation, an enumeration of the formulas is an enumeration of the primitive recursive functions: Assign numbers to the symbols and formulas of  $\mathcal{L}_{R}$ ; find a recursive PRWFF(n) true of numbers for formulas; and enumerate,

$$\begin{split} & \text{eprfnc}(0) = \mu z[\text{PRWFF}(z)] \\ & \text{eprfnc}(Sn) = \mu z[z > \text{eprfnc}(n) \land \text{PRWFF}(z)] \end{split}$$

So there is a recursive enumeration of the primitive recursive functions, there is an enumeration of the functions of one free variable, and so forth.

Consider an enumeration of the primitive recursive functions of one free variable and an array as follows.

|     |                | 0                         | 1        | 2                  |  |
|-----|----------------|---------------------------|----------|--------------------|--|
|     | f <sub>0</sub> | <b>f</b> <sub>0</sub> (0) | $f_0(1)$ | $f_0(2)$           |  |
| (M) | f <sub>1</sub> | f <sub>1</sub> (0)        | $f_1(1)$ | f <sub>1</sub> (2) |  |
|     | $f_2$          | $f_2(0)$                  | $f_2(1)$ | $f_{2}(2)$         |  |
|     | ÷              |                           |          |                    |  |

And consider the function  $d(n) = f_n(n) + 1$ . This function is *computable*; for any n: (i) run the enumeration to find  $f_n$ ; (ii) run  $f_n$  to find  $f_n(n)$ ; (iii) add one. Since each step is recursive, the whole is computable. But d(n) is not primitive recursive:  $d(0) \neq f_0(0)$ ;  $d(1) \neq f_1(1)$ ; and in general,  $d(n) \neq f_n(n)$ ; so d is not identical to any of the primitive recursive functions. So there are computable functions that are not primitive recursive.

It is natural to think that a related argument would show that not all computable functions are recursive: recursively enumerate the recursive functions; then diagonalize to find a computable function not on the list. But this does not work! It is an entirely "grammatical" matter to identify the primitive recursive functions — the function eprfnc(n) results purely as a matter of form. But there is no parallel method for the recursive fuctions. This clear already by the halting and definition problems (for the latter see E14.7) — there is no recursive way to say in general whether a function is regular, and so to identify functions as recursive. But we may make the point by another diagonal argument (here applied to Turing machines).

Suppose there is an enumeration of Turing machines to compute recursive functions (of one free variable) and consider an array as follows.

|     |                | 0                  | 1                  | 2                  | ••• |
|-----|----------------|--------------------|--------------------|--------------------|-----|
|     | Π <sub>0</sub> | Π <sub>0</sub> (0) | $\Pi_{0}(1)$       | Π <sub>0</sub> (2) |     |
| (N) | $\Pi_1$        | Π <sub>1</sub> (0) | Π <sub>1</sub> (1) | Π <sub>1</sub> (2) |     |
|     | $\Pi_2$        | Π <sub>2</sub> (0) | $\Pi_{2}(1)$       | Π2(2)              |     |
|     | ÷              |                    |                    |                    |     |

Let  $\Delta(n)$  be  $\Pi_n(n) + 1$ . From T14.2  $\Pi_n(n)$  computes the recursive  $f(n) = decode(right(n, n, \mu)[stop(n, n, j) = 0]))$ ; so f(n) + 1 computes  $\Delta(n)$ . And since f(n) + 1 is recursive,  $\Delta(n)$  is a Turing program of one free variable; so  $\Delta(n)$  appears in the enumeration of Turing programs. But this is impossible:  $\Delta(0) \neq \Pi_0(0)$ ;  $\Delta(1) \neq \Pi_1(1)$ ; and in general  $\Delta(n) \neq \Pi_n(n)$ . Reject the assumption: there is no enumeration of Turing machines to compute recursive functions. There is an enumeration of Turing machines; but as in the case of a machine that never halts, not every Turing machine computes a total function. Thus the enumeration of Turing machines does not automatically convert to an enumeration of Turing machines to compute recursive functions. And we are in fact blocked from recursively enumerating the recursive functions. So we are blocked from the proposed means of finding a computable function that is not a recursive function. So this attempt to find a counterexample to Church's thesis fails.

E14.12. (i) Write down the  $\mathcal{L}_{R}$  expression that corresponds to times. (ii) Assign numbers to expressions of  $\mathcal{L}_{R}$  and produce the relation PRECWFF to complete the demonstration that there is an enumeration of primitive recursive functions. (iii) Extend the demonstration that there is an enumeration of primitive recursive functions to an enumeration emurec of  $\mu$ -recursive functions (as from E14.7).

**The nature of an algorithm.** There are also reasons for Church's thesis from the very nature of an algorithm.<sup>8</sup> Perhaps the "received wisdom" with respect to Church's thesis is as follows.

The reason why Church's [Thesis] is called a *thesis* is that it has not been rigorously proved and, in this sense, it is something like a "working hypothesis." Its plausibility can be attested inductively — this time not in the sense of mathematical induction, but "on the basis of particular confirming cases." The Thesis is corroborated by the number of intuitively computable functions commonly used by mathematicians, which can be defined within recursion theory. But Church's Thesis is believed by many to be destined to *remain* a thesis. The reason lies, again, in the fact that the notion of effectively computable function is a merely intuitive and somewhat fuzzy one. It is quite difficult to produce a completely rigorous proof of the equivalence between intuitively computable and recursive functions, precisely because one of the sides of the equivalence is not well-defined (Berto, *There's Something About Gödel*, pp. 76-77).

There are a couple of themes in this passage. First, that Church's thesis is typically accepted on grounds of the sort we have already considered. Fair enough. But second that it is not, and perhaps cannot, be proved. The idea seems to be that the recursive functions are a precise mathematically defined class, while the algorithmically

<sup>&</sup>lt;sup>8</sup>Material in this section is developed from Smith, *An Introduction to Gödel's Theorems*, chapter 45; Smith, "Squeezing Arguments"; along with Kolmogorov and Uspenskii, "On the Definition of an Algorithm." See also Black, "Proving Church's Thesis."

computable functions are not. Thus there is no hope of a demonstrable equivalence between the two.

But we should be careful. Granted: If we start with an inchoate notion of computable function that includes, at once, calculations with pencil and paper, calculations on the latest and greatest supercomputer, and calculations on Zeno's machine, there will be no saying whether the computable functions definitely are, or are not, identical to the Turing computable functions. But this is not the notion with which we are working. We have a relatively refined technical account of algorithmic computability. Of course, it is not yet a *mathematical* definition. But neither are our chapter 1 accounts of logical validity and soundness; yet we have been able to show in T9.1 that any argument that is quantificationally valid (in our mathematical sense) is logically valid. And similarly, the whole translation project of chapter 5 assumes the possibility of moving between ordinary and mathematical notions. It is at least possible that an informally defined predicate might pick out a precise object. The question is whether we can "translate" the notion of an algorithm to formal terms.

So let us turn to the hard work of considering whether there is an argument for accepting Church's thesis. A natural first suggestion is that the step-by-step and finite nature of any algorithm is always within the reach of, or reflected by, some Turing program or recursive function, so that the algorithmically computable functions are inevitably recursively computable.<sup>9</sup> Already, this may amount to a consideration or reason in favor of accepting the Thesis. In chapter 45 of his *An Introduction to Gödel's Theorems*, Peter Smith advances a proposal according to which such considerations amount to proof.

Smith's overall strategy involves "squeezing" algorithmic computability between a pair of mathematically precise notions. Even if a condition C (say, "being a tall person") is vague, it might remain that there is some completely precise sufficient condition S (being over seven feet tall), such that anything that is S is C, and perfectly precise necessary condition N (being over five feet tall) such that anything that is C is N. So,

$$S \implies C \implies N$$

If it should also happen that N implies S, then the loop is closed, so that,

$$S \iff C \iff N$$

And the target condition C is equivalent to (squeezed between) the precise necessary and sufficient conditions. Of course, in our simple example, N does not imply C:

<sup>&</sup>lt;sup>9</sup>This idea is contained already in the foundational papers of Church, "An Unsolvable Problem," and Turing, "On Computable Numbers."

being over five feet tall does not imply being over seven feet tall.

For Church's thesis, we already have that Turing computability is sufficient for algorithmic computability. So what is required is some necessary condition so that,

 $T \implies A \implies N$ 

Turing computability implies algorithmic computability and algorithmic computability implies the necessary condition. Church's thesis follows if, in addition, N implies Turing computability. As it turns out, we shall be able to specify a condition N which (mathematically) implies T. It will be more controversial whether A implies N.

The argument has three stages: The idea is that, (i) there are some necessary features of an algorithm, such that any algorithm has those features; (ii) any routine with those features is embodied in a modified Kolmogorov-Uspenskii (MKU) machine; (iii) every function that is MKU computable is recursive, and so Turing computable.



The result is that MKU computability works as as the precise condition N in the squeezing argument: A implies N, and N implies T. So T iff A iff N, and Church's thesis is established — or no less plausible than is the conclusion of this argument.

Perhaps the following are necessary conditions on any algorithm, so that any algorithm satisfies the conditions. If, additionally, we hold that any routine which satisfies the constraints is an algorithm, then the conditions are necessary and sufficient — so we may see them as an extension or sharpening of our initial more sketchy account. At this stage, though, the important requirement is that any algorithm satisfies the conditions.<sup>10</sup>

- AC (1) There is some *dataspace* consisting of a finite array of "cells" which may stand in some relations  $R_0, R_1 \dots R_a$  and contain some entities (usually symbols)  $s_0, s_1 \dots s_b$ .
  - (2) At every stage in a computation, there is some finite "active" portion of the dataspace upon which the algorithm operates.

<sup>&</sup>lt;sup>10</sup>Smith seems to grant that some such conditions are necessary, even though some method may satisfy the conditions yet fail to count as an algorithm. Perhaps this is because he is impressed by the initial examples of routines implemented by human agents with relatively limited computing power. This is not a problem for his squeezing argument, since the corresponding recursive function may yet be computable by some other method which satisfies more narrow constraints — for example, by a Turing machine.

- (3) The body of the algorithm includes finitely many instructions for modifying the active portion of the dataspace depending on its character, and for jumping to the next set of instructions.
- (4) For the calculation of a function  $f(\vec{x}) = y$  there is some finite initial representation of  $\vec{x}$  and some way to read off the value of y, after a finite number of steps.

So this sets up an algorithm abstractly described. It is hard to see how an algorithm would not involve some space, portions of which would stand in different relations. At any given stage, the algorithm operates on some portion of the space, where these operations may depend upon, and modify the arrangement of the active space. The algorithm itself consists of some instructions for operating on the dataspace, where these are generically of the sort, "if the active area is of type *t*, perform action *a*, and go to new instructions *q*." The calculation of a function  $f(\vec{x})$  somehow takes  $\vec{x}$  as an input, and gives a way to read off the value of y as an output. And an algorithm terminates in a finite number of steps.

Observe that the squeezing argument is effective to the extent that we begin with the notion of an algorithm and show that for any algorithm there is a Turing machine equivalent to it. It is cast into doubt if we start with the notion of a Turing machine and force the notion of an algorithm to match. Thus it is important that we are simply spelling out the idea of an algorithm — of what is required of a rote, rule-based based procedure.

Also the finite constraints on the dataspace, relations, symbols and area in (1) and (2) above seem to be consequences of (3) and (4): There is some upper bound to the space modified by instructions from a finite collection, each member of which modifies at most a finite area. Then beginning with a finite initial representation of some  $\vec{x}$ , including finitely many cells of the dataspace standing in finitely many relations, filled with finitely many symbols and then modifying finite portions of the space finitely many times, all we are going to get are finitely many cells, standing in finitely many relations, filled with finitely many symbols.

On the face of it, given their extreme simplicity, it is not obvious that Turing machines compute every algorithmically computable function. But a related device, the MKU machine (modified from Kolmogorov and Uspenskii, "On the Definition of an Algorithm") purports to implement conditions along these lines.

MKU (1) There are some cells  $c_0, c_1 \dots c_a$  which may stand in relations  $R_0$ ,  $R_1 \dots R_b$  and contain symbols  $s_0, s_1 \dots s_c$ . In simple cases, we may think of such arrangements graphically as follows,



R2 is a binary relation and R1 tertiary. Each such relation constitutes an *edge*.

- (2) Among the one-place relations is an *origin* property such that exactly one cell has it as indicated by ★ above. Then the active area includes all cells on paths ≤ n edges from the origin. From (O), cells other than the origin are all one edge from the origin cell.
- (3) Instructions are finitely many quadruples of the sort ⟨q<sub>i</sub>, S<sub>a</sub>, S<sub>b</sub>, q<sub>j</sub>⟩ where q<sub>i</sub> and q<sub>j</sub> are instruction labels; S<sub>a</sub> describes an active area; and S<sub>b</sub> a state with which the active area is to be replaced. Associate each cell in S<sub>a</sub> with the least number of edges between it and the origin; let n be the greatest such integer in S<sub>a</sub>; this n remains the same in every quadruple with label q<sub>i</sub>, though the value of n may vary as q<sub>i</sub> varies. Again, instructions are a function in the sense that no instruction has ⟨q<sub>i</sub>, S<sub>a</sub>⟩ the same but ⟨S<sub>b</sub>, q<sub>j</sub>⟩ different. We may see S<sub>a</sub> and S<sub>b</sub> as follows.



In this case n = 2. The active area  $S_a$  is replaced by the configuration  $S_b$ . The concentric rectangles indicate the "boundary" cells which may themselves be related to cells not part of the active area; the replacing area must have a boundary with cells to match boundary cells of the active area.

(4) There is some finite initial setup, and some means of reading off the final value of the function (for different relation and symbol sets, these may be different). We think of the origin cell as the "machine head," where an
algorithm always begins with an instruction label  $q_i = 1$  and terminates when  $q_i = 0$ .

So an MKU machine is a significant generalization of a Turing machine. We allow arbitrarily many symbols. And the dataspace is no longer a tape with cells in a fixed linear relation, but a space with cells in arbitrary relations which may themselves be modified by the program. Instructions respond to, and modify, not just individual cells, but arbitrarily large areas of the dataspace. Still, it remains that an instruction  $q_i$  is of the sort, if  $S_a$  perform action A and go to instruction  $q_j$ . So, the instruction (P) might be applied to get,



As indicated by the dotted line, the dataspace (A) has an active area of the sort required in instruction (P); so the active area is replaced according to the instruction for the resultant space (B). The example is arbitrary. But that is the point: The machine allows arbitrary rote modifications of a dataspace.

Observe that instructions with  $S_a \neq S'_a$  might both map onto a given dataspace in case the number *n* of edges from the origin in  $S_a$  is different from  $S'_a$  (say an active area with a box for n = 1 inside the box in (Q)). But the consistency requirement is satisfied with constant *n*: for consistency, it is sufficient to require that so long as  $n(q_i, S_a)$  is a constant, there is no instruction with  $\langle q_i, S_a \rangle$  the same but  $\langle S_b, q_j \rangle$ different.

Now every MKU computable function is recursive.

T14.11. Every MKU computable function is a recursive function.

We have been through this sort of thing before. And there are different ways to proceed. I indicate only some natural first steps. Begin assigning numbers to labels, symbols, cells and relations in some reasonable way.

a. 
$$g[q_i] = 3 + 8i$$
  
b.  $g[s_i] = 5 + 8i$   
c.  $g[c_i] = 7 + 8i$   
d.  $g[r_i^i] = 9 + 8(2^i \times 3^j)$ 

Then number for a *page* is  $\pi_0^{\langle c_i \rangle} \times \pi_1^{\langle s_a \rangle} \times \ldots \times \pi_n^{\langle s_b \rangle}$ , and for an *edge*  $\pi_0^{\langle r_j^i \rangle} \times \pi_1^{\langle c_{a1} \rangle} \times \ldots \times \pi_i^{\langle c_{ai} \rangle}$ . So a page is a cell with some symbols, and an edge is an *i*-place relation applied to *i* cells. Some *data* is a sequence of pages with distinct cell numbers, and a *lattice* is a sequence of distinct edges. Cells are (*immediately*) *connected* on an edge when both cells are members of it, and *connected* on a lattice when there is a sequence of cells from the lattice, beginning with the one, ending with the other such that each is immediately connected to the next. A *space* is a lattice with exactly one origin and every cell connected to all the others. A *dataspace* is of the sort  $\pi_0^m \times \pi_1^n$  where m numbers some data, n a space, and every cell from m appears in n.

After that, with considerable work, MKUMACH(n) numbers the MKU machines. (Given the potentially vast array of finite spaces, rather than supplementing the machine with repeating commands for every missing instruction, it is simplest to include a single label that loops on the origin, such that the machine defaults to it.) kumachs(i, m, n) numbers an instruction as a function of the number for the machine, initial label, and dataspace. (Where cells are numbered, some  $S_a$  matches the active portion of a dataspace when there is a *map* on cells that makes  $S_a$  match the active area.) For machine i with input n, mkuspace(i, n, j) and mkustate(i, n, j) give the current number of the dataspace and state. And mkustop(i, n, j) takes the value zero when the machine is stopped. Then,

$$f(n) = mkudecode(mkuspace(i, n, \mu j[mkustop(i, n, j) = 0]))$$

It is a chore to work this out (and you have an opportunity to do so in exercises). But it should be clear that it can be done. Then any MKU computable function is recursive, and therefore every MKU computable function is Turing computable.

Given this, the squeezing argument is complete: Turing computability implies algorithmic computability and algorithmic computability implies MKU and so Turing computability. So the algorithmically computable functions are the same as the Turing computable functions. So Church's thesis! This argument is just as strong as the premise that algorithmic computability implies MKU and so Turing computability. For this, we have *translated* an informal notion into a formal one. Insofar as translation is not itself a formal procedure, the result is not formal proof of Church's thesis. Perhaps it is difficult to imagine an algorithmic method that does not conform to AC and then MKU. But failure of imagination is not the same as proof. This leaves space for different objections:

First, one might worry that the account AC of an algorithm is insufficient in some respect. But AC is offered as a further exposition or sharpening of what it is to be an algorithm. Given this, our version of Church's thesis applies to it. An argument

about whether Church's thesis applies to a class C of functions is not undercut by observing that there are classes other than C.

Still, one might worry that the MKU machine does not compute every algorithm from AC. Against this, there are a couple of replies. First, careful about what the MKU machine can do. Say we are interested in parallel computing, whether by persons following instructions or by computing devices. An MKU machine has but a single origin; this might seem to be a problem. Still, an active area might have many "shapes" — and things might be set up as follows,



with "satellite" centers, to achieve the effect of parallel computing. Similarly, with a bit of thought, one can see how the MKU machine might achieve the effect of absolute addressing or bounded quantifiers other than 'all' and 'some' — as 'most' or the like. So it is important to recognize the generality already built into the MKU machine.

Perhaps, though, the objection goes through and some algorithmic method really is beyond the reach of the MKU machine. So for example some algorithm might require physical actions other than symbol manipulation. Consider a method for truth table construction with the instruction, "whack yourself in the head three times and write a T in the first row of the first column." An MKU machine does not have a head, and so cannot perform this action. More seriously, we might consider actions as applied to, say, a physical abacus — as "move the bead on the second wire to the leftmost available position." The MKU machine does not move physical beads on a wire, so it does not perform addition on an abacus. Still, it should be possible to *number* the states of an abacus, and to represent the successive states so as to calculate any function that can be worked on the physical device. In this case, the claim is not that the MKU machine *effectuates* every algorithm, but rather that it *models* every algorithm. Supposing this is sustained, the argument for Church's thesis stands.

So we are not left with a formal proof of Church's thesis. Rather we have a (powerful) *case* from the independent definitions, the failure of counterexamples and the nature of an algorithm for the result that Church's thesis is true. Plausibly, there is no formal proof that you have a head. Still, there is a strong case to establish that you

do! Similarly our case may seem sufficient to establish Church's thesis. To the extent that Church's thesis is either plausible or established, our limiting results become full-fledged *incomputability* results with applications to logic and computing more generally. In addition, from Church's thesis, the *computability* of a function implies that it is recursive. Having attained Church's thesis only at the very end, we have not applied the thesis in this way. But one might move from the observation that some function is computable, through the thesis, to the result that the function is recursive. And this is frequently done!

# Theorems of chapter 14

- T14.1 There is a recursive enumeration of the Turing machines.
- T14.2 Every Turing computable function is a recursive function.
- T14.3 Every recursive function is Turing computable.
- T14.4 There is no Turing machine H(i) such that H(i) = 0 if  $\Pi_i(i)$  halts and H(i) = 1 if it does not.
- T14.5 There is no Turing machine H(i, n) such that H(i, n) = 0 if  $\Pi_i(n)$  halts and H(i, n) = 1 if it does not.
- T14.6 If Q is  $\omega$ -consistent, then no Turing computable function f(n) is such that f(n) = 0 just in case n numbers a theorem of predicate logic.
- T14.7 The set of truths of  $\mathcal{L}_{NT}$  is not recursively enumerable.
- T14.8 If T is a recursively axiomatized sound theory whose language includes  $\mathcal{L}_{NT}$ , then T is negation incomplete.
- T14.9 If T is a recursively axiomatized theory extending Q, then there is a sentence  $\mathcal{P}$  such that if T is consistent  $T \nvDash \mathcal{P}$ , and if T is  $\omega$ -consistent,  $T \nvDash \sim \mathcal{P}$ .
- T14.10 Every (total) function that can be captured by a recursively axiomatized consistent theory extending Q is recursive.
- T14.11 Every MKU computable function is a recursive function.

And we mention,

- CT *Church's Thesis*: The total numerical functions that are effectively computable by some algorithmic method are just the recursive functions.
- E14.13. Work out codes for the MKU machine through dataspace. Very hard core: Assuming functions code(n) and decode(d), complete the demonstration that any MKU computable function f(n) is recursive.

- E14.14. For each of the following concepts, explain in an essay of about two pages, so that (college freshman) Hannah could understand. In your essay, you should (i) identify the objects to which the concept applies, (ii) give and explain the definition, and give and explicate examples (iii) where the concept applies, and (iv) where it does not. Your essay should exhibit an understanding of methods from the text.
  - a. The Turing computable functions, and their relation to the recursive functions.
  - b. The essential elements from the chapter contributing to a demonstration of the decision problem, along with the significance of Church's thesis for this result.
  - c. The essential elements from this chapter contributing to a demonstration of (the semantic version of) the incompleteness of arithmetic.
  - d. Church's thesis, along with reasons for thinking it is true, including the possibility of demonstrating its truth.

# **Concluding Remarks**

# **Looking Forward and Back**

We began this text in Part I setting up the elements of classical symbolic logic. Thus we began with four notions of validity: logical validity, validity in our derivation systems *AD* and *ND*, along with semantic (sentential and) quantificational validity. After a parenthesis in Part II to think about techniques for reasoning about logic, we began to put those techniques to work. The main burden of Part III was to show soundness and adequacy of our classical logic, that  $\Gamma \vdash \mathcal{P}$  iff  $\Gamma \models \mathcal{P}$ . This is the good news. In Part IV we established some limiting results. These include Gödel's first and second theorems, that no consistent, recursively axiomatizable extension of Q is negation complete, and that no consistent recursively axiomatized theory extending PA proves its own consistency. Results about derivations are associated with computations, and the significance of this association extended by means of Church's thesis. This much constitutes a solid introduction to classical logic, and should position you make progress in logic and philosophy, along with related areas of mathematics and computer science.

Excellent texts which mostly overlap the content of one, but extend it in different ways are Mendelson, *Introduction to Mathematical Logic*; Enderton, *Introduction to Mathematical Logic*; and Boolos, Burgess and Jeffrey, *Computability and Logic*; these put increased demands on the reader (and such demands are one motivation for our text), but should be accessible to you now; Schonfield, *Introduction to Mathematical Logic* is excellent yet still more difficult. Smith, *An Introduction to Gödel's Theorems* extends the material of Part IV; Cooper, *Computability Theory* develops it especially from the perspective of chapter 14. Much of what we have done presumes some set theory as Enderton, *Elements of Set Theory*, or model theory as Manzano, *Model Theory* and, more advanced, Hodges, *A Shorter Model Theory*.

In places, we have touched on logics alternative to classical logic, including multi-valued logic, modal logic, and logics with alternative accounts of the conditional. A good place to start is Priest, *Non-Classical Logics*, which is profitably read with Roy, "Natural Derivations for Priest" which introduces derivations in a style much like our own. Our logic is *first-order* insofar as quantifiers bind just variables for objects. Second-order logic lets quantifiers bind variables for predicates as well (so  $\forall x \forall y [x = y \rightarrow \forall F(Fx \leftrightarrow Fy)]$  expresses the *indiscernibility of identicals*). Second-order logic has important applications in mathematics, and raises important issues in metalogic. For this, see Shapiro, *Foundations Without Foundationalism*, and Manzano, *Extensions of First Order Logic*.

Philosophy of logic and mathematics is a subject matter of its own. Shapiro, "Philosophy of Mathematics and Its Logic" (along with the rest of the articles in the *Oxford Handbook*, and Shapiro, *Thinking About Mathematics* are a good place to start. Benacerraf and Putnam, *Philosophy of Mathematics* and Marcus and McEvoy, *Philosophy of Mathematics* are collections of classic articles.

Smith's online, "Teach Yourself Logic" is an excellent comprehensive guide to further resources.

Have fun!

**Answers to Selected Exercises** 

# **Chapter Nine**

- E9.2. Set up the above induction for T9.2, and complete the unfinished cases to show that if if  $\Gamma \vdash_{AD} \mathcal{P}$ , then  $\Gamma \vdash_{ND} \mathcal{P}$ . For cases completed in the text, you may simply refer to the text, as the text refers cases to homework.
  - *Basis:*  $Q_1$  in A is a premise or an instance of A1, A2, A3, A4, A5, A6, A7 or A8.
  - (prem) From text.
  - (A1) From text.
  - (A2) From text.
  - (A3) If  $\mathcal{Q}_1$  is an instance of A3, then it is of the form,  $(\sim \mathcal{C} \rightarrow \sim \mathcal{B}) \rightarrow ((\sim \mathcal{C} \rightarrow \mathcal{B}) \rightarrow \mathcal{C})$ , and we continue *N* as follows,

| 0.a | $Q_a$                                                                                                 | Р                                                |
|-----|-------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 0.b | $\mathcal{Q}_b$                                                                                       | Р                                                |
| ÷   |                                                                                                       |                                                  |
| 0.j | $Q_j$                                                                                                 | Р                                                |
| 1.1 | $\sim \mathcal{C} \rightarrow \sim \mathcal{B}$                                                       | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$ |
| 1.2 | $\square \sim \mathcal{C} \to \mathcal{B}$                                                            | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$ |
| 1.3 | <u> </u> ~ε                                                                                           | A ( $c, \sim E$ )                                |
| 1.4 | B                                                                                                     | $1.2, 1.3 \rightarrow E$                         |
| 1.5 | $      \sim \mathcal{B}$                                                                              | $1.1, 1.3 \rightarrow E$                         |
| 1.6 |                                                                                                       | 1.4,1.5 ⊥I                                       |
| 1.7 | $   \mathcal{E}$                                                                                      | 1.3-1.6 ~E                                       |
| 1.8 | $(\sim \mathcal{C} \to \mathcal{B}) \to \mathcal{C}$                                                  | $1.2\text{-}1.7 \rightarrow \text{I}$            |
| 1   | $({\sim}\mathcal{C} \to {\sim}\mathcal{B}) \to (({\sim}\mathcal{C} \to \mathcal{B}) \to \mathcal{C})$ | $1.1\text{-}1.8 \rightarrow \text{I}$            |
|     |                                                                                                       |                                                  |

So  $Q_1$  appears, under the scope of the premises alone, on the line numbered '1' of N.

- (A4) From text.
- (A6) If  $Q_1$  is an instance of A6, then it is of the form x = x for some variable x, and we continue N as follows,
  - $\begin{array}{c|cccc} 0.a & \mathcal{Q}_a & & P \\ 0.b & \mathcal{Q}_b & & P \\ \vdots & & & \\ 0.j & \mathcal{Q}_j & & P \\ 1 & x = x & =I \end{array}$

So  $Q_1$  appears, under the scope of the premises alone, on the line numbered '1' of N.

- (A7) From text.
- (A8) If  $\mathcal{Q}_1$  is an instance of A8, then it is of the form  $(x_i = y) \to (\mathcal{R}^n x_1 \dots x_i \dots x_n \to \mathcal{R}^n x_1 \dots y \dots x_n)$  for some variables  $x_1 \dots x_n$  and y, and relation symbol  $\mathcal{R}^n$ ; and we continue N as follows,

| 0.a | $ Q_a $                                                                                                         | Р                                                |
|-----|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 0.b | $Q_b$                                                                                                           | Р                                                |
| ÷   |                                                                                                                 |                                                  |
| 0.j | $Q_j$                                                                                                           | Р                                                |
| 1.1 | $x_i = y$                                                                                                       | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$ |
| 1.2 | $\mathcal{R}^n x_1 \dots x_i \dots x_n$                                                                         | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$ |
| 1.3 | $\left  \right  \mathcal{R}^n x_1 \dots y \dots x_n$                                                            | 1.2,1.1 <b>=</b> E                               |
| 1.4 | $\mathcal{R}^n x_1 \dots x_i \dots x_n \to \mathcal{R}^n x_1 \dots y \dots x_n$                                 | $1.2$ - $1.3 \rightarrow I$                      |
| 1   | $(x_i = y) \rightarrow (\mathcal{R}^n x_1 \dots x_i \dots x_n \rightarrow \mathcal{R}^n x_1 \dots y \dots x_n)$ | $1.1$ - $1.4 \rightarrow I$                      |
|     |                                                                                                                 |                                                  |

So  $Q_1$  appears, under the scope of the premises alone, on the line numbered '1' of N.

- Assp: For any  $i, 1 \le i < k$ , if  $Q_i$  appears on line i of A, then  $Q_i$  appears, under the scope of the premises alone, on the line numbered 'i' of N.
- Show: If  $Q_k$  appears on line k of A, then  $Q_k$  appears, under the scope of the premises alone, on the line numbered 'k' of N.

 $\mathcal{Q}_k$  in A is a premise, an axiom, or arises from previous lines by MP or Gen. If  $\mathcal{Q}_k$  is a premise or an axiom then, by reasoning as in the basis (with line numbers adjusted to k.n) if  $\mathcal{Q}_k$  appears on line k of A, then  $\mathcal{Q}_k$  appears, under the scope of the premises alone, on the line numbered 'k' of A. So suppose  $\mathcal{Q}_k$  arises by MP or Gen.

- (MP) From text.
- (Gen) From text.

In any case then,  $\mathcal{Q}_k$  appears under the scope of the premises alone, on the line numbered 'k' of N.

- *Indct:* For any line j of A,  $Q_j$  appears under the scope of the premises alone, on the line numbered 'j' of N.
- E9.8. Set up the above demonstration for T9.7 and complete the unfinished case to provide a complete demonstration that for any formula A, and terms r and s,

if s is free for the replaced instance of r in A, then  $\vdash_{AD} (r = s) \rightarrow (A \rightarrow A^r //_s)$ .

Consider an arbitrary r, s and A, and suppose s is free for the replaced instance of r in  $A^r/\!/_s$ .

- *Basis:* If  $\mathcal{A}$  has no operators and some term in it is replaced, then [from text]  $\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r / / s).$
- Assp: For any  $i, 0 \le i < k$ , if A has *i* operator symbols, then  $\vdash_{AD} (r = s) \rightarrow (A \rightarrow A^r //_s)$ .
- Show: If  $\mathcal{A}$  has k operator symbols, then  $\vdash_{AD} (r = s) \to (\mathcal{A} \to \mathcal{A}^r /\!\!/_s)$ . If  $\mathcal{A}$  has k operator symbols, then  $\mathcal{A}$  is of the form,  $\sim \mathcal{P}, \mathcal{P} \to \mathcal{Q}$  or  $\forall x \mathcal{P}$  for variable x and formulas  $\mathcal{P}$  and  $\mathcal{Q}$  with < k operator symbols.
  - (~) Suppose  $\mathcal{A}$  is  $\sim \mathcal{P}$ . Then [from text]  $\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r /\!\!/_s)$ .
  - (→) Suppose A is P → Q. Then A<sup>r</sup>//<sub>s</sub> is P<sup>r</sup>//<sub>s</sub> → Q or P → Q<sup>r</sup>//<sub>s</sub>. (i) In the former case [from text], ⊢<sub>AD</sub> (r = s) → (A → A<sup>r</sup>//<sub>s</sub>). (ii) In the latter case, since s is free for the replaced instance of r in A, it is free for that instance of r in Q; so by assumption, ⊢<sub>AD</sub> (r = s) → (Q → Q<sup>r</sup>//<sub>s</sub>); so we may reason as follows,

1. 
$$(r = s) \rightarrow (\mathcal{Q} \rightarrow \mathcal{Q}^{r}/\!\!/_{s})$$
 prem  
2.  $r = s$  assp  $(g, DT)$   
3.  $\mathcal{P} \rightarrow \mathcal{Q}$  assp  $(g, DT)$   
4.  $\mathcal{P}$  assp  $(g, DT)$   
5.  $\mathcal{Q}$  assp  $(g, DT)$   
5.  $\mathcal{Q}$  assp  $(g, DT)$   
6.  $\mathcal{Q} \rightarrow \mathcal{Q}^{r}/\!\!/_{s}$  assp  $(g, DT)$   
7.  $\mathcal{Q} \rightarrow \mathcal{Q}^{r}/\!\!/_{s}$  assp  $(g, DT)$   
9.  $\mathcal{Q} \rightarrow \mathcal{Q}^{r}/\!\!/_{s}$  assp  $(g, DT)$   
9.  $\mathcal{Q} \rightarrow \mathcal{Q}^{r}/\!\!/_{s}$  assp  $(g, DT)$   
10.  $(r = s) \rightarrow [(\mathcal{P} \rightarrow \mathcal{Q}) \rightarrow (\mathcal{P} \rightarrow \mathcal{Q}^{r}/\!\!/_{s})]$  2-9 DT

So  $\vdash_{AD} (r = s) \rightarrow [(\mathcal{P} \rightarrow \mathcal{Q}) \rightarrow (\mathcal{P} \rightarrow \mathcal{Q}^r/\!\!/_s)];$  which is to say,  $\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r/\!\!/_s).$  So in either case,  $\vdash_{AD} (r = s) \rightarrow (\mathcal{A} \rightarrow \mathcal{A}^r/\!\!/_s).$ 

( $\forall$ ) Suppose  $\mathcal{A}$  is  $\forall x \mathcal{P}$ . Then [from text]  $\vdash_{AD} (r = s) \to (\mathcal{A} \to \mathcal{A}^r //_s)$ . So for any  $\mathcal{A}$  with k operator symbols,  $\vdash_{AD} (r = s) \to (\mathcal{A} \to \mathcal{A}^r //_s)$ .

*Indct:* For any  $\mathcal{A}, \vdash_{AD} (r = s) \to (\mathcal{A} \to \mathcal{A}^r /\!\!/_s)$ .

#### Exercise 9.8

- E9.10. Prove T9.9, to show that for any formulas  $\mathcal{A}$ ,  $\mathcal{B}$  and  $\mathcal{C}$ , if  $\vdash_{AD} \mathcal{B} \leftrightarrow \mathcal{C}$ , then  $\vdash_{AD} \mathcal{A} \leftrightarrow \mathcal{A}^{\mathcal{B}} /\!\!/_{\mathcal{C}}$ .
  - *Basis:* If  $\mathcal{A}$  is atomic, then the only formula to be replaced is  $\mathcal{A}$  itself, and  $\mathcal{B}$  is  $\mathcal{A}$ ; so  $\mathcal{A}^{\mathcal{B}}/\!\!/_{\mathcal{C}}$  is  $\mathcal{C}$ . But then  $\mathcal{A} \leftrightarrow \mathcal{A}^{\mathcal{B}}/\!\!/_{\mathcal{C}}$  is the same as  $\mathcal{B} \leftrightarrow \mathcal{C}$ . So if  $\vdash_{\mathcal{AD}} \mathcal{B} \leftrightarrow \mathcal{C}$ , then  $\vdash_{\mathcal{AD}} \mathcal{A} \leftrightarrow \mathcal{A}^{\mathcal{B}}/\!\!/_{\mathcal{C}}$ .
  - Assp: For any  $i, 0 \le i < k$ , if  $\mathcal{A}$  has i operator symbols, then if  $\vdash_{AD} \mathcal{B} \leftrightarrow \mathcal{C}$ , then  $\vdash_{AD} \mathcal{A} \leftrightarrow \mathcal{A}^{\mathcal{B}} /\!\!/_{\mathcal{C}}$ .
  - Show: If  $\mathcal{A}$  has k operator symbols, then if  $\vdash_{AD} \mathcal{B} \leftrightarrow \mathcal{C}$ , then  $\vdash_{AD} \mathcal{A} \leftrightarrow \mathcal{A}^{\mathcal{B}}/\!\!/e$ .

If  $\mathcal{A}$  has k operator symbols, then it is of the form  $\sim \mathcal{P}, \mathcal{P} \rightarrow \mathcal{Q}$ , or  $\forall x \mathcal{P}$ , for variable x and formulas  $\mathcal{P}$  and  $\mathcal{Q}$  with < k operator symbols. If  $\mathcal{B}$  is all of  $\mathcal{A}$ , then as in the basis, if  $\vdash_{AD} \mathcal{B} \leftrightarrow \mathcal{C}$ , then  $\vdash_{AD} \mathcal{A} \leftrightarrow \mathcal{A}^{\mathcal{B}}/\!\!/_{\mathcal{C}}$ . So suppose  $\mathcal{B}$  is a proper subformula of  $\mathcal{A}$ .

- (~) Suppose  $\mathcal{A}$  is  $\sim \mathcal{P}$  and  $\mathcal{B}$  is a proper subformula of  $\mathcal{A}$ . Then  $\mathcal{A}^{\mathcal{B}}/\!\!/e$  is  $\sim [\mathcal{P}^{\mathcal{B}}/\!\!/e]$ . Suppose  $\vdash_{AD} \mathcal{B} \leftrightarrow \mathcal{C}$ . By assumption,  $\vdash_{AD} \mathcal{P} \leftrightarrow \mathcal{P}^{\mathcal{B}}/\!\!/e$ ; so by (abv),  $\vdash_{AD} (\mathcal{P} \to \mathcal{P}^{\mathcal{B}}/\!\!/e) \wedge (\mathcal{P}^{\mathcal{B}}/\!\!/e \to \mathcal{P})$ ; so by T3.20 with MP,  $\vdash_{AD} \mathcal{P} \to \mathcal{P}^{\mathcal{B}}/\!\!/e$ ; and by T3.13 with MP,  $\vdash_{AD} \sim \mathcal{P}^{\mathcal{B}}/\!\!/e \to \sim \mathcal{P}$ ; similarly, by T3.19 with MP,  $\vdash_{AD} \mathcal{P}^{\mathcal{B}}/\!\!/e \to \mathcal{P}$ ; so by T3.13 with MP,  $\vdash_{AD} \sim \mathcal{P} \to \sim \mathcal{P}^{\mathcal{B}}/\!\!/e$ ; so by T9.4 with two applications of MP,  $\vdash_{AD} (\sim \mathcal{P} \to \sim \mathcal{P}^{\mathcal{B}}/\!\!/e) \wedge (\sim \mathcal{P}^{\mathcal{B}}/\!\!/e \to \sim \mathcal{P})$ ; so by abv,  $\vdash_{AD} \sim \mathcal{P} \leftrightarrow \sim \mathcal{P}^{\mathcal{B}}/\!\!/e$ ; which is just to say,  $\vdash_{AD} \mathcal{A} \leftrightarrow \mathcal{A}^{\mathcal{B}}/\!\!/e$ .
- $(\rightarrow) \text{ Suppose } \mathcal{A} \text{ is } \mathcal{P} \to \mathcal{Q} \text{ and } \mathcal{B} \text{ is a proper subformula of } \mathcal{A}. \text{ Then } \mathcal{A}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}} \text{ is } \mathcal{P}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}} \to \mathcal{Q} \text{ or } \mathcal{P} \to \mathcal{Q}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}}. \text{ Suppose } \vdash_{AD} \mathcal{B} \leftrightarrow \mathcal{C}.$   $(i) \text{ Say } \mathcal{A}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}} \text{ is } \mathcal{P}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}} \to \mathcal{Q}. \text{ By assumption, } \vdash_{AD} \mathcal{P} \leftrightarrow \mathcal{P}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}}; \text{ so by (abv), } \vdash_{AD} (\mathcal{P} \to \mathcal{P}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}}) \wedge (\mathcal{P}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}} \to \mathcal{P}); \text{ by T3.19 with } MP, \vdash_{AD} \mathcal{P}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}} \to \mathcal{P}; \text{ but by T3.5, } \vdash_{AD} (\mathcal{P}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}} \to \mathcal{P}) \to [(\mathcal{P} \to \mathcal{Q}) \to (\mathcal{P}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}} \to \mathcal{Q})]; \text{ so by } MP, \vdash_{AD} (\mathcal{P} \to \mathcal{Q}) \to (\mathcal{P}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}} \to \mathcal{Q}) \\ \mathcal{Q}. \text{ Similarly, by T3.20 with } MP, \vdash_{AD} \mathcal{P} \to \mathcal{P}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}}; \text{ and by T3.5, } \vdash_{AD} (\mathcal{P} \to \mathcal{P}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}}) \to [(\mathcal{P}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}} \to \mathcal{Q}) \to (\mathcal{P} \to \mathcal{Q})]; \text{ so by } MP, \\ \vdash_{AD} (\mathcal{P}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}} \to \mathcal{Q}) \to (\mathcal{P} \to \mathcal{Q}). \text{ So by T9.4 with two applications of } MP, \vdash_{AD} [(\mathcal{P} \to \mathcal{Q}) \to (\mathcal{P}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}} \to \mathcal{Q})] \land [(\mathcal{P}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}} \to \mathcal{Q})]; \text{ so by abv, } \vdash_{ND} (\mathcal{P} \to \mathcal{Q}) \leftrightarrow (\mathcal{P}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}} \to \mathcal{Q}); \text{ which is just to say, } \vdash_{AD} \mathcal{A} \leftrightarrow \mathcal{A}^{\mathcal{B}}_{\mathcal{H}_{\mathcal{C}}}. \end{cases}$

(ii) Say  $\mathcal{A}^{\mathscr{B}}/\!\!/_{\mathscr{C}}$  is  $\mathscr{P} \to \mathcal{Q}^{\mathscr{B}}/\!\!/_{\mathscr{C}}$ . By assumption,  $\vdash_{AD} \mathcal{Q} \leftrightarrow \mathcal{Q}^{\mathscr{B}}/\!\!/_{\mathscr{C}}$ ; so by (abv),  $\vdash_{AD} (\mathcal{Q} \to \mathcal{Q}^{\mathscr{B}}/\!\!/_{\mathscr{C}}) \land (\mathcal{Q}^{\mathscr{B}}/\!\!/_{\mathscr{C}} \to \mathcal{Q})$ ; so by T3.20 with MP,  $\vdash_{AD} \mathcal{Q} \to \mathcal{Q}^{\mathscr{B}}/\!\!/_{\mathscr{C}}$ ; but by T3.4,  $\vdash_{AD} (\mathcal{Q} \to \mathcal{Q}^{\mathscr{B}}/\!\!/_{\mathscr{C}}) \to [(\mathscr{P} \to \mathcal{Q}) \to \mathcal{Q}^{\mathscr{B}}/\!\!/_{\mathscr{C}})$ 

#### Exercise 9.10

 $\begin{array}{l} (\mathcal{P} \to \mathcal{Q}^{\mathcal{B}} /\!\!/_{\mathcal{C}})]; \text{ so by MP}, \vdash_{AD} (\mathcal{P} \to \mathcal{Q}) \to (\mathcal{P} \to \mathcal{Q}^{\mathcal{B}} /\!\!/_{\mathcal{C}}). \text{ Similarly,} \\ \text{by T3.19 with MP}, \vdash_{AD} \mathcal{Q}^{\mathcal{B}} /\!\!/_{\mathcal{C}} \to \mathcal{Q}; \text{ and by T3.4, } \vdash_{AD} (\mathcal{Q}^{\mathcal{B}} /\!\!/_{\mathcal{C}} \to \mathcal{Q}) \\ \mathcal{Q}) \to [(\mathcal{P} \to \mathcal{Q}^{\mathcal{B}} /\!\!/_{\mathcal{C}}) \to (\mathcal{P} \to \mathcal{Q})]; \text{ so by MP, } \vdash_{AD} (\mathcal{P} \to \mathcal{Q}^{\mathcal{B}} /\!\!/_{\mathcal{C}}) \to (\mathcal{P} \to \mathcal{Q})]; \text{ so by T9.4 with two applications of MP, } \vdash_{AD} [(\mathcal{P} \to \mathcal{Q}) \to (\mathcal{P} \to \mathcal{Q}^{\mathcal{B}} /\!\!/_{\mathcal{C}})] \land [(\mathcal{P} \to \mathcal{Q}^{\mathcal{B}} /\!\!/_{\mathcal{C}}) \to (\mathcal{P} \to \mathcal{Q})]; \text{ so by abv, } \vdash_{AD} (\mathcal{P} \to \mathcal{Q}) \to \mathcal{Q}) \leftrightarrow (\mathcal{P} \to \mathcal{Q}^{\mathcal{B}} /\!\!/_{\mathcal{C}}); \text{ and this is just to say, } \vdash_{AD} \mathcal{A} \leftrightarrow \mathcal{A}^{\mathcal{B}} /\!\!/_{\mathcal{C}}. \end{array}$ 

( $\forall$ ) Suppose  $\mathcal{A}$  is  $\forall x \mathcal{P}$  and  $\mathcal{B}$  is a proper subformula of  $\mathcal{A}$ . Then  $\mathcal{A}^{\mathcal{B}}/\!\!/e$ is  $\forall x [\mathcal{P}^{\mathcal{B}}/\!\!/e]$ . Suppose  $\vdash_{AD} \mathcal{B} \leftrightarrow \mathcal{C}$ . Then by assumption  $\vdash_{AD} \mathcal{P} \leftrightarrow \mathcal{P}^{\mathcal{B}}/\!\!/e$ ; so by abv,  $\vdash_{ND} (\mathcal{P} \to \mathcal{P}^{\mathcal{B}}/\!\!/e) \wedge (\mathcal{P}^{\mathcal{B}}/\!\!/e \to \mathcal{P})$ ; so by T3.20 with MP,  $\vdash_{ND} \mathcal{P} \to \mathcal{P}^{\mathcal{B}}/\!\!/e$ . But since x is always free for itself in  $\mathcal{P}$ , by A4,  $\vdash_{AD} \forall x \mathcal{P} \to \mathcal{P}$ ; so by T3.2,  $\vdash_{AD} \forall x \mathcal{P} \to \mathcal{P}^{\mathcal{B}}/\!\!/e$ ; and since x is not free in  $\forall x \mathcal{P}$ , by Gen,  $\vdash_{AD} \forall x \mathcal{P} \to \forall x \mathcal{P}^{\mathcal{B}}/\!\!/e$ . Similarly, by T3.19 with MP,  $\vdash_{AD} \mathcal{P}^{\mathcal{B}}/\!\!/e \to \mathcal{P}$ ; but, since x is free for itself in  $\mathcal{P}^{\mathcal{B}}/\!\!/e$ , by A4,  $\vdash_{AD} \forall x \mathcal{P}^{\mathcal{B}}/\!\!/e \to \mathcal{P}$ ; but, since x is free for itself in  $\mathcal{P}^{\mathcal{B}}/\!\!/e$ , by A4,  $\vdash_{AD} \forall x \mathcal{P}^{\mathcal{B}}/\!\!/e \to \mathcal{P}^{\mathcal{B}}/\!\!/e$ ; so by T3.2,  $\vdash_{AD} \forall x \mathcal{P}^{\mathcal{B}}/\!\!/e \to \mathcal{P}$ ; and since x is not free in  $\forall x \mathcal{P}^{\mathcal{B}}/\!\!/e$ , by Gen,  $\vdash_{AD} \forall x \mathcal{P}^{\mathcal{B}}/\!\!/e \to \forall x \mathcal{P}$ . So by T9.4 with two applications of MP,  $\vdash_{AD} [\forall x \mathcal{P} \to \forall x \mathcal{P}^{\mathcal{B}}/\!\!/e] \land$  $[\forall x \mathcal{P}^{\mathcal{B}}/\!\!/e \to \forall x \mathcal{P}]$ ; so by abv,  $\vdash_{AD} \forall x \mathcal{P} \leftrightarrow \forall x \mathcal{P}^{\mathcal{B}}/\!\!/e$ ; which is to say  $\vdash_{AD} \mathcal{A} \leftrightarrow \mathcal{A}^{\mathcal{B}}/\!\!/e$ .

If  $\mathcal{A}$  has k operator symbols, then if  $\vdash_{AD} \mathcal{B} \leftrightarrow \mathcal{C}$ , then  $\vdash_{AD} \mathcal{A} \leftrightarrow \mathcal{A}^{\mathcal{B}}/\!\!/_{\mathcal{C}}$ .

*Indct:* For any  $\mathcal{A}$ , if  $\vdash_{\mathcal{AD}} \mathcal{B} \leftrightarrow \mathcal{C}$ , then  $\vdash_{\mathcal{AD}} \mathcal{A} \leftrightarrow \mathcal{A}^{\mathcal{B}}/\!\!/_{\mathcal{C}}$ .

E9.12. Set up the above induction for T9.11 and complete the unfinished cases (including the case for  $\exists E$ ) to show that if  $\Gamma \vdash_{ND} \mathcal{P}$ , then  $\Gamma \vdash_{AD} \mathcal{P}$ . For cases completed in the text, you may simply refer to the text, as the text refers cases to homework.

Suppose  $\Gamma \vdash_{ND} \mathcal{P}$ ; then there is an *ND* derivation *N* of  $\mathcal{P}$  from premises in  $\Gamma$ . We show that for any *i*, there is a good *AD* derivation  $A_i$  that matches *N* through line *i*.

- *Basis:* The first line of N is a premise or an assumption. [From text]  $A_1$  matches N and is good.
- Assp: For any  $i, 0 \le i < k$ , there is a good derivation  $A_i$  that matches N through line i.
- Show: There is a good derivation  $A_k$  that matches N through line k.

Either  $\mathcal{Q}_k$  is a premise or assumption, or arises from previous lines by R,  $\wedge E$ ,  $\wedge I$ ,  $\rightarrow E$ ,  $\rightarrow I$ ,  $\sim E$ ,  $\sim I$ ,  $\vee E$ ,  $\vee I$ ,  $\leftrightarrow E$ ,  $\leftrightarrow I$ ,  $\forall E$ ,  $\forall I$ ,  $\exists E$ ,  $\exists I$ ,  $\equiv E$  or  $\equiv I$ .

- (p/a) From text.
  - (R) From text.
- $(\wedge E)$  From text.
- $(\land I)$  From text.
- $(\rightarrow E)$  From text.
- $(\rightarrow I)$  From text.
- $(\sim E)$  From text.

 $(\sim I)$  If  $\mathcal{Q}_k$  arises by  $\sim I$ , then N is something like this,

$$\begin{vmatrix} i \\ \beta \\ - \\ j \\ c \land \sim \mathcal{C} \\ k \\ \sim \mathcal{B} \qquad i - j \sim \mathbf{I}$$

where i, j < k, the subderivation is accessible at line k, and  $\mathcal{Q}_k = \sim \mathcal{B}$ . By assumption  $A_{k-1}$  matches N through line k - 1 and is good. So  $\mathcal{B}$  and  $\mathcal{C} \land \sim \mathcal{C}$  appear at the same scope on the lines numbered '*i*' and '*j*' of  $A_{k-1}$ ; since they appear at the same scope, the parallel subderivation is accessible in  $A_{k-1}$ ; since  $A_{k-1}$  is good, no application of Gen under the scope of  $\mathcal{B}$  is to a variable free in  $\mathcal{B}$ . So let  $A_k$  continue as follows,

So  $Q_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good.

- $(\lor E)$  From text.
- $(\lor I)$  If  $\mathcal{Q}_k$  arises by  $\lor I$ , then N is something like this,

where i < k and  $\mathcal{B}$  is accessible at line k. In the first case,  $\mathcal{Q}_k = \mathcal{B} \lor \mathcal{C}$ . By assumption  $A_{k-1}$  matches N through line k - 1 and is good. So  $\mathcal{B}$  appears at the same scope on the line numbered 'i' of  $A_{k-1}$  and is accessible in  $A_{k-1}$ . So let  $A_k$  continue as follows,

$$i \mid \mathcal{B}$$

$$k.1 \mid \mathcal{B} \to (\mathcal{B} \lor \mathcal{C}) \qquad T3.17$$

$$k \mid \mathcal{B} \lor \mathcal{C} \qquad k.1, i \text{ MP}$$

So  $\mathcal{Q}_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good. And similarly in the other case, by application of T3.18.

 $(\leftrightarrow E)$  If  $\mathcal{Q}_k$  arises by  $\leftrightarrow E$ , then N is something like this,

where i, j < k and  $\mathcal{B} \leftrightarrow \mathcal{C}$  and  $\mathcal{B}$  or  $\mathcal{C}$  are accessible at line k. In the first case,  $\mathcal{Q}_k = \mathcal{C}$ . By assumption  $A_{k-1}$  matches N through line k-1 and is good. So  $\mathcal{B} \leftrightarrow \mathcal{C}$  and  $\mathcal{B}$  appear at the same scope on the lines numbered 'i' and 'j' of  $A_{k-1}$  and are accessible in  $A_{k-1}$ . So let  $A_k$  continue as follows,

$$i \quad \mathcal{B} \leftrightarrow \mathcal{C}$$

$$j \quad \mathcal{B}$$

$$k.1 \quad (\mathcal{B} \rightarrow \mathcal{C}) \land (\mathcal{C} \rightarrow \mathcal{B}) \qquad i \text{ abv}$$

$$k.2 \quad [(\mathcal{B} \rightarrow \mathcal{C}) \land (\mathcal{C} \rightarrow \mathcal{B})] \rightarrow (\mathcal{B} \rightarrow \mathcal{C}) \qquad \text{T3.20}$$

$$k.3 \quad \mathcal{B} \rightarrow \mathcal{C} \qquad k.2, k.1 \text{ MP}$$

$$k \quad \mathcal{C} \qquad k.3, j \text{ MP}$$

Exercise 9.12

So  $\mathcal{Q}_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good. And similarly in the other case, by application of T3.19.

 $(\leftrightarrow I)$  If  $\mathcal{Q}_k$  arises by  $\leftrightarrow I$ , then N is something like this,

where g, h, i, j < k, the two subderivations are accessible at line kand  $\mathcal{Q}_k = \mathcal{B} \leftrightarrow \mathcal{C}$ . By assumption  $A_{k-1}$  matches N through line k-1 and is good. So the formulas at lines g, h, i, j appear at the same scope on corresponding lines in  $A_{k-1}$ ; since they appear at the same scope, corresponding subderivations are accessible in  $A_{k-1}$ ; since  $A_{k-1}$ is good, no application of Gen under the scope of  $\mathcal{B}$  is to a variable free in  $\mathcal{B}$  and no application of Gen under the scope of  $\mathcal{C}$  is to a variable free in  $\mathcal{C}$ . So let  $A_k$  continue as follows,

| g           | B                                                                                                                                           |               |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| h           | e                                                                                                                                           |               |
| i           |                                                                                                                                             |               |
| j           | 8                                                                                                                                           |               |
| <i>k</i> .1 | $\mathcal{B}  ightarrow \mathcal{C}$                                                                                                        | g- $h$ DT     |
| <i>k</i> .2 | $\mathcal{C}  ightarrow \mathcal{B}$                                                                                                        | <i>i-j</i> DT |
| k.3         | $(\mathcal{B} \to \mathcal{C}) \to [(\mathcal{C} \to \mathcal{B}) \to ((\mathcal{B} \to \mathcal{C}) \land (\mathcal{C} \to \mathcal{B}))]$ | <b>T9.</b> 4  |
| <i>k</i> .4 | $(\mathcal{C}  ightarrow \mathcal{B})  ightarrow ((\mathcal{B}  ightarrow \mathcal{C}) \land (\mathcal{C}  ightarrow \mathcal{B}))$         | k.3,k.1 MP    |
| k.5         | $(\mathcal{B}  ightarrow \mathcal{C}) \land (\mathcal{C}  ightarrow \mathcal{B})$                                                           | k.4,k.2 MP    |
| k           | $\mathscr{B} \leftrightarrow \mathscr{C}$                                                                                                   | k.5 abv       |

So  $\mathcal{Q}_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good.

 $(\forall E)$  If  $\mathcal{Q}_k$  arises by  $\forall E$ , then N looks something like this,

 $\begin{array}{c|c} i & \forall x \mathcal{B} \\ k & \mathcal{B}_t^{\chi} & i \ \forall E \end{array}$ 

where i < k,  $\forall x \mathcal{B}$  is accessible at line k, term t is free for variable x in  $\mathcal{B}$ , and  $\mathcal{Q}_k = \mathcal{B}_t^x$ . By assumption  $A_{k-1}$  matches N through line k-1 and is good. So  $\forall x \mathcal{B}$  appears at the same scope on the line numbered 'i' of  $A_{k-1}$  and is accessible in  $A_{k-1}$ . So let  $A_k$  continue as follows,

$$i \quad \forall x \mathcal{B}$$

$$k.1 \quad \forall x \mathcal{B} \to \mathcal{B}_t^{\chi} \qquad A4$$

$$k \quad \mathcal{B}_t^{\chi} \qquad k.1, i \text{ MF}$$

Since t is free for x in  $\mathcal{B}$ , k.1 is an instance of A4. So  $\mathcal{Q}_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good.

- $(\forall I)$  From text.
- ( $\exists E$ ) If  $\mathcal{Q}_k$  arises by  $\exists E$ , then N looks something like this,
  - $\begin{array}{c|c} h & \exists x \mathcal{B} \\ i & & \mathcal{B}_v^x \\ j & & \mathcal{C} \\ k & \mathcal{C} \\ \end{array}$

where  $h, i, j < k, \exists x \mathcal{B}$  and the subderivation are accessible at line k, and  $\mathcal{C}$  is  $\mathcal{Q}_k$ ; further, the *ND* restrictions on  $\exists E$  are met: (i) v is free for x in  $\mathcal{B}$ , (ii) v is not free in any undischarged auxiliary assumption, and (iii) v is not free in  $\exists x \mathcal{B}$  or in  $\mathcal{C}$ . By assumption  $A_{k-1}$  matches N through line k - 1 and is good. So the formulas at lines h, i and j appear at the same scope on corresponding lines in  $A_{k-1}$ ; since they appear at the same scope,  $\exists x \mathcal{B}$  and the corresponding subderivation are accessible in  $A_{k-1}$ . Since  $A_{k-1}$  is good, no application of Gen under the scope of  $\mathcal{B}_v^{x}$  is to a variable free in  $\mathcal{B}_v^{x}$ . So let  $A_k$  continue as follows,

| $\exists x \mathcal{B}$                                                                                                                                   |                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{B}_v^{\chi}$                                                                                                                                    |                                                                                                                                     |
| l e                                                                                                                                                       |                                                                                                                                     |
| ${\mathscr B}^{\chi}_v	o {\mathscr C}$                                                                                                                    | <i>i-j</i> DT                                                                                                                       |
| $\exists v  \mathcal{B}_v^{\chi} \to \mathcal{C}$                                                                                                         | <b>k.1 T3.3</b> 1                                                                                                                   |
| $\forall v \sim \mathcal{B}_v^{\chi} \rightarrow \forall x \sim \mathcal{B}$                                                                              | T3.27                                                                                                                               |
| $(\forall v \sim \mathcal{B}_v^{\chi} \to \forall x \sim \mathcal{B}) \to (\sim \forall x \sim \mathcal{B} \to \sim \forall v \sim \mathcal{B}_v^{\chi})$ | T3.13                                                                                                                               |
| $\sim \forall x \sim \mathcal{B} \rightarrow \sim \forall v \sim \mathcal{B}_v^x$                                                                         | <i>k</i> .4, <i>k</i> .3 MP                                                                                                         |
| $\exists x \mathcal{B} \to \exists v \mathcal{B}_v^{\chi}$                                                                                                | k.5 abv                                                                                                                             |
| $\exists v  \mathcal{B}_v^{\chi}$                                                                                                                         | h,k.6 MP                                                                                                                            |
| e                                                                                                                                                         | <i>k</i> .2, <i>k</i> .7 MP                                                                                                         |
|                                                                                                                                                           | $ \begin{aligned} \exists x \mathcal{B} \\ & \begin{bmatrix} \mathcal{B}_{v}^{x} \\ - & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$ |

Since from constraint (iii), v is not free in  $\mathcal{C}$ , k.2 meets the restriction on T3.31. If v = x we can go directly from h and k.2 to k. So suppose  $v \neq x$ . To see that k.3 is an instance of T3.27, consider first,  $\forall v \sim \mathcal{B}_v^x \rightarrow \forall x [\sim \mathcal{B}_v^x]_x^v$ ; this is an instance of T3.27 so long as x is not free in  $\forall v \sim \mathcal{B}_v^x$  but free for v in  $\sim \mathcal{B}_v^x$ . First, since  $\sim \mathcal{B}_v^x$  has all its free instances of x replaced by v, x is not free in  $\forall v \sim \mathcal{B}_v^x$ . Second, since  $v \neq x$ , with the constraint (iii), that v is not free in  $\exists x \mathcal{B}, v$  is not free in  $\mathcal{B}$ , and so  $\sim \mathcal{B}$ ; but by (i), v is free for x in  $\mathcal{B}$  and so  $\sim \mathcal{B}$ ; so vappears free in  $\sim \mathcal{B}_v^x$ . So  $\forall v \sim \mathcal{B}_v^x \rightarrow \forall x [\sim \mathcal{B}_v^x]_x^v$  is an instance of T3.27. But since v is not free in  $\sim \mathcal{B}$ , and free for x in  $\sim \mathcal{B}$ , by T8.2,  $[\sim \mathcal{B}_v^x]_x^v = \sim \mathcal{B}$ . So k.3 is a version of T3.27.

So  $\mathcal{Q}_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. There is an application of Gen in T3.31 at k.2. But  $A_{k-1}$  is good and since  $A_k$  matches N and, by (ii), v is free in no undischarged auxiliary assumption of N, v is not free in any undischarged auxiliary assumption of  $A_k$ ; so  $A_k$  is good.

- ( $\exists$ I) If  $\mathcal{Q}_k$  arises by  $\exists$ I, then N looks something like this,
  - $i \begin{vmatrix} \mathcal{B}_t^{\mathbf{x}} \\ \mathbf{x} \end{vmatrix}$  $k \begin{vmatrix} \exists \mathbf{x} \mathcal{B} & i \exists \mathbf{I} \end{vmatrix}$

where i < k,  $\mathcal{B}_t^{\chi}$  is accessible at line k, term t is free for variable  $\chi$  in  $\mathcal{B}$ , and  $\mathcal{Q}_k = \exists \chi \mathcal{B}$ . By assumption  $A_{k-1}$  matches N through line k-1 and is good. So  $\mathcal{B}_t^{\chi}$  appears at the same scope on the line numbered 'i' of  $A_{k-1}$  and is accessible in  $A_{k-1}$ . So let  $A_k$  continue as follows,

$$i \quad \begin{array}{c} \mathcal{B}_{t}^{\chi} \\ k.1 \quad \mathcal{B}_{t}^{\chi} \to \exists \chi \mathcal{B} \\ k \quad \exists \chi \mathcal{B} \\ k \quad k.1, i \text{ MF} \end{array}$$

Since t is free for x in  $\mathcal{B}$ , k.1 is an instance of T3.29. So  $\mathcal{Q}_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good.

(=E) If  $\mathcal{Q}_k$  arises by =E, then N is something like this,

where i, j < k, s is free for the replaced instances of t in  $\mathcal{B}, \mathcal{B}$  and the equality are accessible at line k, and  $\mathcal{Q}_k = \mathcal{B}^t/_s$ . By assumption  $A_{k-1}$  matches N through line k - 1 and is good. So in the first case,  $\mathcal{B}$  and t = s appear at the same scope on the lines numbered 'i' and 'j' of  $A_{k-1}$  and are accessible in  $A_{k-1}$ . So augment  $A_k$  as follows,

$$\begin{array}{c|c} 0.k & (t = s) \rightarrow (\mathcal{B} \rightarrow \mathcal{B}^t/s) & \text{T9.8} \\ i & \mathcal{B} \\ j & t = s \\ k.1 & \mathcal{B} \rightarrow \mathcal{B}^t/s & 0.k, j \text{ MP} \\ k & \mathcal{B}^t/s & k.1, i \text{ MP} \end{array}$$

Since s is free for the replaced instances of t in  $\mathcal{B}$ , 0.k is an instance of T9.8. So  $\mathcal{Q}_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. There may be applications of Gen in the derivation of T9.8; but that derivation is under the scope of no undischarged assumption. And under the scope of any undischarged assumptions, there is no new application of Gen; so  $A_k$  is good. And similarly in the other case, with an initial application of T3.33 and MP.

(=I) If  $Q_k$  arises by =I, then N looks something like this,

$$k \mid t = t = \mathbf{I}$$

where  $Q_k$  is t = t. By assumption  $A_{k-1}$  matches N through line k-1 and is good. So let  $A_k$  continue as follows,

Exercise 9.12

 $k \quad t = t \qquad \text{T3.32}$ 

So  $Q_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good.

In any case,  $A_k$  matches N through line k and is good.

*Indct:* Derivation A matches N and is good.

E9.15. Set up the above induction and complete the unfinished cases to show that if  $\Gamma \vdash_{ND+} \mathcal{P}$ , then  $\Gamma \vdash_{AD} \mathcal{P}$ . For cases completed in the text, you may simply refer to the text, as the text refers cases to homework.

Suppose  $\Gamma \vdash_{ND+} \mathcal{P}$ ; then there is an ND+ derivation N of  $\mathcal{P}$  from premises in  $\Gamma$ . We show that for any i, there is a good AD derivation  $A_i$  that matches N through line i.

- *Basis:* The first line of N is a premise or an assumption. Let  $A_1$  be the same. Then  $A_1$  matches N; and since there is no application of Gen,  $A_1$  is good.
- Assp: For any  $i, 0 \le i < k$ , there is a good derivation  $A_i$  that matches N through line i.
- Show: There is a good derivation of  $A_k$  that matches N through line k.

Either  $\mathcal{Q}_k$  is a premise or assumption, arises by a rule of *ND*, or by a the *ND*+ derivation rules, MT, HS, DS, NB or a replacement rule. If  $\mathcal{Q}_k$  arises by any of the rules other than HS, DS or NB, then by reasoning from the text, there is a good derivation  $A_k$  that matches N through line k.

(HS) If  $\mathcal{Q}_k$  arises from previous lines by HS then N is something like this,

$$\begin{array}{c|c} i & \mathcal{B} \to \mathcal{C} \\ j & \mathcal{C} \to \mathcal{D} \\ k & \mathcal{B} \to \mathcal{D} \\ \end{array}$$
  $i,j \text{ HS}$ 

where  $i, j < k, \mathcal{B} \to \mathcal{C}$  and  $\mathcal{C} \to \mathcal{D}$  are accessible at line k, and  $\mathcal{Q}_k = \mathcal{B} \to \mathcal{D}$ . By assumption  $A_{k-1}$  matches N through line k-1 and is good. So  $\mathcal{B} \to \mathcal{D}$  and  $\mathcal{C} \to \mathcal{D}$  appear at the same scope on the lines numbered 'i' and 'j' of  $A_{k-1}$  and are accessible in  $A_{k-1}$ . So let  $A_k$  continue as follows,

$$\begin{array}{c} i \\ j \\ \mathcal{B} \rightarrow \mathcal{C} \\ \mathcal{C} \rightarrow \mathcal{D} \\ k \\ \mathcal{B} \rightarrow \mathcal{D} \\ i, j \\ T3.2 \end{array}$$

So  $Q_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good.

(DS) If  $\mathcal{Q}_k$  arises by DS, then N is something like this,

where i, j < k, and the formulas at lines i and j are accessible at line k. In the first case,  $\mathcal{Q}_k = \mathcal{B}$ . By assumption  $A_{k-1}$  matches N through line k - 1 and is good. So  $\mathcal{B} \lor \mathcal{C}$  and  $\sim \mathcal{C}$  appear at the same scope on the lines numbered 'i' and 'j' of  $A_{k-1}$  and are accessible in  $A_{k-1}$ . So let  $A_k$  continue as follows,

$$i \mid \mathcal{B} \lor \mathcal{C}$$

$$j \mid \sim \mathcal{C}$$

$$k.1 \mid \sim \mathcal{B} \rightarrow \mathcal{C} \qquad i \text{ abv}$$

$$k.2 \mid (\sim \mathcal{B} \rightarrow \mathcal{C}) \rightarrow (\sim \mathcal{C} \rightarrow \mathcal{B}) \qquad \text{T3.14}$$

$$k.3 \mid \sim \mathcal{C} \rightarrow \mathcal{B} \qquad k.2, k.1 \text{ MP}$$

$$k \mid \mathcal{B} \qquad k.3, j \text{ MP}$$

So  $\mathcal{Q}_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good. And similarly in the other case, by application of MP immediately after k.1.

(NB) If  $\mathcal{Q}_k$  arises by NB, then N is something like this,

where i, j < k, and the formulas at lines i and j are accessible at line k. In the first case,  $\mathcal{Q}_k = \sim \mathcal{C}$ . By assumption  $A_{k-1}$  matches N through line k - 1 and is good. So  $\mathcal{B} \leftrightarrow \mathcal{C}$  and  $\sim \mathcal{B}$  appear at the same scope on the lines numbered 'i' and 'j' of  $A_{k-1}$  and are accessible in  $A_{k-1}$ . So let  $A_k$  continue as follows,

 $\begin{array}{c|c} i & \mathcal{B} \leftrightarrow \mathcal{C} \\ j & \sim \mathcal{B} \\ \hline k.1 & (\mathcal{B} \to \mathcal{C}) \land (\mathcal{C} \to \mathcal{B}) & i \text{ abv} \\ k.2 & [(\mathcal{B} \to \mathcal{C}) \land (\mathcal{C} \to \mathcal{B})] \to (\mathcal{C} \to \mathcal{B}) & \text{T3.19} \\ k.3 & \mathcal{C} \to \mathcal{B} & k.2, k.1 \text{ MP} \\ k.4 & (\mathcal{C} \to \mathcal{B}) \to (\sim \mathcal{B} \to \sim \mathcal{C}) & \text{T3.13} \\ k.5 & \sim \mathcal{B} \to \sim \mathcal{C} & k.4, k.3 \text{ MP} \\ k & \sim \mathcal{C} & k.5, j \text{ MP} \end{array}$ 

So  $Q_k$  appears at the same scope on the line numbered 'k' of  $A_k$ ; so  $A_k$  matches N through line k. And since there is no new application of Gen,  $A_k$  is good. And similarly in the other case, with application of T3.20 in place of T3.19.

In any case,  $A_k$  matches N through line k and is good.

*Indct:* Derivation A matches N and is good.

operator symbols.

### **Chapter Ten**

E10.1. Complete the case for  $(\rightarrow)$  in to complete the demonstration of T10.2. You should set up the complete demonstration, but for cases completed in the text, you may simply refer to the text, as the text refers cases to homework.

For arbitrary formula Q, term r and interpretation I, suppose r is free for x in Q. By induction on the number of operator symbols in Q,

- *Basis:* Suppose  $I_d[r] = 0$ . Then [from the text],  $I_d[\mathcal{Q}_r^{\chi}] = S$  iff  $I_{d(\chi|0)}[\mathcal{Q}] = S$ .
- Assp: For any  $i, 0 \le i < k$ , if  $\mathcal{Q}$  has i operator symbols, r is free for x in  $\mathcal{Q}$ and  $l_d[r] = 0$ , then  $l_d[\mathcal{Q}_r^{\alpha}] = S$  iff  $l_{d(x|0)}[\mathcal{Q}] = S$ .

Show: If  $\mathcal{Q}$  has k operator symbols, r is free for x in  $\mathcal{Q}$  and  $I_d[r] = 0$ , then  $I_d[\mathcal{Q}_r^x] = S$  iff  $I_{d(x|0)}[\mathcal{Q}] = S$ . Suppose  $I_d[r] = 0$ . If  $\mathcal{Q}$  has k operator symbols, then  $\mathcal{Q}$  is of the form  $\sim \mathcal{B}, \ \mathcal{B} \to \mathcal{C}, \text{ or } \forall v \ \mathcal{B}$  for variable v and formulas  $\mathcal{B}$  and  $\mathcal{C}$  with < k

- (~) Suppose  $\mathcal{Q}$  is ~ $\mathcal{B}$ . Then [from the text],  $I_d[\mathcal{Q}_r^{\chi}] = S$  iff  $I_{d(\chi|_0)}[\mathcal{Q}] = S$ .
- $(\rightarrow)$  Suppose  $\mathcal{Q}$  is  $\mathcal{B} \to \mathcal{C}$ . Then  $\mathcal{Q}_r^{\chi} = [\mathcal{B} \to \mathcal{C}]_r^{\chi} = [\mathcal{B}_r^{\chi} \to \mathcal{C}_r^{\chi}]$ . Since r is free for  $\chi$  in  $\mathcal{Q}$ , r is free for  $\chi$  in  $\mathcal{B}$  and  $\mathcal{C}$ ; so by assumption,

$$\begin{split} \mathsf{l}_{\mathsf{d}}[\mathscr{B}_{r}^{\mathfrak{X}}] &= \mathsf{S} \text{ iff } \mathsf{l}_{\mathsf{d}(\mathfrak{x}|\mathsf{o})}[\mathscr{B}] = \mathsf{S} \text{ and } \mathsf{l}_{\mathsf{d}}[\mathscr{C}_{r}^{\mathfrak{X}}] = \mathsf{S} \text{ iff } \mathsf{l}_{\mathsf{d}(\mathfrak{x}|\mathsf{o})}[\mathscr{C}] = \mathsf{S}.\\ \text{But by } \mathsf{SF}(\rightarrow), \, \mathsf{l}_{\mathsf{d}}[\mathscr{B}_{r}^{\mathfrak{X}} \rightarrow \mathscr{C}_{r}^{\mathfrak{X}}] = \mathsf{S} \text{ iff } \mathsf{l}_{\mathsf{d}}[\mathscr{B}_{r}^{\mathfrak{X}}] \neq \mathsf{S} \text{ or } \mathsf{l}_{\mathsf{d}}[\mathscr{C}_{r}^{\mathfrak{X}}] = \mathsf{S};\\ \text{by assumption, iff } \mathsf{l}_{\mathsf{d}(\mathfrak{x}|\mathsf{o})}[\mathscr{B}] \neq \mathsf{S} \text{ or } \mathsf{l}_{\mathsf{d}(\mathfrak{x}|\mathsf{o})}[\mathscr{C}] = \mathsf{S}; \text{ by } \mathsf{SF}(\rightarrow), \text{ iff }\\ \mathsf{l}_{\mathsf{d}(\mathfrak{x}|\mathsf{o})}[\mathscr{B} \rightarrow \mathscr{C}] = \mathsf{S}. \text{ So } \mathsf{l}_{\mathsf{d}}(\mathscr{Q}_{r}^{\mathfrak{X}}] = \mathsf{S} \text{ iff } \mathsf{l}_{\mathsf{d}(\mathfrak{x}|\mathsf{o})}[\mathscr{Q}] = \mathsf{S}. \end{split}$$

( $\forall$ ) Suppose  $\mathcal{Q}$  is  $\forall v \mathcal{B}$ . From the text, by the assumption, for any  $m \in U$ ,  $I_{d(v|m)}[\mathcal{B}_{r}^{x}] = S$  iff  $I_{d(v|m,x|o)}[\mathcal{B}] = S$ . In addition, if  $I_{d(x|o)}[\mathcal{Q}] = S$ then  $I_{d}[\mathcal{Q}_{r}^{x}] = S$ . Now suppose  $I_{d}[\mathcal{Q}_{r}^{x}] = S$  but  $I_{d(x|o)}[\mathcal{Q}] \neq S$ ; then  $I_{d}[\forall v \mathcal{B}_{r}^{x}] = S$  but  $I_{d(x|o)}[\forall v \mathcal{B}] \neq S$ . From the latter, by SF( $\forall$ ), there is some  $m \in U$  such that  $I_{d(v|m,x|o)}[\mathcal{B}] \neq S$ ; so by the result from the assumption,  $I_{d(v|m)}[\mathcal{B}_{r}^{x}] \neq S$ ; so by SF( $\forall$ ),  $I_{d}[\forall v \mathcal{B}_{r}^{x}] \neq S$ ; this is impossible. So  $I_{d}[\mathcal{Q}_{r}^{x}] = S$  iff  $I_{d(x|o)}[\mathcal{Q}] = S$ .

If  $\mathcal{Q}$  has k operator symbols, if r is free for x in  $\mathcal{Q}$  and  $I_d[r] = 0$ , then  $I_d[\mathcal{Q}_r^x] = S$  iff  $I_{d(x|0)}[\mathcal{Q}] = S$ .

- *Indct:* For any  $\mathcal{Q}$ , if r is free for x in  $\mathcal{Q}$  and  $I_d[r] = 0$ , then  $I_d[\mathcal{Q}_r^x] = S$  iff  $I_{d(x|0)}[\mathcal{Q}] = S$ .
- E10.2. Complete the case for (MP) to round out the demonstration that AD is sound. You should set up the complete demonstration, but for cases completed in the text, you may simply refer to the text, as the text refers cases to homework.

Suppose  $\Gamma \vdash_{AD} \mathcal{P}$ . Then there is an *AD* derivation  $A = \langle \mathcal{Q}_1 \dots \mathcal{Q}_n \rangle$  of  $\mathcal{P}$  from premises in  $\Gamma$ , with  $\mathcal{Q}_n = \mathcal{P}$ . By induction on the line numbers in *A*, for any  $i, \Gamma \vDash \mathcal{Q}_i$ . The case when i = n is the desired result.

- *Basis:* The first line of A is a premise or an axiom. Then [from the text],  $\Gamma \models Q_1$ .
- Assp: For any  $i, 1 \leq i < k, \Gamma \vDash Q_i$ .
- Show:  $\Gamma \vDash Q_k$ .

 $\mathcal{Q}_k$  is either a premise, an axiom, or arises from previous lines by MP or Gen. If  $\mathcal{Q}_k$  is a premise or an axiom then, as in the basis,  $\Gamma \models \mathcal{Q}_k$ . So suppose  $\mathcal{Q}_k$  arises by MP or Gen.

(MP) If  $\mathcal{Q}_k$  arises by MP, then A is something like this,

 $i \quad \mathcal{B} \to \mathcal{C}$   $j \quad \mathcal{B}$   $\vdots$   $k \quad \mathcal{C} \qquad i, j \text{ MP}$ 

where i, j < k and  $\mathcal{Q}_k = \mathcal{C}$ . Suppose  $\Gamma \nvDash \mathcal{Q}_k$ ; then  $\Gamma \nvDash \mathcal{C}$ ; so by QV, there is some I such that  $I[\Gamma] = T$  but  $I[\mathcal{C}] \neq T$ ; from the latter, by TI, there is some d such that  $I_d[\mathcal{C}] \neq S$ . But  $I[\Gamma] = T$  and by assumption,  $\Gamma \vDash \mathcal{B} \to \mathcal{C}$  and  $\Gamma \vDash \mathcal{B}$ ; so by QV,  $I[\mathcal{B} \to \mathcal{C}] = T$  and  $I[\mathcal{B}] = T$ ; so by TI,  $I_d[\mathcal{B} \to \mathcal{C}] = S$  and  $I_d[\mathcal{B}] = S$ ; from the first of these, by  $SF(\to), I_d[\mathcal{B}] \neq S$  or  $I_d[\mathcal{C}] = S$ ; so  $I_d[\mathcal{C}] = S$ . This is impossible; reject the assumption:  $\Gamma \vDash \mathcal{Q}_k$ .

(Gen) If  $\mathcal{Q}_k$  arises by Gen, then [from the text],  $\Gamma \models \mathcal{Q}_k$ .

$$\Gamma \vDash Q_k$$

*Indct:* For any  $n, \Gamma \models Q_n$ .

E10.4. Provide an argument to show T10.5.

If there is an interpretation M such that  $M[\Gamma \cup \{\sim \mathcal{A}\}] = T$ , then  $\Gamma \nvDash \mathcal{A}$ .

Suppose there is an interpretation M such that  $M[\Gamma \cup \{\sim A\}] = T$  but  $\Gamma \vdash A$ . From the former,  $M[\Gamma] = T$  and  $M[\sim A] = T$ . From the latter, by soundness,  $\Gamma \models A$ ; but  $M[\Gamma] = T$ ; so by QV, M[A] = T; so by TI, for any d,  $M_d[A] =$ S and since  $M[\sim A] = T$ ,  $M_d[\sim A] = S$ ; so by  $SF(\sim)$ ,  $M_d[A] \neq S$ . This is impossible; reject the assumption: if there is an interpretation M such that  $M[\Gamma \cup \{\sim A\}] = T$ , then  $\Gamma \nvDash A$ .

E10.10. Complete the second half of the conditional case to complete the proof of  $T10.9_s$ . You should set up the entire induction, but may refer to the text for parts completed there, as the text refers to homework.

Suppose  $\Sigma'$  is consistent. Then by T10.8<sub>s</sub>,  $\Sigma''$  is maximal and consistent. Now by induction on the number of operators in  $\mathcal{B}$ ,

- *Basis:* If  $\mathcal{B}$  has no operators, then it is an atomic of the sort  $\mathcal{S}$ . But by the construction of M', M'[ $\mathcal{S}$ ] = T iff  $\Sigma'' \vdash \mathcal{S}$ ; so M'[ $\mathcal{B}$ ] = T iff  $\Sigma'' \vdash \mathcal{B}$ .
- Assp: For any  $i, 0 \le i < k$ , if  $\mathcal{B}$  has i operator symbols, then  $\mathsf{M}'[\mathcal{B}] = \mathsf{T}$  iff  $\Sigma'' \vdash \mathcal{B}$ .
- Show: If  $\mathcal{B}$  has k operator symbols, then  $M'[\mathcal{B}] = T$  iff  $\Sigma'' \vdash \mathcal{B}$ .

If  $\mathcal{B}$  has k operator symbols, then it is of the form  $\sim \mathcal{P}$  or  $\mathcal{P} \rightarrow \mathcal{Q}$ where  $\mathcal{P}$  and  $\mathcal{Q}$  have < k operator symbols.

- (~) Suppose  $\mathcal{B}$  is  $\sim \mathcal{P}$ . [From the text],  $\mathsf{M}'[\mathcal{B}] = \mathsf{T}$  iff  $\Sigma'' \vdash \mathcal{B}$ .
- ( $\rightarrow$ ) Suppose  $\mathcal{B}$  is  $\mathcal{P} \rightarrow \mathcal{Q}$ . (i) Suppose  $\mathsf{M}'[\mathcal{B}] = \mathsf{T}$ ; then [from the text],  $\Sigma'' \vdash \mathcal{B}$ . (ii) Suppose  $\Sigma'' \vdash \mathcal{B}$  but  $\mathsf{M}'[\mathcal{B}] \neq \mathsf{T}$ ; then  $\Sigma'' \vdash \mathcal{P} \rightarrow \mathcal{Q}$  but

 $M'[\mathcal{P} \to \mathcal{Q}] \neq T$ ; from the latter, by  $ST(\to)$ ,  $M'[\mathcal{P}] = T$  and  $M'[\mathcal{Q}] \neq T$ ; so by assumption,  $\Sigma'' \vdash \mathcal{P}$  and  $\Sigma'' \nvDash \mathcal{Q}$ ; from the second of these, by maximality,  $\Sigma'' \vdash \sim \mathcal{Q}$ . But since  $\Sigma'' \vdash \mathcal{P}$  and  $\Sigma'' \vdash \mathcal{P} \to \mathcal{Q}$ , by MP,  $\Sigma'' \vdash \mathcal{Q}$ ; so by consistency,  $\Sigma'' \nvDash \sim \mathcal{Q}$ . This is impossible; reject the assumption: If  $\Sigma'' \vdash \mathcal{B}$ , then  $M'[\mathcal{B}] = T$ . So  $M'[\mathcal{B}] = T$  iff  $\Sigma'' \vdash \mathcal{B}$ .

If  $\mathcal{B}$  has k operator symbols, then  $M'[\mathcal{B}] = T$  iff  $\Sigma'' \vdash \mathcal{B}$ .

*Indct:* For any  $\mathcal{B}, \mathsf{M}'[\mathcal{B}] = \mathsf{T}$  iff  $\Sigma'' \vdash \mathcal{B}$ .

- E10.13. Finish the cases for A2, A3 and MP to complete the proof of T10.12. You should set up the complete demonstration, but may refer to the text for cases completed there, as the text refers cases to homework.
  - *Basis:*  $\mathcal{B}_1$  is either a member of  $\Sigma'$  or an axiom.
  - (prem) If  $\mathcal{B}_1$  is a member of  $\Sigma'$ , then [from text],  $\langle \mathcal{B}_1 {a \atop x}^a \rangle$  is a derivation from  $\Sigma' {a \atop x}$ .
    - (eq) If  $\mathcal{B}_1$  is an equality axiom, A6, A7 or A8, then [from text],  $\langle \mathcal{B}_1 {a \atop x} \rangle$  is a derivation from  $\Sigma' {a \atop x}$ .
  - (A1) If  $\mathcal{B}_1$  is an instance of A1, then [from text],  $\langle \mathcal{B}_1 {a \atop \chi} \rangle$  is a derivation from  $\sum_{x} {a \atop \chi}$ .
  - (A2) If  $\mathcal{B}_1$  is an instance of A2, then it is of the form,  $[\mathcal{O} \to (\mathcal{P} \to \mathcal{Q})] \to [(\mathcal{O} \to \mathcal{P}) \to (\mathcal{O} \to \mathcal{Q})]$ ; so  $\mathcal{B}_1 \frac{a}{\chi}$  is  $[\mathcal{O}_{\chi}^a \to (\mathcal{P}_{\chi}^a \to \mathcal{Q}_{\chi}^a)] \to [(\mathcal{O}_{\chi}^a \to \mathcal{P}_{\chi}^a) \to (\mathcal{O}_{\chi}^a \to \mathcal{Q}_{\chi}^a)]$ ; but this is an instance of A2; so if  $\mathcal{B}_1$  is an instance of A2, then  $\mathcal{B}_1 \frac{a}{\chi}$  is an instance of A2, and  $\langle \mathcal{B}_1 \frac{a}{\chi} \rangle$  is a derivation from  $\Sigma' \frac{a}{\chi}$ .
  - (A3) If  $\mathcal{B}_1$  is an instance of A3, then it is of the form,  $(\sim \mathcal{Q} \rightarrow \sim \mathcal{P}) \rightarrow [(\sim \mathcal{Q} \rightarrow \mathcal{P}) \rightarrow \mathcal{Q}]$ ; so  $\mathcal{B}_1 \frac{a}{\chi}$  is  $(\sim \mathcal{Q}_{\chi}^a \rightarrow \sim \mathcal{P}_{\chi}^a) \rightarrow [(\sim \mathcal{Q}_{\chi}^a \rightarrow \mathcal{P}_{\chi}^a) \rightarrow \mathcal{Q}_{\chi}^a]$ ; but this is an instance of A3; so if  $\mathcal{B}_1$  is an instance of A3, then  $\mathcal{B}_1 \frac{a}{\chi}$  is an instance of A3, and  $\langle \mathcal{B}_1 \frac{a}{\chi} \rangle$  is a derivation from  $\Sigma' \frac{a}{\chi}$ .
  - (A4) If  $\mathcal{B}_1$  is an instance of A4, then [from text],  $\langle \mathcal{B}_1 {a \atop x}^{a} \rangle$  is a derivation from  $\Sigma' {a \atop x}^{a}$ .
  - Assp: For any  $i, 1 \le i < k, \langle \mathcal{B}_1 \overset{a}{_{\chi}} \dots \mathcal{B}_i \overset{a}{_{\chi}} \rangle$  is a derivation from  $\Sigma' \overset{a}{_{\chi}}$ .

Show:  $\langle \mathcal{B}_1 \overset{a}{x} \dots \mathcal{B}_k \overset{a}{x} \rangle$  is a derivation from  $\Sigma' \overset{a}{x}$ .

 $\mathcal{B}_k$  is a member of  $\Sigma'$ , an axiom, or arises from previous lines by MP or Gen. If  $\mathcal{B}_k$  is a member of  $\Sigma'$  or an axiom then, by reasoning as in the basis,  $\langle \mathcal{B}_1 \dots \mathcal{B}_k \rangle$  is a derivation from  $\Sigma' \frac{a}{x}$ . So two cases remain.

(MP) If  $\mathcal{B}_k$  arises by MP, then there are some lines in D,

 $\begin{array}{ll} i & \mathcal{P} \to \mathcal{Q} \\ j & \mathcal{P} \\ & \vdots \\ k & \mathcal{Q} & i, j \text{ MP} \end{array}$ 

where i, j < k and  $\mathcal{B}_k = \mathcal{Q}$ . By assumption  $(\mathcal{P} \to \mathcal{Q})^a_{\chi}$  and  $\mathcal{P}^a_{\chi}$ are members of the derivation  $\langle \mathcal{B}_1^a_{\chi} \dots \mathcal{B}_{k-1}^a_{\chi} \rangle$  from  $\Sigma'^a_{\chi}$ ; but  $(\mathcal{P} \to \mathcal{Q})^a_{\chi}$  is  $\mathcal{P}^a_{\chi} \to \mathcal{Q}^a_{\chi}$ ; so by MP,  $\mathcal{Q}^a_{\chi}$  follows in this new derivation. So  $\langle \mathcal{B}_1^a_{\chi} \dots \mathcal{B}_k^a_{\chi} \rangle$  is a derivation from  $\Sigma'^a_{\chi}$ .

(Gen) If  $\mathcal{B}_k$  arises by Gen, then [from text],  $\langle \mathcal{B}_1 \overset{a}{x} \dots \mathcal{B}_k \overset{a}{x} \rangle$  is a derivation  $\frac{\text{from } \Sigma' \overset{a}{x}}{\text{So } \langle \mathcal{B}_1 \overset{a}{x} \dots \mathcal{B}_k \overset{a}{x} \rangle}$  is a derivation from  $\Sigma' \overset{a}{x}$ .

*Indct:* For any n,  $\langle \mathcal{B}_1 \stackrel{a}{_{\chi}} \dots \mathcal{B}_n \stackrel{a}{_{\chi}} \rangle$  is a derivation from  $\Sigma' \stackrel{a}{_{\chi}}$ .

E10.21. Complete the proof of T10.14. You should set up the complete induction, but may refer to the text, as the text refers to homework.

The argument is by induction on the number of function symbols in t. Let d be a variable assignment, and t a term in  $\mathcal{L}$ .

*Basis:* If t has no function symbols, then it is a variable or a constant in  $\mathcal{L}$ . If t is a constant, then by construction, M[t] = M'[t]; so by TA(c),  $M_d[t] = M'_d[t]$ . If t is a variable, by TA(v),  $M_d[t] = d[t] = M'_d[t]$ . In either case, then,  $M_d[t] = M'_d[t]$ .

Assp: For any  $i, 0 \le i < k$ , if t has i function symbols, then  $M_d[t] = M'_d[t]$ .

Show: If t has k function symbols, then  $M_d[t] = M'_d[t]$ .

If t has k function symbols, then [from text]  $M_d[t] = M'_d[t]$ .

Indet: For any t in  $\mathcal{L}$ ,  $M_d[t] = M'_d[t]$ .

E10.22. Complete the proof of T10.15. As usual, you should set up the complete induction, but may refer to the text for cases completed there, as the text refers to homework.

The argument is by induction on the number of operator symbols in  $\mathcal{P}$ . Let d be a variable assignment, and  $\mathcal{P}$  a formula in  $\mathcal{L}$ .

*Basis:* If  $\mathcal{P}$  has no operator symbols, then [from text]  $M_d[\mathcal{P}] = S$  iff  $M'_d[\mathcal{P}] = S$ .

- Assp: For any  $i, 0 \le i < k$ , and any common variable assignment d, if  $\mathcal{P}$  has i operator symbols,  $M_d[\mathcal{P}] = S$  iff  $M'_d[\mathcal{P}] = S$ .
- Show: For any variable assignment d for M, if  $\mathcal{P}$  has k operator symbols,  $M_d[\mathcal{P}] = S$  iff  $M'_d[\mathcal{P}] = S$ . If  $\mathcal{P}$  has k operator symbols, then it is of the form  $\sim \mathcal{A}, \mathcal{A} \rightarrow \mathcal{B}$  or  $\forall x \mathcal{A}$  for variable x and formulas  $\mathcal{A}$  and  $\mathcal{B}$  with < k operator symbols.

(~) Suppose  $\mathcal{P}$  is of the form  $\sim \mathcal{A}$ . Then  $M_d[\mathcal{P}] = S$  iff  $M_d[\sim \mathcal{A}] = S$ ; by  $SF(\sim)$ , iff  $M_d[\mathcal{A}] \neq S$ ; by assumption, iff  $M'_d[\mathcal{A}] \neq S$ ; by  $SF(\sim)$ , iff  $M'_d[\sim \mathcal{A}] = S$ ; iff  $M'_d[\mathcal{P}] = S$ .

- $\begin{array}{l} (\rightarrow) \mbox{ Suppose $\mathcal{P}$ is of the form $\mathcal{A}$ $\rightarrow$ $\mathcal{B}$. Then $M_d[\mathcal{P}]$ = $S$ iff $M_d[\mathcal{A}$ $\rightarrow$ $\mathcal{B}$] = $S$; by $SF(\rightarrow)$, iff $M_d[\mathcal{A}]$ $\neq$ $S$ or $M_d[\mathcal{B}]$ = $S$; by assumption, $$ iff $M_d'[\mathcal{A}]$ $\neq$ $S$ or $M_d'[\mathcal{B}]$ = $S$; by $SF(\rightarrow)$, iff $M_d'[\mathcal{A}$ $\rightarrow$ $\mathcal{B}]$ = $S$; iff $M_d'[\mathcal{P}]$ = $S$. } \end{array}$
- ( $\forall$ ) Suppose  $\mathcal{P}$  is of the form  $\forall x \mathcal{A}$ . Then  $M_d[\mathcal{P}] = S$  iff  $M_d[\forall x \mathcal{A}] = S$ ; by  $SF(\forall)$ , iff for any  $m \in U$ ,  $M_{d(x|m)}[\mathcal{A}] = S$ ; by assumption, iff for any  $\underline{m} \in U$ ,  $M'_{d(x|m)}[\mathcal{A}] = S$ ; by  $SF(\forall)$ , iff  $M'_d[\forall x \mathcal{A}] = S$ ; iff  $M'_d[\mathcal{P}] = S$ . If  $\mathcal{P}$  has k operator symbols,  $M_d[\mathcal{P}] = S$  iff  $M'_d[\mathcal{P}] = S$ .

-

*Indct:* For any formula  $\mathcal{P}$  in  $\mathcal{L}$ ,  $M_d[\mathcal{P}] = S$  iff  $M'_d[\mathcal{P}] = S$ .

## **Chapter Eleven**

E11.9. Complete the proof of T11.9. You should set up the complete induction, but may refer to the text, as the text refers to homework.

By induction on the number of operators in  $\mathcal{P}$ . Suppose  $D \cong H$ .

- *Basis:* Suppose  $\mathcal{P}$  has no operator symbols and d and h are such that for any x,  $\iota(d[x]) = h[x]$ . If  $\mathcal{P}$  has no operator symbols, then [from text]  $D_d[\mathcal{P}] = S$  iff  $H_h[\mathcal{P}] = S$ .
- Assp: For any  $i, 0 \le i < k$ , for d and h such that for any  $x, \iota(d[x]) = h[x]$ and  $\mathcal{P}$  with *i* operator symbols,  $D_d[\mathcal{P}] = S$  iff  $H_h[\mathcal{P}] = S$ .
- Show: For d and h such that for any x,  $\iota(d[x]) = h[x]$  and  $\mathcal{P}$  with k operator symbols,  $D_d[\mathcal{P}] = S$  iff  $H_h[\mathcal{P}] = S$ .

If  $\mathcal{P}$  has k operator symbols, then it is of the form  $\sim \mathcal{A}$ ,  $\mathcal{A} \rightarrow \mathcal{B}$ , or  $\forall x \mathcal{A}$  for variable x and formulas  $\mathcal{A}$  and  $\mathcal{B}$  with < k operator symbols. Suppose for any x,  $\iota(d[x]) = h[x]$ . (~) Suppose  $\mathcal{P}$  is of the form ~ $\mathcal{A}$ . Then [from text]  $D_d[\mathcal{P}] = S$  iff  $H_h[\mathcal{P}] = S$ .

 $D_d[\mathcal{P}] = S \text{ iff } D_d[\sim \mathcal{A}] = S$ ; by  $SF(\sim)$ , iff  $D_d[\mathcal{A}] \neq S$ ; by assumption, iff  $H_h[\mathcal{A}] \neq S$ ; by  $SF(\sim)$ , iff  $H_h[\sim \mathcal{A}] = S$ ; iff  $H_h[\mathcal{P}] = S$ .

- $\begin{array}{l} (\rightarrow) \ \ \mathsf{D}_{\mathsf{d}}[\mathcal{P}] = S \ \text{iff} \ \mathsf{D}_{\mathsf{d}}[\mathcal{A} \to \mathcal{B}] = S; \ \text{by} \ SF(\rightarrow), \ \text{iff} \ \mathsf{D}_{\mathsf{d}}[\mathcal{A}] \neq S \ \text{or} \ \mathsf{D}_{\mathsf{d}}[\mathcal{B}] = \\ S; \ \text{by} \ \text{assumption}, \ \text{iff} \ \mathsf{H}_{\mathsf{h}}[\mathcal{A}] \neq S \ \text{or} \ \mathsf{H}_{\mathsf{h}}[\mathcal{B}] = S; \ \text{by} \ SF(\rightarrow), \ \text{iff} \ \mathsf{H}_{\mathsf{h}}[\mathcal{A} \to \mathcal{B}] = S; \ \text{iff} \ \mathsf{H}_{\mathsf{h}}[\mathcal{P}] = S. \end{array}$
- ( $\forall$ ) Suppose  $\mathcal{P}$  is of the form  $\forall x \mathcal{A}$ . Then  $D_d[\mathcal{P}] = S$  iff  $D_d[\forall x \mathcal{A}] = S$ ; by  $SF(\forall)$ , iff for any  $m \in U_D$ ,  $D_{d(x|m)}[\mathcal{A}] = S$ . Similarly,  $H_h[\mathcal{P}] = S$  iff  $H_h[\forall x \mathcal{A}] = S$ ; by  $SF(\forall)$ , iff for any  $n \in U_H$ ,  $H_{h(x|n)}[\mathcal{A}] = S$ . (i) [From the text], if  $H_h[\mathcal{P}] = S$ , then  $D_d[\mathcal{P}] = S$ . (ii) Suppose  $D_d[\mathcal{P}] = S$  but  $H_h[\mathcal{P}] \neq S$ ; then any  $m \in U_D$  is such that  $D_{d(x|m)}[\mathcal{A}] = S$ , but there is some  $n \in U_H$  such that  $H_{h(x|n)}[\mathcal{A}] \neq S$ . Since  $\iota$  is onto  $U_H$ , there is some  $o \in U_D$  such that  $\iota(o) = n$ ; so insofar as d(x|o) and h(x|n) have each member related by  $\iota$ , the assumption applies and  $D_{d(x|o)}[\mathcal{A}] \neq S$ ; so there is some  $m \in U_D$  such that  $D_{d(x|m)}[\mathcal{A}] \neq S$ ; this is impossible; reject the assumption: if  $D_d[\mathcal{P}] = S$ , then  $H_h[\mathcal{P}] = S$ .

For d and h such that for any x,  $\iota(d[x]) = h[x]$  and  $\mathcal{P}$  with k operator symbols,  $D_d[\mathcal{P}] = S$  iff  $H_h[\mathcal{P}] = S$ .

*Indct:* For d and h such that for any x,  $\iota(d[x]) = h[x]$ , and any  $\mathscr{P}$ ,  $\mathsf{D}_{\mathsf{d}}[\mathscr{P}] = \mathsf{S}$  iff  $\mathsf{H}_{\mathsf{h}}[\mathscr{P}] = \mathsf{S}$ .

### **Chapter Twelve**

E12.1. (b) produce functions gpower(x), and hpower(x, y, u) and show that they have the same result as conditions (g) and (h).

Set gpower(x) = suc(zero(x)) and hpower(x, y, u) = times(idnt<sub>3</sub><sup>3</sup>(x, y, u), x). Then,

- g' power(x, 0) = S(zero(x)) = S0
- h' power(x, Sy) =  $idnt_3^3(x, y, power(x, y)) \times x = power(x, y) \times x$
- E12.5. (a) By the method of our core induction, write down formulas to express the following recursive function: suc(zero(x)).

Z(x, w) is  $x = x \land w = \emptyset$  and  $\mathscr{S}(w, y)$  is Sw = y; so their composition  $\mathscr{F}(x, y) = \exists w [(x = x \land w = \emptyset) \land Sw = y].$ 

E12.6. Fill out semantic reasoning to demonstrate that proposed (original) formulas satisfy the conditions for expression for the (z), (i), (c) and (m) clauses to T12.3.

(c)  $f_k(y)$  arises by composition from g(y) and h(w). By assumption g(y) is expressed by some  $\mathscr{G}(y, w)$  and h(w) by  $\mathscr{H}(w, v)$ . And the composition f(y) is expressed by  $\mathscr{F}(y, v) =_{def} \exists w[\mathscr{G}(y, w) \land \mathscr{H}(w, v)]$ . Suppose  $\langle m, a \rangle \in f_k$ ; then by composition there is some b such that  $\langle m, b \rangle \in g$  and  $\langle b, a \rangle \in h$ .

(i) Because  $\mathscr{G}$  and  $\mathscr{H}$  express g and h,  $N[\mathscr{G}(\overline{m}, \overline{b})] = T$  and  $N[\mathscr{H}(\overline{b}, \overline{a})] = T$ . Suppose  $N[\exists w(\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, \overline{a}))] \neq T$ ; then by TI, there is some d such that  $N_d[\exists w(\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, \overline{a}))] \neq S$ ; let h be a particular assignment of this sort; then  $N_h[\exists w(\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, \overline{a}))] \neq S$ ; so by  $SF(\exists)$ , for any  $o \in U$ ,  $N_{h(w|o)}[\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, \overline{a})] \neq S$ ; so  $N_{h(w|b)}[\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, \overline{a})] \neq S$ ; so since  $N_h[\overline{b}] = b$ , with T10.2,  $N_h[\mathscr{G}(\overline{m}, \overline{b}) \land \mathscr{H}(\overline{b}, \overline{a})] \neq S$ ; so by  $SF(\land)$ ,  $N_h[\mathscr{G}(\overline{m}, \overline{b})] \neq S$  or  $N_h[\mathscr{H}(\overline{b}, \overline{a})] \neq S$ . But  $N[\mathscr{G}(\overline{m}, \overline{b})] = T$ ; so by TI, for any d,  $N_d[\mathscr{G}(\overline{m}, \overline{b})] = S$ ; so  $N_h[\mathscr{G}(\overline{m}, \overline{b})] = S$ ; so  $N_h[\mathscr{H}(\overline{b}, \overline{a})] \neq S$ ; but  $N[\mathscr{H}(\overline{b}, \overline{a})] = T$ ; so by TI, for any d,  $N_d[\mathscr{H}(\overline{b}, \overline{a})] = T$ ; so by TI, for any d,  $N_d[\mathscr{H}(\overline{b}, \overline{a})] = S$ ; so  $N_h[\mathscr{H}(\overline{b}, \overline{a})] = S$ . This is impossible; reject the assumption:  $N[\exists w(\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, \overline{a}))] = T$ .

(ii) Suppose  $N[\forall z (\exists w (\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, z)) \rightarrow z = \overline{a})] \neq T$ ; then by TI, there is some d such that  $N_d[\forall z (\exists w (\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, z)) \rightarrow z = \overline{a})] \neq S$ ; let h be a particular assignment of this sort; then  $N_h[\forall z (\exists w (\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, z)) \rightarrow z = \overline{a})] \neq S$ ; so by  $SF(\forall)$ , for some  $o \in U$ ,  $N_{h(z|o)}[\exists w (\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, z)) \rightarrow z = \overline{a}] \neq S$ ; let p be a particular individual of this sort; then  $N_h(z|p)[\exists w (\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, z)) \rightarrow z = \overline{a}] \neq S$ ; let p be a particular individual of this sort; then  $N_{h(z|p)}[\exists w (\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, \overline{p})) \rightarrow \overline{p} = \overline{a}] \neq S$ ; so by  $SF(\rightarrow)$ ,  $N_h[\exists w (\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, \overline{p}))] = S$  and  $N_h[\overline{p} = \overline{a}] \neq S$ . From the first of these, by  $SF(\exists)$ , there is some  $o \in U$  such that  $N_{h(w|o)}[\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, \overline{p})] = S$ ; let q be a particular individual of this sort; then  $N_{h(w|q)}[\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, \overline{p})] = S$ ; since  $N_h[\overline{q}] = q$ , with T10.2,  $N_h[\mathscr{G}(\overline{m}, \overline{q}) \land \mathscr{H}(\overline{q}, \overline{p})] = S$ ; so by  $SF(\land)$ ,  $N_h[\mathscr{G}(\overline{m}, \overline{q})] = S$ ; and  $N_h[\mathscr{H}(\overline{q}, \overline{p})] = S$ .

Because  $\mathscr{G}$  expresses g and  $\langle m, b \rangle \in g$ ,  $N[\forall z(\mathscr{G}(\overline{m}, z) \to z = \overline{b})] = T$ ; so by TI, for any d,  $N_d[\forall z(\mathscr{G}(\overline{m}, z) \to z = \overline{b})] = S$ ; so  $N_h[\forall z(\mathscr{G}(\overline{m}, z) \to z = \overline{b})] = S$ ; so by  $SF(\forall)$ , for any  $o \in U$ ,  $N_{h(z|o)}[\mathscr{G}(\overline{m}, z) \to z = \overline{b}] = S$ ; so  $N_{h(z|q)}[\mathscr{G}(\overline{m}, z) \to z = \overline{b}] = S$ ; since  $N_h[\overline{q}] = q$ , with T10.2,  $N_h[\mathscr{G}(\overline{m}, \overline{q}) \to \overline{q} = \overline{b}] = S$ ; so by  $SF(\to)$ ,  $N_h[\mathscr{G}(\overline{m}, \overline{q})] \neq S$  or  $N_h[\overline{q} = \overline{b}] = S$ ; but  $N_h[\mathscr{G}(\overline{m}, \overline{q})] = S$ ; so  $N_h[\overline{q} = \overline{b}] = S$ ; and since  $N_h[\overline{q}] = q$  and  $N_h[\overline{b}] = b$ , with SF(r), q = b.

Since  $\mathcal{H}$  expresses h, and  $(b, a) \in h$ ,  $(q, a) \in h$  and  $N[\forall z(\mathcal{H}(\overline{q}, z) \rightarrow z =$ 

$$\begin{split} &\overline{a})] = \mathsf{T}; \text{ so by TI, for any d, } \mathsf{N}_{\mathsf{d}}[\forall z (\mathcal{H}(\overline{\mathsf{q}}, z) \to z = \overline{\mathsf{a}})] = \mathsf{S}; \text{ so } \mathsf{N}_{\mathsf{h}}[\forall z (\mathcal{H}(\overline{\mathsf{q}}, z) \to z = \overline{\mathsf{a}})] = \mathsf{S}; \text{ so by } \mathsf{SF}(\forall), \text{ for any } \mathsf{o} \in \mathsf{U}, \ \mathsf{N}_{\mathsf{h}(z|\mathsf{o})}[\mathcal{H}(\overline{\mathsf{q}}, z) \to z = \overline{\mathsf{a}}] = \mathsf{S}; \text{ so } \mathsf{N}_{\mathsf{h}(z|\mathsf{p})}[\mathcal{H}(\overline{\mathsf{q}}, z) \to z = \overline{\mathsf{a}}] = \mathsf{S}; \text{ since } \mathsf{N}_{\mathsf{h}}[\overline{p}] = \mathsf{p}, \text{ with } \mathsf{T10.2}, \\ \mathsf{N}_{\mathsf{h}}[\mathcal{H}(\overline{\mathsf{q}}, \overline{\mathsf{p}}) \to \overline{\mathsf{p}} = \overline{\mathsf{a}}] = \mathsf{S}; \text{ so by } \mathsf{SF}(\to), \mathsf{N}_{\mathsf{h}}[\mathcal{H}(\overline{\mathsf{q}}, \overline{\mathsf{p}})] \neq \mathsf{S} \text{ or } \mathsf{N}_{\mathsf{h}}[\overline{p} = \overline{\mathsf{a}}] = \mathsf{S}; \\ \mathsf{but } \mathsf{N}_{\mathsf{h}}[\mathcal{H}(\overline{\mathsf{q}}, \overline{\mathsf{p}})] = \mathsf{S}; \text{ so } \mathsf{N}_{\mathsf{h}}[\overline{p} = \overline{\mathsf{a}}] = \mathsf{S}. \\ \mathsf{This is impossible}; reject the assumption: \\ \mathsf{N}[\forall z (\exists w (\mathcal{G}(\overline{\mathsf{m}}, w) \land \mathcal{H}(w, z)) \to z = \overline{\mathsf{a}})] = \mathsf{T}. \end{split}$$

- E12.11. Complete the demonstration of T12.8 by finishing the remaining cases. You should set up the entire argument, but may appeal to the text for parts already completed, as the text appeals to homework.
  - $(\exists \leq) \mathcal{P}$  is  $(\exists x \leq t)\mathcal{A}(x)$ . Since  $\mathcal{P}$  is a sentence, x is the only variable free in  $\mathcal{A}$ ; in particular, since x does not appear in t, t is variable free; so  $N_d[t] = N[t]$  and where N[t] = n, by T8.13,  $Q \vdash_{ND} t = \overline{n}$ ; so  $Q \vdash_{ND} \mathcal{P}$ just in case  $Q \vdash_{ND} (\exists x \leq \overline{n})\mathcal{A}(x)$ .

(i) Suppose  $N[\mathcal{P}] = T$ ; then  $N[(\exists x \leq t)\mathcal{A}(x)] = T$ ; so by TI, for any d,  $N_d[(\exists x \leq t)\mathcal{A}(x)] = S$ ; so by T12.7, for some  $m \leq N_d[t]$ ,  $N_{d(x|m)}[\mathcal{A}(x)] = S$ ; so where  $N_d[t] = N[t] = n$ , for some  $m \leq n$ ,  $N_{d(x|m)}[\mathcal{A}(x)] = S$ ; so with T10.2, for some  $m \leq n$ ,  $N_d[\mathcal{A}(\overline{m})] = S$ ; since x is the only variable free in  $\mathcal{A}$ ,  $\mathcal{A}(\overline{m})$  is a sentence; so with T8.5, for some  $m \leq n$ ,  $N[\mathcal{A}(\overline{m})] = T$ ; so by assumption for some  $m \leq n$ ,  $Q \vdash_{ND} \mathcal{A}(\overline{m})$ ; so by T8.20,  $Q \vdash_{ND} (\exists x \leq \overline{n})\mathcal{A}(x)$ ; so  $Q \vdash_{ND} \mathcal{P}$ .

(ii) Suppose  $N[\mathcal{P}] \neq T$ ; then  $N[(\exists x \leq t)\mathcal{A}(x)] \neq T$ ; so by TI, for some d,  $N_d[(\exists x \leq t)\mathcal{A}(x)] \neq S$ ; so by T12.7, for any  $m \leq N_d[t]$ ,  $N_{d(x|m)}[\mathcal{A}(x)] \neq S$ ; so where  $N_d[t] = N[t] = n$ , for any  $m \leq n$ ,  $N_{d(x|m)}[\mathcal{A}(x)] \neq S$ ; so with T10.2, for any  $m \leq n$ ,  $N_d[\mathcal{A}(\overline{m})] \neq S$ ; so by TI, for any  $m \leq n$ ,  $N[\mathcal{A}(\overline{m})] \neq T$ ; so  $N[\mathcal{A}(\overline{0})] \neq T$  and ... and  $N[\mathcal{A}(\overline{n})] \neq$ T; so by assumption,  $Q \vdash_{ND} \sim \mathcal{A}(\emptyset)$  and ... and  $Q \vdash_{ND} \sim \mathcal{A}(\overline{n})$ ; so by T8.21,  $Q \vdash_{ND} (\forall x \leq \overline{n}) \sim \mathcal{A}(x)$ ; so by BQN,  $Q \vdash_{ND} \sim (\exists x \leq \overline{n})\mathcal{A}(x)$ ; so  $Q \vdash_{ND} \sim \mathcal{P}$ .

E12.13. Complete the demonstration of T12.11 by completing the remaining cases, including the basis and part (ii) of the case for composition.

| 1.  | $\forall z (\mathscr{G}(\overline{m}, z) \to z = \overline{b})$                                     | 𝖾 cap g                                               |
|-----|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 2.  | $\forall z(\mathcal{H}(\overline{\mathbf{b}}, z) \to z = \overline{\mathbf{a}})$                    | ${\mathcal H}$ cap h                                  |
| 3.  | $\exists w[\mathscr{G}(\overline{m},w)\wedge \mathscr{H}(w,j)]$                                     | $\mathbf{A}\left(g,\rightarrow\mathbf{I}\right)$      |
| 4.  | $\mathscr{G}(\overline{m},k)\wedge \mathscr{H}(k,j)$                                                | $\mathcal{A}\left(g, \Im  \exists \mathcal{E}\right)$ |
| 5.  | $\mathscr{G}(\overline{\mathbf{m}},k)$                                                              | $4 \wedge E$                                          |
| 6.  | $\mathscr{G}(\overline{m},k) \to k = \overline{b}$                                                  | 1 ¥E                                                  |
| 7.  | $  k = \overline{b}$                                                                                | $6,5 \rightarrow E$                                   |
| 8.  | $ $ $\mathcal{H}(k, j)$                                                                             | $4 \land E$                                           |
| 9.  | $  \mathcal{H}(\overline{b}, j)$                                                                    | 8,7 <b>=</b> E                                        |
| 10. | $      \mathcal{H}(\overline{b}, j) \to j = \overline{a}$                                           | 2 ∀E                                                  |
| 11. | $    j = \overline{a}$                                                                              | $10,9 \rightarrow E$                                  |
| 12. | $j = \overline{a}$                                                                                  | 3,4-11 ∃E                                             |
| 13. | $\exists w[\mathscr{G}(\overline{m},w) \land \mathscr{H}(w,j)] \to j = \overline{a}$                | $3-12 \rightarrow I$                                  |
| 14. | $\forall z (\exists w [\mathscr{G}(\overline{m}, w) \land \mathscr{H}(w, z)] \to z = \overline{a})$ | 13 ∀I                                                 |
|     |                                                                                                     |                                                       |

E12.14. Produce a derivation to show the basis in the argument for the uniqueness condition.

| 1.<br>2. | $ \forall z [\mathscr{G}(\overline{\mathbf{m}}, z) \to z = \overline{\mathbf{k}}_0]  \forall p \forall q \forall y [(\mathscr{B}(p, q, \emptyset, \overline{\mathbf{k}}_0) \land \mathscr{B}(p, q, \emptyset, y)) \to \overline{\mathbf{k}}_0 = y] $ | from capture<br>from uniqueness |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 3.       | $\exists p \exists q \{ \exists v [\mathcal{B}(p,q,\emptyset,v) \land \mathscr{G}(\overline{m},v)] \land \mathcal{Q} \land \mathcal{B}(p,q,\emptyset,j) \}$                                                                                          | A $(g, \rightarrow I)$          |
| 4.       | $\boxed{\exists q \{ \exists v [\mathcal{B}(p,q,\emptyset,v) \land \mathscr{G}(\overline{\mathbf{m}},v)] \land \mathcal{Q} \land \mathcal{B}(p,q,\emptyset,j) \}}$                                                                                   | A $(g, 3\exists E)$             |
| 5.       | $\exists v [\mathcal{B}(p,q,\emptyset,v) \land \mathscr{G}(\overline{m},v)] \land \mathcal{Q} \land \mathcal{B}(p,q,\emptyset,j)$                                                                                                                    | A $(g, 4\exists E)$             |
| 6.       | $\exists v [\mathcal{B}(p,q,\emptyset,v) \land \mathcal{G}(\overline{\mathbf{m}},v)]$                                                                                                                                                                | 5 ^E                            |
| 7.       | $\mathcal{B}(p,q,\emptyset,j)$                                                                                                                                                                                                                       | 5 ^E                            |
| 8.       | $\mathcal{B}(p,q,\emptyset,k) \land \mathscr{G}(\overline{m},k)$                                                                                                                                                                                     | A $(g, 6\exists E)$             |
| 9.       | $\mathcal{B}(p,q,\emptyset,k)$                                                                                                                                                                                                                       | 8 ^E                            |
| 10.      | $\mathscr{G}(\overline{m},k)$                                                                                                                                                                                                                        | 8 ^E                            |
| 11.      | $\mathscr{G}(\overline{m},k) \to k = \overline{k}_0$                                                                                                                                                                                                 | 1 ¥E                            |
| 12.      | $k = \overline{k}_0$                                                                                                                                                                                                                                 | $11,10 \rightarrow E$           |
| 13.      | $\mathcal{B}(p,q,\emptyset,\overline{k}_0)$                                                                                                                                                                                                          | 9,12 =E                         |
| 14.      | $j = \overline{k}_0$                                                                                                                                                                                                                                 | 2,7,13                          |
| 15.      | $j = \overline{k}_0$                                                                                                                                                                                                                                 | 6,8-14 ∃E                       |
| 16.      | $j = \bar{k}_0$                                                                                                                                                                                                                                      | 4,5-15 ∃E                       |
| 17.      | $j = \overline{k}_0$                                                                                                                                                                                                                                 | 3,4-16 ∃E                       |
| 18.      | $\exists p \exists q \{ \exists v [\mathcal{B}(p,q,\emptyset,v) \land \mathcal{G}(\vec{x},v)] \land \mathcal{Q} \land \mathcal{B}(p,q,\emptyset,j) \} \rightarrow j = \bar{k}_{0}$                                                                   | 3-17 →I                         |
| 19.      | $\forall w [\exists p \exists q \{ \exists v [\mathcal{B}(p,q,\emptyset,v) \land \mathcal{G}(\vec{x},v)] \land \mathcal{Q} \land \mathcal{B}(p,q,\emptyset,w) \} \rightarrow w = \bar{k}_{0} ]$                                                      | 18 ∀I                           |

Exercise 12.14

E12.19. Work carefully through the demonstration of T12.16 by setting up revised arguments T12.3<sup> $\dagger$ </sup>, T12.11<sup> $\dagger$ </sup> and T12.12<sup> $\dagger$ </sup>.

T12.11<sup>†</sup>. For any recursive  $f(\vec{x})$  originally expressed by  $\mathcal{F}(\vec{x}, v)$ , let  $\mathcal{F}^{\dagger}(\vec{x}, v)$  be like  $\mathcal{F}(\vec{x}, v)$  except that  $\mathcal{B}$  is replaced by  $\mathcal{B}'$ . Then  $f(\vec{x})$  is captured in Q by  $\mathcal{F}^{\dagger}(\vec{x}, v)$ .

By induction on the sequence of recursive functions.

- *Basis:*  $f_0$  is an initial function. Everything is the same, except that conclusions are for Q rather than  $Q_s$ .
- Assp: For any  $i, 0 \le i < k$ ,  $f_i(\vec{x})$  is captured in Q by  $\mathcal{F}^{\dagger}(\vec{x}, v)$ .
- Show:  $f_k(\vec{x})$  is captured in Q by  $\mathcal{F}^{\dagger}(\vec{x}, v)$ .

 $f_k$  is either an initial function or arises from previous members by composition, recursion or regular minimization. If it is an initial function, then as in the basis. So suppose  $f_k$  arises from previous members.

(c) f<sub>k</sub>(x, y, z) arises by composition from g(y) and h(x, w, z). By assumption g(y) is captured by 𝔅<sup>†</sup>(y, w) and h(x, w, z) by ℋ<sup>†</sup>(x, w, z, v). 𝔅<sup>†</sup>(x, y, z, v) is ∃w[𝔅<sup>†</sup>(y, w) ∧ ℋ<sup>†</sup>(x, w, z, v)]. Consider the case where x and z drop out and y is a single variable y. Suppose ⟨m, a⟩ ∈ f<sub>k</sub>; then by composition there is some b such that ⟨m, b⟩ ∈ g and ⟨b, a⟩ ∈ h.
(i) By T12.3<sup>†</sup>, 𝔅<sup>†</sup>(y, v) expresses f(y); thus, since ⟨m, a⟩ ∈ f<sub>k</sub>, N[𝔅<sup>†</sup>(m, ā)] =

T; so, since  $\mathscr{F}^{\dagger}(y, v)$  is  $\Sigma_1$ , by T12.9,  $Q \vdash_{ND} \mathscr{F}^{\dagger}(\overline{\mathsf{m}}, \overline{\mathsf{a}})$ .

(ii) Same but with  $\mathscr{G}^{\dagger}$ ,  $\mathscr{H}^{\dagger}$  uniformly substituted for  $\mathscr{G}$ ,  $\mathscr{H}$ .

(r)  $f_{k}(\vec{x}, y)$  arises by recursion from  $g(\vec{x})$  and  $h(\vec{x}, y, u)$ . By assumption  $g(\vec{x})$ is captured by  $\mathscr{G}^{\dagger}(\vec{x}, v)$  and  $h(\vec{x}, y, u)$  by  $\mathscr{H}^{\dagger}(\vec{x}, y, u, v)$ .  $\mathscr{F}^{\dagger}(\vec{x}, y, z)$  is,  $\exists p \exists q \{ \exists v [\mathscr{B}'(p,q, \emptyset, v) \land \mathscr{G}^{\dagger}(\vec{x}, v)] \land (\forall i < y) \exists u \exists v [\mathscr{B}'(p,q, i, u) \land \mathscr{B}'(p,q, Si, v) \land \mathscr{H}^{\dagger}(\vec{x}, i, u, v)] \land$  $\mathscr{B}'(p,q, y, z) \}$ 

Suppose  $\vec{x}$  reduces to a single variable and  $\langle m, n, a \rangle \in f_k$ . (i) By T12.3<sup>†</sup>,  $\mathcal{F}^{\dagger}(x, y, v)$  expresses f(x, y); thus  $N[\mathcal{F}^{\dagger}(\overline{m}, \overline{n}, \overline{a})] = T$ ; so, since  $\mathcal{F}^{\dagger}(x, y, v)$ is  $\Sigma_1$ , by T12.9,  $Q \vdash_{ND} \mathcal{F}^{\dagger}(\overline{m}, \overline{n}, \overline{a})$ . And (ii) by T12.12<sup>†</sup>,  $Q \vdash_{ND} \forall w[\mathcal{F}^{\dagger}(\overline{m}, \overline{n}, w) \rightarrow w = \overline{a}]$ .

(m) f<sub>k</sub>(x) arises by regular minimization from g(x, y). By assumption, g(x, y) is captured by some 𝔅<sup>†</sup>(x, y, z). 𝔅<sup>†</sup>(x, v) is 𝔅<sup>†</sup>(x, v, ∅)∧(∀y < v)~𝔅<sup>†</sup>(x, y, ∅). Suppose x reduces to a single variable and ⟨m, a⟩ ∈ f<sub>k</sub>.
(i) By T12.3<sup>†</sup>, 𝔅<sup>†</sup>(x, v) expresses f(x); thus, since ⟨m, a⟩ ∈ f<sub>k</sub>, N[𝔅<sup>†</sup>(m, ā)] = T; so, since 𝔅<sup>†</sup>(y, v) is Σ<sub>1</sub>, by T12.9, Q ⊢<sub>ND</sub> 𝔅<sup>†</sup>(m, ā).
(ii) Same but with 𝔅<sup>†</sup> uniformly substituted for 𝔅.

799

*Indct:* Any recursive  $f(\vec{x})$  is captured in Q by  $\mathcal{F}^{\dagger}(\vec{x}, v)$ .

E12.24. Provide definitions for the recursive functions rm(m, n) and qt(m, n) for the remainder and quotient of m/n + 1. For rm(m, n),

$$(\mu v \le n)(\exists w \le m)[m = Sn \times w + v]$$

- E12.25. Functions  $f_1(\vec{x}, y)$  and  $f_2(\vec{x}, y)$  are defined by *simultaneous* (mutual) recursion just in case,
  - $$\begin{split} f_1(\vec{x},0) &= g_1(\vec{x}) \\ f_2(\vec{x},0) &= g_2(\vec{x}) \\ f_1(\vec{x},Sy) &= h_1(\vec{x},y,f_1(\vec{x},y),f_2(\vec{x},y)) \\ f_2(\vec{x},Sy) &= h_2(\vec{x},y,f_1(\vec{x},y),f_2(\vec{x},y)) \end{split}$$

Show that  $f_1$  and  $f_2$  so defined are recursive. For  $F(\vec{x}, y) = \pi_0^{f_1(\vec{x}, y)} \times \pi_1^{f_2(\vec{x}, y)}$ , set  $G(\vec{x}) = \pi_0^{g_1(\vec{x})} \times \pi_1^{g_2(\vec{x})}$  $H(\vec{x}, y, u) = \pi_0^{h_1(\vec{x}, y, exp(u, 0), exp(u, 1))} \times \pi_1^{h_2(x, y, exp(u, 0), exp(u, 1))}$ 

You should explain how these contribute to the desired result.

- E12.29. (i) Complete the construction with recursive relations for AXIOMAD5(n), GEN(m, n), AXIOMAD8(n), and so AXIOMAD(n) and PRFAD(m, n). (ii) Complete the remaining axioms for Robinson arithmetic, and then AXIOMQ(n) and PRFQ(m, n). (iii) Construct also AXIOMQP(n), like AXIOMQ less AXIOMQ7, and then AXIOMPA(n) and PRFPA(m, n).
  - $$\begin{split} \text{AXIOMAD5}(n): \ (\exists p \leq n)(\exists q \leq n)(\exists v \leq n)[\text{WFF}(p) \land \text{WFF}(q) \land \text{VAR}(v) \land \sim \text{FREEf}(p, v) \land n = \\ \text{cnd}(\text{unv}(v, \text{cnd}(p, q)), \text{cnd}(p, \text{unv}(v, q)))] \end{split}$$
  - $GEN(m, n): (\exists v \leq n)[VAR(v) \land n = unv(v, m)]$
  - $$\begin{split} & \mathsf{PRFQ}(m,n) \colon \exp(m,\mathsf{len}(m) \stackrel{\cdot}{\to} \overline{1}) = n \land m > \overline{1} \land (\forall k < \mathsf{len}(m))[\mathsf{AXIOMQ}(\mathsf{exp}(m,k)) \lor (\exists i < k)(\exists j < k)\mathsf{ICON}(\mathsf{exp}(m,i),\mathsf{exp}(m,j),\mathsf{exp}(m,k))] \end{split}$$
- E12.32. Let T be any theory that extends Q. For any formulas  $\mathcal{F}_1(y)$  and  $\mathcal{F}_2(y)$ , generalize the diagonal lemma to find sentences  $\mathcal{H}_1$  and  $\mathcal{H}_2$  such that,

 $T \vdash \mathcal{H}_1 \leftrightarrow \mathcal{F}_1(\overline{\ulcorner \mathcal{H}_2 \urcorner})$ 

$$T \vdash \mathcal{H}_2 \leftrightarrow \mathcal{F}_2(\overline{\ulcorner \mathcal{H}_1 \urcorner})$$

Demonstrate your result.

Let  $alt(p, f_1, f_2) = \lceil \exists w \exists x \exists y (w = \rceil \star num(p) \star \lceil \land x = \urcorner \star num(f_2) \star \lceil \land y = \urcorner \star num(f_1) \star \lceil \land \exists z (\urcorner \star f_1 \star \lceil \land \urcorner \star p \star \rceil)) \rceil$ . Then by capture there is a formula Alt(w, x, y, z) that captures alt; let  $a = \lceil Alt(w, x, y, z) \rceil$ . Then  $\mathcal{H}_1 = \exists w \exists x \exists y (w = \overline{a} \land x = \overline{f_2} \land y = \overline{f_1} \land \exists z (\mathcal{F}_1(z) \land Alt(w, x, y, z)))$ ; and  $h_1 = \lceil \mathcal{H}_1 \urcorner = alt(\overline{a}, \overline{f_1}, \overline{f_2})$ . And  $\mathcal{H}_2 = \exists w \exists x \exists y (w = \overline{a} \land x = \overline{f_1} \land y = \overline{f_2} \land \exists z (\mathcal{F}_2(z) \land Alt(w, x, y, z)))$ ; and  $h_2 = \lceil \mathcal{H}_2 \urcorner = alt(\overline{a}, \overline{f_2}, \overline{f_1})$ . The trick to this is that  $\mathcal{H}_1$  says  $\mathcal{F}_1(\overline{h_2})$  and  $\mathcal{H}_2$  says  $\mathcal{F}_2(\overline{h_1})$ . For the first case, argue as follows (broken into separate derivations for the biconditional).

| 1.<br>2. | $\mathcal{H}_1 \leftrightarrow \exists w \exists x \exists y (w = \overline{a} \land x = \overline{f}_2 \land y = \overline{f}_1 \land \exists z (\mathcal{F}_1(z) \land Alt(w, x, y, z)))$<br>$\forall x [Alt(\overline{a}, \overline{f}_2, \overline{f}_1, x) \to x = \overline{h}_2$                            | def $\mathcal{H}_1$<br>from capture                                                                           |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 3.       | $\mathcal{H}_1$                                                                                                                                                                                                                                                                                                    | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$                                                               |
| 4.<br>5. | $\exists w \exists x \exists y (w = \overline{a} \land x = \overline{f}_2 \land y = \overline{f}_1 \land \exists z (\mathcal{F}_1(z) \land Alt(w, x, y, z))) \\ \exists x \exists y (j = \overline{a} \land x = \overline{f}_2 \land y = \overline{f}_1 \land \exists z (\mathcal{F}_1(z) \land Alt(j, x, y, z)))$ | $\begin{array}{l} 1,3\leftrightarrow\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
| 6.       | $\exists y(j = \overline{a} \land k = \overline{f}_2 \land y = \overline{f}_1 \land \exists z(\mathcal{F}_1(z) \land Alt(j,k,y,z)))$                                                                                                                                                                               | A ( $g$ 5 $\exists$ E)                                                                                        |
| 7.       | $   j = \overline{\mathbf{a}} \wedge k = \overline{\mathbf{f}}_2 \wedge l = \overline{\mathbf{f}}_1 \wedge \exists z (\mathcal{F}_1(z) \wedge Alt(j,k,l,z)) $                                                                                                                                                      | A ( $g$ 6 $\exists$ E)                                                                                        |
| 8.       | $      j = \overline{a}$                                                                                                                                                                                                                                                                                           | $7 \wedge E$                                                                                                  |
| 9.       | $      k = \overline{f}_2$                                                                                                                                                                                                                                                                                         | 7 ∧E                                                                                                          |
| 10.      | $      l = \overline{f}_1$                                                                                                                                                                                                                                                                                         | 7 ∧E                                                                                                          |
| 11.      | $\exists z(\mathcal{F}_1(z) \land Alt(j,k,l,z))$                                                                                                                                                                                                                                                                   | 7 ∧E                                                                                                          |
| 12.      | $\mathcal{F}_1(m) \wedge Alt(j,k,l,m)$                                                                                                                                                                                                                                                                             | A ( $g$ 11 $\exists$ E)                                                                                       |
| 13.      | $        \mathcal{F}_1(m)$                                                                                                                                                                                                                                                                                         | 12 ^E                                                                                                         |
| 14.      | Alt(j,k,l,m)                                                                                                                                                                                                                                                                                                       | 12 ^E                                                                                                         |
| 15.      | $Alt(\overline{a}, \overline{f}_2, \overline{f}_1, m) \to m = \overline{h}_2$                                                                                                                                                                                                                                      | 2 ∀E                                                                                                          |
| 16.      | $Alt(\overline{a}, \overline{f}_2, \overline{f}_1, m)$                                                                                                                                                                                                                                                             | 14,8,9,10 =E                                                                                                  |
| 17.      | $m = \overline{h}_2$                                                                                                                                                                                                                                                                                               | $15,14 \rightarrow E$                                                                                         |
| 18.      | $        \mathcal{F}_1(\overline{h}_2)$                                                                                                                                                                                                                                                                            | 13,17 =E                                                                                                      |
| 19.      | $\mathcal{F}_1(\bar{h}_2)$                                                                                                                                                                                                                                                                                         | 12,13-18 ∃E                                                                                                   |
| 20.      | $\mathcal{F}_1(\bar{h}_2)$                                                                                                                                                                                                                                                                                         | 6,7-19∃E                                                                                                      |
| 21.      | $\mathcal{F}_1(\bar{h}_2)$                                                                                                                                                                                                                                                                                         | 5,6-20 ∃E                                                                                                     |
| 22.      | $\mathcal{F}_1(\bar{h}_2)$                                                                                                                                                                                                                                                                                         | 4,5-21 ∃E                                                                                                     |
| 23.      | $\mathcal{H}_1 	o \mathcal{F}_1(\bar{h}_2)$                                                                                                                                                                                                                                                                        | $3-22 \rightarrow I$                                                                                          |

Exercise 12.32

| 1.                                                                                                        | $\mathcal{H}_1 \leftrightarrow \exists w \exists x \exists y (w = \overline{a} \land x = \overline{f}_2 \land y = \overline{f}_1 \land \exists z (\mathcal{F}_1(z) \land Alt(w, x, y, z)))$                                                                                                               | def $\mathcal{H}_1$                             |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.                                                                                                        | $Alt(\overline{a}, \overline{f}_2, \overline{f}_1, \overline{h}_2)$                                                                                                                                                                                                                                       | from capture                                    |
| 3.                                                                                                        | $\mathcal{F}_1(\bar{h}_2)$                                                                                                                                                                                                                                                                                | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 4.                                                                                                        | $\mathcal{F}_1(\overline{h}_2) \wedge Alt(\overline{a}, \overline{f}_2, \overline{f}_1, \overline{h}_2)$                                                                                                                                                                                                  | 3,2 ∧I                                          |
| 5.                                                                                                        | $\exists z (\mathcal{F}_1(z) \land Alt(\overline{a}, \overline{f}_2, \overline{f}_1, z))$                                                                                                                                                                                                                 | 4 ∃I                                            |
| 6.                                                                                                        | $\overline{\mathbf{a}} = \overline{\mathbf{a}} \wedge \overline{\mathbf{f}}_2 = \overline{\mathbf{f}}_2 \wedge \overline{\mathbf{f}}_1 = \overline{\mathbf{f}}_1$                                                                                                                                         | =I, $\wedge$ I                                  |
| 7.                                                                                                        | $\overline{\mathbf{a}} = \overline{\mathbf{a}} \wedge \overline{\mathbf{f}}_2 = \overline{\mathbf{f}}_2 \wedge \overline{\mathbf{f}}_1 = \overline{\mathbf{f}}_1 \wedge \exists z \left( \mathcal{F}_1(z) \wedge Alt(\overline{\mathbf{a}}, \overline{\mathbf{f}}_2, \overline{\mathbf{f}}_1, z) \right)$ | 6,5 ∧I                                          |
| 8.                                                                                                        | $\exists y(\overline{\mathbf{a}} = \overline{\mathbf{a}} \land \overline{\mathbf{f}}_2 = \overline{\mathbf{f}}_2 \land y = \overline{\mathbf{f}}_1 \land \exists z(\mathcal{F}_1(z) \land Alt(\overline{\mathbf{a}}, \overline{\mathbf{f}}_2, y, z)))$                                                    | 7 ∃I                                            |
| 9.                                                                                                        | $\exists x \exists y (\overline{\mathbf{a}} = \overline{\mathbf{a}} \land x = \overline{\mathbf{f}}_2 \land y = \overline{\mathbf{f}}_1 \land \exists z (\mathcal{F}_1(z) \land Alt(\overline{\mathbf{a}}, x, y, z)))$                                                                                    | 8 ∃I                                            |
| 10.                                                                                                       | $\exists w \exists x \exists y (w = \overline{a} \land x = \overline{f}_2 \land y = \overline{f}_1 \land \exists z (\mathcal{F}_1(z) \land Alt(w, x, y, z)))$                                                                                                                                             | 9 ∃I                                            |
| 11.                                                                                                       | $ \mathcal{H}_1 $                                                                                                                                                                                                                                                                                         | $1,10 \leftrightarrow E$                        |
| 12.                                                                                                       | $\mathcal{F}_1(\bar{h}_2) 	o \mathcal{H}_1$                                                                                                                                                                                                                                                               | $3-11 \rightarrow I$                            |
| So $T \vdash \mathcal{H}_1 \leftrightarrow \mathcal{F}_1(\overline{\ulcorner \mathcal{H}_2 \urcorner})$ . |                                                                                                                                                                                                                                                                                                           |                                                 |

# **Chapter Thirteen**

E13.2. Complete the demonstration of T13.3 by providing a derivation to show  $T \vdash \mathcal{G} \leftrightarrow \sim \exists x Prft(x, \overline{\lceil \mathcal{G} \rceil}).$
| 1.         | $\mathscr{G} \leftrightarrow \exists z (z = \bar{a} \land \neg \exists x \exists y [Prft(x, y) \land Diag(z, y)])$                                                  | from def <b>G</b>                                   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 2.<br>3.   | $ \forall z (Diag(\overline{a}, z) \to z = \overline{g}) $                                                                                                          | from capture                                        |
| 4.         |                                                                                                                                                                     | A $(g \leftrightarrow I)$                           |
| 5.         | $\exists z (z = \bar{a} \land \sim \exists x \exists y [Prft(x, y) \land Diag(z, y)])$                                                                              | 1,4 <b>↔</b> E                                      |
| 6.         | $j = \overline{a} \wedge \neg \exists x \exists y [Prft(x, y) \wedge Diag(j, y)]$                                                                                   | A ( $g$ 5 $\exists$ E)                              |
| 7.         | $j = \overline{a}$                                                                                                                                                  | 6 ^E                                                |
| 8.         | $\neg \exists x \exists y [Prft(x, y) \land Diag(j, y)]$                                                                                                            | $6 \wedge E$                                        |
| 9.         | $= \frac{\exists x F(f)(x, g)}{\exists x F(f)(x, g)}$                                                                                                               | $A(c \sim I)$                                       |
| 10.        | Prft(k,g)                                                                                                                                                           | $A(C 9 \exists E)$                                  |
| 11.<br>12  | $Diag(j, \mathbf{g})$ $Prft(k, \overline{\mathbf{g}}) \wedge Diag(j, \overline{\mathbf{g}})$                                                                        | 2,7 = E                                             |
| 12.        | $\exists y[Prft(k, y) \land Diag(j, y)]$                                                                                                                            | 10,11 / 1<br>12 ∃I                                  |
| 14.        | $\exists x \exists y [Prft(x, y) \land Diag(j, y)]$                                                                                                                 | 13 <b>∃</b> I                                       |
| 15.        |                                                                                                                                                                     | 8,14 ⊥I                                             |
| 16.        |                                                                                                                                                                     | 9,10-15 ∃E                                          |
| 17.        | $\sim \exists x Prft(x, \overline{g})$                                                                                                                              | 9-16 ∼I                                             |
| 18.        | $\sim \exists x Prft(x, \overline{g})$                                                                                                                              | 5,6-17 ∃E                                           |
| 19.        | $\sim \exists x Prft(x, \overline{g})$                                                                                                                              | $\mathbf{A}\left(g\leftrightarrow\mathbf{I}\right)$ |
| 20.        | $\exists x \exists y [Prft(x, y) \land Diag(\overline{a}, y)]$                                                                                                      | A ( $c \sim I$ )                                    |
| 21.        | $\exists y [Prft(j, y) \land Diag(\overline{a}, y)]$                                                                                                                | A ( <i>c</i> 20∃E)                                  |
| 22.        | $Prft(j,k) \wedge Diag(\overline{a},k)$                                                                                                                             | A ( $c$ 21 $\exists$ E)                             |
| 23.        | $Diag(\overline{\mathbf{a}}, k)$                                                                                                                                    | 22 ∧E                                               |
| 24.        | $Diag(\overline{a}, k) \rightarrow k = \overline{g}$                                                                                                                | 3 ∀E                                                |
| 25.<br>26  | k = g $Prf(i, k)$                                                                                                                                                   | $24,23 \rightarrow E$                               |
| 20.<br>27. | $Prft(j, \mathbf{x})$                                                                                                                                               | 26.25 = E                                           |
| 28.        | $\exists x Prft(x, \overline{g})$                                                                                                                                   | 27 <b>∃</b> I                                       |
| 29.        |                                                                                                                                                                     | 19,28 ⊥I                                            |
| 30.        |                                                                                                                                                                     | 21,22-29 <b>∃</b> E                                 |
| 31.        |                                                                                                                                                                     | 20,21-30 ∃E                                         |
| 32.        | $\sim \exists x \exists y [Prft(x, y) \land Diag(\overline{a}, y)]$                                                                                                 | 20-31 ∼I                                            |
| 33.        | $ \bar{a} = \bar{a}$                                                                                                                                                | =I                                                  |
| 34.<br>35  | $a = a \land \neg \exists x \exists y [Prft(x, y) \land Diag(a, y)]$<br>$\exists z (z = \overline{a} \land \neg \exists x \exists y [Prft(x, y) \land Diag(z, y)])$ | 33,32 ∧1<br>34 ∃I                                   |
| 35.<br>36. | $\mathcal{G}$                                                                                                                                                       | 1,35 ↔E                                             |
| 37.        | $\mathcal{G} \leftrightarrow \sim \exists x Prft(x, \overline{q})$                                                                                                  | 4-18.19-36 ↔I                                       |
|            |                                                                                                                                                                     | -,                                                  |

So  $T \vdash \mathcal{G} \leftrightarrow \sim \exists x Prft(x, \overline{g})$  which is to say,  $T \vdash \mathcal{G} \leftrightarrow \sim \exists x Prft(x, \overline{\ulcorner \mathcal{G} \urcorner})$ .

E13.7. Complete the unfinished cases to T13.13.

T13.13.

T13.13.a.  $PA \vdash (r \leq s \land s \leq t) \rightarrow r \leq t$ 

Exercise 13.7 T13.13.a

Hint: This does not require IN. It is not hard and can be worked directly from the definitions.

T13.13.b. PA  $\vdash$  ( $r < s \land s < t$ )  $\rightarrow$  r < t

Hint: This does not require IN. It is not hard and can be worked directly from the definitions.

T13.13.c. PA  $\vdash$  ( $r \leq s \land s < t$ )  $\rightarrow$  r < t

Hint: This does not require IN. It is not hard and can be worked directly from the definitions.

T13.13.d.  $PA \vdash \emptyset \leq t$ 

Hint: This is nearly trivial with the definition.

T13.13.e.  $PA \vdash \emptyset < St$ 

Hint: This is nearly trivial with the definition.

T13.13.f.  $PA \vdash t \neq \emptyset \Leftrightarrow \emptyset < t$ 

Hint: This does not require IN. It is straightforward with the definitions.

T13.13.g.  $PA \vdash t > \emptyset \rightarrow \exists y (t = Sy)$  y not in t.

Hint: This is trivial with (f) and T6.45.

T13.13.h. PA  $\vdash t < St$ 

Hint: This is easy. It does not require IN.

T13.13.i.  $PA \vdash St = s \rightarrow t < s$ 

Hint: This does not require IN. It is not hard and can be worked directly from the definitions.

T13.13.j. PA  $\vdash s \leq t \Leftrightarrow Ss \leq St$ 

Hint: This does not require IN. It is not hard and can be worked directly from the definitions. Do not forget about T6.40.

T13.13.k. PA  $\vdash s < t \leftrightarrow Ss < St$ .

Hint: This does not require IN. It is not hard and can be worked directly from the definitions.

T13.13.1. PA  $\vdash s < t \Leftrightarrow Ss \leq t$ 

Hint: This does not require IN. It is not hard and can be worked directly from the definitions.

T13.13.m. PA  $\vdash s \leq t \Leftrightarrow s < t \lor s = t$ 

Hint: This does not require IN. It works as a direct argument from the definitions. Do not forget that you have  $j = \emptyset \lor j \neq \emptyset$  with T6.45.

T13.13.n. PA  $\vdash s < St \leftrightarrow s < t \lor s = t$ 

Hint: This does not require IN. It is simplified with (m).

T13.13.0. PA  $\vdash s \leq St \leftrightarrow s \leq t \lor s = St$ 

Hint: This does not require IN. For one direction, it will be helpful to apply (m) and (n).

T13.13.p. PA  $\vdash s < t \lor s = t \lor t < s$ 

Hint: This is a moderately interesting argument by IN where  $\mathcal{P}$  is  $s < x \lor s = x \lor x < s$ . Under the assumption  $s < j \lor s = j \lor j < s$ , for the third case, you may find (l) and (m) helpful.

T13.13.q. PA  $\vdash$  s  $\leq$  t  $\vee$  t < s

Hint: This is a direct consequence of (p) and (m).

T13.13.r.  $PA \vdash s \leq t \Leftrightarrow t \neq s$ 

Hint: When  $s \le t$  you will be able to show  $t \ne s$  with the definitions. In the other direction, use (p) and (m).

T13.13.s.  $PA \vdash t < s \rightarrow t \neq s$ 

Hint: This does not require IN. It works from the definitions.

T13.13.t. PA  $\vdash$  ( $s \leq t \land t \leq s$ )  $\rightarrow s = t$ 

Hint: Use (r) and (m) with the assumption for  $\rightarrow$ I.

T13.13.u.  $PA \vdash s \leq s + t$ 

Hint: This is nearly trivial from the definition.

T13.13.v. PA  $\vdash r \leq s \rightarrow r + t \leq s + t$ 

Hint: This does not require IN. It is straightforward from the definition and T6.68.

Exercise 13.7 T13.13.v

T13.13.w. PA  $\vdash r < s \rightarrow r + t < s + t$ 

Hint: This does not require IN. It is straightforward from the definition and T6.68.

T13.13.x. PA  $\vdash$   $(r \leq s \land t \leq u) \rightarrow r + t \leq s + u$ 

Hint: This does not require IN. It is straightforward from the definitions.

T13.13.y. PA  $\vdash$   $(r < s \land t \leq u) \rightarrow r + t < s + u$ 

Hint: This does not require IN. It is straightforward from the definitions.

T13.13.z.  $PA \vdash \emptyset < t \rightarrow s \leq s \times t$ 

Hint: This is straightforward with (f) and T6.50.

T13.13.aa. PA  $\vdash r \leq s \rightarrow r \times t \leq s \times t$ 

Hint: This is straightforward with distributivity (T6.64).

T13.13.ab. PA  $\vdash r \times s > \emptyset \rightarrow s > \emptyset$ 

Hint: Under the assumption for  $\rightarrow$ I, assume the opposite and go for a contradiction.

T13.13.ac. PA  $\vdash$   $(r > \overline{1} \land s > \emptyset) \rightarrow r \times s > s$ 

Hint: You can apply the definition for > multiple times.

T13.13.ad. PA  $\vdash$   $(t > \emptyset \land r < s) \rightarrow r \times t < s \times t$ 

Hint: This this combines strategies from previous problems.

T13.13.ae. PA  $\vdash$  ( $r < s \land t < u$ )  $\rightarrow$   $r \times t < s \times u$ 

Hint: This does not require IN. It is straightforward with T6.65.

T13.13.af. PA  $\vdash \forall x [(\forall z < x) \mathcal{P}_{z}^{x} \rightarrow \mathcal{P}] \rightarrow \forall x \mathcal{P}$  strong induction (a)

Hint: Under the assumption for  $\rightarrow$ I, you will have a goal like  $\mathcal{P}(j)$ ; you can get  $(\forall z < j)\mathcal{P}(z) \rightarrow \mathcal{P}(j)$  from the assumption; go for  $(\forall z < j)\mathcal{P}(z)$  by IN (where the induction is on *j*). Then the goal follows immediately by  $\rightarrow$ E.

T13.13.ag. PA  $\vdash \mathcal{P}_{\emptyset}^{x} \land \forall x [(\forall z \leq x) \mathcal{P}_{z}^{x} \rightarrow \mathcal{P}_{Sx}^{x}] \rightarrow \forall x \mathcal{P}$  strong induction (b) Again under the assumption for  $\rightarrow I$ , you will be able to obtain  $\forall x \mathcal{P}$ , this time by (af).

Exercise 13.7 T13.13.ag

- T13.13.ah. PA  $\vdash \exists x \mathcal{P} \to \exists x [\mathcal{P} \land (\forall z < x) \sim \mathcal{P}_z^x]$  least number principle Hint: This follows immediately from T13.13af applied to  $\sim \mathcal{P}$ .
- E13.9. Produce the quick derivation to show T13.19d.

T13.19.

| 1. | $(\forall z < m(\vec{x})) \sim \mathcal{Q}(\vec{x}, z)$ | T13.19c                                         |
|----|---------------------------------------------------------|-------------------------------------------------|
| 2. | $\mathcal{Q}(\vec{x},v)$                                | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 3. | $v < m(\vec{x})$                                        | A ( $c \sim I$ )                                |
| 4. | $\sim \mathcal{Q}(\vec{x}, v)$                          | 1,3 (∀E)                                        |
| 5. |                                                         | 2,4 ⊥I                                          |
| 6. | $v \neq m(\vec{x})$                                     | 3-5 ∼I                                          |
| 7. | $m(\vec{x}) \leq v$                                     | 6 T13.13r                                       |
| 8. | $\mathcal{Q}(\vec{x},v) \to m(\vec{x}) \leq v$          | $2-7 \rightarrow I$                             |

E13.11. Complete the justifications for Def[rm] and Def[qt].

Def[rm]. (i)  $PA \vdash \exists x (\exists w \leq \emptyset) [\emptyset = Sn \times w + x \land x < Sn]$ .

Supposing the zero case is done,

| 1.  | E)  | x (∃          | $w \le \emptyset)[\emptyset = Sn \times w + x \land x < Sn]$                                                               | zero case                                       |
|-----|-----|---------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  |     | $\exists x($  | $\exists w \le j)[j = Sn \times w + x \land x < Sn]$                                                                       | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 3.  |     | (J            | $ w \le j)[j = Sn \times w + k \wedge k < Sn]$                                                                             | A ( $g$ 2 $\exists$ E)                          |
| 4.  |     | .             | $j = Sn \times l + k \wedge k < Sn$                                                                                        | A $(g \ 3 (\exists E))$                         |
| 5.  |     | i             | $l \leq j$                                                                                                                 |                                                 |
| 6.  |     |               | $j = Sn \times l + k$                                                                                                      | 4 ∧E                                            |
| 7.  |     | 1             | k < Sn                                                                                                                     | 4 ∧E                                            |
| 8.  |     |               | $Sj = S[Sn \times l + k]$                                                                                                  | from 6                                          |
| 9.  |     |               | $Sn \times l + Sk = S[Sn \times l + k]$                                                                                    | T6.42                                           |
| 10. |     |               | $Sj = Sn \times l + Sk$                                                                                                    | 8,9 =E                                          |
| 11. |     | 1             | $k < n \lor k = n$                                                                                                         | 7 T13.13n                                       |
| 12. |     |               | k < n                                                                                                                      | A ( $g 11 \lor E$ )                             |
| 13. |     |               | Sk < Sn                                                                                                                    | 9 T13.13k                                       |
| 14. |     |               | $Sj = Sn \times l + Sk \wedge Sk < Sn$                                                                                     | 10,13 ∧I                                        |
| 15. |     |               | $l \le j \lor l = Sj$                                                                                                      | 5 ∨I                                            |
| 16. |     |               | $l \leq Sj$                                                                                                                | 15 T13.13o                                      |
| 17. |     |               | $(\exists w \le Sj)[Sj = Sn \times w + Sk \wedge Sk < Sn]$                                                                 | 14,16 (∃I)                                      |
| 18. |     |               | $\exists x (\exists w \le Sj) [Sj = Sn \times w + x \land x < Sn]$                                                         | 17 ∃I                                           |
| 19. |     |               | k = n                                                                                                                      | A ( $g 11 \lor E$ )                             |
| 20. |     |               | $Sj = Sn \times l + Sn$                                                                                                    | 10,19 =E                                        |
| 21. |     |               | $Sn \times Sl = Sn \times l + Sn$                                                                                          | T6.44                                           |
| 22. |     |               | $Sj = Sn \times Sl$                                                                                                        | 20,21 =E                                        |
| 23. |     |               | $Sn \times Sl = Sn \times Sl + \emptyset$                                                                                  | <b>T6.</b> 41                                   |
| 24. |     |               | $Sj = Sn \times Sl + \emptyset$                                                                                            | 22,23 <b>=</b> E                                |
| 25. |     |               | $\emptyset < Sn$                                                                                                           | 25 T13.13e                                      |
| 26. |     |               | $Sj = Sn \times Sl + \emptyset \land \emptyset < Sn$                                                                       | 24,25 ∧I                                        |
| 27. |     |               | $Sl \leq Sj$                                                                                                               | 5 T13.13k                                       |
| 28. |     |               | $(\exists w \le Sj)[Sj = Sn \times w + \emptyset \land \emptyset < Sn]$                                                    | 26,27 (∃I)                                      |
| 29. |     |               | $\exists x (\exists w \le Sj) [Sj = Sn \times w + x \land x < Sn]$                                                         | 28 JI                                           |
| 30. |     |               | $\exists x (\exists w \le Sj) [Sj = Sn \times w + x \land x < Sn]$                                                         | 11,12-18,19-29 ∨E                               |
| 31. |     | εE            | $x(\exists w \le Sj)[Sj = Sn \times w + x \land x < Sn]$                                                                   | 3,4-30 (∃E)                                     |
| 32. |     | $\exists x($  | $\exists w \le Sj)[Sj = Sn \times w + x \land x < Sn]$                                                                     | 2,3-31 ∃E                                       |
| 33. | E   | x (∃≀         | $w \le j)[j = Sn \times w + x \land x < Sn] \to \exists x (\exists w \le Sj)[Sj = Sn \times w + x \land x < Sn]$           | 2-32 →I                                         |
| 34. | ¥.  | z (∃.         | $x(\exists w \le z)[z = Sn \times w + x \land x < Sn] \to \exists x(\exists w \le Sz)[Sz = Sn \times w + x \land x < Sn])$ | 33 ∀I                                           |
| 35. | ¥   | $z \exists x$ | $z(\exists w \le z)[z = Sn \times w + x \land x < Sn]$                                                                     | 1,34 IN                                         |
|     |     | x (F)         | $w \le m)[m = Sn \times w + x \land x < Sn]$                                                                               | 35 ∀E                                           |
| 36. | 133 | • (           |                                                                                                                            | 00 1 1                                          |
| 36. | =)  | . (_          |                                                                                                                            |                                                 |

(ii) 
$$PA \vdash \forall x \forall y [((\exists w \le m)[m = Sn \times w + x \land x < Sn] \land (\exists w \le m)[m = Sn \times w + y \land y < Sn]) \rightarrow x = y]$$

Exercise 13.11 Def[rm]

808

| 1.        | $\left  (\exists w \le m) [m = Sn \times w + j \land j < Sn] \land (\exists w \le m) [m = Sn \times w + k \land k < Sn] \right $                          | A $(g \rightarrow I)$    |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 2.        | $\left[ (\exists w \le m) [m = Sn \times w + j \land j < Sn] \right]$                                                                                     | 1 ∧E                     |
| 3.        | $(\exists w \le m)[m = Sn \times w + k \land k < Sn]$                                                                                                     | 1 ∧E                     |
| 4.        | $m = Sn \times p + j \wedge j < Sn$                                                                                                                       | A ( $g 2(\exists E)$ )   |
| 5.        | $p \leq m$                                                                                                                                                |                          |
| 6.        | $m = Sn \times q + k \wedge k < Sn$                                                                                                                       | A ( $g$ 3( $\exists$ E)) |
| 7.        | $\underline{q} \leq m$                                                                                                                                    |                          |
| 8.        | $   m = Sn \times p + j$                                                                                                                                  | 4 ∧E                     |
| 9.        | j < Sn                                                                                                                                                    | 4 ∧E                     |
| 10.       | $m = Sn \times q + k$                                                                                                                                     | 6 ∧E                     |
| 11.       | k < Sn                                                                                                                                                    | 6 ∧E                     |
| 12.       | $Sn \times p + j = Sn \times q + k$                                                                                                                       | 8,10 =E                  |
| 13.       | $p < q \lor p = q \lor q < p$                                                                                                                             | Т13.13р                  |
| 14.       | $\left  \right  \left  \frac{p}{r} < q \right $                                                                                                           | A ( $c \sim I$ )         |
| 15.       | $\exists v(Sv + p = q)$                                                                                                                                   | 14 abv                   |
| 16.       |                                                                                                                                                           | A ( <i>c</i> 15∃E)       |
| 17.       | p + Sl = q                                                                                                                                                | 16, T6.54                |
| 18.       | $     Sn \times p + j = Sn \times (p + Sl) + k$                                                                                                           | 12,17 <b>=</b> E         |
| 19.       | $Sn \times p + j = (Sn \times p + Sn \times Sl) + k$                                                                                                      | 18 T6.63                 |
| 20.       | $       Sn \times p + j = Sn \times p + (Sn \times Sl + k)$                                                                                               | 19 T6.56                 |
| 21.       | $\int J = Sn \times Sl + k$                                                                                                                               | 20 16.68                 |
| 22.       | $ \begin{array}{ c } 0 < Sl \\ Sn < Sn \times Sl \end{array} $                                                                                            | 113.13e                  |
| 23.<br>24 |                                                                                                                                                           | 22 113.132<br>T13 13u    |
| 24.<br>25 | $ \begin{cases} Sn \times Si \leq Sn \times Si + k \\ Sn < Sn \times Sl + k \end{cases} $                                                                 | 23 24 T13 13a            |
| 26.       | $Sn \leq i$                                                                                                                                               | 21.25 =E                 |
| 27.       |                                                                                                                                                           | 26 T13.13r               |
| 28.       |                                                                                                                                                           | 9,27 ⊥I                  |
| 29.       |                                                                                                                                                           | 15,16-28 ∃E              |
| 30.       | $   p \neq q$                                                                                                                                             | 14-29 ∼I                 |
| 31.       | q < p                                                                                                                                                     | A ( $c \sim I$ )         |
| 32.       |                                                                                                                                                           | similarly                |
| 33.       | $  _{a \neq p}$                                                                                                                                           | 31-32 ~I                 |
| 34.       | p = q                                                                                                                                                     | 13,30,33 DS              |
| 35.       | $\left  \begin{array}{c} Sn \times p + j = Sn \times p + k \end{array} \right $                                                                           | 12,34 <b>=</b> E         |
| 36.       | j = k                                                                                                                                                     | 35 T6.68                 |
| 37.       | j = k                                                                                                                                                     | 3,6-36 ( <del>I</del> E) |
| 38.       | j = k                                                                                                                                                     | 2,4-37 ( <del>I</del> E) |
| 39.       | $((\exists w \le m)[m = Sn \times w + j \land j < Sn] \land (\exists w \le m)[m = Sn \times w + k \land k < Sn]) \rightarrow j = k$                       | 1-38 →I                  |
| 40.       | $\forall y [((\exists w \le m)[m = Sn \times w + j \land j < Sn] \land (\exists w \le m)[m = Sn \times w + y \land y < Sn]) \rightarrow j = y]$           | 39 ∀I                    |
| 41.       | $\forall x \forall y [((\exists w \le m)[m = Sn \times w + x \land x < Sn] \land (\exists w \le m)[m = Sn \times w + y \land y < Sn]) \rightarrow x = y]$ | 40 ∀I                    |

E13.12. Complete the unfinished cases to T13.21.

For the recursion clause from right to left:

Exercise 13.12

| 1.          | $v = \beta(p,q,i) \leftrightarrow \mathcal{B}(p,q,i,v)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | def $\beta$                                     |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.          | $v = g(\vec{x}) \leftrightarrow \mathscr{G}(\vec{x}, v)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | assp                                            |
| 3.          | $\underbrace{v}=\hbar(\vec{x},y,u)\leftrightarrow\mathcal{H}(\vec{x},y,u,v)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | assp                                            |
| 4.          | $\mathcal{R}(\vec{x}, y, z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 5.          | $\exists p \exists q \{ \exists v [\mathcal{B}(p,q,\emptyset,v) \land \mathcal{G}(\vec{x},v)] \land$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 def                                           |
|             | $(\forall i < y) \exists u \exists v [\mathcal{B}(p,q,i,u) \land \mathcal{B}(p,q,Si,v) \land \mathcal{H}(\vec{x},i,u,v)] \land \mathcal{B}(p,q,y,z) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |
| 6.          | $\exists v [\mathscr{B}(a,b,\emptyset,v) \land \mathscr{G}(\vec{x},v)] \land$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A ( $g$ 5 $\exists$ E)                          |
|             | $(\forall i < y) \exists u \exists v [\mathcal{B}(a, b, i, u) \land \mathcal{B}(a, b, Si, v) \land \mathcal{H}(\vec{x}, i, u, v)] \land \mathcal{B}(a, b, y, z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                 |
| 7.          | $\exists v [ \mathscr{B}(a, b, \emptyset, v) \land \mathscr{G}(\vec{x}, v) ]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 ∧E                                            |
| 8.          | $\mathcal{B}(a,b,\emptyset,k) \wedge \mathscr{G}(\vec{x},k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A ( $g$ 73E)                                    |
| 9.          | $\mathcal{B}(a,b,\emptyset,k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 ∧E                                            |
| 10.         | $k = \beta(a, b, \emptyset)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 with 1                                        |
| 11.         | $   \mathscr{G}(\vec{x},k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 ∧E                                            |
| 12.         | $  k = g(\vec{x})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11 with 2                                       |
| 13.         | $  \beta(a,b,\emptyset) = g(\vec{x})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10,12 = E                                       |
| 14.         | $\beta(a,b,\emptyset) = g(\vec{x})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,8-13 ∃E                                       |
| 15.         | $  (\forall i < y) \exists u \exists v [\mathcal{B}(a, b, i, u) \land \mathcal{B}(a, b, Si, v) \land \mathcal{H}(\vec{x}, i, u, v)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 ∧E                                            |
| 16.         | l = l < y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A $(g (\forall I))$                             |
| 17.         | $\exists u \exists v [\mathcal{B}(a,b,l,u) \land \mathcal{B}(a,b,Sl,v) \land \mathcal{H}(\vec{x},l,u,v)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15,16 (∀E)                                      |
| 18.         | $ \begin{array}{ c c } & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & $ | A ( $g$ 17 $\exists$ E)                         |
| 19.         | $      \mathcal{B}(a,b,l,r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 ∧E                                           |
| 20.         | $         r = \beta(a, b, l)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19, with 1                                      |
| 21.         | $\mathcal{B}(a,b,Sl,s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 ∧E                                           |
| 22.         | $s = \beta(a, b, Sl)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21 with 1                                       |
| 23.         | $\mathcal{H}(\vec{x}, l, r, s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 ∧E                                           |
| 24.         | s = h(x, l, r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23 with 3                                       |
| 25.         | $m(x,l,\beta(a,b,l)) = \beta(a,b,Sl)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24,20,22 =E                                     |
| 26.         | $h(\hat{x}, l, \beta(a, b, l)) = \beta(a, b, Sl)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17,18-25 ∃E                                     |
| 27.         | $(\forall i < y)\hbar(\vec{x}, i, \beta(a, b, i)) = \beta(a, b, Si)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16-26 (¥I)                                      |
| 28.         | $\mathcal{B}(a,b,y,z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 ∧E                                            |
| 29.         | $\beta(a,b,y) = z$ $\beta(a,b,q) = z(\vec{x}) + (\forall i \neq q) \mathbb{P}(\vec{x} \mid i \mid q(a,b,i)) = Q(a,b,q) + Q(a,b,q)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28 with 1                                       |
| 30.<br>21   | $p(a, b, v) = g(x) \land (\forall i < v) h(x, i, \beta(a, b, i)) = \beta(a, b, S_i) \land \beta(a, b, y) = z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14,27,29 ∧I                                     |
| 31.<br>32   | $p = p = g(p(p,q,v)) = g(x) \land (\forall i < y) m(x,i,p(p,q,i)) = p(p,q,Si) \land p(p,q,y) = Z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 ⊒1<br>31 def                                 |
| 52.<br>22   | $\begin{vmatrix} z - z(x, y) \\ z - z(x, y) \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 6 22 30                                       |
| <i>33</i> . | z = r(x, y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5,6-32 ∃E                                       |
| 34.         | $\mathcal{K}(x, y, z) \to z = \mathbb{P}(x, y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4-33 →1                                         |

810

E13.13. Complete the justification for T13.22 by demonstrating the zero case.

T13.22. With  $\mathcal{F}(\vec{x}, y, v)$  as described in the main text,

| 1.  | $ \mathcal{F}(\vec{x}, \emptyset, m) \wedge \mathcal{F}(\vec{x}, \emptyset, n) $                                                                                                                                  | $A(g \rightarrow I)$             |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 2.  | $\ \exists p \exists q [\beta(p,q,\emptyset) = g(\vec{x}) \land (\forall i < \emptyset) h(\vec{x},i,\beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q,i)$                                                             | $(\emptyset) = m$ ] $1 \wedge E$ |
| 3.  | $\exists p \exists q [\beta(p,q,\emptyset) = g(\vec{x}) \land (\forall i < \emptyset) h(\vec{x},i,\beta(p,q,i)) = \beta(p,q,Si) \land \beta(p,q,i)$                                                               | $(\emptyset) = n$ ] $1 \wedge E$ |
| 4.  | $ \left  \left  \beta(a,b,\emptyset) = g(\vec{x}) \land (\forall i < \emptyset) h(\vec{x},i,\beta(a,b,i)) = \beta(a,b,Si) \land \beta(a,b,\emptyset) = \beta(a,b,Si) \land \beta(a,b,\emptyset) \right  \right  $ | $= m$ A (g 2 $\exists$ E)        |
| 5.  | $\beta(a,b,\emptyset) = g(\vec{x})$                                                                                                                                                                               | 4 ∧E                             |
| 6.  | $\beta \cdot \left  \begin{array}{c} \beta(a,b,\emptyset) = m \end{array} \right $                                                                                                                                | 4 ∧E                             |
| 7.  | $T_{n} = g(\vec{x})$                                                                                                                                                                                              | 5,6 <b>=</b> E                   |
| 8.  | $b. \left  \begin{array}{c} \beta(c,d,\emptyset) = g(\vec{x}) \land (\forall i < \emptyset) h(\vec{x},i,\beta(c,d,i)) = \beta(c,d,Si) \land \beta(c,d,\emptyset) \end{array} \right $                             | $= n$ A (g 3 $\exists$ E)        |
| 9.  | $\beta(c, d, \emptyset) = g(\vec{x})$                                                                                                                                                                             | 8 ∧E                             |
| 10. | $0. \left  \right  \left  \beta(c, d, \emptyset) = n \right $                                                                                                                                                     | 8 ∧E                             |
| 11. | $      n = g(\vec{x})$                                                                                                                                                                                            | 9,10 <b>=</b> E                  |
| 12. | m = n                                                                                                                                                                                                             | 7,11 <b>=</b> E                  |
| 13. | m = n                                                                                                                                                                                                             | 3,8-12 ∃E                        |
| 14. | m=n                                                                                                                                                                                                               | 2,4-13 ∃E                        |
| 15. | $\mathbb{E}\left(\mathcal{F}(\vec{x},\emptyset,m)\wedge\mathcal{F}(\vec{x},\emptyset,n))\to m=n\right)$                                                                                                           | $1-14 \rightarrow I$             |
| 16. | $\forall m \forall n [(\mathcal{F}(\vec{x}, \emptyset, m) \land \mathcal{F}(\vec{x}, \emptyset, n)) \to m = n]$                                                                                                   | 15 ∀I                            |

E13.14. Show (i) and (ii) for Def[-]. Then show each of the results in T13.23.

Def[-].

- (i)  $PA \vdash \exists v [x = y + v \lor (x < y \land v = \emptyset)]$ . Beginning with T13.13q, this is a straightforward derivation.
- (ii)  $PA \vdash \forall m \forall n[([x = y + m \lor (x < y \land m = \emptyset)] \land [x = y + n \lor (x < y \land n = \emptyset)]) \rightarrow m = n]$

Exercise 13.14 Def[:]

| 1.  | $[x = y + j \lor (x < y \land j = \emptyset)] \land [x = y + k \lor (x < y \land k = \emptyset)]$                                  | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
|-----|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | $x = y + j \lor (x < y \land j = \emptyset)$                                                                                       | 1 ∧E                                            |
| 3.  | $x = y + k \lor (x < y \land k = \emptyset)$                                                                                       | 1 ∧E                                            |
| 4.  | $y \leq x \lor x < y$                                                                                                              | T13.13q                                         |
| 5.  | $y \leq x$                                                                                                                         | A ( $g 4 \lor E$ )                              |
| 6.  | $x \neq y$                                                                                                                         | 5 T13.13r                                       |
| 7.  | $\sim (x < y \land j = \emptyset)$                                                                                                 | 6 ∨I, DeM                                       |
| 8.  | $\sim (x < y \land k = \emptyset)$                                                                                                 | 6 ∨I, DeM                                       |
| 9.  | x = y + j                                                                                                                          | 2,7 DS                                          |
| 10. | x = y + k                                                                                                                          | 3,8 DS                                          |
| 11. | y + j = y + k                                                                                                                      | 9,10 =E                                         |
| 12. | j = k                                                                                                                              | 11 T6.68                                        |
| 13. | x < y                                                                                                                              | A ( $g 4 \lor E$ )                              |
| 14. | $y \leq y + j$                                                                                                                     | <b>T13.</b> 13 <b>u</b>                         |
| 15. | x < y + j                                                                                                                          | 13,14 T13.13c                                   |
| 16. | $x \neq y + j$                                                                                                                     | 15 T13.13s                                      |
| 17. | $y \leq y + k$                                                                                                                     | T13.13u                                         |
| 18. | x < y + k                                                                                                                          | 13,17 T13.13c                                   |
| 19. | $x \neq y + k$                                                                                                                     | 18 T13.13s                                      |
| 20. | $x < y \land j = \emptyset$                                                                                                        | 2,16 DS                                         |
| 21. | $x < y \land k = \emptyset$                                                                                                        | 3,19 DS                                         |
| 22. | $j = \emptyset$                                                                                                                    | 20 ∧E                                           |
| 23. | $ k = \emptyset$                                                                                                                   | 21 ∧E                                           |
| 24. | j = k                                                                                                                              | 22,23 =E                                        |
| 25. | j = k                                                                                                                              | 4,5-12,13-24 ∨E                                 |
| 26. | $([x = y + j \lor (x < y \land j = \emptyset)] \land [x = y + k \lor (x < y \land k = \emptyset)]) \rightarrow j = k$              | 1-25→I                                          |
| 27. | $\forall m \forall n[([x = y + m \lor (x < y \land m = \emptyset)] \land [x = y + n \lor (x < y \land n = \emptyset)]) \to m = n]$ | 26 ∀I                                           |
|     |                                                                                                                                    |                                                 |

## T13.23.

T13.23.a. PA  $\vdash a \ge b \rightarrow a = b + (a \div b)$ .

This is straightforward with  $a = b + (a \div b) \lor [a < b \land a \div b = \emptyset]$  from the definition.

T13.23.b. PA  $\vdash b \ge a \rightarrow a \stackrel{\cdot}{\rightarrow} b = \emptyset$ .

From your assumption  $b \ge a$  you have  $a < b \lor a = b$  with T13.13m. In the first case, as in the previous problem, you get the result with the definition. In the second case,  $a \ge b$  by T13.13m and you can use (a) with T6.68.

T13.23.c. PA  $\vdash a \doteq b \leq a$ .

By T13.13q,  $a \ge b \lor a < b$ . In the first case apply (a); and in the second you have  $a \le b$  so that you can apply (b).

Exercise 13.14 T13.23.c

T13.23.h. PA  $\vdash$  Sa  $\div$  a =  $\overline{1}$ .

Given T6.68, this is simple once you see from (a) that  $Sa = a + (Sa \div a)$  and from T6.47 that  $Sa = a + \overline{1}$ .

T13.23.i. PA  $\vdash a > \emptyset \rightarrow a \div \overline{1} < a$ 

You can do this in just a few lines.

T13.23.n. PA  $\vdash$   $(a \div b) \div c = a \div (b + c)$ .

Exercise 13.14 T13.23.n

| 1.  | $\underline{a} \ge b + c \lor a < b + c$                     | T13.13q              |
|-----|--------------------------------------------------------------|----------------------|
| 2.  | b + c > a                                                    | A $(g \ 1 \lor E)$   |
| 3.  | $b + c \ge a$                                                | 2 T13.13m            |
| 4.  | $a \div (b + c) = \emptyset$                                 | 3 T13.23b            |
| 5.  | $a \ge b \lor a < b$                                         | T13.13q              |
| 6.  | b > a                                                        | A ( $g 5 \lor E$ )   |
| 7.  | $b \ge a$                                                    | 6 T13.13m            |
| 8.  | $a \div b = \emptyset$                                       | 7 T13.23b            |
| 9.  | $c \ge \emptyset$                                            | T13.13d              |
| 10. | $c \ge a \div b$                                             | 8,9 <b>=</b> E       |
| 11. | $(a \div b) \div c = \emptyset$                              | 10 T13.23b           |
| 12. | $a \ge b$                                                    | A ( $g \ 5 \lor E$ ) |
| 13. | $a = b + (a \div b)$                                         | 12 T13.23a           |
| 14. | $b + c \ge b + (a \div b)$                                   | 3,13 <b>=</b> E      |
| 15. | $c \ge a \stackrel{\cdot}{-} b$                              | 14 T13.13v           |
| 16. | $(a \div b) \div c = \emptyset$                              | 15 T13.23b           |
| 17. | $(a \div b) \div c = \emptyset$                              | 5,6-11,12-16 ∨E      |
| 18. | $(a \div b) \div c = a \div (b + c)$                         | 17,4 <b>=</b> E      |
| 19. | $a \ge b + c$                                                | A $(g \ 1 \lor E)$   |
| 20. | $a = (b+c) + [a \div (b+c)]$                                 | 19 T13.23a           |
| 21. | $b + c \ge b$                                                | T13.13u              |
| 22. | $a \ge b$                                                    | 19,21 T13.13a        |
| 23. | $a = b + (a \div b)$                                         | 22 T13.23a           |
| 24. | $b + (a \div b) \ge b + c$                                   | 19,23 <b>=</b> E     |
| 25. | $a \div b \ge c$                                             | 24 T13.13v           |
| 26. | $a \div b = c + [(a \div b) \div c]$                         | 25 T13.23a           |
| 27. | $b + (a \doteq b) = (b + c) + [a \doteq (b + c)]$            | 20,23 =E             |
| 28. | $b + (c + [(a \div b) \div c]) = (b + c) + [a \div (b + c)]$ | 26,27 <b>=</b> E     |
| 29. | (b+c) + [(a - b) - c] = (b+c) + [a - (b+c)]                  | 28 T6.56             |
| 30. | $(a \div b) \div c = a \div (b + c)$                         | 29 T6.68             |
| 31. | $(a \div b) \div c = a \div (b + c)$                         | 1,2-18,19-30 ∨E      |

T13.23.0. PA  $\vdash (a + c) \doteq (b + c) = a \doteq b$ .

Start with  $a \ge b \lor a < b$ . The second case is easy. For the first, you can apply T13.23a to both  $a \ge b$  and to  $a + c \ge b + c$ .

T13.23.p. PA  $\vdash a \times (b \div c) = a \times b \div a \times c$ .

Exercise 13.14 T13.23.p

| 1.  | $a = \emptyset \lor a > \emptyset$ | T13.13f               |
|-----|------------------------------------|-----------------------|
| 2.  | $a = \emptyset$                    | A ( $g \ 1 \lor E$ )  |
| 3.  | $a(b \div c) = \emptyset$          | 2 T6.58               |
| 4.  | $ab = \emptyset$                   | 2 T6.58               |
| 5.  | $ac \ge \emptyset$                 | T13.13d               |
| 6.  | $ac \ge ab$                        | 5,4 <b>=</b> E        |
| 7.  | $ab \doteq ac = \emptyset$         | 6 T13.23b             |
| 8.  | $a(b \div c) = ab \div ac$         | 3,7 <b>=</b> E        |
| 9.  | $a > \emptyset$                    | A ( $g 1 \lor E$ )    |
| 10. | $b \ge c \lor b < c$               | T13.13q               |
| 11. | c > b                              | A ( <i>g</i> 10∨E)    |
| 12. | $ c \ge b$                         | 11 T13.13m            |
| 13. | $b \doteq c = \emptyset$           | 12 T13.23b            |
| 14. | $a(b \div c) = \emptyset$          | 13 T6.43              |
| 15. | $ac \ge ab$                        | 12 T13.13aa           |
| 16. | $ab \div ac = \emptyset$           | 15 T13.23b            |
| 17. | $  a(b \div c) = ab \div ac$       | 14,16 <b>=</b> E      |
| 18. | $b \ge c$                          | A ( $g \ 10 \lor E$ ) |
| 19. | $b = c + (b \div c)$               | 18 T13.23a            |
| 20. | ab = ab                            | =I                    |
| 21. | $ab = a[c + (b \div c)]$           | 20,19 =E              |
| 22. | $ab = ac + a(b \div c)$            | 21 T6.63              |
| 23. | $ab \ge ac$                        | 18 T13.13aa           |
| 24. | ab = ac + (ab - ac)                | 23 T13.23a            |
| 25. | ac + a(b - c) = ac + (ab - ac)     | 22,24 = E             |
| 26. | a(b - c) = ab - ac                 | 25 T6.68              |
| 27. | $ a(b \div c) = ab \div ac$        | 10,11-17,18-26 ∨E     |
| 28. | $a(b \div c) = ab \div ac$         | 1,2-8,9-27 ∨E         |

E13.15. Show each of the results in T13.24

T13.24.

T13.24.a.  $PA \vdash \emptyset | a$ 

This is nearly immediate from the definition and T6.57.

T13.24.b.  $PA \vdash a | Sa$ .

This is nearly immediate from the definition and T6.57.

T13.24.d. PA  $\vdash a|b \rightarrow a|(b \times c)$ .

With the assumption for  $\rightarrow$ I, you will be able to get  $(Sa \times j)c = bc$ ; then simple association and the definition give the result.

Exercise 13.15 T13.24.d

T13.24.f. PA  $\vdash (a|Sb \land b|c) \rightarrow a|c.$ 

This is straightforward once you apply the definition to your assumption for  $\rightarrow$ I, and then make the assumptions for  $\exists$ E.

T13.24.g.  $PA \vdash a | b \rightarrow [a | (b + c) \leftrightarrow a | c].$ 

| 1.  |                                                     | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$     |
|-----|-----------------------------------------------------|-----------------------------------------------------|
| 2.  | $\exists q(Sa \times q = b)$                        | 1 def                                               |
| 3.  | $Sa \times j = b$                                   | A ( $g$ 2 $\exists$ E)                              |
| 4.  | a (b+c)                                             | $\mathbf{A}\left(g\leftrightarrow\mathbf{I}\right)$ |
| 5.  | $\exists q(Sa \times q = b + c)$                    | 4 def                                               |
| 6.  |                                                     | A ( $g$ 5 $\exists$ E)                              |
| 7.  | $Sa \times k = (Sa \times j) + c$                   | 3,6 =E                                              |
| 8.  | $  \qquad j \le k \lor k < j$                       | T13.13q                                             |
| 9.  | k < j                                               | A ( $c \sim I$ )                                    |
| 10. | $        Sa \times j \le (Sa \times j) + c$         | T13.13u                                             |
| 11. |                                                     | T13.13e                                             |
| 12. | $Sa \times k < Sa \times j$                         | 9,11 T13.13ad                                       |
| 13. | $Sa \times k < (Sa \times j) + c$                   | 10,12 T13.13c                                       |
| 14. | $Sa \times k \neq (Sa \times j) + c$                | 13 T13.13s                                          |
| 15. |                                                     | 7,14 ⊥I                                             |
| 16. | $      k \neq j$                                    | 9-15 ∼I                                             |
| 17. | $j \leq k$                                          | 8,16 DS                                             |
| 18. | $\exists v(v+j=k)$                                  | 17 def                                              |
| 19. | l + j = k                                           | A ( <i>g</i> 18∃E)                                  |
| 20. | $Sa \times (l+j) = (Sa \times j) + c$               | 7,19 =E                                             |
| 21. | $(Sa \times l) + (Sa \times j) = (Sa \times j) + c$ | 20 T6.63                                            |
| 22. | $      Sa \times l = c$                             | 21 T6.68                                            |
| 23. | $\exists q(Sa \times q = c)$                        | 22 ∃I                                               |
| 24. |                                                     | 23 def                                              |
| 25. |                                                     | 18,19-24 ∃E                                         |
| 26. |                                                     | 5,6-25 ∃E                                           |
| 27. |                                                     | $\mathbf{A}\left(g\leftrightarrow\mathbf{I}\right)$ |
| 28. | $\exists q(Sa \times q = c)$                        | 27 def                                              |
| 29. | $Sa \times k = c$                                   | A ( $g$ 28 $\exists$ E)                             |
| 30. | b+c=b+c                                             | =I                                                  |
| 31. | $(Sa \times j) + (Sa \times k) = b + c$             | 30,3,29 = E                                         |
| 32. | $Sa \times (j+k) = b + c$                           | 31 T6.63                                            |
| 33. | $      \exists q(Sa \times q = b + c)$              | 32 ∃I                                               |
| 34. | a (b+c)                                             | 33 def                                              |
| 35. | a (b+c)                                             | 28,29-34 ∃E                                         |
| 36. | $  a (b+c) \leftrightarrow a c$                     | 4-26,27-35 <b>↔</b> I                               |
| 37. | $ a (b+c) \leftrightarrow a c$                      | 2,3-36 ∃E                                           |
| 38. | $a b \rightarrow [a (b+c) \leftrightarrow a c]$     | 1-37 →I                                             |

Exercise 13.15 T13.24.g

T13.24.h. PA  $\vdash$   $(b \ge c \land a|b) \rightarrow [a|(b \doteq c) \leftrightarrow a|c].$ 

From the assumption for  $\rightarrow$ I you have a|(c + (b - c)); then with each of the assumptions for  $\leftrightarrow$ I you will be able to apply (g).

T13.24.i. PA  $\vdash a < b \rightarrow b \nmid Sa$ .

Make the standard assumptions for  $\rightarrow I$ ,  $\sim I$  and, from the definition,  $\exists E$  to get  $Sb \times j = Sa$ ; then, using the last strategy for reaching a contradiction, both  $j = \emptyset$  and  $j \neq \emptyset$  lead to contradiction.

T13.24.j. PA  $\vdash a | b \leftrightarrow rm(b, a) = \emptyset$ .

This is a matter of connecting the definitions. From a|b you get  $Sa \times j = b$ and from  $rm(b, a) = \emptyset$ ,  $b = Sa \times j + \emptyset \land \emptyset < Sa$ ; observe also that when  $Sa \times j = b$  you have  $j \le b$  for ( $\exists$ I).

T13.24.k. PA  $\vdash rm[a + (y \times Sd), d] = rm(a, d)$ .

| Let | r = rm(a, d)                                                                           |                          |
|-----|----------------------------------------------------------------------------------------|--------------------------|
| 1.  | $(\exists w \le a)[a = Sd \times w + r \wedge r < Sd]$                                 | def rm                   |
| 2.  | $a = (Sd \times j) + r \wedge r < Sd$                                                  | A ( $g$ 1( $\exists$ E)) |
| 3.  | $j \leq a$                                                                             |                          |
| 4.  | $a = (Sd \times j) + r$                                                                | 2 ∧E                     |
| 5.  | $a + (y \times Sd) = a + (y \times Sd)$                                                | =I                       |
| 6.  | $a + (y \times Sd) = [(Sd \times j) + r] + (y \times Sd)$                              | 4,5 = E                  |
| 7.  | $a + (y \times Sd) = [(Sd \times j) + (Sd \times y)] + r$                              | 6 with T6.56             |
| 8.  | $a + (y \times Sd) = Sd \times (j + y) + r$                                            | 7 T6.63                  |
| 9.  | r < Sd                                                                                 | 2 ∧E                     |
| 10. | $a + (y \times Sd) = Sd \times (j + y) + r \wedge r < Sd$                              | 8,9 ∧I                   |
| 11. | $a + (y \times Sd) = [d \times (j + y) + (j + y)] + r$                                 | 8 T6.60                  |
| 12. | $a + (y \times Sd) = (j + y) + [d \times (j + y) + r]$                                 | 11 with T6.56            |
| 13. | $\exists v[v + (j + y) = a + (y \times Sd)]$                                           | 12 <b>∃</b> I            |
| 14. | $j + y \le a + (y \times Sd)$                                                          | 13 def                   |
| 15. | $(\exists w \le a + (y \times Sd))[a + (y \times Sd) = Sd \times w + r \wedge r < Sd]$ | 10,14 (∃I)               |
| 16. | $rm(a + (y \times Sd), d) = r$                                                         | 15 def                   |
| 17. | $rm(a + (v \times Sd), d) = r$                                                         | 1,2-16 ( <b>∃</b> E)     |

T13.24.1. PA  $\vdash$  Sd  $\times$  z  $\leq$  a  $\rightarrow$  z  $\leq$  qt(a, d).

Let r = rm(a, d) and q = qt(a, d)

| 1.  | $\underline{a} = Sd \times q + r \wedge r < Sd$ | def qt                                          |
|-----|-------------------------------------------------|-------------------------------------------------|
| 2.  | $Sd \times z \leq a$                            | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 3.  | z > q                                           | A ( $c \sim I$ )                                |
| 4.  | $z \ge Sq$                                      | 3 T13.131                                       |
| 5.  | $a = Sd \times q + r$                           | 1 ∧E                                            |
| 6.  | $Sd \times Sq = (Sd \times q) + Sd$             | <b>T6.</b> 44                                   |
| 7.  | $Sd \times z \ge Sd \times Sq$                  | 4 T13.13aa                                      |
| 8.  | $Sd \times z \ge (Sd \times q) + Sd$            | 7,6 <b>=</b> E                                  |
| 9.  | r < Sd                                          | 1 ∧E                                            |
| 10. | $(Sd \times q) + r < (Sd \times q) + Sd$        | 9 T13.13w                                       |
| 11. | $a < (Sd \times q) + Sd$                        | 5,10 = E                                        |
| 12. | $a < Sd \times z$                               | 8,11 T13.13c                                    |
| 13. | $a \neq Sd \times z$                            | 2 T13.13r                                       |
| 14. | ⊥                                               | 12,13 ⊥I                                        |
| 15. | $z \neq q$                                      | 3-14 ∼I                                         |
| 16. | $z \leq q$                                      | 15 T13.13r                                      |
| 17. | $Sd \times z \le a \to z \le q$                 | $2-16 \rightarrow I$                            |
| 18. | $Sd \times z \le a \to z \le qt(a,d)$           | 17 abv                                          |

T13.24.m. PA  $\vdash a \ge y \times Sd \rightarrow rm[a \div (y \times Sd), d] = rm(a, d)$ 

| •                                                                                                                   | -        |  |
|---------------------------------------------------------------------------------------------------------------------|----------|--|
| Let $r = rm(a, d)$ and $a =$                                                                                        | at(a, d) |  |
| $\mathbf{Let} \mathbf{r} = \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$ | 91(0,0)  |  |

| 1.  | C | $a = Sd \times q + r \wedge r < Sd$                                                                     | def qt                                          |
|-----|---|---------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  |   | $a \ge y \times Sd$                                                                                     | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 3.  |   | $a = Sd \times q + r$                                                                                   | 1 ∧E                                            |
| 4.  |   | $a = (y \times Sd) + [a - (y \times Sd)]$                                                               | 2 T13.23a                                       |
| 5.  |   | $Sd \times q + r = (y \times Sd) + [a \div (y \times Sd)]$                                              | 3,4 =E                                          |
| 6.  |   | $y \leq q$                                                                                              | 2 T13.24l                                       |
| 7.  |   | $Sd \times y \leq Sd \times q$                                                                          | 6 T13.13aa                                      |
| 8.  |   | $Sd \times q = (Sd \times y) + [(Sd \times q) \div (Sd \times y)]$                                      | 7 T13.23a                                       |
| 9.  |   | $(Sd \times q) + r = (Sd \times q) + r$                                                                 | =I                                              |
| 10. |   | $[(Sd \times q) \doteq (Sd \times y)] + [(Sd \times y) + r] = (Sd \times q) + r$                        | 8,9 = E                                         |
| 11. |   | $[(Sd \times q) \doteq (Sd \times y)] + [(Sd \times y) + r] = (y \times Sd) + [a \doteq (y \times Sd)]$ | 5,10 = E                                        |
| 12. |   | $[(Sd \times q) \dot{-} (Sd \times y)] + r = a \dot{-} (y \times Sd)$                                   | 11 T6.68                                        |
| 13. |   | $a \div (y \times Sd) = Sd(q \div y) + r$                                                               | 12 T13.23p                                      |
| 14. |   | r < Sd                                                                                                  | 1 ∧E                                            |
| 15. |   | $a \div (y \times Sd) = Sd(q \div y) + r \wedge r < Sd$                                                 | 13,14 ∧I                                        |
| 16. |   | $a \div (y \times Sd) = [d(q \div y) + (q \div y)] + r]$                                                | 13 T6.60                                        |
| 17. |   | $\exists v[v + (q - y)] = a - (y \times Sd)$                                                            | 16 <b>∃</b> I                                   |
| 18. |   | $q - y \le a - (y \times Sd)$                                                                           | 17 def                                          |
| 19. |   | $(\exists w < a \dot{-} (y \times Sd))[a \dot{-} (y \times Sd) = Sd \times w + r \wedge r < Sd]$        | 15,18 (∃I)                                      |
| 20. |   | $rm(a - (y \times Sd), d) = r$                                                                          | 19 def <i>rm</i>                                |
| 21. | a | $a \ge y \times Sd \to rm(a \stackrel{\cdot}{\to} (y \times Sd), d) = r$                                | $2\text{-}20 \rightarrow \text{I}$              |

E13.16. Show each of the the results in T13.25.

T13.25.

Exercise 13.16 T13.25

T13.25.d. PA  $\vdash \forall x[x > \overline{1} \rightarrow \exists z(Pr(Sz) \land z|x)]$ 

| 1.          | Ø    | $> \overline{1} \rightarrow \exists z (Pr(Sz) \land z   \emptyset)$                                                                                                       | trivial                                         |
|-------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.          |      | $\forall y \le k) [y > \overline{1} \to \exists z (\Pr(Sz) \land z   y)]$                                                                                                 | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 3.          |      | $Sk > \overline{1}$                                                                                                                                                       | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 4.          |      | $Pr(Sk) \lor \sim Pr(Sk)$                                                                                                                                                 | <b>T3.</b> 1                                    |
| 5.          |      | Pr(Sk)                                                                                                                                                                    | A ( $g 4 \lor E$ )                              |
| 6.          |      | k Sk                                                                                                                                                                      | T13.24b                                         |
| 7.          |      | $Pr(Sk) \wedge k Sk$                                                                                                                                                      | 5,6 ∧I                                          |
| 8.          |      | $ \exists z(Pr(Sz) \land z Sk) $                                                                                                                                          |                                                 |
| 9.          |      | $\sim Pr(Sk)$                                                                                                                                                             | A $(g 4 \lor E)$                                |
| 10.         |      | $ [\sim (1 < Sk \land \forall a [a   Sk \to (a = \emptyset \lor Sa = Sk)] ] $<br>$ \overline{1} \neq Sk \lor \exists d [d   Sk \land d \neq \emptyset \land Sd \neq Sk] $ | 9 der<br>10 DeM ON                              |
| 12          |      | $\exists d[d Sk \land d \neq \emptyset \land Sd \neq Sk]$                                                                                                                 | 3 11 DS                                         |
| 13.         |      | $\begin{vmatrix} a \\ b \\ c \\ c$                                                                                                     | $A(g 12 \exists E)$                             |
| 14.         |      | ilsk                                                                                                                                                                      | 13 ∧E                                           |
| 15.         |      | $j \neq \emptyset$                                                                                                                                                        | 13 ∧E                                           |
| 16.         |      | $Sj \neq Sk$                                                                                                                                                              | 13 ∧E                                           |
| 17.         |      | $Sj \leq k \lor k < Sj$                                                                                                                                                   | T13.13q                                         |
| 18.         |      | k < Sj                                                                                                                                                                    | A ( $c \sim I$ )                                |
| 19.<br>20.  |      | $\begin{vmatrix} k < j \lor k = j \\  k = j \end{vmatrix}$                                                                                                                | 18 T13.13n<br>A ( <i>c</i> 19∨E)                |
| 21.         |      | $\int Sk = Sk$                                                                                                                                                            | =I                                              |
| 22.         |      | Sj = Sk                                                                                                                                                                   | 21,20 = E                                       |
| 23.         |      |                                                                                                                                                                           | 16,22 ⊥I                                        |
| 24.         |      | k < j                                                                                                                                                                     | A ( <i>c</i> 19∨E)                              |
| 25.         |      | $      \overline{j} \neq Sk$                                                                                                                                              | 24 T13.24i                                      |
| 26.         |      |                                                                                                                                                                           | 14,25 ⊥I                                        |
| 27.         |      |                                                                                                                                                                           | 19,20-23,24-26 ∨E                               |
| 28.         |      | $k \neq Sj$                                                                                                                                                               | 18-27 ∼I                                        |
| 29.         |      | $S_j \leq k$                                                                                                                                                              | 17,28 DS                                        |
| 30.         |      | $ S_j > 1 \to \exists z (Pr(Sz) \land z   S_j)$                                                                                                                           | 2,29 (∀E)                                       |
| 31.         |      | j > b<br>$s_i > \overline{1}$                                                                                                                                             | 15 115.151<br>31 T13 13k                        |
| 33.         |      | $\exists z(Pr(Sz) \land z Sj)$                                                                                                                                            | $30,32 \rightarrow E$                           |
| 34.         |      | $ Pr(Sl) \wedge l Sj$                                                                                                                                                     | A (g 33∃E)                                      |
| 35.         |      | $  \overline{l} S_j$                                                                                                                                                      | 34 ∧E                                           |
| 36.         |      | $ l Sj \wedge j Sk$                                                                                                                                                       | 35,14 ∧I                                        |
| 37.         |      | l Sk                                                                                                                                                                      | 36 T13.24f                                      |
| 38.         |      | Pr(Sl)                                                                                                                                                                    | 34 ∧E                                           |
| 39.<br>40   |      | $ Pr(Sl) \wedge l Sk$                                                                                                                                                     | 38,37 ∧1<br>20 ⊐r                               |
| 40.         |      | $   \exists 2 (P(S_2) \land 2   S_k)$                                                                                                                                     | 39 ⊒I                                           |
| 41.         |      | $ \exists z(Pr(Sz) \land z Sk) $                                                                                                                                          | 33,34-40 ∃E                                     |
| 42.         |      | $ \exists z(Pr(Sz) \land z Sk) $                                                                                                                                          | 12,13-41 <b>H</b> E                             |
| 43.         |      | $\exists z (Pr(Sz) \land z   Sk)$                                                                                                                                         | 4,4-8,9-42 ∨E                                   |
| 44.         |      | $Jk > 1 \rightarrow \exists z (Pr(Sz) \land z   Sk)$                                                                                                                      | 3-43 →I                                         |
| 45.         | (∀   | $y \le k   y > 1 \to \exists z (Pr(Sz) \land z   y)] \to [Sk > \overline{1} \to \exists z (Pr(Sz) \land z   Sk)]$                                                         | $2-44 \rightarrow I$                            |
| 40.<br>47   | ∀:   | $\{(\forall y \ge x)   y > 1 \rightarrow \exists z (rr(Sz) \land z   y)] \rightarrow [Sx > 1 \rightarrow \exists z (rr(Sz) \land z   Sx)]\}$                              | 45 ♥1<br>1.46 T13 13ag                          |
| <b>+</b> /. | ۰. ۲ | $[n < 1 < \exists 2 (1 ( 02) / 2 n]]$                                                                                                                                     | 1, <del>1</del> 0 115.15ag                      |

T13.25.e.  $PA \vdash Rp(a, b) \leftrightarrow \sim \exists x [Pr(Sx) \land x | a \land x | b].$ 

Exercise 13.16 T13.25.e

| 1.  | Rp(a,b)                                                                                                                               | $\mathbf{A}\left(g\leftrightarrow\mathbf{I}\right)$ |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 2.  | $\forall d [(d   a \land d   b) \rightarrow d = \emptyset]$                                                                           | 1 def                                               |
| 3.  | $\exists x[Pr(Sx) \land x a \land x b]$                                                                                               | A ( $c \sim I$ )                                    |
| 4.  | $Pr(Sj) \wedge j   a \wedge j   b$                                                                                                    | A ( $c$ 3 $\exists$ E)                              |
| 5.  | $ i a \wedge j b$                                                                                                                     | 4 ∧E                                                |
| 6.  | $i = \emptyset$                                                                                                                       | 2,5 ∀E                                              |
| 7.  | $\left  \begin{array}{c} 1 \\ \overline{1} < \overline{1} \end{array} \right $                                                        | T13.13m                                             |
| 8   | $S_i < \overline{1}$                                                                                                                  | 6.7 =E                                              |
| 9   | $1 \neq Si$                                                                                                                           | 8 T13 13r                                           |
| 10  | Pr(Si)                                                                                                                                | 4 AE                                                |
| 11  | $\frac{1}{1} < S_i \land \forall d[d S_i \to (d = \emptyset \lor Sd = S_i)]$                                                          | 10 def                                              |
| 12  | $\begin{bmatrix} 1 & Sj \\ T & u \\ 1 & Sj \end{bmatrix} \rightarrow \begin{bmatrix} u & b \\ u & b \\ 0 & 0 \\ 1 & Si \end{bmatrix}$ | 10 dei<br>11 AF                                     |
| 12. |                                                                                                                                       | 0 12   I                                            |
| 13. |                                                                                                                                       | ),12 ±1                                             |
| 14. |                                                                                                                                       | 3,4-13 ∃E                                           |
| 15. | $\sim \exists x [Pr(Sx) \land x   a \land x   b]$                                                                                     | 3-14 ∼I                                             |
| 16. | $ \neg \exists x [Pr(Sx) \land x   a \land x   b] $                                                                                   | $\mathbf{A}\left(g\leftrightarrow\mathbf{I}\right)$ |
| 17. | $\forall x [\Pr(Sx) \to \sim (x   a \land x   b)]$                                                                                    | 16 QN,DeM                                           |
| 18. | $j a \wedge j b$                                                                                                                      | A $(g \rightarrow I)$                               |
| 19. | $j = \emptyset \lor j > \emptyset$                                                                                                    | T13.13f                                             |
| 20. | $j > \emptyset$                                                                                                                       | A ( $c \sim I$ )                                    |
| 21. | $Sj > \overline{1}$                                                                                                                   | 20 T13.13k                                          |
| 22. | $\exists z (Pr(Sz) \land z   Sj)$                                                                                                     | 21 T13.25d                                          |
| 23. | $Pr(Sk) \wedge k Sj$                                                                                                                  | A ( $c$ 22 $\exists$ E)                             |
| 24. | k Sj                                                                                                                                  | 23 AE                                               |
| 25. | j   a                                                                                                                                 | 18 ∧E                                               |
| 26. | $   k Sj \wedge j a$                                                                                                                  | 24,25 ∧I                                            |
| 27. | k a                                                                                                                                   | 26 T13.24f                                          |
| 28. |                                                                                                                                       | 18 ∧E                                               |
| 29. | $      k Sj \wedge j b$                                                                                                               | 26,28 ∧E                                            |
| 30. | k b                                                                                                                                   | 29 T13.24f                                          |
| 31. | $    k a \wedge k b$                                                                                                                  | 27,30 ∧I                                            |
| 32. | Pr(Sk)                                                                                                                                | 23 ∧E                                               |
| 33. | $\sim (k a \wedge k b)$                                                                                                               | 17,32 ∀E                                            |
| 34. |                                                                                                                                       | 31,33 ⊥I                                            |
| 35. |                                                                                                                                       | 22,23-34 ∃E                                         |
| 36. | i ≯ Ø                                                                                                                                 | 20-35 ∼I                                            |
| 37. | $j = \emptyset$                                                                                                                       | 19,36 DS                                            |
| 38. | $(i a \wedge i b) \rightarrow i = \emptyset$                                                                                          | 18-37 →I                                            |
| 39. | $\forall d[(d a \land d b) \rightarrow d = \emptyset]$                                                                                | 38 ¥I                                               |
| 40. | $R_p(a,b)$                                                                                                                            | 39 def                                              |
| 41. | $Rp(a,b) \leftrightarrow \sim \exists x [Pr(Sx) \land x   a \land x   b]$                                                             | 1-15,16-40 ↔I                                       |

T13.25.f.  $PA \vdash \forall x \forall y [G(a, b, x) \rightarrow G(a, b, x \times y)]$ 

With the assumptions G(a, b, j) and then au + j = bv for  $\rightarrow I$  and  $\exists E$ , you

Exercise 13.16 T13.25.f

can show auk + jk = bkv and generalize.

## T13.25.g. PA $\vdash (a > \emptyset \land b > \emptyset) \rightarrow \forall x \forall y [(G(a, b, x) \land G(a, b, y) \land x \ge y) \rightarrow G(a, b, x \div y)]$

| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\underline{a} > \emptyset \land b > \emptyset$                                                                                      | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $a > \emptyset$                                                                                                                      | 1 ^E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $b > \emptyset$                                                                                                                      | 1 ^E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $G(a,b,i) \land G(a,b,j) \land i \ge j$                                                                                              | A $(g \rightarrow I)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| G(a,b,i)                                                                                                                             | 4 ∧E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\exists x \exists y (ax + i = by)$                                                                                                  | 5 def                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| G(a,b,j)                                                                                                                             | 4 ∧E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\exists x \exists y (ax + j = by)$                                                                                                  | 7 def                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ap + i = bq                                                                                                                          | A ( $g$ 6 $\exists$ E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ar + j = bs                                                                                                                          | A ( $g \ 8 \exists E$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $      i \ge j$                                                                                                                      | 4 ∧E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $bar \ge ar$                                                                                                                         | 3 T13.13z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $abs \ge bs$                                                                                                                         | 2 T13.13z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $      ap + i \ge i$                                                                                                                 | T13.13u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $bq \ge i$                                                                                                                           | 9,14 =E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $bq \ge j$                                                                                                                           | 11,15 T13.13a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $bar + bq \ge ar + j$                                                                                                                | 12,16 T13.13x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $bar + bq \ge bs$                                                                                                                    | 10,17 = E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $(bq + bar) + (bsa \div bs) = (bq + bar) + (bsa \div bs)$                                                                            | =I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $[bsa + (bq + bar)] \doteq bs = (bq + bar) + (bsa \doteq bs)$                                                                        | 13,19 T13.231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $[(bq + bar) \div bs] + bsa = (bq + bar) + (bsa \div bs)$                                                                            | 18,20 T13.231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $[(bq + bar) \div (ar + j)] + bsa = (bq + bar) + (bsa \div bs)$                                                                      | 10,21 = E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $[((bq + bar) \div j) \div ar] + bsa = (bq + bar) + (bsa \div bs)$                                                                   | 22 T13.23n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\left[ \left( (bq \div j) + bar) \div ar \right] + bsa = (bq + bar) + (bsa \div bs) \right]$                                        | 16,23 T13.231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| [(bar - ar) + (bq - j)] + bsa = (bq + bar) + (bsa - bs)                                                                              | 12,24 T13.231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\left[ (bar - ar) + ((ap + i) - j) \right] + bsa = (bq + bar) + (bsa - bs)$                                                         | 9,25 =E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\left[ (bar \div ar) + ((i \div j) + ap] + bsa = (bq + bar) + (bsa \div bs) \right]$                                                | 11,26 T13.231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $(ap + abs) + (bar \div ar) + (i \div j) = (bq + bar) + (bsa \div bs)$                                                               | 27 assoc com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| a(p+bs) + (bar - ar) + (i - j) = b(q+ar) + (bsa - bs)                                                                                | 28 T6.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a(p+bs) + a(br - r) + (i - j) = b(q+ar) + b(sa - s)                                                                                  | 29 T13.23p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| a[(p+bs) + (br - r)] + (i - j) = b[(q+ar) + (sa - s)]                                                                                | 30 T6.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\exists x \exists y [ax + (i - j) = by]$                                                                                            | 31 <b>∃</b> I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| G(a,b,i - j)                                                                                                                         | 32 def                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $G(a,b,i \div j)$                                                                                                                    | 8,10-33 ∃E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| G(a,b,i - j)                                                                                                                         | 6,9-34 ∃E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $[G(a,b,i) \land G(a,b,j) \land i \ge j] \to G(a,b,i \dot{-} j)$                                                                     | 4-35 →I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\forall x \forall y ([G(a,b,x) \land G(a,b,y) \land x \ge y] \to G(a,b,x \div y))$                                                  | 36 ∀I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $(a > \emptyset \land b > \emptyset) \to \forall x \forall y ([G(a, b, x) \land G(a, b, y) \land x \ge y] \to G(a, b, x \dot{-} y))$ | 1-37 →I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                      | $ \begin{bmatrix} a > \emptyset \land b > \emptyset \\ a > \emptyset \\ b > \emptyset \\ \end{bmatrix} \begin{bmatrix} G(a, b, i) \land G(a, b, j) \land i \ge j \\ G(a, b, i) \\ \exists x \exists y(ax + i = by) \\ G(a, b, j) \\ \exists x \exists y(ax + j = by) \\ ap + i = bq \\ \hline ar + j = bs \\ \hline i \ge j \\ bar \ge ar \\ abs \ge bs \\ ap + i \ge i \\ bq \ge i \\ bq \ge i \\ bar + bq \ge ar + j \\ bar + bq \ge bs \\ (bq + bar) + (bsa \doteq bs) = (bq + bar) + (bsa \doteq bs) \\ [bsa + (bq + bar)] \doteq bs = (bq + bar) + (bsa \doteq bs) \\ [bsa + (bq + bar)] \doteq bs = (bq + bar) + (bsa \doteq bs) \\ [(bq + bar) \doteq bs] + bsa = (bq + bar) + (bsa \doteq bs) \\ [(bq + bar) \doteq bs] + bsa = (bq + bar) + (bsa \doteq bs) \\ [(bq + bar) \doteq car + j] + bsa = (bq + bar) + (bsa \doteq bs) \\ [(bq - i) + bar) \doteq ar] + bsa = (bq + bar) + (bsa \doteq bs) \\ [(bar \doteq ar) + (bq \doteq j)] + bsa = (bq + bar) + (bsa \doteq bs) \\ [(bar \doteq ar) + (bq \pm j)] + bsa = (bq + bar) + (bsa \doteq bs) \\ [(bar \doteq ar) + (ar + i) = j)] + bsa = (bq + bar) + (bsa \doteq bs) \\ [(bar \doteq ar) + (ar + i) = j) = b(q + ar) + (bsa \doteq bs) \\ [(bar \doteq ar) + (i \pm j) = b(q + ar) + (bsa \doteq bs) \\ (ap + abs) + (bar \doteq ar) + (i \pm j) = b(q + ar) + (bsa \doteq bs) \\ [ap + bs) + (bar \doteq ar) + (i \pm j) = b(q + ar) + (bsa \doteq bs) \\ [ap + bs) + (br \doteq ar) + (i \pm j) = b(q + ar) + (bsa \doteq bs) \\ a(p + bs) + (br \doteq ar) + (i \pm j) = b(q + ar) + (bsa \doteq bs) \\ a(p + bs) + (br \doteq ar) + (i \pm j) = b(q + ar) + (bsa \doteq bs) \\ a(p + bs) + (br \doteq r)] + (i \pm j) = b([q + ar) + (bsa \doteq bs) \\ a(b + bs) + (br \doteq r)] + (i \pm j) = b([q + ar) + (bsa \doteq bs) \\ a(b + bs) + (br \doteq r)] + (i \pm j) = b([q + ar) + (bsa \doteq bs) \\ a(b + bs) + (br \doteq r)] + (i \pm j) = b([q + ar) + (bsa \doteq bs) \\ a(b + bs) + (br \doteq r)] + (i \pm j) = b([q + ar) + (bsa \doteq bs) \\ a(b + bs) + (br \doteq r)] + (i \pm j) = b([q + ar) + (bsa \doteq bs) \\ a(b + bs) + (br \doteq r)] + (i \pm j) = b([q + ar) + (bsa \doteq bs) \\ a(b + bs) + (br \doteq r)] + (b = b(a + bs) + (ba \pm bs) \\ a(b + bs) + (br \doteq r)] + (i \pm j) = b([q + ar) + (bsa \doteq bs) \\ a(b + bs) + (br \doteq r)] + (b = b(a + bs) + (ba \pm bs) \\ a(b + bs) + (b = b(a + bs) + (b = b(a + bs) + (b = b(a + bs)) \\ a(b + bs) + (b = b(a + bs) + (b = b(a + bs) + (b = b(a + bs)) \\ a(b + bs) + (b = b(a + b) + (b = b(a + b)) \\ a(b + bs) + (b = b(a + b) + (b = b(a + b)) \\ a(b + bs) +$ |

T13.25.h. PA  $\vdash [Rp(a, b) \land a > \overline{1} \land b > \overline{1}] \rightarrow \exists x \exists y (ax + \overline{1} = by)$ 

(a) Show  $a \times (b \div \overline{1}) + a = b \times a$  and generalize.

Exercise 13.16 T13.25.h

- (b) Show  $a \times \emptyset + b = b \times \overline{1}$  and generalize.
- (c) Let q = qt(i, d(a, b)) and r = rm(i, d(a, b)).

| c1.                                                                                                                                                                                              | $i = (Sd(a,b) \times q) + r$                                                                                                                                                                                                                                                                                                                      | def qt                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| c2.                                                                                                                                                                                              | r < Sd(a,b)                                                                                                                                                                                                                                                                                                                                       | from def rm                                                                                                                                                                                                                |
| c3.                                                                                                                                                                                              | $(\forall y < d(a, b)) \sim [(a > \emptyset \land b > \emptyset) \rightarrow G(a, b, Sy)]$                                                                                                                                                                                                                                                        | 1 ∧E                                                                                                                                                                                                                       |
| c4.                                                                                                                                                                                              | G(a,b,i)                                                                                                                                                                                                                                                                                                                                          | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$                                                                                                                                                                            |
| c5.                                                                                                                                                                                              | $G(a,b,Sd(a,b) \times q)$                                                                                                                                                                                                                                                                                                                         | 7 T13.25f                                                                                                                                                                                                                  |
| c6.                                                                                                                                                                                              | $Sd(a,b) \times q \le (Sd(a,b) \times q) + r$                                                                                                                                                                                                                                                                                                     | T13.13u                                                                                                                                                                                                                    |
| c7.                                                                                                                                                                                              | $Sd(a,b) \times q \leq i$                                                                                                                                                                                                                                                                                                                         | c1,c6 =E                                                                                                                                                                                                                   |
| c8.                                                                                                                                                                                              | $\forall x \forall y [(G(a, b, x) \land G(a, b, y) \land x \ge y) \rightarrow G(a, b, x \div y)]$                                                                                                                                                                                                                                                 | 6 T13.25g                                                                                                                                                                                                                  |
| c9.                                                                                                                                                                                              | $G(a, b, i - (Sd(a, b) \times q))$                                                                                                                                                                                                                                                                                                                | c4,c5,c7,c8 ∀E                                                                                                                                                                                                             |
| c10.                                                                                                                                                                                             | $i = Sd(a,b) \times q + [i \doteq (Sd(a,b) \times q)]$                                                                                                                                                                                                                                                                                            | c7 T13.23a                                                                                                                                                                                                                 |
| c11.                                                                                                                                                                                             | $Sd(a,b) \times q + [i - (Sd(a,b) \times q)] = (Sd(a,b) \times q) + r$                                                                                                                                                                                                                                                                            | $c_{1,c_{10}=E}$                                                                                                                                                                                                           |
| c12.                                                                                                                                                                                             | $i \doteq (Sd(a,b) \times q) = r$                                                                                                                                                                                                                                                                                                                 | c11 T6.68                                                                                                                                                                                                                  |
| c13.                                                                                                                                                                                             | G(a,b,r)                                                                                                                                                                                                                                                                                                                                          | c9,c11 =E                                                                                                                                                                                                                  |
| c14.                                                                                                                                                                                             | $\exists y(r=Sy)$                                                                                                                                                                                                                                                                                                                                 | A ( $c \sim I$ )                                                                                                                                                                                                           |
|                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                            |
| c15.                                                                                                                                                                                             | r = Sk                                                                                                                                                                                                                                                                                                                                            | A ( <i>c</i> c14∃E)                                                                                                                                                                                                        |
| c15.<br>c16.                                                                                                                                                                                     | $\begin{vmatrix} r = Sk \\ Sk < Sd(a, b) \end{vmatrix}$                                                                                                                                                                                                                                                                                           | A ( $c \text{ c14} \exists E$ )<br>c2,c16 =E                                                                                                                                                                               |
| c15.<br>c16.<br>c17.                                                                                                                                                                             | $\begin{vmatrix} r = Sk \\ Sk < Sd(a,b) \\ k < d(a,b) \end{vmatrix}$                                                                                                                                                                                                                                                                              | A ( $c \ c14\exists E$ )<br>c2,c16 =E<br>c16 T13.13k                                                                                                                                                                       |
| c15.<br>c16.<br>c17.<br>c18.                                                                                                                                                                     | $\begin{vmatrix} r = Sk \\ Sk < Sd(a,b) \\ k < d(a,b) \\ \sim [(a > \emptyset \land b > \emptyset) \rightarrow G(a,b,Sk)] \end{vmatrix}$                                                                                                                                                                                                          | A ( <i>c</i> c14 $\exists$ E)<br>c2,c16 =E<br>c16 T13.13k<br>c3,c17 ( $\forall$ E)                                                                                                                                         |
| <ul> <li>c15.</li> <li>c16.</li> <li>c17.</li> <li>c18.</li> <li>c19.</li> </ul>                                                                                                                 | $\begin{vmatrix} r = Sk \\ Sk < Sd(a,b) \\ k < d(a,b) \\ \sim [(a > \emptyset \land b > \emptyset) \rightarrow G(a,b,Sk)] \\ (a > \emptyset \land b > \emptyset) \land \sim G(a,b,Sk) \end{vmatrix}$                                                                                                                                              | A ( $c$ c14 $\exists$ E)<br>c2,c16 =E<br>c16 T13.13k<br>c3,c17 ( $\forall$ E)<br>c18 Impl, Dem                                                                                                                             |
| <ul> <li>c15.</li> <li>c16.</li> <li>c17.</li> <li>c18.</li> <li>c19.</li> <li>c20.</li> </ul>                                                                                                   | $\begin{vmatrix} r = Sk \\ Sk < Sd(a,b) \\ k < d(a,b) \\ \sim [(a > \emptyset \land b > \emptyset) \rightarrow G(a,b,Sk)] \\ (a > \emptyset \land b > \emptyset) \land \sim G(a,b,Sk) \\ \sim G(a,b,Sk) \end{vmatrix}$                                                                                                                            | A (c c14 $\exists$ E)<br>c2,c16 =E<br>c16 T13.13k<br>c3,c17 ( $\forall$ E)<br>c18 Impl, Dem<br>c19 $\land$ E                                                                                                               |
| <ul> <li>c15.</li> <li>c16.</li> <li>c17.</li> <li>c18.</li> <li>c19.</li> <li>c20.</li> <li>c21.</li> </ul>                                                                                     | $\begin{vmatrix} r = Sk \\ Sk < Sd(a,b) \\ k < d(a,b) \\ \sim [(a > \emptyset \land b > \emptyset) \rightarrow G(a,b,Sk)] \\ (a > \emptyset \land b > \emptyset) \land \sim G(a,b,Sk) \\ \sim G(a,b,Sk) \\ \sim G(a,b,r) \end{vmatrix}$                                                                                                           | A (c c14 $\exists$ E)<br>c2,c16 =E<br>c16 T13.13k<br>c3,c17 ( $\forall$ E)<br>c18 Impl, Dem<br>c19 $\land$ E<br>c20,c15 =E                                                                                                 |
| <ul> <li>c15.</li> <li>c16.</li> <li>c17.</li> <li>c18.</li> <li>c19.</li> <li>c20.</li> <li>c21.</li> <li>c22.</li> </ul>                                                                       | $ \begin{vmatrix} r = Sk \\ Sk < Sd(a,b) \\ k < d(a,b) \\ \sim [(a > \emptyset \land b > \emptyset) \rightarrow G(a,b,Sk)] \\ (a > \emptyset \land b > \emptyset) \land \sim G(a,b,Sk) \\ \sim G(a,b,Sk) \\ \sim G(a,b,r) \\ \bot \end{vmatrix} $                                                                                                 | A (c c14 $\exists$ E)<br>c2,c16 =E<br>c16 T13.13k<br>c3,c17 ( $\forall$ E)<br>c18 Impl, Dem<br>c19 $\land$ E<br>c20,c15 =E<br>c13,c21 $\perp$ I                                                                            |
| <ul> <li>c15.</li> <li>c16.</li> <li>c17.</li> <li>c18.</li> <li>c19.</li> <li>c20.</li> <li>c21.</li> <li>c22.</li> <li>c23.</li> </ul>                                                         | $\begin{vmatrix} r = Sk \\ Sk < Sd(a,b) \\ k < d(a,b) \\ \sim [(a > \emptyset \land b > \emptyset) \rightarrow G(a,b,Sk)] \\ (a > \emptyset \land b > \emptyset) \land \sim G(a,b,Sk) \\ \sim G(a,b,Sk) \\ \sim G(a,b,r) \\ \bot \\ \downarrow$                                                                                                   | A (c c14 $\exists$ E)<br>c2,c16 =E<br>c16 T13.13k<br>c3,c17 ( $\forall$ E)<br>c18 Impl, Dem<br>c19 $\land$ E<br>c20,c15 =E<br>c13,c21 $\perp$ I<br>c14,c15-c22 $\exists$ E                                                 |
| <ul> <li>c15.</li> <li>c16.</li> <li>c17.</li> <li>c18.</li> <li>c19.</li> <li>c20.</li> <li>c21.</li> <li>c22.</li> <li>c23.</li> <li>c24.</li> </ul>                                           | $\begin{vmatrix} r = Sk \\ Sk < Sd(a,b) \\ k < d(a,b) \\ \sim [(a > \emptyset \land b > \emptyset) \rightarrow G(a,b,Sk)] \\ (a > \emptyset \land b > \emptyset) \land \sim G(a,b,Sk) \\ \sim G(a,b,Sk) \\ \sim G(a,b,r) \\ \bot \\ \gamma \exists y(r = Sy) \end{vmatrix}$                                                                       | A (c c14 $\exists$ E)<br>c2,c16 =E<br>c16 T13.13k<br>c3,c17 ( $\forall$ E)<br>c18 Impl, Dem<br>c19 $\land$ E<br>c20,c15 =E<br>c13,c21 $\perp$ I<br>c14,c15-c22 $\exists$ E<br>c14-c23 $\sim$ I                             |
| <ul> <li>c15.</li> <li>c16.</li> <li>c17.</li> <li>c18.</li> <li>c19.</li> <li>c20.</li> <li>c21.</li> <li>c22.</li> <li>c23.</li> <li>c24.</li> <li>c25.</li> </ul>                             | $\begin{vmatrix} r = Sk \\ Sk < Sd(a,b) \\ k < d(a,b) \\ \sim [(a > \emptyset \land b > \emptyset) \rightarrow G(a,b,Sk)] \\ (a > \emptyset \land b > \emptyset) \land \sim G(a,b,Sk) \\ \sim G(a,b,Sk) \\ \sim G(a,b,r) \\ \bot \\ r = \emptyset \end{vmatrix}$                                                                                  | A (c c14 $\exists$ E)<br>c2,c16 =E<br>c16 T13.13k<br>c3,c17 ( $\forall$ E)<br>c18 Impl, Dem<br>c19 $\land$ E<br>c20,c15 =E<br>c13,c21 $\perp$ I<br>c14,c15-c22 $\exists$ E<br>c14-c23 $\sim$ I<br>c24 T6.45                |
| <ul> <li>c15.</li> <li>c16.</li> <li>c17.</li> <li>c18.</li> <li>c19.</li> <li>c20.</li> <li>c21.</li> <li>c22.</li> <li>c23.</li> <li>c24.</li> <li>c25.</li> <li>c26.</li> </ul>               | $\begin{vmatrix} r = Sk \\ Sk < Sd(a,b) \\ k < d(a,b) \\ \sim [(a > \emptyset \land b > \emptyset) \rightarrow G(a,b,Sk)] \\ (a > \emptyset \land b > \emptyset) \land \sim G(a,b,Sk) \\ \sim G(a,b,Sk) \\ \sim G(a,b,r) \\ \bot \\ \downarrow \\ \gamma \exists y(r = Sy) \\ r = \emptyset \\ d(a,b) i \end{vmatrix}$                            | A (c c14 $\exists$ E)<br>c2,c16 =E<br>c16 T13.13k<br>c3,c17 ( $\forall$ E)<br>c18 Impl, Dem<br>c19 $\land$ E<br>c20,c15 =E<br>c13,c21 $\perp$ I<br>c14,c15-c22 $\exists$ E<br>c14-c23 $\sim$ I<br>c24 T6.45<br>c25 T13.24j |
| <ul> <li>c15.</li> <li>c16.</li> <li>c17.</li> <li>c18.</li> <li>c19.</li> <li>c20.</li> <li>c21.</li> <li>c22.</li> <li>c23.</li> <li>c24.</li> <li>c25.</li> <li>c26.</li> <li>c27.</li> </ul> | $\begin{vmatrix} r = Sk \\ Sk < Sd(a,b) \\ k < d(a,b) \\ \sim [(a > \emptyset \land b > \emptyset) \rightarrow G(a,b,Sk)] \\ (a > \emptyset \land b > \emptyset) \land \sim G(a,b,Sk) \\ \sim G(a,b,Sk) \\ \sim G(a,b,r) \\ \bot \\   \bot \\ \sim \exists y(r = Sy) \\ r = \emptyset \\ d(a,b) i \\ G(a,b,i) \rightarrow d(a,b) i \end{vmatrix}$ | A (c c14∃E)<br>c2,c16 =E<br>c16 T13.13k<br>c3,c17 ( $\forall$ E)<br>c18 Impl, Dem<br>c19 ∧E<br>c20,c15 =E<br>c13,c21 ⊥I<br>c14,c15-c22 ∃E<br>c14-c23 ~I<br>c24 T6.45<br>c25 T13.24j<br>c4-c24 →I                           |

T13.25.i.  $PA \vdash Pr(Sa) \land a | (b \times c)] \rightarrow (a | b \lor a | c)$ 

Exercise 13.16 T13.25.i

| 1.  | $Pr(Sa) \wedge a   (b \times c)$                                           | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
|-----|----------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | Pr(Sa)                                                                     | 1 ^E                                            |
| 3.  | $\overline{1} < Sa \land \forall x[x Sa \to (x = \emptyset \lor Sx = Sa)]$ | 2 def                                           |
| 4.  | $\forall x[x Sa \to (x = \emptyset \lor Sx = Sa)]$                         | 3 ∧E                                            |
| 5.  | $a (b \times c)$                                                           | 1 ∧E                                            |
| 6.  | $a \nmid b$                                                                | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 7.  | $j b \wedge j Sa$                                                          | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 8.  | j Sa                                                                       | 7 ∧E                                            |
| 9.  | $j = \emptyset \lor Sj = Sa$                                               | 4,8 ∀E                                          |
| 10. | Sj = Sa                                                                    | A ( $c \sim I$ )                                |
| 11. | i = a                                                                      | 10 T6.40                                        |
| 12. | $   _{i b}$                                                                | 7 ∧E                                            |
| 13. |                                                                            | 12,11 =E                                        |
| 14. |                                                                            | 6,13 ⊥I                                         |
| 15. | $S_i \neq S_a$                                                             | 10-14 ∼I                                        |
| 16. | $i = \emptyset$                                                            | 9,15 DS                                         |
| 17  | $(i b \land i Sa) \rightarrow i = \emptyset$                               | 7-16 →I                                         |
| 18. | $\forall x[(x b \land x Sa) \rightarrow x = \emptyset]$                    | 17 ∀I                                           |
| 19. | Rp(b, Sa)                                                                  | 18 def                                          |
| 20. | $Sa > \emptyset$                                                           | T13.13e                                         |
| 21. | $b \neq \emptyset$                                                         | A ( $c \sim E$ )                                |
| 22  | $b = \emptyset$                                                            | 21 T13 13f                                      |
| 23  | $\begin{vmatrix} 0 & -0 \\ a & 0 \end{vmatrix}$                            | T13 24c                                         |
| 24. |                                                                            | 22.23 = E                                       |
| 25. |                                                                            | 6,24 ⊥I                                         |
| 26  | $\begin{vmatrix} h \\ h > 0 \end{vmatrix}$                                 | 21-25 ∼E                                        |
| 27  | $\begin{bmatrix} 3 & 7 & 0 \\ 3 & 7 & 0 \end{bmatrix}$                     | 19.20.26 T13.25h                                |
| 28. | $bp + \overline{1} = Sa \times a$                                          | A $(g 27\exists E)$                             |
| 20  | $\int \frac{1}{a(Sa \times a)} = a(Sa \times a)$                           | _I                                              |
| 30  | $c(bn + \overline{1}) = c(Sa \times q)$                                    | -1<br>28 20 $-F$                                |
| 31  | $c(bp+1) = c(Sa \times q)$                                                 | 20,29 —E<br>30 T6 63                            |
| 32  | a chn                                                                      | 5 T13 24d                                       |
| 33  | a Sa                                                                       | T13 24b                                         |
| 34. | $a c(Sa \times a)$                                                         | 33 T13.24d                                      |
| 35. | a (cbp+c)                                                                  | 31,34 =E                                        |
| 36. |                                                                            | 32,35 T13.24g                                   |
| 37. |                                                                            | 27,28-36 ∃E                                     |
| 38. | $a \nmid b \rightarrow a \mid c$                                           | 6-37 →I                                         |
| 39. | $a b \lor a c$                                                             | 38 Impl                                         |
| 40. | $[Pr(Sa) \land a   (b \times c)] \to (a b \lor a c)$                       | 1-39 →I                                         |
|     |                                                                            |                                                 |

E13.17. Show the conditions for *Def*[*lcm*] and *Def*[*plm*]. Then show each of the results in T13.26.

Def[lcm].

Exercise 13.17 Def[lcm]

(i) 
$$PA \vdash \exists x [x > \emptyset \land (\forall i < k)m(i)|x]$$

Supposing the zero case is done.

| 1.  | $\exists x [x > \emptyset \land (\forall i < \emptyset)m(i) x]$                                                                        | zero case                                       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | $\exists x[x > \emptyset \land (\forall i < j)m(i) x]$                                                                                 | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 3.  | $a > \emptyset \land (\forall i < j)m(i) a$                                                                                            | A ( $g$ 2 $\exists$ E)                          |
| 4.  | $a > \emptyset$                                                                                                                        | 3 ∧E                                            |
| 5.  | $ \langle \forall i < j \rangle m(i)   a$                                                                                              | 3 ∧E                                            |
| 6.  | $Sm(j) > \emptyset$                                                                                                                    | T13.13e                                         |
| 8.  | $a \times Sm(j) \ge Sm(j)$                                                                                                             | 4 T13.13z                                       |
| 9.  | $a \times Sm(j) > \emptyset$                                                                                                           | 6,8 T13.13c                                     |
| 10. | l < Sj                                                                                                                                 | A $(g (\forall I))$                             |
| 11. | $ l  < j \lor l = j$                                                                                                                   | 10 T13.13n                                      |
| 12. | l < j                                                                                                                                  | A ( <i>g</i> 11∨E)                              |
| 13  | $[m(l)]_{a}$                                                                                                                           | 5 12 (∀E)                                       |
| 14  | $m(l) (a \times Sm(i))$                                                                                                                | 13 T13 24d                                      |
| 11. |                                                                                                                                        | 10 110.2 14                                     |
| 15. | l = j                                                                                                                                  | A ( $g 11 \lor E$ )                             |
| 16. | m(j) Sm(j)                                                                                                                             | T13.24b                                         |
| 17. | m(l) Sm(j)                                                                                                                             | 16,15 =E                                        |
| 18. | $     m(l) (a \times Sm(j))$                                                                                                           | 17 T13.24d                                      |
| 19. | $  m(l) (a \times Sm(j))$                                                                                                              | 11,12-14,15-18 ∨E                               |
| 20. | $(\forall i < Sj)m(i) (a \times Sm(j))$                                                                                                | 10-19 (¥I)                                      |
| 21. | $  a \times Sm(j) > \emptyset \land (\forall i < Sj)m(i) (a \times Sm(j))$                                                             | 9,20 ∧I                                         |
| 22. | $ \exists x[x > \emptyset \land (\forall i < Sj)m(i) x]$                                                                               | 21 ∃I                                           |
| 23. | $\exists x [x > \emptyset \land (\forall i < Sj)m(i) x]$                                                                               | 2,3-22 ∃E                                       |
| 24. | $\exists x [x > \emptyset \land (\forall i < j)m(i) x] \to \exists x [x > \emptyset \land (\forall i < Sj)m(i) x]$                     | 2-23→I                                          |
| 25. | $\forall y (\exists x [x > \emptyset \land (\forall i < y)m(i) x] \rightarrow \exists x [x > \emptyset \land (\forall i < Sy)m(i) x])$ | 24∀I                                            |
| 26. | $\exists x [x > \emptyset \land (\forall i < k)m(i) x]$                                                                                | 1,25 IN                                         |

*Def*[*plm*]. These are straightforward.

T13.26.

T13.26.a. Show  $\overline{1} > \emptyset \land (\forall i < \emptyset)m(i)|\overline{1} \land (\forall z < \overline{1})\sim [z > \emptyset \land (\forall i < \emptyset)m(i)|z]$ and apply the definition.

T13.26.b. This is straightforward.

T13.26.c. PA  $\vdash (\forall i < k)m(i)|x \rightarrow p_k|x$ Let  $q = qt(x, p_k)$  and  $r = rm(x, p_k)$ .

Exercise 13.17 T13.26.c

| 1.  | $(\forall y < l_k) \sim [y > \emptyset \land (\forall i < k)m(i) y]$ | def $l_k$ T13.19c                                        |
|-----|----------------------------------------------------------------------|----------------------------------------------------------|
| 2.  | $Sp_k = l_k$                                                         | def $p_k$                                                |
| 3.  | $x = (Sp_k \times q) + r$                                            | def q                                                    |
| 4.  | $r < Sp_k$                                                           | from def <i>r</i>                                        |
| 5.  | $(\forall i < k)m(i) x$                                              | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$          |
| 6.  | $  r < l_k$                                                          | 4,2 = E                                                  |
| 7.  | a < k                                                                | $\mathbf{A}\left(g\left(\forall\mathbf{I}\right)\right)$ |
| 8.  | m(a) x                                                               | 5,7 (∀E)                                                 |
| 9.  | $m(a) ((Sp_k \times q) + r)$                                         | 8,3 =E                                                   |
| 10. | $m(a) l_k$                                                           | 7 T13.26b                                                |
| 11. | $m(a) Sp_k$                                                          | 2,10 = E                                                 |
| 12. | $m(a) (Sp_k \times q)$                                               | 11 T13.24d                                               |
| 13. | m(a) r                                                               | 9,12 T13.24g                                             |
| 14. | $(\forall i < k)m(i) r$                                              | 7-13 (∀I)                                                |
| 15. | $\sim [r > \emptyset \land (\forall i < k)m(i) r]$                   | 1,6 (∀E)                                                 |
| 16. | $  r \neq \emptyset \lor \sim (\forall i < k) m(i)   r$              | 15 DeM                                                   |
| 17. | $r \neq \emptyset$                                                   | 14,16 DS                                                 |
| 18. | $  r = \emptyset$                                                    | 17 T13.13f                                               |
| 19. | $ p_k x$                                                             | 18 T13.24j                                               |
| 20. | $(\forall i < k)m(i) x \rightarrow p_k x$                            | 5-19 →I                                                  |

T13.26.d. 
$$PA \vdash \forall n[(Pr(Sn) \land n|l_k) \rightarrow (\exists i < k)n|Sm(i)]$$

Supposing the zero case is done.

Exercise 13.17 T13.26.d

| 1.<br>2.  | $ \forall n[(Pr(Sn) \land n l_{\emptyset}) \to (\exists i < \emptyset)n Sm(i)] \\ l_{j} > \emptyset \land (\forall i < j)m(i) l_{j} $                               | zero case<br>def <i>l<sub>j</sub></i> T13.19b |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 3.        | $(\forall i < j)m(i) l_j$                                                                                                                                           | 2 ^E                                          |
| 4.        | $   \forall n[(Pr(Sn) \land n l_j) \to (\exists i < j)n Sm(i)] $                                                                                                    | $A(g \rightarrow I)$                          |
| 5.        | $Pr(Sa) \wedge a l_{Sj}$                                                                                                                                            | A $(g \rightarrow I)$                         |
| 6.        | Pr(Sa)                                                                                                                                                              | 5 ∧E                                          |
| 7.        | b < Sj                                                                                                                                                              | A $(g (\forall I))$                           |
| 8.        | $\begin{vmatrix} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $                                                                                                   | 7 T13.13n                                     |
| 9.        | b < j                                                                                                                                                               | A ( $g \ 8 \lor E$ )                          |
| 10.       | $     m(b) l_i$                                                                                                                                                     | 3,9 (¥E)                                      |
| 11.       | $       m(b) (l_j \times Sm(j))$                                                                                                                                    | 10 T13.24d                                    |
| 12.       | b = j                                                                                                                                                               | A ( $g 8 \lor E$ )                            |
| 13.       | m(j) Sm(j)                                                                                                                                                          | T13.24b                                       |
| 14.       | m(b) Sm(j)                                                                                                                                                          | 12,13 <b>=</b> E                              |
| 15.       | $        m(b) (l_j \times Sm(j))$                                                                                                                                   | 14 T13.24d                                    |
| 16.       | $      m(b) (l_j \times Sm(j))$                                                                                                                                     | 8,9-11,12-15 ∨E                               |
| 17.       | $     (\forall i < Sj)m(i) (l_j \times Sm(j))$                                                                                                                      | 7-16 (∀I)                                     |
| 18.       | $    p_{Sj} (l_j \times Sm(j))$                                                                                                                                     | 17 T13.26c                                    |
| 19.       | $Sp_{Sj} = l_{Sj}$                                                                                                                                                  | def $p_{Sj}$                                  |
| 20.       | $   a l_{Sj}$                                                                                                                                                       | 5 AE                                          |
| 21.       | $\begin{bmatrix} a   Sp_{Sj} \\ a   (l + \chi Sm(i)) \end{bmatrix}$                                                                                                 | 20,19 = E                                     |
| 22.<br>23 | $\begin{bmatrix} a_{l}(i_{j} \times Sm(j)) \\ a_{l}l : \vee a_{l}Sm(i) \end{bmatrix}$                                                                               | 6 22 T13 25i                                  |
| 23.       | $\begin{vmatrix} u_i \\ i \\$                                                                                               | T13.13h                                       |
| 25.       | $   a l_j$                                                                                                                                                          | A ( <i>g</i> 23∨E)                            |
| 26.       | $    Pr(Sa) \wedge a l_i$                                                                                                                                           | 6,25 ∧I                                       |
| 27.       | $       (\exists i < j)a Sm(i)$                                                                                                                                     | 4,26 ∀E                                       |
| 28.       | a Sm(b)                                                                                                                                                             | A ( $g$ 27( $\exists$ E))                     |
| 29.       | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                  |                                               |
| 30.       | b < Sj                                                                                                                                                              | 29,24 T13.13b                                 |
| 31.       | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                  | 28,30 (∃I)                                    |
| 32.       | $      (\exists i < Sj)a Sm(i)$                                                                                                                                     | 27,28-31 (∃E)                                 |
| 33.       | a Sm(j)                                                                                                                                                             | A ( $g \ 23 \lor E$ )                         |
| 34.       | $       (\exists i < Sj)a Sm(i)$                                                                                                                                    | 33,24 (∃I)                                    |
| 35.       | $   (\exists i < Sj)a Sm(i)$                                                                                                                                        | 23,25-32,33-34 ∨E                             |
| 36.       | $\left  (\Pr(Sa) \land a   l_{Sj}) \rightarrow (\exists i < Sj)a   Sm(i) \right $                                                                                   | 5-35 →I                                       |
| 37.       | $\left  \forall n [(Pr(Sn) \land n   l_{Sj}) \rightarrow (\exists i < Sj)n   Sm(i)] \right $                                                                        | 36 ∀I                                         |
| 38.       | $\forall n[(\Pr(Sn) \land n l_j) \to (\exists i < j)n Sm(i)] \to \forall n[(\Pr(Sn) \land n l_{Sj}) \to (\exists i < Sj)n Sm(i)]$                                   | 4-37 →I                                       |
| 39.       | $\forall y (\forall n[(Pr(Sn) \land n l_y) \rightarrow (\exists i < y)n Sm(i)] \rightarrow \forall n[(Pr(Sn) \land n l_{Sy}) \rightarrow (\exists i < Sy)n Sm(i)])$ | 38 ¥I                                         |
| 40.       | $ \forall n[(Pr(Sn) \land n l_k) \to (\exists i < k)n Sm(i)]$                                                                                                       | 1,39 IN                                       |

E13.18. Provide derivations to show each of [a] - [e] to complete the derivation for T13.27.

Exercise 13.18

826

T13.27.

a. PA  $\vdash \emptyset \leq k \rightarrow (\mathcal{A}(\emptyset) \rightarrow \mathcal{B}(\emptyset))$ 

Trivially  $(\forall i < \emptyset) rm(\emptyset, m(i)) = h(i)$ ; this gives you  $\mathcal{B}(\emptyset)$  and (1) follows easily from this.

- b. You will be able to use (10) and (11) to generate the antecedent to (8); (13) then follows by  $\rightarrow E$ .
- c. PA,  $(11) \vdash Rp(l_a, Sm(a))$

|      | د به وبا                                           |                         |
|------|----------------------------------------------------|-------------------------|
| c1.  | $\sim Rp(l_a, Sm(a))$                              | A ( $c \sim E$ )        |
| c2.  | $\exists x [Pr(Sx) \land x   l_a \land x   Sm(a)]$ | c1, T13.25e             |
| c3.  | $Pr(Su) \wedge u l_a \wedge u Sm(a)$               | A ( $c$ c2 $\exists$ E) |
| c4.  | u Sm(a)                                            | c3 ∧E                   |
| c5.  | Pr(Su)                                             | c3 ∧E                   |
| c6.  | $  u l_a$                                          | c3 ∧E                   |
| c7.  | $Pr(Su) \wedge u l_a$                              | c5,c6 ∧I                |
| c8.  | $  (\exists i < a)u Sm(i)$                         | c7 T13.26d              |
| c9.  | u Sm(v)                                            | A ( $c c8(\exists E)$ ) |
| c10. | v < a                                              |                         |
| c11. | a < Sa                                             | T13.13n                 |
| c12. | $  v < a \land a < Sa$                             | c10,c11 ∧I              |
| c13. | $     (v < a \land a < Sa) \to Rp(Sm(v), Sm(a)) $  | 11 ∀E                   |
| c14. | Rp(Sm(v), Sm(a))                                   | c13,c12 $\rightarrow$ E |
| c15. | $ Pr(Su) \wedge u Sm(v) \wedge u Sm(a)$            | c5,c9,c4 ∧I             |
| c16. | $ \exists x[Pr(Sx) \land x Sm(v) \land x Sm(a)]$   | c15 ∃I                  |
| c17. | $    \sim Rp(Sm(v), Sm(a))$                        | c16 T13.25e             |
| c18. | ⊥                                                  | c14,c17 ⊥I              |
| c19. |                                                    | c8,c9-c18 (∃E)          |
| c20. |                                                    | c2,c3-c19 ∃E            |
| c21. | $Rp(l_a, Sm(a))$                                   | c1-c20 ∼E               |

d. PA, (20), (21)  $\vdash s = Sm(a) \times c + h(a)$ 

d1.  $|s = (l_a b + r) + h(a)l_a$ 21 T6.63 d2.  $|l_a > \emptyset$ def  $l_a$ d3.  $h(a)l_a \ge h(a)$ d2 T13.13z d4.  $h(a)l_a = h(a) + [h(a)l_a - h(a)]$ d3 T13.23a d5.  $h(a)l_a = h(a) + [h(a)l_a \div h(a)\overline{1}]$ d4 T6.57 d6.  $h(a)l_a = h(a) + h(a)[l_a \div \overline{1}]$ d5 T13.23p d7.  $| s = (l_a b + r) + (h(a) + h(a)[l_a - \overline{1}])$ d1,d6 = Ed8.  $s = [l_a b + (r + [l_a \div \overline{1}]h(a))] + h(a)$ d7 T6.55 d9. s = Sm(a)c + h(a)20,d8 = E

e. PA, (10), (13), (21), (22)  $\vdash (\forall i < Sa)rm(s, m(i)) = h(i)$ 

Exercise 13.18 T13.27

| e1.  | u < Sa                                                        | A $(g (\forall I))$            |
|------|---------------------------------------------------------------|--------------------------------|
| e2.  | $u < a \lor u = a$                                            | e1 T13.13n                     |
| e3.  | u < a                                                         | A ( $g e 2 \lor E$ )           |
| e4.  | $m(u) l_a$                                                    | e3 T13.26b                     |
| e5.  | $ m(u) l_a(b+h(a))$                                           | e4 T13.24d                     |
| e6.  | $\exists q[Sm(u)q = l_a(b+h(a))]$                             | def                            |
| e7.  | $\sum Sm(u)v = l_a(b+h(a))$                                   | A ( $g \text{ e6} \exists E$ ) |
| e8.  | rm(s, m(u)) = rm(s, m(u))                                     | =I                             |
| e9.  | $  rm(s, m(u)) = rm(l_a(b+h(a)) + r, m(u))$                   | e8,21 =E                       |
| e10. | rm(s, m(u)) = rm(Sm(u)v + r, m(u))                            | e9,e7 =E                       |
| e11. | rm(s, m(u)) = rm(r, m(u))                                     | e10 T13.24k                    |
| e12. | rm(r,(m(u)) = h(u)                                            | 13,e3 (∀E)                     |
| e13. | rm(s, m(u)) = h(u)                                            | e11,e12 = E                    |
| e14. | rm(s,m(u)) = h(u)                                             | e6,e7-e13 ∃E                   |
| e15. | u = a                                                         | A ( $g e 2 \lor E$ )           |
| e16. | rm(s, m(u)) = rm(s, m(u))                                     | =I                             |
| e17. | rm(s, m(u)) = rm(Sm(a)c + h(a), m(u))                         | e16,22 =E                      |
| e18. | rm(s, m(u)) = rm(Sm(u)c + h(u), m(u))                         | e15,e17 =E                     |
| e19. | rm(s, m(u)) = rm(h(u), m(u))                                  | e18 T13.24k                    |
| e20. | a < Sa                                                        | T13.13h                        |
| e21. | u < Sa                                                        | e20,e15 =E                     |
| e22. | $m(u) \ge h(u)$                                               | 10,e21 (∀E)                    |
| e23. | h(u) < Sm(u)                                                  | e22 T13.13m,n                  |
| e24. | $Sm(u) \times \emptyset = \emptyset$                          | T6.43                          |
| e25. | $\emptyset + h(u) = h(u)$                                     | T6.51                          |
| e26. | $h(u) = Sm(u) \times \emptyset + h(u)$                        | e25,e24 =E                     |
| e27. | $h(u) = Sm(u) \times \emptyset + h(u) \wedge h(u) < Sm(u)$    | e26,e23 ∧I                     |
| e28. | $\exists w [h(u) = Sm(u) \times w + h(u) \wedge h(u) < Sm(u)$ | e26 ∃I                         |
| e29. | $\left  rm(h(u), m(u)) = h(u) \right $                        | e28 def rm                     |
| e30. | $\Big  rm(s,m(u)) = h(u)$                                     | e19,e29 =E                     |
| e31. | rm(s,m(u)) = h(u)                                             | e2,e3-e14,e15-e30 ∨E           |
| e32. | $(\forall i < Sa)rm(s, m(i)) = h(i)$                          | e1-e31 (∀I)                    |

E13.20. Complete the demonstration for T13.29.

T13.29.

Exercise 13.20 T13.29

| (i) | 1.  | j < k                                                   | A $(g (\forall I))$  |
|-----|-----|---------------------------------------------------------|----------------------|
|     | 2.  | $S_i > \emptyset$                                       | T13.13e              |
|     | 3.  | $q \times Sj \ge q$                                     | 2 T13.13z            |
|     | 4.  | $q > \emptyset$                                         | def $q$              |
|     | 5.  | $q \times Sj > \emptyset$                               | 3,4 T13.13c          |
|     | 6.  | $m(j) > \emptyset$                                      | 5 def <i>m</i>       |
|     | 7.  | $maxp(k, maxs[h]_k) \ge maxs[h]_k$                      | T13.28a              |
|     | 8.  | $r \geq maxs[h]_k$                                      | 7 def <i>r</i>       |
|     | 9.  | $(\forall i < k)h(i) \leq maxs[h]_k$                    | T13.28b              |
|     | 10. | $h(j) \leq maxs[h]_k$                                   | 9,1 (∀E)             |
|     | 11. | $h(j) \leq r$                                           | 8,10 T13.13a         |
|     | 12. | r < Sr                                                  | T13.13h              |
|     | 13. | Sr = s                                                  | def s                |
|     | 14. | r < s                                                   | 12,13 = E            |
|     | 15. | h(j) < s                                                | 11,14 T13.13c        |
|     | 16. | r q                                                     | 14 113.26b           |
|     | 17. | $\exists v[Sr \times v = q]$                            | def $ $              |
|     | 18. | $Sr \times a = q$                                       | $A(g   1/\exists E)$ |
|     | 19. | $s \times a = q$                                        | 13,18 = E            |
|     | 20. | $a = \emptyset \lor a > \emptyset$                      | T13.13f              |
|     | 21. | $a = \emptyset$                                         | A $(c \sim I)$       |
|     | 22. | $s \times \emptyset = \emptyset$                        | <b>T6.</b> 43        |
|     | 23. | $s \times a = \emptyset$                                | 22,21 = E            |
|     | 24. | $q = \emptyset$                                         | 19,23 <b>=</b> E     |
|     | 25. | $q \neq \emptyset$                                      | 4 T13.13f            |
|     | 26. |                                                         | 24,25 ⊥I             |
|     | 27. | $a \neq \emptyset$                                      | 21-26 ~I             |
|     | 28. | $a > \emptyset$                                         | 20,27 DS             |
|     | 29. | $s \times a \ge s$                                      | 28 T13.13z           |
|     | 30. | $s \leq q$                                              | 19,29 = E            |
|     | 31. | $q \times Sj \ge s$                                     | 30,3 T13.13a         |
|     | 32. | $q \times Sj > h(j)$                                    | 15,31 T13.13c        |
|     | 33. | m(j) > h(j)                                             | 32 def <i>m</i>      |
|     | 34. | $ m(j) \ge n(j)$                                        | 33 113.13m           |
|     | 35. | $m(j) \ge h(j)$                                         | 17,18-34 ∃E          |
|     | 36. | $m(j) > \emptyset \land m(j) \ge h(j)$                  | 6,35 ∧I              |
|     | 37. | $(\forall i < k)(m(i) > \emptyset \land m(i) \ge h(i))$ | 1-36 (¥I)            |

Exercise 13.20 T13.29

| (ii) (a) | a1.  | $i \leq j$                                                                                                                  | 2 T13.13m            |
|----------|------|-----------------------------------------------------------------------------------------------------------------------------|----------------------|
|          | a2.  | $Si \leq Sj$                                                                                                                | al T13.13j           |
|          | a3.  | $q \times Si \le q \times Sj$                                                                                               | a2 T13.13aa          |
|          | a4.  | $S(q \times Si) \le S(q \times Sj)$                                                                                         | a3 T13.13j           |
|          | a5.  | $a (S(q \times Sj) \stackrel{\cdot}{\rightarrow} S(q \times Si))$                                                           | a4,8,9 T13.24h       |
|          | a6.  | $S(q \times Sj) \stackrel{\cdot}{\rightarrow} S(q \times Si) = S(q \times Sj) \stackrel{\cdot}{\rightarrow} S(q \times Si)$ | =I                   |
|          | a7.  | $S(q \times Sj) = (q \times Sj) + \overline{1}$                                                                             | T6.47                |
|          | a8.  | $S(q \times Si) = (q \times Si) + \overline{1}$                                                                             | <b>T6.</b> 47        |
|          | a9.  | $S(q \times Sj) \doteq S(q \times Si) = [(q \times Sj) + \overline{1}] \doteq [(q \times Si) + \overline{1}]$               | a6,a7,a8 =E          |
|          | a10. | $[(q \times Sj) + \overline{1}] \doteq [(q \times Si) + \overline{1}] = (q \times Sj) \doteq (q \times Si)$                 | T13.23o              |
|          | a11. | $(q \times Sj) \div (q \times Si) = q(Sj \div Si)$                                                                          | T13.23p              |
|          | a12. | $q(Sj \div Si) = q(Sj \div Si)$                                                                                             | =I                   |
|          | a13. | $Sj = j + \overline{1}$                                                                                                     | T6.47                |
|          | a14. | $Si = i + \overline{1}$                                                                                                     | <b>T6.</b> 47        |
|          | a15. | $q(Sj \div Si) = q((j + \overline{1}) \div (i + \overline{1}))$                                                             | a12,a13 =E           |
|          | a16. | $(j+\overline{1}) \doteq (i \doteq \overline{1}) = j \doteq i$                                                              | T13.23o              |
|          | a17. | $q(Sj \div Si) = q(j \div i)$                                                                                               | a14,a15 =E           |
|          | a18. | $S(q \times Sj) \stackrel{\cdot}{\rightarrow} S(q \times Si) = q(j \stackrel{\cdot}{\rightarrow} i)$                        | a6,a9,a10,a11,a17 =E |
|          | a19. | a q(j - i)                                                                                                                  | a5,a18 =E            |
|          |      | •                                                                                                                           |                      |
| (b)      | b1.  | $ j - i > \emptyset$ 2 T13.23f                                                                                              |                      |

| ワ | b1.  | $j - i > \emptyset$                             | 2 T13.23f               |
|---|------|-------------------------------------------------|-------------------------|
|   | b2.  | $\exists v[j \doteq i = Sv]$                    | b1 T13.13g              |
|   | b3.  | $j \div i = Sl$                                 | A ( $g$ b2 $\exists$ E) |
|   | b4.  | a Sl                                            | 14,b3 =E                |
|   | b5.  | $\left  j \stackrel{\cdot}{-} i \leq j \right $ | T13.23c                 |
|   | b6.  | j - i < k                                       | b5,3 T13.13c            |
|   | b7.  | $ \max p(k, \max[h]_k) \ge k$                   | T13.28a                 |
|   | b8.  | Sr > r                                          | T13.13h                 |
|   | b9.  | k < s                                           | b7,b8 T13.13c           |
|   | b10. | j - i < s                                       | b6,b9 T13.13b           |
|   | b11. | Sl  < s                                         | b3,b10 =E               |
|   | b12. | l < Sl                                          | T13.13h                 |
|   | b13. | l < s                                           | b11,b12 T13.13b         |
|   | b14. | l q                                             | b13 T13.26b             |
|   | b15. | a q                                             | b4,b14 T13.24f          |
|   | b16. | a q                                             | b2,b3-b15 ∃E            |
|   |      |                                                 |                         |

E13.21. Show the conditions for Def[h(i)] and then show T13.30.

Def[h(i)]. (i) is straightforward under  $i < k \lor i \ge k$  from T13.13q. And (ii) is also straightforward.

T13.30.

| 1.  | $(k < k \land h(k) = \beta(a, b, k)) \lor (k \ge k \land h(k) = n)$                       | def h                                                    |
|-----|-------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 2.  | $(l < k \land h(l) = \beta(a, b, l)) \lor (l \ge k \land h(l) = n)$                       | def h                                                    |
| 3.  | $\exists p \exists q (\forall i < Sk) \beta(p, q, i) = h(i)$                              | T13.29                                                   |
| 4.  | $(\forall i < Sk)\beta(c, d, i) = h(i)$                                                   | A ( $g$ 3 $\exists$ E)                                   |
| 5.  | k < Sk                                                                                    | T13.13h                                                  |
| 6.  | $\beta(c,d,k) = h(k)$                                                                     | 4,5 (∀E)                                                 |
| 7.  | $k \leq k$                                                                                | T13.13m                                                  |
| 8.  | $k \neq k$                                                                                | 7 T13.13r                                                |
| 9.  | $k \neq k \lor h(k) \neq \beta(a,b,k)$                                                    | 8 ∨I                                                     |
| 10. | $\sim (k < k \land h(k) = \beta(a, b, k))$                                                | 9 DeM                                                    |
| 11. | $k \ge k \land h(k) = n$                                                                  | 1,10 DS                                                  |
| 12. | h(k) = n                                                                                  | 11 ∧E                                                    |
| 13. | $\beta(c,d,k) = n$                                                                        | 6,12 <b>=</b> E                                          |
| 14. | $\lfloor l < k$                                                                           | $\mathbf{A}\left(g\left(\forall\mathbf{I}\right)\right)$ |
| 15. | l < Sk                                                                                    | 14,5 T13.13b                                             |
| 16. | $\beta(c,d,l) = h(l)$                                                                     | 4,15 (∀E)                                                |
| 17. | $l \not\geq k$                                                                            | 14 T13.13r                                               |
| 18. | $l \not\geq k \lor h(l) \neq n$                                                           | 17 ∨I                                                    |
| 19. | $\sim (l \ge k \land h(l) = n)$                                                           | 18 DeM                                                   |
| 20. | $l < k \land h(l) = \beta(a, b, l)$                                                       | 2,19 DS                                                  |
| 21. | $h(l) = \beta(a, b, l)$                                                                   | 20 ^E                                                    |
| 22. | $\beta(c,d,l) = \beta(a,b,l)$                                                             | 16,21 <b>=</b> E                                         |
| 23. | $(\forall i < k)\beta(c, d, i) = \beta(a, b, i)$                                          | 14-22 (∀I)                                               |
| 24. | $(\forall i < k)\beta(c, d, i) = \beta(a, b, i) \land \beta(c, d, k) = n$                 | 23,13 ∧I                                                 |
| 25. | $\exists p \exists q [(\forall i < k)\beta(p,q,i) = \beta(a,b,i) \land \beta(p,q,k) = n]$ | 24 ∃I                                                    |
| 26. | $\exists p \exists q [(\forall i < k)\beta(p,q,i) = \beta(a,b,i) \land \beta(p,q,k) = n]$ | 3,4-25 ∃E                                                |

E13.22. Complete the demonstration of T13.31 by showing the zero case.

- T13.31. Apply T13.29 with h(i) = g(x) to get  $\exists p \exists q (\forall i < \overline{1}) \beta(p, q, i) = g(\vec{x})$ ; then under an assumption for  $\exists E$ , with  $\emptyset < \overline{1}$  the result easily follows.
- E13.26. Demonstrate each of the results in T13.37.

T13.37.

T13.37.b. PA  $\vdash$  subc $(x, y) = x \div y$ 

Exercise 13.26 T13.37.b

1.  $|gsubc(x) = idnt_1^1(x)$ def from subc, T13.34 2.  $|subc(x, \emptyset) = gsubc(x)$ T13.34 3. gsubc(x) = x1 with T13.35c 4.  $|\operatorname{subc}(x, \emptyset) = x$ 2,3 = E5.  $x \div \emptyset = x$ T13.23g  $subc(x, \emptyset) = x - \emptyset$ 6. 4,5 = Esubc(x, j) = x - j7.  $\mathbf{A}\left(g\left(\rightarrow\mathbf{I}\right)\right.$  $subc(x, S_i) = hsubc(x, j, subc(x, j))$ T13.34 8.  $hsubc(x, j, u) = pred(idnt_3^3(x, j, u))$ 9. def from subc, T13.34 hsubc(x, j, u) = pred(u)9 with T13.35c, T13.37a 10. | hsubc(x, j, subc(x, j)) = pred(subc(x, j))10 ∀E 11. subc(x, Sj) = pred(subc(x, j))8,11 = E12. 13. subc(x, Sj) = pred(x - j)7,12 = E14.  $x \leq j \lor x > j$ T13.13q 15.  $x \leq j$ A  $(g \ 14 \lor E)$ 16.  $x \leq Sj$ 15 T13.13o  $x \div Sj = \emptyset$ 17. 16 T13.23b  $x \div j = \emptyset$ 18. 15 T13.23b 19.  $pred(\emptyset) = \emptyset$ T13.36a  $pred(x \div j) = \emptyset$ 20. 18.19 = E $pred(x \div j) = x \div Sj$ 20,17 = E21. 22. |x > jA (g 14 $\lor$ E) 23.  $x > S_i$ T13.131  $x = Sj + (x \div Sj)$ 24. 23 13.23a 25. 22 T13.13m  $x \ge j$ x = j + (x - j)26. 25 13.23a  $Sj + (x \div Sj) = j + (x \div j)$ 27. 24,26 = E $j + [S\emptyset + (x \div Sj)] = j + (x \div j)$ 28. 27 with T6.47 29.  $S\emptyset + (x \div Sj) = x \div j$ 28 T6.68 30.  $S\emptyset + (x \div Sj) = S[\emptyset + (x \div Sj)]$ T6.53 31.  $S[\emptyset + (x \div Sj)] = x \div j$ 29,30 = E $\emptyset + (x \div Sj) = x \div Sj$ 32 T6.51  $S(x \div Sj) = x \div j$ 33. 31,32 = E $x \div j > \emptyset$ 22 T13.23f 34.  $Spred(x \div j) = x \div j$ 35. 34 T13.36a 36.  $S(x \div Sj) = Spred(x \div j)$ 33,35 = E37. |x - Sj| = pred(x - j)36 T6.40 38.  $x \div S_i = pred(x \div i)$ 14,15-21,22-37 ∨E 39. | subc(x, Sj) = x - Sj13,38 = E40.  $[\operatorname{subc}(x, j) = x \div j] \rightarrow [\operatorname{subc}(x, Sj) = x \div Sj]$ 7-39 →I 41.  $\forall y ([subc(x, y) = x \div y] \rightarrow [subc(x, Sy) = x \div Sy])$ 40 ∀I 42.  $|\operatorname{subc}(x, y) = x \div y$ 6,41 IN

T13.37.f. PA  $\vdash \mathbb{E}q(x, y) \Leftrightarrow x = y$ 

Exercise 13.26 T13.37.f

1.  $|\mathbb{E}q(x, y) \leftrightarrow sg(absval(x - y)) = \emptyset$ def from EQ, T13.34 2.  $\mathbb{E}q(x, y) \leftrightarrow sg[(x \div y) + (y \div x)] = \emptyset$ 1 with T13.37d,c  $\mathbb{E}q(x, y) \leftrightarrow [(x \div y) + (y \div x)] = \emptyset$ 3. 2 T13.36e 4.  $\mathbb{E}q(x, y)$  $A(g \leftrightarrow I)$  $\left[ \left[ (x \div y) + (y \div x) \right] = \emptyset \right]$ 3,4 **↔**E 5.  $x \ge y \lor x < y$ T13.13q 6. 7.  $x \ge y$ A ( $g 6 \lor E$ ) 8.  $y \div x = \emptyset$ 7 T13.23b  $(x \doteq y) + \emptyset = \emptyset$ 5,8 = E9. 10.  $\emptyset + \emptyset = \emptyset$ T6.41 11.  $(x \div y) + \emptyset = \emptyset + \emptyset$ 9,10 =E 12.  $x \div y = \emptyset$ 11 T6.68 13. x = y + (x - y)7 T13.23a 12,13 = E14.  $x = y + \emptyset$  $y + \emptyset = y$ **T6.4**1 15. 14,15 = E16. x = y17. |x < y|A ( $g 6 \lor E$ ) 17 T13.13m  $y \ge x$ 18. 19. x = ysimilarly 20. 6,7-17,18-19 ∨E x = y21. |x = y| $A(g \leftrightarrow I)$ 22.  $y \ge x$ 21 T13.13m 23.  $x \div y = \emptyset$ 22 T13.23b 24.  $x \ge y$ 21 T13.13m  $y \div x = \emptyset$ 25. 24 T13.23b  $\emptyset + \emptyset = \emptyset$ 26. T6.41 27.  $\left[ \left[ (x \div y) + (y \div x) \right] = \emptyset \right]$ 26,23,25 = E28.  $\mathbb{E}q(x,y)$ 3,27 ↔E 29.  $\mathbb{E}q(x, y) \leftrightarrow x = y$ 4-20,21-28 ↔I

T13.37.i. PA  $\vdash Neg(\mathbb{P}(\vec{x})) \leftrightarrow \sim \mathbb{P}(\vec{x})$ 

Exercise 13.26 T13.37.i

| 1.  | $\mathbb{P}(\vec{x}) \leftrightarrow ch_{P}(\vec{x}) = \emptyset$                                   | T13.32                                                |
|-----|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 2.  | $\mathbb{N}eg(\mathbb{P}(x)) \leftrightarrow \mathbb{C}sg(\mathbb{C}h_{\mathbb{P}}(x)) = \emptyset$ | def from NEG, T13.34                                  |
| 3.  | $Neg(\mathcal{P}(\vec{x})) \leftrightarrow csg(ch_{P}(\vec{x})) = \emptyset$                        | 2 T13.37e                                             |
| 4.  | $Neg(\mathcal{P}(\hat{x}))$                                                                         | $A(g \leftrightarrow I)$                              |
| 5.  | $csg(ch_{P}(\vec{x})) = \emptyset$                                                                  | 3,4 ↔E                                                |
| 6.  | $ch_{P}(\vec{x}) > \emptyset$                                                                       | 5 T13.36h                                             |
| 7.  | $ch_{P}(\vec{x}) \neq \emptyset$                                                                    | 6 T13.13f                                             |
| 8.  | $\sim \mathbb{P}(x)$                                                                                | 1,7 NB                                                |
| 9.  | $\sim \mathbb{P}(\vec{x})$                                                                          | $\mathbf{A}\left(g\leftrightarrow\!\mathbf{I}\right)$ |
| 10. | $ch_{P}(\vec{x}) \neq \emptyset$                                                                    | 1,9 NB                                                |
| 11. | $ch_{P}(\vec{x}) > \emptyset$                                                                       | 10 T13.13f                                            |
| 12. | $csg(ch_{P}(\tilde{x})) = \emptyset$                                                                | 11 T13.36h                                            |
| 13. | $Neg(\mathcal{P}(\vec{x}))$                                                                         | 3,12 ↔E                                               |
| 14. | $\mathbb{N}eg(\mathbb{P}(\vec{x})) \leftrightarrow \sim \mathbb{P}(\vec{x})$                        | 4-8,9-13 ↔I                                           |

## E13.27. Demonstrate each of the results in T13.39.

T13.39.

T13.39.a. PA  $\vdash (\exists y \leq z) \mathbb{P}(\vec{x}, z, y) \leftrightarrow (\exists y \leq z) \mathbb{P}(\vec{x}, y, z)$ 

| 1.  | $\mathbb{P}(\vec{x}, z, y) \leftrightarrow ch_{P}(\vec{x}, z, y) = \emptyset$                                    | T13.32                                                           |
|-----|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 2.  | $ch_{R}(\vec{x}, z, \emptyset) = gch_{R}(\vec{x}, z)$                                                            | T13.34                                                           |
| 3.  | $gch_{R}(\vec{x},z) = ch_{P}(\vec{x},z,\emptyset)$                                                               | def from ELEQ, T13.34                                            |
| 4.  | $ch_{R}(\vec{x}, z, \emptyset) = ch_{P}(\vec{x}, z, \emptyset)$                                                  | 2,3 =E                                                           |
| 5.  | $\underline{ch}_{R}(\vec{x}, z, \emptyset) = \emptyset$                                                          | A $(g \leftrightarrow I)$                                        |
| 6.  | $ch_{P}(\vec{x}, z, \emptyset) = \emptyset$                                                                      | 4,5 <b>=</b> E                                                   |
| 7.  | $\mathbb{P}(\vec{x}, z, \emptyset)$                                                                              | 1,6 ∀E, ↔E                                                       |
| 8.  | $\emptyset \leq \emptyset$                                                                                       | T13.13m                                                          |
| 9.  | $(\exists y \leq \emptyset) \mathbb{P}(\vec{x}, z, y)$                                                           | 7,8 (∃I)                                                         |
| 10. | $[\exists y \le \emptyset] \mathbb{P}(\vec{x}, z, y)$                                                            | $\mathbf{A}\left(\boldsymbol{g}\leftrightarrow\mathbf{I}\right)$ |
| 11. | $\mathbb{P}(\vec{x}, z, j)$                                                                                      | A ( $g$ 10( $\exists$ E))                                        |
| 12. | $j \leq \emptyset$                                                                                               |                                                                  |
| 13. | $  j = \emptyset$                                                                                                | 12 T13.13m, T6.49                                                |
| 14. | $\mathbb{P}(\vec{x}, z, \emptyset)$                                                                              | 11,13 <b>=</b> E                                                 |
| 15. | $ch_{P}(\vec{x}, z, \emptyset) = \emptyset$                                                                      | 1,14 ∀E, ↔E                                                      |
| 16. | $ch_{R}(\vec{x}, z, \emptyset) = \emptyset$                                                                      | 4,15 =E                                                          |
| 17. | $ch_{R}(\vec{x}, z, \emptyset) = \emptyset$                                                                      | 10,11-16 (∃E)                                                    |
| 18. | $ch_{R}(\vec{x}, z, \emptyset) = \emptyset \leftrightarrow (\exists y \leq \emptyset) \mathbb{P}(\vec{x}, z, y)$ | 5-9,10-17 ↔I                                                     |

| 1.        | $ch_{R}(\vec{x}, z, \emptyset) = \emptyset \Leftrightarrow (\exists y \le \emptyset)  \mathbb{P}(\vec{x}, z, y)$ $\mathbb{P}(\vec{x}, z, y) \Leftrightarrow ch_{R}(\vec{x}, z, y) = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | zero case                                                         |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 2.        | $r_{(x, 2, y)} \leftrightarrow ch_{P}(x, 2, y) = b$<br>$ch_{P}(\vec{x}, z, Si) = hch_{P}(\vec{x}, z, i, ch_{P}(x, z, i))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T13.34                                                            |
| 4.        | $h_{ch_{R}}(\vec{x}, z, j, u) = times[u, ch_{P}(\vec{x}, z, suc(j))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | def from ELEQ, T13.34                                             |
| 5.        | $\overline{h_{ch_{R}}(\vec{x}, z, j, u)} = u \times ch_{P}(\vec{x}, z, Sj)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 T13.35a,e                                                       |
| 6.        | $hch_{R}(\vec{x}, z, j, ch_{R}(x, z, j)) = ch_{R}(x, z, j) \times ch_{P}(\vec{x}, z, Sj)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 ∀E                                                              |
| 7.        | $ch_{R}(\vec{x}, z, Sj) = ch_{R}(x, z, j) \times ch_{P}(\vec{x}, z, Sj)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,6 =E                                                            |
| 8.        | $ ch_{R}(\vec{x}, z, j) = \emptyset \leftrightarrow (\exists y \le j) \mathbb{P}(\vec{x}, z, y) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A $(g \rightarrow I)$                                             |
| 9.        | $ch_{R}(\vec{x}, z, Sj) = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathbf{A}\left(\boldsymbol{g}\leftrightarrow\mathbf{I}\right)$  |
| 10.       | $ch_{R}(x, z, j) \times ch_{P}(\vec{x}, z, Sj) = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,9 = E                                                           |
| 11.       | $  ch_{R}(x, z, j) = \emptyset \lor ch_{R}(x, z, j) > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T13.13f                                                           |
| 12.       | $ \begin{array}{c} ch_{R}(x,z,j) = \emptyset \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A $(g \ 11 \lor E)$                                               |
| 13.       | $\left  \left  \left  \left( \exists y \leq j \right) \mathcal{P}(\bar{x}, z, y) \right. \right. \right  \right  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8,12 ↔E                                                           |
| 14.       | $\mathbb{P}(x,z,a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A $(g \ 13(\exists E))$                                           |
| 15.       | $\left  \right  \left  \left  \frac{a}{a} \leq j \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |
| 16.       | $\left  \begin{array}{c} a \leq Sj \\ (\overline{a} + S) \\$                                     | 15 T13.130                                                        |
| 17.       | $      (\exists y \leq S_J) \mathcal{P}(x, z, y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14,16 (∃1)                                                        |
| 18.       | $\left  \left( \exists y \leq S_J \right) \mathbb{P}(x, z, y) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13,14-17 (∃E)                                                     |
| 19.       | $ \begin{array}{c} ch_{R}(x,z,j) > \emptyset \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A $(g \ 11 \lor E)$                                               |
| 20.       | $ \begin{aligned}   &   ch_{R}(x,z,j) \neq \emptyset \\   &   ch_{R}(x,z,j) \neq \emptyset \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19 T13.13f                                                        |
| 22.       | $Ch_{R}(x, z, j) \times \psi = \psi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.43                                                             |
| 23.<br>24 | $\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}\binom{n}{k}$ | 10,22 = E<br>23.20 T6.60                                          |
| 24.       | $P(\vec{x}, z, Sj) = b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.24 ¥E ↔E                                                        |
| 26.       | $\begin{vmatrix} x^{(i)}, x^{(i)}, x^{(i)} \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T13.13m                                                           |
| 27.       | $(\exists y \leq Sj) \mathbb{P}(\vec{x}, z, y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15,26 (∃I)                                                        |
| 28.       | $\exists y \leq Sj \mathcal{P}(\vec{x}, z, y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11,12-18,19-27 ∨E                                                 |
| 29.       | $\left  \left( \exists y \leq Sj \right) \mathbb{P}(\vec{x}, z, y) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\mathbf{A}\left(\boldsymbol{g}\nleftrightarrow\mathbf{I}\right)$ |
| 30.       | $      \mathcal{P}(\vec{x}, z, a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A (g 29( $\exists$ E))                                            |
| 31.       | $        a \leq Sj$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |
| 32.       | $      a \le j \lor a = Sj$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31 T13.13o                                                        |
| 33.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A ( $g 32 \lor E$ )                                               |
| 34.       | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30,33 (∃I)                                                        |
| 35.       | $ch_{R}(\vec{x}, z, j) = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,34 ↔E                                                           |
| 36.       | $ch_{R}(\vec{x}, z, j) \times ch_{P}(\vec{x}, z, Sj) = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35 T6.58                                                          |
| 37.       | $      ch_{R}(x, z, Sj) = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,36 =E                                                           |
| 38.       | $\begin{bmatrix} a = Sj \\ \hline \hline \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A ( $g 32 \lor E$ )                                               |
| 39.       | $\left  \begin{array}{c} P(x,z,Sj) \\ (z,z) \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30,38 = E                                                         |
| 40.       | $ch_{P}(x, z, S_J) = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,39 ∀E, ↔E                                                       |
| 41.       | $(\operatorname{de}_{R}(x, 2, j) \times \operatorname{de}_{P}(x, 2, Sj) = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40 10.38<br>7 41 - F                                              |
| 43        | $ch_{R}(\vec{x}, z, Sj) = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,41 —E<br>32 33-37 38-42 VE                                      |
|           | $ \begin{array}{c} \left  \begin{array}{c} c_{h_{2}}(\vec{x} - z, S_{i}) = 0 \end{array} \right  \\ c_{h_{2}}(\vec{x} - z, S_{i}) = 0 \end{array} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29 30-43 (F)                                                      |
| 44.<br>15 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.28.20.44.251                                                    |
| 45.       | $\int du_{\mathbf{R}}(x, z, s_J) - \psi \nabla (\exists y \ge S_J) \mathbb{I}(x, z, y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9-20,29-44 ↔1                                                     |
| 46.<br>17 | $ \begin{bmatrix} cn_{R}(x,z,j) = \emptyset \leftrightarrow (\exists y \leq j) \mathbb{P}(x,z,y) \end{bmatrix} \rightarrow \begin{bmatrix} cn_{R}(x,z,\delta_j) = \emptyset \leftrightarrow (\exists y \leq \delta_j) \mathbb{P}(x,z,y) \end{bmatrix} $<br>$ \forall n ( \begin{bmatrix} ch_{R}(\vec{x},z,w) = \emptyset \leftrightarrow (\exists y \leq w) \mathbb{P}(\vec{x},z,w) \end{bmatrix} \rightarrow \begin{bmatrix} ch_{R}(\vec{x},z,\delta_j) = \emptyset \leftrightarrow (\exists y \leq \delta_j) \mathbb{P}(x,z,y) \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8-45 →1<br>46 ∀I                                                  |
| 47.       | $(\operatorname{un}_{\mathrm{R}}(x, 2, w) = \emptyset \Leftrightarrow (\exists y \leq w) \mathbb{I}(x, 2, y) \to [\operatorname{un}_{\mathrm{R}}(x, 2, b w) = \emptyset \Leftrightarrow (\exists y \leq b w) \mathbb{I}(x, 2, y)]$<br>$ch_{\mathrm{D}}(\vec{x}, z, n) = \emptyset \Leftrightarrow (\exists y < n) \mathbb{P}(\vec{x}, z, y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 47 IN                                                           |
| 10.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -,                                                                |

Exercise 13.27 T13.39.a

| 1. | $ch_{R}(\vec{x}, z, n) = \emptyset \leftrightarrow (\exists y \le n) \mathbb{P}(\vec{x}, z, y)$           | from above            |
|----|-----------------------------------------------------------------------------------------------------------|-----------------------|
| 2. | $ch_{\rm S}(\vec{x},z) = ch_{\rm R}(\vec{x},z,z)$                                                         | def from ELEQ, T13.34 |
| 3. | $S(\vec{x}, z) \leftrightarrow ch_{S}(\vec{x}, z) = \emptyset$                                            | T13.32                |
| 4. | $ch_{R}(\vec{x}, z, z) = \emptyset \leftrightarrow (\exists y \le z) \mathbb{P}(\vec{x}, z, y)$           | 1 <b>∀</b> E          |
| 5. | $ch_{S}(\vec{x}, z) = \emptyset \leftrightarrow (\exists y \leq z) \mathbb{P}(\vec{x}, z, y)$             | 2,4 <b>=</b> E        |
| 6. | $S(\vec{x}, z) \leftrightarrow (\exists y \leq z) \mathbb{P}(\vec{x}, z, y)$                              | from 3,5              |
| 7. | $(\exists y \le z) \mathbb{P}(\vec{x}, z, y) \leftrightarrow (\exists y \le z) \mathbb{P}(\vec{x}, y, z)$ | 6 abv                 |

T13.39.e. PA  $\vdash (\mu y \leq z) \mathbb{P}(\vec{x}, z, y) \leftrightarrow (\mu y \leq z) \mathbb{P}(\vec{x}, z, y)$ 

| (a) | a1. $ \begin{array}{l} q(\vec{x}, z, \emptyset) = gq(\vec{x}, z) \\ a2. \\ gq(\vec{x}, z) = zero(ch_{R}(\vec{x}, z, \emptyset)) \\ a3. \\ gq(\vec{x}, z) = \emptyset \\ a4. \\ q(\vec{x}, z, \emptyset) = \emptyset \\ a5. \\ (\mu y \le \emptyset) \mathcal{P}(\vec{x}, z, y) = \emptyset \\ a6. \\ q(\vec{x}, z, \emptyset) = (\mu y \le \emptyset) \mathcal{P}(\vec{x}, z, y) \end{array} $ | T13.33a<br>def from least, T13.34<br>a2 T13.35b<br>a1,a3 =E<br>T13.20a<br>a4,a5 =E |                                    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------|
| (b) | b1. $\left  \begin{array}{c} k \leq j \end{array} \right $                                                                                                                                                                                                                                                                                                                                     |                                                                                    | A $(g (\forall I))$                |
|     | b2.<br>b3.<br>$\begin{vmatrix} k < j \lor k = j \\ k < j \end{vmatrix}$                                                                                                                                                                                                                                                                                                                        |                                                                                    | b1 T13.13m<br>A (g b2∨E)           |
|     | b4. $\begin{bmatrix} k < a \\ \sim \mathcal{P}(\vec{x}, z, k) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                   |                                                                                    | b3,17 = E<br>15.b4 ( $\forall E$ ) |
|     | b6. $  k = j$                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    | A $(g b2 \vee E)$                  |
|     | b7. $\left  \right  \sim \mathbb{P}(\vec{x}, z, k)$                                                                                                                                                                                                                                                                                                                                            |                                                                                    | 19,b6 =E                           |
|     | b8. $\sim \mathbb{P}(\vec{x}, z, k)$                                                                                                                                                                                                                                                                                                                                                           |                                                                                    | b2,b3-b5,b6-b7 ∨E                  |
|     | b9. $(\forall y \leq j) \sim \mathbb{P}(\vec{x}, z, y)$                                                                                                                                                                                                                                                                                                                                        |                                                                                    | b1-b8 (∀I)                         |
|     | b10. $\sim (\exists y \leq j) \mathbb{P}(\vec{x}, z, y)$                                                                                                                                                                                                                                                                                                                                       |                                                                                    | b9 (QN)                            |
|     | b11. $ch_{R}(\vec{x}, z, j) \neq \emptyset$                                                                                                                                                                                                                                                                                                                                                    |                                                                                    | 3,b10 NB                           |
|     | b12. $ch_{R}(\vec{x}, z, j) = \overline{1}$                                                                                                                                                                                                                                                                                                                                                    |                                                                                    | 2,b11 DS                           |
|     | b13. $b = a + \overline{1}$                                                                                                                                                                                                                                                                                                                                                                    |                                                                                    | 12,b12 =E                          |
|     | b14. $b = Sa$                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    | b13 T6.47                          |
|     | b15. $b = Sj$                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    | b14,17 =E                          |
|     | b16. $b = Sj \lor P(x, z, b)$                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    | b15 ∨1                             |
|     | b17. $  k < b$                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    | $A(g(\forall I))$                  |
|     | b18. $  k < Sj$                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    | b17,b15 =E                         |
|     | b19. $k \neq Sj$                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    | b18 T13.13s                        |
|     | b20. $ k < j \lor k = j$                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    | b18 T13.13.m                       |
|     | b21. $   = \frac{k}{k} < j$                                                                                                                                                                                                                                                                                                                                                                    |                                                                                    | A ( $g b20 \vee E$ )               |
|     | b22. $  k < a$                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    | b21,17 =E                          |
|     | b23. $   \sim \mathbb{P}(\vec{x}, z, k)$                                                                                                                                                                                                                                                                                                                                                       |                                                                                    | 15,b22 (∀E)                        |
|     | b24. $  k = j$                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                    | A ( $g$ b20 $\lor$ E)              |
|     | b25. $\left  \right  \sim \mathbb{P}(\vec{x}, z, k)$                                                                                                                                                                                                                                                                                                                                           |                                                                                    | 19,b24 =E                          |
|     | b26. $\left  \sim \mathbb{P}(\vec{x}, z, k) \right $                                                                                                                                                                                                                                                                                                                                           |                                                                                    | b20,b21-b23,b24-b25 ∨E             |
|     | b27. $  k \neq Sj \land \sim \mathbb{P}(\vec{x}, z, k)$                                                                                                                                                                                                                                                                                                                                        |                                                                                    | b19,b26 ∧I                         |
|     | b28. $  (\forall w < b)(w \neq Sj \land \sim \mathbb{P}(\vec{x}, z, w)) \rangle$                                                                                                                                                                                                                                                                                                               |                                                                                    | b17-b27 (∀I)                       |
|     | b29. $ [b = Sj \vee \mathbb{P}(\vec{x}, z, b)] \wedge (\forall w < b)($                                                                                                                                                                                                                                                                                                                        | $(w \neq Sj \land \sim \mathbb{P}(\vec{x}, z, w))$                                 | b16,b28 ∧I                         |

Exercise 13.27 T13.39.e

| (c)           | c1.                                              | $j \leq j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | T13.13m                 |
|---------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------|
|               | c2.                                              | $(\exists y \leq j) \mathbb{P}(\vec{x}, z, y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | 21,c1 (∃I)              |
|               | c3.                                              | $ch_{R}(\vec{x}, z, j) = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  | 3,c2 ↔E                 |
|               | c4.                                              | $b = a + \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  | 12,c3 =E                |
|               | c5.                                              | $a + \emptyset = a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  | <b>t6.</b> 41           |
|               | c6.                                              | b = a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | c4,c5 = E               |
|               | c7.                                              | b = i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | 17,c6 = E               |
|               | c8.                                              | $\mathbb{P}(\vec{x}, z, b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | 21,c7 =E                |
|               | c9.                                              | $b = S_i \vee \mathbb{P}(\vec{x}, z, b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  | c8 ∨I                   |
|               | c10.                                             | $\lfloor k < b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  | A (g ( $\forall$ I))    |
|               | c11.                                             | k < j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | c10,c7 =E               |
|               | c12.                                             | k < Sj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | c11 T13.13n             |
|               | c13.                                             | $  k \neq Sj$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | c12 T13.13s             |
|               | c14.                                             | k < a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | c10,c6 =E               |
|               | c15.                                             | $\sim \mathbb{P}(\vec{x}, z, k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | 15,c14 (∀E)             |
|               | c16.                                             | $\left  k \neq Sj \land \sim \mathbb{P}(\vec{x}, z, k) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  | c13,c15 ∧I              |
|               | c17.                                             | $(\forall w < b)(w \neq Sj \land \sim \mathbb{P}(\vec{x}, z, w))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  | c10-c16 (∀I)            |
|               | c18.                                             | $\Big  [b = Sj \lor \mathbb{P}(\vec{x}, z, b)] \land (\forall w < b)(w)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\neq Sj \wedge \sim \mathbb{P}(\vec{x}, z, w))$ | c9,c17 ∧I               |
| (d)           | d1.                                              | $\left  \begin{array}{c} j \\ j \end{array} \right  \leq a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | A ( $c \sim I$ )        |
|               | d2.                                              | $  j \neq j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | 15,d1 (∀E)              |
|               | d3.                                              | $\begin{vmatrix} i & j \\ j &= j \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  | =I                      |
|               | d4.                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  | d2,d3 ⊥I                |
|               | d5.                                              | $i \not \leq a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  | d1-d4 ∼I                |
|               | d6.                                              | a < i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | d5 T13.13g              |
|               | d7.                                              | $(\exists y < i) \mathbb{P}(\vec{x}, z, y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | 24.d6 (∃I)              |
|               | d8.                                              | $ \begin{array}{c} (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) \\ (-) & (-) & (-) & (-) \\ (-) & (-) & (-) & (-) \\ (-) & (-) & (-) & (-) \\ (-) & (-) & (-) & (-) & (-) \\ (-) & (-) & (-) & (-) & (-) \\ (-) & (-) & (-) & (-) & (-) \\ (-) & (-) & (-) & (-) & (-) \\ (-) & (-) & (-) & (-) & (-) & (-) \\ (-) & (-) & (-) & (-) & (-) & (-) \\ (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) & (-) $ |                                                  | 3.d7 ↔E                 |
|               | d9.                                              | $b = a + \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  | 12.d8 = E               |
|               | d10.                                             | $a + \emptyset = a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  | t6.41                   |
|               | d11.                                             | b = a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | d9.d10 = E              |
|               | d12.                                             | $\mathbb{P}(\vec{x}, z, b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | 24,d11 =E               |
|               | d13.                                             | $b = S_i \vee \mathbb{P}(\vec{x}, z, b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  | d12 ∨I                  |
|               | d14.                                             | k < b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | A ( $g$ ( $\forall$ I)) |
|               | d15                                              | k < a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  | d14 d11 = E             |
|               | d16.                                             | k  < i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | d14.d6 T13.13c          |
|               | d17.                                             | k < Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | d16 T13.13n             |
|               | d18                                              | $k \neq Si$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | d17 T13 13s             |
|               | d19                                              | $  \sim \mathcal{P}(\vec{x}, z, k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  | 15.d15 (∀E)             |
|               | d20                                              | $k \neq Si \land \sim \mathbb{P}(\vec{x} \ z \ k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | d18 d19 AI              |
|               | d20.                                             | $(\forall a n < b)(a n \neq Si \land B(\vec{x} \neq a n))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | d10,d19 / (             |
|               | d21.                                             | $(\forall w < b)(w \neq S) \land \sim \mathbb{P}(x, 2, w))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  | d14-d20 (VI)            |
| . 1           | uzz.                                             | $[b = Sf \lor \mathbb{P}(x, z, b)] \land (\lor w < b)(w)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\neq$ SJ $\wedge \sim \mathbb{P}(x, z, w)$      | d13,d21 /\1             |
| 1. 9          | (x, z, z)                                        | $n) = (\mu y \le n) \mathcal{P}(x, z, y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | trom main arg                                    |                         |
| 2.   M        | m(x,z)<br>√, , , , , , , , , , , , , , , , , , , | = q(x, z, z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                         |
| 5. Q          | y(x, z, z)                                       | $z_{j} = (\mu y \leq z) \mathbb{P}(x, z, y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I VE<br>2.2.—E                                   |                         |
| 4.   <i>n</i> | u(x, z)                                          | $= (\mu y \le z) \mathbb{P}(x, z, y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,3 =E                                           |                         |
| 5.   (        | $\mu y \leq$                                     | $z) \mathbb{P}(x, z, y) \leftrightarrow (\mu y \le z) \mathbb{P}(x, y, z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 abv                                            |                         |

T13.39.g.  $PA \vdash \mathbb{P}rime(n) \leftrightarrow Pr(n)$ 

Exercise 13.27 T13.39.g

| 1.  | Pr(n)                                                                           | A $(g \leftrightarrow I)$ |
|-----|---------------------------------------------------------------------------------|---------------------------|
| 2.  | $\overline{1} < n \land \forall x [x   n \to (x = \emptyset \lor Sx = n)]$      | 1 Def[Pr]                 |
| 3.  | $\overline{1} < n$                                                              | 2 ∧E                      |
| 4.  | $\forall x[x n \to (x = \emptyset \lor Sx = n)]$                                | 2 ∧E                      |
| 5.  | a < n                                                                           | A $(g (\forall I))$       |
| 6.  | $a n \to (a = \emptyset \lor Sa = n)$                                           | 4 <b>∀</b> E              |
| 7.  | $(\forall j < n)[j n \rightarrow (j = \emptyset \lor Sj = n)]$                  | 5-6 (¥I)                  |
| 8.  | $\overline{1} < n \land (\forall j < n)[j n \to (j = \emptyset \lor Sj = n)]$   | 3,7 ∧I                    |
| 9.  | $\mathbb{P}$ rime(n)                                                            | 8 def prime and T13.34    |
| 10. | $\mathbb{P}$ rime(n)                                                            | A $(g \leftrightarrow I)$ |
| 11. | $\overline{1} < n \land (\forall j < n)[j   n \to (j = \emptyset \lor Sj = n)]$ | 10 def PRIME and T13.34   |
| 12. | $\overline{1} < n$                                                              | 11 ∧E                     |
| 13. | $(\forall j < n)[j   n \to (j = \emptyset \lor Sj = n)]$                        | 11 ∧E                     |
| 14. | $a < n \lor n \le a$                                                            | T13.13q                   |
| 15. | a < n                                                                           | A ( $g 14 \lor E$ )       |
| 16. | $\boxed{a n \to (a = \emptyset \lor Sa = n)}$                                   | 13,15 (¥E)                |
| 17. | $n \le a$                                                                       | A ( $g 14 \lor E$ )       |
| 18. | $ \emptyset < \overline{1}$                                                     | T13.13e                   |
| 19. | $\emptyset < n$                                                                 | 18,12 T13.13b             |
| 20. | $\exists v(n = Sv)$                                                             | 19 T13.13g                |
| 21. | n = Sb                                                                          | A (g 20∃E)                |
| 22. | $Sb \leq a$                                                                     | 17,21 <b>=</b> E          |
| 23. | b < a                                                                           | 22 T13.131                |
| 24. | $a \nmid Sb$                                                                    | 23 T13.24i                |
| 25. | $a \neq n$                                                                      | 24,21 =E                  |
| 26. | $a \neq n$                                                                      | 20,21-25 ∃E               |
| 27. | $a \nmid n \lor (a = \emptyset \lor Sa = n)$                                    | 26 ∨I                     |
| 28. | $ a n \to (a = \emptyset \lor Sa = n)$                                          | 27 Impl                   |
| 29. | $a n \rightarrow (a = \emptyset \lor Sa = n)$                                   | 14,15-16,17-28 ∨E         |
| 30. | $\forall x[x n \to (x = \emptyset \lor Sx = n)]$                                | 29 ∀I                     |
| 31. | $\overline{1} < n \land \forall x[x n \to (x = \emptyset \lor Sx = n)]$         | 12,30 ∧I                  |
| 32. | Pr(n)                                                                           | 31  Def[Pr]               |
|     |                                                                                 |                           |

E13.28. Show each of the results from T13.41.

T13.41.

T13.41.m. PA  $\vdash m > \overline{1} \rightarrow a < m^a$
| 1.  | $m^{\emptyset} = \overline{1}$                                                                                | T13.41a                 |
|-----|---------------------------------------------------------------------------------------------------------------|-------------------------|
| 2.  | $\emptyset < \overline{1}$                                                                                    | T13.13e                 |
| 3.  | $\emptyset < m^{\emptyset}$                                                                                   | 1,2 = E                 |
| 4.  | $m \neq \overline{1} \lor \emptyset < m^{\emptyset}$                                                          | 3 ∨I                    |
| 5.  | $m > \overline{1} \to \emptyset < m^{\emptyset}$                                                              | 4 Impl                  |
| 6.  | $\underline{m} > \overline{1} \to j < m^j$                                                                    | A $(g \rightarrow I)$   |
| 7.  | $\underline{m} > \overline{1}$                                                                                | $A(g \rightarrow I)$    |
| 8.  | $j < m^j$                                                                                                     | $6,7 \rightarrow E$     |
| 9.  | $Sj < Sm^j$                                                                                                   | 8 T13.13k               |
| 10. | $m^{Sj} = m^j \times m$                                                                                       | T13.41a                 |
| 11. | $\exists v(Sv+\overline{1}=m)$                                                                                | 7 def                   |
| 12. | $Sl + \overline{1} = m$                                                                                       | A ( $g$ 11 $\exists$ E) |
| 13. | $Sl + \overline{1} = SSl$                                                                                     | <b>T6.</b> 47           |
| 14. | m = SSl                                                                                                       | 12,13 =E                |
| 15. | $m^{j} \times SSl = m^{j} \times Sl + m^{j}$                                                                  | T6.44                   |
| 16. | $m^{j} \times m = m^{j} \times Sl + m^{j}$                                                                    | 15,14 = E               |
| 17. | $m^{Sj} = m^j \times Sl + m^j$                                                                                | 16,10 = E               |
| 18. | $ Sl > \emptyset$                                                                                             | T13.13e                 |
| 19. | $m^j \times Sl \ge m^j$                                                                                       | 18 T13.13z              |
| 20. | $m > \emptyset$                                                                                               | 7,2 T13.13b             |
| 21. | $m^j > \emptyset$                                                                                             | 20 T13.41i              |
| 22. | $ m^j \times Sl > \emptyset$                                                                                  | 19,21 T13.13c           |
| 23. | $  m^j \times Sl \ge \overline{1}$                                                                            | 22 T13.131              |
| 24. | $  m^j \times Sl + m^j \ge \overline{1} + m^j$                                                                | 23 T13.13v              |
| 25. | $ \overline{1} + m^j = Sm^j$                                                                                  | T6.47                   |
| 26. | $  m^j \times Sl + m^j \ge Sm^j$                                                                              | 24,25 = E               |
| 27. | $m^{Sj} \ge Sm^j$                                                                                             | 17,26 = E               |
| 28. | $Sj < m^{Sj}$                                                                                                 | 9,27 T13.13c            |
| 29. | $Sj < m^{Sj}$                                                                                                 | 11,12-28 ∃E             |
| 30. | $m > \overline{1} \to Sj < m^{Sj}$                                                                            | 7-29 →I                 |
| 31. | $(m > \overline{1} \rightarrow j < m^j) \rightarrow (m > \overline{1} \rightarrow Sj < m^{Sj})$               | 6-30 →I                 |
| 32. | $\forall y [(m > \overline{1} \rightarrow y < m^{y}) \rightarrow (m > \overline{1} \rightarrow Sy < m^{Sy})]$ | 31 ∀I                   |
| 33. | $m > \overline{1} \rightarrow a < m^a$                                                                        | 5,32 IN                 |

E13.29. Show each of the results from T13.42.

### T13.42.

T13.42.e.  $PA \vdash (\exists y \leq fact(n) + \overline{1})[n < y \land Pr(y)]$ 

Exercise 13.29 T13.42.e

| 1.  | fact(n) > 0                                                            | 1 T13.42c              |
|-----|------------------------------------------------------------------------|------------------------|
| 2.  | $fact(n) + \overline{1} > \overline{1}$                                | 1 with T13.13w         |
| 3.  | $\exists z [Pr(Sz) \land z   (fact(n) + \overline{1})]$                | 2 T13.25d              |
| 4.  | $Pr(Sk) \wedge k   (fact(n) + \overline{1})$                           | A ( $g$ 3 $\exists$ E) |
| 5.  | Pr(Sk)                                                                 | 4 ∧E                   |
| 6.  | $Sk > \overline{1}$                                                    | 5 def                  |
| 7.  | $k (fact(n)+\overline{1})$                                             | 4 ∧E                   |
| 8.  | k < n                                                                  | A $(g \sim I)$         |
| 9.  | k fact(n)                                                              | 8 T13.42d              |
| 10. | $  k \overline{1}$                                                     | 7,9 T13.24g            |
| 11. | $ \emptyset < k$                                                       | 6 T13.13k              |
| 12. | $    k \neq \overline{1}$                                              | 11 T13.24i             |
| 13. |                                                                        | 10,12 ⊥I               |
| 14. | $k \neq n$                                                             | 8-12 ∼I                |
| 15. | $n \leq k$                                                             | 13 T13.13r             |
| 16. | n < Sk                                                                 | 15 T13.13m,n           |
| 17. | $n < Sk \wedge Pr(Sk)$                                                 | 5,17 ∧I                |
| 18. | $fact(n) + \overline{1} = S fact(n)$                                   | T 6.47                 |
| 19. | k S fact(n)                                                            | 7,18 <b>=</b> E        |
| 20. | $fact(n) \neq k$                                                       | 19 T13.24i             |
| 21. | $k \leq fact(n)$                                                       | 20 T13.13r             |
| 22. | $Sk \leq S fact(n)$                                                    | 21 T13.13j             |
| 23. | $Sk \leq fact(n) + \overline{1}$                                       | 22 T6.47               |
| 24. | $\left  (\exists y \leq fact(n) + \bar{1})[n < y \land Pr(y)] \right $ | 17,23 (∃I)             |
| 25. | $(\exists y \leq fact(n) + \overline{1})[n < y \land Pr(y)]$           | 3,4-24 ∃E              |

E13.30. Show each of the results from T13.43.

T13.43.

T13.43.m.  $PA \vdash \forall y Pr(y) \rightarrow \exists j pi(j) = y$ 

Exercise 13.30 T13.43.m

| 1.  | $a \leq pi(0)$                                                          | A ( $g$ ( $\forall$ I)) |
|-----|-------------------------------------------------------------------------|-------------------------|
| 2.  | $pi(0) = \overline{2}$                                                  | T13.43a                 |
| 3.  | $a \leq \overline{2}$                                                   | 1,2 = E                 |
| 4.  | $a = \overline{0} \lor a = \overline{1} \lor a = \overline{2}$          | 3 T8.16                 |
| 5.  | $a = \overline{0}$                                                      | A ( $g 4 \lor E$ )      |
| 6.  | $\sim Pr(\emptyset)$                                                    | T13.25a                 |
| 7.  | $\sim Pr(a)$                                                            | 6,5 <b>=</b> E          |
| 8.  | $\sim Pr(a) \lor \exists j pi(j) = a$                                   | 6 ∨I                    |
| 9.  | $a = \overline{1}$                                                      | A ( $g 4 \lor E$ )      |
| 10. | $\sim Pr(\overline{1})$                                                 | T13.25b                 |
| 11. | $\sim Pr(a)$                                                            | 10,9 = E                |
| 12. | $\sim Pr(a) \lor \exists j pi(j) = a$                                   | 11 ∨I                   |
| 13. | $a = \overline{2}$                                                      | A ( $g 4 \lor E$ )      |
| 14. | pi(0) = a                                                               | 2,13 <b>=</b> E         |
| 15. | $\exists j pi(j) = a$                                                   | 14 <b>∃</b> I           |
| 16. | $\sim Pr(a) \lor \exists j pi(j) = a$                                   | 15 ∨I                   |
| 17. | $\sim Pr(a) \lor \exists j pi(j) = a$                                   | 4,5-8,9-12,13-16 ∨E     |
| 18. | $Pr(a) \rightarrow \exists j pi(j) = a$                                 | 17 Impl                 |
| 19. | $(\forall y \leq pi(\emptyset))[Pr(y) \rightarrow \exists j pi(j) = y]$ | 1-17 (¥I)               |

Exercise 13.30 T13.43.m

| 20.                                                                                                                                                                    | $  (\forall y \leq pi(k))[Pr(y) \rightarrow \exists j pi(k)] $                                                                                                                                                                                                                                                                                                                                                          | (j) = y]                                                                                                                                                                                                                                               | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21.                                                                                                                                                                    | $a \leq pi(Sk)$                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                        | A ( $g$ ( $\forall$ I))                                                                                                                                                                                              |
| 22.<br>23.                                                                                                                                                             | $a = pi(Sk) \lor a < pi(Sk)$ $a = pi(Sk)$                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        | 21 T13.13m<br>A (g 22∨E)                                                                                                                                                                                             |
| 24.<br>25.<br>26.                                                                                                                                                      | $\exists j \ pi(j) = a$<br>$\sim Pr(a) \lor \exists j \ pi(j) = a$<br>$Pr(a) \to \exists j \ pi(j) = a$                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        | 23 ∃I<br>24 ∨I<br>25 Impl                                                                                                                                                                                            |
| 27.                                                                                                                                                                    | a < pi(Sk)                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                        | A ( $g \ 22 \lor E$ )                                                                                                                                                                                                |
| 28.<br>29.                                                                                                                                                             | $\begin{vmatrix} a \leq pi(k) \lor a > pi(k) \\ a \leq pi(k) \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                        | T13.13q<br>A ( <i>g</i> 28∨E)                                                                                                                                                                                        |
| 30.                                                                                                                                                                    | $Pr(a) \to \exists j \ pi(j) = a]$                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                        | 20,29 (¥E)                                                                                                                                                                                                           |
| 31.                                                                                                                                                                    | a > pi(k)                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                        | A ( $g \ 28 \lor E$ )                                                                                                                                                                                                |
| <ol> <li>32.</li> <li>33.</li> <li>34.</li> <li>35.</li> <li>36.</li> <li>37.</li> <li>38.</li> <li>39.</li> <li>40.</li> <li>41.</li> <li>42.</li> <li>43.</li> </ol> | $(\forall w < pi(Sk)) \sim [pi(k)]$ $\sim [pi(k) < a \land Pr(a)]$ $pi(k) \neq a \lor \sim Pr(a)$ $\sim Pr(a) \lor \exists j pi(j) = a$ $Pr(a) \rightarrow \exists j pi(j) = a$ $Pr(a) \rightarrow \exists j pi(j) = a$ $(\forall y \leq pi(Sk))[Pr(y) \rightarrow \exists j pi(j)]$ $(\forall y \leq pi(k))[Pr(y) \rightarrow \exists j pi(j)]$ $\forall z ((\forall y \leq pi(z))[Pr(y) \rightarrow \exists j pi(j)]$ | $ \langle w \land Pr(w) ] $<br>$ p_i(j) = y] $<br>$ ) = y] \rightarrow (\forall y \le p_i(Sk))[Pr(y) \rightarrow \exists j \ p_i(j) = y] $<br>$ p_i(j) = y] \rightarrow (\forall y \le p_i(Sz))[Pr(y) \rightarrow \exists j \ p_i(j) = y]) $<br>) = y] | T13.43e<br>32,27 ( $\forall$ E)<br>33 DeM<br>34,31 DS<br>35 $\vee$ I<br>36 Impl<br>28,29-30,31-37 $\vee$ E<br>22,23-26,27-38 $\vee$ E<br>21-39 ( $\forall$ I)<br>20-40 $\rightarrow$ I<br>41 $\forall$ I<br>19,42 IN |
| 44.                                                                                                                                                                    | Pr(k)                                                                                                                                                                                                                                                                                                                                                                                                                   | $A(g \rightarrow I)$                                                                                                                                                                                                                                   |                                                                                                                                                                                                                      |
| 45.<br>46.<br>47.<br>48.<br>49.<br>50.<br>51.                                                                                                                          | $ \begin{bmatrix} k \leq k \\ Sk < pi(k) \\ k < Sk \\ k < pi(k) \\ k \leq pi(k) \\ Pr(k) \rightarrow \exists j pi(j) = k \\ \exists j pi(j) = k \end{bmatrix} $                                                                                                                                                                                                                                                         | T13.13m<br>45 T13.431<br>T13.13h<br>46,47 T13.13b<br>48 T13.13m<br>43,49 ( $\forall$ E)<br>44,50 $\rightarrow$ E                                                                                                                                       |                                                                                                                                                                                                                      |
| 52.<br>53.                                                                                                                                                             | $\begin{vmatrix} Pr(k) \to \exists j \ pi(j) = k \\ \forall y [Pr(y) \to \exists j \ pi(j) = y] \end{vmatrix}$                                                                                                                                                                                                                                                                                                          | 44-51 →1<br>52 ∀I                                                                                                                                                                                                                                      |                                                                                                                                                                                                                      |

T13.43.n. PA  $\vdash m \neq n \rightarrow pred(pi(m)) \nmid pi(n)^a$ 

| 1.  | $m \neq n$                                                                                                                                         | A $(g \rightarrow I)$         |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 2   | $\int \overline{p}i(n)^{\emptyset} = \overline{1}$                                                                                                 | T13 41a                       |
| 3.  | $Spred(pi(n)^{\emptyset}) = pi(n)^{\emptyset}$                                                                                                     | T13.43i                       |
| 4.  | $Spred(pi(n)^{\emptyset}) = \overline{1}$                                                                                                          | 2.3 =E                        |
| 5   | $Spred(\underline{m}(m)^{\overline{1}}) = \underline{m}(m)^{\overline{1}}$                                                                         | T13 43i                       |
| 6   | $mi(m)^{\overline{1}} = mi(m)$                                                                                                                     | T13 41b                       |
| 7   | $Spred(\overline{pi}(m)) = \overline{pi}(m)$                                                                                                       | 56 =E                         |
| 8   | $p_i(m) > \overline{1}$                                                                                                                            | T13 439                       |
| 9.  | $Spred(pi(m)) > Spred(pi(n)^{\emptyset})$                                                                                                          | 8.7.4 =E                      |
| 10. | $pred(\overline{pi}(m)) > pred(\overline{pi}(n)^{\emptyset})$                                                                                      | 9 T13.13k                     |
| 11. | $pred(pi(m)) \neq Spred(pi(n)^{\emptyset})$                                                                                                        | 10 T13.24i                    |
| 12. | $pred(pi(m)) \neq pi(n)^{\emptyset}$                                                                                                               | 11,3 =E                       |
| 13. | $   pred(pi(m)) \nmid pi(n)^j$                                                                                                                     | $A(g \rightarrow I)$          |
| 14. | $ pred(pi(m))  pi(n)^{Sj}$                                                                                                                         | A $(c \sim I)$                |
| 15  | $mi(n)Sj - mi(n)j \times mi(n)$                                                                                                                    | T13 /1a                       |
| 16  | $\prod_{n \in \mathcal{I}} \mathbb{P}(n) = \mathbb{P}(n) \land \mathbb{P}(n)$ $pred(\mathfrak{m}(n))   (\mathfrak{m}(n)^j \times \mathfrak{m}(n))$ | 14.15 = F                     |
| 17  | Pr[m(m)]                                                                                                                                           | T13 43f                       |
| 18  | Pr[Spred(pi(m))]                                                                                                                                   | 7.17 = E                      |
| 19. | $pred(pi(m)) pi(n)^{j} \lor pred(pi(m)) pi(n)$                                                                                                     | 16.18 T13.25i                 |
| 20. | $pred(\underline{pi}(m))   \underline{pi}(n)$                                                                                                      | 19.13 DS                      |
| 21. | Pr[pi(n)]                                                                                                                                          | T13.43f                       |
| 22. | $pred(pi(m)) = \emptyset \lor Spred(pi(m)) = pi(n)$                                                                                                | 20,21 def <i>Pr</i>           |
| 23. | $   Spred(pi(m)) > S\emptyset$                                                                                                                     | 7,8 =E                        |
| 24. | $pred(pi(m)) > \emptyset$                                                                                                                          | 23 T13.13k                    |
| 25. | $pred(pi(m)) \neq \emptyset$                                                                                                                       | 24 T13.13f                    |
| 26. | Spred(pi(m)) = pi(n)                                                                                                                               | 22,25 DS                      |
| 27. | pi(m) = pi(n)                                                                                                                                      | 7,26 <b>=</b> E               |
| 28. | $m < n \lor n < m$                                                                                                                                 | 1 with T13.13p                |
| 29. | m < n                                                                                                                                              | A ( $g$ 28 $\lor$ E)          |
| 30. | pi(m) < pi(n)                                                                                                                                      | 29 T13.43k                    |
| 31. | $       \vec{pi}(m) \neq \vec{pi}(n) $                                                                                                             | 30 T13.13f                    |
| 32. | n < m                                                                                                                                              | A ( $g$ 28 $\vee$ E)          |
| 33. | pi(n) < pi(m)                                                                                                                                      | 32 T13.43k                    |
| 34. |                                                                                                                                                    | 33 T13.13f                    |
| 35  | $mi(m) \neq mi(n)$                                                                                                                                 | 28 29-31 32-34 ∨E             |
| 36. |                                                                                                                                                    | 20,25 51,52 51 VE<br>27.35 ⊥I |
| 37. | $pred(pi(m)) \neq pi(n)^{S_j}$                                                                                                                     | 14-36 ∼I                      |
| 38  | $[mi(m)) \nmid mi(n)^j] \rightarrow [pred(mi(m)) \nmid mi(n)^{S_j}]$                                                                               | 13-37→I                       |
| 39. | $\forall y([pi(m)) \nmid pi(n)^{y}] \rightarrow [pred(mi(m)) \nmid pi(n)^{Sy}])$                                                                   | 38 ∀I                         |
| 40. | $pred(pi(m)) \neq pi(n)^a$                                                                                                                         | 12.39 IN                      |
| 41  | $\mu \neq \mu \rightarrow pred(m(m)) \nmid m(n)^{d}$                                                                                               | 1 40 ->1                      |
| 41. | $m \neq n \rightarrow preu(p(m)) \uparrow p(n)^{n}$                                                                                                | 1-40                          |

T13.43.p. PA  $\vdash [m \neq n \land pred(pi(m)^b) | (s \times pi(n)^a)] \rightarrow pred(pi(m)^b) | s$ 

Exercise 13.30 T13.43.p

| 1. | $m \neq n \land pred(pi(m)^b) (s \times pi(n)^a)$     | A $(g \rightarrow I)$ |
|----|-------------------------------------------------------|-----------------------|
| 2. | $m \neq n$                                            | $1 \land E$           |
| 3. | $pred(pi(m)^b) (s \times pi(n)^a)$                    | 1 ∧E                  |
| 4. | $pi(m)^{\emptyset} = \overline{1}$                    | T13.41a               |
| 5. | $pred(\overline{1}) = \emptyset$                      | T13.36b               |
| 6. | $ \emptyset s$                                        | T13.24a               |
| 7. | $pred(pi(m)^{\emptyset}) s$                           | 6,4,5 =E              |
| 8. | $\emptyset \not\leq b \lor pred(pi(m)^{\emptyset}) s$ | 7 ∨I                  |
| 9. | $ \emptyset \le b \to pred(pi(m)^{\emptyset}) s$      | 8 Impl                |
|    |                                                       |                       |

844

Exercise 13.30 T13.43.p

| 10.       | $ j < b \rightarrow pred(pi(m)^j) s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A $(g \rightarrow I)$          |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 11        | $\begin{bmatrix} s \\ s $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Delta (q \rightarrow I)$     |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TT (g / 1)                     |
| 12.       | $\int \int \frac{d}{dt} \int \frac{d}{$ | 113.131,m                      |
| 13.       | $pred(pi(m)^{s}) s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $10,12 \rightarrow E$          |
| 14.       | $Sprea(p(m)^{\circ}) = p(m)^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T13.43J                        |
| 15.       | $\sum_{n=1}^{n} \sum_{m=1}^{n} \sum_{m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113.43j                        |
| 16.       | $\exists q[Spred(p_i(m)^{o}) \times q = s \times p_i(n)^{a}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 der                          |
| 17.       | $\exists q[Spred(p_i(m)^{j}) \times q = s]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |
| 18.       | $\sum_{n=1}^{n} Spred(p_n(m)^n) \times u = s \times p_n(n)^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A $(g \ 16 \exists E)$         |
| 19.       | $       pi(m)^{b} \times u = s \times pi(n)^{d} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14,18 = E                      |
| 20.       | $\sum Spred(pi(m)^{j}) \times v = s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A (g 17∃E)                     |
| 21.       | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15,20 = E                      |
| 22.       | j < b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 T13.131                     |
| 23.       | $      \exists v(Sv + j = b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22 def                         |
| 24.       | Sl + j = b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A (g 23∃E)                     |
| 25.       | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T13.41e                        |
| 26.       | $         pi(m)^b = pi(m)^{Sl} \times pi(m)^j $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25,24 = E                      |
| 27.       | $         pi(m)^{Sl} \times pi(m)^j \times u = s \times pi(n)^a $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19,26 =E                       |
| 28.       | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27,21 <b>=</b> E               |
| 29.       | $          pi(m)^j \neq \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | with T13.43h                   |
| 30.       | $         pi(m)^{Sl} \times u = v \times pi(n)^a $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28,29 T6.69                    |
| 31.       | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T13.41g                        |
| 32.       | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T13.41b                        |
| 33.       | $        l + \overline{1} = Sl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T6.47                          |
| 34.       | $       pred(pi(m))  pi(m)^{Sl} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31,32,33 = E                   |
| 35.       | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34 T13.24d                     |
| 36.       | $\left  \begin{array}{c}   \\   \\   \\   \\   \\   \\   \\   \\   \\   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35,30 = E                      |
| 37.       | $\sum_{i=1}^{n} Spred(\underline{pi}(m)^{i}) = \underline{pi}(m)^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T13.43j                        |
| 38.       | $         pi(m)^{1} = pi(m) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T13.41b                        |
| 39.       | Spred(pi(m)) = pi(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37,38 =E                       |
| 40.       | $\left[ \begin{array}{c} Pr[pi(m)] \\ P[pi(m)] \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T13.43f                        |
| 41.       | $\left[ \left[ Pr[Spred(p_{1}(m))] \right] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40,39 = E                      |
| 42.       | $prea(p(m)) v \lor prea(p(m)) p(n) ^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30,41 113.231                  |
| 43.       | $pred(pi(m)) \neq pn(n)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 115.45n<br>42 42 DS          |
| 44.       | $\exists a[Spred(\pi(m))] \lor a = u]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42,45 DS                       |
| 46        | $\left  \begin{array}{c} \Box q \left[ S pred(p(m)) \times q = 0 \right] \\ \Box S pred(p(m)) \times t = v \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\Delta (\sigma 45 \exists F)$ |
| 47        | $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A( 20 E                        |
| 47.       | $\prod_{i=1}^{n} \prod_{j=1}^{n} m(m) \times t = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40,39 = E                      |
| 40.       | $\prod_{m \in m} (m)^{j} \times p(m) \times t = s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21,47 —E                       |
| 49.<br>50 | $\prod_{m \in [m]} \sum_{m \in [m]} \sum_{m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 113.41a<br>48.40 — E           |
| 51        | $\prod_{i=1}^{m} \binom{m}{i} \stackrel{i \to i}{\to} \frac{m}{i} \binom{m}{S_i} = \frac{m}{i} \binom{m}{S_i} \frac{S_i}{S_i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40,49 —L<br>T12 42;            |
| 52        | $Spred(\overline{\mu}(m)^{-1}) = \mu(m)^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50 51 —F                       |
| 52.       | $\exists a[Spred(m(m)) \land i = s]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50,51 —E                       |
| 53.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52 def                         |
| 54.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55 dei                         |
| 55.       | $     pred(pi(m)^{S_f}) s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45,46-54 ∃E                    |
| 56.       | $      pred(pi(m)^{S_f}) s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23,24-55 <del>J</del> E        |
| 57.       | $     pred(pi(m)^{3/3}) s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17,20-56 ∃E                    |
| 58.       | $   pred(pi(m)^{S_j}) s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16,18-57 ∃E                    |
| 59.       | $ S_j \leq b \rightarrow pred(pi(m)^{S_j}) s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11-58 →I                       |
| 60.       | $ [j \le b \to pred(pi(m)^j) s] \to [Sj \le b \to pred(pi(m)^{Sj}) s]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $10-59 \rightarrow I$          |
| 61.       | $l \leq b \rightarrow pred(pi(m)^{\prime}) s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9,60 IN                        |
| 62.       | $b \leq b \rightarrow pred(pi(m)^{\nu}) s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61 ¥E                          |
| 63.       | $b \leq b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T13.13m                        |
| 64.       | $ pred(p_1(m)^{\circ}) s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62,63 →E                       |
| 65.       | $[m \neq n \land pred(pi(m)^{\nu}) (s \times pi(n)^{a})] \rightarrow pred(pi(m)^{o}) s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-64 →I                        |

Exercise 13.30 T13.43.p

#### E13.31. Show each of the results from T13.44.

## T13.44.

T13.44.c. PA 
$$\vdash exp(Sn,i) = \mu x [pred(pi(i)^x) | Sn \land pred(pi(i)^{x+\overline{1}}) \nmid Sn]$$

| 1.  | $pred(pi(i)^{ex(n,i)}) \nmid Sn$                                                                                                                            | T13.19b                 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 2.  | $(\forall z < ex(n,i)) pred(pi(i)^z)   Sn$                                                                                                                  | T13.19c                 |
| 3.  | $ex(n,i) = \emptyset \lor ex(n,i) > \emptyset$                                                                                                              | T13.13d,m               |
| 4.  | $ex(n,i) = \emptyset$                                                                                                                                       | A ( $c \sim I$ )        |
| 5.  | $pi(i)^{\emptyset} = \overline{1}$                                                                                                                          | T13.41a                 |
| 6.  | $pi(i)^{ex(n,i)} = \overline{1}$                                                                                                                            | 4,5 <b>=</b> E          |
| 7.  | $Spred(pi(i)^{ex(n,i)}) = pi(i)^{ex(n,i)}$                                                                                                                  | T13.43j                 |
| 8.  | $Spred(pi(i)^{ex(n,i)}) = S\emptyset$                                                                                                                       | 6,7 <b>=</b> E          |
| 9.  | $pred(pi(i)^{ex(n,i)}) = \emptyset$                                                                                                                         | 8 T6.40                 |
| 10. | ØSn                                                                                                                                                         | T13.24a                 |
| 11. | $pred(pi(i)^{ex(n,i)}) Sn$                                                                                                                                  | 9,10 = E                |
| 12. |                                                                                                                                                             | 1,11 ⊥I                 |
| 13. | $ex(n,i) \neq \emptyset$                                                                                                                                    | 4-12 ∼I                 |
| 14. | $ex(n,i) > \emptyset$                                                                                                                                       | 3,13 DS                 |
| 15. | $\exists v[ex(n,i) = Sv]$                                                                                                                                   | 14 T13.13g              |
| 16. | ex(n,i) = Sa                                                                                                                                                | A ( $g$ 15 $\exists$ E) |
| 17. | a < Sa                                                                                                                                                      | T13.13h                 |
| 18. | a < ex(n,i)                                                                                                                                                 | 17,16 = E               |
| 19. | $pred(pi(i)^{a}) Sn$                                                                                                                                        | 2,18 (¥E)               |
| 20. | $pred(pi(i)^{Sa}) \nmid Sn$                                                                                                                                 | 1,16 = E                |
| 21. | $Sa = a + \overline{1}$                                                                                                                                     | <b>T6.</b> 47           |
| 22. | $pred(pi(i)^{a+\overline{1}}) \nmid Sn$                                                                                                                     | 20,21 = E               |
| 23. | $pred(pi(i)^a) Sn \wedge pred(pi(i)^{a+\overline{1}}) \nmid Sn$                                                                                             | 19,22 ∧I                |
| 24. | $pi(i) > \overline{1}$                                                                                                                                      | T13.43g                 |
| 25. | $a < pi(i)^a$                                                                                                                                               | 24 T13.41m              |
| 26. | $Spred(pi(i)^a) = pi(i)^a$                                                                                                                                  | T13.43j                 |
| 27. | $n \neq pred(pi(i)^a)$                                                                                                                                      | 19 T13.24i              |
| 28. | $pred(pi(i)^a) \leq n$                                                                                                                                      | 27 T13.13r              |
| 29. | $Spred(pi(i)^a) \leq Sn$                                                                                                                                    | 28 T13.13j              |
| 30. | $pi(i)^a \leq Sn$                                                                                                                                           | 26,29 = E               |
| 31. | a < Sn                                                                                                                                                      | 25,30 T13.13c           |
| 32. | $a \leq Sn$                                                                                                                                                 | 31 T13.13m              |
| 33. | $\left  (\exists x \leq Sn) [pred(pi(i)^{x})   Sn \wedge pred(pi(i)^{x+\overline{1}}) \nmid Sn] \right $                                                    | 23,32 (∃I)              |
| 34. | $(\exists x \leq Sn)[pred(pi(i)^{x}) Sn \wedge pred(pi(i)^{x+\overline{1}}) \nmid Sn]$                                                                      | 15,16-33 ∃E             |
| 35. | $(\mu x \leq Sn)[pred(pi(i)^{x}) Sn \wedge pred(pi(i)^{x+\overline{1}}) \nmid Sn] = \mu x[pred(pi(i)^{x}) Sn \wedge pred(pi(i)^{x+\overline{1}}) \nmid Sn]$ | 34 T13.20b              |
| 36. | $exp(Sn,i) = \mu x [pred(pi(i)^{x})   Sn \wedge pred(pi(i)^{x+\overline{1}}) \nmid Sn]$                                                                     | 35 def                  |

T13.44.1. PA 
$$\vdash \exists q[pi(i)^{exp(Sn,i)} \times q = Sn \wedge pred(pi(i)) \nmid q \wedge \forall y(y \neq i \rightarrow exp(q, y) = exp(Sn, y))]$$

Exercise 13.31 T13.44.1

| 1.        | $pred(pi(i)^{exp(Sn,i)}) Sn \wedge pred(pi(i)^{exp(Sn,i)+\overline{1}}) \nmid Sn$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T13.44d                  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 2.        | exp(Sn, l) = a<br>$\exists a [Spred(\pi i(l)^{a}) \times a - Sn]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2  with  AE            |
| 3.<br>4   | $\frac{\log[Sprea(p(i)) \times q - Sn]}{\log(a)^{a+1}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2 with $\Delta E$      |
| 5.        | $Spred(pi(i)^a) = pi(i)^a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T13.43j                  |
| 6.        | $\exists q [pi(i)^a \times q = Sn]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3,5 =E                   |
| 7.        | $pi(i)^a \times j = Sn$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A ( $g$ 6 $\exists$ E)   |
| 8.        | pred(pi(i)) j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A ( $c \sim I$ )         |
| 9.        | $\exists q[Spred(pi(i)) \times q = j]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 def                    |
| 10.       | $Spred(pi(i)) \times k = j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A ( $g$ 9 $\exists$ E)   |
| 11.       | $      pi(i) \times k = j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 T13.43j               |
| 12.       | $pi(i)^a \times pi(i) \times k = Sn$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,11 <b>=</b> E          |
| 13.       | $\left  \right  pi(i)^{a+1} \times k = Sn$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12 T13.41a               |
| 14.       | $      Spred(p(i)^{a+1}) \times k = Sn$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13 T13.43j               |
| 15.       | $     pred(pi(i)^{a+1}) Sn $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14 def                   |
| 16.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4,15 ⊥1                  |
| 17.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9,10-16∃E                |
| 18.       | $pred(pi(i)) \nmid j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8-17 ∼I                  |
| 19.       | $j = \emptyset \lor j > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T13.13f                  |
| 20.       | $j = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A ( $c \sim I$ )         |
| 21.       | $pi(i)^{a} \times \emptyset = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T6.43                    |
| 22.       | $ \begin{array}{c} p_{i}(j) \leq \chi \\ 0 = S_{i} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21,20 = E<br>7.22 - F    |
| 23.<br>24 | $0 \neq Sn$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,22 —E<br>with T13 13e  |
| 25.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23,24 ⊥I                 |
| 26        | $\begin{vmatrix} i \\ i \neq 0 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20-25 ~I                 |
| 20.       | $ j \neq b $<br>$ i > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.26 DS                 |
| 28.       | $\begin{vmatrix} i \\ k \neq i \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $A(g \rightarrow I)$     |
| 29.       | $\exists v(j = Sv)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27 T13.13g               |
| 30.       | j = Sl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A (g 29∃E)               |
| 31.       | $pi(i)^a \times Sl = Sn$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7,30 =E                  |
| 32.       | exp(Sn,k) = b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | abv                      |
| 33.       | $pred(pi(k)^{o}) Sn$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32 T13.44d               |
| 34.<br>25 | $\left  pred(p(k)^{\circ}) \right  p(l)^{\circ} \times Sl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31,33 = E                |
| 35.<br>36 | $\frac{pred(p(k)) Si}{pred(\overline{v}(k)^{b+1}) \mid Sn}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28,34 115.45p<br>T13 44d |
| 37        | $\left  \begin{array}{c} pred(p(k)) + \overline{1} \\ pred(\overline{n}(k)^{b+1}) \\ \end{array} \right  Sl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A $(\sigma \sim I)$      |
| 29        | $\frac{p_{i}(a)}{p_{i}(a)} = \frac{p_{i}(a)}{p_{i}(a)} + p_$ | 27 T12 244               |
| 30.       | $\frac{pred(\mathbf{p}(\mathbf{k}) + \mathbf{j}) \mathbf{p}(t) \times \mathbf{j}t}{pred(\mathbf{p}(\mathbf{k}) + \mathbf{j}) \mathbf{s}n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37 115.24u<br>38 31 —E   |
| 40.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36.39 ⊥I                 |
| 41        | $    = \frac{1}{nrad(m(L)^{b+1})} + SI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.40 e.I                |
| 41.       | $\frac{pred(p(k)^{b})}{pred(m(k)^{b+1})} \leq Sl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35.41 AI                 |
| 43.       | exp(Sl,k) = b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42 T13.44f               |
| 44.       | exp(j,k) = b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43,30 =E                 |
| 45.       | exp(j,k) = exp(Sn,k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44 abv                   |
| 46.       | exp(j,k) = exp(Sn,k)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29,30-45 ∃E              |
| 47.       | $k \neq i \rightarrow exp(j,k) = exp(Sn,k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $28-46 \rightarrow I$    |
| 48.       | $\forall y (y \neq i \rightarrow exp(j, y) = exp(Sn, y))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47 ∀I                    |
| 49.       | $pi(i)^{a} \times j = Sn \wedge pred(pi(i)) \nmid j \wedge \forall y (y \neq i \rightarrow exp(j, y) = exp(Sn, y))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,18,48 ∧I               |
| 50.       | $ \exists q[pi(i)^{\alpha} \times q = Sn \wedge pred(pi(i)) \nmid q \wedge \forall y(y \neq i \rightarrow exp(q, y) = exp(Sn, y))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49 ∃I                    |
| 51.       | $\exists q[pi(i)^{exp(Sn,i)} \times q = Sn \wedge pred(pi(i)) \nmid q \wedge \forall y(y \neq i \rightarrow exp(q,y) = exp(Sn,y))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6,7-50 ∃E                |

T13.44.m. PA  $\vdash exp(Sm \times Sn, i) = exp(Sm, i) + exp(Sn, i)$ 

Exercise 13.31 T13.44.m

| 1.  | $pi(i)^a > \emptyset$                                                                                                                | T13.43h                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 2.  | $pred(pi(i)^{exp(Sm,i)}) Sm$                                                                                                         | T13.44d                 |
| 3.  | $pred(pi(i)^{exp(Sn,i)}) Sn$                                                                                                         | T13.44d                 |
| 4.  | $pred(pi(i)^{exp(Sm,i)} \times pi(i)^{exp(Sn,i)}) (Sm \times Sn)$                                                                    | 1,2,3 T13.24e           |
| 5.  | $pred(pi(i)^{exp(Sm,i)+exp(Sn,i)}) (Sm \times Sn)$                                                                                   | 4 T13.41e               |
| 6.  | $\exists q[p_i(i)^{exp(Sm,i)} \times q = Sm \wedge pred(p_i(i)) \nmid q]$                                                            | T13.441                 |
| 7.  | $\exists r[pi(i)^{exp(Sn,i)} \times r = Sn \wedge pred(pi(i)) \nmid r]$                                                              | T13.441                 |
| 8.  | $\left  pi(i)^{exp(m,i)} \times q = Sm \wedge pred(pi(i)) \nmid q \right $                                                           | A (g 6,7 $\exists$ E)   |
| 9.  | $ \underline{pi(i)^{exp(Sn,i)} \times r} = Sn \wedge pred(\underline{pi(i)}) \nmid r $                                               |                         |
| 10. | $Sm \times Sn = pi(i)^{exp(Sm,i)} \times q \times pi(i)^{exp(Sn,i)} \times r$                                                        | 8,9 ∧E, etc.            |
| 11. | $Sm \times Sn = pi(i)^{exp(Sm,i) + exp(Sn,i)} \times q \times r$                                                                     | 10 T13.41e              |
| 12. | $\frac{pred(pi(i)^{exp(Sm,i)+exp(Sn,i)+1})}{(Sm \times Sn)}$                                                                         | A ( $c \sim I$ )        |
| 13. | $\exists s[Spred(pi(i)^{exp(Sm,i)+exp(Sn,i)+1}) \times s = Sm \times Sn]$                                                            | 12 def                  |
| 14. | $    Spred(pi(i)^{exp(Sm,i)+exp(Sn,i)+1}) \times s = Sm \times Sn$                                                                   | A ( $g$ 13 $\exists$ E) |
| 15. | $pi(i)^{exp(Sm,i)+exp(Sn,i)+1} \times s = Sm \times Sn$                                                                              | 1,14 T13.36c            |
| 16. | $\left  \begin{array}{c} p_{i}(i)^{exp(Sm,i)+exp(Sn,i)} \times p_{i}(i) \times s = Sm \times Sn \end{array} \right $                 | 15 T13.41a              |
| 17. | $\left  \left  p_i(i)^{exp(Sm,i)+exp(Sn,i)} \times p_i(i) \times s = p_i(i)^{exp(Sm,i)+exp(Sn,i)} \times q \times r \right  \right $ | 11,16 =E                |
| 18. | $\left  \begin{array}{c} pi(i) \times s = q \times r \end{array} \right $                                                            | 1,17 T6.69              |
| 19. | $    Spred(pi(i)) \times s = q \times r$                                                                                             | 18 T13.36c              |
| 20. | $\left  \left  \exists s[Spred(pi(i)) \times s = q \times r] \right  \right $                                                        | 19 ∃I                   |
| 21. | $      pred(pi(i)) (q \times r)$                                                                                                     | 20 def                  |
| 22. | $     pred(pi(i)) q \lor pred(pi(i)) r$                                                                                              | T13.43f,13.25i          |
| 23. |                                                                                                                                      | 8,9,22 ⊥I               |
| 24. |                                                                                                                                      | 13,14-23 ∃E             |
| 25. | $pred(pi(i)^{exp(Sm,i)+exp(Sn,i)+1}) \nmid (Sm \times Sn)$                                                                           | 12-24 ∼I                |
| 26. | $\left  pred(pi(i)^{exp(Sm,i)+exp(Sn,i)})   (Sm \times Sn) \wedge pi(i)^{exp(Sm,i)+exp(Sn,i)+1}) \right  (Sm \times Sn)$             | 5,25 ∧I                 |
| 27. | $ exp(Sm \times Sn, i) = exp(Sm, i) + exp(Sn, i)$                                                                                    | 26 T13.44f              |
| 28. | $exp(Sm \times Sn, i) = exp(Sm, i) + exp(Sn, i)$                                                                                     | 6,7,8-27 ∃E             |

E13.32. Show each of the results from T13.45.

T13.45.

T13.45.h. PA  $\vdash exp(m, i) > \emptyset \rightarrow len(m) > i$ 

848

| 1.  | $exp(m,i) > \emptyset$                                         | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
|-----|----------------------------------------------------------------|-------------------------------------------------|
| 2.  | $exp(m,i) \neq \emptyset$                                      | 1 T13.13f                                       |
| 3.  | $m = \emptyset \lor m > \emptyset$                             | T13.13f                                         |
| 4.  | $m = \emptyset$                                                | A ( $g \ 3 \lor E$ )                            |
| 5.  | $len(m) \neq i$                                                | A ( $c \sim$ E)                                 |
| 6.  | $exp(\emptyset, i) = \emptyset$                                | T13.44b                                         |
| 7.  | $exp(m,i) = \emptyset$                                         | 6,4 = E                                         |
| 8.  |                                                                | 2,7 ⊥I                                          |
| 9.  | $\left  len(m) > i \right $                                    | 5-8 ~E                                          |
| 10. | $m > \emptyset$                                                | A ( $g \ 3 \lor E$ )                            |
| 11. | $len(m) \neq i$                                                | A ( $c \sim E$ )                                |
| 12. | $len(m) \leq i$                                                | 11 T13.13r                                      |
| 13. | $\exists v(m = Sv)$                                            | 10 T13.13g                                      |
| 14. | m = Sa                                                         | A (g 13∃E)                                      |
| 15. | $exp(Sa,i) \neq \emptyset$                                     | 2,14 =E                                         |
| 16. | $len(Sa) \leq i$                                               | 12,14 =E                                        |
| 17. | i > Sa                                                         | A $(g \sim I)$                                  |
| 18. | $        i \ge a$                                              | 17 T13.13m,n                                    |
| 19. | $exp(Sa,i) = \emptyset$                                        | 18 T13.44h                                      |
| 20. |                                                                | 15,19 ⊥I                                        |
| 21. | $i \neq Sa$                                                    | 17-20 ∼I                                        |
| 22. | $i \leq Sa$                                                    | T13.13r                                         |
| 23. | $(\forall z \le Sa)[z \ge len(Sa) \to exp(Sa, z) = \emptyset]$ | T13.45d                                         |
| 24. | $i \ge len(Sa) \to exp(Sa, i) = \emptyset$                     | 23,22 (¥E)                                      |
| 25. | $exp(Sa,i) = \emptyset$                                        | $24,16 \rightarrow E$                           |
| 26. |                                                                | 15,25 ⊥I                                        |
| 27. |                                                                | 13,14-26 ∃E                                     |
| 28. | $len(m) > i$                                                   | 11-27 ~Е                                        |
| 29. | len(m) > i                                                     | 3,4-9,10-28 ∨E                                  |
| 30. | $exp(m,i) > \emptyset \rightarrow len(m) > i$                  | 1-29 →I                                         |

T13.45.k.  $PA \vdash p > \emptyset \rightarrow len(pi(i)^p) = Si$ 

Exercise 13.32 T13.45.k

| 1.                                                                                                                                                                                                            | $p > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.                                                                                                                                                                                                            | $ len(pi(i)^p) < Si \lor len(pi(i)^p) = Si \lor len(pi(i)^p) > Si$                                                                                                                                                                                                                                                                                                                                                                                                              | T13.13p                                                                                                                                                                                                                                          |
| 3.                                                                                                                                                                                                            | $exp(pi(i)^p, i) = p$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T13.44i                                                                                                                                                                                                                                          |
| 4.                                                                                                                                                                                                            | $exp(pi(i)^p, i) > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,3 <b>=</b> E                                                                                                                                                                                                                                   |
| 5.                                                                                                                                                                                                            | $len(pi(i)^p) > i$                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 T13.45h                                                                                                                                                                                                                                        |
| 6.                                                                                                                                                                                                            | $len(pi(i)^p) \ge Si$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 T13.131                                                                                                                                                                                                                                        |
| 7.                                                                                                                                                                                                            | $len(pi(i)^p) \neq Si$                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 T13.13r                                                                                                                                                                                                                                        |
| 8.                                                                                                                                                                                                            | $len(pi(i)^p) > Si$                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A ( $c \sim I$ )                                                                                                                                                                                                                                 |
| 9.                                                                                                                                                                                                            | $pi(i)^p > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T13.43h                                                                                                                                                                                                                                          |
| 10.                                                                                                                                                                                                           | $\left  \exists y [pi(i)^p = Sy] \right $                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>9 T6.5</b> 0                                                                                                                                                                                                                                  |
| 11.                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A ( $g$ 10 $\exists$ E)                                                                                                                                                                                                                          |
| 12.                                                                                                                                                                                                           | $\left  \left  (\forall w < len(Sj)) \sim (\forall z < Sj)[z \ge w \to exp(Sj, z) = \emptyset] \right  \right $                                                                                                                                                                                                                                                                                                                                                                 | T13.45e                                                                                                                                                                                                                                          |
| 13.                                                                                                                                                                                                           | len(Sj) > Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8,11 =E                                                                                                                                                                                                                                          |
| 14.                                                                                                                                                                                                           | $\left  - (\forall z < Sj)[z \ge Si \to exp(Sj, z) = \emptyset] \right $                                                                                                                                                                                                                                                                                                                                                                                                        | 12,13 (¥E)                                                                                                                                                                                                                                       |
| 15.                                                                                                                                                                                                           | $   \sim (\forall z < pi(i)^p) [z \ge Si \to exp(pi(i)^p, z) = \emptyset]$                                                                                                                                                                                                                                                                                                                                                                                                      | 11,14 = E                                                                                                                                                                                                                                        |
| 16.                                                                                                                                                                                                           | $            k < pi(i)^p$                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A ( $g$ ( $\forall$ I))                                                                                                                                                                                                                          |
|                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                  |
| 17.                                                                                                                                                                                                           | $k \ge Si$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A $(g \rightarrow I)$                                                                                                                                                                                                                            |
| 17.<br>18.                                                                                                                                                                                                    | $ \begin{vmatrix} k \ge Si \\ k > i \end{vmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                             | A $(g \rightarrow I)$<br>17 T13.13h,c                                                                                                                                                                                                            |
| 17.<br>18.<br>19.                                                                                                                                                                                             | $ \begin{array}{ c c c c c } \hline k \ge Si \\ \hline k > i \\ pred(pi(k)) \nmid pi(i)^{p} \end{array} \end{array} $                                                                                                                                                                                                                                                                                                                                                           | A ( $g \rightarrow I$ )<br>17 T13.13h,c<br>18 T13.43n                                                                                                                                                                                            |
| <ol> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> </ol>                                                                                                                                                | $ \begin{array}{c c} k \geq Si \\ k > i \\ pred(pi(k)) \nmid pi(i)^{p} \\ pred(pi(k)) \nmid Sj \end{array} $                                                                                                                                                                                                                                                                                                                                                                    | A ( $g \rightarrow$ I)<br>17 T13.13h,c<br>18 T13.43n<br>11,19 =E                                                                                                                                                                                 |
| <ol> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> </ol>                                                                                                                                   | $k \ge Si$ $k > i$ $pred(pi(k)) \nmid pi(i)^{p}$ $pred(pi(k)) \nmid Sj$ $exp(Sj,k) \ge \overline{1}$                                                                                                                                                                                                                                                                                                                                                                            | A ( $g \rightarrow I$ )<br>17 T13.13h,c<br>18 T13.43n<br>11,19 =E<br>20 T13.44k                                                                                                                                                                  |
| <ol> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> </ol>                                                                                                                      | $k \ge Si$ $k > i$ $pred(pi(k)) \nmid pi(i)^{p}$ $pred(pi(k)) \nmid Sj$ $exp(Sj,k) \ge \overline{1}$ $exp(Sj,k) < S\emptyset$                                                                                                                                                                                                                                                                                                                                                   | A $(g \rightarrow I)$<br>17 T13.13h,c<br>18 T13.43n<br>11,19 = E<br>20 T13.44k<br>21 T13.13r                                                                                                                                                     |
| <ol> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> </ol>                                                                                                         | $k \ge Si$ $k > i$ $pred(pi(k)) \nmid pi(i)^{p}$ $pred(pi(k)) \nmid Sj$ $exp(Sj,k) \ge \overline{1}$ $exp(Sj,k) < S\emptyset$ $exp(Sj,k) < \emptyset \lor exp(Sj,k) = \emptyset$                                                                                                                                                                                                                                                                                                | A $(g \rightarrow I)$<br>17 T13.13h,c<br>18 T13.43n<br>11,19 =E<br>20 T13.44k<br>21 T13.13r<br>22 T13.13n                                                                                                                                        |
| <ol> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> </ol>                                                                                            | $k \ge Si$ $k > i$ $pred(pi(k)) \nmid pi(i)^{p}$ $pred(pi(k)) \nmid Sj$ $exp(Sj,k) \ge \overline{1}$ $exp(Sj,k) < S\emptyset$ $exp(Sj,k) < \emptyset \lor exp(Sj,k) = \emptyset$ $exp(Sj,k) = \emptyset$                                                                                                                                                                                                                                                                        | A $(g \rightarrow I)$<br>17 T13.13h,c<br>18 T13.43n<br>11,19 =E<br>20 T13.44k<br>21 T13.13r<br>22 T13.13n<br>23 with T6.49                                                                                                                       |
| <ol> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> </ol>                                                                               | $k \ge Si$ $k > i$ $pred(pi(k)) \nmid pi(i)^{p}$ $pred(pi(k)) \nmid Sj$ $exp(Sj,k) \ge \overline{1}$ $exp(Sj,k) < S\emptyset$ $exp(Sj,k) < \emptyset \lor exp(Sj,k) = \emptyset$ $exp(Sj,k) = \emptyset$ $exp(pi(i)^{p},k) = \emptyset$                                                                                                                                                                                                                                         | A $(g \rightarrow I)$<br>17 T13.13h,c<br>18 T13.43n<br>11,19 =E<br>20 T13.44k<br>21 T13.13r<br>22 T13.13n<br>23 with T6.49<br>24,11 =E                                                                                                           |
| <ol> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> </ol>                                                                  | $k \ge Si$ $k > i$ $pred(pi(k)) \nmid pi(i)^{p}$ $pred(pi(k)) \nmid Sj$ $exp(Sj,k) \ge \overline{1}$ $exp(Sj,k) < S\emptyset$ $exp(Sj,k) < \emptyset \lor exp(Sj,k) = \emptyset$ $exp(Sj,k) = \emptyset$ $exp(pi(i)^{p},k) = \emptyset$ $k \ge Si \rightarrow exp(pi(i)^{p},k) = \emptyset$                                                                                                                                                                                     | A ( $g \rightarrow I$ )<br>17 T13.13h,c<br>18 T13.43n<br>11,19 =E<br>20 T13.44k<br>21 T13.13r<br>22 T13.13n<br>23 with T6.49<br>24,11 =E<br>17-25 →I                                                                                             |
| <ol> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> </ol>                                                     | $k \ge Si$ $k > i$ $pred(pi(k)) \nmid pi(i)^{p}$ $pred(pi(k)) \nmid Sj$ $exp(Sj,k) \ge \overline{1}$ $exp(Sj,k) < S\emptyset$ $exp(Sj,k) < \emptyset \lor exp(Sj,k) = \emptyset$ $exp(Sj,k) = \emptyset$ $exp(pi(i)^{p},k) = \emptyset$ $k \ge Si \rightarrow exp(pi(i)^{p},k) = \emptyset$ $(\forall z < pi(i)^{p})[z \ge Si \rightarrow exp(pi(i)^{p},z) = \emptyset]$                                                                                                        | A ( $g \rightarrow I$ )<br>17 T13.13h,c<br>18 T13.43n<br>11,19 =E<br>20 T13.44k<br>21 T13.13r<br>22 T13.13n<br>23 with T6.49<br>24,11 =E<br>17-25 →I<br>16-26 ( $\forall I$ )                                                                    |
| <ol> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> </ol>                                        | $\begin{vmatrix} k \ge Si \\ k > i \\ pred(pi(k)) \nmid pi(i)^{p} \\ pred(pi(k)) \nmid Sj \\ exp(Sj,k) \ge \overline{1} \\ exp(Sj,k) < S\emptyset \\ exp(Sj,k) < \emptyset \lor exp(Sj,k) = \emptyset \\ exp(Sj,k) = \emptyset \\ exp(pi(i)^{p},k) = \emptyset \\ k \ge Si \rightarrow exp(pi(i)^{p},k) = \emptyset \\ (\forall z < pi(i)^{p})[z \ge Si \rightarrow exp(pi(i)^{p},z) = \emptyset] \\ \bot$                                                                      | A ( $g \rightarrow I$ )<br>17 T13.13h,c<br>18 T13.43n<br>11,19 =E<br>20 T13.44k<br>21 T13.13r<br>22 T13.13n<br>23 with T6.49<br>24,11 =E<br>17-25 →I<br>16-26 ( $\forall I$ )<br>15,27 $\perp I$                                                 |
| <ol> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> <li>29.</li> </ol>                           | $ \begin{vmatrix} k \ge Si \\ k > i \\ pred(pi(k)) \nmid pi(i)^{p} \\ pred(pi(k)) \nmid Sj \\ exp(Sj,k) \not\ge \overline{1} \\ exp(Sj,k) < S\emptyset \\ exp(Sj,k) < \emptyset \lor exp(Sj,k) = \emptyset \\ exp(Sj,k) = \emptyset \\ exp(pi(i)^{p},k) = \emptyset \\ k \ge Si \rightarrow exp(pi(i)^{p},k) = \emptyset \\ (\forall z < pi(i)^{p})[z \ge Si \rightarrow exp(pi(i)^{p}, z) = \emptyset] \\ \bot $                                                               | A ( $g \rightarrow I$ )<br>17 T13.13h,c<br>18 T13.43n<br>11,19 =E<br>20 T13.44k<br>21 T13.13r<br>22 T13.13n<br>23 with T6.49<br>24,11 =E<br>17-25 →I<br>16-26 ( $\forall I$ )<br>15,27 $\perp I$<br>10,11-28 $\exists E$                         |
| <ol> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> <li>29.</li> <li>30.</li> </ol>              | $\begin{vmatrix} k \ge Si \\ k > i \\ pred(pi(k)) \nmid pi(i)^{p} \\ pred(pi(k)) \nmid Sj \\ exp(Sj,k) \not\ge \overline{1} \\ exp(Sj,k) < S\emptyset \\ exp(Sj,k) < \emptyset \lor exp(Sj,k) = \emptyset \\ exp(Sj,k) = \emptyset \\ exp(pi(i)^{p},k) = \emptyset \\ k \ge Si \rightarrow exp(pi(i)^{p},k) = \emptyset \\ (\forall z < pi(i)^{p})[z \ge Si \rightarrow exp(pi(i)^{p}, z) = \emptyset] \\ \bot \\ len(pi(i)^{p}) \neq Si \end{vmatrix}$                         | A ( $g \rightarrow I$ )<br>17 T13.13h,c<br>18 T13.43n<br>11,19 =E<br>20 T13.44k<br>21 T13.13r<br>22 T13.13n<br>23 with T6.49<br>24,11 =E<br>17-25 →I<br>16-26 ( $\forall I$ )<br>15,27 $\perp I$<br>10,11-28 $\exists E$<br>8-29 ~I              |
| <ol> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> <li>29.</li> <li>30.</li> <li>31.</li> </ol> | $\begin{vmatrix} k \ge Si \\ k > i \\ pred(pi(k)) \nmid pi(i)^{p} \\ pred(pi(k)) \nmid Sj \\ exp(Sj,k) \not \ge \overline{1} \\ exp(Sj,k) < S\emptyset \\ exp(Sj,k) < \emptyset \lor exp(Sj,k) = \emptyset \\ exp(jj,k) = \emptyset \\ exp(pi(i)^{p},k) = \emptyset \\ k \ge Si \rightarrow exp(pi(i)^{p},k) = \emptyset \\ (\forall z < pi(i)^{p})[z \ge Si \rightarrow exp(pi(i)^{p}, z) = \emptyset] \\ \bot \\ len(pi(i)^{p}) \neq Si \\ len(pi(i)^{p}) = Si \end{vmatrix}$ | A ( $g \rightarrow I$ )<br>17 T13.13h,c<br>18 T13.43n<br>11,19 =E<br>20 T13.44k<br>21 T13.13r<br>22 T13.13n<br>23 with T6.49<br>24,11 =E<br>17-25 →I<br>16-26 ( $\forall I$ )<br>15,27 $\perp I$<br>10,11-28 $\exists E$<br>8-29 ~I<br>2,7,30 DS |

T13.45.m.  $PA \vdash len(n) = Sl \rightarrow exp(n, l) \ge 1$ 

Exercise 13.32 T13.45.m

| 1.  | len(n) = Sl                                                                    | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
|-----|--------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | $n = \emptyset \lor n > \emptyset$                                             | T13.13f                                         |
| 3.  | $n = \emptyset$                                                                | A ( $c \sim I$ )                                |
| 4.  | $\int \mathbb{I}_{en}(\emptyset) = \emptyset$                                  | T13.45b                                         |
| 5.  | $len(n) = \emptyset$                                                           | 3,4 =E                                          |
| 6.  | $\emptyset = Sl$                                                               | 1,5 <b>=</b> E                                  |
| 7.  | $\emptyset \neq Sl$                                                            | <b>T6</b> .39                                   |
| 8.  |                                                                                | 6,7 ⊥I                                          |
| 9.  | $n \neq \emptyset$                                                             | 3-8 ∼I                                          |
| 10. | $n > \emptyset$                                                                | 2,9 DS                                          |
| 11. | $\exists v (n = Sv)$                                                           | 10 T13.13g                                      |
| 12. | n = Sm                                                                         | A ( $g$ 11 $\exists$ E)                         |
| 13. | len(Sm) = Sl                                                                   | 1,12 = E                                        |
| 14. | $(\forall z \le Sm)[z \ge Sl \to exp(Sm, z) = \emptyset]$                      | T13.45d                                         |
| 15. | $(\forall w < Sl) \sim (\forall z \le Sm)[z \ge w \to exp(Sm, z) = \emptyset]$ | 13 T13.45e                                      |
| 16. | $exp(Sm,l) \neq 1$                                                             | A ( $c \sim E$ )                                |
| 17. | $exp(Sm,l) < \overline{1}$                                                     | 16 T13.13r                                      |
| 18. | $exp(Sm,l) = \emptyset$                                                        | 17 T8.16                                        |
| 19. | $a \leq Sm$                                                                    | A $(g (\forall I))$                             |
| 20. | $        a \ge l$                                                              | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 21. | $        l = a \lor l < a$                                                     | 20 T13.13m                                      |
| 22. | l = a                                                                          | A ( <i>g</i> 21∨E)                              |
| 23. | $exp(Sm,a) = \emptyset$                                                        | 18,22 <b>=</b> E                                |
| 24. | l < a                                                                          | A ( $g$ 21 $\lor$ E)                            |
| 25. | $         Sl \le a$                                                            | 24 T13.131                                      |
| 26. | $         len(Sm) \le a$                                                       | 25,13 =E                                        |
| 27. | $      exp(Sm, a) = \emptyset$                                                 | 26 T13.451                                      |
| 28. | $\left  \begin{array}{c} exp(Sm,a) = \emptyset \end{array} \right $            | 21,22-23,24-27 ∨E                               |
| 29. | $a \ge l \to \exp(Sm, a) = \emptyset$                                          | 20-28 →I                                        |
| 30. | $(\forall z \leq Sm)[z \geq l \rightarrow exp(Sm, z) = \emptyset]$             | 19-29 (¥I)                                      |
| 31. | a < l                                                                          | A ( $g$ ( $\forall$ I))                         |
| 32. | a < Sl                                                                         | 31 T13.13n                                      |
| 33. | $\sim (\forall z \leq Sm)[z \geq a \rightarrow exp(Sm, z) = \emptyset]$        | 15,32 (∀E)                                      |
| 34. | $(\forall w < l) \sim (\forall z \le Sm)[z \ge w \to exp(Sm, z) = \emptyset]$  | 31-33 (∀I)                                      |
| 35. | len(Sm) = l                                                                    | 14,34 T13.45c                                   |
| 36. | Sl = l                                                                         | 13,35 <b>=</b> E                                |
| 37. | $   Sl \neq l$                                                                 | T13.13h,s                                       |
| 38. |                                                                                | 36,37 ⊥I                                        |
| 39. | $exp(Sm,l) \geq 1$                                                             | 16-38 ∼E                                        |
| 40. | $ exp(n,l) \geq 1$                                                             | 12,39 <b>=</b> E                                |
| 41. | $exp(n,l) \geq 1$                                                              | 11,12-40 ∃E                                     |
| 42. | $len(n) = Sl \to exp(n, l) \ge 1$                                              | $1-41 \rightarrow I$                            |

E13.33. Show each of the results from T13.46.

Exercise 13.33

## T13.46.

T13.46.e.  $PA \vdash (\forall i \geq a) pred(pi(i)) \nmid val^*(m, n, i)$ 

| 1.  | $j \ge \emptyset$                                                                                                         | A $(g (\forall I))$                                      |
|-----|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 2.  | $ val^*(m,n,\emptyset) = \overline{1}$                                                                                    | def val*                                                 |
| 3.  | $ pi(j) > \overline{1}$                                                                                                   | T13.43g                                                  |
| 4.  | $ pi(j) > \emptyset$                                                                                                      | 3 with T13.13e                                           |
| 5.  | Spred(pi(j)) = pi(j)                                                                                                      | 4 T13.36c                                                |
| 6.  | $Spred(pi(j)) > S\emptyset$                                                                                               | 3,5 =E                                                   |
| 7.  | $pred(pi(j)) > \emptyset$                                                                                                 | 6 T13.13k                                                |
| 8.  | $pred(pi(j)) \nmid \overline{1}$                                                                                          | 7 T13.24i                                                |
| 9.  | $pred(pi(j)) \nmid val^*(m, n, \emptyset)$                                                                                | 8,2 =E                                                   |
| 10. | $(\forall i \geq \emptyset) pred(pi(i)) \nmid val^*(m, n, \emptyset)$                                                     | 1-9 (∀I)                                                 |
| 11. | $(\forall i \geq a) pred(pi(i)) \nmid val^*(m, n, a)$                                                                     | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$          |
| 12. | $j \ge Sa$                                                                                                                | $\mathbf{A}\left(g\left(\forall\mathbf{I}\right)\right)$ |
| 13. | j > a                                                                                                                     | 12 T13.131                                               |
| 14. | $    j \ge a$                                                                                                             | 13 T13.13m                                               |
| 15. | $pred(pi(j)) \nmid val^*(m, n, a)$                                                                                        | 11,14 (¥E)                                               |
| 16. | $  val^*(m,n,Sa) = val^*(m,n,a) \times pi(a)^{exc(m,n,a)}$                                                                | def val*                                                 |
| 17. | $pred(pi(j)) val^*(m,n,Sa)$                                                                                               | A ( $c \sim I$ )                                         |
| 18. | $pred(pi(j)) val^*(m,n,a) \times pi(a)^{exc(m,n,a)}$                                                                      | 16,17 <b>=</b> E                                         |
| 19. | $      j \neq a$                                                                                                          | 13 T13.13s                                               |
| 20. | $pred(pi(j)) val^*(m,n,a)$                                                                                                | 18,19 T13.43p                                            |
| 21. |                                                                                                                           | 15,20 ⊥I                                                 |
| 22. | $pred(pi(j)) \nmid val^*(m, n, Sa)$                                                                                       | 17-21 ∼I                                                 |
| 23. | $\forall i \geq Sa$ )pred( $pi(i)$ ) $\nmid$ val*( $m, n, Sa$ )                                                           | 12-22 (¥I)                                               |
| 24. | $[(\forall i \ge a) pred(pi(i)) \nmid val^*(m, n, a)] \rightarrow [(\forall i \ge Sa) pred(pi(i)) \nmid val^*(m, n, Sa)]$ | 11-23 →I                                                 |
| 25. | $(\forall i \geq a) pred(pi(i)) \nmid val^*(m, n, a)$                                                                     | 10,24 IN                                                 |

T13.46.f.  $PA \vdash (\forall j < i)exp(val^*(m, n, i), j) = exc(m, n, j)$ 

| 1. | $a < \emptyset$                                                        | $\mathbf{A}\left(g\left(\forall\mathbf{I}\right)\right)$ |
|----|------------------------------------------------------------------------|----------------------------------------------------------|
| 2. | $exp(val^*(m, n, \emptyset), a) \neq exc(m, n, a)$                     | A ( $c \sim E$ )                                         |
| 3. | $a \neq \emptyset$                                                     | <b>T6.</b> 49                                            |
| 4. |                                                                        | 1,3 ⊥I                                                   |
| 5. | $exp(val^*(m,n,\emptyset),a) = exc(m,n,a)$                             | 2-4 ∼E                                                   |
| 6. | $(\forall j < \emptyset)exp(val^*(m, n, \emptyset), j) = exc(m, n, j)$ | 1-5 (∀I)                                                 |

Exercise 13.33 T13.46.f

| 7.        |                                                                       | (∀         | $j < i)exp(val^*(m, n, i), j) = exc(m, n, j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A $(g \rightarrow I)$       |
|-----------|-----------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 8.        | ſ                                                                     | 6          | u < Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A $(g (\forall I))$         |
| 9.        |                                                                       | v          | $al^*(m,n,i) = Spred(val^*(m,n,i))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T13.46d, T13.36c            |
| 10.       |                                                                       | v          | $al^*(m, n, Si) = Spred(val^*(m, n, Si))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T13.46d, T13.36c            |
| 11.       | 1. $    val^*(m, n, Si) = val^*(m, n, i) \times pi(i)^{exc(m, n, i)}$ |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | def val*                    |
| 12.       | 2.     exc(m,n,a) = e                                                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | abv                         |
| 13.       |                                                                       | G          | $a < i \lor a = i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 T13.13m                   |
| 14.       |                                                                       |            | <u>a &lt; i</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A ( <i>g</i> 13∨E)          |
| 15.       |                                                                       |            | $exp(val^*(m,n,i),a) = exc(m,n,a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7,14 (∀E)                   |
| 16.       |                                                                       |            | $pred(pi(a)^{exp(val^*(m,n,i),a)}) val^*(m,n,i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 T13.44d                   |
| 17.       |                                                                       |            | $pred(pi(a)^{e}) val^{*}(m, n, 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12,15,16 = E                |
| 18.       |                                                                       |            | $\frac{pred(pi(a)^{e})}{val^{*}(m,n,l) \times p(l)^{e}(m,n,l)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17 113.24d<br>18 11 —E      |
| 20        |                                                                       |            | $\lim_{n \to \infty} \frac{1}{n!} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $A(c \sim I)$               |
| 20.       |                                                                       |            | $\frac{1}{2} \int \frac{1}{2} \int \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| 21.       |                                                                       |            | $pred(p(a)^{c+1}) val^{*}(m,n,1) \times p(1)^{cac(m,n,1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20,11 = E<br>14 T12 13f     |
| 22.       |                                                                       |            | $\frac{u \neq i}{mrad(mi(a)^{e+\bar{1}})  u_a ^* (m n i)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14 115.151<br>21 22 T13 43p |
| 23.       |                                                                       |            | $\frac{1}{mred} \left( mi(a) exp(val^*(m,n,i),a) + \overline{1} \right) \neq val^*(m,n,i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 T13 444                   |
| 25        |                                                                       |            | $\frac{pred(p(a))}{pred(p(a))} \neq val^*(m, n, i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.15.24 = E                |
| 26.       |                                                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12,13,21 —E<br>23,25 ⊥I     |
| 27        |                                                                       |            | $ = \frac{1}{2} \sum_{\alpha \in A} \frac{1}{\alpha (\alpha)} + \frac{1}{\alpha} \sum_{\alpha \in A} \frac{1}{\alpha (\alpha)} \sum_{\alpha \in A} \frac{1}{\alpha (\alpha)} + \frac{1}{\alpha} \sum_{\alpha \in A} \frac{1}{\alpha (\alpha)} + \frac{1}{\alpha (\alpha)} \frac$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.26 e.I                   |
| 27.       |                                                                       |            | $mrad(mi(a)^{e})   val(m,n,Si)$ $mrad(mi(a)^{e+1})   val^{*}(m,n,Si)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 27 AI                    |
| 29        |                                                                       |            | $pred(p(a))   val(m,n,Sl) \land pred(p(a)) \land j \land val(m,n,Sl)$ $exp(va)^*(m,n,Sl), a) = exc(m,n,a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28 10 T13 44f               |
| 20        |                                                                       |            | - :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20,10 1101011               |
| 30.       |                                                                       |            | $\frac{d}{d} = i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $A(g_{13} \vee E)$          |
| 31.       |                                                                       |            | $val^{*}(m,n,S_{1}) = val^{*}(m,n,a) \times pi(a)^{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11,12,30 = E                |
| 32.       |                                                                       |            | $\frac{pred(p(a)^{\circ})}{Spred(p(a)^{\circ})} = \frac{pri(a)^{\circ}}{pri(a)^{\circ}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T13.24b                     |
| 34        |                                                                       |            | $\operatorname{Spred}(\operatorname{pi}(a)^e) = \operatorname{pi}(a)^e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32 33 =F                    |
| 35.       |                                                                       |            | $pred(\underline{p}(a)^{e}) _{val} \times (m, n, a) \times \underline{p}(a)^{e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34 T13.24d                  |
| 36.       |                                                                       |            | $pred(pi(a)^{e}) val^{*}(m,n,Si)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35,31 =E                    |
| 37.       |                                                                       |            | $pred(pi(a)^{e+1}) va ^*(m,n,Si)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A ( $c \sim I$ )            |
| 38.       |                                                                       |            | $pred(pi(a)^{e+\overline{1}}) val^*(m,n,a) \times pi(a)^e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37,31 <b>=</b> E            |
| 39.       |                                                                       |            | $\exists q[Spred(pi(a)^{e+1}) \times q = val^*(m, n, a) \times pi(a)^e]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38 def                      |
| 40.       |                                                                       |            | $Spred(pi(a)^{e+\overline{1}}) = pi(a)^{e+\overline{1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T13.43j                     |
| 41.       |                                                                       |            | $\exists q [pi(a)^{e+1} \times q = val^*(m, n, a) \times pi(a)^e]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39,40 =E                    |
| 42.       |                                                                       |            | $pi(a)^{e+\overline{1}} \times q = val^*(m,n,a) \times pi(a)^e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A ( $c$ 41 $\exists$ E)     |
| 43.       |                                                                       |            | $\overline{e} + \overline{1} = Se$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>T6.</b> 47               |
| 44.       |                                                                       |            | $pi(a)^{Se} \times q = val^*(m, n, a) \times pi(a)^e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42,43 =E                    |
| 45.       |                                                                       |            | $pi(a)^e \times pi(a) \times q = val^*(m, n, a) \times pi(a)^e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44 T13.41a                  |
| 46.       |                                                                       |            | $pi(a)^e \neq \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | with T13.43h                |
| 47.       |                                                                       |            | $pi(a) \times q = val^*(m, n, a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45,46 T6.69                 |
| 48.       |                                                                       |            | $Spred(\mathfrak{p}(a)) = \mathfrak{p}(a)$<br>Spred(\mathfrak{p}(a)) × a = val*(m, n, a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | with T13.43j                |
| 49.<br>50 |                                                                       |            | $\exists a[Spred(\mathfrak{p}(a)) \times a = val^*(m, n, a)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47,48 =E<br>49 ∃I           |
| 51.       |                                                                       |            | $red(\overline{m}(a)) \times q = var(m, n, a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50 def                      |
| 52.       |                                                                       |            | $\begin{array}{c} a > a \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T13.13m                     |
| 53.       |                                                                       |            | $pred(pi(a)) \nmid val^*(m, n, a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52 T13.46e                  |
| 54.       |                                                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51,53 ⊥I                    |
| 55.       |                                                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41,42-54 ∃E                 |
| 56        |                                                                       |            | $pred(\overline{m}(a)^{e+\overline{1}}) \nmid val^*(m,n,Si)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37-55 ∼I                    |
| 57.       |                                                                       |            | $pred(\overline{pi}(a)^e) val^*(m,n,Si) \wedge pred(\overline{pi}(a)^{e+\overline{1}}) \nmid val^*(m,n,Si)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.56 ∧I                    |
| 58.       |                                                                       |            | $exp(val^*(m, n, Si), a) = exc(m, n, a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57,10 T13.44f               |
| 59        |                                                                       |            | $exp(val^*(m, n, Si), a) = exc(m, n, a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.14-29.30-58 ∨F           |
| 60        |                                                                       | (¥         | $i < Si) \exp(val^*(m n Si) i) = \exp(m n i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8-59 (¥I)                   |
| 60.<br>61 | <br>[/                                                                | ι.<br>V    | $\int \langle \sigma_{i} \rangle d\sigma_{i} \rangle d\sigma_{i} \langle \sigma_{i} \rangle d\sigma_{i} \rangle d\sigma_{i} \langle \sigma_{i} \rangle d\sigma_{i} \langle \sigma_{i} \rangle d\sigma_{i} \rangle d\sigma_{i} \langle \sigma_{i} \rangle d\sigma_{i} \rangle d\sigma_{i} \langle \sigma_{i} \rangle d\sigma_{i} \rangle d\sigma_{i} \rangle d\sigma_{i} \langle \sigma_{i} \rangle d\sigma_{i} \rangle d\sigma_{i}$ | 7.60 \]                     |
| 62.       | ()<br>()                                                              | ∢ j<br>√ j | $< i)exp(val^{(m,n,s1)}, j) = exc(m,n,j) \rightarrow [(\forall j < s)exp(val^{(m,n,s1)}, j) = exc(m,n,j)]$<br>$< i)exp(val^{*}(m,n,i), j) = Exc(m,n,j) \rightarrow [(\forall j < s)exp(val^{(m,n,s1)}, j) = exc(m,n,j)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6,61 IN                     |

# T13.46.g. PA $\vdash$ ( $\forall i < len(m)$ )[exp(val\*(m, n, l), i) = exp(m, i)] $\land$ ( $\forall i < len(n)$ )[exp(val\*(m, n, l), i + len(m)) = exp(n, i)]

| 1.<br>2.                                                                                                                        | $ \begin{aligned} l &= len(m) + len(n) \\ (\forall j < l)exp(val^*(m, n, l), j) &= exc(m, n, j) \end{aligned} $                                                                                                                                                                                                                                                                                                      | abv<br>T13.46f                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 3.<br>4.                                                                                                                        | $j < len(m) \rightarrow exc(m, n, j) = exp(m, j)$ $j < len(m)$                                                                                                                                                                                                                                                                                                                                                       | T13.46b<br>A ( <i>g</i> (∀I))                                                                                                      |
| 5.<br>6.<br>7.<br>8.<br>9.                                                                                                      | $exc(m, n, j) = exp(m, j)$ $len(m) \le len(m) + len(n)$ $j < l$ $exp(val^*(m, n, l), j) = exc(m, n, j)$ $exp(val^*(m, n, l), j) = exp(m, j)$                                                                                                                                                                                                                                                                         | 3,4 →E<br>T13.13u<br>4,6 T13.13c<br>2,7 (∀E)<br>5,8 =E                                                                             |
| 10.<br>11.<br>12.                                                                                                               | $ (\forall i < len(m))exp(val^*(m, n, l), i) = exp(m, i)  j + len(m) \ge len(m) \rightarrow exc(m, n, j + len(m)) = exp(n, (j + len(m)) - len(m))  \underline{j} < len(n) $                                                                                                                                                                                                                                          | 4-9 (∀I)<br>T13.46c<br>A (g (∀I))                                                                                                  |
| <ol> <li>13.</li> <li>14.</li> <li>15.</li> <li>16.</li> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> </ol> | $ \begin{array}{ c c } j + len(m) \ge len(m) \\ exc(m, n, j + len(m)) = exp(n, (j + len(m)) \dot{-} len(m)) \\ j + len(m) = len(m) + [(j + len(m)) \dot{-} len(m)] \\ j = (j + len(m)) \dot{-} len(m) \\ exc(m, n, j + len(m)) = exp(n, j) \\ j + len(m) < len(n) + len(m) \\ j + len(m) < l \\ exp(val^*(m, n, l), j + len(m)) = exc(m, n, j + len(m)) \\ exp(val^*(m, n, l), j + len(m)) = exp(n, j) \end{array} $ | T13.13u<br>11,12 $\rightarrow$ E<br>13 T13.23a<br>15 T6.68<br>14,16 =E<br>12 T13.13w<br>1,18 =E<br>2,19 ( $\forall$ E)<br>20,17 =E |
| 22.<br>23.                                                                                                                      | $ \begin{array}{l} (\forall i < len(n))exp(val^*(m,n,l), i + len(m)) = exp(n,i) \\ (\forall i < len(m))[exp(val^*(m,n,l), i) = exp(m,i)] \land (\forall i < len(n))[exp(val^*(m,n,l), i + len(m)) = exp(n,i)] \end{array} $                                                                                                                                                                                          | 12-21 (∀I)<br>10,22 ∧I                                                                                                             |

T13.46.h. PA  $\vdash i \leq l \rightarrow [pi(l)^{m+n}]^i \geq val^*(m, n, i)$ 

Exercise 13.33 T13.46.h

| 1.  | l = len(m) + len(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | abv                                             |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | $\overline{1} \ge \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>T8.</b> 14                                   |
| 3.  | $[pi(l)^{m+n}]^{\emptyset} = \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T13.41a                                         |
| 4.  | $val^*(m, n, \emptyset) = \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | def val*                                        |
| 5.  | $[pi(l)^{m+n}]^{\emptyset} \ge val^*(m, n, \emptyset)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,3,4 <b>=</b> E                                |
| 6.  | $\emptyset \not\leq l \lor [pi(l)^{m+n}]^{\emptyset} \geq val^*(m,n,\emptyset)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 ∨I                                            |
| 7.  | $\emptyset \le l \to [pi(l)^{m+n}]^{\emptyset} \ge val^*(m, n, \emptyset)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 Impl                                          |
| 8.  | $\left\lfloor i \leq l \to \left[ \operatorname{pi}(l)^{m+n} \right]^i \geq \operatorname{val}^*(m,n,i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 9.  | $Si \leq l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 10. | <i>i</i> < <i>l</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 T13.131                                       |
| 11. | $    i \leq l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 T13.13m                                      |
| 12. | $\left  \left[ pi(l)^{m+n} \right]^i \ge val^*(m,n,i) \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $8,11 \rightarrow E$                            |
| 13. | $\left[ pi(l)^{m+n} \right]^{Si} = [pi(l)^{m+n}]^i \times pi(l)^{m+n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T13.41a                                         |
| 14. | $val^*(m,n,Si) = val^*(m,n,i) \times pi(i)^{exc(m,n,i)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | def val*                                        |
| 15. | $\left  p_{i}(i) < p_{i}(l) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 T13.43k                                      |
| 16. | $i < len(m) \lor i \ge len(m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T14.13q                                         |
| 17. | i < len(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A ( $g 16 \lor E$ )                             |
| 18. | exc(m,n,i) = exp(m,i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17 T13.46b                                      |
| 19. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T13.44g                                         |
| 20. | $      exc(m,n,i) \leq m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18,19 =E                                        |
| 21. | $      m \le m + n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T13.13u                                         |
| 22. | $exc(m,n,i) \le m+n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20,21 T13.13a                                   |
| 23. | $\lfloor \underline{i} \geq len(m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A ( $g 16 \lor E$ )                             |
| 24. | exc(m, n, i) = exp(n, i - len(m))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23 T13.46c                                      |
| 25. | exp(n, i - len(m)) < n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T13.44g                                         |
| 26. | exc(m,n,i) < n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24,25 =E                                        |
| 27. | n < m + n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T13.13u                                         |
| 28. | $      exc(m,n,i) \le m+n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26,27 T13.13a                                   |
| 29. | $\left  \right  exc(m,n,i) < m+n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.17-22.23-28 ∨E                               |
| 30. | $m(i)^{exc}(m,n,i) < m(l)^{exc}(m,n,i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 T13.41f                                      |
| 31. | $ \begin{array}{c} p_{i}(l) > 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | with T13.43g                                    |
| 32. | $\lim_{m \to 0} pi(l) exc(m,n,i) < pi(l)^{m+n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.31 T13.41i                                   |
| 33. | $\lim_{m \to \infty} \frac{p_i(r)}{p_i(i)} e^{xc(m,n,i)} < \frac{p_i(l)}{p_i(l)} e^{xc(m,n,i)} < \frac{p_i(l)}{p_i(l)} e^{xc(m,n,i)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.32 T13.13a                                   |
| 34. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33 T13.13aa                                     |
| 35. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12 T13.13aa                                     |
| 36. | $\left  \left  val^{*}(m,n,i) \times pi(i)^{exc(m,n,i)} < \left[ pi(l)^{m+n} \right]^{i} \times pi(l)^{m+n} \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34,35 T13.13a                                   |
| 37. | $\left  \left  \left[ pi(l)^{m+n} \right]^{Si} \ge val^*(m,n,Si) \right  \right  = \frac{1}{m} \sum_{m \in \mathcal{N}} \frac{1}{m} \sum_{m \in $ | 13,14,36 <b>=</b> E                             |
| 38. | $\left  S_{i} \leq l \rightarrow [p_{i}(l)^{m+n}]^{S_{i}} \geq val^{*}(m,n,S_{i}) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9-37 →I                                         |
| 39. | $\begin{bmatrix} i < l \rightarrow [pi(l)^{m+n}]^i > val^*(m, n, i) \end{bmatrix} \rightarrow \begin{bmatrix} Si < l \rightarrow [pi(l)^{m+n}]^{Si} > val^*(m, n, Si) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8-38 →I                                         |
| 40. | $ i  < l \to [pi(l)^{m+n}]^i > val^*(m, n, i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.39 IN                                         |
| 41. | l < l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T13.13m                                         |
| 42  | $[m(l)^{m+n}]^l > val^*(m, n, l)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.41 (∀E)                                      |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                               |

T13.46.n.  $PA \vdash \forall x \forall n[len(Sn) \le x \rightarrow val(Sn, x) = Sn]$ 

Exercise 13.33 T13.46.n

| 1.  | $\lfloor len(Sa) \le \emptyset$                                                                                                  | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
|-----|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | $len(Sa) \neq \emptyset$                                                                                                         | 1 T13.13r                                       |
| 3.  | $Sa \neq \overline{1}$                                                                                                           | 2 T13.45j                                       |
| 4.  | $Sa \leq 1$                                                                                                                      | 3 T13.13r                                       |
| 5.  | $a \ge b$<br>$s_a > \overline{1}$                                                                                                | T13.13d                                         |
| 7   | $Sa \ge 1$<br>Sa = 1                                                                                                             | 4 6 T13 13t                                     |
| 8.  | $val(\overline{1}, \emptyset) = \overline{1}$                                                                                    | def                                             |
| 9.  | $val(Sa, \emptyset) = Sa$                                                                                                        | 8.7 =E                                          |
| 10. | $len(Sa) \le \emptyset \to val(Sa, \emptyset) = Sa$                                                                              | 1-9 →I                                          |
| 11. | $\forall n[len(Sn) \le \emptyset \to val(Sn, \emptyset) = Sn]$                                                                   | 10 ¥I                                           |
| 12. | $\forall n[len(Sn) \le x \to val(Sn, x) = Sn]$                                                                                   | A $(g \rightarrow I)$                           |
| 13. | $len(Sa) \le x \to val(Sa, x) = Sa$                                                                                              | 12 ∀E                                           |
| 14. | $val(Sa, Sx) = val(Sa, x) \times pi(x)^{exp(Sa, x)}$                                                                             | def                                             |
| 15. | $\lim_{n \to \infty} e^{n(S_{a})} \leq S_{x}$                                                                                    | $A(g \rightarrow I)$                            |
| 16. | $ len(Sa) \le x \lor len(Sa) = Sx$                                                                                               | 15  T13.13m                                     |
| 17. | $ten(Su) \leq x$                                                                                                                 | A (g 10VE)                                      |
| 10. | $va(Sa, x) = Sa$ $exp(Sa, x) = \emptyset$                                                                                        | $13,17 \rightarrow E$<br>17 T13 45h             |
| 20. | $p_i(x)^{(i)} = \overline{1}$                                                                                                    | T13.20a                                         |
| 21. | $\mathbb{P}^{i}(x)^{exp(Sa,x)} = \overline{1}$                                                                                   | 20,19 =E                                        |
| 22. | $val(Sa, Sx) = Sa \times \overline{1}$                                                                                           | 14,18,21 = E                                    |
| 23. | val(Sa, Sx) = Sa                                                                                                                 | 22 T6.57                                        |
| 24. | len(Sa) = Sx                                                                                                                     | A ( $g \ 16 \lor E$ )                           |
| 25. | $\exists q[pi(x)e^{\varphi(Sa,x)} \times q = Sa \land pred(pi(x)) \nmid q \land \forall y(y \neq x \to exp(q, y) = exp(Sa, y))]$ | T13.441                                         |
| 26. | $\lim_{x \to a} pi(x)exp(Sa,x) \times q = Sa \wedge pred(pi(x)) \nmid q \wedge \forall y(y \neq x \to exp(q, y) = exp(Sa, y))$   | A $(g 25 \exists E)$                            |
| 27. | $pi(x)^{exp(Sd,x)} \times q = Sa$                                                                                                | 26 ∧E                                           |
| 28. | $pred(p(x)) \neq q$<br>$\forall y(y \neq x \rightarrow exp(q, y) = exp(Sq, y))$                                                  | 26 AE                                           |
| 30. | $ \begin{vmatrix} y \\ z \\ z \\$                                                             | 27 T13.13ab                                     |
| 31. | $\exists r(q = Sr)$                                                                                                              | <b>30 T6</b> .50                                |
| 32. | q  = Sr                                                                                                                          | A (g 31 $\exists$ E)                            |
| 33. | $\forall y (y \neq x \rightarrow exp(Sr, y) = exp(Sa, y))$                                                                       | 29,32 =E                                        |
| 34. | len(Sr) > x                                                                                                                      | A ( $c \sim I$ )                                |
| 35. | $[\neg (\forall z \le Sr)[z \ge x \to exp(Sr, z) = \emptyset]$                                                                   | 34 T13.45e                                      |
| 36. | $                          l \leq Sr$                                                                                            | A $(g (\forall I))$                             |
| 37. | $                              \geq x$                                                                                           | $A(g \rightarrow I)$                            |
| 38. | $            l > x \lor l = x$                                                                                                   | 37 T13.13                                       |
| 39. |                                                                                                                                  | A $(g \ 38 \lor E)$                             |
| 40. | $            l \neq x$ $evp(Sr l) = evp(Sq l)$                                                                                   | 39 T13.13s                                      |
| 42. |                                                                                                                                  | 39 T13.131                                      |
| 43. |                                                                                                                                  | 42,24 =E                                        |
| 44. | $         exp(Sa, l) = \emptyset$                                                                                                | 43 T13.451                                      |
| 45. | $          exp(Sr, l) = \emptyset$                                                                                               | 44,41 =E                                        |
| 46. | = x                                                                                                                              | A ( $g$ 38 $\lor$ E)                            |
| 47. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                               | 28,32 =E                                        |
| 48. | $            exp(Sr, x) = \emptyset$                                                                                             | 47 T13.44k                                      |
| 49. | $               exp(Sr, l) = \emptyset$                                                                                          | 48,46 <b>=</b> E                                |
| 50. | $            exp(Sr, l) = \emptyset$                                                                                             | 38,39-45,46-49 ∨E                               |
| 51. | $            l \ge x \to exp(Sr, l) = \emptyset$                                                                                 | 37-50 →I                                        |
| 52. | $         (\forall z \le Sr)[z \ge x \to exp(Sr, z) = \emptyset]$                                                                | 36-51 (¥I)                                      |
| 53. |                                                                                                                                  | 35,52 ⊥I                                        |
| 54. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                               | 34-53 ∼I                                        |
| 55. | $      len(Sr) \le x$ Example 13.32 T12.46 m                                                                                     | 54 T13.13r                                      |
|     | Exercise 13.33 113.40.11                                                                                                         |                                                 |

| 56. | val(Sr, x) = Sr                                                                                   | 12,55 ∀E                |
|-----|---------------------------------------------------------------------------------------------------|-------------------------|
| 57. | l < x                                                                                             | A ( $g$ ( $\forall$ I)) |
| 58. | $          l \neq x$                                                                              | 57 T13.13s              |
| 59. | exp(Sr, l) = exp(Sa, l)                                                                           | 33,58 ∀E                |
| 60. | $      (\forall i < x) exp(Sr, i) = exp(Sa, i)$                                                   | 57-59 (∀I)              |
| 61. | val(Sr, x) = val(Sa, x)                                                                           | 60 T13.46m              |
| 62. | $pi(x)^{exp(Sa,x)} \times Sr = Sa$                                                                | 27,32 =E                |
| 63. | $       val(Sa, x) \times pi(x)^{exp(Sa, x)} = Sa$                                                | 62,56,61 =E             |
| 64. | val(Sa, Sx) = Sa                                                                                  | 14,63 =E                |
| 65. | val(Sa, Sx) = Sa                                                                                  | 31,32-64 ∃E             |
| 66. | val(Sa, Sx) = Sa                                                                                  | 25,26-65 ∃E             |
| 67. | val(Sa, Sx) = Sa                                                                                  | 16,17-23,24-66 ∨E       |
| 68. | $len(Sa) \leq Sx \rightarrow val(Sa, Sx) = Sa$                                                    | $15-67 \rightarrow I$   |
| 69. | $\forall n[len(Sn) \le Sx \to val(Sn, Sx) = Sn]$                                                  | 68 <b>∀</b> I           |
| 70. | $\forall n[len(Sn) \le x \to val(Sn, x) = Sn] \to \forall n[len(Sn) \le Sx \to val(Sn, Sx) = Sn]$ | 12-69 →I                |
| 71. | $\forall x \forall n [len(Sn) \le x \to val(Sn, x) = Sn]$                                         | 11,70 IN                |

T13.46.0.  $[len(n) \le q \land (\forall k < len(n))exp(n,k) \le r] \rightarrow [pi(q)^r]^q \ge val(n, len(n))$ 

| 1.  | $ len(n) \le q \land (\forall k < len(n))exp(n,k) \le r $                                                                                                                  | A $(g \rightarrow I)$                           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | $len(n) \leq q$                                                                                                                                                            | 1 ∧E                                            |
| 3.  | $(\forall k < len(n))exp(n,k) \le r$                                                                                                                                       | 1 ∧E                                            |
| 4.  | $[pi(q)^r]^{\emptyset} = \overline{1}$                                                                                                                                     | T13.41a                                         |
| 5.  | $val(n, \emptyset) = \overline{1}$                                                                                                                                         | def                                             |
| 6.  | $[pi(q)^r]^{\emptyset} \ge val(n, \emptyset)$                                                                                                                              | 4,5 T13.13m                                     |
| 7.  | $\emptyset \leq q \rightarrow [pi(q)^r]^{\emptyset} \geq val(n, \emptyset)$                                                                                                | 6 ∨I                                            |
| 8.  | $\underline{i} \leq q \rightarrow [pi(q)^r]^i \geq val(n,i)$                                                                                                               | A $(g \rightarrow I)$                           |
| 9.  | $Si \leq q$                                                                                                                                                                | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 10. | $i \leq q$                                                                                                                                                                 | 9 T13.13l,m                                     |
| 11. | $val(n, Si) = val(n, i) \times pi(i)^{exp(n,i)}$                                                                                                                           | def                                             |
| 12. | $[pi(q)^r]^{Si} = [pi(q)^r]^i \times pi(q)^r$                                                                                                                              | T13.41a                                         |
| 13. | $\left[ pi(q)^r \right]^i \ge val(n,i)$                                                                                                                                    | 8,10 →E                                         |
| 14. | $pi(i) \leq pi(q)$                                                                                                                                                         | 10 T13.43k                                      |
| 15. | $i < len(n) \lor i \ge len(n)$                                                                                                                                             | T13.13q                                         |
| 16. | i < len(n)                                                                                                                                                                 | A ( $g 15 \lor E$ )                             |
| 17. | $exp(n,i) \le r$                                                                                                                                                           | 3,16 (∀E)                                       |
| 18. | $i \geq len(n)$                                                                                                                                                            | A ( $g 15 \lor E$ )                             |
| 19. | $     exp(n,i) = \emptyset$                                                                                                                                                | 18 T13.451                                      |
| 20. | $\emptyset \leq r$                                                                                                                                                         | T13.13d                                         |
| 21. | $     exp(n,i) \leq r$                                                                                                                                                     | 20,19 <b>=</b> E                                |
| 22. | $exp(n,i) \leq r$                                                                                                                                                          | 15,16-17,18-21 ∨E                               |
| 23. | $      pi(i) > \overline{1}$                                                                                                                                               | T13.43g                                         |
| 24. | $pi(i)^{exp(n,i)} \leq pi(i)^r$                                                                                                                                            | 22,23 T13.41j                                   |
| 25. | $pi(i)^r \leq pi(q)^r$                                                                                                                                                     | 14 T13.41f                                      |
| 26. | $\mathbb{p}i(i)^{\mathscr{e}xr(n,i)} \le \mathbb{p}i(q)^r$                                                                                                                 | 24,25 T13.13a                                   |
| 27. | $   val(n,i) \times pi(i)^{exp(n,i)} \le val(n,i) \times pi(q)^r$                                                                                                          | 26 T13.13aa                                     |
| 28. | $val(n,i) \times pi(q)^r \leq [pi(q)^r]^i \times pi(q)^r$                                                                                                                  | 13 T13.13aa                                     |
| 29. | $ val(n,i) \times pi(i)^{exp(n,i)} \leq [pi(q)^r]^i \times pi(q)^r$                                                                                                        | 27,28 T13.13a                                   |
| 30. | $\left  \left[ pi(q)^r \right]^{Si} \ge val(n, Si) \right $                                                                                                                | 29,11,12 =E                                     |
| 31. | $\left  Si \leq q \rightarrow \left[ pi(q)^r \right]^{Si} \geq val(n, Si) \right $                                                                                         | 9-30 →I                                         |
| 32. | $\{i \le q \to [pi(q)^r]^i \ge val(n,i)\} \to \{Si \le q \to [pi(q)^r]^{Si} \ge val(n,Si)\}$                                                                               | 8-31 →I                                         |
| 33. | $i \leq q \rightarrow [pi(q)^r]^i \geq val(n,i)$                                                                                                                           | 7,32 IN                                         |
| 34. | $\left[\operatorname{pi}(q)^r\right]^{\operatorname{len}(n)} \ge \operatorname{val}(n, \operatorname{len}(n))$                                                             | 2,33 →E                                         |
| 35. | $pi(q)^r > \emptyset$                                                                                                                                                      | T13.43h                                         |
| 36. | $\left[ \operatorname{pi}(q)^r \right]^{\operatorname{len}(n)} \leq \left[ \operatorname{pi}(q)^r \right]^q$                                                               | 35,2 T13.41j                                    |
| 37. | $\left[ pi(q)^r \right]^q \ge val(n, len(n))$                                                                                                                              | 34,36 T13.13a                                   |
| 38. | $[\operatorname{len}(n) \le q \land (\forall k < \operatorname{len}(n)) \exp(n, k) \le r] \to [\operatorname{pi}(q)^r]^q \ge \operatorname{val}(n, \operatorname{len}(n))$ | 1-37 →I                                         |

E13.34. Show each of the results from T13.47.

T13.47.

T13.47.e. PA  $\vdash len(m * n) \ge l$ 

Exercise 13.34 T13.47.e

| 1.  | l = len(m) + len(n)                                      | aby                     |
|-----|----------------------------------------------------------|-------------------------|
| 2.  | $len(n) = \emptyset \lor len(n) > \emptyset$             | T13.13f                 |
| 3.  | $len(n) = \emptyset$                                     | A ( $g 2 \lor E$ )      |
| 4.  | $\boxed{len(m) = \emptyset \lor len(m) > \emptyset}$     | T13.13f                 |
| 5.  | $len(m) = \emptyset$                                     | A ( $g 4 \lor E$ )      |
| 6.  | $\boxed{\phi} + \phi = \phi$                             | <b>T6.</b> 41           |
| 7.  | $len(m * n) > \emptyset$                                 | T13.13d                 |
| 8.  | $len(m * n) \ge \emptyset + \emptyset$                   | 6,7 <b>=</b> E          |
| 9.  | $len(m*n) \ge l$                                         | 8,5,3 <b>=</b> E        |
| 10. | $\lfloor len(m) > \emptyset$                             | A ( $g 4 \lor E$ )      |
| 11. | $\exists v [len(m) = Sv]$                                | 10 T13.13g              |
| 12. | $len(m) = Sa$                                            | A (g 11∃E)              |
| 13. | $\left  \int_{exp(m,a)}^{\infty} \phi \right  $          | 12 with T13.45m         |
| 14. | a < len(m)                                               | 12 T13.13i              |
| 15. | $(\forall i < len(m))exp(m * n, i) = exp(m, i)$          | T13.47c                 |
| 16. | exp(m * n, a) = exp(m, a)                                | 15,14 (∀E)              |
| 17. | $exp(m * n, a) > \emptyset$                              | 13,16 <b>=</b> E        |
| 18. | len(m * n) > a                                           | 17 T13.45h              |
| 19. | $len(m*n) \geq Sa$                                       | 18 T13.131              |
| 20. | $len(m * n) \geq len(m)$                                 | 19,12 <b>=</b> E        |
| 21. | $len(m) + \emptyset = len(m)$                            | <b>T6.</b> 41           |
| 22. | l = len(m)                                               | 21,3 <b>=</b> E         |
| 23. | $ len(m * n) \geq l$                                     | 20,22 = E               |
| 24. | $ len(m*n) \ge l$                                        | 11,12-23 ∃E             |
| 25. | $len(m * n) \ge l$                                       | 4,5-9,10-24 ∨E          |
| 26. | $len(n) > \emptyset$                                     | A $(g 2 \lor E)$        |
| 27. | $\exists v [len(n) = Sv]$                                | 26 T13.13g              |
| 28. | len(n) = Sa                                              | A ( $g$ 27 $\exists$ E) |
| 29. | $exp(n,a) > \emptyset$                                   | 28 with T13.45m         |
| 30. | a < len(n)                                               | 28 T13.13i              |
| 31. | $(\forall i < len(n))exp(m * n, i + len(m)) = exp(n, i)$ | T13.47c                 |
| 32. | exp(m * n, a + len(m)) = exp(n, a)                       | 31,30 (∀E)              |
| 33. | $exp(m * n, a + len(m)) > \emptyset$                     | 29,32 =E                |
| 34. | len(m * n) > a + len(m)                                  | 33 T13.45h              |
| 35. | $   len(m * n) \ge S(a + len(m))$                        | 34 T13.131              |
| 36. | S(a + len(m)) = Sa + len(m)                              | T6.53                   |
| 37. | S(a + len(m)) = l                                        | 36,28 =E                |
| 38. | $ len(m * n) \geq l$                                     | 35,37 <b>=</b> E        |
| 39. | $len(m*n) \ge l$                                         | 27,28-38 ∃E             |
| 40. | $len(m * n) \ge l$                                       | 2,3-25,26-39 ∨E         |

T13.47.f. PA  $\vdash len(m * n) = l$ 

Exercise 13.34 T13.47.f

| 1.<br>2.<br>3.                                                                                                     | l = len(m) + len(n)<br>$len(m * n) \ge l$<br>$\lfloor len(m * n) \ne l$                                                                                                                                                                                                                                               | abv<br>T13.47e<br>A ( <i>c</i> ~E)                                                                           |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 4.<br>5.<br>6.<br>7.<br>8.<br>9.<br>10.                                                                            | $ \begin{bmatrix} len(m * n) > l \\ l \ge \emptyset \\ len(m * n) > \emptyset \\ m * n > \overline{1} \\ \overline{1} > \emptyset \\ m * n > \emptyset \\ \exists v[m * n = Sv] $                                                                                                                                     | 3 T13.13r<br>T13.13d<br>4,5 T13.13c<br>6 T13.45g<br>T8.14<br>7,8 T13.13b<br>9 T13.13g                        |
| 11.<br>12.<br>13.<br>14.                                                                                           | $ \begin{array}{c} m*n = Sp\\ len(Sp) > l\\ \exists v[Sv + l = len(Sp)]\\ \lfloor Sa + l = len(Sp) \end{array} $                                                                                                                                                                                                      | A ( $c 10 \exists E$ )<br>4,11 = E<br>12 def<br>A ( $c 13 \exists E$ )                                       |
| 15.<br>16.<br>17.<br>18.<br>19.                                                                                    | $ \begin{array}{ c c c c c } S(a+l) = Sa+l \\ S(a+l) = len(Sp) \\ exp(Sp, a+l) \ge \overline{1} \\ \exists q [pi(a+l)^{exp(Sp,a+l)} \times q = Sp \land \forall y(y \neq a+l \rightarrow exp(q, y) = exp(Sp, y))] \\ &                                 $                                                              | T6.53<br>14,15 =E<br>16 T13.45m<br>T13.44l<br>A (c 18∃E)                                                     |
| <ol> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> </ol> | $ \begin{array}{ c c c c c } \hline pi(a+l)^{exp(Sp,a+l)} \times j &= Sp \\ pi(a+l)^{exp(Sp,a+l)} \geq pi(a+l) \\ pi(a+l) > \overline{1} \\ pi(a+l)^{exp(Sp,a+l)} > \overline{1} \\ Sp > \emptyset \\ pi(a+l)^{exp(Sp,a+l)} \times j > \emptyset \\ j > \emptyset \\ pi(a+l)^{exp(Sp,a+l)} \times j > j \end{array} $ | 19 AE<br>17 with T13.411<br>T13.43g<br>21,22 T13.13c<br>T13.13e<br>24,20 =E<br>25 T13.13ab<br>23,26 T13.13ac |
| 28.                                                                                                                | j < Sp                                                                                                                                                                                                                                                                                                                | 20,27 <b>=</b> E                                                                                             |

Exercise 13.34 T13.47.f

| 29. |    | $    \forall v(v \neq a + l \rightarrow exp(i, v) = exp(Sp, v))$                                        | 19 ∧E                   |
|-----|----|---------------------------------------------------------------------------------------------------------|-------------------------|
| 30. |    | b  < len(m)                                                                                             | A ( $g$ ( $\forall$ I)) |
| 31. |    | $\left  \left[ \left( \forall i < len(m) \right) exp(m * n, i) = exp(m, i) \right] \right  $            | T13.47c                 |
| 32. |    | exp(m * n, b) = exp(m, b)                                                                               | 31,30 (∀E)              |
| 33. |    | exp(Sp,b) = exp(m,b)                                                                                    | 11,32 =E                |
| 34. |    | $len(m) \le a + l$                                                                                      | T13.13u                 |
| 35. |    | b < a + l                                                                                               | 30,34 T13.13c           |
| 36. |    | $b \neq a + l$                                                                                          | 35 T13.13s              |
| 37. |    | $b \neq a + l \rightarrow exp(j,b) = exp(Sp,b)$                                                         | 29 ∀E                   |
| 38. |    | exp(j,b) = exp(Sp,b)                                                                                    | 37,36 →E                |
| 39. |    | exp(j,b) = exp(m,b)                                                                                     | 33,38 <b>=</b> E        |
| 40. |    | $(\forall i < len(m))exp(i,i) = exp(m,i)$                                                               | 30-39 (∀I)              |
| 41. |    | b < len(n)                                                                                              | A $(g (\forall I))$     |
| 42. |    | $(\forall i < len(n))exp(m * n, i + len(m)) = exp(n, i)$                                                | T13.47c                 |
| 43. |    | exp(m * n, b + len(m)) = exp(n, b)                                                                      | 42,41 (∀E)              |
| 44. |    | exp(Sp, b + len(m)) = exp(n, b)                                                                         | 43,11 <b>=</b> E        |
| 45. |    | $len(m) \le a + len(m)$                                                                                 | T13.13u                 |
| 46. |    | b + len(m) < a + l                                                                                      | 41,45 T13.13y           |
| 47. |    | $b + len(m) \neq a + l$                                                                                 | 46 T13.13s              |
| 48. |    | $b + len(m) \neq a + l \rightarrow exp(j, b + len(m)) = exp(Sp, b + len(m))$                            | 29 ∀E                   |
| 49. |    | exp(j, b + len(m)) = exp(Sp, b + len(m))                                                                | $48,47 \rightarrow E$   |
| 50. |    | exp(j, b + len(m)) = exp(n, b)                                                                          | 44,49 = E               |
| 51. |    | $(\forall i < len(n))exp(j, i + len(m)) = exp(n, i)$                                                    | 41-50 (¥I)              |
| 52. |    | $(\forall i < len(m))exp(j,i) = exp(m,i) \land (\forall i < len(n))exp(j,i+len(m)) = exp(n,i)$          | 40,51 ∧I                |
| 53. |    | $(\forall w < m * n) \sim [(\forall i < len(m))exp(w, i) = exp(m, i) \land$                             | T13.47d                 |
|     |    | $(\forall i < len(n))exp(w, i + len(m)) = exp(n, i)]$                                                   |                         |
| 54. |    | $(\forall w < Sp) \sim [(\forall i < len(m))exp(w, i) = exp(m, i) \land$                                | 53,11 <b>=</b> E        |
|     |    | $(\forall i < len(n))exp(w, i + len(m)) = exp(n, i)]$                                                   |                         |
| 55. |    | $  \sim [(\forall i < len(m))exp(j,i) = exp(m,i) \land (\forall i < len(n))exp(j,i+len(m)) = exp(n,i)]$ | 54,28 (¥E)              |
| 56. |    |                                                                                                         | 52,55 ⊥I                |
| 57. |    |                                                                                                         | 18,19-56 ∃E             |
| 58. |    |                                                                                                         | 13,14-57 ∃E             |
| 59. |    | 1                                                                                                       | 10,11-58 ∃E             |
| 60. | le | $n(m * n) \leq l$                                                                                       | 3-59 ∼E                 |
| 61. | le | n(m * n) = l                                                                                            | 2,60 T13.13t            |

T13.47.m. PA  $\vdash$  val(Sm \* Sn, a) = val(Sm, a) \* val(Sn, a  $\div$  len(Sm))

Exercise 13.34 T13.47.m

| 1.        |          | <u>i</u> < a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A ( $g$ ( $\forall$ I))      |
|-----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 2.        |          | $a < len(Sm) \lor a \ge len(Sm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T13.13q                      |
| 3.        |          | a < len(Sm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A ( $g 2 \lor E$ )           |
| 4.        | 11       | i < len(Sm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,3 T13.13b                  |
| 5.        |          | exp(Sm * Sn, i) = exp(Sm, i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 T13.47c                    |
| 6.        |          | $a - len(Sm) = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 T13.23b                    |
| 7.        |          | val(Sn, a - len(m)) = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 def                        |
| 8.        |          | $val(Sm, a) > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T13.461                      |
| 9.<br>10  |          | va(Sm, a) = va(Sm, a) * va(Sn, a - ven(Sm)) $exp(val(Sm, a) i) = exp(Sm i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,8113.471                   |
| 11.       |          | exp(Val(Sm, a), i) = exp(Sm, i) $exp(Sm * Sn, i) = exp(Val(Sm, a) * val(Sn, a - len(Sm)), i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.10.9 = E                   |
| 10        |          | $= \sum_{i=1}^{n} \left( \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n}$ | A (= 2) (E)                  |
| 12.       |          | $a \ge ten(Sm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $A(g 2 \vee E)$              |
| 13.       |          | val(Sm, a) = Sm $lan(val(Sm, a)) = lan(Sm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12 T13.46n                   |
| 14.       |          | ten(val(Sm, u)) = ten(Sm)<br>$i < len(Sm) \lor i > len(Sm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13 = E<br>T13 13a            |
| 16.       |          | i < len(Sm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A $(g   15 \lor E)$          |
| 17        |          | $e_{rn}(Sm * Sn i) = e_{rn}(Sm i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16 T13 47c                   |
| 18.       |          | i < len(val(Sm, a))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.14 = E                    |
| 19.       |          | exp(val(Sm, a) * val(Sn, a - len(Sm)), i) = exp(val(Sm, a), i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 T13.47c                   |
| 20.       |          | exp(val(Sm, a), i) = exp(Sm, i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 T13.461                    |
| 21.       |          | exp(Sm * Sn, i) = exp(val(Sm, a) * val(Sn, a - len(Sm)), i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17,20,19 = E                 |
| 22.       |          | $i \geq len(Sm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A ( $g 15 \lor E$ )          |
| 23.       |          | exp(Sm * Sn, (i - len(Sm)) + len(Sm)) = exp(Sn, i - len(Sm))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T13.47g                      |
| 24.       |          | i = len(Sm) + (i - len(Sm))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22 T13.23a                   |
| 25.       |          | exp(Sm * Sn, i) = exp(Sn, i - len(Sm))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23,24 = E                    |
| 26.       |          | exp(val(Sm, a) * val(Sn, a - len(Sm)), (i - len(Sm)) + len(val(Sm, a))) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>T12</b> 47                |
| 27        |          | exp(val(Sn, a - len(Sm)), i - len(Sm))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T13.47g                      |
| 27.       |          | exp(val(Sm, a) * val(Sn, a - len(Sm)), l) = exp(val(Sn, a - len(Sm)), l - len(Sm))<br>$a \doteq len(Sm) > i \doteq len(Sm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26,24,14 = E<br>22.1 T13.23e |
| 20.       |          | $a = \operatorname{ren}(Sm) > i = \operatorname{ren}(Sm)$<br>$exp(val(Sn \ a \stackrel{\bullet}{\rightarrow} \operatorname{len}(Sm)) = exp(Sn \ i \stackrel{\bullet}{\rightarrow} \operatorname{len}(Sm))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22,1 113.25C                 |
| 30.       |          | exp(Sm * Sn, i) = exp(val(Sm, a) * val(Sn, a - len(Sm)), i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25,29,27 =E                  |
| 31.       |          | exp(Sm * Sn, i) = exp(val(Sm, a) * val(Sn, a - len(Sm)), i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15,16-21,22-30 ∨E            |
| 32.       |          | exp(Sm * Sn, i) = exp(val(Sm, a) * val(Sn, a - len(Sm)), i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,3-11,12-31 ∨E              |
| 33.       | l c      | $\forall i < a)exp(Sm * Sn, i) = exp(val(Sm, a) * val(Sn, a - len(Sm)), i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-32 (∀I)                    |
| 34.       | ve       | ul(Sm * Sn, a) = val(val(Sm, a) * val(Sn, a - len(Sm)), a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33 T13.46m                   |
| 35.       | le       | en(val(Sm, a) * val(Sn, a - len(Sm))) = len(val(Sm, a)) + len(val(Sn, a - len(Sm)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T13.47f                      |
| 36.       | a        | $< len(Sm) \lor a \ge len(Sm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T13.13q                      |
| 37.       |          | $\frac{a}{c} < len(Sm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A ( <i>g</i> 36∨E)           |
| 38.       |          | $len(val(Sm, a)) \le a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T13.46j                      |
| 39.       |          | $a - len(Sm) = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37 T13.23b                   |
| 40.       |          | val(Sn, a - len(Sm)) = 1 $len(val(Sn, a - len(Sm))) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39 dei<br>40 T12 45f         |
| 41.<br>42 |          | len(val(Sm, a) * val(Sn, a - len(Sm))) = len(val(Sm, a))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40115.451<br>3541 = F        |
| 43.       |          | $len(val(Sm,a) * val(Sn,a - len(Sm))) \le a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38,42 = E                    |
| 44.       | li       | $a \ge len(Sm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A ( <i>g</i> 36∨E)           |
| 45.       | ļľ       | $\int_{len(val(Sm,a))}^{-} \le len(Sm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T13.46k                      |
| 46.       |          | $len(val(Sn, a \doteq len(Sm))) \le a \doteq len(Sm)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T13.46j                      |
| 47.       |          | $len(val(Sm, a)) + len(val(Sn, a - len(Sm))) \le len(Sm) + (a - len(Sm))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>45,46 T13</b> .13v        |
| 48.       |          | a = len(Sm) + (a - len(Sm))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44 T13.23a                   |
| 49.       |          | $len(val(Sm, a)) + len(val(Sn, a - len(Sm))) \le a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47,48 =E                     |
| 50.       |          | $len(val(Sm, a) * val(Sn, a - len(Sm))) \le a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35,49 =E                     |
| 51.       | le       | $\operatorname{en}(\operatorname{val}(Sm, a) * \operatorname{val}(Sn, a - \operatorname{len}(Sm))) \le a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36,37-43,44-50 ∨E            |
| 52.       | ve       | $u(Sm, a) * val(Sn, a - len(Sm)) \ge 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T13.47c                      |
| 53.       | ve<br>ve | u(val(Sm, a) * val(Sn, a - len(Sm)), a) = val(Sm, a) * val(Sn, a - len(Sm))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51 T13.46n                   |
| 34.       | V        | $u(\Im m * \Im n, u) = va(\Im m, u) * va(\Im n, u - ven(\Im m))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54,55 =E                     |

E13.35. Show (j) and the unfinished cases for the *C* disjunct in (l) and (n). Hard core: show each of the results from T13.48.

T13.48.

T13.48.i. PA  $\vdash \mathbb{T}ermseq(m,t) \rightarrow \mathbb{T}ermseq(m * \overline{2}^{\lceil S \rceil * t}, \lceil S \rceil * t)$ 

| 1.        | $\mathbb{I}ermseq(m,t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A $(g \rightarrow I)$       |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 2.        | $exp(m, len(m) \div \overline{1}) = t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 T13.48a                   |
| 3.        | $m > \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 T13.48a                   |
| 4.        | $\left[ \langle \forall k < len(m) \rangle [A(m,k) \lor B(m,k) \lor C(m,k) \lor D(m,k) ] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 113.48a                   |
| 5.        | $len(2 \xrightarrow{S} 1) = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T13.45k                     |
| 6.        | $exp(\overline{2}  \overset{J}{} \overset{I}{,} \emptyset) = \lceil S \rceil * t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T13.44i                     |
| 7.        | $len(m * \overline{2}^{(S)**I}) = len(m) + \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 T13.47f                   |
| 8.        | len(m) + 1 = Slen(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T6.47                       |
| 9.        | ten(m) = Sten(m) - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 115.25K                     |
| 10.       | len(m) = len(m * 2) - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,7,8 =E                    |
| 11.       | exp(m * 2, len(m)) = S * t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6113.4/c                    |
| 12.       | exp(m*2, len(m*2, l) - 1) = S * t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11,10 = E                   |
| 13.       | $len(m * 2 \overset{\circ}{\longrightarrow}) > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 T13.13u                   |
| 14.       | $m * \overline{2}  \stackrel{\text{def}}{=} > \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13 T13.45g                  |
| 15.       | $a < len(m * \overline{2}^{-5})^{*(1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A $(g (\forall I))$         |
| 16.       | $a < len(m) \lor a = len(m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15,7 T13.13n                |
| 17.       | $\begin{bmatrix} a < len(m) \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A $(g \ 16 \lor E)$         |
| 18.       | $exp(m * \overline{2}^{3}, *i, a) = exp(m, a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 17 T13.47c                  |
| 19.<br>20 | $A(m,a) \lor B(m,a) \lor C(m,a) \lor D(m,a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4,17 (\forall E)$          |
| 20.       | $\begin{bmatrix} A(m, a) \\ gxp(m, a) - \overline{[0]} \lor Var(gxp(m, a)) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A(g 19 VL)                  |
| 22.       | $ \begin{vmatrix} exp(m,a) - \overline{b} & \forall v a (exp(m,a)) \\ exp(m,a) = \overline{b} \\ \overline{b} $ | A $(g \ 21 \lor E)$         |
| 23.       | $\begin{bmatrix} -1 & -1 & -1 \\ e_{xp}(m * 2^{\overline{S^{-}}*t}, a) = \overline{[0]} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.22 =E                    |
| 24        | $\left  \left  \left  exp(m * \overline{2}^{\lceil S\rceil * t}, a) = \overline{10} \right  \vee Var(exp(m * \overline{2}^{\lceil S\rceil * t}, a)) \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23 ∨I                       |
| 25        | $A(m * \overline{2}^{s})^{*t} a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23 v1<br>24 aby             |
| 26.       | Var(exp(m,a))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A $(g \ 21 \lor E)$         |
| 27.       | $Var(exp(m * \overline{2}^{\lceil S \rceil * t}, a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.26 =E                    |
| 28        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27 ∨I                       |
| 29.       | $A(m * \overline{2}^{\overline{S^{n}}*t}, a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 28 aby                      |
| 30        | $4(m * \overline{2})^{\overline{S} * t} a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21 22-25 26-29\/F           |
| 31.       | $ \  \  \ _{A(m+2^{\overline{CS^{n}}*t},a) \vee B(m*\overline{2}^{\overline{CS^{n}}*t},a) \vee C(m*\overline{2}^{\overline{CS^{n}}*t},a) \vee D(m*\overline{2}^{\overline{CS^{n}}*t},a)   \  \  \  \  \  \  \  \  \  \  \  \  \  \  \  \  \  \  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21,22-25,20-25 V E<br>30 ∨I |
| 32.       | B(m,a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A (g 19∨E)                  |
| 33.       | $\left[ \left[ \exists j < a \right] [exp(m, a) = \overline{\lceil S \rceil} * exp(m, j)] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32 abv                      |
| 34.       | $      exp(m,a) = \overline{\lceil S \rceil} * exp(m,j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A ( $g$ 33( $\exists$ E))   |
| 35.       | j < a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| 36.       | j < len(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17,35 T13.13b               |
| 37.       | $exp(m * \overline{2}^{-3-*t}, j) = exp(m, j))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36 T13.47c                  |
| 38.       | $exp(m * \overline{2}^{S^{*}*t}, a) = \overline{S^{*}} * exp(m * \overline{2}^{S^{*}*t}, j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 34,18,37 =E                 |
| 39.       | $\left[ \left( \exists j < a \right) [exp(m * \overline{2}^{S^{-*t}}, a) = \overline{\lceil S \rceil} * exp(m * \overline{2}^{S^{-*t}}, j) \right] $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38,35 (∃I)                  |
| 40.       | $B(m * \underline{2}^{S^{-s}*t}, a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39 abv                      |
| 41.       | $B(m * \overline{2}^{\lceil S \rceil * t}, a) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33,34-40 (∃E)               |
| 42.       | $\left  \begin{array}{c} A(m \ast \overline{2}^{\lceil S \rceil \ast t}, a) \lor B(m \ast \overline{2}^{\lceil S \rceil \ast t}, a) \lor C(m \ast \overline{2}^{\lceil S \rceil \ast t}, a) \lor D(m \ast \overline{2}^{\lceil S \rceil \ast t}, a) \\ \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41 ∨I                       |
| 43.       | C(m,a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A ( $g 19 \lor E$ )         |
| 44.       | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | similarly                   |
| 45.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A ( $g 19 \lor E$ )         |
| 46.       | $\left  \begin{array}{c} \left  \right  \left  A(m * \overline{\underline{2}}^{\lceil S \rceil * t}, a) \lor B(m * \overline{\underline{2}}^{\lceil S \rceil * t}, a) \lor C(m * \overline{\underline{2}}^{\lceil S \rceil * t}, a) \lor D(m * \overline{\underline{2}}^{\lceil S \rceil * t}, a) \right  \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | similarly                   |
| 47        | $   A(m * \overline{2}^{\lceil S \rceil * t}, a) \vee B(m * \overline{2}^{\lceil S \rceil * t}, a) \vee C(m * \overline{2}^{\lceil S \rceil * t}, a) \vee D(m * \overline{2}^{\lceil S \rceil * t}, a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19,20-46 ∨E                 |

Exercise 13.35 T13.48.i

| 48. |                  | a = len(m)                                                                                                                                                                                                                                                                  | A ( $g \ 16 \lor E$ ) |
|-----|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 49. |                  | $len(m) > \emptyset$                                                                                                                                                                                                                                                        | 3 T13.45j             |
| 50. |                  | $  len(m) \stackrel{\cdot}{-} \frac{1}{1} < len(m)$                                                                                                                                                                                                                         | 49 T13.23i            |
| 51. |                  | $exp(m * \overline{2}^{\lceil S \rceil * t}, len(m) \div \overline{1}) = exp(m, len(m) \div \overline{1})$                                                                                                                                                                  | 50 T13.47c            |
| 52. |                  | $exp(m * \overline{2}^{\lceil S \rceil * t}, len(m) \div \overline{1}) = t$                                                                                                                                                                                                 | 51,2 =E               |
| 53. |                  | $exp(m * \overline{2}^{\lceil S \rceil * t}, a) = \overline{\lceil S \rceil} * t$                                                                                                                                                                                           | 11,48 = E             |
| 54. |                  | $exp(m * \overline{2}^{\lceil S \rceil * t}, a) = \overline{\lceil S \rceil} * exp(m * \overline{2}^{\lceil S \rceil * t}, len(\underline{m}) \dot{-} \overline{1})$                                                                                                        | 52,53 =E              |
| 55. |                  | $\left[ (\exists j < a) [exp(m * \overline{2}^{\lceil S \rceil * t}, a) = \overline{\lceil S \rceil} * exp(m * \overline{2}^{\lceil S \rceil * t}, j)] \right]$                                                                                                             | 50,54 (∃I)            |
| 56. |                  | $B(m * \overline{2}^{S^*t}, a) $                                                                                                                                                                                                                                            | 55 abv                |
| 57. |                  | $\left  A(m * \overline{2}^{\lceil S \rceil * t}, a) \vee B(m * \overline{2}^{\lceil S \rceil * t}, a) \vee C(m * \overline{2}^{\lceil S \rceil * t}, a) \vee D(m * \overline{2}^{\lceil S \rceil * t}, a) \right $                                                         | 56 ∨I                 |
| 58. |                  | $\left  A(m * \overline{2}^{\lceil S \rceil * t}, a) \lor B(m * \overline{2}^{\lceil S \rceil * t}, a) \lor C(m * \overline{2}^{\lceil S \rceil * t}, a) \lor D(m * \overline{2}^{\lceil S \rceil * t}, a) \right $                                                         | 16,17-47,48-57 ∨E     |
| 59. |                  | $(\forall k < len(m * \underline{\overline{2}^{\lceil S \rceil * t}}))[A(m * \overline{2}^{\lceil S \rceil * t}, k) \lor B(m * \overline{2}^{\lceil S \rceil * t}, k) \lor C(m * \overline{2}^{\lceil S \rceil * t}, k) \lor D(m * \overline{2}^{\lceil S \rceil * t}, k)]$ | 15-58 (¥I)            |
| 60. |                  | $\mathbb{T}ermseq(m * \overline{2}^{\lceil S \rceil * t}, \overline{\lceil S \rceil} * t)$                                                                                                                                                                                  | 12,14,59 T13.48a      |
| 61. | $\mathbb{T}_{0}$ | $ermseq(m,t) \rightarrow \mathbb{T}ermseq(m*\overline{2}^{\lceil S \rceil * t}, \overline{\lceil S \rceil} * t)$                                                                                                                                                            | $1-60 \rightarrow I$  |

T13.48.1. PA  $\vdash \mathbb{T}ermseq(m,t) \rightarrow \forall x (\forall k < len(m)) \{ len(exp(m,k)) \leq x \rightarrow \exists n [Termseq(n, exp(m,k)) \land (\forall i < len(n)) exp(n,i) \leq exp(m,k) \land len(n) \leq len(exp(m,k)) \}$ 

Let  $\mathcal{P}$  be the formula,  $(\forall k < len(m)) \{ len(exp(m,k)) \le x \rightarrow \exists n [Termseq(n, exp(m,k)) \land (\forall i < len(n)) exp(n,i) \le exp(m,k) \land len(n) \le len(exp(m,k)) \}$ 

| 1.  | $\mathbb{I}ermseq(m,t)$                                                                                                                                                 | A $(g \rightarrow I)$ |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 2.  | $\mathcal{P}_{0}^{X}$                                                                                                                                                   | basis                 |
| 3.  | $(\forall k < len(m))exp(m,k) > \overline{1}$                                                                                                                           | 1 T13.48e             |
| 4.  | $   \mathcal{P}$                                                                                                                                                        | A $g \rightarrow I$   |
| 5.  | $\left  \left[ (\forall k < len(m)) \{ len(exp(m,k)) \le x \to \exists n [Termseq(n,exp(m,k)) \land $                                                                   |                       |
|     | $(\forall i < len(n))exp(n,i) \le exp(m,k) \land len(n) \le len(exp(m,k))\}$                                                                                            | 4 abv                 |
| 6.  | a < len(m)                                                                                                                                                              | A (g ( $\forall$ I))  |
| 7.  | $\left  \left  \overline{exp(m,a)} > \overline{1} \right  \right $                                                                                                      | 3,6 (∀E)              |
| 8.  | $len(\overline{2}^{exp(m,a)}) = \overline{1}$                                                                                                                           | 7 with T13.45k        |
| 9.  | $exp(\overline{2}^{exp(m,a)}, \emptyset) = exp(m,a)$                                                                                                                    | T13.44i               |
| 10. | $len(exp(m,a)) \le Sx$                                                                                                                                                  | A $(g \rightarrow I)$ |
| 11. | $(\forall k < len(m)[A(m,k) \lor B(m,k) \lor C(m,k) \lor D(m,k)]$                                                                                                       | 1 T13.48a             |
| 12. | $A(m,a) \lor B(m,a) \lor C(m,a) \lor D(m,a)$                                                                                                                            | 11,6 (¥E)             |
| 13. | A(m,a)                                                                                                                                                                  | A (g 12 $\lor$ E)     |
| 14. | $exp(m,a) = \overline{\lceil \emptyset \rceil} \lor \mathbb{V}ar(exp(m,a))$                                                                                             | 13 abv                |
| 15. | $\left      \mathbb{T}ermseq(\overline{2}^{exp(m,a)}, exp(m,a)) \right $                                                                                                | 14 T13.48g,h          |
| 16. | $         b < \overline{1}$                                                                                                                                             | A (g ( $\forall$ I))  |
| 17. | $          \overline{b} = \emptyset$                                                                                                                                    | 16 with T8.16         |
| 18. | $         exp(\overline{2}^{exp(m,a)}, b) \le exp(m,a)$                                                                                                                 | 9 T13.13m             |
| 19. | $        (\forall i < len(\overline{2}^{exp(m,a)}))exp(\overline{2}^{exp(m,a)},i) \le exp(m,a)$                                                                         | 8,16-18 (¥I)          |
| 20. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                      | 7 T13.45j             |
| 21. | $\left  \left  \left  len(\overline{2}^{exp(m,a)}) \leq len(exp(m,a)) \right  \right  \leq len(exp(m,a))$                                                               | 8,20 =E               |
| 22. | $\left  \left  \left  \left  \exists n[Termseq(n, exp(m, a)) \land (\forall i < len(n))exp(n, i) \le exp(m, a) \land len(n) \le len(exp(m, a)) \right  \right  \right $ | 15,19,21 ∃I           |

Exercise 13.35 T13.48.1

| 23.       |                                       | B(m,a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A (g 12 $\lor$ E)                               |
|-----------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 24.       | [                                     | $\exists j < a \} exp(m, a) = \overline{\lceil S \rceil} * exp(m, j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23 abv                                          |
| 25.       |                                       | <i>b</i> < <i>a</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A (g 24 $\exists$ E)                            |
| 26.       |                                       | $exp(m,a) = \lceil S \rceil * exp(m,b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |
| 27.       |                                       | b < len(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6,25 T13.13b                                    |
| 28.       |                                       | $\exp(m,b) \le \exp(m,a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26 T13.47n                                      |
| 29.<br>30 |                                       | len([S]) = 1 $len([S]) = 1 + len(evp(m, h))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cap<br>29 T13 47f                               |
| 31.       |                                       | len(exp(m,b)) < len(exp(m,a))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.30 def                                       |
| 32.       |                                       | len(exp(m,b)) < Sx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,31 T13.13d                                   |
| 33.       |                                       | $len(exp(m,b)) \leq x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32 T13.13n                                      |
| 34.       |                                       | $\exists n[Termseq(n, exp(m, b)) \land (\forall i < len(n))exp(n, i) \le exp(m, b) \land len(n) \le len(exp(m, b))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5,27,33 (∀E)                                    |
| 35.       |                                       | $\frac{1}{2} \frac{1}{2} \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A (g 34 $\exists$ E)                            |
| 36.       |                                       | $len(l * 2^{cdp(m,d)}) = len(l) + len(2^{cdp(m,d)})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T13.47f                                         |
| 37.       |                                       | $len(l * 2^{cop(n,k)}) = len(l) + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36,8 =E                                         |
| 38.       |                                       | lermseq(l, exp(m, b))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35 AE                                           |
| 39.       |                                       | Termseq(l * 2 , S' * exp(m, b))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38 113.481                                      |
| 40.       |                                       | 1  ermseq(l * 2  erm(m, a))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26,39 = E                                       |
| 41.       |                                       | $\int \frac{1}{1} \int \frac{1}{2} \left[ \frac{1}{2} \left[ \frac{1}{2} \right] \right] $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A $(g (\forall I))$                             |
| 42.       |                                       | $\int J \leq S len(l)$ $i \leq len(l) \setminus i = len(l)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41,37 = E<br>42,T13,13n                         |
| 44.       |                                       | $\begin{vmatrix} j \\ i \\ l \\ i \\ l \\ l \\ l \\ l \\ l \\ l \\ l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $A (g 43 \lor E)$                               |
| 45.       |                                       | $      \frac{1}{(\forall i < len(l))exp(l, i) < exp(m, b)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35 AE                                           |
| 46.       |                                       | $            exp(l, j) \le exp(m, b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45,44 (∀E)                                      |
| 47.       |                                       | $exp(l, j) \le exp(m, a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46,28 T13.13a                                   |
| 48.       |                                       | $exp(l, j) = exp(l * \overline{2}^{exp(m, a)}, j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44 T13.47c                                      |
| 49.       |                                       | $\left  exp(l * \overline{2}^{exp(m,a)}, j) \le exp(m,a) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47,48 <b>=</b> E                                |
| 50.       |                                       | $\left  \begin{array}{c} j = len(l) \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A ( $g$ 43 $\lor$ E)                            |
| 51.       |                                       | $      exp(\overline{2}^{exp(m,a)}, \emptyset) = exp(l * \overline{2}^{exp(m,a)}, len(l))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T13.47c                                         |
| 52.       |                                       | $exp(m,a) = exp(l * \overline{2}^{exp(m,a)}, len(l))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51,9 =E                                         |
| 53.       |                                       | $     exp(l * \overline{2}^{exp(m,a)}, j) \le exp(m,a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52 T13.13m                                      |
| 54.       |                                       | $\left  exp(l * \overline{2}^{exp(m,a)}, j) \le exp(m,a) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43,44-49,50-53 ∨E                               |
| 55.       |                                       | $(\forall i < len(l * \overline{2}^{exp(m,a)}))exp(l * \overline{2}^{exp(m,a)}, i) < exp(m,a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 41-54 (¥I)                                      |
| 56.       |                                       | $ len(l) \le len(exp(m,b))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35 ∧E                                           |
| 57.       |                                       | len(l) < len(exp(m, a))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56,31 T13.13c                                   |
| 58.       |                                       | $Slen(l) \leq len(exp(m, a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57 T13.131                                      |
| 59.       |                                       | $ len(l * 2^{cop(m,a)}) \le len(exp(m,a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58,37 = E                                       |
| 60.       |                                       | $\exists n[termseq(n, exp(m, a)) \land (\forall l < ten(n))exp(n, l) \le exp(m, a) \land ten(n) \le ten(exp(m, a)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40,55,59 =1                                     |
| 61.       |                                       | $ \exists n[\text{Termseq}(n, exp(m, a)) \land (\forall i < \text{len}(n))exp(n, i) \leq exp(m, a) \land \text{len}(n) \leq \text{len}(exp(m, a))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34,35-60 ∃E                                     |
| 62.       |                                       | $\exists n[Termseq(n, exp(m, a)) \land (\forall i < len(n))exp(n, i) \leq exp(m, a) \land len(n) \leq len(exp(m, a)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24,25-61 ( <del>I</del> E)                      |
| 63.       |                                       | $\underline{C}(m,a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A ( $g 12 \lor E$ )                             |
| 64.       |                                       | $\exists n[\text{Termseq}(n, exp(m, a)) \land (\forall i < \text{len}(n))exp(n, i) \leq exp(m, a) \land \text{len}(n) \leq \text{len}(exp(m, a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | similarly                                       |
| 65.       |                                       | D(m,a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\mathbf{A}\left(g \ 12 \lor \mathbf{E}\right)$ |
| 66.       |                                       | $\exists n[Termseq(n, exp(m, a)) \land (\forall i < len(n))exp(n, i) \le exp(m, a) \land len(n) \le len(exp(m, a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | similarly                                       |
| 67.       | E                                     | $n[Termseq(n, exp(m, a)) \land (\forall i < len(n))exp(n, i) \le exp(m, a) \land len(n) \le len(exp(m, a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12,13-66 ∨E                                     |
| 68.       | len                                   | $(exp(m, a)) \leq Sx \rightarrow \exists n[Termseq(n, exp(m, a)) \land (\forall i < len(n))exp(n, i) \leq exp(m, a) \land$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
|           |                                       | $len(n) \leq len(exp(m, a)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10-67 →I                                        |
| 69.       | $(\forall k$                          | $< len(m))\{len(exp(m,k)) \le 5x \to \exists n[lermseq(n, exp(m,k)) \land (\forall i < len(n), exp(m,k)) \land (\forall i < len(n), exp(m,k), \land len(n) < len(n), exp(m,k)]\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 68 ( <del>V</del> I)                          |
| 70.       | $\mathcal{P}_{c}^{x}$                 | $(m \sim \operatorname{sen}(n))\operatorname{sen}(n, t) \simeq \operatorname{sen}(m, \kappa) \wedge \operatorname{sen}(n) \simeq \operatorname{sen}(\operatorname{sen}(m, \kappa))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69 abv                                          |
| 71.       | $\mathcal{P} \rightarrow \mathcal{I}$ | $\mathcal{P}_{Sx}^{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-70 →I                                         |
| 72.       | $\forall x (\forall I)$               | $k < len(m)) \{ len(exp(m,k)) \le x \to \exists n [Termseq(n,exp(m,k)) \land (\forall i < len(n))exp(n,i) \le exp(m,k) \land (\forall i < len(n))exp(n,i) \land (\forall i < len(n))exp(n,i) \le exp(m,k) \land (\forall i < len(n))exp(n,i) \land (\forall i < len(n))ex(n,i) \land (\forall i < len(n))exp(n,i) \land (\forall i < len(n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |
| 72        | l lei                                 | $n(n) \leq len(exp(m,k)) \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2, 71 IN                                        |
| 13.       | ⊥ermseq<br>(∀i                        | $\langle m, i \rangle \rightarrow i \land \langle m, k \rangle \land \langle m, $ | 1-72 →I                                         |
|           |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |

866

T13.48.n. PA  $\vdash \mathbb{T}ermseq(m, t) \rightarrow (\forall i < \mathbb{l}en(m))\mathbb{T}erm(exp(m, i))$ 

Exercise 13.35 T13.48.n

| 1.        | Termseq(m,t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $A(g \rightarrow I)$       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 2.        | $\boxed{exp(m, len(m) - 1)} = t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 T13.48a                  |
| 3.        | $m > \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 T13.48a                  |
| 4.        | $(\forall k < len(m))[A(m,k) \lor B(m,k) \lor C(m,k) \lor D(m,k)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 T13.48a                  |
| 5.        | $\emptyset < len(m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 T13.45j                  |
| 6.        | $\begin{vmatrix} A(m, \emptyset) \lor B(m, \emptyset) \lor C(m, \emptyset) \lor D(m, \emptyset) \\ \downarrow A(m, \emptyset) \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $4,5 (\forall E)$          |
| 7.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $A(g \cup E)$              |
| 8.        | $   exp(m, \emptyset) =   \emptyset   \lor \forall ar(exp(m, \emptyset))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 abv                      |
| 9.        | $\mathbb{T}ermseq(2^{m}, exp(m, \emptyset))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8 T13.48g,h                |
| 10.       | $\left[ \exists x  I  ermseq(x, exp(m, b)) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 31                       |
| 11.       | $     \underline{B}(m, \emptyset) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A ( $g 6 \lor E$ )         |
| 12.       | $\square \square $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A ( $c \sim E$ )           |
| 13.       | $       (\exists j < \emptyset) exp(\underline{m}, \underline{\emptyset}) = \overline{\lceil S \rceil} * exp(\underline{m}, j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 abv                     |
| 14.       | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A (c 13 (∃E))              |
| 15.       | $\left  \right  \left  \frac{j}{2} < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| 16.       | <i>j</i> ≮ Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T13.13d,r                  |
| 17.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15,16 ±1                   |
| 18.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13,14-17 (∃E)              |
| 19.       | $\exists x  \mathbb{I}  ermseq(x, exp(m, \emptyset))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12-18 ∼E                   |
| 20.       | $\left  \right  C(m, \emptyset)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A ( $g 6 \lor E$ )         |
| 21.       | $  \exists x Termseq(x, exp(m, \emptyset))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | similarly                  |
| 22.       | $    D(m, \emptyset)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A ( $g 6 \lor E$ )         |
| 23.       | $\exists x  \mathbb{T}ermseq(x, exp(m, \emptyset))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | similarly                  |
| 24.       | $\exists x \mathbb{T}ermseq(x, exp(m, \emptyset))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6,7-23 ∨E                  |
| 25.       | $\emptyset < len(m) \rightarrow \exists x \mathbb{T}ermseq(x, exp(m, \emptyset))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24 ∨I                      |
| 26.       | $\left  \left[ (\forall z \le k) [z < len(m) \to \exists x  \mathbb{T}ermseq(x, exp(m, z))] \right] \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A $(g \rightarrow I)$      |
| 27.       | Sk < len(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A $(g \rightarrow I)$      |
| 28.       | k < len(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27 T13.131                 |
| 29.       | $    A(m, Sk) \lor B(m, Sk) \lor C(m, Sk) \lor D(m, Sk)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,27 (∀E)                  |
| 30.       | $\begin{bmatrix} A(m, Sk) \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A (g 29∨E)                 |
| 31.       | $exp(m, Sk) = \emptyset \lor \forall ar(exp(m, Sk))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 abv                     |
| 32.       | $\begin{bmatrix} I \text{ ermseq}(2^{k}, exp(m, Sk)) \\ \exists x \mathbb{T}_{erman}(x, em(m, Sk)) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31 T13.48g,h               |
| 55.       | $\left[ \begin{array}{c}   \mathbf{A}_{\mathbf{x}} = c(m)seq(\mathbf{x}, exp(m, \mathbf{b}_{\mathbf{x}})) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52 JI                      |
| 34.       | $\begin{bmatrix} B(m, Sk) \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A (g 29∨E)                 |
| 35.       | $       (\exists j < Sk)exp(m, Sk) =  S  * exp(m, j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34  abv                    |
| 30.<br>37 | $ \left  \begin{array}{c} \left  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A (g 55 (EE))              |
| 38        | $\left  \right  \left  \left  \frac{a}{a} \right  \leq k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37 T13 13n                 |
| 39.       | $\begin{vmatrix} & a \\ a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38,28 T13.13c              |
| 40.       | $\exists x  \mathbb{T}ermseq(x, exp(m, a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26,38,39 (∀E)              |
| 41.       | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A ( $g$ 40 $\exists$ E)    |
| 42.       | $\left  \left  \right  \right  \left  \left  \mathbb{T}ermseq(n * \overline{2}^{\lceil S \rceil} * exp(m,a), \overline{\lceil S \rceil} * exp(m,a)) \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41 T13.48i                 |
| 43.       | $      \exists x \mathbb{T}ermseq(x, \overline{\lceil S \rceil} * exp(m, a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42 ∃I                      |
| 44.       | $            \exists x \mathbb{T}ermseq(x, exp(m, Sk))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43,36 =E                   |
| 45.       | $      \exists x Termseq(x, exp(m, Sk))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40,41-44 ∃E                |
| 46.       | $      \exists x \mathbb{T}ermseq(x, exp(m, Sk))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35,36-45 (∃E)              |
| 47.       | C(m, Sk)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A ( $g \ 29 \lor E$ )      |
| 48.       | $\exists x \mathbb{T}ermseq(x, exp(m, Sk))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | similarly                  |
| 49.       | D(m, Sk)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A (g 29∨E)                 |
| 50.       | $\exists x \mathbb{T}ermseq(x, exp(m, Sk))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | similarly                  |
| 51        | $\exists x Termsea(x, exp(m, Sk))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29 30-50 ∨E                |
| 51.       | $Sk < len(m) \rightarrow \exists r Termeral(r, evn(m, Sk))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27-51 →I                   |
| 52.       | $\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 $ | 27-51 -71                  |
| 53.<br>54 | $   \{\forall z \leq \kappa\}   z < len(m) \to \exists x  l  ermseq(x, exp(m, z)) ] \to [S\kappa < len(m) \to \exists x  l  ermseq(x, exp(m, S\kappa)) ] $<br>$ \forall k [k < len(m) \to \exists x  T  ermseq(x, exp(m, k)) ] $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20-52 →I<br>25 53 T13 1302 |
| 54.<br>55 | $\begin{vmatrix} n_{1} \\ a \\ en(m) \end{vmatrix} = 2A \pm enn(seq(A, exp(m, K)))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $A(g(\forall I))$          |
| 56.       | $\exists x Termseq(x, exp(m, a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55 (∀E)                    |
| 57.       | Term(exp(m, a))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56 T13.48m                 |
| 58.       | $  (\forall i < len(m))Term(exp(m, i))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55-57 (∀I)                 |
| 50        | $\mathcal{T}ermse_a(m,t) \to (\forall i < len(m))\mathcal{T}erm(exp(m,i))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1-59 →I                    |
| 57.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |

E13.37. Work the *K* and *M* cases from T13.50l. Hard core: show each of the results from T13.50.

T13.50.

T13.50.i. PA  $\vdash \mathbb{T}subseq(m, n, t, v, s, u) \rightarrow \mathbb{T}subseq(m * \overline{2}^{\lceil S \rceil * t}, n * \overline{2}^{\lceil S \rceil * u}, \lceil S \rceil * t, v, s, \lceil S \rceil * u)$ 

| 1.  | $\mathbb{T}$ subseq $(m, n, t, v, s, u)$                                                                                                                                                                                                                                                                 | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$               |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 2.  | Termseq(m, t)                                                                                                                                                                                                                                                                                            | 1 T13.50a                                                     |
| 3.  | len(m) = len(n)                                                                                                                                                                                                                                                                                          | 1 T13.50a                                                     |
| 4.  | $exp(n, len(n) - \overline{1}) = u$                                                                                                                                                                                                                                                                      | 1 T13.50a                                                     |
| 5.  | $(\forall k < len(m))(I(m,n,k) \lor J(v,m,n,k) \lor K(v,s,m,n,k) \lor L(m,n,k) \lor M(m,n,k) \lor N(m,n,k))$                                                                                                                                                                                             | 1 T13.50a                                                     |
| 6.  | $\frac{\mathbb{T}ermseq(m * \overline{2} \; \overset{S * *l}{=}, \overline{S} \; \overrightarrow{S} * t)}{\underline{\Box}}$                                                                                                                                                                             | 2 T13.48i                                                     |
| 7.  | $\lceil S \rceil > \emptyset$                                                                                                                                                                                                                                                                            | cap                                                           |
| 8.  | $\int S' * t > \emptyset \land S' * u > \emptyset$                                                                                                                                                                                                                                                       | 7 T13.47n                                                     |
| 9.  | $len(\overline{2}^{-3})^{*i} = \overline{1} \land len(\overline{2}^{-3})^{*i} = \overline{1}$                                                                                                                                                                                                            | 8 T13.45k                                                     |
| 10. | $len(m * \overline{2}^{(S')*t}) = len(m) + \overline{1} \wedge len(n * \overline{2}^{(S')*t}) = len(n) + \overline{1}$                                                                                                                                                                                   | 9 T13.47f                                                     |
| 11. | $len(m * \overline{2}^{'S' * t}) = len(n * \overline{2}^{'S' * t})$                                                                                                                                                                                                                                      | 10,3 =E                                                       |
| 12. | $len(n * \overline{2}^{\lceil S \rceil * u}) \doteq \overline{1} = len(n)$                                                                                                                                                                                                                               | 10 T13.23k                                                    |
| 13. | $exp(n * \overline{2}^{\lceil S \rceil * u}, len(n)) = exp(\overline{2}^{\lceil S \rceil * u}, \emptyset)$                                                                                                                                                                                               | T13.47g                                                       |
| 14. | $exp(\overline{2}^{\lceil S\rceil * u}, \emptyset) = \overline{\lceil S\rceil} * u$                                                                                                                                                                                                                      | T13.44i                                                       |
| 15. | $exp(n * \overline{2}^{\lceil S \rceil * u}, \underline{len}(n * \overline{2}^{\lceil S \rceil * u}) \dot{-} \overline{1}) = \overline{\lceil S \rceil} * u$                                                                                                                                             | 12,13,14 =E                                                   |
| 16. | $  l < len(m * \overline{2}^{\lceil S \rceil * t})$                                                                                                                                                                                                                                                      | A ( $g$ ( $\forall$ I))                                       |
| 17. | l < Slen(m)                                                                                                                                                                                                                                                                                              | 10,16 =E                                                      |
| 18. | $l < len(m) \lor l = len(m)$                                                                                                                                                                                                                                                                             | 17 T13.13n                                                    |
| 19. | $\left  \begin{array}{c} l \\ l $                                                                                                                                                                                                                                | A ( <i>g</i> 18∨E)                                            |
| 20. | $  exp(m * \overline{2}^{S^*}t, l) = exp(m, l) \wedge exp(n * \overline{2}^{S^*}t, l) = exp(n, l)$                                                                                                                                                                                                       | 19,3 T13.47c                                                  |
| 21. | $\left  I(m,n,l) \lor J(v,m,n,l) \lor K(v,s,m,n,l) \lor L(m,n,l) \lor M(m,n,l) \lor N(m,n,l) \right $                                                                                                                                                                                                    | 5,19 (¥E)                                                     |
| 22. | I(m,n,l)                                                                                                                                                                                                                                                                                                 | A ( $g \ 21 \lor E$ )                                         |
| 23. | $      exp(m,l) = \overline{[\emptyset]} \wedge exp(n,l) = \overline{[\emptyset]} $                                                                                                                                                                                                                      | 22 abv                                                        |
| 24. | $     exp(m * \overline{2}^{\lceil S \rceil * t}, l) = \overline{\lceil \emptyset \rceil} \land exp(n * \overline{2}^{\lceil S \rceil * u}, l) = \overline{\lceil \emptyset \rceil}$                                                                                                                     | 20,23 =E                                                      |
| 25. | $      I(m * \overline{2}^{\lceil S \rceil * t}, n * \overline{2}^{\lceil S \rceil * u}, l)$                                                                                                                                                                                                             | 24 abv                                                        |
| 26. | $      I \lor J \lor K \lor L \lor M \lor N(v, s, m * \overline{2}^{\lceil S \rceil * t}, n * \overline{2}^{\lceil S \rceil * u}, l)$                                                                                                                                                                    | 25 ∨I                                                         |
| 27. | $\int J(v,m,n,l) \vee K(v,s,m,n,l)$                                                                                                                                                                                                                                                                      | A ( $g$ 21 $\lor$ E)                                          |
| 28. | $\left  \begin{array}{c} I \\ I \\ V \\ I \\ V \\ K \\ V \\ L \\ V \\ M \\ V \\ N(v, s, m * \overline{2}^{\overline{C} \overline{S}^{\neg} * t}, n * \overline{2}^{\overline{C} \overline{S}^{\neg} * t}, n \\ I \\ V \\ I \\ V \\ V \\ V \\ V \\ V \\ V \\ V$                                           | similarly                                                     |
| 29. | L(m,n,l)                                                                                                                                                                                                                                                                                                 | A ( $g \ 21 \lor E$ )                                         |
| 30. | $(\exists i < l)[exp(m,l) = \overline{\lceil S \rceil} * exp(m,i) \land exp(n,l) = \overline{\lceil S \rceil} * exp(n,i)]$                                                                                                                                                                               | 29 abv                                                        |
| 31. | i < l                                                                                                                                                                                                                                                                                                    | $\mathbf{A}\left(g\ 30\left(\exists \mathbf{E}\right)\right)$ |
| 32. | $\left  \begin{array}{c} exp(m,l) = \lceil S \rceil * exp(m,i) \land exp(n,l) = \lceil S \rceil * exp(n,i) \right $                                                                                                                                                                                      |                                                               |
| 33. | $       i < len(m) \land i < len(n) $                                                                                                                                                                                                                                                                    | 31,19,3 T13.13b                                               |
| 34. | $\left  \left  \left  exp(m * \overline{2}^{3 * u}, i) = exp(m, i) \wedge exp(n * \overline{2}^{3 * u}, i) = exp(n, i) \right  \right  = exp(n, i)$                                                                                                                                                      | 33 T13.47c                                                    |
| 35. | $\left[ \left[ \left[ exp(m * \overline{2}^{S^{**l}}, l) = \overline{\lceil S \rceil} * exp(m * \overline{2}^{S^{**l}}, i) \land exp(n * \overline{2}^{S^{**u}}, l) = \overline{\lceil S \rceil} * exp(n * \overline{2}^{S^{**u}}, i) \right] \right]$                                                   | 32,20,34 = E                                                  |
| 36. | $\left  \left  \left  \left( \exists i < l \right) [exp(m * \overline{2} S^{\top * t}, l) = \overline{\lceil S \rceil} * exp(m * \overline{2} S^{\top * t}, i) \land exp(n * \overline{2} S^{\top * u}, l) = \overline{\lceil S \rceil} * exp(n * \overline{2} S^{\top * u}, i) \right  \right  \right $ | 31,35 ( <del>I</del> I)                                       |
| 37. | $\left  \left  \left  L(m * \underline{\underline{2}}^{S^{*}*t}, n * \underline{\underline{2}}^{S^{*}*t}, n * \underline{\underline{2}}^{S^{*}*t}, l \right  \right  \right  $                                                                                                                           | 36 abv                                                        |
| 38. | $       L(m * \overline{2}^{ S ^{+st}}, n * \overline{2}^{ S ^{+su}}, l) $                                                                                                                                                                                                                               | 30,31-37 (∃E)                                                 |
| 39. | $\left  \left  \left  I \lor J \lor K \lor L \lor M \lor N(v, s, m * \overline{2}^{'S'*t}, n * \overline{2}^{'S'*t}, n * \overline{2}^{'S'*t}, l \right  \right  \right $                                                                                                                                | 38 ∨I                                                         |
| 40. | $       M(m,n,l) \lor N(m,n,l) $                                                                                                                                                                                                                                                                         | A ( $g$ 21 $\lor$ E)                                          |
| 41. | $\left  \left  \left  I \lor J \lor K \lor L \lor M \lor N(v, s, m * \overline{2}^{\lceil S \rceil * t}, n * \overline{2}^{\lceil S \rceil * u}, l\right) \right  \right  = 0$                                                                                                                           | similarly                                                     |
| 42. | $\left  \left  \left  I \lor J \lor K \lor L \lor M \lor N(v, s, m * \overline{2}^{\lceil S \rceil * t}, n * \overline{2}^{\lceil S \rceil * u}, l \right. \right  \right  $                                                                                                                             | 21,22-41 ∨E                                                   |

Exercise 13.37 T13.50.i

| 43. |               | l = len(m)                                                                                                                                                                                                                                                                                     | A ( $g \ 18 \lor E$ ) |
|-----|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 44. |               | l = len(n)                                                                                                                                                                                                                                                                                     | 43,3 =E               |
| 45. |               | $m > \overline{1}$                                                                                                                                                                                                                                                                             | 2 T13.48a             |
| 46. |               | $len(m) > \emptyset$                                                                                                                                                                                                                                                                           | 45 T13.45j            |
| 47. |               | $len(m) \doteq \overline{1} < len(m)$                                                                                                                                                                                                                                                          | 46 T13.23i            |
| 48. |               | $len(m) \doteq \overline{1} < len(n)$                                                                                                                                                                                                                                                          | 47,3 =E               |
| 49. |               | $len(m) \stackrel{\cdot}{-} \frac{\overline{1} < l}{l}$                                                                                                                                                                                                                                        | 47,43 =E              |
| 50. |               | $exp(m * \overline{2}^{\lceil S \rceil * t}, len(m) \div \overline{1}) = exp(m, len(m) \div \overline{1})$                                                                                                                                                                                     | 47 T13.47c            |
| 51. |               | $exp(m, len(\underline{m}) - \overline{1}) = t$                                                                                                                                                                                                                                                | 2 T13.48a             |
| 52. |               | $exp(m * \overline{2}^{\lceil S \rceil * t}, len(m) \div \overline{1}) = t$                                                                                                                                                                                                                    | 50,51 =E              |
| 53. |               | $exp(m * \overline{2}^{\lceil S \rceil * t}, len(m)) = exp(\overline{2}^{\lceil S \rceil * t}, \emptyset)$                                                                                                                                                                                     | T13.47g               |
| 54. |               | $exp(\overline{2}^{\lceil S\rceil * t}, \emptyset) = \lceil S\rceil * t$                                                                                                                                                                                                                       | T13.44i               |
| 55. |               | $exp(m * \overline{2}^{\lceil S \rceil * t}, len(m)) = \lceil S \rceil * t$                                                                                                                                                                                                                    | 53,54 =E              |
| 56. |               | $exp(m * \overline{2}^{\lceil S \rceil * t}, l) = \overline{\lceil S \rceil} * exp(m * \overline{2}^{\lceil S \rceil * t}, len(m) - \overline{1})$                                                                                                                                             | 55,43,52 =E           |
| 57. |               | $exp(n * \overline{2}^{\lceil S \rceil * u}, len(m) \div \overline{1}) = exp(n, len(m) \div \overline{1})$                                                                                                                                                                                     | 48 T13.47c            |
| 58. |               | $exp(n, len(\underline{m}) - \overline{1}) = u$                                                                                                                                                                                                                                                | 3,4 =E                |
| 59. |               | $exp(n * \overline{2}^{[S]*u}, len(m) \div \overline{1}) = u$                                                                                                                                                                                                                                  | 57,58 <b>=</b> E      |
| 60. |               | $exp(n * \overline{2}^{\lceil S \rceil * u}, len(n)) = exp(\overline{2}^{\lceil S \rceil * u}, \emptyset)$                                                                                                                                                                                     | T13.47g               |
| 61. |               | $exp(\overline{2}^{\lceil S\rceil * u}, \emptyset) = \overline{\lceil S\rceil} * u$                                                                                                                                                                                                            | T13.44i               |
| 62. |               | $exp(n * \overline{2}^{\lceil S \rceil * t}, len(m)) = \overline{\lceil S \rceil} * u$                                                                                                                                                                                                         | 3,60,61 =E            |
| 63. |               | $exp(n * \overline{2}^{\lceil S \rceil * u}, l) = \overline{\lceil S \rceil} * exp(n * \overline{2}^{\lceil S \rceil * u}, len(\underline{m}) \dot{-} \overline{1})$                                                                                                                           | 62,43,59 =E           |
| 64. |               | $(\exists i < l)[\underline{exp}(m * \overline{2}^{\lceil S \rceil * t}, l) = \overline{\lceil S \rceil} * exp(m * \overline{2}^{\lceil S \rceil * t}, i) \land exp(n * \overline{2}^{\lceil S \rceil * u}, l) = \overline{\lceil S \rceil} * exp(n * \overline{2}^{\lceil S \rceil * u}, i)]$ | 56,63,49 (∃I)         |
| 65. |               | $L(m * \overline{2}^{\Gamma S^{-} * t}, n * \overline{2}^{\Gamma S^{-} * u}, l) $                                                                                                                                                                                                              | 64 abv                |
| 66. |               | $I \vee J \vee K \vee L \vee M \vee N(v, s, m * \underline{2}^{\lceil S \rceil * t}, n * \underline{2}^{\lceil S \rceil * u}, l)$                                                                                                                                                              | 65 ∨I                 |
| 67. |               | $I \vee J \vee K \vee L \vee M \vee N(v, s, m * \overline{2}^{\lceil S \rceil * t}, n * \overline{2}^{\lceil S \rceil * u}, l) $                                                                                                                                                               | 18,19-66 ∨E           |
| 68. | (             | $\forall k < len(m * \overline{2}^{\lceil S \rceil * t})) I \vee J \vee K \vee L \vee M \vee N(v, s, m * \overline{2}^{\lceil S \rceil * t}, n * \overline{2}^{\lceil S \rceil * u}, k)$                                                                                                       | 16-67 (¥I)            |
| 69. | 2             | $Tsubseq(m * \overline{2}^{\lceil S \rceil * t}, n * \overline{2}^{\lceil S \rceil * u}, \overline{\lceil S \rceil} * t, v, s, \overline{\lceil S \rceil} * \underline{u})$                                                                                                                    | 6,11,15,68 T13.50a    |
| 70. | $\mathbb{T}s$ | $ubseq(m,n,t,v,s,u) \to \mathbb{T}subseq(m * \overline{2}^{\lceil S \rceil * t}, n * \overline{2}^{\lceil S \rceil * u}, \overline{\lceil S \rceil} * t, v, s, \overline{\lceil S \rceil} * u)$                                                                                                | 1-69 →I               |

T13.50.1. PA  $\vdash \mathbb{T}subseq(m, n, t, v, s, u) \rightarrow \mathbb{T}ermsub(t, v, s, u)$ 

Let  $\mathcal{P}(m, n, v, s, k) = \exists a \exists b [Tsubseq(a, b, exp(m, k), v, s, exp(n, k)) \land len(a) \leq len(exp(m, k)) \land (\forall i < len(a))(exp(a, i) \leq exp(m, k) \land exp(b, i) \leq exp(n, k))]$ 

Exercise 13.37 T13.50.1

| 1.  | $   T_{subseq}(m, n, t, v, s, u)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A $(g \rightarrow I)$                           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | $\mathbb{T}ermseq(m,t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 T13.50a                                       |
| 3.  | len(m) = len(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 T13.50a                                       |
| 4.  | $ exp(n, len(n) - \overline{1})  = u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 T13.50a                                       |
| 5.  | $\left  \left( \forall k < len(m))(I(m,n,k) \lor J(v,m,n,k) \lor K(v,s,m,n,k) \lor L(m,n,k) \lor M(m,n,k) \lor N(m,n,k) \lor M(m,n,k) \lor N(m,n,k) \lor M(m,n,k) $ | ) 1 T13.50a                                     |
| 6.  | exp(m, len(m) - 1) = t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 T13.48a                                       |
| 7.  | m > 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 T13.48a                                       |
| 8.  | $\left[ (\forall k < len(m))[A(m,k) \lor B(m,k) \lor C(m,k) \lor D(m,k)] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.113.48a                                       |
| 9.  | $\left  \begin{array}{c}   k < len(m) \\   l   l   l   l   l   l   l   l   l  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $A(g(\forall I))$                               |
| 10. | $\left  \left  \frac{len(exp(m, \kappa))}{l} \leq \psi \right  \right  \leq 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $A(g \rightarrow I)$                            |
| 11. | $ \left  \right  \left  \begin{array}{c} \sim \mathcal{P} \\ - \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A $(g \sim E)$                                  |
| 12. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,9 T13.48e                                     |
| 13. | $      exp(m,k) \neq 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 T13.45j                                      |
| 14. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12,13 ±1                                        |
| 15. | $            \mathscr{P}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11-14 ∼E                                        |
| 16. | $\left  \begin{array}{c}   len(exp(m,k)) \leq \emptyset \to \mathcal{P} \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $10-15 \rightarrow I$                           |
| 17. | $   (\forall k < len(m))[len(exp(m,k)) \le \emptyset \to \mathcal{P}] $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9-16 (∀I)                                       |
| 18. | $\left  \left  \left( \forall k < len(m)) [len(exp(m,k)) \le x \to \mathcal{P}] \right. \right. \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A $(g \rightarrow I)$                           |
| 19. | j < len(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A ( $g$ ( $\forall$ I))                         |
| 20. | $\left  \left  \int \left[ len(exp(m, j)) \leq Sx \right] \right  \right  \leq Sx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 21. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,19 T13.48e                                    |
| 22. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21 T13.45j                                      |
| 23. | $       I(m,n,j) \lor J(v,m,n,j) \lor K(v,s,m,n,j) \lor L(m,n,j) \lor M(m,n,j) \lor N(m,n,j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5,19 (¥E)                                       |
| 24. | $ \begin{array}{c c}   & 1 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A (g 23∨E)                                      |
| 25. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24 abv                                          |
| 26. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25 T13.50f                                      |
| 27. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cap                                             |
| 28. | $\left  \left  \left  len(\overline{2}^{\neg 0}) \leq len(exp(m, j)) \right  \right  \leq len(exp(m, j))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22,27 <b>=</b> E                                |
| 29. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A ( $g$ ( $\forall$ I))                         |
| 30. | $l = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27,29 T8.16                                     |
| 31. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T13.44i                                         |
| 32. | $\left  \left  \left  \right  \right  = \exp(\overline{2^{\lceil 0 \rceil}}, l) \le \exp(m, j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25,31 =E                                        |
| 33. | $\left  \left  \left  \right  \right  = \exp\left(2^{\left\lceil \psi \right\rceil}, l\right) \le \exp(n, j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25,31 =E                                        |
| 34. | $\left  \left  \left  \right  \right  = \exp(\overline{2^{\lceil \emptyset \rceil}}, l) \le \exp(m, j) \land \exp(\overline{2^{\lceil \emptyset \rceil}}, l) \le \exp(n, j) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32,33 ∧I                                        |
| 35. | $\left  \left  \left  \left  \left  \left  \left  \left  \left  \left( \forall i < len(\overline{2}^{\lceil \theta \rceil}))(exp(\overline{2}^{\lceil \theta \rceil}, i) \le exp(m, j) \land exp(\overline{2}^{\lceil \theta \rceil}, i) \le exp(n, j) \right. \right. \right. \right  \right  \right  \right  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29-34 (¥I)                                      |
| 36. | $      \mathcal{P}_{i}^{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26,28,35 ∃I                                     |

Exercise 13.37 T13.50.1

| 37.        | $\left  \int (v,m,n,j) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A ( $g \ 23 \lor E$ )        |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 38.        | $ Var(exp(m, j)) \wedge exp(m, j) \neq v \wedge exp(n, j) = exp(m, j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37 abv                       |
| 39.        | $Tsubseq(\overline{2}^{exp(m,j)}, \overline{2}^{exp(n,j)}, exp(m,j), v, s, exp(n,j))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38 T13.50g                   |
| 40.        | $len(\overline{2}^{exp(m,j)}) = \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21 T13.45k                   |
| 41.        | $\left  len(\overline{2}^{exp(m,j)}) \leq len(exp(m,j)) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22,40 = E                    |
| 42.        | $\left  l < len(\overline{2}^{exp(m,j)}) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A ( $g$ ( $\forall$ I))      |
| 43.        | $    \overline{l} = \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40,42 T8.16                  |
| 44.        | $   exp(\overline{2}^{exp(m,j)}, \emptyset) = exp(m,j) \wedge exp(\overline{2}^{exp(n,j)}, \emptyset) = exp(n,j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T13.44i                      |
| 45.        | $   exp(\overline{2}^{exp(m,j)}, \emptyset) \le exp(m,j) \land exp(\overline{2}^{exp(n,j)}, \emptyset) \le exp(n,j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44 T13.13m                   |
| 46.        | $   exp(\overline{2}^{exp(m,j)}, l) \le exp(m,j) \land exp(\overline{2}^{exp(n,j)}, l) \le exp(n,j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43,45 =E                     |
| 47.        | $(\forall i < len(\overline{2}^{exp(m,j)}))(exp(\overline{2}^{exp(m,j)},i) < exp(m,i) \land exp(\overline{2}^{exp(n,j)},i) < exp(n,i))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42-46 (∀I)                   |
| 48.        | $\left  \begin{array}{c} \mathcal{P}_{i}^{k} \end{array} \right  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39,41,47 ∃I                  |
| 49.        | K(v,s,m,n,j)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A (g 23∨E)                   |
| 50.        | $\mathcal{P}^k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | similarly                    |
| 51         | $\left  I(m n i) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\Lambda(\pi 23)(E)$         |
| 52         | $\begin{bmatrix} L(m,n,j) \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A (g 25 V L)                 |
| 52.        | $ (\exists l < j)[exp(m, j) = l \ S^{-*} exp(m, l) \land exp(n, j) = l \ S^{-*} exp(n, l) ] $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Delta (g 52 (\exists F))$  |
| 54.        | $\left  \begin{array}{c} 1 \\ exp(m, i) \\ = \overline{\Gamma S^{\gamma}} * exp(m, l) \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M (g 52 (LL))                |
| 55.        | $\left  \begin{array}{c} exp(n,j) = \overline{S}^{-1} * exp(n,l) \\ exp(n,j) = \overline{S}^{-1} * exp(n,l) \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |
| 56.        | $\left  1 \right  < len(m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19,53 T13.13b                |
| 57.        | $len(\overline{\lceil S \rceil}) = \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cap                          |
| 58.        | $\left  len(\overline{S}^{\neg} * exp(m, l)) = \overline{1} + len(exp(m, l)) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57 T13.47f                   |
| 59.        | len(exp(m, l)) < len(exp(m, j))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54,58 def                    |
| 60.        | $  en(exp(m,l)) \le x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20,59 T13.13n                |
| 61.<br>62  | $\begin{bmatrix} J_l \\ T_{\text{subsacl}} & d_{\text{subsacl}} & m(m, l) \\ \end{bmatrix} = \begin{bmatrix} T_{\text{subsacl}} & d_{\text{subsacl}} & m(m, l) \\ T_{\text{subsacl}} & d_{\text{subsacl}} & m(m, l) \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $18,56,60 (\forall E)$       |
| 63.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A (g 011E)                   |
| 64.        | $(\forall i < len(c))(exp(c,i) \le exp(m,l) \land exp(d,i) \le exp(n,l))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |
| 65.        | $\boxed{len(c) = len(d)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62 T13.50a                   |
| 66.        | $\mathbb{T}subseq(c * \overline{2}^{exp(m,j)}, d * \overline{2}^{exp(n,j)}, exp(m,j), v, s, exp(n,j))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54,55,62 T13.50i             |
| 67.        | $len(\overline{\lceil S \rceil} * exp(n, l)) = \overline{1} + len(exp(n, l))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57 T13.47f                   |
| 68.        | $     len(\overline{\lceil S \rceil} * exp(n, l)) \ge \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67 T13.13u                   |
| 69.        | $\left  \left  \left  \overline{S}^{T} * exp(n,l) > \overline{1} \right  \right  \right  \leq S^{T} = S^{T} + S^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68 T13.45g                   |
| 70.        | $\left  \begin{array}{c} exp(n,j) > 1 \\ exp(m,i) = -e^{ip(m,i)} \\ exp(m,i) = -e^{ip(m$ | 55,69 = E                    |
| 71.        | $\left  \left  len(2^{exp(m,j)}) = 1 \land len(2^{exp(m,j)} = 1) \right  = -e^{ep(m,j)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21,70 T13.45k                |
| 72.        | $ \left  \left  len(c * 2^{cop(m,j)}) = len(c) + 1 \land len(d * 2^{cop(m,j)}) = len(d) + 1 \right  \right  = e^{ap(m,j)} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71 T13.47f                   |
| 73.        | $len(c * 2^{cop(n,j)}) = len(d * 2^{cop(n,j)})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65,72 =E                     |
| 74.        | $len(exp(m, j)) = 1 + len(exp(m, l))$ $len(a) + \frac{1}{4} \le len(exp(m, l)) + \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54,58 = E                    |
| 76         | $\lim_{k \to \infty} \left( e^{\frac{1}{2} e^{e \varphi(m,j)}} \right) \le \lim_{k \to \infty} \left( e^{\exp(m,j)} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 03 113.13V                   |
| 70.        | $\left  \begin{array}{c} \operatorname{len}(c + 2  j) \leq \operatorname{len}(exp(m, j)) \\ a \leq \operatorname{len}(e + 2^{ew(m, j)}) \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12, 14, 13 = 12              |
| 70         | $\frac{q}{q} < ten(c + 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A (g (VI))                   |
| 79         | $ \begin{array}{c} q < \operatorname{Sten}(c) \\ a < \operatorname{len}(c) \lor a = \operatorname{len}(c) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72,77 —E<br>78 T13 13n       |
| 80.        | $\left  \begin{array}{c}   \\   \\   \\   \\   \\   \\   \\   \\   \\   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A $(g 79 \lor E)$            |
| 81.        | $\left  \right  \left  \right  \left  \frac{1}{a} < len(d) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.65 =E                     |
| 82.        | $exp(c,q) \le exp(m,l) \land exp(d,q) \le exp(n,l))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 64,80 (¥E)                   |
| 83.        | $exp(c,q) \le exp(m,j) \land exp(d,q) \le exp(n,j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54,55,82 T13.47o             |
| 84.        | $         exp(c * \overline{2}^{exp(m,j)}, q) = exp(c,q) \wedge exp(d * \overline{2}^{exp(n,j)}, q) = exp(d,q)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80,81 T13.47c                |
| 85.        | $\left  \left  \left  exp(c * \overline{2}^{exp(m,j)}, q) \le exp(m,j) \land exp(d * \overline{2}^{exp(n,j)}, q) \le exp(n,j) \right  \right  \le exp(n,j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83,84 = E                    |
| 86.        | q = len(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A ( $g$ 79 $\vee$ E)         |
| 87.        | $\left  \left  \left  \left  \left  \left  \left  e_{xp}(c \ast \overline{2}^{e_{xp}(m,j)}, q) = e_{xp}(\overline{2}^{e_{xp}(m,j)}, \emptyset) \wedge e_{xp}(d \ast \overline{2}^{e_{xp}(n,j)}, q) = e_{xp}(\overline{2}^{e_{xp}(n,j)}, \emptyset) \right  \right  \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86.65 T13.47g                |
| 88.        | $      exp(\overline{2}^{exp(m,j)},\emptyset) = exp(m,j) \land exp(\overline{2}^{exp(n,j)},\emptyset) = exp(n,i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T13.44i                      |
| 89.        | $      exp(c * \overline{2}^{exp(m,j)}, q) < exp(m,j) \land exp(d * \overline{2}^{exp(n,j)}, a) < exp(n,j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87,86 =E                     |
| 90         | $     _{exp(c,*2^{exp(mExercise_n]},3.7, and 3.59 \mathbb{P}^{(n,j)}_{(n,j)} _{a}) < exp(n,j)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79 80-89 VF                  |
| 01         | $\left  \left  \left  \begin{array}{c}   \varphi \varphi (x - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77.00 (91)                   |
| 92         | $\left  \begin{array}{c}   & (\forall i < ien(c * 2))(exp(c * 2), i) \leq exp(m, j) \land exp(a * 2), i) \leq exp(n, j)) \\ \mathcal{P}^{k} \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 77-90 (♥1)<br>66 73 76 91 ∃I |
|            | $\left  \right  \left  \begin{array}{c} \sigma_{j} \\ \sigma_{k} \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |
| <i>93.</i> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01,02-92 E                   |
| 94.        | $  \mathscr{Y}_{j}^{\wedge} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52,53-93 ( <del>I</del> E)   |

| 95.  | M(m,n,i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A $(g 23 \lor E)$       |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 96.  | $\mathcal{P}_{i}^{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | similarly               |
| 97.  | N(m,n,j)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A (g 23∨E)              |
| 98.  | $\mathcal{P}_i^k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | similarly               |
| 99.  | $\left  \right  \left  \left  \mathcal{P}_{i}^{k} \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23,24-98 ∨E             |
| 100. | $len(exp(m, j)) \le Sx \to \mathcal{P}_i^k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20-99 →I                |
| 101. | $(\forall k < len(m))[len(exp(m,k)) \le Sx \to \mathcal{P}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19-100 (¥I)             |
| 102. | $(\forall k < len(m))[len(exp(m,k)) < x \rightarrow \mathcal{P}] \rightarrow (\forall k < len(m))[len(exp(m,k)) < Sx \rightarrow \mathcal{P}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18-101 →I               |
| 103. | $\forall x (\forall k < len(m))[len(exp(m,k)) \le x \to \mathcal{P}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17,102 IN               |
| 104. | $len(m) > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 T13.45j               |
| 105. | $len(m) \doteq \overline{1} < len(m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104 T13.23i             |
| 106. | $\mathcal{P}^k_{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 103,105 (¥E)            |
| 107. | $\mathbb{T}_{subsea(a, b, t, v, s, u)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A (g 106.4.6 E)         |
| 108  | len(a) < len(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 (8 100, 1,0 22)      |
| 109. | $(\forall i < len(a))(exp(a, i) < t \land exp(b, i) < u]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
| 110  | $\int_{en(a)}^{\infty} = \int_{en(b)}^{\infty} \int_{a}^{\infty} \int_{a$ | 107 T13 50a             |
| 111  | $\begin{bmatrix} \pi i(len(t))^t \end{bmatrix}^{len(t)} > val(a, len(a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 108 109 T13 460         |
| 112. | $\begin{bmatrix} m(len(t))^{u} \end{bmatrix}^{len(t)} > val(b, len(b))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110.108.109 T13.460     |
| 113. | $\mathbb{T}_{ermsea(a, t)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 107 T13.50a             |
| 114. | $a > \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 113 T13.48a             |
| 115. | $len(a) > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 114 T13.45j             |
| 116. | $len(b) > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 115,110 =E              |
| 117. | $b > \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116 T13.45g             |
| 118. | $a \leq [pi(len(t))^t]^{len(t)} \wedge b \leq [pi(len(t))^u]^{len(t)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 111,112,114,117 T13.46n |
| 119. | $\exists x \leq X_t$ $\exists y \leq Y_{t,u}$ $\mathbb{T}$ subseq $(x, y, t, v, s, u)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107,118 ( <b>∃</b> I)   |
| 120. | Termsub(t, v, s, u)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119 T13.50b             |
| 121. | Termsub(t, v, s, u)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 106,107-120 ∃E          |
| 122. | $\mathbb{T}$ subseq $(m, n, t, v, s, u) \rightarrow \mathbb{T}$ ermsub $(t, v, s, u)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-121 →I                |

T13.50.m. PA  $\vdash [\mathbb{T}erm(t) \land \mathbb{T}erm(s)] \rightarrow \exists u[\mathbb{T}ermsub(t, v, s, u) \land len(u) \leq len(t) \times len(s) \land (\forall k < len(u))exp(u, k) \leq t + s]$ 

Let  $\mathcal{P}(m, i, v, s) = \exists x \exists y \exists u [Tsubseq(x, y, exp(m, i), v, s, u) \land len(u) \le len(exp(m, i)) \times len(s) \land (\forall k < len(u))exp(u, k) \le exp(m, i) + s]$ 

Exercise 13.37 T13.50.m
| 1.  | $\mathbb{I}erm(t) \wedge \mathbb{I}erm(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $A(g \rightarrow I)$             |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| 2.  | $\mathbb{T}ermseq(m,t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |  |
| 3.  | $exp(m, len(m) \stackrel{\cdot}{-} \overline{1}) = t \land m > \overline{1} \land (\forall k < len(m))[A(m,k) \lor B(m,k) \lor C(m,k) \lor D(m,k)] $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 T13.48a                        |  |
| 4.  | $len(m) > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 T13.45j                        |  |
| 5.  | $len(\underline{m}) \stackrel{-}{-} 1 \leq len(\underline{m})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 T13.23i                        |  |
| 6.  | s > 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 T13.48f                        |  |
| 7.  | $len(s) > \emptyset $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6 T13.45j                        |  |
| 8.  | b < len(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $A(g \rightarrow I)$             |  |
| 9.  | $\mathbb{T}erm(exp(m, \emptyset))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,8 T13.48n                      |  |
| 10. | $\exp(m, \emptyset) > 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 113.48f                          |  |
| 11. | $len(exp(m, y)) > y$ $A(m(y)) \land B(m(y)) \land C(m(y)) \land D(m(y))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 113.45J<br>38 (VE)               |  |
| 13  | $  A(m, b) \vee B(m, b) \vee C(m, b) \vee D(m, b)      A(m, b)  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $A \left( \sigma 12 \right) / F$ |  |
| 14  | $\left[ \begin{array}{c} 1 \\ avn(m, d) \\ avn(m, d) \\ - \overline{[d]} \\ V \\ Way(avn(m, d)) \\ \end{array} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 obv                           |  |
| 14. | $\left  \begin{array}{c} \exp(m, b) = b  \forall  \forall  an(\exp(m, b)) \\ \left  \left  \left  \exp(m, b) = \overline{b} \right  \right  \right  = \overline{b}  \forall  b  an(\exp(m, b)) \\ \left  \left  \left  \left  \exp(m, b) = \overline{b} \right  \right  \right  = \overline{b}  \forall  b  an(\exp(m, b)) \\ \left  \left  \left  \left  \left  \exp(m, b) = \overline{b} \right  \right  \right  \right  = \overline{b}  \forall  b  an(\exp(m, b)) \\ \left  \left  \left  \left  \left  \left  \exp(m, b) = \overline{b} \right  \right  \right  \right  = \overline{b}  \forall  b  an(\exp(m, b)) \\ \left  $ | $\Lambda (\alpha 14)/F$          |  |
| 10. | $ \begin{bmatrix} x p(m, b) - b \\ 1 & \overline{x} \\ \overline{x} \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A (g 14VL)                       |  |
| 10. | $      len(\cdot y \cdot) = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cap                              |  |
| 17. | $Tsubseq(2, 2, 2, exp(m, \emptyset), v, s, \emptyset)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15 T13.50f                       |  |
| 18. | $ \operatorname{len}(P P)  \leq \operatorname{len}(P P) \times \operatorname{len}(S)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | / T13.13z                        |  |
| 19. | $     len(' \emptyset ') \leq len(exp(m, \emptyset)) \times len(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15,18 = E                        |  |
| 20. | $\left  \begin{array}{c} k < len(b) \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A (g (VI))                       |  |
| 21. | $\left  \begin{array}{c} exp(1 \ \emptyset \ 1, k) \leq 1 \ \emptyset \end{array} \right  \leq 1 \ \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T13.44g                          |  |
| 22. | $          0   \leq  0  + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 113.13u                          |  |
| 23. | $ exp(v, v), k  \le exp(m, v) + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15,21,22 115.15a                 |  |
| 24. | $       (\forall k < len(' \emptyset '))exp(' \emptyset ', k) \le exp(m, \emptyset) + s $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20-23 (VI)                       |  |
| 25. | $     \mathcal{P}_{\emptyset}^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17,19,24 ∃I                      |  |
| 26. | $\left  \begin{array}{c} \mathbb{V}ar(exp(m,\emptyset)) \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A ( <i>g</i> 14∨E)               |  |
| 27. | $      exp(m, \emptyset) = v \lor exp(m, \emptyset) \neq v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T3.1                             |  |
| 28. | $       exp(m, \emptyset) = v $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A ( <i>g</i> 27∨E)               |  |
| 29. | $       Tsubseq(\overline{2}^{exp(m,\emptyset)}, \overline{2}^{exp(m,\emptyset)}, exp(m,\emptyset), v, s, s) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26 T13.50h                       |  |
| 30. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26 T13.48d                       |  |
| 31. | $      len(s) \le len(exp(m, \emptyset)) \times len(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30 T13.13z                       |  |
| 32. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A $(g (\forall I))$              |  |
| 33. | $exp(s,k) \leq s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T13.44g                          |  |
| 34. | $       s \le exp(m, \emptyset) + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T13.13u                          |  |
| 35. | $  exp(s,k)  \le exp(m, \emptyset) + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33,34 T13.13a                    |  |
| 36. | $(\forall k < len(s))exp(s,k) \le exp(m, b) + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32-35 (♥I)<br>20 21 26 ∃I        |  |
| 57. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29,51,50 1                       |  |
| 38. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A ( <i>g</i> 27∨E)               |  |
| 39. | $\left  \left  \left  \left  \mathbb{T}subseq(\overline{2}^{exp(m,\emptyset)}, \overline{2}^{exp(m,\emptyset)}, exp(m,\emptyset), v, s, exp(m,\emptyset))\right. \right  \right  \right  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38 T13.50g                       |  |
| 40. | $         len(exp(m, \emptyset)) \le len(exp(m, \emptyset)) \times len(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 T13.13z                        |  |
| 41. | $\left  \begin{array}{c} k \\ k $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A $(g (\forall I))$              |  |
| 42. | $      exp(exp(m, \emptyset), k) \le exp(m, \emptyset)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T13.44g                          |  |
| 43. | $exp(m, \emptyset) \le exp(m, \emptyset) + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T13.13u                          |  |
| 44. | $         exp(exp(m, b), \kappa) \le exp(m, b) + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42,45 115.15a                    |  |
| 45. | $        (\forall k < len(exp(m, \emptyset)))exp(m, \emptyset), k) \le exp(m, \emptyset) + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41-44 (∀I)                       |  |
| 46. | $     \mathcal{Y}_{\emptyset}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39,40,45 ∃I                      |  |
| 47. | $        \mathcal{P}_{\emptyset}^{l}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27,28-46∨E                       |  |
| 48. | $    \mathcal{P}_{\emptyset}^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14,15-47 ∨E                      |  |
| 49. | $   B(m, \emptyset) \lor C(m, \emptyset) \lor D(m, \emptyset)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A (g 12∨E)                       |  |
| 50  | $\left  \left  \mathcal{P}_{i}^{i} \right  \right  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | trivial                          |  |
| 51  | $  \rho_i   \rho_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 12 50 VE                      |  |
| 52  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12,13-30 VE<br>8-51 →I           |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |  |

Exercise 13.37 T13.50.m

| 53.       | $(\forall z \le i)(z < len(m) \to \mathcal{P}_z^i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A $(g \rightarrow I)$      |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 54.       | Si < len(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A $(g \rightarrow I)$      |
| 55.       | $\int \overline{A(m,Si)} \vee B(m,Si) \vee C(m,Si) \vee D(m,Si)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,54 (∀E)                  |
| 56.       | A(m,Si)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A (g 55∨E)                 |
| 57.       | $\mathcal{P}_{Si}^i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | as above                   |
| 58.       | B(m, Si)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A ( $g 55 \lor E$ )        |
| 59.       | $\left  \left  \left[ (\exists j < Si) exp(m, Si) = \overline{\lceil S \rceil} * exp(m, j) \right] \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58 abv                     |
| 60.       | $      exp(m, Si) = \overline{\lceil S \rceil} * exp(m, j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A $(g 59 (\exists E))$     |
| 61.       | j < Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| 62.       | $        j \le i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61 T13.13n                 |
| 63.       | j < len(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54,61 T13.13b              |
| 64.       | $        \mathcal{P}_j^i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53,62,63 (∀E)              |
| 65.       | Tsubseq(a, b, exp(m, j), v, s, r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A (g 64 $\exists$ E)       |
| 66.       | $         len(r) \le len(exp(m, j)) \times len(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |
| 67.       | $(\forall k < len(r))exp(r,k) \le exp(m,j) + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| 68.       | $\left  \left  \left  \left  \left  \mathbb{T}subseq(a \ast \overline{2}^{\lceil S \rceil \ast exp(m,j)}, b \ast \overline{2}^{\lceil S \rceil \ast r}, \overline{\lceil S \rceil} \ast exp(m,j), v, s, \overline{\lceil S \rceil} \ast r \right) \right  \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65 T13.50i                 |
| 69.       | $len(\overline{\lceil S \rceil}) = \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cap                        |
| 70.       | $\left  \begin{array}{c} \left  \begin{array}{c} \left  \begin{array}{c} len(\lceil S \rceil * r) = \overline{1} + len(r) \end{array} \right. \right  \right  = \overline{1} + len(r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69 T13.47f                 |
| 71.       | $\left  \begin{array}{c} \left  \begin{array}{c} len(\ulcornerS\urcorner*exp(m,j)) = 1 + len(exp(m,j)) \\ \end{array} \right  = 1 + len(exp(m,j)) \\ \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69 T13.47f                 |
| 72.       | $            + len(r) \le 1 + len(exp(m, j)) \times len(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66 T13.13v                 |
| 73.       | $         len('S' * r) \leq 1 + len(exp(m, j)) \times len(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 72,70 = E                  |
| 74.       | $         + ien(exp(m, j)) \times ien(s) \le ien(s) + ien(exp(m, j)) \times ien(s)$ $                                       $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 115.15V<br>73 74 T13 13a |
| 76        | $\lim_{n \to \infty}  \lim_{x \to \infty}   x   + \lim_{x \to \infty}   x   +$ | 75 T6 64                   |
| 77.       | $len(\overline{S} * r) \leq len(exp(m, Si)) \times len(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60.71.76 = E               |
| 78.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $A(g(\forall I))$          |
| 79        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 78 T13 47f                 |
| 80        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T13 13a                    |
| 81.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A $(g \ 80 \lor E)$        |
| 82        | $                           exp(\overline{[S]} * r, k) = exp(\overline{[S]}, k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81 T13 47c                 |
| 83.       | $                           exp(\overline{S^{\neg}}, k) < \overline{S^{\neg}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T13.449                    |
| 84.       | $            exp(\overline{\lceil S \rceil} * r, k) \le \overline{\lceil S \rceil}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 82,83 =E                   |
| 85.       | $        \overline{S^{\neg}} \leq \overline{S^{\neg}} * exp(m, j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T13.47n                    |
| 86.       | $              \overline{\lceil S \rceil} * exp(m, j) \le \overline{\lceil S \rceil} * exp(m, j) + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T13.13u                    |
| 87.       | $\left  \begin{array}{c} \\ \\ \\ \\ \end{array} \right  \left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60,85 = E                  |
| 88.       | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 84,85,87 T13.13a           |
| 89.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A ( $g 80 \lor E$ )        |
| 90.       | $             k = \underline{len}(\overline{\lceil S \rceil}) + (k - \underline{len}(\overline{\lceil S \rceil}))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89 T13.23a                 |
| 91.       | $         exp(\lceil S \rceil * r, k) = exp(r, k - len(\lceil S \rceil))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90 T13.47g                 |
| 92.       | $               k \doteq len(\ulcornerS\urcorner) < (len(\ulcornerS\urcorner) + len(r)) \doteq len(\ulcornerS\urcorner)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 89,79 T13.23e              |
| 93.       | $ \begin{pmatrix} k - len('S') < len(r) \\ (-l + i) < len(r) \end{pmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92 T13.23I,b               |
| 94.       | $               exp(r, k - len('S')) \le exp(m, j) + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 93,67 (¥E)                 |
| 95.<br>06 | $exp('S'*r,k) \le exp(m,j) + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91,94 = E                  |
| 90.       | $\left  \begin{array}{c} \left  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60.96 <del>-</del> F       |
| 98.       | $exp(\overline{rS^{-}} * r, k) \le exp(m, Si) + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95,97 T13.13v              |
| 99.       | $\left  \left  \left  \right  \right  \left  \left  exp(\overline{\Gamma S^{\neg}} * r, k) \le exp(m, Si) + s \right  \le exp(m, Si) + s \right  \le exp(m, Si) + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80,81-98 ∨E                |
| 100.      | $        (\forall k < len(\overline{\Gamma}S^{\neg} * r))exp(\overline{\Gamma}S^{\neg} * r.k) < exp(m.Si) + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78-99 (∀I)                 |
| 101.      | $\left  \left  \left  \right  \right  \left  \left $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 68,77,100 ∃I               |
| 102.      | $\left  \cdot \right  \left  \cdot \right  \mathcal{P}_{\mathrm{S}i}^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64,65-101 ∃E               |
| 103.      | $\left  \right  \left  \begin{array}{c} \mathcal{P}_{S_{i}}^{i} \\ \mathcal{P}_{S_{i}}^{i} \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59,60-102 (∃E)             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . ,                        |

Exercise 13.37 T13.50.m

| 104. | C(m, Si)                                                                                                                                                                                                    | A ( $g 55 \lor E$ )      |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 105. | $\left  \cdot \right  = \left[ \mathcal{P}_{Si}^{i} \right]$                                                                                                                                                | similarly                |
| 106. | $\square \square $                                                  | A ( $g 55 \lor E$ )      |
| 107. | $      \mathcal{P}_{Si}^i $                                                                                                                                                                                 | similarly                |
| 108. | $      \mathcal{P}_{Si}^i$                                                                                                                                                                                  | 55,56-107 ∨E             |
| 109. | $\left  \begin{array}{c} S_{i} \in \mathbb{I}en(m) \to \mathcal{P}_{S_{i}}^{i} \\ S_{i} \in \mathbb{I}en(m) \to \mathcal{P}_{S_{i}}^{i} \end{array} \right $                                                | $54-108 \rightarrow I$   |
| 110. | $\left  \left[ (\forall z \le i)(z < len(m) \to \mathcal{P}_{z}^{i}) \right] \to [Si < len(m) \to \mathcal{P}_{Si}^{i}] \right]$                                                                            | $53-109 \rightarrow I$   |
| 111. | $\forall i[i < len(m) \rightarrow \mathcal{P}]$                                                                                                                                                             | 52,110 T13.13ag          |
| 112. | $\left  \exists x \exists y \exists u [Tsubseq(x, y, t, v, s, u) \land len(u) \le len(t) \land len(s) \land (\forall k < len(u)) exp(u, k) \le t + s \right]$                                               | 3,5,111 ∀E               |
| 113. | $   \mathbb{T}subseq(x, y, t, v, s, u) \land len(u) \le len(t) \times len(s) \land (\forall k < len(u))exp(u, k) \le t + s $                                                                                | A ( $g$ 112 $\exists$ E) |
| 114. | $\left  \left[ \mathbb{T}ermsub(t, v, s, u) \land len(u) \le len(t) \times len(s) \land (\forall k < len(u))exp(u, k) \le t + s \right] \right  $                                                           | 113 T13.501              |
| 115. | $\left  \exists u [Termsub(t, v, s, u) \land len(u) \le len(t) \times len(s) \land (\forall k < len(u))exp(u, k) \le t + s] \right $                                                                        | 114 <b>∃</b> I           |
| 116. | $\left  \exists u[Termsub(t, v, s, u) \land len(u) \le len(t) \times len(s) \land (\forall k < len(u))exp(u, k) \le t + s] \right $                                                                         | 112,113-115 ∃E           |
| 117. | $\left  \left[ \mathcal{T}erm(t) \land \mathcal{T}erm(s) \right] \to \exists u [\mathcal{T}ermsub(t, v, s, u) \land len(u) \le len(t) \times len(s) \land (\forall k < len(u))exp(u, k) \le t + s \right] $ | $1-116 \rightarrow I$    |
|      |                                                                                                                                                                                                             |                          |

T13.50.n. PA  $\vdash [Atomic(p) \land Term(s)] \rightarrow \exists q[Atomsub(p, v, s, q) \land len(q) \leq len(p) \times len(s) \land (\forall k < len(q))exp(q, k) \leq p + s]$ 

| 1.  | $Atomic(p) \wedge Term(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | $\overline{s} > \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 T13.48f                                       |
| 3.  | $len(s) > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 T13.45j                                       |
| 4.  | $(\exists x \le p)(\exists y \le p)[Term(x) \land Term(y) \land p = \overline{\neg} * x * y]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 T13.49c                                       |
| 5.  | $  \mathbb{T}erm(a) \wedge \mathbb{T}erm(b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A $(g 4 (\exists E))$                           |
| 6.  | $p = \overline{r} = \overline{r} * a * b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |
| 7.  | $a \le p \land b \le p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |
| 8.  | $\exists a' [Termsub(a, v, s, a') \land len(a') \leq len(a) \times len(s) \land (\forall k < len(a'))exp(a', k) \leq a + s]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,5 T13.50m                                     |
| 9.  | $\exists b' [Termsub(b, v, s, b') \land len(b') \leq len(b) \times len(s) \land (\forall k < len(b'))exp(b', k) \leq b + s]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,5 T13.50m                                     |
| 10. | $\mathbb{T}ermsub(a, v, s, a')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A ( $g$ 8 $\exists$ E)                          |
| 11. | $len(a') \leq len(a) \times len(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |
| 12. | $\left  (\forall k < len(a'))exp(a',k) \le a+s \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 |
| 13. | $   \mathbb{T}ermsub(b, v, s, b')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A (g 9 $\exists$ E)                             |
| 14. | $   len(b') \le len(b) \times len(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |
| 15. | $\left  \left( \forall k < len(b') \right) exp(b',k) \le b + s \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |
| 16. | $b' \leq \overline{r} =  * a' * b'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T13.47o                                         |
| 17. | $      a' \leq \overline{ r = \neg } * a'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T13.47o                                         |
| 18. | $\left   \left   \overline{ \ } = \ \mathbf{} \ast a' \le \overline{ \ } = \ \mathbf{} \ast a' \ast b' \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T13.47n                                         |
| 19. | $   a' \leq \overline{\neg} = \overline{\neg} * a' * b'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17,18 T13.13a                                   |
| 20. | $    a' \leq \overline{\neg} = \overline{\neg} * a' * b' \land b' \leq \overline{\neg} = \overline{\neg} * a' * b'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19,16 ∧I                                        |
| 21. | $\mathbb{T}erm(a) \land \mathbb{T}erm(b) \land p = \overline{\neg} * a * b \land \mathbb{T}ermsub(a, v, s, a') \land \mathbb{T}ermsub(b, v, s, b') \land$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |
|     | $\boxed{ \qquad \qquad  } \boxed{ \qquad  } \boxed{ = } * a' * b' = \boxed{ = } * a' * b' $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5,6,10,13 ∧I                                    |
| 22. | $ Atomsub(p, v, s, \boxed{=} * a' * b') $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7,20,21 (∃I)                                    |
| 23. | $\left  len( = ) \leq len( = ) \times \underline{len(s)} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 T13.13z                                       |
| 24. | $len( \sqsubseteq \neg * a * b) = len( \urcorner \neg ) + len(a) + len(b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T13.47f                                         |
| 25. | $\left  len(\ulcorner=\urcorner *a'*b') = len(\ulcorner=\urcorner) + len(a') + len(b') \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T13.47f                                         |
| 26. | $   len(\ulcorner=\urcorner) + len(a') + len(b') \le len(\ulcorner=\urcorner) \times len(s) + len(a) \times len(s) + len(b) \times len(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23,11,14 T13.13v                                |
| 27. | $   len(' = ') \times len(s) + len(a) \times len(s) + len(b) \times len(s) =  len(' = ') + len(a) + len(b)  \times len(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T6.64                                           |
| 28. | $   len(' = ') + len(a') + len(b') \le  len(' = ') + len(a) + len(b)  \times len(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26,27 =E                                        |
| 29. | $  en(' = ' * a' * b') \le len(' = ' * a * b) \times len(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28,25,24 =E                                     |
| 30. | $\left  \begin{array}{c} len(' = ' * a' * b') \leq len(p) \times len(s) \\ len(s) \leq len(s) \leq len(s) \\ len(s) \\ len(s) \leq len(s) \\ len(s)$ | 29,6 =E                                         |
| 31. | $\left  \begin{array}{c} j \\ j $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $A(g(\forall I))$                               |
| 32. | $    j < len( \neg) \lor j \ge len( \neg)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T13.13q                                         |
| 33. | $\left  \begin{array}{c} j \\ j \\ l \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A ( <i>g</i> 32∨E)                              |
| 34. | $  \qquad   \qquad   \qquad exp(\overline{=} * a' * b', j) = exp(\overline{=}, j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33 T13.47c                                      |
| 35. | $      exp(\overline{r}=\overline{j},j) \le \overline{r}=\overline{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T13.44g                                         |
| 36. | $\left  \left  \right  \right  \left  \left  \frac{\neg}{-1} \right  \leq \overline{-1} * a * b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T13.47n                                         |
| 37. | $\left  \left  \right  \right  \left  \left  = \frac{a}{a} * b \leq \underline{=} * a * b + s \right  = \frac{a}{a} * b + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T13.13u                                         |
| 38. | $     exp(\underline{\lceil = \rceil}, j) \leq \underline{\lceil = \rceil} * a * b + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35,36,37 T13.13a                                |
| 39. | $      exp(' = ' * a' * b', j) \le \lceil = \rceil * a * b + s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34,38 =E                                        |

Exercise 13.37 T13.50.n

| 40.       | $     _j \ge len(\overline{   })$                                                                                                                                      | A (g 32∨E)           |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 41.       | $\left  \left  \left  \right  \right  = \left  l_{en}(\overline{r} = \overline{r}) \right  = l_{en}$                                                                   | def                  |
| 42.       |                                                                                                                                                                        | 40 T13.23a           |
| 43.       | $      exp(\overline{ = }*a'*b',j) = exp(a'*b',j-l_e)$                                                                                                                 | 42 T13.47g           |
| 44.       | $j - l_e < len(a') \lor j - l_e \ge len(a')$                                                                                                                           | T13.13q              |
| 45.       | $         j - l_e < len(a')$                                                                                                                                           | A $(g 44 \lor E)$    |
| 46.       | $\left[ \left[ exp(a' * b', j - l_e) = exp(a', j - l_e) \right] \right] = exp(a', j - l_e)$                                                                            | 45 T13.47c           |
| 47.       | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                     | 43,46 =E             |
| 48.       | $         exp(a', j - l_e) \le a + s$                                                                                                                                  | 12,45 (∀E)           |
| 49.       | $         exp(\overline{r=1} * a' * b', j) \le a + s$                                                                                                                  | 47,48 =E             |
| 50.       | $            a \leq \overline{=} * a$                                                                                                                                  | T13.47o              |
| 51.       | $            \overline{=} * a \leq \overline{=} * a * b$                                                                                                               | T13.47n              |
| 52.       | $            a \leq \overline{=} * a * b$                                                                                                                              | 50,51 T13.13a        |
| 53.       | $\left  \left  \left  \right  \right  = \exp(\overline{\overline{a}} * a' * b', j) \le \overline{\overline{a}} * a * b + s$                                            | 49,52 T13.13v        |
| 54.       | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                     | A ( $g$ 44 $\lor$ E) |
| 55.       | $            (j - l_e) + l_e \ge l_e + l_e(a')$                                                                                                                        | 54 T13.13v           |
| 56.       | $          j \ge l_e + len(a')$                                                                                                                                        | 42,55 = E            |
| 57.       | $          l_e + len(a') = l_a$                                                                                                                                        | def                  |
| 58.       | $            j = l_a + (j - l_a)$                                                                                                                                      | 56 T13.23a           |
| 59.       | $          len(\overline{r}=\overline{r}*a') = l_a$                                                                                                                    | T13.47f              |
| 60.       | $\left  \left  \right  \right  = \left  exp\left(= * a' * b', j\right) = exp\left(b', j - l_a\right)\right $                                                           | 58,59 T13.47g        |
| 61.       | $         len( \Box = \exists *a' *b') = l_a + len(b')$                                                                                                                | T13.47f              |
| 62.       |                                                                                                                                                                        | 31,61 = E            |
| 63.       | $         l_a + (j - l_a) < l_a + len(b')$                                                                                                                             | 58,62=E              |
| 64.       | $j - l_a < len(b')$                                                                                                                                                    | 63 T13.13w           |
| 65.       | $exp(b', j-l_a) \leq b+s$                                                                                                                                              | 15,64 (∀E)           |
| 66.<br>(7 | $b \leq c = c = c = b$                                                                                                                                                 | T13.470              |
| 67.       | $b+s \leq i \leq i \leq k \leq k$                                                                                            | 66 113.13V           |
| 68.       | $exp(0; j - t_a) \leq \cdot = \cdot * a * b + s$                                                                                                                       | 65,67 113.13a        |
| 69.       | $            exp(-i + a + b, j) \le -i + a + b + s$                                                                                                                    | 60,68 =E             |
| 70.       | $      exp(! = !*a' * b', j) \le ! = !*a * b + s$                                                                                                                      | 44,45-69 ∨E          |
| 71.       | $      exp(\underline{\ulcorner}=\underline{\urcorner}*a'*b',j) \leq \underline{\ulcorner}=\underline{\urcorner}*a*b+s$                                                | 32,33-70 ∨E          |
| 72.       | $\left  \left  \left  exp(\ulcorner = \urcorner * a' * b', j) \le p + s \right  \right  \le p + s$                                                                     | 71,6 <b>=</b> E      |
| 73.       | $       (\forall k < len(\overline{\lceil = \rceil} * a' * b'))exp(\overline{\lceil = \rceil} * a' * b', k) \le p + s $                                                | 31-72 (¥I)           |
| 74.       | $\left  \exists q [Atomsub(p, v, s, q) \land len(q) \le len(p) \times len(s) \land (\forall k < len(q))exp(q, k) \le p + s \right]$                                    | 22,30,73 ∃I          |
| 75.       | $\left  \exists q [Atomsub(p, v, s, q) \land len(q) \le len(p) \times len(s) \land (\forall k < len(q))exp(q, k) \le p + s] \right $                                   | 9,13-74 ∃E           |
| 76.       | $\left  \exists q [A tomsub(p, v, s, q) \land len(q) \le len(p) \times len(s) \land (\forall k < len(q)) exp(q, k) \le p + s \right]$                                  | 8,10-75 ∃E           |
| 77.       | $\exists q [Atomsub(p, v, s, q) \land len(q) \leq len(p) \times len(s) \land (\forall k < len(q))exp(q, k) \leq p + s]$                                                | 4,5-76 (∃E)          |
| 78.       | $[Atomic(p) \land \mathbb{T}erm(s)] \rightarrow \exists q [Atomsub(p, v, s, q) \land len(q) \leq len(p) \times len(s) \land (\forall k < len(q))exp(q, k) \leq p + s]$ | $1-77 \rightarrow I$ |



T13.52.

T13.52.a.

Exercise 13.39 T13.52.a

1.  $| \forall u [(\mathcal{P}(u) \land len(u) \le x) \rightarrow (\forall k < len(u) \sim \mathcal{P}(val(u,k))]$ Р 2.  $val(c, j) * val(a, j - l_1) * val(c_1, j - l_2) * val(b, j - l_3) * val(c_2, j - l_4) = c * d * c_1 * e * c_2$ Р 3.  $\mathcal{P}(a) \land \mathcal{P}(b) \land \mathcal{P}(d) \land \mathcal{P}(e)$ Р 4.  $\forall v(\mathcal{P}(v) \rightarrow v > \overline{1})$ Р 5.  $| len(c) = 1 \land c_1 > \emptyset \land c_2 > \emptyset \land len(c_1) \le 1 \land len(c_2) \le 1$ Р 6.  $j < l \land Sx \ge l$ Ρ 7.  $|a > \overline{1} \land b > \overline{1} \land d > \overline{1} \land e > \overline{1}$ 3,4 ∀E 8.  $val(a, len(a)) = a \land val(b, len(b)) = b \land val(d, len(d)) = d \land val(e, len(e)) = e$ 7 T13.46n 5 T13.45g 9.  $c > \emptyset$ 10.  $|val(c, len(c)) = c \land val(c_1, len(c_1)) = c_1 \land val(c_2, len(c_2)) = c_2$ 5.9 T13.46n 11.  $l = S(len(a) + len(c_1) + len(b) + len(c_2))$ 5 T6.47 12.  $Sx \ge S(\operatorname{len}(a) + \operatorname{len}(c_1) + \operatorname{len}(b) + \operatorname{len}(c_2))$ 6.11 = E13.  $x \ge len(a) + len(c_1) + len(b) + len(c_2)$ 12 T13.13j 14.  $| len(a) \le x \land len(b) \le x$ 13 T13.13u 15.  $len(val(c, j) * val(a, j - l_1) * val(c_1, j - l_2) * val(b, j - l_3) * val(c_2, j - l_4)) =$  $len(val(c, j)) + len(val(a, j - l_1)) + len(val(c_1, j - l_2)) + len(val(b, j - l_3)) + len(val(c_2, j - l_4)))$ T13.47f  $16. | len(val(c, j)) + len(val(a, j - l_1)) + len(val(c_1, j - l_2)) + len(val(b, j - l_3) + len(val(c_2, j - l_4)) \le l$ T13.46k,T13.13v 17.  $|len(c * d * c_1 * e * c_2) \le l$ 2.15.16 = E18.  $|len(c * d * c_1 * e * c_2) = S(len(d) + len(c_1) + len(e) + len(c_2))$ 5 T13.47f 19.  $\left| S(\operatorname{len}(d) + \operatorname{len}(c_1) + \operatorname{len}(e) + \operatorname{len}(c_2)) \right| \le Sx$ 17,18,6 T13.13a 20.  $|len(d) + len(c_1) + len(e) + len(c_2) \le x$ 19 T13.13j 21.  $|len(d) \leq x \wedge len(e) \leq x$ 20 T13.13u  $j < l_1$ 22. A ( $c \sim I$ ) 23. 5,22 T8.16  $j = \emptyset$  $j \stackrel{\cdot}{\rightarrow} l_1 = \emptyset \land j \stackrel{\cdot}{\rightarrow} l_2 = \emptyset \land j \stackrel{\cdot}{\rightarrow} l_3 = \emptyset \land j \stackrel{\cdot}{\rightarrow} l_4 = \emptyset$ 24 23 T13 23h 25.  $val(c, j) = \overline{1} \land val(a, j - l_1) = \overline{1} \land val(c_1, j - l_2) = \overline{1} \land val(b, j - l_3) = \overline{1} \land val(c_2, j - l_4) = \overline{1}$ 23.24 def  $val(c, j) * val(a, j - l_1) * val(c_1, j - l_2) * val(b, j - l_3) * val(c_2, j - l_4) = \overline{1}$ 26. 25 T13.47i 27.  $c * d * c_1 * e * c_2 = \overline{1}$ 2.26 = E 28  $len(c * d * c_1 * e * c_2) \ge \overline{1}$ 5 T13.47f  $c * d * c_1 * e * c_2 > \overline{1}$ 29. T13.45g 30  $|\overline{1} > \overline{1}|$ 27.29 = E31. ī≯ī T13.13s 32. 30,31 ⊥I 33.  $j \neq l_1$ 22-32~I 34.  $j \ge l_1$ 33 T13.13r 35. val(c, j) = c9,34 T13.46n 36.  $| val(a, j - l_1) * val(c_1, j - l_2) * val(b, j - l_3) * val(c_2, j - l_4) > \emptyset$ T13.47c 37.  $d * c_1 * e * c_2 > \emptyset$ T13.47c  $val(a, j - l_1) * val(c_1, j - l_2) * val(b, j - l_3) * val(c_2, j - l_4) = d * c_1 * e * c_2$ 38. 2,35,36,37 T13.471  $j < l_2$ 39. A ( $c \sim I$ ) 40  $j \stackrel{\cdot}{-} l_2 = \emptyset \land j \stackrel{\cdot}{-} l_3 = \emptyset \land j \stackrel{\cdot}{-} l_4 = \emptyset$ 39 T13.23b  $val(c_1, j \stackrel{\cdot}{-} l_2) = \overline{1} \wedge val(b, j \stackrel{\cdot}{-} l_3) = \overline{1} \wedge val(c_2, j \stackrel{\cdot}{-} l_4) = \overline{1}$ 41. 40 def  $val(a, j - l_1) > \emptyset$ 41 T13.46i 42. 43.  $val(a, j - l_1) * val(c_1, j - l_2) * val(b, j - l_3) * val(c_2, j - l_4) = val(a, j - l_1)$ 42,41 T13.47i  $val(a, j - l_1) = d * c_1 * e * c_2$ 38.43 = E44.  $len(d * c_1 * e * c_2) = len(d) + len(c_1) + len(e) + len(c_2)$ T13.47f 45.  $len(d) \le len(d * c_1 * e * c_2)$ 45 T13.13u 46. 47.  $len(d) \leq len(val(a, j - l_1))$ 46,44 = E $len(val(a, j \stackrel{\cdot}{-} l_1)) \leq j \stackrel{\cdot}{-} l_1$ T13.46i 48.  $l\!\!\!len(d) \leq j \stackrel{\centerdot}{-} l_1$ 49. 47,48 T13.13a |z < len(d)50.  $A(g(\forall I))$  $exp(d * c_1 * e * c_2, z) = exp(d, z)$ 51. 50 T13.47c  $z < len(val(a, j - l_1))$ 52. 47.50 T13.13c  $exp(val(a, j - l_1) * val(c_1, j - l_2) * val(b, j - l_3) * val(c_2, j - l_4, z) = exp(val(a, j - l_1), z)$ 53 52 T13.47c 50,49 T13.13c 54  $z < j - l_1$  $exp(val(a, j - l_1), z) = exp(a, z)$ 55 54 T13 461 56. exp(a, z) = exp(d, z)38.51.53.55 =E 57.  $(\forall z < len(d))exp(a, z) = exp(d, z)$ 50-56 (¥I)  $\begin{array}{l} val(a, len(d)) = val(d, len(d))\\ a = val(a, len(d)) \\ Exercise 13.39 \\ T13.52.a \end{array}$ 57 T13.46m 58. 59. d = val(a, len(d))58,8 = E $\mathcal{P}(val(a, len(d)))$ 3,59 = E60. 61.  $j \stackrel{\cdot}{-} l_1 < l_2 \stackrel{\cdot}{-} l_1$ 34,39 T13.23e 62.  $l_2 \doteq l_1 = len(a)$ T13.231 63. len(d) < len(a)49,61,62 T13.13c  $\sim \mathcal{P}(val(a, len(d)))$ 1,3,14,63 ∀E 64. 65. 1 60,64 ⊥I 66. *j ≮ l*<sub>2</sub> 39-65 ~I

| <ol> <li>66.</li> <li>67.</li> <li>68.</li> <li>69.</li> <li>70.</li> <li>71.</li> <li>72.</li> <li>73.</li> <li>74.</li> </ol>    | $ \begin{array}{l} j \ge l_2 \\ l_2 \ge l_1 \\ j \doteq l_1 \ge l_2 \doteq l_1 \\ l_2 \doteq l_1 = len(a) \\ j \doteq l_1 \ge len(a) \\ val(a, j \doteq l_1) = a \\ len(d) < len(a) \lor len(d) = len(a) \lor len(d) > len(a) \\ \hline len(d) < len(a) \\   z < len(d) \end{array} $                                                                                                                                 | 66 T13.13r<br>T13.13u<br>66,67 T13.23d<br>T13.231<br>68,69 =E<br>7,70 T13.46n<br>T13.13p<br>A ( <i>c</i> 72∨E)<br>A ( <i>g</i> (∀I))    |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 75.<br>76.<br>77.<br>78.                                                                                                           | $ \begin{array}{c} \hline exp(d * c_1 * e * c_2, z) = exp(d, z) \\ z < len(val(a, j - l_1)) \\ exp(val(a, j - l_1) * val(c_1, j - l_2) * val(b, j - l_3) * val(c_2, l - l_4), z) = exp(val(a, j - l_1), z) \\ exp(a, z) = exp(d, z) \end{array} $                                                                                                                                                                     | 74 T13.47c<br>71,73,74 T13.13c<br>76 T13.47c<br>71,77,75,38 =E                                                                          |
| <ol> <li>79.</li> <li>80.</li> <li>81.</li> <li>82.</li> <li>83.</li> <li>84.</li> </ol>                                           | $ \begin{array}{l} (\forall z < len(d))exp(a, z) = exp(d, z) \\ val(a, len(d)) = val(d, len(d)) \\ val(a, len(d)) = d \\ \mathcal{P}(val(a, len(d))) \\ \sim \mathcal{P}(val(a, len(d))) \\ \bot \end{array} $                                                                                                                                                                                                        | 74-78 ( $\forall$ I)<br>79 T13.46m<br>80,8 =E<br>3,81 =E<br>1,3,14,73 $\forall$ E<br>82,83 $\perp$ I                                    |
| 85.                                                                                                                                | len(d) > len(a)                                                                                                                                                                                                                                                                                                                                                                                                       | A ( $c$ 72 $\vee$ E)                                                                                                                    |
| 86.                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       | similarly (72)                                                                                                                          |
| 87.                                                                                                                                | len(d) = len(a)                                                                                                                                                                                                                                                                                                                                                                                                       | A ( <i>c</i> 72∨E)                                                                                                                      |
| 88.                                                                                                                                | z < len(d)                                                                                                                                                                                                                                                                                                                                                                                                            | A $(g (\forall I))$                                                                                                                     |
| <ol> <li>89.</li> <li>90.</li> <li>91.</li> <li>92.</li> <li>93.</li> </ol>                                                        | $ \begin{array}{l} z < len(a) \\ z < len(val(a, j \div l_1)) \\ exp(d * c_1 * e * c_2, z) = exp(d, z) \\ exp(val(a, j \div l_1) * val(c_1, j \div l_2) * val(b, j \div l_3) * val(c_2, j \div l_4), z) = exp(val(a, j \div l_1), z) \\ exp(val(a, j \div l_1), z) = exp(d, z) \end{array} $                                                                                                                           | 88,87 =E<br>71,89 =E<br>88 T13.47c<br>90 T13.47c<br>92,91,38 =E                                                                         |
| <ol> <li>94.</li> <li>95.</li> <li>96.</li> <li>97.</li> <li>98.</li> <li>99.</li> <li>100.</li> <li>101.</li> <li>102.</li> </ol> | $ (\forall z < len(d))exp(val(a, j - l_1), z) = exp(d, z) val(val(a, j - l_1), len(val(a, j - l_1))) = val(d, len(d)) val(a, j - l_1) > \emptyset val(val(a, j - l_1), len(val(a, j - l_1))) = val(a, j - l_1) val(a, j - l_1) = d val(c_1, j - l_2) * val(b, j - l_3) * val(c_2, j - l_4)) > \emptyset c_1 * e * c_2 > \emptyset val(c_1, j - l_2) * val(b, j - l_3) * val(c_2, j - l_4) = c_1 * e * c_2   j < l_3 $ | 88-93 (∀I)<br>94,71,87 T13.46m<br>T13.46i<br>96 T13.46n<br>95,97,8 =E<br>T13.47c<br>T13.47c<br>98,38,99,100 T13.471<br>A ( <i>c</i> ~I) |
| 103.                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                       | similarly (22)                                                                                                                          |
| 104.<br>105.<br>106.<br>107.<br>108.                                                                                               | $j \neq l_3$ $j \geq l_3$ $l_3 \geq l_2$ $j \stackrel{\cdot}{\rightarrow} l_2 \geq l_3 \stackrel{\cdot}{\rightarrow} l_2$ $l_3 \stackrel{\cdot}{\rightarrow} l_2 = len(c_1)$ $j \stackrel{\cdot}{\rightarrow} l_2 \geq len(c_2)$                                                                                                                                                                                      | 102-103 ~I<br>104 T13.13r<br>T13.13u<br>105,106 T13.23d<br>T13.231<br>107 108 =F                                                        |
| 110.                                                                                                                               | $\begin{vmatrix} j & l_2 \\ val(c_1, j - l_2) = c_1 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                    | 5,105 T13.46n                                                                                                                           |
| 111.                                                                                                                               | $val(b, j - l_3) * val(c_2, j - l_4) > \emptyset$                                                                                                                                                                                                                                                                                                                                                                     | T13.47c                                                                                                                                 |
| 112.                                                                                                                               | $ e * c_2 > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                | T13.47c                                                                                                                                 |
| 113.<br>114                                                                                                                        | $ val(c, j - l_3) * val(c_2, j - l_4) = e * c_2$ $ i < l_4$                                                                                                                                                                                                                                                                                                                                                           | 101,110,111,112 T13.471<br>A (c ~I)                                                                                                     |
| 115                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       | similarly (39)                                                                                                                          |
| 116                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       | 114-115~I                                                                                                                               |
| . 10.                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                       | 114-1131                                                                                                                                |

Exercise 13.39 T13.52.a

| 117.                                                                                         | $j \ge l_4$                                                                                                                                                                                                                                                                                                          | 116 T13.13r                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 118.                                                                                         | $l_4 \ge l_3$                                                                                                                                                                                                                                                                                                        | T13.13u                                                                                                                                                                            |
| 119.                                                                                         | $j \stackrel{\cdot}{-} l_3 \ge l_4 \stackrel{\cdot}{-} l_3$                                                                                                                                                                                                                                                          | 117,118 T13.23d                                                                                                                                                                    |
| 120.                                                                                         | $l_4 - l_3 = len(b)$                                                                                                                                                                                                                                                                                                 | T13.231                                                                                                                                                                            |
| 121.                                                                                         | $j \doteq l_3 \ge len(b)$                                                                                                                                                                                                                                                                                            | 119,120 =E                                                                                                                                                                         |
| 122.                                                                                         | $val(b, j - l_3) = b$                                                                                                                                                                                                                                                                                                | 121,7 T13.46n                                                                                                                                                                      |
| 123.                                                                                         | $len(e) < len(b) \lor len(e) = len(b) \lor len(e) > len(b)$                                                                                                                                                                                                                                                          |                                                                                                                                                                                    |
| 124.                                                                                         | len(e) < len(b)                                                                                                                                                                                                                                                                                                      | A ( <i>c</i> 123∨E)                                                                                                                                                                |
| 125.                                                                                         |                                                                                                                                                                                                                                                                                                                      | similarly (72)                                                                                                                                                                     |
| 126.                                                                                         | len(e) > len(b)                                                                                                                                                                                                                                                                                                      | A ( <i>c</i> 123∨E)                                                                                                                                                                |
| 127.                                                                                         |                                                                                                                                                                                                                                                                                                                      | similarly (72)                                                                                                                                                                     |
| 128.                                                                                         | len(e) = len(b)                                                                                                                                                                                                                                                                                                      | A ( <i>c</i> 123∨E)                                                                                                                                                                |
|                                                                                              |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                    |
| 129.                                                                                         | $val(b, j - l_3) = e$                                                                                                                                                                                                                                                                                                | similarly                                                                                                                                                                          |
| 129.<br>130.                                                                                 | $ \overline{val(b, j - l_3)} = e  val(c_2, j - l_4) > \emptyset $                                                                                                                                                                                                                                                    | similarly<br>T13.46i                                                                                                                                                               |
| 129.<br>130.<br>131.                                                                         | $ \begin{array}{c} val(b, j - l_3) = e \\ val(c_2, j - l_4) > \emptyset \\ val(c_2, j - l_4) = c_2 \end{array} \end{array} $                                                                                                                                                                                         | similarly<br>T13.46i<br>113,130,5 T13.47l                                                                                                                                          |
| 129.<br>130.<br>131.<br>132.                                                                 | $ \begin{array}{c} val(b, j \doteq l_3) = e \\ val(c_2, j \doteq l_4) > \emptyset \\ val(c_2, j \doteq l_4) = c_2 \\ len(val(c_2, j \doteq l_4)) = len(c_2) \end{array} $                                                                                                                                            | similarly<br>T13.46i<br>113,130,5 T13.471<br>131 =E                                                                                                                                |
| 129.<br>130.<br>131.<br>132.<br>133.                                                         | $ \begin{array}{l} \hline val(b, j \doteq l_3) = e \\ val(c_2, j \doteq l_4) > \emptyset \\ val(c_2, j \doteq l_4) = c_2 \\ len(val(c_2, j \doteq l_4)) = len(c_2) \\ len(val(c_2, j \doteq l_4)) \le j \doteq l_4 \end{array} $                                                                                     | similarly<br>T13.46i<br>113,130,5 T13.471<br>131 =E<br>T13.46j                                                                                                                     |
| 129.<br>130.<br>131.<br>132.<br>133.<br>134.                                                 | $ \begin{array}{l} \hline val(b, j - l_3) = e \\ val(c_2, j - l_4) > \emptyset \\ val(c_2, j - l_4) = c_2 \\ len(val(c_2, j - l_4)) = len(c_2) \\ len(val(c_2, j - l_4)) \le j - l_4 \\ j - l_4 \ge len(c_2) \end{array} $                                                                                           | similarly<br>T13.46i<br>113,130,5 T13.471<br>131 =E<br>T13.46j<br>133,134 =E                                                                                                       |
| 129.<br>130.<br>131.<br>132.<br>133.<br>134.<br>135.                                         | $ \begin{bmatrix} val(b, j - l_3) = e \\ val(c_2, j - l_4) > \emptyset \\ val(c_2, j - l_4) = c_2 \\ len(val(c_2, j - l_4)) = len(c_2) \\ len(val(c_2, j - l_4)) \le j - l_4 \\ j - l_4 \ge len(c_2) \\ (j - l_4) + l_4 \ge len(c_2) + l_4 \end{bmatrix} $                                                           | similarly<br>T13.46i<br>113,130,5 T13.471<br>131 =E<br>T13.46j<br>133,134 =E<br>134 T13.13v                                                                                        |
| 129.<br>130.<br>131.<br>132.<br>133.<br>134.<br>135.<br>136.                                 | $ \begin{bmatrix} val(b, j - l_3) = e \\ val(c_2, j - l_4) > \emptyset \\ val(c_2, j - l_4) = c_2 \\ len(val(c_2, j - l_4)) = len(c_2) \\ len(val(c_2, j - l_4)) \le j - l_4 \\ j - l_4 \ge len(c_2) \\ (j - l_4) + l_4 \ge len(c_2) + l_4 \\ j = l_4 + (j - l_4) \end{bmatrix} $                                    | similarly<br>T13.46i<br>113,130,5 T13.471<br>131 =E<br>T13.46j<br>133,134 =E<br>134 T13.13v<br>117 T13.23a                                                                         |
| 129.<br>130.<br>131.<br>132.<br>133.<br>134.<br>135.<br>136.<br>137.                         | $ \begin{bmatrix} val(b, j - l_3) = e \\ val(c_2, j - l_4) > \emptyset \\ val(c_2, j - l_4) = c_2 \\ len(val(c_2, j - l_4)) = len(c_2) \\ len(val(c_2, j - l_4)) \le j - l_4 \\ j - l_4 \ge len(c_2) \\ (j - l_4) + l_4 \ge len(c_2) + l_4 \\ j = l_4 + (j - l_4) \\ j \ge l \end{bmatrix} $                         | similarly<br>T13.46i<br>113,130,5 T13.471<br>131 =E<br>T13.46j<br>133,134 =E<br>134 T13.13v<br>117 T13.23a<br>135,136 =E                                                           |
| 129.<br>130.<br>131.<br>132.<br>133.<br>134.<br>135.<br>136.<br>137.<br>138.                 | $ \begin{bmatrix} val(b, j - l_3) = e \\ val(c_2, j - l_4) > \emptyset \\ val(c_2, j - l_4) = c_2 \\ len(val(c_2, j - l_4)) = len(c_2) \\ len(val(c_2, j - l_4)) \le j - l_4 \\ j - l_4 \ge len(c_2) \\ (j - l_4) + l_4 \ge len(c_2) + l_4 \\ j = l_4 + (j - l_4) \\ j \ge l \\ j \le l \end{bmatrix} $              | similarly<br>T13.46i<br>113,130,5 T13.471<br>131 =E<br>T13.46j<br>133,134 =E<br>134 T13.13v<br>117 T13.23a<br>135,136 =E<br>137 T13.13r                                            |
| 129.<br>130.<br>131.<br>132.<br>133.<br>134.<br>135.<br>136.<br>137.<br>138.<br>139.         | $ \begin{array}{c} val(b, j - l_3) = e \\ val(c_2, j - l_4) > \emptyset \\ val(c_2, j - l_4) = c_2 \\ len(val(c_2, j - l_4)) = len(c_2) \\ len(val(c_2, j - l_4)) \le j - l_4 \\ j - l_4 \ge len(c_2) \\ (j - l_4) + l_4 \ge len(c_2) + l_4 \\ j = l_4 + (j - l_4) \\ j \ge l \\ j \ne l \\ \downarrow \end{array} $ | similarly<br>T13.46i<br>113,130,5 T13.471<br>131 =E<br>T13.46j<br>133,134 =E<br>134 T13.13v<br>117 T13.23a<br>135,136 =E<br>137 T13.13r<br>138,6 ⊥I                                |
| 129.<br>130.<br>131.<br>132.<br>133.<br>134.<br>135.<br>136.<br>137.<br>138.<br>139.<br>140. | $ \begin{bmatrix} val(b, j - l_3) = e \\ val(c_2, j - l_4) > \emptyset \\ val(c_2, j - l_4) = c_2 \\ len(val(c_2, j - l_4)) = len(c_2) \\ len(val(c_2, j - l_4)) \le j - l_4 \\ j - l_4 \ge len(c_2) \\ (j - l_4) + l_4 \ge len(c_2) + l_4 \\ j = l_4 + (j - l_4) \\ j \ge l \\ j \not< l \\ \bot $                  | similarly<br>T13.46i<br>113,130,5 T13.471<br>131 =E<br>T13.46j<br>133,134 =E<br>134 T13.13v<br>117 T13.23a<br>135,136 =E<br>137 T13.13r<br>138,6 $\perp$ I<br>123,124-139 $\vee$ E |

T13.52.f.  $PA \vdash \mathbb{T}erm(t) \rightarrow (\forall k < len(t)) \sim \mathbb{T}erm(val(t,k))$ 

| 1.        | $\mathbb{I}erm(t) \wedge len(t) \leq \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A $(g \rightarrow I)$         |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 2.        | k < len(t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A $(g (\forall I))$           |
| 3.        | Term(val(t,k))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A ( $c \sim I$ )              |
| 4.        | $\left  \right  \overline{k} < \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2 T13.13c                   |
| 5.        | $k \neq \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T13.13d,r                     |
| 6.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4,5 ⊥I                        |
| 7.        | $\sim \mathbb{T}erm(val(t,k))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3-6 ~I                        |
| 8.        | $(\forall k < len(t)) \sim \mathbb{T}erm(val(t,k))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-7 (¥I)                      |
| 9.        | $(\mathbb{T}erm(t) \land \mathbb{l}en(t) \le \emptyset) \to (\forall k < \mathbb{l}en(t)) \sim \mathbb{T}erm(\mathbb{v}al(t,k))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1-8 \rightarrow I$           |
| 10.       | $\forall t [(\mathbb{T}erm(t) \land \mathbb{I}en(t) \leq \emptyset) \to (\forall k < len(t)) \sim \mathbb{T}erm(val(t,k))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 ¥I                          |
| 11.       | $\forall t [(Term(t) \land len(t) \le x) \to (\forall k < len(t)) \sim Term(val(t,k))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A $(g \rightarrow I)$         |
| 12.       | $\underline{\mathbb{T}erm(a)} \wedge \underline{\mathbb{I}en(a)} \leq Sx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A $(g \rightarrow I)$         |
| 13.       | $\mathbb{T}erm(a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12 ∧E                         |
| 14.       | $len(a) \leq Sx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12 ∧E                         |
| 15.       | j < len(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A $(g (\forall I))$           |
| 16.       | $   j = \emptyset \lor j > \emptyset $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T13.13d,m                     |
| 17.       | $\left  \right  = \frac{J - b}{L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A (g 10VE)                    |
| 18.       | $val(a, j) = 1$ $val(a, i) \neq \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 / def                       |
| 19.<br>20 | $\forall al(a, j) \neq 1$<br>$\sim \mathbb{Z}_{arm}(val(a, i))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 115.15m,r<br>19 T13 48f    |
| 20.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |
| 21.       | $\left  \begin{array}{c} j > 0 \\ \hline \end{array} \right  = \left  \begin{array}{c} j > 0 \\ \hline \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A $(g \ 16 \lor E)$           |
| 22.       | $   \int J = S(J-1) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21 T13.23j                    |
| 23.       | $\sum_{j=1}^{n} \frac{S(j-1) < len(a)}{T_{ij}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15,22 = E                     |
| 24.       | $\begin{bmatrix} 1 \text{ ermseq}(m, a) \\ ax_{D}(m) = \overline{1} \\ - \overline{1} \end{bmatrix} = a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15 115.460<br>24 T13 485      |
| 26        | $ \begin{array}{c} (m, sen(m) + 1) = u \\ m > \overline{1} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24 T13 48a                    |
| 27.       | $[\forall k < len(m))[A(m,k) \lor B(m,k) \lor C(m,k) \lor D(m,k)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24 T13.48a                    |
| 28.       | $     len(m) > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26 T13.45j                    |
| 29.       | $\left  len(m) \div \overline{1} < len(m) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28 T13.23i                    |
| 30.       | $    A(m, len(m) - \overline{1}) \vee B(m, len(m) - \overline{1}) \vee C(m, len(m) - \overline{1}) \vee D(m, len(m) - \overline{1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27,29 (∀E)                    |
| 31.       | $\left  \begin{array}{c} \mathbb{T}erm(val(a, j)) \\ \mathbb{T}erm(val(a, j)) \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A ( $c \sim I$ )              |
| 32.       | $A(m, len(m) - \overline{1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A ( $c 30 \lor E$ )           |
| 33.       | $\begin{vmatrix} a = \overline{e} & \forall var(a) \\ \overline{e} & \overline{e} & \overline{e} & \forall var(a) \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32,25 abv                     |
| 34.       | $\begin{bmatrix} a & a & b \\ a & a & a \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A $(g 33 \lor E)$             |
| 55.<br>26 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54  cap                       |
| 30.       | $-\overline{z}_{3}+\overline{z}_{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A (g 55VE)                    |
| 37.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 def                        |
| 38.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A (g 37 (EE))                 |
| 39.       | $\left  \begin{array}{c}   \\   \\   \\   \\   \\   \\   \\   \\   \\   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38 113.45k                    |
| 40.       | en(a)  = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37,38-39 (∃E)                 |
| 41.       | $\left  \begin{array}{c}   \\   \\   \\   \\   \\   \\   \\   \\   \\   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33,34-35,36-40 ∨E             |
| 42.       | $ \begin{array}{c} j < \emptyset \lor j = \emptyset \\ i = \emptyset \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15,41 113.13n<br>42 T12 12d r |
| 43.<br>44 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42 115.15d,1<br>21 43   I     |
| 45        | $         =  B(m, len(m) \div \overline{1}) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A (c 30 $\vee$ E)             |
| 16        | $\begin{bmatrix} 2 & (n, x, n, (n)) \\ (\exists i < lan(m) - 1)a = \lceil S \rceil + a m(m - i) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45 25 aby                     |
| 47.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $A (c 46 (\exists E))$        |
| 48.       | $a = \overline{[S]} * exp(m, l)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |
| 49.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.47 T13.13b                 |
| 50.       | $     $ $\mathbb{T}erm(exp(m, l))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 24,49 T13.48n                 |
| 51.       | $       len(\overline{\lceil S \rceil}) = \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cap                           |
| 52.       | $            \overline{S} > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51 T13.45g                    |
| 53.       | $        exp(\underline{m},l) > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 49,24 T13.48e                 |
| 54.       | $       val(\underline{S}^* exp(\underline{m}\underline{E}), j) = \overline{C} \cdot \overline{C} \cdot \overline{S} \cdot \overline{S}$ | 51,52,53 T13.47m              |
| 55.       | $       val(\lceil S\rceil, j) = \lceil S\rceil$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21,51 T13.46n                 |
| 56.       | val(a, j) = S' * val(exp(m, l), j - 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54,48,55 =E                   |
| 57.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31,56 T13.52c                 |

| 58.          | $\left  \begin{array}{c} \left  \begin{array}{c} \left  \begin{array}{c} \left  \begin{array}{c} \overline{S} \overline{S} \\ \overline{T} \end{array} \right  * val(exp(m,l), j \div \overline{1}) = \overline{S} \\ \overline{T} \end{array} \right  = \overline{S} \\ \end{array} \right  * r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A ( <i>c</i> 57∃E)                  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 59.          | $\left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |
| 60.          | $            val(exp(m, l), j-1) > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T13.46i                             |
| 62           | $                  r > y$ $val(exp(m l), i - \overline{1}) = r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58 60 61 T13 471                    |
| 63.          | $\mathbb{T}erm(val(exp(m,l), j-1))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59.62 =E                            |
| 64.          | $len(a) = len(\overline{\Gamma S^{-}}) + len(exp(m, l))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48 T13.47f                          |
| 65.          | $       len(a) = \overline{1} + len(exp(m, l))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64,51 =E                            |
| 66.          | len(a) = Slen(exp(m, l))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65 T6.47                            |
| 67.          | $         Slen(exp(m, l)) \le Sx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14,66 = E                           |
| 68.          | $             len(exp(m, l)) \le x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67 T13.13j                          |
| 69.<br>70    | S(j-1) < Slen(exp(m, l))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66,23 = E                           |
| 70.          | $\int \int \frac{1}{(1+i)^{n-1}} = \int \frac{1}{(1+i)^{n-1}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 09 115.13K<br>11 50 68 70 (VE)      |
| 72.          | $\perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 63,71 ⊥I                            |
| 73.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 57,58-72 ∃E                         |
| 74.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46,47-73 ( <del>I</del> E)          |
| 75.          | $       C(m, len(m) - \overline{1}) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A ( <i>c</i> 30 ∨E)                 |
| 76.          | $     \overline{(\exists i < len(m) - \overline{1})}(\exists j < len(m) - \overline{1})a = \overline{(\exists i < len(m) - \overline{1})}a = \overline{(i < len(m) - \overline{1})}a = (i < len$ | 75 abv                              |
| 77.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A ( $c$ 76( $\exists$ E))           |
| 78.          | $          l < len(m) - \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| 79.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |
| 80.          | k < len(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29,77 T13.13b                       |
| 81.          | l < len(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29,78 T13.13b                       |
| 82.          | $ \begin{bmatrix} I & erm(exp(m, k)) \\ T & erm(exp(m, k)) \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24,80 T13.48n                       |
| 83.<br>84    | $\left  \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24,01 115.40ll                      |
| 85<br>85     | $        \frac{ien(+)-1}{\lceil+1>0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eap<br>84 T13 450                   |
| 86.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 77,24 T13.48e                       |
| 87.          | $exp(m,l) > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 78,24 T13.48e                       |
| 88.          | $val(\overline{r+\gamma} * exp(m,k) * exp(m,l), j) = val(\overline{r+\gamma} i) * val(exp(m,k) i \div \overline{1}) * val(exp(m,l) i \div (\overline{1} + lep(exp(m,k))))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84 85 86 87 T13 47m                 |
| 89           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21 84 T13 46n                       |
| 90.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88,79,89 =E                         |
| 91.          | $\exists r \exists s [\overline{r+\gamma} * val(exp(m,k), j - \overline{1}) * val(exp(m,l), j - (\overline{1} + len(exp(m,k)))) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |
|              | $\overline{\lceil + \rceil} * r * s \land Term(r) \land Term(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31,90 T13.52d                       |
| 92.          | $            \overline{+7} * val(exp(m,k), j \div \overline{1}) * val(exp(m,l), j \div (\overline{1} + len(exp(m,k)))) = \overline{+7} * r * s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A ( <i>c</i> 91∃E)                  |
| 93.          | Term(r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |
| 94.          | $\mathbb{I}erm(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |
| 95.          | $            val(\ulcorner+\urcorner, j) * val(exp(m, k), j - 1) * val(exp(m, l), j - (1 + len(exp(m, k)))) = \ulcorner+\urcorner * r * s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92,89 =E                            |
| 96.          | $\  \  \  \  \mathbb{T}erm(exp(m,k)) \wedge \mathbb{T}erm(exp(m,l)) \wedge \mathbb{T}erm(r) \wedge \mathbb{T}erm(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82,83,93,94 ∧I                      |
| 97.          | $\forall v (I erm(v) \to v > 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 113.48I                             |
| 90.<br>99    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11 95 96 97 84 98 T13 52a           |
| 100          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 01 02 00 E                          |
| 100.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 91,92-99 E                          |
| 101.         | $\left  \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A (= 20.) (E)                       |
| 102.<br>103. | $ \begin{bmatrix} D(m, \operatorname{ten}(m) - 1) \\ \bot \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | similarly                           |
| 104.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30,32-103 ∨E                        |
| 105.         | $\sim \mathbb{T}erm(val(a, j))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 31-104 ∼I                           |
| 106.         | $\Big  \sim \mathbb{T}erm(val(a, j))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16,17-20,21-105 ∨E                  |
| 107.         | $(\forall k < len(a)) \sim \mathbb{T}erm(val(a,k))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15-106 (¥I)                         |
| 108.         | $(\mathbb{T}erm(a) \land len(a) \leq Sx) \rightarrow (\forall k < len(a)) \sim \mathbb{T}erm(val(a,k))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12-108 →I                           |
| 109.         | $ \forall t   (Term(t) \land len(t) \leq Sx) \rightarrow (\forall k < len(t)) \sim Term(val(t,k))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108 ¥I                              |
| 110.         | $\forall t[(Term(t) \land len(t) \leq x)  (\forall k < len(t)) \sim Term(val(t-k))) \rightarrow Exercise Log 2/1 L(2)  (\forall k < len(t)) \rightarrow L(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.100                              |
| 111          | $\forall I[(I erm(t) \land len(t) \leq S x) \rightarrow (\forall k < len(t) \land I'erm(val(t, k))]$ $\forall I[(Tarm(t) \land len(t) \leq x) \rightarrow (\forall k < len(t)), Tarm(val(t, k))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $11-109 \rightarrow 1$<br>10.110 IN |
| 111.         | $rel(\mathfrak{a} \operatorname{crim}(\mathfrak{r}) \land \operatorname{sen}(\mathfrak{r}) \geq \mathfrak{n}) \rightarrow (re \land crin(\mathfrak{r})) \circ \mathfrak{a} \operatorname{crim}(rul(\mathfrak{r},\mathfrak{r}))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10,110 11                           |

E13.40. Show (g) including at least the *A* case, and (k) from T13.53. Hard core: show each of the results from T13.53.

## T13.53.

| T13.53.h. PA ⊢ | $\mathbb{W}_{ff}(p)) \wedge \mathbb{W}_{ff}(q)/$ | $\mathbb{W}ff(a) \wedge \mathbb{W}ff(b)]$ - | $\rightarrow [cnd(p,q) =$ | $= cnd(a,b) \rightarrow$ |
|----------------|--------------------------------------------------|---------------------------------------------|---------------------------|--------------------------|
| $(p = a \land$ | q = b]                                           |                                             |                           |                          |

| 1.  | $\mathbb{W}_{ff}(p)) \land \mathbb{W}_{ff}(q) \land \mathbb{W}_{ff}(a) \land \mathbb{W}_{ff}(b)$                                                                                                                                     | A $(g \rightarrow I)$                           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | cnd(p,q) = cnd(a,b)                                                                                                                                                                                                                  | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 3.  | $\left  \left  \overline{\left( \overline{} * p * \overline{} \rightarrow \overline{} * q * \overline{} \right) \right  = \overline{\left( \overline{} * a * \overline{} \rightarrow \overline{} * b * \overline{} \right)} \right $ | 2 def                                           |
| 4.  | $p > \overline{1} \land q > \overline{1} \land a > \overline{1} \land b > \overline{1}$                                                                                                                                              | 1 T13.49e                                       |
| 5.  | $\left  p \ast \overline{[ \rightarrow ]} \ast q \ast \overline{[ )} \right  > \overline{1} \land a \ast \overline{[ \rightarrow ]} \ast b \ast \overline{[ )} > \overline{1}$                                                       | 4 T13.47n                                       |
| 6.  | $p \ast \overline{[]} = p \ast \overline{[]} = p \ast \overline{[]} \approx q \ast \overline{[]}$                                                                                                                                    | 3,5 T13.471                                     |
| 7.  | $\left  \begin{array}{c} p \ast  \rightarrow  \ast q > \overline{1} \land a \ast  \rightarrow  \ast b > \overline{1} \end{array} \right $                                                                                            | 4 T13.47n                                       |
| 8.  | $ p \ast  \rightarrow  \ast q = a \ast  \rightarrow  \ast b $                                                                                                                                                                        | 6,7 T13.47k                                     |
| 9.  | $ len(p) < len(a) \lor len(p) = len(a) \lor len(p) > len(a)$                                                                                                                                                                         | T13.13p                                         |
| 10. | len(p) < len(a)                                                                                                                                                                                                                      | A $(g \sim I)$                                  |
| 11. | i < len(p)                                                                                                                                                                                                                           | A g ( $\forall$ I))                             |
| 12. | i < len(a)                                                                                                                                                                                                                           | 11,10 T13.13b                                   |
| 13. | $     exp(p * \overline{r} \rightarrow \overline{r} * q, i) = exp(p, i) \land exp(a * \overline{r} \rightarrow \overline{r} * b, i) = exp(a, i)$                                                                                     | 11,12 T13.47c                                   |
| 14. | exp(p,i) = exp(a,i)                                                                                                                                                                                                                  | 8,13 =E                                         |
| 15. | $(\forall i < len(p))exp(p,i) = exp(a,i)$                                                                                                                                                                                            | 11-14 (¥I)                                      |
| 16. | val(p, len(p)) = val(a, len(p))                                                                                                                                                                                                      | 15 T13.46m                                      |
| 17. | p = val(a, len(p))                                                                                                                                                                                                                   | 16,4 T13.46n                                    |
| 18. | Wff(val(a, len(p)))                                                                                                                                                                                                                  | 17,1 <b>=</b> E                                 |
| 19. | $\sim W ff(val(a, len(p)))$                                                                                                                                                                                                          | 1,10 T13.52g                                    |
| 20. |                                                                                                                                                                                                                                      | 18,19 ⊥I                                        |
| 21. | $len(p) \neq len(a)$                                                                                                                                                                                                                 | 10-20 ∼I                                        |
| 22. | len(p) > len(a)                                                                                                                                                                                                                      | A $(g \sim I)$                                  |
| 23. |                                                                                                                                                                                                                                      | similarly                                       |
| 24. | $len(p) \neq len(a)$                                                                                                                                                                                                                 | 22-23 ~I                                        |
| 25. | len(p) = len(a)                                                                                                                                                                                                                      | 9,21,24 DS                                      |
| 26. | $\left  \overline{ \neg } \ast q > 1 \land \overline{ \neg } \ast b > 1 \right $                                                                                                                                                     | 4 T13.47o                                       |
| 27. | $\left  \overline{ \left[ \rightarrow \right]} * q = \overline{ \left[ \rightarrow \right]} * b \right $                                                                                                                             | 8,25,26 T13.471                                 |
| 28. | q = b                                                                                                                                                                                                                                | 27,4 T13.471                                    |
| 29. | $ p*\overline{r} \rightarrow \overline{r} > 1 \land a*\overline{r} \rightarrow \overline{r} > \overline{1}$                                                                                                                          | 4 T13.47n                                       |
| 30. | $   p * \overline{\vdash} \rightarrow \overline{\vdash} = a * \overline{\vdash} \rightarrow \overline{\vdash}$                                                                                                                       | 8,28,29 T13.47k                                 |
| 31. | p = a                                                                                                                                                                                                                                | 30,4 T13.47k                                    |
| 32. | $  p = a \land q = b$                                                                                                                                                                                                                | 31,28 ∧I                                        |
| 33. | $cnd(p,q) = cnd(a,b) \rightarrow (p = a \land q = b)$                                                                                                                                                                                | 2-32 →I                                         |
| 34. | $[\mathbb{W}ff(p)) \land \mathbb{W}ff(q) \land \mathbb{W}ff(a) \land \mathbb{W}ff(b)] \to [cnd(p,q) = cnd(a,b) \to (p = a \land q = b)]$                                                                                             | 1-33 <b>→</b> I                                 |

T13.53.j. PA  $\vdash Axiompa(p) \rightarrow Wff(p)$ 

The cases for axioms of Q are immediate by capture. The following should be sufficient to see how other cases will go.

 $PA \vdash Axiomad6(n) \rightarrow Wff(n)$ 

Exercise 13.40 T13.53.j

| 1.  | Axiomad6(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $(g \rightarrow I)$            |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|
| 2.  | $\left  \left( \exists v \le n \right) [ \mathbb{V}ar(v) \land n = \overline{\lceil = \rceil} * v * v ] \right  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T13.40a                        |  |  |
| 3.  | $    v \le n$ A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( <i>g</i> 2 (∃E))             |  |  |
| 4.  | $         Var(v) \land n = \overline{ r =  } * v * v $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |  |  |
| 5.  | $\mathbb{T}erm(v)$ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T13.48p                        |  |  |
| 6.  | $\left   \left   \mathbb{T}erm(v) \land \mathbb{T}erm(v) \land n = \overline{\neg} * v * v \right. \right. $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 ∧I                           |  |  |
| 7.  | $\left  \left  \left( \exists x \le n \right) (\exists y \le n) [ \mathbb{T}erm(x) \land \mathbb{T}erm(y) \land n = \overline{\neg} * x * y \right] \right  = 6,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 (∃I)                         |  |  |
| 8.  | Atomic(n)  7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T13.49c                        |  |  |
| 9.  | $\left  \begin{array}{c} W_{ff}(n) \end{array} \right  = \mathcal{W}_{ff}(n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T13.49m                        |  |  |
| 10. | $\left  \begin{array}{c} Wff(n) \end{array} \right  $ 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3-9 ( <del>J</del> E)          |  |  |
| 11. | $Axiomad6(n) \to Wff(n) $ 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $10 \rightarrow I$             |  |  |
| PA  | $\vdash Axiompa7(n) \rightarrow Wff(n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |  |  |
| 1.  | Axiompa7(p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $A(g \rightarrow I)$           |  |  |
| 2.  | $(\exists p \le n)(\exists v \le n)[Wff(p) \land Var(v) \land n = cnd(meg(cnd(formsub(p, v, \overline{\lceil \emptyset \rceil}),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |  |  |
|     | $meg(unv(v, cnd(p, formsub(p, v, \lceil S \rceil * v)))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )))), $unv(v, p)$ )] 1 T13.40a |  |  |
| 3.  | 3. $W_{ff}(p) \wedge Var(v)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |  |  |
| 4.  | $ \prod_{v=1}^{n} = cnd(meg(cnd(formsub(p,v, '\emptyset')), meg(unv(v, cnd(p, formsub(p,v, 'S')))) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | v))))), unv(v, p))             |  |  |
| 5.  | $\begin{bmatrix} \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset \rceil) \land \mathbb{T}erm(\lceil S \rceil * v) \\ \mathbb{T}erm(\lceil \emptyset n) \land \mathbb{T}erm(\lceil N n) ) \\ \mathbb{T}erm(\lceil N n) \\ \mathbb{T}erm(\lceil N n) \land \mathbb{T}erm(\lceil N n) ) \\ \mathbb{T}erm(\lceil N n) \land \mathbb{T}erm(\lceil N n) ) \\ \mathbb{T}erm(\lceil N n) \\ \mathbb{T}erm(\lceil N n) ) \\ \mathbb{T}erm(\lceil N n) \\ \mathbb{T}erm(\lceil N n) ) \\ \mathbb{T}erm(\lceil N n) ) \\ \mathbb{T}erm(\lceil N n) \\ \mathbb{T}erm(\lceil N n) ) \\ \mathbb{T}$ | 3 T13.480,p                    |  |  |
| 6.  | Wff(f ormsub(p, v, '0')) $Wff(f ormsub(p, v, '0'))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,5 113.51m                    |  |  |
| 8   | $Wff(cnd(n, formsub(n, n, \overline{S^{-}} * n)))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,5 113.5111                   |  |  |
| 9.  | 9 $Wff(unv(v, cnd(p, formsub(p, v, \overline{S} * v))))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |  |  |
| 10. | $10.    Wff(neg(unv(v, cnd(p, formsub(p, v, \overline{S^{\gamma}} * v)))))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |  |  |
| 11. | 11. $   Wff(cnd(formsub(p,v, \lceil \emptyset \rceil), neg(unv(v, cnd(p, formsub(p,v, \lceil S \rceil * v))))))$ 6,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |  |  |
| 12. | 12. $\left      Wff(meg(cnd(formsub(p,v,\overline{\lceil 0 \rceil}), meg(unv(v, cnd(p, formsub(p,v,\overline{\lceil S \rceil} * v))))))) \right  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |  |  |
| 13. | $= = \begin{bmatrix} W_{ff}(u_{ov}(v, p)) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 T13.49p                      |  |  |
| 14. | $ \  \  \mathcal{W}_{ff}(cnd(\operatorname{reg}(cnd(formsub(p,v, \lceil \emptyset \rceil), \operatorname{reg}(\operatorname{unv}(v, cnd(p, formsub(p,v, \lceil S \rceil * v))))), \operatorname{unv}(v, p))) \\ = 12,13 \text{ T13.4} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |  |  |
| 15. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4,14 =E                        |  |  |
| 16. | $   W ff(n) $ 2,3-15 ( $\exists E$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |  |  |
| 17. | $17. \mid Axiompa7(n) \to Wff(n) \qquad 1-16 \to I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |  |  |

E13.41. As a start to a complete demonstration of T13.54, provide a demonstration through part (C) that does not skip any steps.

T13.54. PA  $\vdash$  Prvt(cnd(p,q))  $\rightarrow$  (Prvt(p)  $\rightarrow$  Prvt(q)).

(a)

Exercise 13.41 T13.54

| 1.                                                                                                                 | 1 | Prvt(cnd(p,q))                                                                                                                                                                                                                                                                                            | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$                                         |
|--------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 2.                                                                                                                 | 1 | W ff(cnd(p,q))                                                                                                                                                                                                                                                                                            | 1 T13.53k                                                                               |
| 3.                                                                                                                 |   | Prvt(p)                                                                                                                                                                                                                                                                                                   | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$                                         |
| 4.                                                                                                                 |   | $W\!f\!f(p)$                                                                                                                                                                                                                                                                                              | 3 T13.53k                                                                               |
| 5.                                                                                                                 |   | $W\!f\!f(q)$                                                                                                                                                                                                                                                                                              | 2,4 T13.53i                                                                             |
| 6.                                                                                                                 |   | Mp(cnd(p,q), p,q)                                                                                                                                                                                                                                                                                         | T13.40c                                                                                 |
| 7.                                                                                                                 |   | $Mp(cnd(p,q), p,q) \lor (cnd(p,q) = p \land Gen(p,q))$                                                                                                                                                                                                                                                    | 6 ∨I                                                                                    |
| 8.                                                                                                                 |   | Icon(cnd(p,q), p, q)                                                                                                                                                                                                                                                                                      | 7 T13.40e                                                                               |
| 9.                                                                                                                 |   | $\exists v \operatorname{Prft}(v, \operatorname{cnd}(p,q))$                                                                                                                                                                                                                                               | 1 abv                                                                                   |
| 10.                                                                                                                |   | $\exists v \operatorname{Prft}(v, p)$                                                                                                                                                                                                                                                                     | 3 abv                                                                                   |
| 11.                                                                                                                |   | Prft(j, cnd(p,q))                                                                                                                                                                                                                                                                                         | A ( $g$ 9 $\exists$ E)                                                                  |
| 12.                                                                                                                |   | $\square Prft(k, p)$                                                                                                                                                                                                                                                                                      | A ( $g$ 10 $\exists$ E)                                                                 |
| 13.                                                                                                                |   | $  l =_{def} j * k * \overline{2}^{q}$                                                                                                                                                                                                                                                                    | def                                                                                     |
| 14.                                                                                                                |   | $   exp(j, len(j) - \overline{1}) = cnd(p, q)$                                                                                                                                                                                                                                                            | 11 T13.40f                                                                              |
| 15.                                                                                                                |   | $   exp(k, len(k) - \overline{1}) = p$                                                                                                                                                                                                                                                                    | 12 T13.40f                                                                              |
| 16                                                                                                                 |   | len(j * k) = len(j) + len(k)                                                                                                                                                                                                                                                                              | T13.47f                                                                                 |
| 10.                                                                                                                |   | $  q > \emptyset$                                                                                                                                                                                                                                                                                         | 5 T13.49e                                                                               |
| 17.                                                                                                                |   |                                                                                                                                                                                                                                                                                                           |                                                                                         |
| 17.<br>17.<br>18.                                                                                                  |   | len(2) = 1                                                                                                                                                                                                                                                                                                | 17 T13.45k                                                                              |
| 17.<br>17.<br>18.<br>19.                                                                                           |   | $(\forall i < \overline{1})[exp(l, i + len(j * k)) = exp(\overline{2}^q, i)$                                                                                                                                                                                                                              | 17 T13.45k<br>13,18 T13.47c                                                             |
| 17.<br>17.<br>18.<br>19.<br>20.                                                                                    |   | $ \begin{array}{l} \left( \forall i < \overline{1} \right) = 1 \\ (\forall i < \overline{1}) [exp(l, i + len(j * k)) = exp(\overline{2}^{q}, i) \\ \emptyset < \overline{1} \end{array} $                                                                                                                 | 17 T13.45k<br>13,18 T13.47c<br>T13.13e                                                  |
| <ol> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> </ol>                                        |   | $ \begin{array}{l} \operatorname{len}(2) = 1 \\ (\forall i < \overline{1})[\exp(l, i + \operatorname{len}(j * k)) = \exp(\overline{2}^{q}, i) \\ \emptyset < \overline{1} \\ \exp(l, \operatorname{len}(j * k)) = \exp(\overline{2}^{q}, \emptyset) \end{array} $                                         | 17 T13.45k<br>13,18 T13.47c<br>T13.13e<br>19,20 (∀E)                                    |
| <ol> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> </ol>                           |   | $ \begin{array}{l} len(2) = 1 \\ (\forall i < \overline{1})[exp(l, i + len(j * k)) = exp(\overline{2}^{q}, i) \\ \emptyset < \overline{1} \\ exp(l, len(j * k)) = exp(\overline{2}^{q}, \emptyset) \\ exp(\overline{2}^{q}, \emptyset) = q \end{array} $                                                  | 17 T13.45k<br>13,18 T13.47c<br>T13.13e<br>19,20 (∀E)<br>T13.44i                         |
| <ol> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> </ol>              |   | $\begin{aligned} & (\forall i < \overline{1})[exp(l, i + len(j * k)) = exp(\overline{2}^{q}, i) \\ & \emptyset < \overline{1} \\ & exp(l, len(j * k)) = exp(\overline{2}^{q}, \emptyset) \\ & exp(\overline{2}^{q}, \emptyset) = q \\ & exp(l, len(j * k)) = q \end{aligned}$                             | 17 T13.45k<br>13,18 T13.47c<br>T13.13e<br>19,20 (∀E)<br>T13.44i<br>21,22 =E             |
| <ol> <li>17.</li> <li>18.</li> <li>19.</li> <li>20.</li> <li>21.</li> <li>22.</li> <li>23.</li> <li>24.</li> </ol> |   | $\begin{aligned} & (\forall i < \overline{1})[exp(l, i + len(j * k)) = exp(\overline{2}^{q}, i) \\ & \emptyset < \overline{1} \\ & exp(l, len(j * k)) = exp(\overline{2}^{q}, \emptyset) \\ & exp(\overline{2}^{q}, \emptyset) = q \\ & exp(l, len(j * k)) = q \\ & exp(l, len(j + k)) = q \end{aligned}$ | 17 T13.45k<br>13,18 T13.47c<br>T13.13e<br>19,20 (∀E)<br>T13.44i<br>21,22 =E<br>23,16 =E |

(b)

| 26. | $(\forall i < len(j))exp(l,i) = exp(j,i)$                                                                     | 13 T13.47c                                               |
|-----|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 27. | $(\forall i < len(j * k))exp(l, i) = exp(j * k, i)$                                                           | 13 T13.47c                                               |
| 28. | $(\forall i < len(k))exp(j * k, i + len(j)) = exp(k, i)$                                                      | T13.47c                                                  |
| 29. | a < len(k)                                                                                                    | $\mathbf{A}\left(g\left(\forall\mathbf{I}\right)\right)$ |
| 30. | exp(j * k, a + len(j)) = exp(k, a)                                                                            | 28,29 (¥E)                                               |
| 31. | $\left  len(j) + a < len(j) + len(k) \right $                                                                 | <b>29 T13.13w</b>                                        |
| 32. | len(j) + a < len(j * k)                                                                                       | 31,16 =E                                                 |
| 33. | exp(l, len(j) + a) = exp(j * k, len(j) + a)                                                                   | 27,32 (∀E)                                               |
| 34. | exp(l, len(j) + a) = exp(k, a)                                                                                | 33,30 = E                                                |
| 35. | $(\forall i < len(k))exp(l, len(j) + i) = exp(k, i)$                                                          | 29-34 (∀I)                                               |
| 36. | $cnd(p,q) > \emptyset$                                                                                        | 2 T13.49e                                                |
| 37. | $exp(j, len(j) - \overline{1}) > \emptyset$                                                                   | 14,36 =E                                                 |
| 38. | $len(j) \doteq \overline{1} < len(j)$                                                                         | 37 T13.45h                                               |
| 39. | $exp(l, len(j) \div \overline{1}) = exp(j, len(j) \div \overline{1})$                                         | 26,38 (∀E)                                               |
| 40. | $p > \emptyset$                                                                                               | 4 T13.49e                                                |
| 41. | $exp(k, len(k) \div \overline{1}) > \emptyset$                                                                | 40,15 = E                                                |
| 42. | $len(k) \doteq \overline{1} < len(k)$                                                                         | 41 T13.45h                                               |
| 43. | $exp(l, len(j) + len(k) \div \overline{1}) = exp(k, len(k) \div \overline{1})$                                | 35,42 (∀E)                                               |
| 44. | $[Icon[exp(l, len(j) \div \overline{1}), exp(l, len(j) + len(k) \div \overline{1}), exp(l, len(j) + len(k))]$ | 25,39,43 <b>=</b> E                                      |

Exercise 13.41 T13.54

| (c1)              |                                                                                                                                                                                                                          |                                                            |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 45.<br>46.        | $ \left  \begin{array}{c} (\forall i < len(j))[Axiomt(exp(j,i)) \lor (\exists m < i)(\exists n < i)Icon(exp(j,m),exp(j,n),exp(j,i))] \\ a < len(j) \end{array} \right  $                                                 | T13.40f<br>A ( <i>g</i> (∀I))                              |
| 47.<br>48.<br>49. | $ \begin{array}{ c c } Axiomt(exp(j,a)) \lor (\exists m < a)(\exists n < a) \mathbb{I}con(exp(j,m), exp(j,n), exp(j,a)) \\ exp(l,a) = exp(j,a) \\ Axiomt(exp(j,a)) \end{array} $                                         | 45,46 (∀E)<br>26,46 (∀E)<br>A (g 47∨E)                     |
| 50.<br>51.        | $ \begin{array}{ c c } & Axiomt(exp(l,a)) \\ & Axiomt(exp(l,a)) \lor (\exists m < a)(\exists n < a) \mathbb{I}con(exp(l,m), exp(l,n), exp(l,a)) \end{array} $                                                            | 49,48 =E<br>50 ∨I                                          |
| 52.               | $\left  \left( \exists m < a \right) (\exists n < a) \mathbb{I}_{con}(exp(j,m), exp(j,n), exp(j,a)) \right  $                                                                                                            | A ( $g$ 47 $\vee$ E)                                       |
| 53.<br>54.<br>55. | $ \begin{aligned} \  & \mathbb{I}con(exp(j,m'), exp(j,n'), exp(j,a)) \\ & m' < a \\ & n' < a \end{aligned} $                                                                                                             | A (g 52∃E)                                                 |
| 56.<br>57.<br>58. | m' < len(j) $n' < len(j)$ $exp(l, m') = exp(j, m')$ $exp(l, m') = exp(j, m')$                                                                                                                                            | 46,54 T13.13b<br>46,55 T13.13b<br>26,56 (∀E)<br>26,57 (∀E) |
| 60.<br>61.        | $ \begin{aligned} & = \exp(l, n') = \exp(l, n') \\ & = \operatorname{Econ}(\exp(l, m'), \exp(l, n'), \exp(l, a)) \\ & = \operatorname{Econ}(\exp(l, m'), \exp(l, n), \exp(l, n), \exp(l, a)) \end{aligned} $             | 53,58,59,48 = E<br>$60,54,55 (\exists I)$                  |
| 62.<br>63.        | $ \begin{array}{ c c } (\exists m < a)(\exists n < a)\mathbb{I}con(exp(l, m), exp(l, n), exp(l, a)) \\ Axiomt(exp(l, a)) \lor (\exists m < a)(\exists n < a)\mathbb{I}con(exp(l, m), exp(l, n), exp(l, a)) \end{array} $ | 52,53-61 (∃E)<br>62 ∨I                                     |
| 64.               | $\left  \left  Axiomt(exp(l,a)) \lor (\exists m < a)(\exists n < a) \mathbb{I}con(exp(l,m), exp(l,n), exp(l,a)) \right  \right  \right $                                                                                 | 47,49-51,52-63 ∨E                                          |
| 65.               | $   (\forall i < len(j))[Axiom(exp(l,i)) \lor (\exists m < i)(\exists n < i)Icon(exp(l,m),exp(l,n),exp(l,i))]$                                                                                                           | 46-64 (∀I)                                                 |

(c2) The argument is similar for,

 $(\forall i < len(k))[Axiom(exp(l, len(j)+i)) \lor (\exists m < i) [Icon(exp(l, len(j)+m), exp(l, len(j)+n), exp(l, len(j)+i))]$ 

(c3) Here is a schematic argument (or theorem) you can apply.

| 1.  | $(\forall i < s)[\mathcal{P}(t+i) \lor (\exists m < i)(\exists n < i)\mathcal{Q}(t+m, t+n, t+i)]$                            | prem                                            |
|-----|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | $t \le a \land a < t + s$                                                                                                    | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 3.  | $t \leq a$                                                                                                                   | 2 ^E                                            |
| 4.  | a < t + s                                                                                                                    | 2 ∧E                                            |
| 5.  | $\exists v(v+t=a)$                                                                                                           | 3 def                                           |
| 6.  | l + t = a                                                                                                                    | A $(g 5 \exists E)$                             |
| 7.  | t+l < t+s                                                                                                                    | 4,6 <b>=</b> E                                  |
| 8.  | l  < s                                                                                                                       | 7 T13.13w                                       |
| 9.  | $\mathcal{P}(t+l) \lor (\exists m < l)(\exists n < l)\mathcal{Q}(t+m, t+n, t+l)$                                             | 1,8 (¥E)                                        |
| 10. | $\mathcal{P}(t+l)$                                                                                                           | A ( <i>g</i> 9∨E)                               |
| 11. | $\mathcal{P}(a)$                                                                                                             | 10,6 <b>=</b> E                                 |
| 12. | $\left  \mathcal{P}(a) \lor (\exists m < a) (\exists n < a) \mathcal{Q}(m, n, a) \right $                                    | 11 ∨I                                           |
| 13. | $\left  (\exists m < l)(\exists n < l)\mathcal{Q}(t+m, t+n, t+l) \right $                                                    | A ( $g 9 \lor E$ )                              |
| 14. | $\mathcal{Q}(t+m',t+n',t+l)$                                                                                                 | A $(g \ 13(\exists E))$                         |
| 15. | m' < l                                                                                                                       |                                                 |
| 16. | n' < l                                                                                                                       |                                                 |
| 17. | $  \qquad t+m' < t+l$                                                                                                        | 15 T13.13w                                      |
| 18. | t + m' < a                                                                                                                   | 17,6 <b>=</b> E                                 |
| 19. | $  \qquad   \qquad t+n' < t+l$                                                                                               | 16 T13.13w                                      |
| 20. | t + n' < a                                                                                                                   | 19,6 <b>=</b> E                                 |
| 21. | $(\exists m < a)(\exists n < a)\mathcal{Q}(m, n, t+l)$                                                                       | 14,18,20 ( <del>I</del> I)                      |
| 22. | $      (\exists m < a)(\exists n < a) \mathcal{Q}(m, n, a)$                                                                  | 21,6 <b>=</b> E                                 |
| 23. | $(\exists m < a)(\exists n < a)\mathcal{Q}(m, n, a)$                                                                         | 13,14-22 ( <b>∃</b> E)                          |
| 24. | $\mathcal{P}(a) \lor (\exists m < a) (\exists n < a) \mathcal{Q}(m, n, a)$                                                   | 23 ∨I                                           |
| 25. | $\mathcal{P}(a) \lor (\exists m < a) (\exists n < a) \mathcal{Q}(m, n, a)$                                                   | 9,10-12,13-24 ∨E                                |
| 26. | $\mathcal{P}(a) \lor (\exists m < a)(\exists n < a) \mathcal{Q}(m, n, a)$                                                    | 5,6-25 ∃E                                       |
| 27. | $(t \le a \land a < t + s) \to [\mathcal{P}(a) \lor (\exists m < a)(\exists n < a)\mathcal{Q}(m, n, a)]$                     | $2-26 \rightarrow I$                            |
| 28. | $\forall i [(t \le i \land i < t + s) \rightarrow [\mathcal{P}(i) \lor (\exists m < i)(\exists n < i)\mathcal{Q}(m, n, i)]]$ | 27∀I                                            |
| 29. | $(\forall i : t \le i < t + s)[\mathcal{P}(i) \lor (\exists m < i)(\exists n < i)\mathcal{Q}(m, n, i)]$                      | 28 abv                                          |

E13.42. Show

T13.55.

T13.55.i. PA  $\vdash [Termsub(t, v, s, q) \land Termsub(t, v, s, r)] \rightarrow q = r$ 

Exercise 13.42 T13.55.i

| 1.      | Ľ | Tern         | $nsub(t, v, s, q) \wedge \mathbb{T}ermsub(t, v, s, r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$              |
|---------|---|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 2.      |   | $(\exists x$ | $\leq X$ ) $(\exists y \leq Y)$ $\mathbb{T}$ subseq $(x, y, t, v, s, q) \land (\exists x \leq X)(\exists y \leq Y)$ $\mathbb{T}$ subseq $(x, y, t, v, s, r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 T13.50b                                                    |
| 3.      |   | Ts           | $ubseq(m, n, t, v, s, q) \land Tsubseq(m', n', t, v, s, r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbf{A}\left(g\ 2\left(\exists \mathbf{E}\right)\right)$ |
| 4.      |   | Te           | $\operatorname{rmseq}(m,t) \wedge \mathbb{T}\operatorname{ermseq}(m',t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 T13.50a                                                    |
| 5.      |   | ler          | $u(m) = len(n) \land len(m') = len(n')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 T13.50a                                                    |
| 6.      |   | exp          | $p(n, len(n) - 1) = q \wedge exp(n', len(n') - 1) = r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 T13.50a                                                    |
| /.<br>8 |   | exp<br>m     | $p(m, len(m) - 1) = t \wedge exp(m, len(m) - 1) = t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 113.48a<br>4 T13 48a                                       |
| 9       |   | ler.         | $m(m) > \emptyset \land len(m') > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 T13.46a<br>8 T13 45i                                       |
| 10.     |   | ler          | $h(m) \stackrel{\cdot}{-1} < len(m) \land len(m') \stackrel{\cdot}{-1} < len(m')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 T13.23i                                                    |
| 11.     |   | 1            | $\emptyset < len(m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$              |
| 12.     |   |              | a < len(m')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbf{A}\left(g\left(\forall\mathbf{I}\right)\right)$     |
| 13.     |   |              | $exp(m, \emptyset) = exp(m', a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$              |
| 14.     |   |              | $I(m,n,\emptyset) \lor J(v,m,n,\emptyset) \lor K(v,s,m,n,\emptyset) \lor L(m,n,\emptyset) \lor M(m,n,\emptyset) \lor N(m,n,\emptyset)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,11 T13.50a                                                 |
| 15.     |   |              | $I(m',n',a) \lor J(v,m',n',a) \lor K(v,s,m',n',a) \lor L(m',n',a) \lor M(m',n',a) \lor N(m',n',a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,12, T13.50a                                                |
| 16.     |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A ( <i>g</i> 14∨E)                                           |
| 17.     |   |              | $  exp(m,\emptyset) = \lceil \emptyset \rceil \land exp(n,\emptyset) = \lceil \emptyset \rceil$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16  abv                                                      |
| 18.     |   |              | $\begin{bmatrix} 1(m,n',a) \\ \hline \\ (a,b) \\ \hline \\ \hline \\ (a,b) \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A $(g   15 \lor E)$                                          |
| 19.     |   |              | $exp(n', a) = 10^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 abv<br>17 10 — F                                          |
| 20.     |   |              | $ = \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \sum$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17,19 - 15                                                   |
| 21.     |   |              | $\int (0, m, n, a) \vee \mathbf{K}(0, s, m, n, a) \vee \mathbf{L}(m, n, a) \vee \mathbf{M}(m, n, a) \vee \mathbf{N}(m, n, a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $A(g   I \cup E)$                                            |
| 22.     |   |              | $[\Box = [a, b] \neq exp(n, a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A (t ~E)                                                     |
| 23.     |   |              | exp(m', a) = V $exp(m', a) = V$ $exp(m', a) = V$ $exp(m', a) = V$ $exp(m', a) = V$ $(m', n', a) = V$ $(m', n', a) = V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13,17 = E<br>23 T13 55c                                      |
| 25.     |   |              | $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ $ | 23 113.55c<br>21,24 ⊥I                                       |
| 26.     |   |              | $\left  \begin{array}{c} \\ exp(n,\emptyset) = exp(n',a) \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22-25 ~Е                                                     |
| 27.     |   |              | $exp(n, \emptyset) = exp(n', a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.18-26 ∨E                                                  |
| 28.     |   |              | $  J(v, m, n, \theta) \vee K(v, s, m, n, \theta) \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A $(g   14 \lor E)$                                          |
| 29.     |   |              | $exp(n,\emptyset) = exp(n',a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | similarly                                                    |
| 30.     |   |              | $  L(m, n, \theta)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A (g 14∨E)                                                   |
| 31      |   |              | $\begin{bmatrix} -\langle n \rangle & n \rangle \\ (\exists i < \emptyset) [evp(m \ \emptyset) = \overline{[S]} * evp(m \ i) \land evp(n \ \emptyset) = evp(n \ i) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 aby                                                       |
| 32.     |   |              | $\begin{vmatrix} (2i + b)(a,b) - b + (a,b) - (a,b) - (a,b) - (a,b) \end{vmatrix} = a p(a,b)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A (g 31 (∃E))                                                |
| 33.     |   |              | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A ( $c \sim E$ )                                             |
| 34.     |   |              | $      \overline{i} \neq \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T13.13d,r                                                    |
| 35.     |   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32,34 ⊥I                                                     |
| 36.     |   |              | $   exp(n, \emptyset) = exp(n', a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33-35 ∼E                                                     |
| 37.     |   |              | $exp(n,\emptyset) = exp(n',a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31,32-36 (∃E)                                                |
| 38.     |   |              | $M(m,n,\emptyset) \lor N(m,n,\emptyset)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A ( $g$ 14 $\lor$ E)                                         |
| 39.     |   |              | $exp(n, \emptyset) = exp(n', a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | similarly                                                    |
| 40.     |   |              | $exp(n,\emptyset) = exp(n',a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14,16-39 ∨E                                                  |
| 41.     |   |              | $exp(m, \emptyset) = exp(m', a) \rightarrow exp(n, \emptyset) = exp(n', a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $13-40 \rightarrow I$                                        |
| 42.     |   | (            | $\forall x < len(m'))(exp(m, \emptyset) = exp(m', x) \rightarrow exp(n, \emptyset) = exp(n', x))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12-41 (¥I)                                                   |
| 43.     |   | ø.           | $< len(m) \rightarrow (\forall x < len(m'))(exp(m, \emptyset) = exp(m', x) \rightarrow exp(n, \emptyset) = exp(n', x))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $11-42 \rightarrow I$                                        |

Exercise 13.42 T13.55.i

| 44.                                                                         | $\left  \left  \left( \forall z \le k \right) [z < len(m) \rightarrow (\forall x < len(m'))(exp(m, z) = exp(m', x) \rightarrow exp(n, z) = exp(n', x)) \right] \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A $(g \rightarrow I)$                                                               |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 45.                                                                         | $. \qquad   \qquad   \qquad   \qquad   \qquad   \qquad   \qquad   \qquad   \qquad   \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |
| 46.                                                                         | a < len(m')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A ( $g$ ( $\forall$ I))                                                             |
| 47.                                                                         | exp(m, Sk) = exp(m', a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A $(g \rightarrow I)$                                                               |
| 48.<br>49.                                                                  | $ \begin{bmatrix} I(m,n,Sk) \lor J(v,m,n,Sk) \lor K(v,s,m,n,Sk) \lor L(m,n,Sk) \lor M(m,n,Sk) \lor N(m,n,Sk) \\ I(m',n',a) \lor J(v,m',n',a) \lor K(v,s,m',n',a) \lor L(m',n',a) \lor M(m',n',a) \lor N(m',n',a) \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,45 T13.50a<br>3,46 T13.50a                                                        |
| 50.                                                                         | $          I(m,n,Sk) \lor J(v,m,n,Sk) \lor K(v,s,m,n,Sk)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A ( <i>g</i> 48∨E)                                                                  |
| 51.                                                                         | exp(n, Sk) = exp(n', a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | as from basis                                                                       |
| 52.                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A ( $g 48 \lor E$ )                                                                 |
| 53.                                                                         | $\left  \left  \left  \left  \left  \left  \left( \exists i < Sk \right) [exp(m, Sk) = \overline{\lceil S \rceil} * exp(m, i) \land exp(n, Sk) = \overline{\lceil S \rceil} * exp(n, i) \right  \right. \right  \right  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52 abv                                                                              |
| 54.                                                                         | $\begin{bmatrix} b \\ c \end{bmatrix} = \begin{bmatrix} b \\ c \end{bmatrix} = \begin{bmatrix} c \\ c \end{bmatrix} + c \\ c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A (g 53 (∃E))                                                                       |
| 55.                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\Lambda (\sigma (0) / E)$                                                          |
| 50.                                                                         | $\begin{bmatrix} L(m, n, u) \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A (g 49 VE)                                                                         |
| 57.                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $A \left( g 57 (\exists E) \right)$                                                 |
| 59.                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |
| 60.                                                                         | $          \overline{[S]} * exp(m,b) = \overline{[S]} * exp(m',c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47,55,59 =E                                                                         |
| 61.                                                                         | $            b < len(m) \land c < len(m')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45,46,54,58 T13.13b                                                                 |
| 62.                                                                         | $          Term(exp(m,b)) \land Term(exp(m',c)) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,61 T13.48n                                                                        |
| 63.                                                                         | exp(m, b) = exp(m', c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60,62 T13.52b                                                                       |
| 65.                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44.64.61 (∀E)                                                                       |
| 66.                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65,63 →E                                                                            |
| 67.                                                                         | $             \overline{S^{\neg}} * exp(n,b) = \overline{S^{\neg}} * exp(n',c)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66 = E                                                                              |
| 68.                                                                         | exp(n, Sk) = exp(n', a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 67,55,59 =E                                                                         |
| 69.                                                                         | exp(n, Sk) = exp(n', a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 57,58-68 ( <del>I</del> E)                                                          |
| 70.                                                                         | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A ( $g 49 \lor E$ )                                                                 |
| 71.                                                                         | exp(n, Sk) = exp(n', a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | as before                                                                           |
| 72.                                                                         | exp(n, Sk) = exp(n', a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49,56-71 ∨E                                                                         |
| 73.                                                                         | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53,54-72 ( <del>I</del> E)                                                          |
| 74.                                                                         | $             M(m,n,Sk) \vee N(m,n,Sk) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A ( $g 48 \lor E$ )                                                                 |
| 75.                                                                         | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | similarly                                                                           |
| 76.                                                                         | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48,50-75 ∨E                                                                         |
| 77.                                                                         | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $47-76 \rightarrow I$                                                               |
| 78.                                                                         | $\left  \left  \left  (\forall x < len(m'))(exp(m, Sk) = exp(m', x) \rightarrow exp(n, Sk) = exp(n', x)) \right  \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46-77 (¥I)                                                                          |
| 79.                                                                         | $   Sk < len(m) \rightarrow (\forall x < len(m'))(exp(m, Sk) = exp(m', x) \rightarrow exp(n, Sk) = exp(n', x))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45-78 →I                                                                            |
| 80.                                                                         | $(\forall z \le k)[z < len(m) \rightarrow (\forall x < len(m'))(exp(m, z) = exp(m', x) \rightarrow exp(n, z) = exp(n', x))] \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     |
| <ol> <li>81.</li> <li>82.</li> <li>83.</li> <li>84.</li> <li>85.</li> </ol> | $ \begin{split} & [Sk < len(m) \rightarrow (\forall x < len(m'))(exp(m, Sk) = exp(m', x) \rightarrow exp(n, Sk) = exp(n', x))] \\ & \forall k[k < len(m) \rightarrow (\forall x < len(m'))(exp(m, k) = exp(m', x) \rightarrow exp(n, k) = exp(n', x))] \\ & exp(m, len(m) \dot{-1}) = exp(m', len(m') \dot{-1}) \rightarrow exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(m, len(m) \dot{-1}) = exp(m', len(m') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) \dot{-1}) = exp(n', len(n') \dot{-1}) \\ & exp(n, len(n) -$ | 44-79 →I<br>43,80 T13.13ag<br>81,5,10 ( $\forall$ E)<br>7 =E<br>82,83 →E<br>6,84 =E |
| 86.                                                                         | q = r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,3-85 (∃E)                                                                         |
| 87.                                                                         | $[Termsub(t, v, s, q) \land Termsub(t, v, s, r)] \rightarrow q = r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $3-85 \rightarrow I$                                                                |
|                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |



Exercise 13.42 T13.55.n

| 1.  | Var(v)                                                                                                                                                                        | A $(g \rightarrow I)$     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 2.  | $\left  \left  \sim \mathcal{A}tomsub(p, v, v \times \overline{4}, p) \land \mathcal{A}tomsub(p, v, s, q) \right. \right $                                                    | A $(g \rightarrow I)$     |
| 3.  | $  \overline{w} = v \times \overline{4}$                                                                                                                                      | def                       |
| 4.  | $\left  \begin{array}{c} \mathbb{T}erm(w) \land w \neq v \end{array} \right $                                                                                                 | 1,3 T13.55b               |
| 5.  | $   (\exists a \le p)(\exists b \le p)(\exists a' \le q)(\exists b' \le q)[\mathcal{T}erm(a) \land \mathcal{T}erm(b) \land p = \overline{\neg} * a * b \land$                 |                           |
|     | $\mathbb{T}ermsub(a, v, s, a') \land \mathbb{T}ermsub(b, v, s, b') \land q = \overline{\lceil = \rceil} * a' * b']$                                                           | 2 T13.50c                 |
| 6.  | $\left   \right   \mathbb{T}erm(c) \land \mathbb{T}erm(d) \land p = \overline{\lceil = \rceil} * c * d$                                                                       | A $(g 5 (\exists E)$      |
| 7.  | $\left  \left  \left  \mathcal{T}ermsub(c, v, s, c') \land \mathcal{T}ermsub(d, v, s, d') \land q = r = r * c' * d' \right  \right  \right $                                  |                           |
| 8.  | Atomic(p)                                                                                                                                                                     | 6 T13.49c                 |
| 9.  | $\left  \begin{array}{c} \exists q A tomsub(p, v, w, q) \end{array} \right $                                                                                                  | 4,8 T13.50n               |
| 10. | $ \begin{array}{  } \\ A tomsub(p, v, w, r) \end{array} $                                                                                                                     | A ( $g$ 9 $\exists$ E)    |
| 11. | $          r \neq p$                                                                                                                                                          | 2,10 ~I                   |
| 12. | $        (\exists a \le p)(\exists b \le p)(\exists a' \le r)(\exists b' \le r)[\mathcal{T}erm(a) \land \mathcal{T}erm(b) \land p = \overline{\lceil = \rceil} * a * b \land$ |                           |
|     | $\mathbb{T}ermsub(a, v, w, a') \land \mathbb{T}ermsub(b, v, w, b') \land r = \overline{\neg} * a' * b']$                                                                      | 10 T13.50c                |
| 13. | $         Term(e) \land Term(f) \land p = \ulcorner = \urcorner * e * f $                                                                                                     | A $(g \ 12 \ (\exists E)$ |
| 14. | $ [\Box]  [\Box]  [\Box]  [Termsub(e, v, w, e') \land [Termsub(f, v, w, f') \land r = [\neg] * e' * f' ] $                                                                    |                           |
| 15. | $\left  \left  \right  \right  \left  \overline{ \overline{ = } } * c * d = \overline{ \overline{ = } } * e * f$                                                              | 6,13 =E                   |
| 16. | $c = e \land d = f$                                                                                                                                                           | 6,13,15 T13.52i           |
| 17. | $            = \forall * e * f \neq \forall = \forall * f'$                                                                                                                   | 11,13,14 = E              |
| 18. | $          e \neq e' \lor f \neq f'$                                                                                                                                          | 17 ~I                     |
| 19. | $      \sim \mathbb{T}ermsub(e, v, w, e) \lor \sim \mathbb{T}ermsub(f, v, w, f)$                                                                                              | 14,18 T13.55i             |
| 20. | $       \mathbb{F}ree_t(e, v) \lor \mathbb{F}ree_t(f, v) $                                                                                                                    | 19 T13.55a                |
| 21. | $ \prod_{i=1}^{n} ree_{i}(e, v) $                                                                                                                                             | A $(g \ 20 \lor E)$       |
| 22. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                            | 7,16 =E                   |
| 23. | $                s \leq c'$                                                                                                                                                   | 13,1,21,22 T13.55m        |
| 24. | $\begin{vmatrix} c \\ c $                                                                                                             | 113.4/n,o                 |
| 25. |                                                                                                                                                                               | 25,24,7 115.15a           |
| 26. | $\llbracket I \\ \llbracket Free_t(f, v) \\ \rrbracket$                                                                                                                       | A ( $g \ 20 \lor E$ )     |
| 27. | $              s \le q$                                                                                                                                                       | similarly                 |
| 28. | $          s \le q$                                                                                                                                                           | 20,21-27 ∨E               |
| 29. | $        s \le q$                                                                                                                                                             | 12,13-28 (∃E)             |
| 30. | $        s \le q$                                                                                                                                                             | 9,10-29 ∃E                |
| 31. | $      s \le q$                                                                                                                                                               | 5,6-30 (∃E)               |
| 32. | $\Big  (\sim Atomsub(p, v, v \times \overline{4}, p) \land Atomsub(p, v, s, q)) \rightarrow s \le q$                                                                          | 2-31 →I                   |
| 33. | $\left  \mathbb{V}ar(v) \rightarrow \left[ (\sim \mathcal{A}tomsub(p, v, v \times \overline{4}, p) \land \mathcal{A}tomsub(p, v, s, q)) \rightarrow s \leq q \right] \right.$ | 1-32 →I                   |

E13.44. Show (s) and (u) from T13.57. Hard core: show the rest of the results from T13.57.

T13.57.

T13.57.h. PA  $\vdash [\mathbb{P}rvt(p) \land \mathbb{V}ar(v)] \rightarrow \mathbb{P}rvt(\mathfrak{unv}(v, p))$ 

Exercise 13.44 T13.57.h

| 1.         | L   | $\mathbb{P}rvt(p) \wedge \mathbb{V}ar(v)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
|------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.         |     | $\mathbb{P}rvt(p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 ^E                                            |
| 3.         |     | $\exists v Prft(v, p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 abv                                           |
| 4.         |     | $\frac{\mathbb{P}^{r} f t(m, p)}{\Gamma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A $(g \exists \exists E)$                       |
| 5.         |     | exp(m, len(m) - 1) = p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 T13.40f                                       |
| 0.<br>7.   |     | M > 1<br>$(\forall k < len(m))[Axiomt(exp(m,k)) \lor (\exists i < k)(\exists i < k)][con(exp(m,i),exp(m,i),exp(m,k))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 T13.40f                                       |
| 8.         |     | $len(\overline{\forall \forall}) = \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cap                                             |
| 9.         |     | $len(vorv(v, p)) = len(\overline{\ulcorner \forall \urcorner}) + len(v) + len(p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T13.47f def                                     |
| 10.        |     | $len(uov(v, p)) \ge \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8,9 T13.13u                                     |
| 11.        |     | $\lim_{v \to w} (v, p) > 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 T13.45g                                      |
| 12.        |     | $len(2 \xrightarrow{(a,b)}) = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 T13.45k                                      |
| 13.        |     | $len(m * 2^{m(w,p)}) = len(m) + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 T13.47f                                      |
| 14.        |     | $len(m * 2 \qquad ) - 1 = len(m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13 T13.23k                                      |
| 15.        |     | exp(m * 2 , len(m)) = exp(2 , y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14 113.4/g                                      |
| 10.        |     | $\exp(2 , y) = unv(v, p)$ $\exp(u + \frac{2}{2}unv(v, p) + unv(v, p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 113.441<br>15.16 — F                            |
| 17.        |     | $\exp(m * 2  \text{, } \operatorname{len}(m)) = \operatorname{unv}(v, p)$ $\exp(m * 2^{\operatorname{unv}(v, p)}  \operatorname{lon}(m * 2^{\operatorname{unv}(v, p)})  \dot{-} 1) = \operatorname{unv}(v, p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13,10 = E<br>17.14 = E                          |
| 10.        |     | $\mathbb{E}_{V(m+2)} = \mathbb{E}_{V(v,p)} = \mathbb{E}_{V(v,p)$ | 17,14 —E                                        |
| 19.<br>20  |     | $\frac{ven(m+2)}{m+2} \ge 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 T13.15u                                      |
| 20.<br>21. |     | $\frac{m+2}{4mv(v, p) = u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | abv                                             |
| 22.        |     | $\begin{vmatrix} a & len(m) & \bar{2}^u \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $A(g(\forall I))$                               |
| 23.        |     | $a < len(m) \lor a = len(m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13 T13.13n                                      |
| 24.        |     | a < len(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A ( $g \ 23 \lor E$ )                           |
| 25.        |     | $exp(m * \overline{2}^{u}, a) = exp(m, a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24 T13.47c                                      |
| 26.        |     | $   Axiomt(exp(m,a)) \lor (\exists i < a)(\exists j < a) \mathbb{I}con(exp(m,i), exp(m,j), exp(m,a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,24 (∀E)                                       |
| 27.        |     | Axiomt(exp(m, a))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A ( <i>g</i> 26∨E)                              |
| 28.        |     | $     Axiomt(exp(m * \overline{2}^u, a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27,25 =E                                        |
| 29.        |     | $\  \  Axiomt(exp(m * 2^{n}, a)) \vee (\exists i < a)(\exists j < a) Icon(exp(m * 2^{n}, i), exp(m * 2^{n}, j), exp(m * 2^{n}, a)) \  \  \  \  \  \  \  \  \  \  \  \  \  \  \  \  \  \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28 ∨I                                           |
| 30.        |     | $\left  \left  \left[ (\exists i < a)(\exists j < a) \mathbb{I}con(exp(m, i), exp(m, j), exp(m, a)) \right] \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A ( $g \ 26 \lor E$ )                           |
| 31.        |     | $      r < a \land s < a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A $(g 30 (\exists E))$                          |
| 32.        |     | [ [ [ lcon(exp(m, r), exp(m, s), exp(m, a)) ] ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
| 33.<br>24  |     | $\left  \begin{array}{c} r < len(m) \land s < len(m) \\ r < len(m) \land \overline{c}^{u} \\ r > r \\ r $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24,31 T13.13b                                   |
| 34.<br>35  |     | $exp(m * 2, r) = exp(m, r) \land exp(m * 2, s) = exp(m, s)$ $I_{con}(exp(m * 2^{u}, r), exp(m * 2^{u}, s), exp(m * 2^{u}, a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33 113.47c<br>32 34 25 = E                      |
| 36.        |     | $(\exists i < a)(\exists j < a)\mathbb{I}con(exp(m * \overline{2}^{u}, i), exp(m * \overline{2}^{u}, j), exp(m * \overline{2}^{u}, a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31,35 ( <del>I</del> I)                         |
| 37.        |     | $Axiomt(exp(m * \overline{2}^{u}, a)) \lor (\exists i < a)(\exists j < a) Icon(exp(m * \overline{2}^{u}, i), exp(m * \overline{2}^{u}, j), exp(m * \overline{2}^{u}, a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36 ∨I                                           |
| 38.        |     | $ Axiomt(exp(m * \overline{2}^{u}, a)) \lor (\exists i < a)(\exists j < a) \mathbb{I}con(exp(m * \overline{2}^{u}, i), exp(m * \overline{2}^{u}, j), exp(m * \overline{2}^{u}, a)) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30,31-37 (∃E)                                   |
| 39.        |     | $ Axiomt(exp(m * \overline{2}^{u}, a)) \lor (\exists i < a)(\exists j < a) \mathbb{I}con(exp(m * \overline{2}^{u}, i), exp(m * \overline{2}^{u}, j), exp(m * \overline{2}^{u}, a)) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26,27-38 ∨E                                     |
| 40.        |     | a  = len(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A $(g 23 \lor E)$                               |
| 41.        |     | $len(m) > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 T13.45i                                       |
| 42.        |     | $\left  \begin{array}{c} len(m) \div \overline{1} < len(m) \end{array} \right  \leq len(m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41 T13.23i                                      |
| 43.        |     | $\left  \exp(m * \overline{2}^{u}, \operatorname{len}(m) - \overline{1}) = \exp(m, \operatorname{len}(m) - \overline{1}) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42 T13.47c                                      |
| 44.        |     | $exp(m * \overline{2}^n, len(m) - \overline{1}) = p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43,5 =E                                         |
| 45.<br>16  |     | $v \leq uw(v, p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 113.4/n,o                                       |
| 40.<br>47  |     | $\begin{bmatrix} (30 \leq u)(\forall u r(0) \land u = u)(0, exp(m * 2, ven(m) - 1))) \\ Gen(exp(m * 2^{u}   len(m) - 1) u) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,44,43 (∃I)<br>46 T13 40d                      |
| 48.        |     | $MP(exp(m \times \overline{2}^{u}, len(m) - \overline{1}), exp(m \times \overline{2}^{u}, len(m) - \overline{1}), u) \vee$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40 115.400                                      |
|            |     | $(exp(m * \overline{2}^u, len(m) \div \overline{1}) = exp(m * \overline{2}^u, len(m) \div \overline{1}) \land Gen(exp(m * \overline{2}^u, len(m) \div \overline{1}), u)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47 ∨I                                           |
| 49.        |     | $\left   \left   I_{con}(exp(m * \overline{2}^{u}, len(m) \div \overline{1}), exp(m * \overline{2}^{u}, len(m) \div \overline{1}), u \right) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48 T13.40e                                      |
| 50.        |     | $\left  \begin{array}{c} len(m) - \overline{1} < a \end{array} \right  = \frac{-u}{1 + 1} = \frac$                                                                                                                                                                                              | 42,40 =E                                        |
| 51.        |     | $   (\exists i < a)(\exists j < a) \mathbb{I}con(exp(m * 2, i), exp(m * 2, j), exp(m * 2, a)) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50,17 (∃I)                                      |
| 52.        |     | $ Axiom(exp(m*2, a)) \lor (\exists i < a)(\exists j < a) \exists con(exp(m*2, i), exp(m*2, j), exp(m*2, a)) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51 VI                                           |
| 53.<br>54. |     | $   Axiomt(exp(m * 2°, a)) \lor (\exists i < a)(\exists j < a) lcon(exp(m * 2°, i), exp(m * 2°, j), exp(m * 2°, a))  (\forall k < len(m) * 2stav(v, p) f Action & f a f a f a f a f a f a f a f a f a f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23,24-52 ∨E                                     |
|            |     | $(\exists i < k)(\exists j < k) \mathbb{I}_{con}(exp(m * \overline{2}^{\texttt{lonv}(v, p)}, i), exp(m * \overline{2}^{\texttt{lonv}(v, p)}, j), exp(m * \overline{2}^{\texttt{lonv}(v, p)}, k))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22-53 (¥I)                                      |
| 55.        |     | $\left  \operatorname{Prfi}(m * \overline{2}^{\operatorname{How}(v, p)}, \operatorname{How}(v, p)) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18,20,54 T13.40f                                |
| 56.        |     | $  \mathbb{P}rvt(unv(v, p))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55 ∃I                                           |
| 57.        |     | Prvt(uon(v, p))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,4-56 ∃E                                       |
| 58.        | [[] | $\mathcal{P}rvt(p) \wedge \mathcal{V}ar(v)] \rightarrow \mathcal{P}rvt(\mathfrak{unv}(v, p))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1-57 \rightarrow I$                            |

## T13.57.j. PA $\vdash [Wff(p) \land Var(v)] \rightarrow Freefor(v, v, p)$

| 1         | $  Wff(n) \land Var(n) \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A $(\sigma \rightarrow I)$         |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 2         | $ \begin{bmatrix} r_{j} (p) \land r_{k} (0) \\ \vdots \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 T12 40b                          |
| 3         | $avn(m, len(m) - \overline{1}) = n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 T13 499                          |
| 4         | $ \begin{array}{ll} \sup_{m > 1} (m, s_n(m)) & (j - p) \\ m > 1 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 T13.49a                          |
| 5.        | $len(m) > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 T13.45i                          |
| 6.        | $len(m) \div \overline{1} < len(m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 T13.23i                          |
| 7.        | $Formseq(n, p) \land (\forall i < len(n))exp(n, i) \le p \land len(n) \le len(p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,3,6 T13.49j                      |
| 8.        | $[pi(len(p))^p]^{len(p)} \ge val(n, len(n))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 T13.460                          |
| 9.        | $n > \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 T13.49a                          |
| 10.       | $n \leq [pi(len(p))^p]^{len(p)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,9 T13.46n                        |
| 11.       | $n \leq B_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 T13.57b                         |
| 12.       | exp(n, len(n) - 1) = p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 T13.49a                          |
| 13.       | a < len(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $A(g(\forall 1))$                  |
| 14.       | $\begin{bmatrix} E(n,a) \lor F(n,a) \lor G(n,a) \lor H(p,n,a) \\ \downarrow F(n,a) \lor H(p,n,a) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7,13 T13.49a                       |
| 15.       | [ [E(n,a)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $A(g   14 \vee E)$                 |
| 16.       | $\begin{bmatrix} Atomic(exp(n, a)) \\ T(a) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15 abv                             |
| 17.       | $\begin{bmatrix} T(n,a) \\ T(n,b) \end{bmatrix} = \begin{bmatrix} T(n,b) \\ T(n,b) \\ T(n,b) \end{bmatrix} = \begin{bmatrix} T(n,b) \\ T(n,b) \\ T(n,b) \end{bmatrix} = \begin{bmatrix} T(n,b) \\ T(n,b) \\ T(n,b) \\ T(n,b) \end{bmatrix} = \begin{bmatrix} T(n,b) \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16 abv                             |
| 18.       | $\left  \begin{array}{c} I (n,a) \lor U(n,a) \lor V(n,a) \lor W(p,v,n,a) \lor X(p,v,v,n,a) \\ I = I = I = I = I \\ I = I = I \\ I = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/VI                               |
| 19.       | $\begin{bmatrix} F(n,a) \lor G(n,a) \\ F(n,a) \lor G(n,a) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A $(g \ 14 \lor E)$                |
| 20.       | $\prod_{n=1}^{\infty} T(n,a) \lor U(n,a) \lor V(n,a) \lor W(p,v,n,a) \lor X(p,v,v,n,a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | similarly                          |
| 21.       | H(p,n,a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A $(g \ 14 \lor E)$                |
| 22.       | $   (\exists i < a)(\exists j < p)[\mathbb{V}ar(j) \land exp(n, a) = unv(j, exp(n, i))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21 abv                             |
| 23.       | $         l < a \land u < p $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A $(g 22 (\exists E))$             |
| 24.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |
| 25.       | $      u = v \lor u \neq v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T3.1                               |
| 26.       | $\left  \begin{array}{c} u = v \\ \overline{u} = v \\ \overline{u}$ | A $(g 25 \vee E)$                  |
| 27.       | $\left  \begin{array}{c} l \\ l $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13,23 T13.13b                      |
| 28.       | $ \begin{array}{c}   \\   \\   \\   \\   \\   \\   \\   \\   \\   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,27 113.491                       |
| 29.       | $\left  \begin{array}{c} \exp(n, t) \leq p \\ \exp(n, a) = \tan(n, a) \exp(n, b) \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,27 (♥E)<br>24.26 —E              |
| 31        | $\begin{bmatrix} c_{i}\rho(n, a) - \delta ari(v, c_{i}\rho(n, i)) \\ a_{i}\sigma_{i}\sigma_{i}\sigma_{i}\sigma_{i}\sigma_{i}\sigma_{i}\sigma_{i}\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29,28 30 (ED)                      |
| 32.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 31 aby                             |
| 33.       | $        T(n,a) \vee U(n,a) \vee V(n,a) \vee W(p,v,n,a) \vee X(p,v,v,n,a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32 ∨I                              |
| 34        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A $(\sigma 25 \sqrt{F})$           |
| 25        | $\begin{bmatrix} \mathbf{u} & \mathbf{r} & \mathbf{v} \\ \mathbf{v} & \mathbf{v} & \mathbf{v} \\ \mathbf{v} & \mathbf{v} & \mathbf{v} & \mathbf{v} \\ \mathbf{v} & \mathbf{v} & \mathbf{v} & \mathbf{v} & \mathbf{v} \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.24 T12 50-                       |
| 33.<br>26 | $\begin{bmatrix} I & subseq(2, 2, 0, u, u \times 4, 0) \\ T & subseq(2, 1, 0, u \times 4, 0) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,34 113.50g                       |
| 37        | $ \begin{bmatrix} 1 & ernsub(0, u, u \land 4, 0) \\ \sim Free (v, u) \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36 T13 55a                         |
| 38.       | $\sim \mathbb{F}_{ree.}(v, u) \lor \sim \mathbb{F}_{ree.}(exp(n, l), v)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37 ∨I                              |
| 39.       | $         (\exists i < a)(\exists j \le p)[Var(j) \land j \ne v \land (\sim Free_t(v, j) \lor \sim Free_t(exp(n, i), v)) \land exp(n, a) = unv(j, exp(n, i))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23,24,34,38 (∃I)                   |
| 40.       | X(p,v,v,n,a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39 abv                             |
| 41.       | $\left  \begin{array}{c} \\ \end{array} \right  \left  T(n,a) \lor U(n,a) \lor V(n,a) \lor W(p,v,n,a) \lor X(p,v,v,n,a) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 ∨I                              |
| 42.       | $     T(n,a) \vee U(n,a) \vee V(n,a) \vee W(p,v,n,a) \vee X(p,v,v,n,a) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25,26-41 ∨E                        |
| 43.       | $\left  \begin{array}{c} T(n,a) \lor U(n,a) \lor V(n,a) \lor W(p,v,n,a) \lor X(p,v,v,n,a) \right  \\ \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22,23-42 (∃E)                      |
| 44.       | $\left  \begin{array}{c} T(n,a) \lor U(n,a) \lor V(n,a) \lor W(p,v,n,a) \lor X(p,v,v,n,a) \right  \\ \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14,15-43 ∨E                        |
| 45.       | $(\forall k < \mathbb{I}en(n))[T(n,k) \lor U(n,k) \lor V(n,k) \lor W(p,v,n,k) \lor X(p,v,v,n,k)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13-44 (¥I)                         |
| 46.       | $\mathbb{F}$ fseq $(n, v, v, p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12,9,45 T13.57a                    |
| 47.       | $(\exists x \leq B_p) \mathbb{F} fseq(x, v, v, p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11,46 (∃I)                         |
| 48.       | $Freefor(v, v, p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47 T13.57b                         |
| 49.       | $[\mathbb{W}ff(p) \land \mathbb{V}ar(v)] \to \mathbb{F}reefor(v, v, p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1\text{-}48 \rightarrow \text{I}$ |

Exercise 13.44 T13.57.j

T13.57.k. PA  $\vdash$  Axiomad4(n)  $\Leftrightarrow \exists s (\exists p \leq n) (\exists v \leq n) [Wff(p) \land Var(v) \land Term(s) \land Freefor(s, v, p) \land n = cnd(unv(v, p), formsub(p, v, s))]$ 

Let  $\mathcal{A} = \sim \mathbb{F}ree_f(v, p) \land n = cnd(unv(v, p), p)$  and  $\mathcal{B} = (\exists s \leq n)(\mathbb{F}ree_f(v, p) \land \mathbb{T}erm(s) \land \mathbb{F}reefor(s, v, p) \land n = cnd(unv(v, p), formsub(p, v, s))$ 

Exercise 13.44 T13.57.k

| 1.  | A                                                                                                                        | lxiomad4( <b>n</b> )                                                                                                                                                      | $\mathbf{A}\left(g\leftrightarrow\mathbf{I}\right)$ |
|-----|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 2.  | 2. $\left[ (\exists p \le n) (\exists v \le n) [W_{ff}(p) \land V_{ar}(v) \land (\mathcal{A} \lor \mathcal{B})] \right]$ |                                                                                                                                                                           |                                                     |
| 3.  | $\beta \cdot   p \le n \land v \le n$                                                                                    |                                                                                                                                                                           |                                                     |
| 4.  |                                                                                                                          | $Wff(p) \wedge Var(v)$                                                                                                                                                    |                                                     |
| 5.  |                                                                                                                          | $\underline{A} \lor \mathcal{B}$                                                                                                                                          |                                                     |
| 6.  |                                                                                                                          | A                                                                                                                                                                         | A ( $g \ 5 \lor E$ )                                |
| 7.  |                                                                                                                          | $\boxed{\sim} \mathbb{F}ree_f(v, p) \land n = cnd(unv(v, p), p)$                                                                                                          | 6 abv                                               |
| 8.  |                                                                                                                          | $v \leq uonv(v, p)$                                                                                                                                                       | T13.47n,o                                           |
| 9.  |                                                                                                                          | $v \le n$                                                                                                                                                                 | 7,8 T13.47n,o                                       |
| 10. |                                                                                                                          | Term(v)                                                                                                                                                                   | 4 T13.48i,m                                         |
| 11. |                                                                                                                          | Freefor(v, v, p)                                                                                                                                                          | 4 T13.57j                                           |
| 12. |                                                                                                                          | formsub(p, v, v) = p                                                                                                                                                      | 4,10,7 T13.56i                                      |
| 13. |                                                                                                                          | n = cnd(unv(v, p), formsub(p, v, v))                                                                                                                                      | 7,12 =E                                             |
| 14. |                                                                                                                          | $ \exists s(\exists p \leq n)(\exists v \leq n)[Wff(p) \land Var(v) \land Term(s) \land Freefor(s, v, p) \land n = cnd(unv(v, p), formsub(p, v, s))]$                     | 3,4,10,11,13 (∃I)                                   |
| 15. |                                                                                                                          |                                                                                                                                                                           | A ( $g$ 5 ( $\exists$ E)                            |
| 16. |                                                                                                                          | $(\exists s \leq n)(Free_f(v, p) \land Term(s) \land Freefor(s, v, p) \land n = cnd(inv(v, p), formsub(p, v, s)))$                                                        | 15 abv                                              |
| 17. |                                                                                                                          | $s \le n$                                                                                                                                                                 | A ( $g$ 16 ( $\exists$ E))                          |
| 18. |                                                                                                                          | $ [Free_f(v, p) \land Term(s) \land Freefor(s, v, p) \land n = cnd(uw(v, p), formsub(p, v, s))) $                                                                         |                                                     |
| 19. |                                                                                                                          | $\left  \exists s (\exists p \leq n) (\exists v \leq n) [W_{ff}(p) \land Var(v) \land Term(s) \land Freefor(s, v, p) \land n = cnd(unv(v, p), formsub(p, v, s))] \right $ | 3,4,18 (∃I)                                         |
| 20. |                                                                                                                          | $\exists s (\exists p \le n) (\exists v \le n) [W_{ff}(p) \land Var(v) \land Term(s) \land Freefor(s, v, p) \land n = cnd(unv(v, p), formsub(p, v, s))]$                  | 16,17-19 (∃E)                                       |
| 21. |                                                                                                                          | $\exists s (\exists p \leq n) (\exists v \leq n) [W_{ff}(p) \land Var(v) \land Term(s) \land Freefor(s, v, p) \land n = cnd(unv(v, p), formsub(p, v, s))]$                | 5,6-20 ∨E                                           |
| 22. | ∃                                                                                                                        | $s(\exists p \le n)(\exists v \le n)[W_{ff}(p) \land Var(v) \land Term(s) \land Freefor(s, v, p) \land n = cnd(unv(v, p), formsub(p, v, s))]$                             | 2,3-21 (∃E)                                         |
| 23. | E                                                                                                                        | $s(\exists p \le n)(\exists v \le n)[W_{ff}(p) \land Var(v) \land Term(s) \land Freefor(s, v, p) \land n = cnd(unv(v, p), formsub(p, v, s))]$                             | $\mathbf{A}\left(g\leftrightarrow\mathbf{I}\right)$ |
| 24. |                                                                                                                          | $p \le n \land v \le n$                                                                                                                                                   | A (g 23 ( $\exists$ E))                             |
| 25. |                                                                                                                          | $\mathbb{W}_{ff}(p) \wedge \mathbb{V}_{ar}(v) \wedge \mathbb{T}_{erm}(s) \wedge \mathbb{F}_{reefor}(s, v, p) \wedge n = cnd(\mathfrak{u}_{v}(v, p), formsub(p, v, s))$    |                                                     |
| 26. |                                                                                                                          | $\mathbb{F}ree_f(v, p) \lor \sim \mathbb{F}ree_f(v, p)$                                                                                                                   | T3.1                                                |
| 27. |                                                                                                                          | $\mathbb{F}ree_f(v, p)$                                                                                                                                                   | A ( $g \ 26 \lor E$ )                               |
| 28. |                                                                                                                          | $s \leq formsub(p, v, s)$                                                                                                                                                 | 25,27 T13.56j                                       |
| 29. |                                                                                                                          | $s \le n$                                                                                                                                                                 | 28,25 T13.47n,o                                     |
| 30. |                                                                                                                          | $\mathbb{F}ree_f(v, p) \land \mathbb{T}erm(s) \land \mathbb{F}reefor(s, v, p) \land n = Cnd(unv(v, p), formsub(p, v, s))$                                                 | 27,25 ∧I                                            |
| 31. |                                                                                                                          | $(\exists s \leq n)[Free_f(v, p) \land Term(s) \land Freefor(s, v, p) \land n = cnd(ion(v, p), formsub(p, v, s))]$                                                        | 29,30 (∃I)                                          |
| 32. |                                                                                                                          | <i>B</i>                                                                                                                                                                  | 31 abv                                              |
| 33. |                                                                                                                          |                                                                                                                                                                           | 32 ∨I                                               |
| 34. |                                                                                                                          | $\left[(\exists p \leq n)(\exists v \leq n)[\mathcal{W}ff(p) \land \mathcal{V}ar(v) \land (\mathcal{A} \lor \mathcal{B})]\right]$                                         | 24,25,33 (日)                                        |
| 35. |                                                                                                                          | $\sim \mathbb{F}ree_f(v, p)$                                                                                                                                              | A ( $g \ 26 \lor E$ )                               |
| 36. |                                                                                                                          | formsub(p,v,s) = p                                                                                                                                                        | 25,35 T13.56i                                       |
| 37. |                                                                                                                          | n = cnd(inv(v, p), p)                                                                                                                                                     | 25,36 =E                                            |
| 38. |                                                                                                                          | $\sim \mathbb{F}ree_f(v, p) \land n = cnd(ion(v, p), p)$                                                                                                                  | 35,37 ∧I                                            |
| 39. |                                                                                                                          | A.                                                                                                                                                                        | 38 abv                                              |
| 40. |                                                                                                                          |                                                                                                                                                                           | 39 ∨I                                               |
| 41. |                                                                                                                          | $W_{ff}(p) \wedge Var(v) \wedge (A \vee B)$                                                                                                                               | 25,40 ∧1                                            |
| 42. |                                                                                                                          | $[(\exists p \le n)(\exists v \le n)[W_{ff}(p) \land Var(v) \land (A \lor B)]$                                                                                            | 24,42 (∃1)                                          |
| 43. |                                                                                                                          | $(\exists p \leq n)(\exists v \leq n)[\forall y \mid (p) \land \forall ar(v) \land (A \lor B)]$                                                                           | 26,27-42 ∨E                                         |
| 44. | (                                                                                                                        | $\exists p \leq n \ (\exists v \leq n) \ [ \forall ff(p) \land \forall ar(v) \land (\mathcal{A} \lor \mathcal{B}) ]$                                                      | 23,24-43 (∃E)                                       |
| 45. |                                                                                                                          | uxiomaa4(n)                                                                                                                                                               | 44 113.3/C                                          |
| 40. | АIХ                                                                                                                      | $\exists s(\exists p \leq n)(\exists v \leq n)[Wff(p) \land Var(v) \land Term(s) \land Freefor(s, v, p) \land n = cnd(unv(v, p), formsub(p, v, s))]$                      | 1-22,23-45 ↔I                                       |
|     |                                                                                                                          |                                                                                                                                                                           |                                                     |

T13.57.0. PA  $\vdash len(numseq(x)) = Sx$ 

Exercise 13.44 T13.57.0

| 1.  | $numseq(\emptyset) = pi(\emptyset)^{mum(\emptyset)}$                            | def                                             |
|-----|---------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | $mum(\emptyset) > \emptyset$                                                    | T13.571                                         |
| 3.  | $len(pi(\emptyset)^{pum(\emptyset)}) = S\emptyset$                              | 2 T13.45k                                       |
| 4.  | $len(numseq(\emptyset)) = S\emptyset$                                           | 3,1 =E                                          |
| 5.  | len(numseq(x)) = Sx                                                             | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
| 6.  | $numseq(Sx) = numseq(x) \times pi(Sx)^{mum(Sx)}$                                | def                                             |
| 7.  | $mum(Sx) > \emptyset$                                                           | T13.571                                         |
| 8.  | $numseq(x) > \emptyset$                                                         | T13.57m                                         |
| 9.  | $pi(Sx)^{phan(Sx)} > \emptyset$                                                 | T13.43h                                         |
| 10. | $\forall j [exp(numseq(Sx), j) = exp(numseq(x), j) + exp(pi(Sx)^{num(Sx)}, j)]$ | 6,8,9 T13.44m                                   |
| 11. | $exp(pi(Sx)^{mum(Sx)}, Sx) = mum(Sx)$                                           | T13.44i                                         |
| 12. | $exp(pi(Sx)^{mum(Sx)}, Sx) > \emptyset$                                         | 7,11 =E                                         |
| 13. | $exp(numseq(Sx), Sx) \ge exp(pi(Sx)^{mum(Sx)}, Sx)$                             | 10 T13.13u                                      |
| 14. | $exp(numseq(Sx), Sx) > \emptyset$                                               | 12,13 T13.13c                                   |
| 15. | len(numseq(Sx)) > Sx                                                            | 14 T13.45h                                      |
| 16. | $len(numseq(Sx)) \ge SSx$                                                       | 15 T13.131                                      |
| 17. | k > Sx                                                                          | A ( $g$ ( $\forall$ I))                         |
| 18. | $exp(numseq(x), k) = \emptyset$                                                 | 5,17 T13.451                                    |
| 19. | $exp(pi(Sx)^{pum(Sx)}, k) = \emptyset$                                          | 17 T13.44j                                      |
| 20. | $exp(numseq(Sx),k) = \emptyset$                                                 | 10,18,19 = E                                    |
| 21. | $(\forall k > Sx)exp(numseq(Sx), k) = \emptyset$                                | 17-20 (¥I)                                      |
| 22. | $len(mumseq(Sx)) \leq SSx$                                                      | 21 T13.45i                                      |
| 23. | len(mumseq(Sx)) = SSx                                                           | 16,22 T13.20                                    |
| 24. | $len(numseq(x)) = Sx \rightarrow len(numseq(Sx)) = SSx$                         | 5-23 →I                                         |
| 25. | len(numseq(x)) = Sx                                                             | 4,24 IN                                         |

T13.57.t.  $PA \vdash [Wff(p) \land Var(v)] \rightarrow Freefor(mum(x), v, p)$ 

Exercise 13.44 T13.57.t

| 1.        | 1. $  W_{ff}(p) \wedge V_{ar}(v)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A $(g \rightarrow I)$                              |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 2.        | 2. Formseq $(m, p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 T13.49b                                          |
| 3.        | 3. $exp(m, len(m) \div \overline{1}) = p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 T13.49a                                          |
| 4.        | 4. Formseq $(n, p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,3 T13.49j                                        |
| 5.        | 5. $(\forall i < len(n))exp(n,i) \le p \land len(n) \le len(p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,3 T13.49j                                        |
| 6.        | 6. $\left  \left[ pi(len(p))^p \right]^{len(p)} \ge val(n, len(n)) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 T13.46o                                          |
| 7.        | 7. $ n > \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 T13.49a                                          |
| 8.        | 8. $ val(n, len(n)) = n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 T13.46n                                          |
| 9.        | 9. $  n \leq B_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6,8 T13.57b                                        |
| 10.       | 0.    exp(n, len(n) - 1) = p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 T13.49a                                          |
| 11.       | 1. $   = a < len(n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A $(g (\forall I))$                                |
| 12.       | 2. $\left  E(n,a) \lor F(n,a) \lor G(n,a) \lor H(p,n,a) \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>4</b> ,11 T13.49a                               |
| 13.       | 3. $E(n,a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A (g 12∨E)                                         |
| 14.       | 4. $    Atomic(exp(n, a))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13 abv                                             |
| 15.       | 5. $      T(n,a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14 abv                                             |
| 16.       | 6. $      T(n,a) \lor U(n,a) \lor V(n,a) \lor W(p,v,n,a) \lor X(p,v,\operatorname{num}(x),n,a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15 VI                                              |
| 17.       | 7. $\left  \begin{array}{c} F(n,a) \lor G(n,a) \right  \\ F(n,a) \lor G(n,a) \\ F(n,a) \lor F(n,a) \\ F(n,a) $ F(n,a) \\ F(n,a) \lor F(n,a) \\ F(n,a)  F(n,a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A (g 12∨E)                                         |
| 18.       | 8. $\left  \begin{array}{c} T(n,a) \lor U(n,a) \lor V(n,a) \lor W(p,v,n,a) \lor X(p,v,mum(x),n,a) \right  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | similarly                                          |
| 19.       | 9. $\left  \begin{array}{c} H(p,n,a) \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A (g 12∨E)                                         |
| 20.       | $10. \left  \left  \left( \exists i < a) (\exists j < p) [ \operatorname{Var}(j) \land \exp(n, a) = \operatorname{unv}(j, \exp(n, i)) \right] \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19 abv                                             |
| 21.       | $11.         i < a \land j < p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A (g 20 (∃E))                                      |
| 22.       | $\frac{12}{2}                                      $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |
| 23.       | $23. \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 24.       | $44.         j = v \lor j \neq v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T3.1                                               |
| 25.       | 5.           j = v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A ( $g 24 \lor E$ )                                |
| 26.       | 6.      i < len(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11,21 T13.13b                                      |
| 27.       | 7.                 W ff(exp(n,i))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4,26 T13.491                                       |
| 28.       | (8.         exp(n, a) = unv(v, exp(n, i))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23,25 =E                                           |
| 29.       | $Wff(exp(n,i)) \land exp(n,a) = unv(v, exp(n,i))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27,28 ∧1                                           |
| 30.       | $ 0,   =    = exp(n,l) \le p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5,26 (♥E)                                          |
| 22        | $(\exists b \leq p)[\forall f(b) \land exp(n, a) = unv(v, b)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29,30 (II)<br>31 aby                               |
| 32.       | $\frac{1}{2} = \frac{1}{2} \left[ \frac{1}{2} \left[$ | 32 \/I                                             |
| 34        | $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Delta (\sigma 24) (E)$                           |
| 24.       | $[f_{i}] = [f_{i}] = [f_{i}] = [f_{i}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R(g 24VE)                                          |
| 35.       | $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i$                                                                                                                          | 113.5/s                                            |
| 30.<br>27 | [no. ] = [no. no. no. no. no. no. no. no. no. no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(i avp(n i))$ 21 22 24 26 22 ( $\exists I$ )      |
| 38        | $\begin{array}{c} (1, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1) \\ (2, 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J = anv(J, exp(n, t)) 21,22,34,30,23 (1)<br>37 abv |
| 39        | $(y_1, y_2, y_3, y_4, y_1, y_2, y_3, y_4, y_1, y_2, y_1, y_2, y_1, y_2, y_1, y_2, y_3, y_4, y_1, y_2, y_2, y_1, y_2, y_2, y_2, y_2, y_2, y_1, y_2, y_2, y_2, y_2, y_2, y_2, y_2, y_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38 VI                                              |
| 40.       | $U_{0,1} = \begin{bmatrix} 1 & (x,y) & V & V & V & V & V & V & V & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24.25-39 ∨E                                        |
| 41.       | $T(n,a) \lor U(n,a) \lor V(n,a) \lor W(p,v,n,a) \lor X(p,v,mum(x),n,a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20,21-40 (∃E)                                      |
| 42.       | $12. \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12,13-41 ∨E                                        |
| 43        | $   (\forall k < len(n))[T(n,k) \lor U(n,k) \lor V(n,k) \lor W(n,y,n,k) \lor X(n,y,mum(x),n,k)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11-42 (¥I)                                         |
| 44.       | $4.   F_{fseq}(n, mum(x), v, p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.7.43 T13.57a                                    |
| 45        | $   (\exists v < B_n) (Fiseq(v, num(x), v, p))  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.44 (ED)                                          |
| 46.       | 6.    Freefor(mun(x), v, p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45 T13.57b                                         |
| 47        | $[7] [Wff(n) \land Var(v)] \rightarrow \mathbb{F}reefor(mum(x), v, n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $1-46 \rightarrow I$                               |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 10 11                                            |

E13.45. Show T13.58a; then set up the argument for T13.58g including assertion of the main proposition to be shown by induction; then set up the show part working just the P case. Hard core: finish T13.58g and the rest of the results

Exercise 13.45

in T13.58.

T13.58.

T13.58.b. PA  $\vdash [\mathbb{T}erm(p) \land v \neq w] \rightarrow \exists q \exists t \exists t' [\mathbb{T}ermsub(p, v, mum(y), t) \land \mathbb{T}ermsub(p, w, mum(z), t') \land \mathbb{T}ermsub(t, w, mum(z), q) \land \mathbb{T}ermsub(t', v, mum(y), q)]$ 

Let  $\mathcal{P} = \exists q \exists a \exists b \exists c \exists d [Tsubseq(a, b, exp(n, k), w, mum(z), q) \land Tsubseq(c, d, exp(n', k'), v, mum(y), q)]$ 

| 1.  | $ \mathcal{T}erm(p) \land v \neq w$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $A(g \rightarrow I)$                                     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 2.  | $\overline{T}erm(\mathfrak{rum}(y)) \wedge Term(\mathfrak{rum}(z))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T13.57r                                                  |
| 3.  | $\exists t Termsub(p, v, man(y), t) \land \exists t' Termsub(p, w, man(z), t')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,2 T13.50m                                              |
| 4.  | $\mathbb{T}ermsub(p, v, \operatorname{mun}(y), t) \land \mathbb{T}ermsub(p, w, \operatorname{mun}(z), t')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A ( $g$ 3 $\exists$ E)                                   |
| 5.  | $(\exists x \leq X)(\exists y \leq Y) Tsubseq(x, y, p, v, \pium(y), t) \land (\exists x \leq X)(\exists y \leq Y) Tsubseq(x, y, p, w, \pium(z), t')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 T13.50b                                                |
| 6.  | $\mathbb{T}subseq(m, n, p, v, mum(y), t) \land \mathbb{T}subseq(m', n', p, w, mum(z), t')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A $(g 5 (\exists E))$                                    |
| 7.  | $\mathbb{T}ermseq(m, p) \wedge \mathbb{T}ermseq(m', t')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 T13.50a                                                |
| 8.  | $exp(m, len(m) - \overline{1}) = p \land exp(m', len(m') - \overline{1}) = p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 T13.48a                                                |
| 9.  | $    m > \overline{1} \land m' > \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 T13.48a                                                |
| 10. | $len(m) > \emptyset \land len(m') > \emptyset$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 T13.45j                                                |
| 11. | $\exp(n, \operatorname{len}(n) - 1) = t \wedge \exp(n', \operatorname{len}(n') - 1) = t'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 T13.50a                                                |
| 12. | $ten(m) = ten(n) \land ten(m) = ten(n)$ $(\forall k < ten(m)) \land (m, n, k) \lor (k, m, n, k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 T13 50a                                                |
| 14. | $(\forall k < en(m))[1(m', n, k) < 0(m', n', k) < K(0, mun(z), m', n', k) < L(0, mun(z), m', n', k) < L(m', n', k) < M(m', n', k) < K(n, m', n'$                                                                | 6 T13.50a                                                |
| 15. | $    l < len(m) \land l' < len(m')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A $(g (\forall I))$                                      |
| 16. | $  en(exp(m,l)) \le \emptyset $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $A(g \rightarrow I)$                                     |
| 17. | $\left  \left  \left  \left  \left  \left  exp(m,l) = exp(m',l') \rightarrow \mathcal{P}_{l,l'}^{k,k'} \right  \right. \right  \right  \right  \leq exp(m',l') = exp$ | A ( $c \sim E$ )                                         |
| 18. | $\left  \left  \left  exp(m,l) > \overline{1} \right  \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,15 T13.48f                                             |
| 19. | $        exp(m,l) \neq \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 T13.45j                                               |
| 20. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18,19 ⊥I                                                 |
| 21. | $exp(m,l) = exp(m',l') \to \mathcal{P}_{l,l'}^{k,k'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17-20 ∼E                                                 |
| 22. | $  len(exp(m,l)) \le \emptyset \to (exp(m,l) = exp(m',l') \to \mathcal{P}_{l,l'}^{k,k'})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $16-21 \rightarrow I$                                    |
| 23. | $(\forall k < len(m))(\forall k' < len(m'))[len(exp(m,k)) \le \emptyset \to (exp(m,k) = exp(m',k') \to \mathcal{P})]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15-22 (¥I)                                               |
| 24. | $\left[ (\forall k < len(m))(\forall k' < len(m'))[len(exp(m,k)) \le x \to (exp(m,k) = exp(m',k') \to \mathcal{P})] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$          |
| 25. | $l < len(m) \land l' < len(m')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\mathbf{A}\left(g\left(\forall\mathbf{I}\right)\right)$ |
| 26. | $  len(exp(m,l)) \le Sx \land exp(m,l) = exp(m',l')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$          |
| 27. | $    I(m,n,l) \lor J(v,m,n,l) \lor K(v,man(y),m,n,l) \lor L(m,n,l) \lor M(m,n,l) \lor N(m,n,l)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13,25 (∀E)                                               |
| 28. | $    I(m',n',l') \lor J(w,m',n',l') \lor K(w,mum(z),m',n',l') \lor L(m',n',l') \lor M(m',n',l') \lor N(m',n',l')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14,25 (∀E)                                               |
| 29. | $ \begin{array}{c c} I \\ I $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A (g 27∨E)                                               |
| 30. | $         exp(m, l) = \lceil \emptyset \rceil \land exp(n, l) = \lceil \emptyset \rceil$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 29 abv                                                   |
| 31. | $\left  \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A ( $g \ 28 \lor E$ )                                    |
| 32. | $          exp(m', l') = \lceil \emptyset \rceil \land exp(n', l') = \lceil \emptyset \rceil$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31 abv                                                   |
| 33. | $Tsubseq(\overline{2}^{\forall}, \overline{2}^{\forall}, exp(n, l), w, mum(z), \lceil \emptyset \rceil)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30 T13.50f                                               |
| 34. | $ \begin{bmatrix} T_{subseq}(\overline{2}^{\ v}, \overline{2}^{\ v}, exp(n', l'), v, \operatorname{num}(y), \overline{[\theta]} \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32 T13.50f                                               |
| 35. | $            \mathcal{P}_{l,l'}^{k,k'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33,34 ∃I                                                 |
| 36. | $               J(w,m',n',l') \lor K(w, \textit{num}(z),m',n',l') \lor L(m',n',l') \lor M(m',n',l') \lor N(m',n',l') $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbf{A}\left(g\ 28{\lor}\mathbf{E}\right)$           |
| 37. | $                \sim \mathcal{P}_{I,I'}^{k,k'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A ( $c \sim E$ )                                         |
| 38. | $         exp(m', l') = \overline{[\emptyset]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30,26 = E                                                |
| 39. | $\left  \left  \left  \right  \right  \left  \left  \right  \right  \sim \left[ J(w, m', n', l') \lor K(w, \operatorname{mum}(z), m', n', l') \lor L(m', n', l') \lor M(m', n', l') \lor N(m', n', l') \right] \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38 T13.55c                                               |
| 40. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36,39 ±1                                                 |
| 41. | $  \mid \mid \mid \mid \mid \mid \mid \mathcal{P}_{l,l'}^{\kappa,\kappa}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37-40 ∼E                                                 |

| 42. | J(v,m,n,l)                                                                                                                                                                                           | $\mathcal{A}\left(g\ 27 \lor \mathcal{E}\right)$ |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 43. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                   | 42 abv                                           |
| 44. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                   | A ( $g \ 28 \lor E$ )                            |
| 45. | $         Var(exp(m',l')) \land exp(m',l') \neq w \land exp(n',l') = exp(m',l')$                                                                                                                     | 43 abv                                           |
| 46. | $         exp(n,l) \neq w \land exp(n',l') \neq v \land exp(n,l) = exp(n',l')$                                                                                                                       | 26,43,45 =E                                      |
| 47. | $\left  \left  \left  \left  \left  \mathcal{T}_{subseq}\left(\overline{2}^{exp(n,l)}, \overline{2}^{exp(n,l)}, exp(n,l), w, \operatorname{num}(z), exp(n,l)\right) \right. \right  \right  \right $ | 43,46 T13.50g                                    |
| 48. | $\left  \left  \left  \right  \right  \left  \mathbb{T}_{subseq}(\overline{2}^{exp(n',l')},\overline{2}^{exp(n',l')},exp(n',l'),v,mum(y),exp(n',l'))\right $                                         | 45,46 T13.50g                                    |
| 49. | $\left  \left  \left  \left  \left  \mathcal{P}_{l,l'}^{k,k'} \right  \right. \right  \right  \right $                                                                                               | 47,48,46 ∃I                                      |
| 50. | $\lfloor K(w, \operatorname{num}(z), m', n', l')$                                                                                                                                                    | A ( $g$ 28 $\lor$ E)                             |
| 51. | $\left  \left  \left  \right  \right  \right  Var(exp(m',l')) \wedge exp(m',l') = w \wedge exp(n',l') = mum(z)$                                                                                      | 50 abv                                           |
| 52. | $            Var(exp(n,l)) \land exp(n,l) = w$                                                                                                                                                       | 26,43,51 =E                                      |
| 53. | $\left  \left  \left  \left  \mathcal{T}_{subseq}(\overline{2}^{exp(n,l)}, \overline{2}^{raun(z)}, exp(n,l), w, raum(z), raum(z)) \right  \right  \right $                                           | 52 T13.50h                                       |
| 54. | Termsub(exp(n', l'), v, mum(y), mum(z))                                                                                                                                                              | 51 T13.57s                                       |
| 55. | $       (\exists x \le X)(\exists y \le Y)Tsubseq(x, y, exp(n', l'), v, num(y), num(z))$                                                                                                             | 54 T13.50b                                       |
| 56. | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                              | A $(g 55 (\exists E))$                           |
| 57. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                   | 53,56 ∃I                                         |
| 58. | $\left  \left  \left  \left  \mathcal{P}_{l,l'}^{k,k'} \right  \right. \right  \right $                                                                                                              | 55,56-57 (∃E)                                    |
| 59. |                                                                                                                                                                                                      | A ( $g$ 28 $\lor$ E)                             |
| 60. | Var(exp(m',l'))                                                                                                                                                                                      | 43,26 = E                                        |
| 61. | $\left  \cdot \right  \left  \cdot \right  \left  \cdot \right  \sim \mathcal{P}_{l,l'}^{k,k'}$                                                                                                      | A ( $c \sim E$ )                                 |
| 62. | $\left  \begin{array}{c}   \end{array} \right  \left  \begin{array}{c}   \end{array} \right  \left  \begin{array}{c} exp(m',l') = w \end{array} \right $                                             | A ( $c \sim I$ )                                 |
| 63. | $          \sim [I(m',n',l') \lor J(w,m',n',l') \lor L(m',n',l') \lor M(m',n',l') \lor N(m',n',l')]$                                                                                                 | 60,62 T13.55e                                    |
| 64. |                                                                                                                                                                                                      | with 59,63                                       |
| 65. | $       exp(m',l') \neq w$                                                                                                                                                                           | $62-64 \sim I$                                   |
| 66. |                                                                                                                                                                                                      | 60,65 T13.55d                                    |
| 67. |                                                                                                                                                                                                      | with 59,66                                       |
| 68. | $\left  \left  \left  \right  \right  \left  \left  \left  \mathcal{P}_{l,l'}^{k,k'} \right  \right $                                                                                                | 61-67 ∼E                                         |
| 69. | $  \left  \left  \left  \right  \right  \left  \mathcal{P}_{l,l'}^{k,k'}  ight $                                                                                                                     | 28,44-68 ∨E                                      |

900

| 71. $                        Var(exp(m,l) \land exp(m,l) = v \land exp(n,l) = num(y)$                                            | 70 abv               |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 72. $                K(w, mum(z), m', n', l')$                                                                                   | A ( $g$ 28 $\lor$ E) |
| 73. $                                     $                                                                                      | 72 abv               |
| 74. $\left  \right  \left  \right  \left  \right  \left  \right  \sim \mathcal{P}_{l,l'}^{k,k'}$                                 | A ( $c \sim E$ )     |
| 75. $                    v = w$                                                                                                  | 26,71,73             |
| 76.                                                                                                                              | 1,75 ⊥I              |
| 77. $\left  \right  \left  \right  \left  \right  \left  \left  \mathcal{P}_{l,l'}^{k,k'} \right $                               | 74-76 ∼E             |
| 78. $                                     $                                                                                      | A ( $g$ 28 $\lor$ E) |
| 79. $                                    $                                                                                       | 78 abv               |
| 80. $                                     $                                                                                      | 26,71,79 = E         |
| 81. $ \left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                          | 80 T13.50h           |
| 82. $          $ Termsub(exp(n, l), w, mum(z), mum(y))                                                                           | 71 T13.57s           |
| 83. $            Tsubseq(e, f, exp(n, l), w, mum(z), mum(y))$                                                                    | 82 T13.50b           |
| 84. $               \mathcal{P}_{l,l'}^{k,k'} $                                                                                  | 81,83 ∃I             |
| 85. $                                     $                                                                                      | A ( $g$ 28 $\lor$ E) |
| 86.           Var(exp(m',l'))                                                                                                    | 26,71 =E             |
| 87. $                     \sim \mathcal{P}_{l,l'}^{k,k'} $                                                                       | A ( $c \sim E$ )     |
| $88. \qquad   \qquad   \qquad   \qquad   \qquad   \qquad   \qquad   \qquad   \qquad   \qquad $                                   | A ( $c \sim I$ )     |
| 89.                                                                                                                              | 86,88 T13.55e        |
| 90.                                                                                                                              | with 85,89           |
| 91. $           exp(m',l') \neq w$                                                                                               | 62-64 ~I             |
| 92. $                                    $                                                                                       | 86,91 T13.55d        |
| 93.                                                                                                                              | with 85,92           |
| 94. $\left  \right  \left  \right  \left  \right  \left  \right  \left  \left  \right  \left  \mathcal{P}_{l,l'}^{k,k'} \right $ | 87-93 ~Е             |
| 95. $\left  \right  \left  \right  \left  \right  \left  \right  \left  \right  \mathcal{P}_{l,l'}^{k,k'}$                       | 28,72-94 ∨E          |

| 96.   | L(m,n,l)                                                                                                                                                                              | A (g 27∨E)                  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 97.   | $         \overline{(\exists i < l)}[exp(m, l) = \overline{\lceil S \rceil} * exp(m, i) \land exp(n, l) = \overline{\lceil S \rceil} * exp(n, i)]$                                    | 96 abv                      |
| 98.   | h < l                                                                                                                                                                                 | A (g 97 ( $\exists$ E))     |
| 99.   | $         exp(m,l) = \overline{\lceil S \rceil} * exp(m,h) \land exp(n,l) = \overline{\lceil S \rceil} * exp(n,h)$                                                                    |                             |
| 100.  | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                    | A ( $g$ 28 $\lor$ E)        |
| 101.  |                                                                                                                                                                                       | 100 abv                     |
| 102.  | h' < l'                                                                                                                                                                               | A ( $g$ 101 ( $\exists$ E)) |
| 103.  | $                        exp(m', l') = \lceil S \rceil * exp(m', h') \land exp(n', l') = \lceil S \rceil * exp(n', h')$                                                               |                             |
| 104.  | $ \left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                   | 26,99,103 =E                |
| 105.  | $\  \  \  \  h < len(m) \land h' < len(m')$                                                                                                                                           | 25,98,102 T13.13b           |
| 106.  | $\mathbb{T}erm(exp(m,h)) \land \mathbb{T}erm(exp(m',h'))$                                                                                                                             | 7,105 T13.48n               |
| 107.  | exp(m,h) = exp(m',h')                                                                                                                                                                 | 106,104 T13.52b             |
| 108.  | len(exp(m, l)) = 1 + len(exp(m, h)) $len(exp(m, l)) > len(exp(m, h))$                                                                                                                 | 99 113.471<br>108 T13 131   |
| 1109. | $\lim_{n \to \infty} \frac{1}{   } = \lim_{n \to \infty} \frac{1}{    } = \lim_{n \to \infty} \frac{1}{     } = \lim_{n \to \infty} \frac{1}{                                   $     | 26 109 T13 13c              |
| 111.  | $\frac{\operatorname{len}(\exp(m,h)) + 2\pi}{\operatorname{len}(\exp(m,h)) < x}$                                                                                                      | 110 T13.13n                 |
| 112.  | $exp(m,h) = exp(m',h') \rightarrow \mathcal{P}_{h,h'}^{k,k'}$                                                                                                                         | 24,105,111 (∀E)             |
| 113.  |                                                                                                                                                                                       | 112.107 →E                  |
| 114.  | $\left[ \left  \left  \right  \right  \right] = \left[ \left  $                                   | 113 abv                     |
| 115.  | $\  \  \  \  \  \  \mathbb{T}^{subseq}(a, b, exp(n, h), w, mum(z), q) \land \mathbb{T}^{subseq}(c, d, exp(n', h'), v, mum(y), q)$                                                     | A (g 114∃E)                 |
| 116.  | $\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                            | 115 T13.50i                 |
| 117.  | $Tsubseq(c * \overline{2}^{\overline{CS}^{\neg} * exp(n',h')}, d * \overline{2}^{\overline{CS}^{\neg} * q}, \overline{CS}^{\neg} * exp(n',h'), v, raum(y), \overline{CS}^{\neg} * q)$ | 115 T13.50i                 |
| 118.  | $               Tsubseq(a * \overline{2}^{exp(n,l)}, b * \overline{2}^{\lceil S \rceil * q}, exp(n,l), w, mum(z), \overline{\lceil S \rceil} * q) $                                   | 99,116 =E                   |
| 119.  | $               Tsubseq(c * \overline{2}^{exp(n',l')}, b * \overline{2}^{\lceil S \rceil * q}, exp(n',l'), v, mum(y), \lceil S \rceil * q) $                                          | 103,117 =E                  |
| 120.  | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                    | 118,119 ∃I                  |
| 121.  | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                    | 114,115-120 ∃E              |
| 122.  | $\left  \left  \left  \left  \left  \left  \left  \left  \left  \mathcal{P}_{l,l'}^{k,k'} \right.  ight   ight ^{k}  ight ^{k'}  ight ^{k'}  ight ^{k'}$                              | 101,102-121 (∃E)            |
| 123.  |                                                                                                                                                                                       | A ( $g \ 28 \lor E$ )       |
| 124.  | $            exp(m', l') = \overline{\lceil S \rceil} * exp(m, h)$                                                                                                                    | 26,99 = E                   |
| 125.  | $                  \sim \mathcal{P}_{II'}^{k,k'}$                                                                                                                                     | A ( $c \sim E$ )            |
| 126.  | $               = 1 \\ \sim [I(m', n', l') \lor J(w, m', n', l') \lor K(w, mum(z), m', n', l') \lor M(m', n', l') \lor N(m', n', l')]$                                                | 124 T13.55f                 |
| 127.  |                                                                                                                                                                                       | 123,126 ⊥I                  |
| 128.  |                                                                                                                                                                                       | 125-127 ~Е                  |
| 129.  | $\left  \begin{array}{c} \left  \right\rangle \right  \left  \left $                                     | 28,100-128 ∨E               |
| 130.  | $\left  \left  \right  \right  \left  \left  \frac{k''}{l''} \right  \right  = \frac{k'''}{l''}$                                                                                      | 97,98-129 (∃E)              |
| 131.  | $                       M(m,n,l) \lor N(m,n,l)$                                                                                                                                       | A ( $g$ 27 $\lor$ E)        |
| 132.  | $\left  \left  \left  \left  \right  \right  \right  \mathcal{P}_{l,l'}^{k,k'}$                                                                                                       | similarly                   |
| 133.  | $\left  \left  \left  \right  \right  \mathcal{P}_{l,l'}^{k,k'}$                                                                                                                      | 27,29-132 ∨E                |
|       |                                                                                                                                                                                       |                             |

| 134.                 |    | $\left  \left  \left  len(exp(m,l)) \leq Sx \rightarrow (exp(m,l) = exp(m',l') \rightarrow \mathcal{P}_{l,l'}^{k,k'}) \right  \right  \leq Sx \rightarrow (exp(m,l) = exp(m',l') \rightarrow \mathcal{P}_{l,l'}^{k,k'})$                                                                                                                                                                                                                        | 26-133 →I                                           |
|----------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 135.                 |    | $\left  \left  (\forall k < len(m))(\forall k' < len(m'))[len(exp(m,k)) \le Sx \to (exp(m,k) = exp(m',k') \to \mathcal{P})] \right  \right $                                                                                                                                                                                                                                                                                                    | 25-134 (¥I)                                         |
| 136.                 |    | $   (\forall k < len(m))(\forall k' < len(m'))[len(exp(m,k)) \le x \to (exp(m,k) = exp(m',k') \to \mathcal{P})] \to \\ (\forall k < len(m))(\forall k' < len(m'))[len(exp(m,k)) \le Sx \to (exp(m,k) = exp(m',k') \to \mathcal{P})] $                                                                                                                                                                                                           | 24-135 →I                                           |
| 137.<br>138.         |    | $ \begin{vmatrix} \forall x (\forall k < len(m))(\forall k' < len(m'))[len(exp(m,k)) \le x \to (exp(m,k) = exp(m',k') \to \mathcal{P})] \\ len(m) \dot{-} \overline{1} < len(m) \land len(m') \dot{-} \overline{1} < len(m') \end{vmatrix} $                                                                                                                                                                                                    | 23,136 IN<br>10 T13.23i                             |
| 139.                 |    | $\left  len(exp(m, len(m) - \overline{1})) \leq len(p) \rightarrow (exp(m, len(m) - \overline{1}) = exp(m', len(m') - \overline{1}) \rightarrow \mathcal{P}_{len(m) - \overline{1}, len(m') - \overline{1}}^{k, k'} \right $                                                                                                                                                                                                                    | 137,138 (∀E)                                        |
| 140.                 |    | $\left  \mathcal{P}_{len(m) - \bar{1}, len(m') - \bar{1}}^{k, k'} \right $                                                                                                                                                                                                                                                                                                                                                                      | 139,8 →E                                            |
| 141.<br>142.<br>143. |    | $ \begin{array}{ } \exists q \exists a \exists b \exists c \exists d [Tsubseq(a, b, exp(n, len(m) \rightarrow \overline{1}), w, mum(z), q) \land Tsubseq(c, d, exp(n', len(m') \rightarrow \overline{1}), v, mum(y), q)] \\ \exists q \exists a \exists b \exists c \exists d [Tsubseq(a, b, t, w, mum(z), q) \land Tsubseq(c, d, t', v, mum(y), q)] \\ \mid Tsubseq(a, b, t, w, mum(z), q) \land Tsubseq(c, d, t', v, mum(y), q) \end{array} $ | 140 abv<br>141,11,12 =E<br>A ( $g$ 142 $\exists$ E) |
| 144.                 |    | $\left  \left[ Termsub(t, w, raum(z), q) \land Termsub(t', v, raum(y), q) \right] \right $                                                                                                                                                                                                                                                                                                                                                      | 143 T13.501                                         |
| 145.                 |    | $ \begin{bmatrix} \exists q \exists t \exists t' [Termsub(p, v, man(y), t) \land Termsub(p, w, man(z), t') \land \\ Termsub(t, w, man(z), q) \land Termsub(t', v, man(y), q) \end{bmatrix} $                                                                                                                                                                                                                                                    | 4,144 ∃I                                            |
| 146.                 |    | $ \begin{vmatrix} \exists q \exists t \exists t' [Termsub(p, v, mum(y), t) \land Termsub(p, w, mum(z), t') \land \\ Termsub(t, w, mum(z), q) \land Termsub(t', v, mum(y), q) \end{vmatrix} $                                                                                                                                                                                                                                                    | 142,143-145 ∃E                                      |
| 147.                 |    | $ \exists q \exists t \exists t' [Termsub(p, v, mum(y), t) \land Termsub(p, w, mum(z), t') \land Termsub(t, w, mum(z), q) \land Termsub(t', v, mum(y), q) ] $                                                                                                                                                                                                                                                                                   | 5,6-146 (∃E)                                        |
| 148.                 | :  | $\exists q \exists t \exists t' [Termsub(p, v, mum(y), t) \land Termsub(p, w, mum(z), t') \land Termsub(t, w, mum(z), q) \land Termsub(t', v, mum(y), q)]$                                                                                                                                                                                                                                                                                      | 3,4-147 ∃E                                          |
| 149.                 | [7 | $[\operatorname{erm}(p) \land v \neq w] \rightarrow \exists q \exists t \exists t' [\operatorname{Termsub}(p, v, \operatorname{mum}(y), t) \land \operatorname{Termsub}(p, w, \operatorname{mum}(z), t') \land \\ \operatorname{Termsub}(t, w, \operatorname{mum}(z), q) \land \operatorname{Termsub}(t', v, \operatorname{mum}(y), q)]$                                                                                                        | 1-148 →I                                            |

T13.58.d.  $PA \vdash [Wff(p) \land v \neq w] \rightarrow formsub(formsub(p, v, mum(y)), w, mum(z)) = formsub(formsub(p, w, mum(z)), v, mum(y))$ 

Let  $\mathcal{P} = \exists q \exists a \exists b \exists c \exists d [Fsubseq(a, b, exp(n, k), w, mum(z), q) \land Fsubseq(c, d, exp(n', k'), v, mum(y), q)]$ 

| 1.  | $\left\lfloor \mathcal{W}ff(p)\wedge v eq w ight.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mathbf{A}\left(g\rightarrow\mathbf{I}\right)$ |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 2.  | $\boxed{Term(mum(y)) \land Term(mum(z))}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T13.57r                                         |
| 3.  | $\exists q \operatorname{Formsub}(p, v, \operatorname{num}(y), q) \land \exists q \operatorname{Formsub}(p, w, \operatorname{num}(z), q)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2 T13.51k                                     |
| 4.  | $\begin{bmatrix} Formsub(p, v, raum(y), t) \land Formsub(p, w, raum(z), t') \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A $(g \exists \exists E)$                       |
| 5.  | $\int formsub(p, v, raum(y)) = t \wedge formsub(p, w, raum(z)) = t'$ $W \# (t) \wedge W \# (t')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2,4 T13.56h<br>4 2 T13 51d                    |
| 7.  | $(\exists x < X)(\exists y < Y) \mathbb{F}$ subsea $(x, y, p, y, mun(y), t) \land (\exists x < X)(\exists y < Y) \mathbb{F}$ subsea $(x, y, p, y, mun(z), t')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4,2113.51b                                      |
| 8.  | $  \mathbb{F}subseq(m, n, p, v, \operatorname{rum}(y), t) \land \mathbb{F}subseq(m', n', p, w, \operatorname{rum}(z), t') $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A $(g 7 (\exists E))$                           |
| 9.  | $\mathbb{F}ormseq(m, p) \wedge \mathbb{F}ormseq(m', p)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 T13.51a                                       |
| 10. | $exp(m, len(m) \div \overline{1}) = p \land exp(m', len(m') \div \overline{1}) = p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 T13.49a                                       |
| 11. | $\left  \begin{array}{c} m > \overline{1} \land m' > \overline{1} \\ m > \overline{1} \land m' > \overline{1} \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 T13.49a                                       |
| 12. | $  len(m) > \emptyset \land len(m') > \emptyset$ $avn(n \ len(m) \div \overline{1}) = t \land avn(n' \ len(n') \div \overline{1}) = t'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11 T13.45j<br>8 T13 510                         |
| 14. | $len(m) = len(n) \land len(m') = len(n')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 T13.51a                                       |
| 15. | $(\forall k < len(m))[O(v, mun(y), m, n, k) \lor P(m, n, k) \lor Q(m, n, k) \lor R(v, p, m, n, k) \lor S(v, p, m, n, k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 T13.51a                                       |
| 16. | $    (\forall k < len(m'))[O(w, num(z), m', n', k) \lor P(m', n', k) \lor Q(m', n', k) \lor R(w, p, m', n', k) \lor S(w, p, m', n', k) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 T13.51a                                       |
| 17. | $l < len(m) \land l' < len(m')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A $(g (\forall I))$                             |
| 18. | $\left  \begin{array}{c} len(exp(m,l)) \leq \emptyset \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A $(g \rightarrow I)$                           |
| 19. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A ( $c \sim E$ )                                |
| 20. | $      exp(m,l) > \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9,17 T13.49d                                    |
| 21. | $       exp(m,l) \neq \overline{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 T13.45j                                      |
| 22. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20,21 ⊥I                                        |
| 23. | $exp(m,l) = exp(m',l') \rightarrow \mathcal{P}_{l,l'}^{\kappa,\kappa'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19-22 ~Е                                        |
| 24. | $     len(exp(m,l)) \le \emptyset \to (exp(m,l) = exp(m',l') \to \mathcal{P}_{l,l'}^{k,k'})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18-23 →I                                        |
| 25. | $(\forall k < len(m))(\forall k' < len(m'))[len(exp(m,k)) \le \emptyset \to (exp(m,k) = exp(m',k') \to \mathcal{P})]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17-24 (∀I)                                      |
| 26. | $\left[ (\forall k < len(m))(\forall k' < len(m'))[len(exp(m,k)) \le x \to (exp(m,k) = exp(m',k') \to \mathcal{P})] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $A(g \rightarrow I)$                            |
| 27. | $l < len(m) \land l' < len(m')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A $(g (\forall I))$                             |
| 28. | $len(exp(m,l) \le Sx \land exp(m,l) = exp(m',l')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $A(g \rightarrow I)$                            |
| 29. | $      O(v, mum(y), m, n, l) \lor P(m, n, l) \lor Q(m, n, l) \lor R(v, p, m, n, l) \lor S(v, p, m, n, l)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15,27 (∀E)                                      |
| 30. | $\bigcup_{i=1}^{n} \bigcup_{i=1}^{n} O(w, mum(z), m', n', t') \lor P(m', n', t') \lor Q(m', n', t') \lor R(w, p, m', n', t') \lor S(w, p, m', n', t')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $16,2/(\forall E)$<br>A (g 20)(E)               |
| 32  | $\frac{1}{4} \left( \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \right) \right) + \frac{1}{2} \left( \frac{1}{2} \right) + $ | 31 aby                                          |
| 33. | O(w, num(z), m', n', l')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A $(g 30 \lor E)$                               |
| 34. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33 abv                                          |
| 35. | A tomsub(exp(m, l), w, num(z), exp(n', l'))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34,28 =E                                        |
| 36. | $Atomic(exp(n,l)) \land Atomic(exp(n',l'))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,32,34 T13.50e                                 |
| 37. | $\exists q \exists t \exists t' [Atomsub(exp(m, l), v, mum(y), t) \land Atomsub(exp(m, l), w, mum(z), t') \land Atomsub(t, w, m, u, (z), z) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 22 112 59-                                    |
| 38  | $\begin{bmatrix} A tomsub(t, w, mum(z), q) \land A tomsub(t, v, mum(y), q) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,32 113.58c<br>A ( $\sigma$ 37F)               |
| 39. | $Atomsub(u, w, raum(z), r) \land Atomsub(u', v, raum(y), r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |
| 40. | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32,35,38, T13.55j                               |
| 41. | $A tomsub(exp(n, l), w, mum(z), r) \land A tomsub(exp(n', l'), v, mum(y), r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39,40 =E                                        |
| 42. | $\left  \left  \left  \left  \right  \right  \right  Fsubseq(\overline{2}^{exp(n,l)}, \overline{2}^r, exp(n,l), w, mum(z), r) \land Fsubseq(\overline{2}^{exp(n',l')}, \overline{2}^r, exp(n',l'), v, mum(y), r) \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36,41 T13.51e                                   |
| 43. | $\left  \left  \right  \right  \left  \left  \right  \left  \mathcal{P}_{l,l'}^{k,k'} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42 ∃I                                           |
| 44. | $\left  \right  \left  \right  \left  \mathcal{P}_{II'}^{k,k'} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 37,38-43 ∃E                                     |
| 45. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A ( <i>g</i> 30∨E)                              |
| 46. | $                        \sim \mathcal{P}_{I,I'}^{k,k'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A ( $c \sim E$ )                                |
| 47. | = l.t $ Atomic(exp(m', l'))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32,28 =E                                        |
| 48. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47 T13.56b                                      |
| 49. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45,48 ⊥I                                        |
| 50. | $\left  \left  \left  \right  \right  \left  \left  \mathcal{P}_{l,l'}^{k,k'} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 46-49 ∼E                                        |
| 51. | $            \mathcal{P}_{l,l'}^{k,k'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30,33-50 ∨E                                     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |

| 52. $            P(m, n, l)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A ( <i>g</i> 29∨E)               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 53. $                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52 abv                           |
| 54. $            h < l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A ( $g$ 53 ( $\exists$ E))       |
| 55. $                        exp(m,l) = neg(exp(m,h)) \land exp(n,l) = neg(exp(n,h))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
| 56. $                       P(m', n', l') $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A ( $g 30 \lor E$ )              |
| 57. $                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56 abv                           |
| 58. $                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A $(g 57 (\exists E))$           |
| 59. $  (p_{1}, p_{2})   = meg(exp(m', h')) \wedge exp(n', h')) \wedge exp(n', h') = meg(exp(n', h'))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
| $\begin{array}{c c} 60. \\ \hline \\ 61 \\ \hline \\ 61$                                                                                                                                                            | 28,55,59 = E<br>27.54.58 T13.12b |
| $\begin{array}{c} 62 \\ 62 \\ 62 \\ 62 \\ 61 \\ 61 \\ 61 \\ 61 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 61 T13 491                     |
| 63.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60,62 T13.53a                    |
| $64. \qquad \qquad len(exp(m,l)) = \overline{1} + len(exp(m,h))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55 T13.47f                       |
| $65. \qquad   \qquad   \qquad   \qquad   \qquad   \qquad   \qquad   \qquad   \qquad   \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64 T13.13h                       |
| $\begin{array}{c c} 66. &   &   &   &   &   &   &   &   &   & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28,65 T13.13c                    |
| $\begin{array}{c c} 0 \\ c \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 00 115.15n                       |
| $\sum_{k=1}^{\infty} (m, k) \rightarrow \sum_{k=1}^{\infty} (m, k) \rightarrow \sum_{k=1}$ | 20,01,07 (VE)                    |
| 09. $[1, h] = [1, h] = [1, h]$<br>70. $[1, h]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 69 aby                           |
| 71. $  I = [I = [I] = [$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $A(g 70 \exists E)$              |
| 72 <b>F</b> subsea( $a * \overline{2}^{\operatorname{Reg}(exp(n,h))} \overline{2}^{\operatorname{Reg}(q)} \operatorname{meg}(exp(n,h))$ w mum( $z$ ) meg( $a$ ) $\wedge$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |
| $F_{vulneq}(c * 2^{meg(exp(n',h'))}; m_{vun(v)}; m_{v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 71 T13 51f                       |
| 73 Full Full $\overline{p}$ and \overline{p} and $\overline{p}$ an                                                                                                                                                                                                                                                                                | /1 115.511                       |
| $F_{subseq(c * \overline{2}^{exp(n',l')}, \overline{2}^{Reg(q)}, exp(n',l')) = m_{eq(q)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72 55 59 <del>-</del> F          |
| 74 $\mathcal{P}^{k,k'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 72,33,39 — E<br>73 FI            |
| $\begin{array}{c c} & & & \\ \hline \\ & & & \\ \hline & & & \\ \hline & & \\ \hline & & & \\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70 71 74 F                       |
| $\frac{15.}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70,71-74 JE                      |
| 76. $                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 57,58-75 (∃E)                    |
| 77. $                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A ( $g 30 \lor E$ )              |
| 78. $\left  \right  \left  \left  \right  \left  \right  \left  \right  \left  \right  \left  \right  \left  \right  \left  \left  \right  \left  \right  \left  \right  \left  \left  \left  \right  \left  \right  \left  \right  \left  \left  \left  \right  \left  \left  \right  \left  \left  \left  \right  \left  \right  \left  \left  \left  \left  \right  \left  \left  \left  \left  \left  \left  \left  \right  \left  \left $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A ( $c \sim E$ )                 |
| 79.                       exp(m', l') = neg(exp(m, h))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55,28 =E                         |
| 80. $                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79 T13.56c                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77,80 ⊥I                         |
| 82. $                    \mathcal{P}_{l,l'}^{\kappa,\kappa}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 78-81 ∼E                         |
| 83. $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30,56-82 ∨E                      |
| $84. \left  \left  \right  \left  \right  \left  \right  \left  \right  \mathcal{P}_{l,l'}^{k,k'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53,54-83 (∃E)                    |
| 85. $                Q(m,n,l) \vee R(v,p,m,n,l)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A ( $g \ 29 \lor E$ )            |
| $86. \left  \left  \right  \right  \left  \right  \left  \right  \mathcal{P}_{l,l'}^{k,k'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | similarly                        |

| 87.        | S(v, p, m, n, l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A ( <i>g</i> 29∨E)                   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 88.        | $\left  \left  \left  \left  \left  \left  \left  \left  \left[ (\exists i < l)(\exists j < p)[Var(j) \land j = v \land exp(m, l) = uov(j, exp(m, i)) \land exp(n, l) = exp(m, l) \right] \right. \right  \right  \right  \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87 abv                               |
| 89.        | $               h < l \land u < p $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A ( $g$ 88 ( $\exists$ E))           |
| 90.<br>01  | $Var(u) \land u = v \land exp(m, i) = uw(u, exp(m, n)) \land exp(n, i) = exp(m, i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Lambda$ ( $\sigma$ 30)/E)          |
| 91.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $A(g_{50VE})$                        |
| 92.<br>93. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A $(g 92 (\exists E))$               |
| 94.        | $ \  \  \  \  \  \  \  \  \  \  \  \  \  \  \  \  \  \  \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |
| 95.        | $            h < len(m) \land h' < len(m')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27,89,93 T13.13b                     |
| 96.<br>07  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9,95 T13.491                         |
| 97.<br>98. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $A(g 97 \exists E)$                  |
| 99.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |
|            | $(\exists x \leq X)(\exists y \leq Y) \mathbb{F} subseq(x, y, exp(m', h'), v, mum(y), q')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 98 T13.51b                           |
| 100.       | $ \begin{bmatrix}   &   &   &   &   &   &   &   &   &  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A (g 99 (∃E))                        |
| 101.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28,90,94 = E<br>101.06.00.04 T12.52b |
| 102.       | $ \begin{array}{c} (1) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) \\ (2) $                                                                                                                                                         | 90,94,102 = E                        |
| 104.       | exp(n,l) = exp(n',l')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28,90,94 =E                          |
| 105.       | $ \begin{bmatrix}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100,90,103 T13.51i                   |
| 106.       | $ \begin{bmatrix}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105,90 = E                           |
| 107.       | $\mathbb{F}subseq(c * \overline{2}^{zaw(u', exp(m', n'))}, d * 2^{zaw(u', exp(m', n'))}, d * 2^{zaw(u', exp(m', n'))},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
| 100        | $\begin{bmatrix}   &   &   &   &   &   &   &   &   &   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100,94,103 113.511                   |
| 108.       | $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/,94 = E                           |
| 109.       | $ \begin{array}{c c c c c c c } \hline \                                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108,104 = E<br>106,109 = I           |
| 111        | $ \begin{vmatrix}   &   &   &   &   &   &   &   &   &  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100,100 110 (EE)                     |
| 111.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 99,100-110 (E)                       |
| 112.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97,98-111 <del>J</del> E             |
| 113.       | $\left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92,93-112 (∃E)                       |
| 114.       | $\left  \left  \left  \left  \left  \left  \right  \right  \right  \right  = O(w, \operatorname{mum}(z), m', n', l') \lor P(m', n', l') \lor Q(m', n', l') \lor R(w, p, m', n', l') \right  = O(w, \operatorname{mum}(z), m', n', l') \lor P(m', n', l') \lor Q(m', n', l') \lor R(w, p, m', n', l') \right  = O(w, \operatorname{mum}(z), m', n', l') \lor P(m', n', l') \lor Q(m', n', l') \lor R(w, p, m', n', l')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A ( <i>g</i> 30∨E)                   |
| 115.       | $\left  \begin{array}{c} \\ \\ \\ \\ \end{array} \right  \left  \begin{array}{c} \\ \\ \\ \\ \end{array} \right  \left  \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right  \mathcal{P}_{I,l'}^{\kappa,\kappa'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | as above                             |
| 116.       | $\left  \begin{array}{c} \\ \end{array} \right  \left  \begin{array}{c} \\ \end{array} \right  \left  \begin{array}{c} \\ \end{array} \right  \left  \begin{array}{c} \\ \\ \\ \end{array} \right  \left  \begin{array}{c} \\ \\ \end{array} \right  \left  \left  \left  \begin{array}{c} \\ \\ \end{array} \right  \left  \left  \left  \left  \begin{array}{c} \\ \\ \end{array} \right  \left  \left $ | 30,91-115 ∨E                         |
| 117.       | $  \   \   \   \   \   \   \ \mathcal{P}_{l,l'}^{k,k'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 88,89-116 (∃E)                       |
| 118.       | $          \mathcal{P}_{l,l'}^{k,k'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29,31-117 ∨E                         |
| 119.       | $len(exp(m,l)) \le Sx \to (exp(m,l) = exp(m',l') \to \mathcal{P}_{l,l'}^{k,k'})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28-118 →I                            |
| 120.       | $        (\forall k < len(m))(\forall k' < len(m'))[len(exp(m,k)) \le Sx \to (exp(m,k) = exp(m',k') \to \mathcal{P})]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27-119 (∀I)                          |
| 121.       | $(\forall k < len(m))(\forall k' < len(m'))[len(exp(m,k)) < x \rightarrow (exp(m,k) = exp(m',k') \rightarrow \mathcal{P})] \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |
|            | $(\forall k < len(m))(\forall k' < len(m'))[len(exp(m,k)) \le Sx \to (exp(m,k) = exp(m',k') \to \mathcal{P})]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $26-120 \rightarrow I$               |
| 122.       | $\forall x (\forall k < len(m)) (\forall k' < len(m')) [len(exp(m,k)) \le x \to (exp(m,k) = exp(m',k') \to \mathcal{P})]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25,121 IN                            |
| 123.       | $     len(m) - 1 < len(m) \land len(m') - 1 < len(m')$ $         len(m) - 1 < len(m) \land \overline{1} \rangle < len(m) \land \overline{1} \rangle = e^{k' k'}                                      $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 T13.231                           |
| 124.       | $\lim_{k \to \infty} (m, len(m) - 1) \leq len(p) \rightarrow (exp(m, len(m) - 1) - exp(m, len(m) - 1) \rightarrow J_{len(m)-\overline{1}, len(m')-\overline{1}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122,123 (VE)                         |
| 125.       | $\lim_{p \to \infty} \lim_{k \to \infty} (p) \to (p = p \to f_{len(m)}, -\overline{1}, len(m'), -\overline{1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124,10 =E                            |
| 126.       | $\int_{len(m)}^{p^{n+1}} \int_{len(m')} \frac{1}{-1} \int_{len(m')} \frac{1}{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 125 <b>=</b> 1,→E                    |
| 127.       | $\begin{bmatrix} \mathcal{P}^{n,n}\\ len(n)-\overline{1}, len(n')-\overline{1} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 126,14 = E                           |
| 128.       | $\begin{bmatrix} \exists q \exists a \exists b \exists c \exists d [ \mathbb{F} subseq(a, b, t, w, \operatorname{num}(z), q) \land \mathbb{F} subseq(c, d, t', v, \operatorname{num}(y), q) \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 127,13 = E<br>A (g 128 = F)          |
| 129.       | $\begin{bmatrix} 1 & \text{subseq}(a, b, t, w, \text{subseq}(a, y, t, y, t, w, \text{subseq}(a, y, t, y, t, w, \text{subseq}(a, y, t, y, t, w, t, y, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 129 T13 51i                          |
| 131.       | $\int \int formsub(t, w, num(z)) q \wedge formsub(t', v, num(y)) = q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 130,6,2 T13.56h                      |
| 132.       | $\int formsub(t, w, mum(z)) = formsub(t', v, mum(y))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 131 =E                               |
| 133.       | $\int \int formsub(formsub(p, v, num(y)), w, num(z)) = formsub(formsub(p, w, num(z)), v, num(y))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5,132 =E                             |
| 134.       | $ \int \int formsub(formsub(p, v, mum(y)), w, mum(z)) = formsub(formsub(p, w, mum(z)), v, mum(y)) $ $ Exercise 13.45, T13.58.d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 128,129-133 ∃E                       |
| 135.       | $\int formsub(formsub(p, v, \overline{mun}(y)), w, \overline{mun}(z)) = formsub(formsub(p, w, mun(z)), v, mun(y))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,8-134 (∃E)                         |
| 136.       | formsub(formsub(p, v, mum(y)), w, mum(z)) = formsub(formsub(p, w, mum(z)), v, mum(y))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,4-135 ∃E                           |
| 137.       | $[\mathbb{W}ff(p) \land v \neq w] \rightarrow formsub(formsub(p, v, \operatorname{mum}(y)), w, \operatorname{mum}(z)) = formsub(formsub(p, w, \operatorname{mum}(z)), v, \operatorname{mum}(y))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-136 →I                             |

- E13.47. Fill in the parts of T13.61 that are left as "similarly" to to show that PA  $\vdash \mathcal{P} \leftrightarrow \mathcal{P}^{\star}$ .
- T13.61. For any  $\Delta_0$  formula  $\mathcal{P}$  there is a  $\Sigma^*$  formula  $\mathcal{P}^*$  such that  $PA \vdash \mathcal{P} \leftrightarrow \mathcal{P}^*$ .  $\mathcal{P}^*$  is  $(\forall x < t)\mathcal{B}$ . Set  $\mathcal{P}^* = \exists z [(t = z)^* \land (\forall x \le z)((x \ne z)^* \rightarrow \mathcal{B}^*].$

| 1.  | $t = z \leftrightarrow (t = z)^{\star}$                                                            | T13.59                                                           |
|-----|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 2.  | $x \neq z \leftrightarrow (x \neq z)^{\star}$                                                      | $(\sim)$ case                                                    |
| 3.  | $\mathcal{B} \leftrightarrow \mathcal{B}^{\star}$                                                  | by assp                                                          |
| 4.  |                                                                                                    | $\mathbf{A}\left(g\leftrightarrow\mathbf{I}\right)$              |
| 5.  | $\exists z [(t=z)^{\star} \land (\forall x \le z) ((x \ne z)^{\star} \to \mathcal{B}^{\star}(x))]$ | 4 abv                                                            |
| 6.  | $\exists z[t = z \land (\forall x \le z)(x \ne z \to \mathcal{B}(x))]$                             | 5 with 1,2,3                                                     |
| 7.  | $t = a \land (\forall x \le a) (x \ne a \rightarrow \mathcal{B}(x))$                               | A ( $g$ 6 $\exists$ E)                                           |
| 8.  | l < t                                                                                              | A ( $g$ ( $\forall$ I)                                           |
| 9.  | t = a                                                                                              | 7 ∧E                                                             |
| 10. | $(\forall x \le a) (x \ne a \rightarrow \mathcal{B}(x))$                                           | 7 ∧E                                                             |
| 11. | $(\forall x \le t) (x \ne t \to \mathcal{B}(x))$                                                   | 10,9 <b>=</b> E                                                  |
| 12. | $ l  \leq t$                                                                                       | 8 T13.13m                                                        |
| 13. | $  l \neq t \to \mathcal{B}(l)$                                                                    | 11,12 (∀E)                                                       |
| 14. | $      l \neq t$                                                                                   | 8 T13.13s                                                        |
| 15. | $      \mathcal{B}(l)$                                                                             | $13,14 \rightarrow E$                                            |
| 16. | $(\forall x < t) \mathcal{B}(x)$                                                                   | 8-15 (∀I)                                                        |
| 17. | $(\forall x < t)\mathcal{B}(x)$                                                                    | 6,7-16 ∃E                                                        |
| 18. | $\mathscr{P}^*$                                                                                    | abv                                                              |
| 19. | P*                                                                                                 | $\mathbf{A}\left(\boldsymbol{g}\leftrightarrow\mathbf{I}\right)$ |
| 20. | $(\forall x < t)\mathcal{B}(x)$                                                                    | 19 abv                                                           |
| 21. | t = t                                                                                              | =I                                                               |
| 22. | $a \leq t$                                                                                         | A ( $g$ ( $\forall$ I))                                          |
| 23. | $a < t \lor a = t$                                                                                 | 22 T13.13m                                                       |
| 24. | a < t                                                                                              | A ( $g \ 23 \lor E$ )                                            |
| 25. | $\mathcal{B}(a)$                                                                                   | 20,24 (∀E)                                                       |
| 26. | $a = t \vee \mathcal{B}(a)$                                                                        | 25 ∨I                                                            |
| 27. | $a \neq t \to \mathcal{B}(a)$                                                                      | 26 Impl                                                          |
| 28. | a = t                                                                                              | A ( $g \ 23 \lor E$ )                                            |
| 29. | $   a = t \lor \mathcal{B}(a)$                                                                     | 28 ∨I                                                            |
| 30. | $a \neq t \to \mathcal{B}(a)$                                                                      | 29 Impl                                                          |
| 31. | $a \neq t \to \mathcal{B}(a)$                                                                      | 23,24-27,28-30 ∨E                                                |
| 32. | $(\forall x \le t)(x \ne t \to \mathcal{B}(x))$                                                    | 22-31 (∀I)                                                       |
| 33. | $t = t \land (\forall x \le t) (x \ne t \to \mathcal{B}(x))]$                                      | 21,32 ∧I                                                         |
| 34. | $\exists z[t = z \land (\forall x \le z)(x \ne z \rightarrow \mathcal{B}(x))]$                     | 33 ∃I                                                            |
| 35. | $\exists z[(t=z)^{\star} \land (\forall x \leq z)((x \neq z)^{\star} \to \mathcal{B}^{\star}(x))]$ | 34 with 1,2,3                                                    |
| 36. | $  \mathcal{P}^{\star}$                                                                            | 35 abv                                                           |
| 37. | $\mathcal{P}^{\star} \leftrightarrow \mathcal{P}^{\star}$                                          | 4-18,19-36 ↔I                                                    |

E13.49. Provide a demonstration for T13.65.

T13.65. For any i, PA  $\vdash sub_{i+1}(\overline{\ulcornerP}\urcorner, x_a, x_{y_1} \dots x_{y_n}) = sub_{i+1}(\overline{\ulcornerP}\urcorner, x_{y_1} \dots x_{y_i}, x_a, x_{y_{(i+1)}} \dots x_{y_n}).$ 

Exercise 13.49 T13.65

Preliminary: If  $PA \vdash Wff(p)$ , then  $PA \vdash formsub(formsub(p, gvar(\overline{a}), mum(x_a)), gvar(\overline{b}), mum(x_b)) = formsub(formsub(p, gvar(\overline{b}), mum(x_b)), gvar(\overline{a}), mum(x_a)).$ Suppose  $PA \vdash Wff(p)$ .

(i) Suppose  $\mathbf{a} = \mathbf{b}$ ; then trivially  $PA \vdash formsub(formsub(p, gvar(\overline{\mathbf{a}}), mum(x_{\mathbf{a}})), gvar(\overline{\mathbf{b}}), mum(x_{\mathbf{b}})) = formsub(formsub(p, gvar(\overline{\mathbf{b}}), mum(x_{\mathbf{b}})), gvar(\overline{\mathbf{a}}), mum(x_{\mathbf{a}})).$ 

(ii) Suppose  $a \neq b$ ; then by capture  $PA \vdash \overline{a} \neq \overline{b}$ ; so by T13.57g,  $PA \vdash gvar(\overline{a}) \neq gvar(\overline{b})$ ; so by T13.58d,  $PA \vdash formsub(formsub(p, gvar(\overline{a}), mum(x_a)), gvar(\overline{b}), mum(x_b)) = formsub(formsub(p, gvar(\overline{a}), mum(x_a)))$ .

In either case, then,  $PA \vdash formsub(formsub(p, gvar(\overline{a}), mum(x_a)), gvar(\overline{b}), mum(x_b)) = formsub(formsub(p, gvar(\overline{b}), mum(x_b)), gvar(\overline{a}), mum(x_a)).$ 

Basis:  $PA \vdash sub_1(\overline{\ulcornerP}\urcorner, x_a, x_{y_1} \dots x_{y_n}) = sub_1(\overline{\ulcornerP}\urcorner, x_a, x_{y_1} \dots x_{y_n}).$ Assp: For any i, PA  $\vdash \mathfrak{sub}_{i+1}(\overline{\ulcornerP}\urcorner, x_a, x_{y_1} \dots x_{y_n}) = \mathfrak{sub}_{i+1}(\overline{\ulcornerP}\urcorner, x_{y_1} \dots x_{y_i}, x_a, x_{y_{i+1}} \dots x_{y_n})$ Show: PA  $\vdash \mathfrak{sub}_{i+2}(\overline{\lceil \mathcal{P} \rceil}, x_{\mathsf{a}}, x_{\mathsf{v}_1} \dots x_{\mathsf{v}_n}) = \mathfrak{sub}_{i+2}(\overline{\lceil \mathcal{P} \rceil}, x_{\mathsf{v}_1} \dots x_{\mathsf{v}_{i+1}}, x_{\mathsf{a}}, x_{\mathsf{v}_{i+2}} \dots x_{\mathsf{v}_n})$ 1. Wff(sub<sub>i</sub>( $\overline{P}$ ,  $x_{y_1}$ ,  $x_{y_i}$ ,  $x_a$ ,  $x_{y_{i+1}}$ ,  $x_{y_n}$ )) T13.63 2.  $sub_{i+2}(\lceil \mathcal{P} \rceil, x_{y_1} \dots x_{y_{i+1}}, x_a, x_{y_{i+2}} \dots x_{y_n})$ 3.  $= formsub[sub_{i+1}(\lceil \mathcal{P} \rceil, x_{y_1} \dots x_{y_{i+1}}, x_a, x_{y_{i+2}} \dots x_{y_n}), gvar(\bar{a}), mum(x_a)]$ def  $4. = formsub[sub_i(\overline{P}, x_{y_1}, \dots, x_{y_i}, x_{y_{i+1}}, x_a, x_{y_{i+2}}, \dots, x_{y_n}), gvar(\overline{y}_{i+1}), mun(x_{y_{i+1}})), gvar(\overline{a}), mun(x_a)]$ def 5. =  $formsub[sub_i(\overline{\mathcal{P}}, x_{y_1}, \dots, x_{y_i}, x_a, x_{y_{i+1}}, \dots, x_{y_n}), gvar(\overline{y}_{i+1}), mum(x_{y_{i+1}})), gvar(\overline{a}), mum(x_a)]$ T13 64 6. =  $formsub[sub_i(\overline{P}^{\neg}, x_{y_1} \dots x_{y_i}, x_a, x_{y_{i+1}} \dots x_{y_n}), gvar(\overline{a}), mum(x_a)), gvar(\overline{y}_{i+1}), mum(x_{y_{i+1}})]$ 1,5 prelm 7. =  $formsub[formsub(sub_{i+1}(\overline{P}^{\neg}, x_{y_1} \dots x_{y_i}, x_a, x_{y_{i+1}} \dots x_{y_n}), gvar(\overline{y}_{i+1}), mun(x_{y_{i+1}})]$ def 8. =  $formsub[formsub(sub_{i+1}(\overline{\mathcal{P}}, x_a, x_{y_1} \dots x_{y_n})), gvar(\overline{y_{i+1}}), mum(x_{i+1})]$ assp 9. =  $sub_{i+2}(\overline{P}, x_a, x_{y_1} \dots x_{y_n})$ def

*Indet:* For any 
$$i$$
, PA  $\vdash \mathfrak{sub}_{i+1}(\overline{\ulcornerP}\urcorner, x_{a}, x_{y_{1}} \dots x_{y_{n}}) = \mathfrak{sub}_{i+1}(\overline{\ulcornerP}\urcorner, x_{y_{1}} \dots x_{y_{i}}, x_{a}, x_{y_{i+1}} \dots x_{y_{n}})$ 

E13.50. Provide a demonstration for T13.67

T13.67. If the variables of  $\vec{y}$  and  $\vec{z}$  are ordered by their subscripts and  $\vec{y}$  and  $\vec{z}$  are the same except that  $\vec{z}$  includes some variables not in  $\vec{y}$  (and so not free in  $\mathcal{P}$ ), then PA  $\vdash sub(\overline{\ulcornerP}\urcorner, \vec{y}) = sub(\overline{\ulcornerP}\urcorner, \vec{z})$ .

Suppose S(i.j) is as in the hint to T13.67.

Basis: 
$$PA \vdash sub_0(\ulcorner \mathcal{P} \urcorner, \vec{y}) = \ulcorner \mathcal{P} \urcorner = sub_0(\ulcorner \mathcal{P} \urcorner, \vec{z}).$$

Assp: For any *i*.*j* in the sequence,  $PA \vdash sub_i(\overline{\ulcornerP}, \vec{y}) = sub_j(\overline{\ulcornerP}, \vec{z})$ 

Show: For S(i,j) = k.l,  $PA \vdash sub_k(\overline{\mathcal{P}}, \vec{y}) = sub_l(\overline{\mathcal{P}}, \vec{z})$ . Either (i)  $y_{Si} = z_{Sj}$  or (ii)  $y_{Si} \neq z_{Sj}$ .

- (i)  $y_{Si} = z_{Sj}$  so that  $k \cdot l = Si \cdot Sj$ . Let  $a = y_{Si} = z_{Sj}$ .
  - 1.  $sub_{Si}(\overline{\lceil \mathcal{P}\rceil}, \vec{y}) = formsub(sub_i(\overline{\lceil \mathcal{P}\rceil}, \vec{y}), gvar(\bar{a}), mum(x_a))$ by def2.  $formsub(sub_i(\overline{\lceil \mathcal{P}\rceil}, \vec{y}), gvar(\bar{a}), mum(x_a)) = formsub(sub_j(\overline{\lceil \mathcal{P}\rceil}, \vec{z}), gvar(\bar{a}), mum(x_a))$ by assp3.  $formsub(sub_j(\overline{\lceil \mathcal{P}\rceil}, \vec{z}), gvar(\bar{a}), mum(x_a)) = sub_{Sj}(\overline{\lceil \mathcal{P}\rceil}, \vec{z})$ by def
  - 4.  $sub_{Si}(\overline{P}, \vec{y}) = sub_{Sj}(\overline{P}, \vec{z})$  1,2,3 =E

Exercise 13.50 T13.67

So PA  $\vdash sub_k(\overline{\lceil \mathcal{P} \rceil}, \vec{y}) = sub_l(\overline{\lceil \mathcal{P} \rceil}, \vec{z}).$ 

- (ii)  $y_{Si} \neq z_{Sj}$  so that k.l = i.Sj. Let  $a = z_{Sj}$ ; in this case,  $x_a$  is not in  $\vec{y}$  and so not free in  $\mathcal{P}$ .
  - 1.  $sub_{Sj}(\overline{\Gamma \mathcal{P}^{\neg}}, \vec{z}) = sub_j(\overline{\Gamma \mathcal{P}^{\neg}}, \vec{z})$  T13.66 2.  $sub_j(\overline{\Gamma \mathcal{P}^{\neg}}, \vec{z}) = sub_i(\overline{\Gamma \mathcal{P}^{\neg}}, \vec{y})$  by assp 3.  $sub_i(\overline{\Gamma \mathcal{P}^{\neg}}, \vec{y}) = sub_{Sj}(\overline{\Gamma \mathcal{P}^{\neg}}, \vec{z})$  1,2 =E So PA  $\vdash sub_k(\overline{\Gamma \mathcal{P}^{\neg}}, \vec{y}) = sub_l(\overline{\Gamma \mathcal{P}^{\neg}}, \vec{z}).$
- Indet: For any i.j in the sequence  $PA \vdash sub_i(\overline{\neg \mathcal{P} \neg}, \vec{y}) = sub_j(\overline{\neg \mathcal{P} \neg}, \vec{z})$ ; and  $PA \vdash sub_n(\overline{\neg \mathcal{P} \neg}, \vec{y}) = sub_m(\overline{\neg \mathcal{P} \neg}, \vec{z})$ .

## **Chapter Fourteen**

You are ready to do these on your own!
## **Bibliography**

- Benacerraf, P., and H. Putnam. *Philosophy of Mathematics: Selected Readings*. Cambridge: Cambridge University Press, 1983, 2nd edition.
- Bergmann, M., J. Moor, and J. Nelson. *The Logic Book*. New York: McGraw-Hill, 2004, 4th edition.
- Berto, Francesco. *There's Something About Gödel: The Complete Guide to the Incompleteness Theorem.* Oxford: Wiley-Blackwell, 2009.
- Black, Robert. "Proving Church's Thesis." *Philosophia Mathematica* 8 (2000): 244–258.
- Boolos, G., J. Burgess, and R. Jeffrey. *Computability and Logic*. Cambridge: Cambridge University Press, 2002, 4th edition.
- Boolos, George. *The Logic of Provability*. Cambridge: Cambridge University Press, 1993.
- Cederblom, J, and D Paulsen. *Critical Reasoning*. Belmont: Wadsworth, 2005, 6th edition.
- Church, Alonzo. "An Unsolvable Problem of Elementary Number Theory." *American Journal of Mathematics* 58 (1936): 345–363.
- Cooper, B. *Computability Theory*. Boca Raton: Chapman & Hall/CRC Mathematics, 2004.
- Dennett, Daniel, editor. *The Philosopher's Lexicon*. 1987. URL http://www.blackwellpublishing.com/lexicon/.
- Drake, F., and Singh D. *Intermediate Set Theory*. Chichester, England: John Wiley & Sons, 1996.

- Earman, J, and J. Norton. "Forever is a Day: Supertasks in Pitowsky and Malament-Hogarth Spacetimes." *Philosophy of Science* 60 (1993): 22–42.
- Earman, John. Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes. New York: Oxford University Press, 1995.
- Enderton, H. Elements of Set Theory. Boston: Academic Press, Inc., 1977.
- Feferman, et al., editors. *Gödel's Collected Works: Vol I.* New York: Oxford University Press, 1986.
- Fisher, A. *Formal Number Theory and Computability*. Oxford: Clarendon Press, 1982.
- George, A, and D. Velleman. *Philosophies of Mathematics*. Blackwell Publishers, 2002.
- Gödel, K. "On Formally Undecidable Propositions of *Principia Mathematica* and Related Systems I." In *Collected Works, Vol. I: Publications 1929-1936*, Oxford: Oxford University Press, 1986, 144–95.
- Gödel, Kurt. "Die Vollständigkeit der Axiome des Logischen Funktionenkalküls." Monatshefte für Mathematik und Physik 37 (1930): 349–360.
- von Heijenoort, editor. *From Frege to Gödel*. Cambridge: Harvard University Press, 1967.
- Henkin, Leon. "The Completeness of the First-Order Functional Calculus." *Journal* of Symbolic Logic 14 (1949): 159–166.
- . "A Problem Concerning Provability." *Journal of Symbolic Logic* 17 (1952): 160.
- Hodges, W. A Shorter Model Theory. Cambridge: Cambridge University Press, 1997.
- Hogarth, Mark. "Does General Relativity Allow an Observer To View an Eternity In a Finite Time?" *Foundations of Physics Letters* 173–181.
- Kolmogorov, and Uspenskii. "On the Definition of an Algorithm." American Mathematical Society Translations 29 (1963): 217–245.
- Kripke, Saul. Wittgenstein on Rules and Private Language: An Elementary Exposition. Cambridge, Mass.: Harvard University Press, 1982.

- Manzano, María. *Extensions of First Order Logic*. Cambridge: Cambridge University Press, 1996.
  - ———. *Model Theory*. Oxford: Clarendon Press, 1999.
- Marcus, and McEvoy. *An Historical Introduction to the Philosophy of Mathematics*. London: Bloomsbury Publishing, 2016.
- Mendelson, Elliott. *Introduction to Mathematical Logic*. New York: Chapman and Hall, 1997, 4th edition.
- Pietroski, Paul. "Logical Form." In *The Stanford Encyclopedia of Philosophy*, edited by Edward N. Zalta, 2009. Fall, 2009 edition. URL http://plato.stanford. edu/archives/fall2009/entries/logical-form/.
- Plantinga, Alvin. God, Freedom, and Evil. Grand Rapids: Eerdmans, 1977.
- Pohlers, W. Proof Theory. Berlin: Springer-Verlag, 1989.
- Priest, Graham. *Non-Classical Logics*. Cambridge: Cambridge University Press, 2001.
- Putnam, Hilary. *Reason, Truth and History*. Cambridge: Cambridge University Pres, 1981.
- Raatikainen, Panu. "Gödel's Incompleteness Theorems." In *The Stanford Encyclopedia of Philosophy*, edited by Edward N. Zalta, 2015. Spring 2015 edition. URL http://plato.stanford.edu/archives/spr2015/entries/goedel-incompleteness/.
- Robinson, R. "An Essentially Undecidable Axiom System." *Proceedings of the International Congress of Mathematics* 1 (1950): 729–730.
- Rosser, Barkley. "Extensions of Some Theorems of Gödel and Church." *Journal of Symbolic Logic* 1 (1936): 230–235.
- Rowling, J.K. *Harry Potter and the Prisoner of Azkaban*. New York: Scholastic Inc., 1999.
- Roy, Tony. "Natural Derivations for Priest, An Introduction to Non-Classical Logic." The Australasian Journal of Logic 47–192. URL http://ojs.victoria.ac. nz/ajl/article/view/1779.

Russell, B. "On Denoting." Mind 14.

- Shapiro, S. Foundations Without Foundationalism: A Case for Second Order Logic. Oxford: Clarendon Press, 1991.
  - *——. Thinking About Mathematics: The Philosophy of Mathematics.* Oxford: Oxford University Press, 2000.
  - ———. "Philosophy of Mathematics and Its Logic: Introduction." In *The Oxford Handbook of Philosophy of Mathematics and Logic*, edited by S. Shapiro, Oxford: Oxford University Press, 2005, 3–28.

Smith, Peter. "Squeezing Arguments." Analysis 71 (2011): 22-30.

——. An Introduction to Gödel's Theorems. Cambridge: Cambridge University Press, 2013a, second edition.

- Szabo, M., editor. *The Collected Papers of Gerhard Gentzen*. Amsterdam: North-Holland, 1969.
- Takeuti, G. Proof Theory. Amsterdam: North-Holland, 1975.
- Tourlakis, George. *Lectures in Logic and Set Theory, Volume I: Mathematical Logic*. Cambridge: Cambridge University Press, 2003.
- Turing, Alan. "On Computable Numbers, With an Application to the Entscheidungsproblem." Proceedings of the London Mathematical Society 42 (1936): 230– 265.
- Wang, Hao. "The axiomatization of Arithmetic." *Journal of Symbolic Logic* 22 (1957): 145–158.

## Index

expressive completeness, 428