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Preface

There is, I think, a gap between what many students learn in their first course in
formal logic, and what they are expected to know for their second. While courses
in mathematical logic with metalogical components often cast only the barest glance
at mathematical induction or even the very idea of reasoning from definitions, a first
course may also leave these untreated, and fail explicitly to lay down the definitions
upon which the second course is based. The aim of this text is to integrate material
from these courses and, in particular, to make serious mathematical logic accessible
to students I teach. The first parts introduce classical symbolic logic as appropriate
for beginning students; the last parts build to Godel’s adequacy and incompleteness
results. A distinctive feature of the last section is a complete development of Godel’s
second incompleteness theorem.

Accessibility, in this case, includes components which serve to locate this text
among others: First, assumptions about background knowledge are minimal. I do
not assume particular content about computer science, or about mathematics much
beyond high school algebra. Officially, everything is introduced from the ground up.
No doubt, the material requires a certain sophistication — which one might acquire
from other courses in critical reasoning, mathematics or computer science. But the
requirement does not extend to particular contents from any of these areas.

Second, I aim to build skills, and to keep conceptual distance for different ap-
plications of ‘so’ relatively short. Authors of books that are completely correct and
precise may assume skills and require readers to recognize connections not fully ex-
plicit. It may be that this accounts for some of the reputed difficulty of the material.
The results are often elegant. But this can exclude a class of students capable of
grasping and benefiting from the material, if only it is adequately explained. Thus I
attempt explanations and examples to put the student at every stage in a position to
understand the next. In some cases, I attempt this by introducing relatively concrete
methods for reasoning. The methods are, no doubt, tedious or unnecessary for the
experienced logician. However, I have found that they are valued by students, inso-
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far as students are presented with an occasion for success. These methods are not
meant to wash over or substitute for understanding details, but rather to expose and
clarify them. Clarity, beauty and power come, I think, by getting at details, rather
than burying or ignoring them.

Third, the discussion is ruthlessly directed at core results. Results may be ren-
dered inaccessible to students, who have many constraints on their time and sched-
ules, simply because the results would come up in, say, a second course rather than
a first. My idea is to exclude side topics and problems, and to go directly after (what
I see as) the core. One manifestation is the way definitions and results from earlier
sections feed into ones that follow. Thus simple integration is a benefit. Another is
the way predicate logic with identity is introduced as a whole in Part I. Though it
is possible to isolate sentential logic from the first parts of chapter 2 through chap-
ter 7, and so to use the text for separate treatments of sentential and predicate logic,
the guiding idea is to avoid repetition that would be associated with independent
treatments for sentential logic, or perhaps monadic predicate logic, the full predicate
logic, and predicate logic with identity.

Also (though it may suggest I am not so ruthless about extraneous material as
I would like to think), I try to offer some perspective about what is accomplished
along the way. In addition, this text may be of particular interest to those who have,
or desire, an exposure to natural deduction in formal logic. In this case, accessibility
arises from the nature of the system, and association with what has come before.
In the first part, I introduce both axiomatic and natural derivation systems; and in
Part I1I, show how they are related.

There are different ways to organize a course around this text. For students who
are likely to complete the whole, the ideal is to proceed sequentially through the text
from beginning to end (but postponing chapter 3 until after chapter 6). Taken as
wholes, Part II depends on Part I; Parts III and IV on Parts I and II. Part IV is mostly
independent of Part III. I am currently working within a sequence that isolates sen-
tential logic from quantificational logic, treating them in separate quarters, together
covering all of chapters 1 - 7 (except 3). A third course picks up leftover chapters
from the first two parts (3 and 8) with Part III; and a fourth the leftover chapters
from the first parts with Part IV. Perhaps not the most efficient arrangement, but the
best I have been able to do with shifting student populations. Other organizations are
possible!

A remark about chapter 7 especially for the instructor: By a formal system for
reasoning with semantic definitions, chapter 7 aims to leverage derivation skills from
earlier chapters to informal reasoning with definitions. I have had a difficult time
convincing instructors to try this material — and even been told flatly that these
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skills “cannot be taught.” In my experience, this is false (and when I have been able
to convince others to try the chapter, they have quickly seen its value). Perhaps the
difficulty is that it is “weird” — none of us had anything like this when we learned
logic. Of course, if one is presented with students whose mathematical sophistication
is sufficient for advanced work, the material is not necessary. But if, as is often the
case especially for students in philosophy, one obtains one’s mathematical sophis-
tication from courses in logic, this chapter is an important part of the bridge from
earlier material to later. Additionally, the chapter is an important “take-away” even
for students who will not continue to later material. The chapter closes an open ques-
tion from chapter 4 — how it is possible to demonstrate quantificational validity. But
further, the ability to reason closely with definitions is a skill from which students
in (sentential or) predicate logic, even though they never go on to formalize another
sentence or do another derivation, will benefit both in philosophy and more generally.

Another remark about the (long) sections 13.3, 13.4 and 13.5. These develop
in PA the “derivability conditions” for Godel’s second theorem. They are perhaps
for enthusiasts. Still, in my experience many students are enthusiasts and, especially
from an introduction, benefit by seeing how the conditions are derived. There are
different ways to treat the sections. One might work through them in some detail.
One might wave at results individually. And even for the short shrift often accorded
the derivability conditions, there is an advantage having a sort of panorama at which
one can point and say “thus it is accomplished!”

Naturally, results in this book are not innovative. If there is anything original,
it is in presentation. Even here, I am greatly indebted to others, especially perhaps
Bergmann, Moor and Nelson, 7he Logic Book, Mendelson, Introduction to Math-
ematical Logic, and Smith, An Introduction to Godel’s Theorems. 1 thank my first
logic teacher, G.J. Mattey, who communicated to me his love for the material. And I
thank especially my colleagues John Mumma and Darcy Otto for many helpful com-
ments. Hannah Baehr and Catlin Andrade made comments and produced answers to
exercises for certain parts. In addition I have received helpful feedback from Steve
Johnson, along with students in different logic classes at CSUSB. I welcome com-
ments, and expect that your sufferings will make it better still.

This text evolved over a number of years starting modestly from notes originally
provided as a supplement to other texts. It is now long (!) and perhaps best conceived
in separate volumes for Parts I and II and then Parts III and IV. With the addition of
Part IV it is complete for the first time in this version. (But chapter 11, which I
rarely get to in teaching, remains a stub that could be developed in different direc-
tions.) Most of the text is reasonably stable, though I shall be surprised if I have not
introduced errors in the last part both substantive and otherwise.
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I think this is fascinating material, and consider it great reward when students
respond “cool!” as they sometimes do. I hope you will have that response more than
once along the way.

T.R.
Winter 2017
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Introductory

In Part I we introduced four notions of validity. In this part, we set out to show that
they are interrelated as follows.

Validity in AD
Logical Semantic /
Validity Validity \

Validity in ND

An argument is semantically valid iff it is valid in the derivation systems. So the
three formal notions apply to exactly the same arguments. And if an argument is
semantically valid, then it is logically valid. So any of the formal notions imply
logical validity for a corresponding ordinary argument.

More carefully, in Part I, we introduced four main notions of validity. There
are logical validity from chapter 1, semantic validity from chapter 4, and syntactic
validity in the derivation systems AD, from chapter 3 and ND from chapter 6. We
turn in this part to the task of thinking about these notions, and especially about
how they are related. The primary resultis that I' F P iff I' I, P iff I' &, &
(ff I' k. #). Thus our different formal notions of validity are met by just the
same arguments, and the derivation systems — themselves defined in terms of form
are “faithful” to the semantic notion: what is derivable is neither more nor less than
what is semantically valid. And this is just right: If what is derivable were more
than what is semantically valid, derivations could lead us from true premises to false
conclusions; if it were less, not all semantically valid arguments could be identified as
such by derivations. That the derivable is no more than what is semantically valid, is
known as soundness of a derivation system; that it is no less is adequacy. In addition,
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PARTIII. CLASSICAL METALOGIC 428

we show that if an argument is semantically valid, then a corresponding ordinary
argument is logically valid. Given the equivalence between the formal notions of
validity, it follows that if an argument is valid in any of the formal senses, then it
is logically valid. This connects the formal machinery to the notion of validity with
which we began.’

We begin in chapter 9 showing that just the same arguments are valid in the
derivation systems ND and AD. This puts us in a position to demonstrate in chapter 10
the core result that the derivation systems are both sound and adequate. Chapter
chapter 11 fills out this core picture in different directions.

2Adequacy is commonly described as completeness. However, this only invites confusion with
theory completeness as described in Part I'V.



Chapter 9

Preliminary Results

We have said that the aim of this part is to establish the following relations: An
argument is semantically valid iff it is valid in AD; iff it is valid in ND; and if an
argument is semantically valid, then it is logically valid.

Validity Validity

Validity in AD
Logical Semantic /

Validity in ND

In this chapter, we begin to develop these relations, taking up some of the simpler
cases. We consider the leftmost horizontal arrow, and the rightmost vertical ones.
Thus we show that quantificational (semantic) validity implies logical validity, that
validity in AD implies validity in ND, and that validity in ND implies validity in AD
(and similarly for ND+). Implications between semantic validity and the syntactical
notions will wait for chapter 10.

9.1 Semantic Validity Implies Logical Validity

Logical validity is defined for arguments in ordinary language. From LV, an argu-
ment is logically valid iff there is no consistent sfory in which all the premises are
true and the conclusion is false. Quantificational validity is defined for arguments in
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a formal language. From QV, an argument is quantificationally valid iff there is no
interpretation on which all the premises are true and the conclusion is not. So our
task is to show how facts about formal expressions and interpretations connect with
ordinary expressions and stories. In particular, where $; ... %, /@ is an ordinary-
language argument, and P; ... %, @ are the formulas of a good translation, we
show that if 2 ..., F @], then the ordinary argument £ ... %, /@ is logically
valid. The reasoning itself is straightforward. We will spend a bit more time dis-
cussing the result.

Recall our criterion of goodness for translation CG from chapter 5 (p. 141).
When we identify an interpretation function Il (sentential or quantificational), we
thereby identify an intended interpretation |l corresponding to any way w that the
world can be. For example, corresponding to the interpretation function,

Il B: Bill is happy
H: Hill is happy

llp[B] = T just in case Bill is happy at w, and similarly for H. Given this, a formal
translation A’ of some ordinary # is good only if at any w, ll,[4] has the same truth
value as #4 at w. Given this, we can show,

T9.1. For any ordinary argument £ ... #, /@, with good translation consisting of
land P{ ... 2, Q@ if P{...P, F @, then P ... P,/Q is logically valid.

Suppose P; ... P, E @ but P;...5P,/@ is not logically valid. From the
latter, by LV, there is some consistent story where each of ;... %, is true
but @ is false. Since &P ... P, are true at w, by CG, Ilw[?l’] =T,and...and
ll,[P;] = T. And since w is consistent with @ false at w, @ is not both true
and false at @; so @ is not true at w; so by by CG, ll,[@]] # T. So there is
an | that that makes each of I[{] = T, and ...and I[#;] = T and I[@'] # T;
so by QV, /... %, ¥ @. This is impossible; reject the assumption: if
Pi... P, E Q@ then P; ... P,/Q is logically valid.

It is that easy. If there is no interpretation where P ... %, are true but @’ is not, then
there is no intended interpretation where P; ... $;, are true but @’ is not; so, by CG,
there is no consistent story where the premises are true and the conclusion is not; so
Pi...Pn/Q,is logically valid. Soif £{ ... P, F @' then ;... P,/Q is logically
valid.

Let us make a couple of observations: First, CG is stronger than is actually re-
quired for our application of semantic to logical validity. CG requires a biconditional
for good translation.
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o 2 ly

A is true at w iff ll,[4A’] = T. But our reasoning applies to premises just the left-
to-right portion of this condition: if & is true at @ then ll,[P’] = T. And for the
conclusion, the reasoning goes in the opposite direction: if ll,[@'] = T then @ is
true at w (so that if the consequent fails at w, then the antecedent fails at ll,). The
biconditional from CG guarantees both. But, strictly, for premises, all we need is
that truth of an ordinary expression at a story guarantees truth for the corresponding
formal one at the intended interpretation. And for a conclusion, all we need is that
truth of the formal expression on the intended interpretation guarantees truth of the
corresponding ordinary expression at the story.

Thus we might use our methods to identify logical validity even where transla-
tions are less than completely good. Consider, for example, the following argument.

(A Bob took a shower and got dressed
Bob took a shower

As discussed in chapter 5 (p. 160), where 1l gives S the same value as “Bob took a
shower” and D the same as “Bob got dressed,” we might agree that there are cases
where 11, [S A D] = T but “Bob took a shower and got dressed” is false. So we might
agree that the right-to-left conditional is false, and the translation is not good.

However, even if this is so, given our interpretation function, there is no situation
where “Bob took a shower and got dressed” is true but S A D is F at the corresponding
intended interpretation. So the left-to-right conditional is sustained. So, even if the
translation is not good by CG, it remains possible to use our methods to demonstrate
logical validity. Since it remains that if the ordinary premise is true at a story, then
the formal expression is true at the corresponding intended interpretation, semantic
validity implies logical validity. A similar point applies to conclusions. Of course,
we already knew that this argument is logically valid. But the point applies to more
complex arguments as well.

Second, observe that our reasoning does not work in reverse. It might be that
P1...Pn/Q is logically valid, even though | ... P, ¥ @'. Finding a quantifica-
tional interpretation where #; ... P, are true and @' is not shows that | ... P, ¥
@’. However it does not show that £ ... %, /@ is not logically valid. Here is why:
There may be quantificational interpretations which do not correspond to any consis-
tent story. The situation is like this:
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Quantificational
Interpretations

Intended
Interpretations

Intended interpretations correspond to stories. If no interpretation whatsoever has
the premises true and the conclusion not, then no intended interpretation has the
premises true and conclusion not, so no consistent story makes the premises true and
the conclusion not. But it may be that some (unintended) interpretation makes the
premises true and conclusion false, even though no intended interpretation is that
way. Thus, if we were to attempt to run the above reasoning in reverse, a move from
the assumption that ] ... P, ¥ @', to the conclusion that there is a consistent story
where P ... 5, are true but @ is not, would fail.

It is easy to see why there might be unintended interpretations. Consider, first,
this standard argument.

All humans are mortal
(B) Socrates is human
Socrates is mortal

It is logically valid. But consider what happens when we translate into a sentential
language. We might try an interpretation function as follows.

A: All humans are mortal
H: Socrates is human

M : Socrates is mortal

with translation, A, H/M . But, of course, there is a row of the truth table on which 4
and H are T and M is F. So the argument is not sententially valid. This interpretation
is unintended in the sense that it corresponds to no consistent story whatsoever. Sen-
tential languages are sufficient to identify validity when validity results from truth
functional structure; but this argument is not valid because of truth functional struc-
ture.

We are in a position to expose its validity only in the quantificational case. Thus
we might have,
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s: Socrates
H': {o]o0is human}
M?: {o]|ois mortal}

with translation Vx(Hx — M x), Hs/M s. The argument is quantificationally valid.
And, as above, it follows that the ordinary one is logically valid.

But related problems may arise even for quantificational languages. Thus, con-
sider,
©) Socrates is necessarily human
Socrates is human
Again, the argument is logically valid. But now we end up with something like an ad-
ditional relation symbol N ! for {o| o is necessarily human}, and translation Ns/H's.
And this is not quantificationally valid. Consider, for example, an interpretation with
U = {1}, I[s] = 1, I[N] = {1}, and I[H] = {}. Then the premise is true, but
the conclusion is not. Again, the interpretation corresponds to no consistent story.
And, again, the argument includes structure that our quantificational language fails
to capture. As it turns out, modal logic is precisely an attempt to work with structure
introduced by notions of possibility and necessity. Where ‘0’ represents necessity,
this argument, with translation O H s/ H s is valid on standard modal systems.

The upshot of this discussion is that our methods are adequate when they work
to identify validity. When an argument is semantically valid, we can be sure that it
is logically valid. But we are not in a position to identify all the arguments that are
logically valid. Thus quantificational invalidity does not imply logical invalidity. We
should not be discouraged by this or somehow put off the logical project. Rather, we
have a rationale for expanding the logical project! In Part I, we set up formal logic as
a “tool” or “machine” to identify logical validity. Beginning with the notion of log-
ical validity, we introduce our formal languages, learn to translate into them, and to
manipulate arguments by semantical and syntactical methods. The sentential notions
have some utility. But when it turns out that sentential languages miss important
structure, we expand the language to include quantificational structure, developing
the semantical and syntactical methods to match. And similarly, if our quantifica-
tional languages should turn out to miss important structure, we expand the language
to capture that structure, and further develop the semantical and syntactical methods.
As it happens, the classical quantificational logic we have so far seen is sufficient to
identify validity in a wide variety of contexts — and, in particular, for arguments in
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mathematics. Also, controversy may be introduced as one expands beyond the clas-
sical quantificational level. So the logical project is a live one. But let us return to
the kinds of validity we have already seen.

E9.1. (i) Recast the above reasoning to show directly a corollary to T9.1: If F @',
then @ is necessarily true (that is, true in any consistent story). (ii) Suppose ¥
@’; does it follow that @ is not necessary (that is, not true in some consistent
story)? Explain.

9.2 Validity in AD Implies Validity in ND

It is easy to see that if I" I, &, then I" ,, &#. Roughly, anything we can ac-
complish in AD, we can accomplish in ND as well. If a premise appears in an AD
derivation, that same premise can be used in ND. If an axiom appears in an AD deriva-
tion, that axiom can be derived in ND. And if a line is justified by MP or Gen in AD,
that same line may be justified by rules of ND. So anything that can be derived in AD
can be derived in ND. Officially, this reasoning is by induction on the line numbers
of an AD derivation, and it is appropriate to work out the details more formally. The
argument by mathematical induction is longer than anything we have seen so far, but
the reasoning is straightforward.

T9.2. If T F,, #.then Tk, 2.

Suppose I" I,,, . Then there is an AD derivation A = (@1 ...@,) of
from premises in I', with @,, = 5. We show that there is a corresponding ND
derivation N, such that if @; appears on line i of A4, then @; appears, under
the scope of the premises alone, on the line numbered ‘i’ of N. It follows
that I' b, &. For any premises @4, @p,...@; in A, let N begin,

0.a| @, P
0.b| @ P
0j|@; P

Now we reason by induction on the line numbers in A. The general plan is
to construct a derivation N which accomplishes just what is accomplished in
A. Fractional line numbers, as above, maintain the parallel between the two
derivations.
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Basis: @jin A is a premise or an instance of Al, A2, A3, A4, A5, A6, A7 or
AS.

(prem) If @; is a premise €;, continue N as follows,

0.a|Q, P
0.b| @, P
0j|@; P

1] @; 0.iR

So @, appears, under the scope of the premises alone, on the line
numbered ‘1’ of V.

(A1) If @; is an instance of A1, then it is of the form, 8 — (€ — B), and
we continue N as follows,

0.a| @, P

0.b| @, P

0j|@; P

1.1] | 8 A(g,—D)

1.2 € A (g, —D)

1.3 B I.IR

14| | e > B 1.2-13 -1
1|8 — (€ - B) 1.1-1.4 -1

So @, appears, under the scope of the premises alone, on the line
numbered ‘1’ of N.

(A2) If @, is an instance of A2, then it is of the form, (8 — (€ — D)) —
(B > €) > (B — D)) and we continue N as follows,
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0.a| Q. P

0.b| @, P

0j|@; P

1.1 — (€ > D) A(g, —D

1.2 B¢ A(g, =D

1.3 B A(g,—D)

1.4 e 12,13 >E

1.5 €—->9D 1.1,1.3 -E

1.6 D 1.5,1.4 —E

1.7 B—->D 1.3-1.6 —1

18] | (B—>€)—> (B — D) 1.2-1.7 -1
1/(B>(€—>D)—>(B>C)—(B—>D) 11181

So @; appears, under the scope of the premises alone, on the line
numbered ‘1’ of N.

(A3) Homework.

(A4) If @; is an instance of A4, then it is of the form Vx8 — B} for some
variable x and term # that is free for x in B, and we continue N as

follows,
0.a| @, P
0b| @, P
0j|Q; P
1.1 | Vx8 A(g,—D
12| | 8% 1.1 VE
1|Vx8B — BF 1.1-1.2 -1

Since we are given that 7 is free for x in 8, the parallel requirement on
VE is met at line 1.2. So @, appears, under the scope of the premises
alone, on the line numbered ‘1’ of V.

(AS5) Homework.

(A6) Homework.

(A7) If @ is an instance of A7, then it is of the form (x; = ¥) —
A"x1... %5 ...xn = A"x1 ...y ...xp) for some variables x1 ... x,
and ¥ and function symbol 4”; and we continue N as follows,
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(A8)
Assp:

Show:

(MP)

0.a| Q. P

0.b| @, P

0j|@; P

L1 |x =y Ag,—D

121 A%y ...xj . % =A% ... % ... xXn =I

13| [ A"x1. . % ...xp =A"x1 ...y ... xp 1.2,1.1 =E
I(xi=y)—> A% ... x5 ...xn =A"x1 ...y ... xp) 1.1-1.3 —>I

So @, appears, under the scope of the premises alone, on the line
numbered ‘1’ of N.

Homework.

Forany i, 1 <i < k, if @; appears on line i of 4, then &; appears,
under the scope of the premises alone, on the line numbered ‘i’ of N.
If @, appears on line k of A, then @ appears, under the scope of the
premises alone, on the line numbered ‘k” of N.

@y in A is a premise, an axiom, or arises from previous lines by MP
or Gen. If @ is a premise or an axiom then, by reasoning as in the
basis (with line numbers adjusted to k.n) if @ appears on line k of
A, then @, appears, under the scope of the premises alone, on the line
numbered ‘k’ of A. So suppose @, arises by MP or Gen.

If @y, arises from previous lines by MP, then A is as follows,
i B

j B->FC€

k e i,j MP

where i, j < k and @y, is €. By assumption, then, there are lines in
N3

i|B
j|B8B—>€

So we simply continue derivation N,
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(Gen)

i|3B

j|B—-t€

kle i,j >E
So @ appears under the scope of the premises alone, on the line num-
bered ‘k’ of N.

If @, arises from previous lines by Gen, then A is as follows,

i B

k Vx8B i Gen
where i < k, and @ is VxB. By assumption N has a line 7,

under the scope of the premises alone. So we continue N as follows,

il B

k|Vx8B i VI

Since 7 is under the scope of the premises alone, x is not free in an
undischarged assumption. Further, since there is no change of vari-
ables, we can be sure that x is free for every free instance of x in B,
and that x is not free in YxB. So the restrictions are met on V1. So @,
appears under the scope of the premises alone, on the line numbered
‘k’ of N.

In any case then, @ appears under the scope of the premises alone,
on the line numbered ‘k’ of N.

Indct:

For any line j of A, @ ; appears under the scope of the premises alone,
on the line numbered ‘j’ of N.

SoI' |, @, where thisisjusttosay I' 5, #. SoT9.2,if " ,,, P, thenT k,, &.
Notice the way we use line numbers, i.1,i.2,...7i.n,7 in N to make good on the claim
that for each @; in A, @; appears on the line numbered ‘i’ of N — where the line
numbered ‘i’ may or may not be the i th line of N. We need this parallel between the
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line numbers when it comes to cases for MP and Gen. With the parallel, we are in a
position to make use of line numbers from justifications in derivation A4, directly in
the specification of derivation N.

Given an AD derivation, what we have done shows that there exists an ND deriva-
tion, by showing how to construct it. We can see into how this works, by considering
an application. Thus, for example, consider the derivation of T3.2 on p. 75.

1. B3—>%¢€ prem

2. (B—>C) > [A—>(B—0Y)] Al

3. A—>(B—->Y) 1,2 MP
D) 4 A= (B—->C)]—=[(A—> B)— (A—0) A2

5. (A —> B) > (A—>F) 3,4 MP

6. A—> B prem

7. A—>TC 5,6 MP

Let this be derivation A; we will follow the method of our induction to construct a
corresponding ND derivation N. The first step is to list the premises.

01/ 8—>°¢€ P
02| A— B P

Now to the induction itself. The first line of A is a premise. Looking back to the basis
case of the induction, we see that we are instructed to produce the line numbered ‘1’
by reiteration. So that is what we do.

01 8—~>°¢€ P
02| A— B P
11 8—->¢ 0.I1R

This may strike you as somewhat pointless! But, again, we need 8 — € on the line
numbered ‘1’ in order to maintain the parallel between the derivations. So our recipe
requires this simple step.

Line 2 of A is an instance of A1, and the induction therefore tells us to get it “by
reasoning as in the basis.” Looking then to the case for Al in the basis, we continue
on that pattern as follows,

01|8—>°¢€ P

02| A— B P
1|8—~>%¢ 0.IR

21| |8—>¢€ A (g, =D

22 A A (g, —D

2.3 B—->€ 2.1R

24| | A= (B0 2223 I
2|(B—->€) > (A—>(B—>Y)) 2.1-24 =1
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Notice that this reasoning for the show step now applies to line 2, so that the line
numbers are 2.1, 2.2, 2.3, 2.4, 2 instead of 1.1, 1.2, 1.3, 1.4, 1 as for the basis. Also,
what we have added follows exactly the pattern from the recipe in the induction,
given the relevant instance of Al.

Line 3 is justified by 1,2 MP. Again, by the recipe from the induction, we con-
tinue,

01|8—>°¢ P

02| A—> B P
1| 8—>%¢ 0.IR

21| |8—>¢€ Ag, =D

2.2 A A (g, =0

2.3 B—>€ 2.1R

24| |A—> (B —YC) 2223 -1
2|(B—>€) > (A—>(B—Y)) 2.1-2.4 -1
3/ A—>(B—->Y) 1,2 -E

Notice that the line numbers of the justification are identical to those in the justifica-
tion from A. And similarly, we are in a position to generate each line in A. Thus, for
example, line 4 of A is an instance of A2. So we would continue with lines 4.1-4.8
and 4 to generate the appropriate instance of A2. And so forth. As it turns out, the
resultant ND derivation is not very efficient! But it is a derivation, and our point is
merely to show that some ND derivation of the same result exists. Soif I' I, £,
then I" H,, 7.

*E9.2. Set up the above induction for T9.2, and complete the unfinished cases to
show that if I I, &, then I I, #. For cases completed in the text, you
may simply refer to the text, as the text refers cases to homework.

E9.3. (i) Where A is the derivation for T3.2, complete the process of finding the
corresponding derivation N. Hint: if you follow the recipe correctly, the
result should have exactly 21 lines. (ii) This derivation N is not very efficient!
See if you can find an ND derivation to show A — B, 8 — €, A - €
that takes fewer than 10 lines.

E9.4. Consider the axiomatic system A3 as described for E8.12 on p. 398, and
produce a complete demonstration that if I' =, &, then I 5, &.
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9.3 Validity in ND Implies Validity in AD

Perhaps the result we have just attained is obvious: if I' I, &, then of course
I' ,, &. But the other direction may be less obvious. Insofar as AD may seem
to have fewer resources than ND, one might wonder whether it is the case that if
I' by P, then T =, 2. But, in fact, it is possible to do in AD whatever can be
done in ND. To show this, we need a couple of preliminary results. I begin with an
important result known as the deduction theorem, turn to some substitution theorems,
and finally to the intended result that whatever is provable in ND is provable in AD.

9.3.1 Deduction Theorem

According to the deduction theorem — subject to an important restriction — if there
is an AD derivation of @ from the members of some set of sentences A plus &, then
there is an AD derivation of > — @ from the members of A alone: if AU{P} I, @
then A I=,,, # — @. In practice, this lets us reason just as we do with —1.

members of A

a.| | P
(E) %

b.||@

c.|P—>a@ a-b deduction theorem
At (b), there is a derivation of @ from the mbembers of A plus . At (c), the
assumption is discharged to indicate a derivation of » — @ from the members of A
alone. By the deduction theorem, if there is a derivation of @ from A plus &, then
there is a derivation of #» — @ from A alone. Here is the restriction: The discharge
of an auxiliary assumption & is legitimate just in case no application of Gen under its
scope generalizes on a variable free in &°. The effect is like that of the ND restriction
on VI — here, though, the restriction is not on Gen, but rather on the discharge of
auxiliary assumptions. In the one case, an assumption available for discharge is one
such that no application of Gen under its scope is to a variable free in the assumption;
in the other, we cannot apply VI to a variable free in an undischarged assumption (so
that, effectively, every assumption is always available for discharge).

Again, our strategy is to show that given one derivation, it is possible to construct
another. In this case, we begin with an AD derivation (A) as below, with premises
A U {P}. Treating & as an auxiliary premise, with scope as indicated in (B), we set
out to show that there is an AD derivation (C), with premises in A alone, and lines
numbered ‘1°, 2°, ...corresponding to 1, 2, ...in (A).
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A 1. @ B) 1. @ © 1. P—@

2. @, 2. @ 2. P> @,

F f P P p
n. @, n (Qn n. P — Qy

That is, we construct a derivation with premises in A such that for any formula 4
on line i of the first derivation,  — < appears on the line numbered ‘i’ of the
constructed derivation. The last line n of the resultant derivation is the desired result,
AbE, P — Q.

T9.3. (Deduction Theorem) If A U {#} |,,, @, and no application of Gen under
the scope of J is to a variable free in &, then A I,  — Q.

Suppose A = (@1,Q5,...&,) is an AD derivation of @ from A U {&},
where @ is @, and no application of Gen under the scope of J is to a variable
free in J°. By induction on the line numbers in derivation A, we show there
is a derivation C with premises only in A, such that for any line i of A,
P — @; appears on the line numbered ‘i’ of C. The case wheni = n gives
the desired result, that A F,, # — Q.

Basis: @7 of A is an axiom, a member of A, or & itself.

(i) If @, is an axiom or a member of A, then begin C as follows,

1.1 @ axiom / premise
12 @1 - (P —> Q1) Al
1 P—-@ 1.1, 1.2 MP

(ii) @ is P itself. By T3.1, I, # — #; whichis to say P — @; so
begin derivation C,

1 - & T3.1

In either case,  — @ appears on the line numberd ‘1’ of C with
premises in A alone.

Assp: Forany i, 1 <i < k, # — @; appears on the line numbered ‘i’ of
C, with premises in A alone.

Show: P — @ appears on the line numbered ‘k’ of C, with premises in A
alone.
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@} of Ais amember of A, an axiom, & itself, or arises from previous
lines by MP or Gen. If @ is a member of A, an axiom or J itself then,
by reasoning as in the basis, > — @ appears on the line numbered
‘k’ of C from premises in A alone. So two cases remain.

If @ arises from previous lines by MP, then there are lines in deriva-
tion A of the sort,

i B
j B—=>¢€

k€ i,j MP
where i,j < k and @, is €. By assumption, there are lines in C,

i > 8B

i P> (B0
So continue derivation C as follows,

i P> 8B

j P> (B9

kl [P>(B—->C)] - [(P—>B)—> (P —0) A2
k2 (P > B) > (P >0 j, k.1 MP
k ¢ i, k.2 MP

So # — @y appears on the line numbered ‘k’ of C, with premises in
A alone.

If @ arises from a previous line by Gen, then there are lines in deriva-
tion A of the sort,

i B
k Vx8B

where i < k and @ is VxB. Either line k is under the scope of & in
derivation A or not.
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@

(i)

Indct:

If line k is not under the scope of &, then VxB in A follows from A
alone. So continue C as follows,

k.l @ exactly as in A but with prefix
k2 @, ‘k.” for numeric references
kk Vx8B
kk+l VxB — (£ — VxB) Al
k # > Vx8B k.k+1, kk MP

Since each of the lines in 4 up to k is derived from A alone, we have
P — @y on the line numbered k’ of C, from premises in A alone.
If line k is under the scope of &, we depend on the assumption, and
continue C as follows,

i $—>8B (by inductive assumption)

k £ - Vx8B 1T3.28

If line k is under the scope of # then, since no application of Gen
under the scope of J is to a variable free in J, x is not free in J; so
k meets the restriction on T3.28. So we have » — @} on the line
numbered ‘k’ of C, from premises in A alone.

For for any i, » — @ appears on the line numbered ‘i’ of C, from
premises in A alone.

So given an AD derivation of @ from AU{#}, where no application of Gen under the
scope of assumption J is to a variable free in &, there is sure to be an AD derivation
of # — @ from A alone. Notice that T3.28 and T3.30 abbreviate sequences which
include applications of Gen. So the restriction on Gen for the deduction theorem
applies to applications of these results as well.

As a sample application of the deduction theorem (DT), let us consider another
derivation of T3.2. In tis case, A = {A — B, B — €}, and we argue as follows,

(€)

1.

w

AN

A —> B prem

B—->C prem

A

B
€

assp (g, DT)

1,3 MP
2,4 MP

A —C 3-5DT
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At line (5) we have established that A U {4} I, €; it follows from the deduction
theorem that A I, 4 — €. But we should be careful: this is not an AD derivation
of A — € from A — B and B — €. And it is not an abbreviation in the sense
that we have seen so far — we do not appeal to a result whose derivation could be
inserted at that very stage. Rather, what we have is a demonstration, via the deduction
theorem, that there exists an AD derivation of A — € from the premises. If there
is any abbreviating, the entire derivation abbreviates, or indicates the existence of,
another. Our proof of the deduction theorem shows us that, given a derivation of
AU {P}F,, @, itis possible to construct a derivation for A I, P — @.

Let us see how this works in the example. Lines 1-5 become our derivation A,
with A = {A — B,8 — €}. For each @; in derivation A, the induction tells us
how to derive A — @; from A alone. Thus @; on the first line is a member of A:
reasoning from the basis tells us to use Al as follows,

1.1 A—> 3B prem
12 (4 — B) > (A— (A B) Al
1 A— (A—>B) 1.2,1.1 MP

to get A arrow the form on line 1 of A. Notice that we are again using fractional
line numbers to make lines in derivation A correspond to lines in the constructed
derivation. One may wonder why we bother getting A4 — @;. And again, the
answer is that our “recipe” calls for this ingredient at stages connected to MP and
Gen. Similarly, we can use Al to get 4 arrow the form on line (2).

1.1 A—> 8B prem
1.2 (A —> B) > (A —> (A —> B)) Al
1 A—(A—>B) 1.2,1.1 MP
21 B—>F¢€ prem
22 (B—>C) > (A—>(B—Y) Al
2 A—>(B—>Y) 2.2,2.1 MP

The form on line (3) is # itself. If we wanted a derivation in the primitive system,
we could repeat the steps in our derivation of T3.1. But we will simply continue, as

in the induction,

1.1 A—> 8 prem
1.2 (A—> B) —> (A— (A—> B)) Al
] A>(A—>3B 1.2,1.2 MP
21 8—-0) prem
22 (B—>€) > (A—>(B—>Y) Al
2 A—>(B—>0C) 2.2,2.1 MP

3 A— A

T3.1
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to get +A arrow the form on line (3) of A. The form on line (4) arises from lines (1)
and (3) by MP; reasoning in our show step tells us to continue,

11 A—> B

12 (A= B) = (A — (A — B))

1 A— (4 — B)
21 B8—->F¢€

22 (B—>€) > (A—>(B—Y)

2 A= (8—€)
3 A A

4.1 (A — (A —> B)) = (A > A) > (A > B))

42 (A —> A) > (A = B)
4 A—> B

prem
Al

1.2,1.1 MP
prem

Al

2.2,2.1 MP
T3.1

A2

4.1,1 MP
42,3 MP

using A2 to get A4 — B. Notice that the original justification from lines (1) and (3)
dictates the appeal to (1) at line (4.2) and to (3) at line (4). The form on line (5) arises
from lines (2) and (4) by MP; so, finally, we continue,

11 A—> B

1.2 (A —> B) > (A— (A—> B))

1 A—(A—>B)
21 B8—>¢€

22 (B—>C€)—> (A—>(B—>Y)

2 A—>(B—->F)
3 A A

4.1 (A —> (A —> B)) = (A > A) > (A > B))

42 (A — A) > (A — B)
4 A B

51 (A—=>(B—>€) > (A—>B)—> (A—>C))

52 (A= B) = (A €)
5 A—>C€

prem
Al

1.2,1.1 MP
prem

Al

2221 MP
T3.1

A2

4.1,1 MP
4.2,3 MP
A2

5.1,2 MP
52,4 MP

And we have the AD derivation which our proof of the deduction theorem told us
there would be. Notice that this derivation is not very efficient! We did it in seven
lines (without appeal to T3.1) in chapter 3. What our proof of the deduction theorem
tells us is that there is sure to be some derivation — where there is no expectation
that the guaranteed derivation is particularly elegant or efficient.

Here is a last example which makes use of the deduction theorem. First, an

alternate derivation of T3.3.
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1. A>(B—>0C) prem

2. | B assp (g, DT)

3. A assp (g, DT)
(H) 4. B—->C 1,3 MP

5. € 4,2 MP

6. |A—>TC 3-5DT

7. B— (A=) 2-6 DT

In chapter 3 we proved T3.3 in five lines (with an appeal to T3.2). But perhaps this
version is relatively intuitive, coinciding as it does, with strategies from ND. In this
case, there are two applications of DT, and reasoning from the induction therefore
applies twice. First, at line (5), there is an AD derivation of € from {A — (B —
€), B} U {A}. By reasoning from the induction, then, there is an AD derivation from
just {A — (B — €), B} with A arrow each of the forms on lines 1-5. So there
is a derivation of A — € from {A — (B — €), B}. But then reasoning from
the induction applies again. By reasoning from the induction applied to this new
derivation, there is a derivation from just A4 — (8 — €) with 8 arrow each of the
forms in it. So there is a derivation of 8 — (A — €) from just A — (8 — ©€).
So the first derivation, lines 1-5 above, is replaced by another, by the reasoning from
DT. Then it is replaced by another, again given the reasoning from DT. The result is
an AD derivation of the desired result.

Here are a couple more cases, where the latter at least, may inspire a certain
affection for the deduction theorem.

T9.4. bk, A — (B — (4 A B))

T9.5. by (A =€) > [(B = €) > ((AV B) — €)]

E9.5. Making use of the deduction theorem, prove T9.4 and T9.5. Having done so,
see if you can prove them in the style of chapter 3, without any appeal to DT.

E9.6. By the method of our proof of the deduction theorem, convert the above
derivation (H) for T3.3 into an official AD derivation. Hint: As described
above, the method of the induction applies twice: first to lines 1-5, and then
to the new derivation. The result should be derivations with 13, and then 37
lines.
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E9.7. Consider the axiomatic system A2 from E3.4 on p. 81, and produce a demon-
stration of the deduction theorem for it. That is, show that if A U {} I, @,
then A =,  — @. You may appeal to any of the A2 theorems listed on 81.

9.3.2 Substitution Theorems

Recall what we are after. Our goal is to show thatif I' I, &, thenI" I,,, . Toward
this end, the deduction theorem lets AD mimic rules in ND which require subderiva-
tions. For equality, we turn to some substitution results. Say a complex term 7 is
free in an expression & just in case no variable in » is bound. Then where 7 is any
term or formula, let 7"/, be T where at most one free instance of » is replaced
by term . Having shown in T3.37, that =, (¢; = ) > (R"¢1...¢i ... ¢n —
R"¢1...3...4n), one might think we have proved that =, (» = 5) = (A —
A" /) for any atomic formula A and any terms » and 4. But this is not so. Similarly,
having proved in T3.36 thatt,,, (¢; = ) = (A"¢1...¢4i ... ¢n =h"G1... 5 ... ¢n),
one might think we have proved that =, (» = s) — (+ — t"//;) for any terms 7,
s and ¢. But this is not so. In each case, the difficulty is that the replaced term
7 might be a component of the other terms ¢ ... ¢, and so might not be any of
41 ...%n. What we have shown is only that it is possible to replace any of the whole
terms, ¢1 ...¢,. Thus, (x = y) — (f'g'x = flgly) is not an instance of T3.36
because we do not replace g!x but rather a component of it.

However, as one might expect, it is possible to replace terms in basic parts; use
the result to make replacements in terms of which they are parts; and so forth, all
the way up to wholes. Both (x = y) — (g!'x = g'y) and (g'x = gly) —
(flg'x = flgly) are instances of T3.36. (Be clear about these examples in your
mind.) From these, with T3.2 it follows that (x = y) — (f!glx = flgly). This
example suggests a method for obtaining the more general results: Using T3.36, we
work from equalities at the level of the parts, to equalities at the level of the whole.
For the case of terms, the proof is by induction on the number of function symbols in
an arbitrary term #.

T9.6. For arbitrary terms », s and #, &, (* = 3) — (¢t = 17/,).

Basis: If t has no function symbols, then ¢ is a variable or a constant. In
this case, either (i) » # ¢ and "/, = t (nothing is replaced) or (ii)
* = tand t"); = s (all of ¢ is replaced). (i) In this case, by T3.32,
. ¢ = &; which is to say, -, (1 = ¢"/;); so with Al, =, (» =
4) — (t = t"/s). (ii) In this case, (» = 3) — (¢ = t*//;) is the same
as(r =34) > (r =3);s0by T3.1, I, (r = 3) = (t = 1")s).
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Assp:

Show:

For any i, 0 < i < k, if ¢ has i function symbols, then I,,, (» =
3) = (1 = 1")).
If # has k function symbols, then =, (» = 3) — (+t = 1"/,).

If ¢ has k function symbols, then £ is of the form 4" ¢ . . . ¢, for terms
41 ...4n with < k function symbols. If all of # is replaced, or no part
of ¢ is replaced, then reason as in the basis. So suppose » is some sub-
component of #; then for some ¢;, t"//s 1S A"¢1...¢; ")/s ... ¢n. By
assumption, =, (» = 3) — (¢; = ¢; "//s); and by T3.36, -, (¢; =
i ")) > (W"¢1.. . 4i . Gn =H"G1...4i "5 ... 4n); sO by T3.2,
Fp (0 =23) > (A"¢1...¢4i...9n = A"¢1...4: "5 ... ¢n); but
this is to say, -, , (* = 3) — (¢t = 1"/;).

Indct:

For any terms », s and 4, k-, (* = ) = (t = 1"/,).

We might think of this result as a further strengthened or generalized version of
the AD axiom A7. Where A7 lets us replace just variables in terms of the sort
A"x1...x,, we are now in a position to replace in arbitrary terms with arbitrary

terms.

Now we can go after a similarly strengthened version of A8. We show that for
any formula A, if s is free for the replaced instance of » in A"/, then -, (» =
3) — (A — A"/;). The argument is by induction on the number of operators in .

T9.7. For any formula + and terms » and s, if 4 is free for the replaced instance of
rin oA, then k=, (» = ) = (A — A”/;).

Consider an arbitrary », 4 and +, and suppose s is free for the replaced
instance of » in A"/;.

Basis:

Assp:

If 4 is atomic then (i) A"/, = + (nothing is replaced) or (ii) + is an
atomic of the form R" ¢1 ... 4; ...ty and A", ISR 41 ... 4; “fls ... tn.
(i) In this case, by T3.1, |,,, A — s, whichis to say I-,,, A — A"/;;
so with AL, =, » = s — (A — A"/,). (i) In this case, by
T9.6, & (r = 8) — (i = 1 ")s); and by T3.37, &, (4 =
) = (R%y .. kio oty = R%1 ... 4 )ls ... 4n); so by T3.2,
Fp (r=23) > (R ti..tn > R"1... 4 ")s... 1y); and
this is just to say, -, (» = ) — (A — A"/,).

Foranyi,0 <i < k, if /A has i operator symbols and s is free for the
replaced instance of » in 4, then k=, (* = 3) — (A — A"/;).



CHAPTER 9. PRELIMINARY RESULTS 450

Show:

(=)

Corollary to the assumption. If 4 has < k operators, then A"/,
has < k operators; and since ¢ replaces only a free instance of »
in A, 7 is free for the replacing instance of s in A”/;; so where
the outer substitution is made to sustain [A"/;]%/, = 4, we have
Fop (8 =7) = (A5 — [A"/s]?/x) as an instance of the inductive
assumption, which is just, -, (s = ») — (A"/s; — ). And by
T333, F, (*r = ) = (s = r); sowith T3.2, -, (» = 3) —
(A5 — A).

If A has k operator symbols and s is free for the replaced instance of
rin A, thenk,, (» = ) = (A — A"/,).

If 4 has k operator symbols, then +4 is of the form, ~P, # — @ or
Vx & for variable x and formulas & and @ with < k operator symbols.
Suppose s is free for any replaced instance of 7 in 4.

Suppose A is ~P. Then A"/[, is [~P]"/s which is the same as
~[P*/s]. Since s is free for a replaced instance of » in 4, it is free
for that instance of # in J; so by the corollary to the assumption,
Fop (1 =39) = (P7)s — P). Butby T3.13, F,, (P")s = P) —
(~P — ~[P")s]);soby T3.2, F,, (» = 3) = (~P — ~[P"/s]);
which is to say, k-, (» = 8) = (A = A"/;).

Suppose 4 is P — @. Then A"/, is P*)/y - Q or P — Q%/5. ()
In the former case, since 4 is free for a replaced instance of » in A, it is
free for that instance of 7 in J; so by the corollary to the assumption,
Fop (1 =23) = (P7)s — P); so we may reason as follows,

. (r=23)—=>(P"s > P) prem

2. |r=3s assp (g, DT)
3. P —Q assp (g, DT)
4, P assp (g, DT)
5. Py — P 1,2 MP

6. P 5,4 MP

7. Q 3,6 MP

8. Py — Q 4-7DT

9. |[(P - Q) — (P")s - Q) 3-8 DT

10. (r=3)—>[(P —> Q) = (P")s — Q)] 2-9DT

Sob,, (r =39) = [(P — Q) = (P"/s — @)]; which is to say,
Fop (= 3) = (A — A”/,). (ii) And similarly in the other case
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[by homework], F,, (» = ) = [(P — @) — (P — @"/,)]. Soin
either case, -, (*r = 4) = (A — A"/;).

(VY) Suppose 4 is VxJ. Then a free instance of 7 in 4 remains free in
P and A"/, is Vx[P"//s]. Since s is free for » in A, 4 is free for »
in &; so by assumption, =,,, (» = 3) — (P — P7/;); so we may
reason as follows,

1. (r=23)—= (P = P7)) prem

2. |r=3 assp (g, DT)
3 VxP — P A4

4. |2 = 27, 1,2 MP

5. | VxP — P, 3,4T3.2

6. |VxP — VxP"/s 5T3.28

7. (r=3) > (VxP — VxP")s) 2-6 DT

Notice that x is sure to be free for itself in &, so that (3) is an instance
of A4. And x is bound in Vx4, so (6) is an instance of T3.28. And
because » is free in A, and 4 is free for » in #, x cannot be a variable
in 7 or 4; so the restriction on DT is met at (7). SoF,,, (*» = ) —
(VxP — YxP7"/,); whichis to say, =, (» = ) = (A — A"/;).

So for any 4 with k operator symbols, I=,,, (» = ) — (A — A"/;).

Indct: For any A, F,, (r = 3) = (A — A"/s).

So T9.7, for any formula +, and terms 7 and s, if 4 is free for a replaced instance of
rin A, then b, (» = 3) = (A —> A”/;).

It is a short step from T9.7, which allows substitution of just a single term, to
T9.8 which allows substitution of arbitrarily many. Where, as in chapter 6, $%/, is
& with some, but not necessarily all, free instances of term # replaced by term s,

T9.8. For any formula +4 and terms » and 4, if s is free for the replaced instances
of #in A, then bk, (*» = 3) = (A — A"/5).

By induction on the number of instances of 7 that are replaced by 4 in 4.
Say +A; is # with i free instances of » replaced by 4. Suppose s is free for
the replaced instances of » in 4. We show that for any i, -, (» = 3) —
(A — Aj).

Basis: If no instances of #» are replaced by 4 then A9 = +. But by T3.1,
Fop A — A, and by Al =, (A — A) = [(r = ) > (A —> A)];
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so by MP, ,,, (» = 3) — (A — »A); which is to say, -, (» =
3) = (A — HAo).
Assp: Foranyi,0 <i <k,b,, (r =3) = (A — A;).
Show: =, (r = 38) = (A — Ag).
Ay is of the sort A; "/, for i < k. By assumption, then, -, (» =
3) = (A —> A;),and by T9.7, =, (» = 8) — (A = A "/s),
which is the same as |,,, (» = ) — (A; — ). So reason as
follows,

1.

w N

4
5
6.
7

(r = 4) > (A —> A})
. (r=3) = (A > Ag)
r=4

A—>a‘$l‘
d’el’—>e/’ek
A—)Ak
(e =3) > (A > A)

by assumption
T9.7
assp (g, DT)

1,3 MP
2,3 MP
4,5T3.2
3-6 DT

Since s is free for the replaced instances of 7 in #4, (2) is an instance
of T9.7. So b, (*r = 3) — (A — Ag).

Indct: Forany i, b, (r = 3) = (A — A;).

In effect, the result is by multiple applications of T9.7. No matter how many instances
of » have been replaced by 4, we may use T9.7 to replace another!

Some final substitution results allow substitution of formulas rather than terms.
We have the result in syntactic and semantic forms. Where A% /¢ is # with exactly
one instance of a subformula B replaced by formula €,

T9.9. For any formulas 4, 8 and €, if -, 8 <> €, thent,, A < Aﬂﬂg.

The proof is by induction on the number of operators in +. If you have
understood the previous two inductions, this one should be straightforward.
Observe that, in the basis, when «# is atomic, 8 can only be all of #4, and
AB e is €. For the show, either B is all of 4 or it is not. If it is, then the
result holds by reasoning as in the basis. If 8 is a proper part of A, then the

assumpti

on applies.

T9.10. For any formulas +, 8 and €, if for any d, I4[8] = S iff I4[€] = S, then
la[A] = Siiff lg[AZ] = S.
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*E9.8. Set up the above demonstration for T9.7 and complete the unfinished case to
provide a complete demonstration that for any formula 4, and terms #» and 4,
if s is free for the replaced instance of » in #A, then I, (» = ) — (A —

A"s).

E9.9. Suppose our primitive operators are ~, A and 3 rather than ~, — and V.
Modify your argument for T9.7 to show that for any formula +4, and terms »
and 4, if s is free for the replaced instance of » in +4, then -, (» = 3) —
(A — A™/,). Hint: Do not forget that you may appeal to T9.4.

*E9.10. Prove T9.9, to show that for any formulas 4, 8 and €, ifI-,,, 8 < €, then
Fp A <« AB/fe. Hint: Where <> @ abbreviates (£ — Q) A (@ — P),
you can use (abv) along with T3.19, T3.20 and T9.4 to manipulate formulas
of the sort < @.

E9.11. Where A®%/e replaces some, but not necessarily all, instances of formula B
with formula €, use your result from E9.10 to show that if -, 8 <> €, then
Fop A < ABfe.

9.3.3 Intended Result

We are finally ready to show that if I' |5, & then I' I,,, . As usual, the idea is
that the existence of one derivation guarantees the existence of another. In this case,
we begin with a derivation in ND, and move to the existence of one in AD. Suppose
I' b, &. Then there is an ND derivation N of & from premises in I', with lines
(@y...Q,) and @, = &P. We show that there is an AD derivation A of the same
result (with possible appeal to DT). Say derivation A matches N iff any @; from N
appears at the same scope on the line numbered ‘i’ of A; and say derivation A is
good iff it has no application of Gen to a variable free in an undischarged auxiliary
assumption. Then, given derivation N, we show that there is a good derivation A
that matches N. The reason for the restriction on free variables is to be sure that
DT is available at any stage in derivation A. The argument is by induction on the
line number of N, where we show that for any i, there is a good derivation A; that
matches N through line i. The case when i = n is an AD derivation of & under the
scope of the premises alone, and so a demonstration of the desired result.
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To.11. If I' b, P, then T F,,, P.

Suppose I' I, &; then there is an ND derivation N of # from premises in
I'. We show that for any i, there is a good AD derivation A; that matches N
through line i.

Basis: The first line of N is a premise or an assumption. Let A; be the same.
Then A; matches N; and since there is no application of Gen, A is
good.

Assp: Forany i, 1 <i < k, there is a good derivation A; that matches N
through line i.

Show: There is a good derivation Ay, that matches N through line k.

Either @ is a premise or assumption, or arises from previous lines by
R, AE, AL, =E, =1, ~E, ~I, VE, VI, ©»E, <1, VE, VI, 3E, 31, =E or
=I.
(p/a) If @ is a premise or an assumption, let Az continue in the same way.
Then, by reasoning as in the basis, Ay matches N and is good.
(R) If @ arises from previous lines by R, then N looks something like
this,

i|B
k| 3B iR

where i < k, B is accessible at line k, and @; = B. By assumption
Aj_1 matches N through line k — 1 and is good. So B appears at
the same scope on the line numbered ‘i’ of A;_; and is accessible in
Aj—1. Solet Ay continue as follows,

i|B

k18— 8 T3.1
k| B k.1,i MP

So @ appears at the same scope on the line numbered ‘k” of Ag; so
Ay matches N through line k. And since there is no new application
of Gen, Ay, is good.
(AE) If @y arises by AE, then N is something like this,
i|BAE i|BAE

or
k|8 i AE k€ i AE
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(AD

(—E)

where i < k and 8 A € is accessible at line k. In the first case,
@; = 8. By assumption A;_; matches N through line kK — 1 and is
good. So B A € appears at the same scope on the line numbered ‘i’
of Aj_q and is accessible in A;_1. So let Aj continue as follows,

i|BAE

k1|(BA€)—> B8  T3.20
k|3 k.1,i MP

So @y appears at the same scope on the line numbered ‘k” of Ag; so
Ay matches N through line k. And since there is no new application
of Gen, Ay, is good. And similarly in the other case, by application of
T3.19.

If @ arises from previous lines by Al then N is something like this,
i|B
jle

k| BAE i,j Al

where i, j < k, B and € are accessible at line k, and @ = 8 A €.
By assumption A;_; matches N through line k£ — 1 and is good. So
B and € appear at the same scope on the lines numbered ‘i’ and ‘j’
of Aj_q and are accessible in Aj_7. So let A; continue as follows,

i| B

jl€
k1|8 — (€= (BA€) T94

k2|€¢ > (BA€) k.1,i MP
k|Bnre k.2,j MP

So @y appears at the same scope on the line numbered ‘k” of Ag; so
Ay, matches N through line k. And since there is no new application
of Gen, Ay, is good.
If @, arises from previous lines by —E, then N is something like this,
i|B—>TC

jl8

ke i,j >E

where i, ] <k, B — € and B are accessible at line k, and @, = €.
By assumption A;_; matches N through line k£ — 1 and is good. So
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(=D

(~E)

B — € and B appear at the same scope on the lines numbered ‘i’
and ‘j’ of Aj_; and are accessible in A;_;. So let A; continue as
follows,

i|B8B—-C

j| B

k|e i.j MP

So @ appears at the same scope on the line numbered ‘k” of Ag; so
Ay matches N through line k. And since there is no new application
of Gen, Ay, is good.

If @y, arises by —1, then N is something like this,

i||B

j| €

k|B—%¢€ i-j —>I

where i, j < k, the subderivation is accessible at line k and @ =
B — €. By assumption Ax_; matches N through line k — 1 and is
good. So B and € appear at the same scope on the lines numbered
‘i’ and ‘j’ of Aj_q; since they appear at the same scope, the parallel
subderivation is accessible in Az _1; since Ax_; is good, no applica-
tion of Gen under the scope of B is to a variable free in B. So let Ay
continue as follows,

i||s
ille
k|8—>¢ i-jDT

So @y, appears at the same scope on the line numbered ‘k’ of Ag; so
Ay matches N through line k. And since there is no new application
of Gen, Ay, is good.

If @y arises by ~E , then N is something like this (reverting to the
unabbreviated form),

i||~B

CA~E

N ~.
®

i-j ~E
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where i, j < k, the subderivation is accessible at line k, and @ = B.
By assumption Aj_; matches N through line £ — 1 and is good. So
~$B and € A ~€ appear at the same scope on the lines numbered ‘i’
and ‘j’ of Aj_q; since they appear at the same scope, the parallel sub-
derivation is accessible in Ax_1; since Ax_; is good, no application
of Gen under the scope of ~3B is to a variable free in ~8B. So let A
continue as follows,

i||~B
jl|€n~€
k.1|~8 — (€ A~E) i-j DT
k2| (€ A~E)>E T3.20
k3| (€ A~E) >~ T3.19
k4| ~8 —> € k.1,k.2T3.2
k5| ~8 - ~€ k.1,k.3T3.2
k6| (~B > ~€) > (~B—>€)—> B) A3
k7| (~8—>¢) — B8 k.6,k.5 MP
k|8 k.7,k.4 MP

So @y, appears at the same scope on the line numbered ‘k” of Ag; so
Ay matches N through line k. And since there is no new application
of Gen, Ay, is good.

(~I) Homework.

(VE) If @y, arises by VE, then N is something like this,

flave

gl | B
il
ille
i

k| D f.g-hi-j VE

where f,g,h,i,j < k, BV € and the two subderivations are accessi-
ble at line k and @ = D. By assumption A;_; matches N through
line £ — 1 and is good. So the formulas at lines f, g, h, i, j appear at
the same scope on corresponding lines in A _;; since they appear at
the same scope, 8 Vv € and corresponding subderivations are acces-
sible in Ax_q; since Ax_; is good, no application of Gen under the
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scope of B is to a variable free in 8, and no application of Gen under
the scope of € is to a variable free in €. So let A continue as follows,

f
g

h
i
J
k.1
k.2
k.3
k.4

k.5
k

BvE
B
-
€
-

B—->D

€ —->D
B->D)—->[(E—>D)—>((BVE)— D)
EC—->D)—->((BVE)—> D)
BvE)—>D

D

g-h DT
i-j DT
T9.5
k.3,k.1 MP
k.4,k.2 MP
k.5,f MP

So @y, appears at the same scope on the line numbered ‘k” of Ag; so

Ay, matches N through line k. And since there is no new application

of Gen, Ay, is good.
(vI) Homework.

(«<E) Homework.

(<) Homework.
(VE) Homework.
(VD) If @ arises by VI, then N looks something like this,

; X
i| By

k|VxB i VI

where i < k, 87 is accessible at line k, and @; = VxB; further the
ND restrictions on VI are met: (i) v is free for x in 8B, (ii) v is not
free in any undischarged auxiliary assumption, and (iii) v is not free
in VxB. By assumption A;_; matches N through line X — 1 and is
good. So B appears at the same scope on the line numbered ‘i’ of
Aj_1 and is accessible in Aj_1. So let A continue as follows,

; X
i|B;

k.1|VvBY i Gen
k2| VoBX > vxB  T3.27
k|Vx8 k.1,k.2 MP
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(FE)

If v is x, we have the desired result already at k.1. So suppose x # .
On its face, k.2 does not look like T3.27 according to which Vx4 —
Vy Ay with y free for x in »A but not free in VxA. To see that we
have it right, consider first, Vo 8% — Vx[8BX]Y; this is an instance
of T3.27 so long as x is not free in Vv B% but free for v in B.
First, since 8B has all its free instances of x replaced by v, x is not
free in Vo B%. Second, since v # x, with the constraint (iii), that
v is not free in Vx B, v is not free in B; so every free instance of
v in B replaces a free instance of x; so x is free for v in 8%. So
Yo B, — Vx[B)]Y is an instance of T3.27. But since v is not free
in B, and by constraint (i), v is free for x in B8, by T8.2, [B)]Y = B.
So k.2 is a version of T3.27.

So @y appears at the same scope on the line numbered ‘k” of Ag; so
Ay, matches N through line k. This time, there is an application of
Gen at k.1. But A;_; is good and since A; matches N and, by (ii), v
is free in no undischarged auxiliary assumption of N, v is not free in
any undischarged auxiliary assumption of Ag; so A is good. (Notice
that, in this reasoning, we appeal to each of the restrictions that apply
to VIin N).

If @, arises by 3E, then N looks something like this,

h|3IxB

|| By
ille
k|e h,i-j 3B

where 1,1, j < k, 3xB and the subderivation are accessible at line k,
and @, = €; further, the ND restrictions on JE are met: (i) v is free
for x in B, (ii) v is not free in any undischarged auxiliary assumption,
and (iii) v is not free in Ix B or in €. By assumption Ax_; matches
N through line k — 1 and is good. So the formulas at lines /, i and j
appear at the same scope on corresponding lines in Ay _;; since they
appear at the same scope, 3xB and the corresponding subderivation
are accessible in Ay_;. Since Aj_; is good, no application of Gen
under the scope of B is to a variable free in 8. So let A; continue
as follows,
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h|3IxB

i| |8y

ic
k1|8 —>¢€ i-j DT
k2|3vBr —>¢€ k.1T3.31
k3| Vo~B% - Vx~B T3.27
k4| (Vo~BE - Vx~B) > (~Vx~B - ~Vv~B%) T3.13
k5| ~Vx~8B — ~Vuo~B% k.4,k.3 MP
k.6|IxB — JvBY k.5 abv
k7|3vBE h,k.6 MP

k¢ k.2,k.7MP

From constraint (iii), that v is not free in €, k.2 meets the restriction
onT3.31. If v = x we can go directly from /4 and k.2 to k. So suppose
v # x. Then by [homework] Yv~B; — Vx~B at k.3 is an instance
of T3.27. So @, appears at the same scope on the line numbered ‘k” of
Apg; so A matches N through line k. There is an application of Gen
in T3.31 at k.2. But Az _; is good and since Aj matches N and, by
(ii), v is free in no undischarged auxiliary assumption of N, v is not
free in any undischarged auxiliary assumption of Ay; so Ay is good.
(Notice again that we appeal to each of the restrictions that apply to
JdE in N).

(3I) Homework.

(=E) Homework.

(=) Homework.

In any case, A; matches N through line k£ and is good.

Indct: Derivation A matches N and is good.

So if there is an ND derivation to show I' I, &, then there is a matching AD
derivation to show the same; so T9.11, if I' 5, &, then I" I-,,, #. So with T9.2,
AD and ND are equivalent; thatis, I' I, # iff I |,,, #. Given this, we will often
ignore the difference between AD and ND and simply write I' - & when there is a(n
AD or ND) derivation of & from premises in I". Also given the equivalence between
the systems, we are in a position to fransfer results from one system to the other
without demonstrating them directly for both. We will come to appreciate this, and
especially the relative simplicity of AD, as time goes by.

As before, given any ND derivation, we can use the method of our induction to
find a corresponding AD derivation. For a simple example, consider the following
demonstration that ~4 — (A A B) I, A.
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l.|~A—>(AAB) P

2.1 [ ~4 A (c, ~E)
(I 3.||AAB 12 —>E

4.1 1 A 3 AE

5.0 |AA~A 42 Al

6.4 2-4 ~E

Given relevant cases from the induction, the corresponding AD derivation is as fol-
lows,

1 ~A— (AAB) prem
2 | ~A assp
3 |AAB 1,2 MP
41 |[(AAB)— A T3.20
4 | A 4.1,3MP
51 |A— (~4A— (AA~A)) T9.4
52 |~A— (AA~A) 4,5.1 MP
5 |[An~A 5.2,2 MP
6.1 ~A— (AA~A) 2-5DT
62 (An~A)— A T3.20
63 (AA~A)— ~A T3.19
64 ~A4A— A 6.1,6.2T3.2
65 ~4—~A 6.1,6.3T3.2
6.6 (~A—>~A) = (~4—> A) —> A) A3
67 (~A— A)— A 6.6,6.5 MP
6 A 6.7,6.4 MP

For the first two lines, we simply take over the premise and assumption from the ND
derivation. For (3), the induction uses MP in AD where —E appears in ND; so that is
what we do. For (4), our induction shows that we can get the effect of AE by appeal
to T3.20 with MP. (5) in the ND derivation is by Al, and, as above, we get the same
effect by T9.4 with MP. (6) in the ND derivation is by ~E. Following the strategy
from the induction, we set up for application of A3 by getting the conditional by DT.
As usual, the constructed derivation is not very efficient! You should be able to get
the same result in just five lines by appeal to T3.20, T3.2 and then T3.7 (try it). But,
again, the point is just to show that there always is a corresponding derivation.

*E9.12. Set up the above induction for T9.11 and complete the unfinished cases
(including the case for 3E) to show thatif I' I, &, then I" I-,,, &. For cases
completed in the text, you may simply refer to the text, as the text refers cases
to homework.
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E9.13. Consider a system N2 which is like ND except that its only rules are AE,
Al, ~E and ~I, along with the system A2 from E3.4 on p. 81. Produce a
complete demonstration that if " I, &, then I' I, . You may use any of
the theorems for A2 from E3.4, along with DT from E9.7.

E9.14. Consider the following ND derivation and, using the method from the induc-
tion, construct a derivation to show 3x(C A Bx) F,, C.

—

Ax(C A Bx) P

2.1 |C A By A (g, 13E)
3.1 {C 2 AE
4.|C 1,2-3 JE

Hint: your derivation should have 12 lines.

9.4 Extending to ND+

ND+ adds sixteen rules to ND: the four inference rules, MT, HS, DS and NB and the
twelve replacement rules, DN, Com, Assoc, Idem, Impl, Trans, DeM, Exp, Equiv,
Dist, QN and BOQN — where some of these have multiple forms. It might seem
tedious to go through all the cases but, as it happens, we have already done most of
the work. First, it is easy to see that,
T9.12. If I' b, P then T b, P.
Suppose I' I, . Then there is an ND derivation N of & from premises in
I". But since every rule of ND is a rule of ND+, N is a derivation in ND+ as
well. So I b, P.

From T9.2 and T9.12, then, the situation is as follows,

9.12

Thp® -5 Thy ? =5 Thy,, P

If an argument is valid in AD, it is valid in ND, and in ND+. From T9.11, the
leftmost arrow is a biconditional. Again, however, one might think that ND+ has
more resources than ND, so that more could be derived in ND+ than ND. But this is
not so. To see this, we might begin with the closer systems ND and ND+, and attempt
to show that anything derivable in ND+ is derivable in ND. Alternatively, we choose
simply to expand the induction of the previous section to include cases for all the
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rules of ND+. The result is a demonstration thatif I' i, &, then I I, #. Given
this, the three systems are connected in a “loop” — so that if there is a derivation in

any one of the systems, there is a derivation in the others as well.

T9.13. If T b, P, then T F,,, P.

Suppose I' k,, #; then there is an ND+ derivation N of & from premises
in I'. We show that for any i, there is a good AD derivation A; that matches
N through line i .

Basis:

Assp:

Show:

MT)

The first line of N is a premise or an assumption. Let A; be the same.
Then A; matches N; and since there is no application of Gen, A is
good.

For any i, 0 < i < k, there is a good derivation A; that matches N
through line i.

There is a good derivation of Ay that matches N through line k.

Either @ is a premise or assumption, arises by a rule of ND, or by
the ND+ derivation rules, MT, HS, DS, NB or replacement rules, DN,
Com, Assoc, Idem, Impl, Trans, DeM, Exp, Equiv, Dist, QN or BQN.
If @ is a premise or assumption or arises by a rule of ND, then by
reasoning as for T9.11, there is a good derivation Ay that matches N
through line k. So suppose @ arises by one of the ND+ rules.

If @y, arises from previous lines by MT, then N is something like this,

i|B8—>€
j|~€

k|~8 i,j MT

where i, j < k, B — € and ~€ are accessible at line k, and @} =
~&8B. By assumption A;_; matches N through line k — 1 and is good.
So 8 — € and ~€ appear at the same scope on the lines numbered
‘i’ and ‘j’ of Aj_; and are accessible in A;_;. So let Ax continue as
follows,

i|B—>¢€

Jj|~€

k1] (8B —>€) - (~€ —>~8B) T3.13
k2| ~€ —>~8 k.1,i MP
k|~8 k.2,j MP
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So @, appears at the same scope on the line numbered ‘k” of Ag; so
Ay matches N through line k. And since there is no new application
of Gen, Ay, is good.

(HS) Homework.

(DS) Homework.

(NB) Homework.

(rep) IfIf @y arises from a replacement rule rep of the form € <> D, then
N is something like this,
i| B i|3B
or
k ;88//1) i rep k 58"7)//5 i rep

where i < k, 8B is accessible at line k and, in the first case, @ =
BY)p. By assumption Ax_, matches N through line k — 1 and is
good. But by T6.11 - T6.28, T6.31, T6.32, and T6.70, I, € < D;

> ND

so with T9.11, -, € < D; 50 by T9.9, I, B8 <> B8/p. Call an
arbitrary particular result of this sort, 7x, and augment Ay as follows,
0.k| 8B < B%p Tx

i|B
k1| (8 - B%)p) A (BC)p — B) 0.k abv
k2| (B — BE)p) A (BE)p — B)] — (B - BE)p)  T3.20
k3|8 —> 8%p k.2,k.1 MP

k| B%)p k.3,i MP

So @ appears at the same scope on the line numbered ‘k” of Ag;
so Ay matches N through line k. There may be applications of Gen
in the derivation of Tx; but that derivation is under the scope of no
undischarged assumption. And under the scope of any undischarged
assumptions, there is no new application of Gen. So Ay is good. And
similarly in the other case, with some work to flip the biconditional
Fp €< Dtok,,, D < €.

In any case, A matches N through line k and is good.

Indct: Derivation A matches N and is good.

That is it! The key is that work we have already done collapses cases for all the
replacement rules into one. So each of the derivation systems, AD, ND, and ND+ is
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Theorems of Chapter 9

T9.1 For any ordinary argument &; . .. 5, /@, with good translation consisting of Il and
Pl PLQEP] P E @, then Py ... Py /Q is logically valid.

T9.2 IfT'F,, #,then T k5, .

T9.3 (Deduction Theorem) If A U {P} F,,, @, and no application of Gen under the
scope of & is to a variable free in &, then A =, # — Q.

T94 F,, A= (B = (AAB))
T95 Ep (A—=>C) > [(B—>T€)— ((AV B)— )]
T9.6 For arbitrary terms #, s and 4, F,, (*» = ) = (4 = 4"/s).

T9.7 For any formula # and terms 7 and s, if 4 is free for the replaced instance of 7 in
A, then b, (r = 5) — (A — A"/).

T9.8 For any formula 4 and terms * and s, if s is free for the replaced instances of »
in A, then b, (» = 4) = (A — A"/,).

T9.9 For any formulas #4, B and €, if -, B < €, then -, 4 < A% /e.
T9.11 If T K, #,thenT |, 2.

T9.12 If Tk, P then Tk, P

ND+ .

T9.13 If T' K

apy - then T k) P,

equivalent to the others. Thatis, I' &, P iff I I, #iff I' k,,, &. And that is
what we set out to show.

*E9.15. Set up the above induction and complete the unfinished cases to show that if
I bypy P, then T F,,, P. For cases completed in the text, you may simply
refer to the text, as the text refers cases to homework.

E9.16. Consider a sentential language with ~ and A primitive, along with systems
N2 with rules AE, AL, ~E and ~I from E9.13, and A2 from E3.4 on p. 81.
Suppose N2 is augmented to a system N2+ that includes rules MT and Com
(for A). Augment your argument from E9.13 to produce a complete demon-

stration that if " ,, & then I" -, &. Hint: You will have to prove some



CHAPTER 9. PRELIMINARY RESULTS 466

A2 results parallel to ones for which we have merely appealed to theorems
above. Do not forget that you have DT from E9.7.

EO9.17. For each of the following concepts, explain in an essay of about two pages, so
that (college freshman) Hannah could understand. In your essay, you should
(i) identify the objects to which the concept applies, (ii) give and explain the
definition, and give and explicate examples (iii) where the concept applies,
and (iv) where it does not. Your essay should exhibit an understanding of
methods from the text.

a. The reason semantic validity implies logical validity, but not the other way
around.

b. The notion of a constructive proof by mathematical induction.



Chapter 10

Main Results

We have introduced four notions of validity, and started to think about their interre-
lations. In chapter 9, we showed that if an argument is semantically valid, then it is
logically valid, and that an argument is valid in AD iff it is valid in ND. We turn now
to the relation between these derivation systems and semantic validity. This com-
pletes the project of demonstrating that the different notions of validity are related as
follows.

Validity in AD
Logical Semantic /
Validity Validity \

Validity in ND

Since AD and ND are equivalent, it is not necessary separately to establish the re-
lations between AD and semantic validity, and between ND and semantic validity.
Because it is relatively easy to reason about AD, we mostly reason about a system
like AD to establish that an argument is valid in AD iff it is semantically valid. From
the equivalence between AD and ND it then follows that an argument is valid in ND
iff it is semantically valid.

The project divides into two parts. First, we take up the arrows from right to
left, and show that if an argument is valid in AD, then it is semantically valid: if
', #,then ' E 2. Thus our derivation system is sound. If a derivation system is
sound, it never leads from premises that are true on an interpretation, to a conclusion

467
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that is not. Second, moving in the other direction, we show that if an argument is
semantically valid, then it is valid in AD: if ' & &£, then I' I-,,; &#. Thus our
derivation system is adequate. If a derivation system is adequate, there is a derivation
from the premises to the conclusion for every argument that is semantically valid.

10.1 Soundness

It is easy to construct derivation systems that are not sound. Thus, for example,
consider a derivation system like AD but without the restriction on A4 that the sub-
stituted term ¢ be free for the variable x in formula . Given this, we might reason
as follows,

1. Vxdy~(x =) prem
(A) 2. VxHyN(x = y) — Ely’\’(y — y) “A4”
3. Iy~(y =) 1,2 MP

y is not free for x in Iy~(x = y); so line (2) is not an instance of A4. And it is
a good thing: Consider any interpretation with at least two elements in U. Then it is
true that for every x there is some y not identical to it. So the premise is true. But
there is no y in U that is not identical to itself. So the conclusion is not true. So the
true premise leads to a conclusion that is not true. So the derivation system is not
sound.

We would like to show that AD is sound — that there is no sequence of moves,
no matter how complex or clever, that would lead from premises that are true to a
conclusion that is not true. The argument itself is straightforward: suppose I" I-,,, #;
then there is an AD derivation A = (@1 ... @,) of # with @, = . By induction
on line numbers in A, we show that for any i, I' E @;. The case wheni = n is the
desired result. Soif I' I, &, then I' E . This general strategy should by now
be familiar. However, for the case involving A4, it will be helpful to obtain a pair of
preliminary results.

10.1.1 Switching Theorems

In this section, we develop a couple theorems which link substitutions into formulas
and terms with substitutions in variable assignments. As we have seen before, the
results are a matched pair, with a first result for terms, that feeds into the basis clause
for a result about formulas. Perhaps the hardest part is not so much the proofs of the
theorems, as understanding what the theorems say. So let us turn to the first.
Suppose we have some terms ¢ and * with interpretation | and variable assign-
ment d. Say I4[»] = o. Then the first proposition is this: term # is assigned the same



CHAPTER 10. MAIN RESULTS 469

object on ly(x|o), as ¢y is assigned on ly. Intuitively, this is because the same object
is fed into the x-place of the term in each case. With ¢ and d(x|0),
oA ox ..

(B) |

d(x|o): ...0...
object o is the input to the “slot” occupied by x. But we are given that l4[*] = 0. So
with ¢ and d,

AT

© |

d: ... 0...
object o is the input into the “slot” that was occupied by x. So if I4[*] = o, then
la(x|o)[£] = la[£x]. In the one case, we guarantee that object 0 goes into the x-place
by meddling with the variable assignment. In the other, we get the same result by
meddling with the term. Be sure you are clear about this in your own mind. This will
be our first result.

T10.1. For any interpretation |, variable assignment d, with terms ¢ and », if I4[»] =
0, then Id(x\o) [t] = |d[/t3,f].
For arbitrary terms # and 7, with interpretation | and variable assignment d,
suppose lg[#] = o. By induction on the number of function symbols in #,

Id(ocIo) [t] = lq [tﬂ

Basis: If ¢ has no function symbols, then it is a constant or a variable. Either
t is the variable x or it is not. (i) Suppose # is a constant or variable
other than x; then X = # (no replacement is made); but d and d(x|o)
assign just the same things to variables other than x; so they assign
just the same things to any variable in ¢; so by T8.3, Ig[#] = ly(x|0)[#]-
So la[#)] = lyx|oy[2]. (ii) If £ is x, then £} is » (all of # is replaced by
7); 50 lg[£3] = lg[»] = 0. But £ is x; 50 lg(x|0)[£] = lg(x|0)[*]; and by
TAW), laexlo) [x] = d(x[0)[x] = 0. So ly[£7] = la(x|o) [£]-

Assp: Foranyi,0 <i <k, for ¢ withi function symbols, l4[4;] = lgx|o)[£]-

Show: If ¢ has k function symbols, then ly[#; ] = lg(x|0)[2]-

If ¢ has k function symbols, then it is of the form, £ 4, ... 4, where
41 ...4n have < k function symbols. In this case, ¥ = [A" 51 ...3,]F
=h"s1% ... 30k Solg[t)] = l4[A"s1 7% ... sn x]; by TA(S), this is
[[A™](lg[s1 %] . .- la[sr ¥]). Similarly, laxlo) [1] = laxjo) [ 81 - .. 3l
and by TA(f), this is I[A" [{lg(xj0)[31] - - - la(x|o)[4n]). But by assump-
tion, lg[s1%] = lyxjo)[81], and ...and lg[s, %] = lyx|o)[sn]; sO
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(lals1%]. . lalsn X1} = (laxio)[31] - - laxio)[3n]); so 1[A"|{la[s1 %]
ca[3a 21) = A Koy [31] - - - axio)[8a])s 50 la[47] = laxjo) [2]-

Indct: For any t, lg[t}] = lg(x[o)[2]-

Since the “switching” leaves assignments to the parts the same, assignments to the
whole remains the same as well.

Similarly, suppose we have we have term » with interpretation | and variable
assignment d, where |4[#] = o0 as before. Suppose # is free for variable x in formula
@. Then the second proposition is that a formula @ is satisfied on lg(y o) iff @5
is satisfied on lg. Again, intuitively, this is because the same object is fed into the
x-place of the formula in each case. With @ and d(x|o),

(D) |
d(x|o): ... 0...

object o is the input to the “slot” occupied by x. But I4[*] = 0. So with @ and d,

Q% Q...r...

(E) |

d: ... 0...
object 0 is the input into the “slot” that was occupied by x. So if I4[#] = o (and * is
free for x in @), then lyx|0)[@] = S iff I3[@}] = S. In the one case, we guarantee
that object o0 goes into the x-place by meddling with the variable assignment. In the
other, we get the same result by meddling with the formula. This is our second result,
which draws directly upon the first.

T10.2. For any interpretation |, variable assignment d, term », and formula @, if
la[*] = o, and 7 is free for x in @, then I4[@%] = S iff ly(y0)[@] = S.

For arbitrary formula @, term 7 and interpretation |, suppose #* is free for x
in @. By induction on the number of operator symbols in €,

Basis: Suppose lg[7] = o. If @ has no operator symbols, then it is a sentence
letter § or an atomic of the form R"#; ... 4. In the first case, Q% =
8% = 8. So l4[@)] = Siff I4[8] = S; by SE(s), iff I[§] = T;
by SF(s) again, iff lyix|)[8] = S; iff lg(xjo)[€] = S. In the second
case, Q% = [R"41...4n]y = R"41 ... dny. So ly[@%] = Siff
lg[R"™ 11 ;E R ;i] = S; by SF(1), iff (lg[#1 zi] R P ;i]) € I[R"];
since lg[*] = o, by T10.1, iff (lgixj0)[21] - - . lax|o)[2n]) € I[R"]; by
SE(), iff Id(x\o) [:‘Rntl e tn] = S;iff Id(on) [(Q] =S.
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Assp:

Show:

(~)

(=)
v

Forany i, 0 <i < k, if @ has i operator symbols, » is free for x in @
and lg[*] = o, then I4[@%] = S iff ly(x|0)[@] = S.

If @ has k operator symbols, 7 is free for x in @ and lg[»] = o, then
la[@%] = Siff lyxj0)[@] = S.

Suppose lg[*] = 0. If @ has k operator symbols, then @ is of the form
~B, B — €, or Vv B for variable v and formulas B and € with
< k operator symbols.

Suppose @ is ~B. Then @) = [~B]x = ~[BY]. Since * is free for
x in @, * is free for x in B; so the assumption applies to B. I4[@%] =
S iff I4[~BX] = S; by SFE(~), iff 14[BX] # S; by assumption iff
la(xjo)[B] 7# S; by SE(~), iff ly(xjo) [~B] = S; iff ly(x|) [@] = S.
Homework.

Suppose @ is Vv B. Either there are free occurrences of x in € or not.

(i) Suppose there are no free occurrences of x in @. Then @ is just
@ (no replacement is made). But since d and d(x|o) make just the
same assignments to variables other than x, they make just the same
assignments to all the variables free in @; so by T8.4, I4[@] = S iff
lacx|o)[@] = S. So 14[@}] = S iff lyx|)[@] = S.

(i1) Suppose there are free occurrences of x in @. Then x is some
variable other than v, and Q% = [Vv B8]} = Vv[B}].

First, since * is free for x in @, » is free for x in B, and v is not a
variable in 7¢; from this, for any m € U, the variable assignments d and
d(v|m) agree on assignments to variables in »; so by T8.3, I4[*] =
lacv|m)[7]: 80 lg(rjmy[#] = 0; so the requirement of the assumption is
met for the assignment d(v|m) and, as an instance of the assumption,
for any m € U, we have, lg(y|m)[By] = S iff Iy m,x|o)[B] = S.
Now suppose lg(x|0)[@] = Sbut I4[@%] # S; then ly(y0)[YVB] = S
but lg[Vv BX] # S. From the latter, by SF(V), there is some m € U
such that Iy, |m)[B5] # S: so by the above result, gy |m,x|0)[B] # S:
s0 by SFE(V), ly(x|o)[Yv B] # S; this is impossible. And similarly [by
homework] in the other direction. So lg(x|o)[@] = S iff I4[@] = S.

If @ has k operator symbols, if # is free for x in @ and l4[*] = o, then
l4[@%] = Siff lyx|0)[@] = S.

Indct:

For any @, if » is free for x in @ and ly[*] = o, then I4[@)] = S iff
la(xlo)[@] = S.
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Perhaps the quantifier case looks more difficult than it is. The key point is that since
* is free for x in @, changes in the assignment to v do not affect the assignment
to 7. Thus the assumption applies to B for variable assignments that differ in their
assignments to v. This lets us “take the quantifier off,” apply the assumption, and
then “put the quantifier back on” in the usual way. Another way to make this point
is to see how the argument fails when # is not free for x in @. If # is not free for x
in @, then a change in the assignment to v may affect the assignment to ». In this
case, although lg[»] = 0, lg(y|m)[*] might be something else. So there is no reason
to think that substituting » for x will have the same effect as assigning x to 0. As we
shall see, this restriction corresponds directly to the one on axiom A4. An example
of failure for the axiom is the one (A) with which we began the chapter.

*E10.1. Complete the cases for (—) and (V) to complete the demonstration of T10.2.
You should set up the complete demonstration, but for cases completed in the
text, you may simply refer to the text, as the text refers cases to homework.

10.1.2 Soundness

We are now ready for our main proof of soundness for AD. Actually, all the parts are
already on the table. It is simply a matter of pulling them together into a complete
demonstration.

T103. If ' F,,, P, then " E P.  (Soundness)

Suppose I" I,,, . Then there is an AD derivation 4 = (@1 ...@,) of
from premises in I', with @, = &. By induction on the line numbers in A4,
we show that for any i, I' F @;. The case when i = n is the desired result.

Basis: The first line of A is a premise or an axiom. So @ is either a member
of I' or an instance of Al, A2, A3, A4, A5, A6 A7 or A8. The cases
for A1, A2, A3, A5, A6, A7 and A8 are parallel.

(prem) If @ is a member of I', then there is no interpretation where all the
members of I" are true and @, is not; soby QV, I' F @;.

(Ax) Suppose @ is an instance of Al, A2, A3, A5, A6, A7or A8and I"
@1. Then by QV, there is some | such that I[I'] = T but I[@] # T.
But by T7.2, T7.3, T7.4, T7.6, T7.8, T7.9, and T7.10, F @;; so by
QV, 1[@1] = T. This is impossible, reject the assumption: I' = @;.

(A4) If @, is an instance of A4, then it is of the form Yx8 — B where
term 7 is free for variable x in formula B. Suppose I' ¥ @;. Then by
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QV, there is an | such that I[I'] = T, but I[Vx8 — B%] # T. From
the latter, by TI, there is some d such that l4[VxB8 — B%] # S; so
by SE(—), l4[VxB] = S but I4[B] # S; from the first of these, by
SE(VY), for any m € U, lgxm)[8B] = S; in particular, where for some
object 0, lg[*] = 0, ly(x|o)[B] = S; so, with » free for x in formula
B, by T10.2, I4[8B] = S. This is impossible; reject the assumption:
= a;.

Assp: Foranyi,1 <i <k, F @Q;.

Show: T E Q.
@y, is either a premise, an axiom, or arises from previous lines by MP
or Gen. If @ is a premise or an axiom then, as in the basis, I' F Q.
So suppose @ arises by MP or Gen.

(MP) Homework.

(Gen) If @y, arises by Gen, then A is something like this,

i B

k VYx8B i Gen

where i < k and @ = VxB. Suppose I' ¥ Qp; then I' ¥ VxB;
so by QV, there is some | such that [[I'] = T but [[Vx8B] # T; from
the latter, by TI, there is a d such that I4[VxB] # S; so by SF(V),
there is some 0 € U, such that lyx|)[8B] # S. But I[['] = T, and by
assumption, I' F B; so by QV, I[B] = T; so by TI, for any variable
assignment h, In[8] = S; in particular, then, lyy|o)[8B] = S. This is
impossible; reject the assumption: I' F @.

I E Q.

Indct: Foranyn, ' F @,.

Soif I' k-, #,then I E &. So AD is sound. And since AD is sound, with theorems
T9.2, T9.12 and T9.13 it follows that ND and ND+ are sound as well.

*E10.2. Complete the case for (MP) to round out the demonstration that AD is sound.
You should set up the complete demonstration, but for cases completed in the
text, you may simply refer to the text, as the text refers cases to homework.

E10.3. Consider a derivation system A4 which has axioms and rules,
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A4 Al. Any sentential form & such that = P.
A2. l_ f/jtx —> chr/) — where £ is free for x in P
MP. @ follows from &> — @ and P

JE. IxP — Q follows from & — @ — where x is not frec in @

Provide a complete demonstration that A4 is sound. You may appeal to sub-
stitution results from the text as appropriate. Hint: By the soundness of AD,
if & is a sentential form and |-,,, & then & is among axioms of the sort (A1).

10.1.3 Consistency

The proof of soundness is the main result we set out to achieve in this section. But
before we go on, it is worth pausing to make an application to consistency. Say a set
3 (Sigma) of formulas is consistent iff there is no formula 4 such that ¥ F A and
¥ F ~sA. Consistency is thus defined in terms of derivations rather than semantic
notions. But we show,

T10.4. If there is an interpretation M such that M[I'] = T (a model for T"), then T is
consistent.

Suppose there is an interpretation M such that M[I"] = T but I is inconsistent.
From the latter, there is a formula 4 such that I' = #A and I' - ~; so by
T103, T F Aand ' F ~A. But M[I'] = T; so by QV, M[A] = T and
M[~#4A] = T; so by TI, for any d, M4[A] = S and Mg[~4A] = S; from
the second of these, by SF(~), My[#A] # S. This is impossible; reject the
assumption: if there is an interpretation M such that M[I'] = T, then T is
consistent.

This is an interesting and important theorem. Suppose we want to show that some
set of formulas is inconsistent. For this, it is enough to derive a contradiction from
the set. But suppose we want to show that there is no way to derive a contradiction.
Merely failing to find a derivation does not show that there is not one! But, with
soundness, we can demonstrate that there is no such derivation by finding a model
for the set.

Similarly, if we want to show that I" - #A, it is enough to produce the derivation.
But suppose we want to show that I' ¥* 4. Merely failing to find a derivation does
not show that there is not one! Still, as above, given soundness, we can demonstrate
that there is no derivation by finding a model on which the premises are true, with
the negation of the conclusion.
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T10.5. If there is an interpretation M such that M[I" U {~A}] = T, then I }* A.

The reasoning is left for homework. But the idea is very much as above. With
soundness, it is impossible to have both M[I" U {~A}] = Tand I I A.

Again, the result is useful. Suppose, for example, we want to show that ~VxAx ¥
~Aa. You may be unable to find a derivation, and be able to point out flaws in
a friend’s attempt. But we show that there is no derivation by finding a model on
which both ~VxAx and ~~Aa are true. And this is easy. Let U = {1,2} with
M[a] = 1 and M[A] = {1}.

(i) Suppose M[~VxAx] # T, then by TI, there is some d such that Mq[~VxAx] # S;
so by SF(~), My[VxAx] = S; so by SF(V), for any 0 € U, Myxo)[Ax] = S; so
Mycx2)[Ax] = S. But d(x]|2)[x] = 2; so by TA(v), My(x|2)[x] = 2; so by SF(),
2 € M[A]; but 2 & M[A]. This is impossible; reject the assumption: M[~VxAx] = T.
(ii) Suppose M[~~Aa] # T; then by TI, there is some d such that My[~~Aa] # S;
so by SF(~), Myg[~Aa] = S; and by SF(~) again, My4[Aa] # S. But M[a] = 1; so by
TA(c), Mg[a] = 1; so by SE(r), 1 & M[A]; but 1 € M[A]. This is impossible; reject the
assumption: M[~~Aa] = T. So M[~VxAx] = T and M[~~Aa] = T. So by T10.5,
~VxAx ¥ ~Aa.

If there is a model on which all the members of I" are true and ~# is true, then it
is not the case that every model with I" true has 4 true. So, with soundness, there
cannot be a derivation of #4 from I'.

*E10.4. Provide an argument to show T10.5. Hint: The reasoning is very much as
for T10.4.

E10.5. (a) Show that {3xAx, ~Aa} is consistent. (b) Show that Vx(Ax — Bx),
~Ba ¥ ~3xAx.

10.2 Sentential Adequacy

The proof of soundness is straightforward given methods we have used before. But
the proof of adequacy was revolutionary when Godel first produced it in 1930. It
is easy to construct derivation systems that are not adequate. Thus, for example,
consider a system like the sentential part of AD but without Al. It is easy to see that
such a system is sound, and so that derivations without Al do not go astray. (All
we have to do is leave the case for Al out of the proof for soundness.) But, by our
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discussion of independence from section 11.3 (see also E8.14), there is no derivation
of Al from A2 and A3 alone. So there are sentential expressions & such that F P,
but for which there is no derivation. So the resultant derivation system would not be
adequate. We turn now to showing that our derivation systems are in fact adequate:
if ' E P, then I' - &£. Given this, with soundness, we have I' E P iff I - P, so
that our derivation systems deliver just the results they are supposed to.

Adequacy for a system like AD was first proved by Kurt Godel in his 1930 doc-
toral dissertation. The version of the proof that we will consider is the standard one,
essentially due to L. Henkin.! An interesting feature of these proofs is that they are
not constructive. So far, in proving the equivalence of deductive systems, we have
been able to show that there are certain derivations, by showing how to construct
them. In this case, we show that there are derivations, but without showing how to
construct them. As we shall see in Part IV, a constructive proof of adequacy for our
full predicate logic is impossible. So this is the only way to go.

The proof of adequacy is more involved than any we have encountered so far.
Each of the parts is comparable to what has gone before, and all the parts are straight-
forward. But there are enough parts that it is possible to lose the forest for the trees.
I thus propose to do the proof three times. In this section, we will prove sentential
adequacy — that for expressions in a sentential language, if ' F &, then ' - 2.
This should enable us to grasp the overall shape of the argument without interference
from too many details. We will then consider a basic version of the quantificational
argument and, after addressing a few complications, put it all together for the full
version. Notation and theorem numbers are organized to preserve parallels between
the cases.

10.2.1 Basic Idea

The basic idea is straightforward: Let us restrict ourselves to an arbitrary sentential
language £ and to sentential semantic rules. Derivations are automatically restricted
to sentential rules by the restricted language. So derivations and semantics are par-
ticularly simple. For formulas in this language, our goal is to show that if I" & 2,
then ' - &. We can see how this works with just a couple of preliminaries.

We begin with a definition and a theorem. As before, let us say,

Con A set X of formulas is consistent iff there is no formula + such that ¥ - 4
and ¥ F ~A.

'Henkin, “Completeness of the First-Order Calculus.” Kurt Godel, “Die Vollstindigkeit der Ax-
iome des Logischen Funktionenkalkiils.” English translation in From Frege to Gddel, reprint in Godel’s
Collected Works.
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So consistency is a syntactical notion. A set of formulas is consistent just in case
there is no way to derive a contradiction from it. Now for the theorem,

T10.65. For any set of formulas ¥ and sentence P, if ¥ ¥ ~%, then ¥ U {P} is
consistent.

Suppose ¥ ¥ ~P, but ¥ U {£} is not consistent. From the latter, there is
some #4 such that XU{P} - A and ZU{P} - ~A. SobyDT, X - P — A
and X - P — ~A; by T3.10, F ~~P — P;80by T3.2, Z - ~~P — A,
and X - ~~P — ~A; butby A3, (~~P — ~A) > [(~~P —> A) >
~&]; so by two instances of MP, ¥ = ~4. But this is impossible; reject the
assumption: if ¥ F* ~%, then £ U {#} is consistent.

The idea is simple: if I' U {#} is inconsistent, then by reasoning as for ~I in ND,
~P follows from I" alone; so if ~& cannot be derived from I" alone, then I U {J}
is consistent. Notice that, insofar as the language is sentential, the derivation does
not include any applications of Gen, so the applications of DT are sure to meet the
restriction on Gen.

In the last section, we saw that any set with a model is consistent. Now suppose
we knew the converse, that any consistent set has a model.

(*) For any consistent set of formulas ¥’, there is an interpretation M” such that
M[Z] =T.

This sets up the key connection between syntactic and semantic notions, between
consistency on the one hand, and truth on the other, that we will need for adequacy.
Schematically, then, with () we have the following,

1. I' U {~&} has a model == 'z #
2. I' U {~&} is consistent = I' U {~&P} has a model (%)
3. I' U {~&} is not consistent — r-ao

(2) is just (). (1) is by simple semantic reasoning: Suppose I' U {~&} has a model;
then there is some M such that M[I" U {~£}] = T; so M[I'] = T and M[~P] = T;
from the latter, by ST(~), M[?] # T;soM[I"'] = Tand M[P] # T;soby SV, I" & 2.
(3) is by straightforward syntactic reasoning: Suppose I' U {~&} is not consistent;
then by an application of T10.65, I' = ~~&; but by T3.10, - ~~% — &; so by
MP, T" = #. Now suppose I' E, #; then by (1), reading from right to left, ' U {~P}
does not have a model; so by (2), again from right to left, ' U {~#} is not consistent;
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soby 3), ' = 2. Soif I' E £, then I = &, which was to be shown. Of course,
knowing that there is some way to derive & is not the same as knowing what that way
is. All the same, () tells us that there must exist a model of a certain sort, from which
it follows that there must exist a derivation. And the work of our demonstration of
adequacy reduces to a demonstration of ().

So we need to show that every consistent set of formulas X’ has an interpretation
M’ such that M'[Z’] = T. Here is the basic idea: We show that any consistent ¥ is
a subset of a corresponding “big” set X specified in such a way that it must have a
model M’ — which in turn is a model for the smaller ¥’. Following the arrows,

EN

N

M/

e

Given a consistent X/, we show that there is the big set X”. From this we show that
there must be an M’ that is a model not only for ¥ but for X’ as well. So if X’ is
consistent, then it has a model. We proceed through a series of theorems to show that
this can be done.

by

10.2.2 Godel Numbering

In constructing our big sets, we will want to consider formulas, for inclusion or
exclusion, serially — one after another. For this, we need to “line them up” for
consideration. Thus, in this section we show,

T10.7;. There is an enumeration @1, @, ... of all formulas in £5.

The proof is by construction. We develop a method by which the formulas
can be lined up. The method is interesting in its own right, and foreshadows
methods from Godel’s Incompleteness Theorem for arithmetic.

In subsection 2.2.1, we required that any sentential language £ has countably many
sentence letters, which can be ordered into a series, §g, S1.... Assume some such
series. We want to show that the formulas of &£ can be so ordered as well. Begin by
assigning to each symbol « (alpha) in the language an integer g[«], called its Gddel
Number.

a. gl(=3
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b. gD)] =5
c. g[~=7
d. g[—=]=9

e. g[8s] = 11+ 2n

So, for example, g[8p] = 11 and g[84] = 11+2x4 = 19. Clearly each symbol gets
a unique Godel number, and Godel numbers for individual symbols are odd positive
integers.

Now we are in a position to assign a Godel number to each formula as follows:
Where a, o . . . are the symbols, in order from left to right, in some expression
Q,

gl@] = p8laol o 38lonl ¢ selen] o 5 g, 8lenl

where 2, 3, 5...m, are the first n prime numbers. So, for example, g[~~8&p] =
27 x 37 x 511; similarly, g[~(80 — 84)] = 27 x 33 x 511 x 7% x 1119 x 135 =
15463,36193, 79608, 90364, 71042, 41201, 87066, 87500, 00000 — a very big inte-
ger! All the same, it is an integer, and it is clear that every expression is assigned to
some integer.

Further, different expressions get different Gédel numbers. It is a theorem of
arithmetic that every integer is uniquely factored into primes (see the arithmetic for
Godel numbering and more arithmetic for Godel numbering references). So a given
integer can correspond to at most one formula: Given a Godel number, we can find
its unique prime factorization; then if there are seven 2s in the factorization, the first
symbol is ~; if there are seven 3s, the second symbol is ~; if there are eleven 5s,
the third symbol is §¢; and so forth. Notice that numbers for individual symbols are
odd, where numbers for expressions are even (where the number for an atomic comes
out odd when it is thought of as a symbol, but then even when it is thought of as a
formula).

The point is not that this is a practical, or a fun, procedure. Rather, the point is
that we have integers associated with each expression of the language. Given this,
we can take the set of all formulas, and order its members according to their Godel
numbers — so that there is an enumeration @, €,...of all formulas. And this is
what was to be shown.

E10.6. Find Godel numbers for the following sentences (for the last, you need not
do the calculation).

87 ~8o 8o — ~(81 — ~8o)
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Some Arithmetic Relevant to Godel Numbering

Say an integer i has a “representation as a product of primes” if there are some
primes pg, pp ... p; such that p, x pp X ... x p; = i. We understand a single
prime p to be its own representation.

GI.

G2.

G3.

Every integer > 1 has at least one representation as a product of primes.

Basis: 2 is prime and so is its own representation; so the first integer > 1 has
a representation as a product of primes.

Assp: Foranyi, 1 <i < k, i has arepresentation as a product of primes.

Show: k has a representation as a product of primes.
If k is prime, the result is immediate; so suppose there are some i, j <
k such that k = i x j; by assumption i has a representation as a
product of primes p, X...x pp and j has a representation as a product
of primes gz X ... X¢qp; 80k =i X ] = paX...X ppXqaX...Xqp
has a representation as a product of primes.

Indct: Anyi > 1 has a representation as a product of primes.

Corollary: any integer > 1 is divided by at least one prime.

There are infinitely many prime numbers.

Suppose the number of primes is finite; then there is some list py, p»... p, of
all the primes; consider ¢ = p1 X p2 X...Xpp+1;n0 p; inthelist p1 ... p,
divides g evenly, since each leaves remainder 1; but by the corollary to (G1),
q is divided by some prime; so some prime is not on the list; reject the
assumption: there are infinitely many primes.

Note: Sometimes ¢, calculated this way, is itself prime: when the list is {2},
q =2+ 1 =3,and 3 is prime. Similarly, 2x3+4+1=7,2x3x5+1 =31,
2x3x5x7+1=211,and2x3x5x7x11+1 = 2311, where 7, 31, 211,
and 2311 are all prime. But2x3x5x7x 11 x13+1 = 30031 = 59x 509.
So we are not always finding a prime not on the list, but rather only showing
that there is a prime not on it.

For any i > 1, if i is the product of the primes pi, p2 ... p4, then no distinct
collection of primes g1, g2 .. .qp is such that i is the product of them. (The
Fundamental Theorem of Arithmetic)

For a proof, see the more arithmetic for Godel numbering reference in the
corresponding part of the next section.
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E10.7. Determine the expressions that have the following Gédel numbers.

49 1944 27 %33 x5 x 72 x 117 x 1313 x 17°

E10.8. Which would come first in the official enumeration of formulas, §; — ~8»
or 8, — ~4&,? Explain. Hint: you should be able to do this without actually
calculating the Godel numbers.

10.2.3 The Big Set

Recall that a set X is consistent iff there is no + such that ¥ implies both + and ~A.
Now, a set X is maximal iff for any # the set implies one or the other.

Max A set X of formulas is maximal iff for any sentence 4, X = A or & - ~A.

Again, this is a syntactical notion. If a set is maximal, then it implies 4 or ~-4 for
any sentence +A; if it is consistent, then it does not imply both. We set out to construct
a big set X" from X/, and show that X" is both maximal and consistent.

CnsX” Construct ¥ from X’ as follows: By T10.7;, there is an enumeration,
@1, @,...of all the formulas in £5;. Consider this enumeration, and let ¢
(Omegag) be the same as X’. Then for any i > 0, let

Q=9 if Qi1 F~Q;
else,
Qi =Q;1U{Q;} if Qi1 ¥ ~Q;
then,
> = Uizo Q; — thatis, X" is the union of all the ;s

Beginning with set X’ (= ), we consider the formulas in the enumeration @1,
@5...one-by-one, adding a formula to the set just in case its negation is not already
derivable. X" contains all the members of X’ together with all the formulas added
this way. Observe that ¥’ € 3. One might think of the €2;s as constituting a big
“sack” of formulas, and the @;s as coming along on a conveyor belt: for a given @;,
if there is no way to derive its negation from formulas already in the sack, we throw
the @; in; otherwise, we let it go on by. Of course, this is not a procedure we could
complete in finite time. Rather, we give a logical condition which specifies, for any
@; in the language, whether it is to be included in X" or not. The important point is
that some 3" meeting these conditions exists.
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As an example, suppose ¥’ = {~A — B} and consider an enumeration which

begins A, ~A, B, ~B.... Then,

(F)

Qo =X';50Qy = {~A4 - B}.

@, =A,and Q¢ ¥ ~A;50 21 = {~A —> B} U{A} = {~A — B, A}.

@, = ~A, and Q1 F ~~A4; and Q2 is unchanged; so 2, = {~A4 — B, A}.
@3 = B,and Q, ¥ ~B;s0 Q3 ={~A —> B, A} U{B} ={~A — B, A, B}.

Q4 = ~B,and Q3 - ~~B;and Q4 is unchanged; so Q4 = {~A4 — B, A, B}.

So we include @; each time its negation is not implied. Ultimately, we will use this
set to construct a model. For now, though, the point is simply to understand the
condition under which a formula is included or excluded from the set.

We now show that if 3 is consistent, then X" is maximal and consistent. Perhaps

the first is obvious: We guarantee that " is maximal by including @; as a member
whenever ~@; is not already a consequence.

T10.8,. If X’ is consistent, then =" is maximal and consistent.

The proof comes to the demonstration of three results. Given the assumption
that X’ is consistent, we show, (a) X" is maximal; (b) each €2; is consistent;
and use this to show (c), X" is consistent. Suppose ¥’ is consistent.

(a) ¥ is maximal. Suppose otherwise. Then there is some @; such that
both ¥ ¥ @; and ¥ ¥ ~@;. For this i, by construction, each member
of Q;_1isin ¥’; soif Q;_1 F ~@; then X" F ~@;; but " ¥ ~@;; so
Q;_1 ¥ ~@Q;; so by construction, Q; = Q;_1 U {@;}; and by construction
again, @; € X”; so "  @;. This is impossible; reject the assumption: "
is maximal.

(b) Each 2; is consistent. By induction on the series of €2;s.

Basis: Q¢ = X’ and X’ is consistent; so Q¢ is consistent.

Assp: Foranyi,0 <i <k, Q; is consistent.

Show: €2 is consistent.
Qp is either Qj_1 or Qr_1 U {@}. Suppose the former; by assump-
tion, 2 _1 is consistent; so €2 is consistent. Suppose the latter; then
by construction, Q_1 ¥ ~Qp; so by T10.65, Qr_1 U {@} is con-
sistent; so 2 is consistent. So, either way, €2 is consistent.

Indct: For any i, 2; is consistent.
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(c) " is consistent. Suppose X" is not consistent; then there is some 4 such
that X"  #A and X7 -+ ~sA. Consider derivations D1 and D2 of these results,
and the premises @; ... @ ; of these derivations. Where @ ; is the last of these
premises in the enumeration of formulas, by the construction of X", each of
@; ...Q; must be a member of 2;; so DI and D2 are derivations from 2 ;;
so §2; is inconsistent. But by the previous result, €2 ; is consistent. This is
impossible; reject the assumption: X" is consistent.

Because derivations of # and ~# have only finitely many premises, all the premises
in a derivation of a contradiction must show up in some 2 ;; so if £” is inconsistent,
then some Q2 is inconsistent. But no Q is inconsistent. So X" is consistent. So
we have what we set out to show. X/ € ¥, and if ¥’ is consistent, then X" is both
maximal and consistent.

E10.9. (i) Suppose X’ = {A — ~B} and the enumeration of formulas begins A,
~A, B, ~B.... What are Q¢, 21, 22, 23, and Q24? (i) What are they
when the enumeration begins B, ~B, A, ~A...? In each case, produce a
(sentential) model to show that the resultant 24 is consistent.

10.2.4 The Model

We now construct a model M’ for 3’. In this sentential case, the specification is
particularly simple.

CnsM’ For any atomic 8, let M'[8] = Tiff " F 8.

Notice that there clearly exists some such interpretation M’: We assign T to every
sentence letter that can be derived from X", and F to the others. It will not be the
case that we are in a position to do all the derivations, and so to know what are all
the assignments to the atomics. Still, it must be that any atomic either is or is not
a consequence of X', and so that there exists a corresponding interpretation M’ on
which those sentence letters either are or are not assigned T.

We now want to show that if ¥’ is consistent, then M’ is a model for ¥’ — that if
>/ is consistent then M'[X’] = T. As we shall see, this results immediately from the
following theorem.

T10.9,. If X/ is consistent, then for any sentence B, of L5, M'[B] = Tiff X" + B.

Suppose ¥’ is consistent. Then by T10.85, X" is maximal and consistent.
Now by induction on the number of operators in 3,
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Basis:

Assp:

Show:

(~)

(=)

If 8 has no operators, then it is an atomic of the sort §. But by the
construction of M/, M'[8] = Tiff " F 8;so M'[B] = Tiff X" - B.
Foranyi,0 <i < k, if B has i operator symbols, then M'[B] = T iff
¥+ 8.

If B has k operator symbols, then M'[B] = T iff X" F 8.

If B has k operator symbols, then it is of the form ~# or P — @
where & and @ have < k operator symbols.

Suppose B is ~P. (i) Suppose M'[B] = T; then M'[~P] = T; so
by ST(~), M'[] # T, so by assumption, X" ¥ &; so by maximality,
X" ~&; which is to say, X" - B. (ii) Suppose X" - B; then X" +
~&P; so by consistency, X’ ¥ P; so by assumption, M'[P] # T; so
by ST(~), M'[~P] = T; which is to say, M'[B] = T. SoM'[B] =T
iff " + 8.

Suppose B is £ — @. (i) Suppose M'[B] = T; then M'[P — Q] =
T;soby ST(—), M'[P] # T or M'[@] = T; so by assumption, X" ¥ P
or X" F @. Suppose the latter; by Al, F @ — (£ — @Q); so by MP,
" P — Q. Suppose the former; then by maximality, " - ~2;
but by T3.9, - ~P — (P — @);soby MP, X" F £ — @. Soin
either case, X" F P — @; where this is to say, " - B. (ii) Suppose
" F B but M'[B] # T; by [homework], this is impossible: so if
S” B, then M[B] = T. So M[8] = Tiff " - B.

If B has k operator symbols, then M'[B] = T iff =" F B.

Indct:

For any 8, M'[B] = Tiff ¥ - 8.

So if ¥’ is consistent, then for any B8 € ¥/, M'[B] = Tiff X" + B.

The key to this is that X is both maximal and consistent. In (F), for example,
Qo = {~A — B};s0 Qo ¥ Aand Qo ¥ B; if we were simply to follow our
construction procedure as applied to this set, the result would have M’'[A] # T and
M'[B] # T, but then M'[~A — B] # T and there is no model for Q. But Q4 has
A and B as members; so Q4 - A and Q24 F B. So by the construction procedure,
M[A] = Tand M'[B] = T; so M[~4 — B] = T. Thus it is the construction
with maximality and consistency of X that puts us in a position to draw the parallel
between the implications of ¥ and what is true on M. It is now a short step to seeing
that we have a model for ¥’ and so () that we have been after.

*E10.10. Complete the second half of the conditional case to complete the proof of
T10.95. You should set up the entire induction, but may refer to the text for



CHAPTER 10. MAIN RESULTS 485

parts completed there, as the text refers to homework.

E10.11. (i) Where ¥’ = {4 — ~B}, and the enumeration of formulas are as in the
first part of E10.9, what assignments does M’ make to 4 and B? (ii) What
assignments does it make on the second enumeration? Use a truth table to
show, for each case, that the assignments result in a model for ¥’. Explain.

10.2.5 Final Result

The proof of sentential adequacy is now a simple matter of pulling together what we
have done. First, it is a simple matter to show,

T10.10,. If X' is consistent, then M'[Z'] =T. (%)

Suppose ¥’ is consistent but M'[Z’] # T. From the latter, there is some
formula B € X’ such that M'[8B] # T. Since 8 € X', by construction,
B e X s0 X"+ B; so, since ¥’ is consistent, by T10.95, M'[8B] = T. This
is impossible; reject the assumption: if ¥’ is consistent, then M'[Z'] = T.

That is it! Going back to the beginning of our discussion of sentential adequacy, all
we needed was (), and now we have it. So the final argument is as sketched before:

T10.115. T E P,then ' = P.  (sentential adequacy)

Suppose I' E P but I F* 2. Say, for the moment, that I" = ~~&; by T3.10,
F ~~P — P;s0by MP, I" I &; but this is impossible; so I' ¥ ~~&P.
Given this, by T10.65, TU{~&} is consistent; so by T10.10y, there is a model
M’ such that M'[T" U {~P}] = T; so M'[~P] = T, so by sT(~), M'[P] # T,
so M'[T'] = T but M'[P] # T;soby SV, I' & . This is impossible; reject
the assumption: if I' E #, then I" = £.

Try again to get the complete picture in your mind: The key is that consistent sets
always have models. If there is no derivation of & from I', then I" U {~J} is consis-
tent; and if I' U {~} is consistent, then it has a model — so that I' Z . Thus, put
the other way around, if I' &, then there is a derivation of & from I". We get the
key point, that consistent sets have models, by finding a relation between consistent,
and maximal consistent sets. If a set is both maximal and consistent, then it contains
enough information about its atomics that a model for its atomics is a model for the
whole.
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It is obvious that the argument is not constructive — we do not see how to show
that I' = % whenever I' E . But it is interesting to see why. The argument turns
on the existence of our big sets under certain conditions, and so on the existence of
models. We show that the sets must exist and have certain properties, though we are
not in a position to find all their members. This puts us in a position to know the
existence of derivations, though we do not say what they are.”

E10.12. Suppose our primitive operators are ~ and A and the derivation system is A2
from E3.4 on p. 81. Present a complete demonstration of adequacy for this
derivation system — with all the definitions and theorems. You may simply
appeal to the text for results that require no change.

10.3 Quantificational Adequacy: Basic Version

As promised, the demonstration of quantificational adequacy is parallel to what we
have seen. Return to a quantificational language and to our regular quantificational
semantic and derivation notions. The goal is to show thatif ' F &, then I" = #. Cer-
tain complications are avoided if we suppose that the language &£’ includes infinitely
many constants not in I', and does not include the ‘=" symbol for equality. The con-
stants not already in I" are required for the construction of our big sets. And without
= in the language, the model specification is simplified. We will work through the
basic argument in this section and, dropping constraints on the language, return to
the general case in the next. If you are confused at any stage, it may help to refer
back to the parallel section for the sentential case.

Before launching into the main argument, it will be helpful to have a preliminary
theorem. Where D = (B;...8,) is an AD derivation, and X/ = {€;...€,}isa
set of formulas, for some constant . and variable x, say Dy = (B1 5 ... 8, 5) and
¥4 ={€ ¢...€, %} By induction on the line numbers in D, we show,

T10.12. If D is a derivation from X', and x is a variable that does not appear in D,
then for any constant @, D¥ is a derivation from X’ ¢.

Basis: 8 is either a member of ¥’ or an axiom.

(prem) If B; is a member of X', then B; ¢ is a member of X’ ;50 (B ¥) is
a derivation from X' £.

2In fact, there are constructive approaches to sentential adequacy. See, for example, Lemma 1.13
and Proposition 1.14 of Mendelson, /ntroduction to Mathematical Logic. Our primary purpose, how-
ever, is to set up the argument for the quantificational case, where such methods do not apply.
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(eq)

(A)

(A2)
(A3)
(A4)

(AS)
Assp:
Show:

(MP)
(Gen)

If B; is an equality axiom, A6, A7 or A8, then it includes no con-
stants; so B; = By Z; so By £ is an equality axiom, and (B ¥) is a
derivation from X' £.

If B, is an instance of Al, then it is of the form,  — (@ — &); so
Bi1is PL — (QF — PF2); but this is an instance of Al; so if B
is an instance of Al, then 8 £ is an instance of Al, and (B; ) is a
derivation from X' £.

Homework.

Homework.

If B; is an instance of A4, then it is of the form, Vv P — P/, for
some variable v and term # that is free for v in . So B1% =
VoP — PP1E = [VoP]¢ — [$/]L. Butsince x does not ap-
pearin D, x # v;so [VoP]¢ = Vv [PZ]. And by T8.7, [P/]¢ =
[f/’f]l’g So B1§ = Vv [PL] — [P l’;,; and since x is new to D and

t is free for v in P, 1 is free for v in P so Vo [P — [PL]a
x

is an instance of A4; so if B is an instance of A4, then B; ¥ is an
instance of A4, and (B; ¢) is a derivation from X’ ¢.

Homework.

Foranyi,1 <i <k, (B812...8; %) is aderivation from X’ £.
(B1&...8 %) is aderivation from X’ ¢.

By, is a member of X', an axiom, or arises from previous lines by MP
or Gen. If By is a member of X’ or an axiom then, by reasoning as in
the basis, (Bj ... B) is a derivation from X’ £. So two cases remain.
Homework.

If By arises by Gen, then there are some lines in D,

i P

k Yvr@ i Gen

where i < k and 8, = YvP. By assumption £ is a member of
the derivation (B1 ¢ ... Br_1 Z) from X' ¢; so Vv PZ follows in this
new derivation by Gen. So (81 ¢ ... B ) is a derivation from X’ ¢.

So (B12...8y %) is aderivation from ' 2.

Indct:

Forany n, (812 ... 8, %) is a derivation from X’ ¢.

The reason this works is that none of the justifications change: switching x for a

leaves each line justified for the same reasons as before. The only sticking point
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may be the case for A4. But we did the real work for this by induction in T8.7.
And that result should be intuitive, once we see what it says. Given this, the rest is
straightforward.

*E10.13. Finish the cases for A2, A3, A5 and MP to complete the proof of T10.12.
You should set up the complete demonstration, but may refer to the text for
cases completed there, as the text refers cases to homework.

E10.14. Where ¥/ = {Ab} and D is as follows,

1. Vx~Ax — ~Ab A4

2. (Vx~Ax — ~Ab) — (~~Ab — ~Vx~Ax) T3.13
3. ~~Ab - ~Vx~Ax 2,1 MP
4. Ab — ~~Ab T3.11

5. Ab —> ~Vx~Ax 4,3T3.2
6. Ab prem

7. ~Vx~Ax 5,6 MP
8. dxAx 7 abv

apply T10.12 to show that Dg is a derivation from ¥’ i’, Do any of the justi-
fications change? Explain.

10.3.1 Basic Idea

As before, our main argument turns on the idea that every consistent set has a model.
Thus we begin with a definition and a theorem.

Con A set X of formulas is consistent iff there is no formula + such that X - A
and X F ~A.

So a set of formulas is consistent just in case there is no way to derive a contradiction
from it. Of course, now we are working with full quantificational languages, and so
with our complete quantificational derivation systems.

For the following theorem, notice that X is a set of formulas, and & a sentence
(a distinction without a difference in the sentential case). Again as before,

T10.6. For any set of formulas ¥ and sentence &, if ¥ ¥ ~%P, then ¥ U {P} is
consistent.

For some sentence J#, suppose X ¥ ~5 but X U {#} is not consistent. From
the latter, there is some formula #4 such that ¥ U {#} - A and X U {P} -
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~A; since & is a sentence, it has no free variables; so by DT, X - P — #
and X - P — ~A; by T3.10,F ~~P — P;s0by T3.2, T F ~~P — A
and ¥ F ~~P — ~A; butby A3, F (~~P — ~A) = [(~~P —> A) >
~&]; so by two instances of MP, ¥ + ~&. This is impossible; reject the
assumption: if ¥ ¥ ~%, then ¥ U {#} is consistent.

Insofar as & is required to be a sentence, the restriction on applications of DT is sure
to be met: since & has no free variables, no application of Gen is to a variable free
in #. So T10.6 does not apply to arbitrary formulas.

To the extent that T10.6 plays a direct role in our basic argument for adequacy,
this point that it does not apply to arbitrary formulas might seem to present a problem
about reaching our general result, that if I' = & then I' - &, which is supposed to
apply in the arbitrary case. But there is a way around the problem. For any formula
P, let its (universal) closure P€ be P prefixed by a universal quantifier for every
variable free in . To make &€ unique, for some enumeration of variables, x1, x> .. .
let the quantifiers be in order of ascending subscripts. So if 4 has no free variables,
PC = P, if x1 is free in P, then P¢ = Vx1P; if x1 and x3 are free in P, then
PC¢ = Vx1Vx3P; and so forth. So for any formula P, P€ is a sentence. As it turns
out, we will be able to argue about arbitrary formulas &, by using their closures P¢
as intermediaries.

Suppose that the members of I' U {~P¢} = X’ are formulas of £’. Then it will
be sufficient for us to show that any consistent set of this sort has a model.

(*) For any consistent set X" of formulas in £, there is an interpretation M” such
that M'[Z] = T.

Again, this sets up the key connection between syntactic and semantic notions —
between consistency on the one hand, and truth on the other — that we will need for
adequacy. Supposing (x) we have the following,

1. I' U {~%€} has a model =4 r#e
2. I' U {~&°€} is consistent = I' U {~%€} has a model (%)
3. I' U {~&€} is not consistent == r-s

(2) is just (). Observe that (1) and (3) switch between P¢ and &. (1) is by semantic
reasoning: Suppose I' U {~&%€} has a model; then there is some M such that M[I" U
{~P€}] = T;so M[I'] = T and M[~P€] = T; from the latter, by TI, for arbitrary
d, Mg[~P€] = S; so by SF(~), Myq[P€] # S; so by TI, M[P€] # T, so by repeated
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applications of T7.7 on page 371, M[#] # T; so M[I'] = T and M[#] # T; so by
QV, T ¥ £. (3) is by syntactic reasoning: Suppose I' U {~P€} is not consistent;
then since #€ is a sentence, by an application of T10.6, I' = ~~%¢; but by T3.10,
F ~~P¢ — P, so by MP, I' F £¢; and by repeated applications of A4 and MP,
r+2a.

Now suppose I E £; then from (1), ' U {~5€} does not have a model; so by
(2), ' U {~P€} is not consistent; soby (3), ' - £. Soif I' F £, then T - 2,
and this is the result we want. T7.7, according to which M[#] = Tiff M[VxP] =T,
along with A4 and Gen, which let us derive  from VxJ and vice versa, bridge
between P and &€ so that our suppositions about formulas can be converted into
claims about sentences and then back again.

Again, it remains to show (%), that every consistent set X’ of formulas has a
model. And, again, our strategy is to find a “big” set related to X’ which can be used
to specify a model for X',

10.3.2 Godel Numbering

As before, in constructing our big sets, we will want to line up expressions serially —
one after another. The method merely expands our approach for the sentential case.

T10.7. There is an enumeration @1, @, ... of all the formulas, terms, and the like,
in &'
The proof is again by construction: We develop a method by which all the
expressions of &£’ can be lined up. Then the collection of all formulas, taken
in that order, is an an enumeration of all formulas; the collection of all terms,
taken in that order, is an enumeration of all terms; and so forth.

Insofar as the collections of variable symbols, constant symbols, function symbols,
sentence letters, and relation symbols in any quantificational language are count-
able, they are capable of being sorted into series, xg, X1 ... and ag, @1 ... and /L’(’),
A ... and R§, RY ... for variables, constants, function symbols and relation sym-
bols, respectively (where we think of sentence letters as O-place relation symbols).
Supposing that they are sorted into such series, begin by assigning to each symbol «
in £’ an integer g[«] called its Gddel Number.

a. g[(l=3 f. g[vV]=13

b. gDl=5 g gxi] =15+ 10i

c. gl~=7 h. gla;] =17 4+ 10i

d g[=]=9 i g[A"] =19+ 10(2" x 3)
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Ye. gl=]l=11 i g[R?] =21+ 102" x 37)

3 s

Officially, we do not yet have ‘=" in the language, but it is easy enough to leave
it out for now. So, for example, g[xo] = 15, g[x1] = 15+ 10 x 1 = 25, and
g[R3] =21 +10(22 x 31) = 141.

To see that each symbol gets a distinct Godel number, first notice th at numbers
in different categories cannot overlap: Each of (a) - (f) is obviously distinct and
< 13. But (g) - (j) are all greater than 13, and when divided by 10, the remainder is
5 for variables, 7 for constants 9 for function symbols, and 1 for relation symbols;
so variables, constants, and function symbols all get different numbers. Second,
different symbols get different numbers within the categories. This is obvious except
in cases (i) and (j). For these we need to see that each n/i combination results in a
different multiplier.

Suppose this is not so, that there are some combinations n,i and m, j such that 2" x
3 =2"x3/ butn #mori # j. If n = m then, dividing both sides by 2", we
get 31 = 3/ sothati = j. So suppose n # m and, without loss of generality, that
n > m. Dividing each side by 2™ and 3 we get 2" = 3771 sincen > m,n —m is
a positive integer; so 2"~ is > 1 and even. But 3/ =/ is either < 1 or odd. Reject the
assumption: if 2 x 3’ = 2" x 3/ thenn =mandi = j.

So each n/i combination gets a different multiplier, and we conclude that each sym-
bol gets a different Godel number. (This result is a special case of the Fundamental
theorem of Arithmetic treated in the arithmetic fore Godel numbering and more arith-
metic for Godel numbering references.)

Now, as before, assign Godel numbers to expressions as follows: Where g, o1
...y are the symbols, in order from left to right, in some expression €,

gl@] = 28lao] ¢ 3gla1] y gglan] 5 T glan]

where 2, 3, 5... 7, are the first n prime numbers. So, for example, g[wwﬁfxoxl] =
27 x 37 x 5141 5 715 » 112° — a relatively large integer (one with over 130 digits)!
All the same, it is an integer, and different expressions get different Godel numbers.
Given a Godel number, we can find the corresponding expression by finding its prime
factorization; then if there are seven 2s in the factorization, the first symbol is ~; if
there are seven 3s, the second symbol is ~; if there are one hundred forty one 5s,
the third symbol is R?; and so forth. Notice that numbers for individual symbols are
odd, where numbers for expressions are even.

So we can take the set of all formulas, the set of all terms, or whatever, and order
their members according to their Gddel numbers — so that there is an enumeration
@1, @, ... of all formulas, terms, and so forth. And this is what was to be shown.
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More Arithmetic Relevant to Godel Numbering

G3. Forany i > 1, if i is the product of the primes p;, p» ... pg, then no distinct collec-
tion of primes ¢1, ¢z . . . qp is such that i is the product of them. (The Fundamental
Theorem of Arithmetic)

Basis:

Assp:

Show:

Indct:

The first integer > 1 = 2; but the only collection of primes such that their
product is equal to 2 is the collection containing just 2 itself; so no distinct
collection of primes is such that 2 is the product of them.

Foranyi, 1 <i <k, if i is the product of primes p; ... p,, then no distinct
collection of primes ¢ ... qp is such that i is the product of them.

k is such that if it is the product of the primes p; ... p,, then no distinct
collection of primes ¢ .. .qp is such that k is the product of them.

Suppose there are distinct collections of primes p; ... p; and q; . ..qp such
thatk = p1 X...X pg = ¢q1 X...X(p; divide out terms common to both lists
of primes; then for some subclasses of the original lists, n = p; X ... X p, =
g1 X ... X ¢4, where no member of p; ... p. is a member of g; ...q4 and
vice versa (of course this p; may be distinct from the one in the original list,
and so forth). So p; # ¢1; suppose, without loss of generality, that p; > ¢;;

andletm = q1(n/q1 —n/p1) =n—(q1/p1)n =n—q1 X pa X ... X pe.

Some preliminary results: (i) m < n < k; so m < k. Further, n/g; and
n/ py are integers, with the first greater than the second; so the difference is
an integer > 0; any prime is > 1; so g; is > 1; so the product of ¢; and
(n/qy —n/py1)is > 1; so m > 1. So the inductive assumption applies to m.
(ii) ¢1 divides n and ¢y divides g1 X pa X...X pc; 80 [n—q1 X p2 X...X pcl/q1
is an integer; so m/q; is an integer, and ¢; divides m. (iii) (p1 — q1)/q1 =
p1/g1—1; since pq is prime, this is no integer; so ¢; does not divide (p; —q1).

Notice that m = (p1 — ¢q1)(n/ p1); either p; — g7 = 1 or it has some prime
factorization, and n/ p; has a prime factorization, p, X ... X p.; the product
of the factorization(s) is a prime factorization of m. Given the cancellation of
common terms to get n, g1 is not a member of p, X ... X p.; by (iii), ¢; is
not a member of the factorization of p; — ¢q1; so g1 is not a member of this
factorization of m. By (ii), g1 divides m, and however many times it goes into
m, by (G1), that number has a prime factorization; the product of ¢; and this
factorization is a prime factorization of m; so g1 is a member of some prime
factorization of m. But by (i), the inductive assumption applies to m; so m
has only one prime factorization. Reject the assumption: there are no distinct
collections of primes, p; ... pg and g1 ...¢gp suchthatk = p; X ... X p; =

q1 X ... X({p.

For any i > 1, if i is the product of the primes pi, ps ... pa, then no distinct
collection of primes ¢1, g» - . . qp is such that i is the product of them.
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E10.15. Find Godel numbers for each of the following. Treat the first as a simple
symbol. (For the last, you need not do the calculation!)

:R% /L%Xl VXzﬁ%dz%z

E10.16. Determine the objects that have the following Gédel numbers.

61 213 5 315 5 53 5 715 111 x 1315 x 17°

10.3.3 The Big Set

This section, along with the next, constitutes the heart of our demonstration of ade-
quacy. Last time, to build our big set we added formulas to X’ to form a X" that was
both maximal and consistent. A set of formulas is consistent just in case there is no
formula A such that both 4 and ~# are consequences. To accommodate restrictions
from T10.6, maximality is defined in terms of sentences.

Max A set X of formulas is maximal iff for any sentence 4, X - A or & - ~A.

This time, however, we need an additional property for our big sets. If a maximal
and consistent set has Vx & as a member, then it has [ as a consequence for every
constant a. (Be clear about why this is so.) But in a maximal and consistent set, the
status of a universal Vx P is not always reflected at the level of its instances. Thus,
for example, though a set has ) as a consequence for every constant «, it may
consistently include ~VxJ as well — for it may be that a universal is falsified by
some individual to which no constant is assigned. But when we come to showing by
induction that there is a model for our big set, it will be important that the status of a
universal is reflected at the level of its instances. We guarantee this by building the
set to satisfy the following condition.

Scgt A set X of formulas is a scapegoat set iff for any sentence ~Vx P, if ¥
~Vx P, then there is some constant « such that X = ~P7.
Equivalently, ¥ is a scapegoat set just in case any sentence dxJ is such that if X F
Jx P, then there is some constant @ such that ¥ = £ . In a scapegoat set, we assert
the existence of a particular individual (a scapegoat) corresponding to any existential
claim. Notice that, since ~Vx & is a sentence, ~J is a sentence too.
So we set out to construct from X’ a maximal, consistent, scapegoat set. As
before, the idea is to line the formulas up, and consider them for inclusion one-by-
one. In addition, this time, we consider an enumeration of constants c1, <2 ... and
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for any included sentence of the form ~Vx?, we include ~$) where ¢ is a constant
that does not so far appear in the construction. Notice that if, as we have assumed,
&£’ includes infinitely many constants not in I, there are sure to be infinitely many
constants not already in a X’ built on I

CnsX” Construct X" from X’ as follows: By T10.7, there is an enumeration, @1,
@,...of all the sentences in £’ and also an enumeration ¢1, <5 ... of con-
stants not in X’. Let Q¢ = ¥’. Then for any i > 0, let

Qi = Qi1 if Qi1 F~@Q;
else,
Qix = Qi1 UL} if Qi1 ¥ ~Q;
and,
Q= Q;* if @; is not of the form ~Vx &

Q; = Qi+ U{~PL} if @; is of the form ~VxP; ¢ the first

constant not in £2;x
then,

" = ;5o 2 — thatis, " is the union of all the Q;s

Beginning with set ¥’ (= Q¢), we consider the sentences in the enumeration @1,
@, ... one-by-one, adding a sentence just in case its negation is not already derivable.
In addition, if @; is of the sort ~Vx P, we add an instance of it, using a new constant.
This time, 2;* functions as an intermediate set. Observe that if ¢ is not in 2;+, then
cisnotin ~VxP. X" contains all the members of X/, together with all the formulas
added this way.

It remains to show that if ¥’ is consistent, then X" is a maximal, consistent,
scapegoat set.

T10.8. If ¥’ is consistent, then X is a maximal, consistent, scapegoat set.

The proof comes to showing (a) ¥ is maximal. (b) If ¥’ is consistent then
each Q; is consistent. From this, (¢) if ¥’ is consistent then X" is consis-
tent. And (d) if X’ is consistent, then X" is a scapegoat set. Suppose X/ is
consistent.

(a) X" is maximal. Suppose X" is not maximal. Then there is some sentence
@; such that both X" ¥ @; and " ¥ ~@Q;. For this i, by construction,
each member of Q;_; isin X”; so if ;1 F ~@; then & F ~@Q;; but
3 ¥ ~@Q;; 50 Qi—1 ¥ ~@;; so by construction, Q;+ = ;1 U {@;}; and
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by construction again, @; € X”; so £” | @;. This is impossible; reject the
assumption: X is maximal.

(b) Each 2; is consistent. By induction on the series of €2;s.

Basis:
Assp:
Show:

(1)

(i)

(iii)

Indct:

Qo = X’ and Y’ is consistent; so Q¢ is consistent.

Foranyi,0 <i < k, €; is consistent.

Q. is consistent.

Qk is either (1) Qk—l? (ii) Qk* = Qk—l U{@k}, or (iii) Qk* U{Nﬂjcx}
Suppose 2y is Qx—_;. By assumption, €2;_ is consistent; so Q2 is
consistent.

Suppose Q is Qg+ = Qp_1 U {@¢}. Then by construction, Q1 ¥
~@Qp; so, since @ is a sentence, by T10.6, Q4 _; U{@}} is consistent;
so g+ is consistent, and €2 is consistent.

Suppose Q. is Qg+ U {~PF} for ¢ not in Qg+ or in ~VxP. In this
case, as in (ii) above, Q2+ is consistent; and, by construction ~Vx P €
Qpx; 80 Qi+ F ~VxP. Suppose Q2 is inconsistent; then there are
formulas 4 and ~« such that Q; F A and Qp F ~A; so Qpx+ U
{~PrE Aand Qg+ U{~P)} F ~sA. Butsince ~P is a sentence,
the restriction on DT is met, and both Qg+ = ~PY — A and Qg+ -
~PY — ~A by A3, F (~PF > ~A) = [(~PF > A) - P)];

so by two instances of MP, Qpx = Pr.

Consider some derivation of this result; by T10.12, we can switch ¢
for some variable v that does not occur in Qg+ or in the derivation,
and the result is a derivation; so Qg+ S F [PX]%; but since ¢ does
not occur in Q=+ or in ~Vx.P, this is to say, Qg= = PJ; so by Gen,
Qpx = YvP); but x is not free in Vv P and x is free for v in P,

so by T3.27, = Yo P) — Vx[PF]Y; so by MP, Qp+ F Vx[P[]Y;

v
and since v is not a variable in 2, it is not free in & and free for x in

P;soby T8.2, [Pr]Y = P; 50 Qpx = VxP.

But Qp« = ~Vx&P. So Qi+ is inconsistent. This is impossible; reject
the assumption: €2 is consistent.

Q. is consistent

For any i, 2; is consistent.

(c) X" is consistent. Suppose X" is not consistent; then there is some 4 such
that ¥’ - 4 and "  ~uw. Consider derivations DI and D2 of these results,
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and the premises @; . .. @ ; of these derivations. Where @ ; is the last of these
premises in the enumeration of formulas, by the construction of X", each of
@; ...Q; must be a member of 2 ;; so DI and D2 are derivations from 2 ;
so £2; is inconsistent. But by the previous result, £2; is consistent. This is
impossible; reject the assumption: X" is consistent.

(d) ¥ is a scapegoat set. Suppose X" F @;, for @; of the form ~Vx&P.
By (c), X" is consistent; so X7 ¥ ~~VxP; which is to say, X" ¥ ~@Q;;
s0, Q1 ¥ ~@;; so by construction, Q;+ = Q;_1 U {~VxP} and Q; =
Qi+ U {~PX}; so by construction, ~P} € X”; so & F ~P¥. So if
Y ~VxP, then 7 F ~PX, and X" is a scapegoat set.

In a pattern that should be familiar by now, we guarantee maximal scapegoat sets,
by including instances as required. The most difficult case is (iii) for consistency.
Having shown that Qg+ = P for ¢ not in Qg+ or in &, we want to generalize to
show that Q.+ - Vx. But, in our derivation systems, generalization is on variables,
not constants. To get the generalization we want, we first use T10.12 to replace ¢ with
an arbitrary variable v. From this, we might have moved immediately to Vx5 by
the ND rule VI. However, in the above reasoning, we stick with the pattern of AD
rules, applying Gen, and then T3.27 to switch bound variables, for the desired result,
that contradicts ~VxP.

E10.17. Let ¥’ = {Vx~Bx, Ca} and consider enumerations of sentences and extra
constants in &£’ that begin, Aa, Ba, ~YxCx ...and ¢y, ¢z .... What are Qg,
Qi+, 21, Qox, Qo, Q3+, 3? Produce a model to show that the resultant set
€23 is consistent.

E10.18. Suppose some 2,1 = {Acz, Vx(Ax — Bx)}. Show that ;= is consis-
tent, but 2; is not, if @; = ~VxBx, and we add ~VxBx with ~ B¢, to form
Q;+ and Q;. Why cannot this happen in the construction of X?

10.3.4 The Model

We turn now to constructing the model M’ for /. As it turns out, the construction is
simplified by our assumption that ‘=" does not appear in the language. A quantifica-
tional interpretation has a universe, with assignments to sentence letters, constants,
function symbols, and relation symbols.
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CnsM’ Let the universe U be the set of positive integers, {1,2...}. Then, where a
variable-free term consists just of function symbols and constants, consider
an enumeration #1, Z5 ... of all the variable-free terms in &’. If z, is a con-
stant, set M'[t;] = z. If t, = A" 14 ...t} for some function symbol A" and
n variable-free terms %, ... #p, then let ((a...b),z) € M'[A"]. For a sen-
tence letter 8, let M'[8] = T iff ¥” - &. And for a relation symbol R", let
(a...b) e M[R"iff B F Ry ... 1p.°

Thus, for example, where #; and #3 from the enumeration of terms are constants and
X" Rityts, then M'[t1] = 1, M'[t3] = 3 and (1, 3) € M'[R]. Given this, it should
be clear why Ri1t3 comes out satisfied on M": Put generally, where 1, ... 1, are
constants, we set M'[#,] = a, and ...and M'[¢,] = b; so by TA(c), for any variable
assignment d, M)[¢,] = a, and ... and M}[#,] = b. So by SE(r), M{[R" 14 ... 1p] =
S iff (a...b) € M[R"]; by construction, iff X" = R"#,...1p. Just as in the
sentential case, our idea is to make atomic sentences true on M’ just in case they are
proved by X",

Our aim has been to show that if X’ is consistent, then X" has a model. We have
constructed an interpretation M’, and now show what sentences are true on it. As in
the sentential case, the main weight is carried by a preliminary theorem. And, as in
the sentential case, the key is that we can appeal to special features of ", this time
that it is a maximal, consistent, scapegoat set. Notice that B is a sentence.

T10.9. If ¥’ is consistent, then for any sentence B of £/, M'[B] = Tiff X" + B.

Suppose X’ is consistent and B is a sentence of £’. By T10.8, X" is a max-
imal, consistent, scapegoat set. We begin with a preliminary result, which
connects arbitrary variable-free terms to our treatment of constants in the
example above: for any variable-free term ¢, and variable assignment d,
Mylzz] = z.

Suppose £ is a variable-free term and d is an arbitrary variable assignment.
By induction on the number of function symbols in z,, M}[¢,] = z.

Basis: If 1; has no function symbols, then it is a constant. In this case, by
construction, M'[#;] = z; so by TA(c), Mj[¢,] = z.
Assp: Foranyi,0 <i <k, if ¢; has i function symbols, then Mg[tz] =z

31t is common to let U just be the set of variable-free terms in &£/, and the interpretation of a term be
itself. There is nothing the matter with this. However, working with the integers emphasizes continuity
with other models we have seen, and positions us for further results.
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Show:

If 4, has k function symbols, then M[¢,] = z.

If #, has k function symbols, then it is of the form 4" ¢, . . . 1 for func-
tion symbol 4" and variable-free terms 4, . .. ¢; each with < k func-
tion symbols. By TA(f), Mj[¢z] = M|[A" 44 ... 1p] = M A" (M][14]
... Mg[2p]); but by assumption, My[z,] = a, and ...and M{[#,] =
b; so My[t;] = M'[A"](a...b). Butsince t; = A"1,...1p is a
variable-free term, by construction, ((a...b),z) € M'[4"]; so we have
My[z:] = M [A"](a...b) = z.

Indct:

For any #;, Mj[¢,] = z.

Given this, we are ready to show, by induction on the number of operators in
B, that M'[B] = Tiff " F B. Suppose B is a sentence.

Basis:

Assp:

Show:

(~)

(=)
(v)

If 8 is a sentence with no operators, then it is a sentence letter &,
or an atomic R"%, ... 1, for relation symbol K" and variable-free
terms Zq. .. 4p. In the first case, by construction, M'[§] = T iff X"
&. 1In the second case, by TI, M'[R"1,...4p] = T iff for arbi-
trary d, My[R" ¢4 ... 1p] = S; by SF(r), iff (M}[4a]...Mj[4p]) €
M’[R™]; since 1,... 1} are variable-free terms, by the above result, iff
(a...b) € M'[R"]; by construction, iff X" = R",...1tp. In either
case, then, M'[B] = Tiff X" + B.

For any i, 0 < i < k if a sentence B has i operator symbols, then
M[B] =Tiff "+ B.

If a sentence B has k operator symbols, then M'[B] = T iff " + B.
If B has k operator symbols, then it is of the form, ~P, P — @ or
Vx &, for variable x and & and @ with < k operator symbols.
Suppose 8B is ~P. Homework. Hint: given T8.6, your reasoning may
be very much as in the sentential case.

Suppose B is  — @. Homework.

Suppose B is VxP. Then since B is a sentence, x is the only variable
that could be free in .

(i) Suppose M'[B] = T but X" ¥ B; from the latter, X" ¥ VxP;
since X" is maximal, ¥” F ~VxJ; and since X" is a scapegoat set,
for some constant ¢, X" = ~P¥; so by consistency, X" ¥ P¥; but
PY is a sentence; so by assumption, M'[PX] # T; so by TI, for some
d, M{[PX¥] # S; but, where ¢ is some 44, by construction, M'[¢] = a;
so by TA(c), Mj[c] = a; so, since «¢ is free for x in &, by T10.2,
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M:ﬂ(xla) [P] # S; so by SE(Y), M{[VxP] # S; so by TL, M'[VxP] #
T; and this is just to say, M'[B] # T. But this is impossible; reject the
assumption: if M'[B] = T, then X" F B.

(ii) Suppose X" F B but M'[B] # T; from the latter, M'[VxP] # T,
so by TI, there is some d such that M[Vx ] # S; so by SF(V), there
is some a € U such that Mé(xla) [P] # S; but for variable-free term 4,
by our above result, M}[#,] = a, and since #, is variable-free, it is free
for x in &, so by T10.2, My[P7 | # S; soby TI, M'[PF ] # T; but P
is a sentence; so by assumption, X" ¥ P ; so by the maximality of
DI YU ~P[ ;but 1, is free for x in P, so by Ad, = VxP — P,
and by T3.13, = (VxP — P7F) — (~P — ~VxP); so by a
couple instances of MP, " F ~Vx&; so by the consistency of X",
> ¥ Vx&P; which is to say, X" ¥ B. This is impossible; reject the
assumption: if ¥” - B, then M'[B] = T.

If B has k operator symbols, then M'[B] = Tiff =" I B.

Indct: For any sentence 8, M'[B] = Tiff " + 8.

So if ¥’ is consistent, then for any sentence B of £/, M'[B] = Tiff X" F B. We
are now just one step away from (). It will be easy to see that M'[X'] = T, and so
to reach the final result.

E10.19. Complete the ~ and — cases to complete the demonstration of T10.9. You
should set up the complete demonstration, but may refer to the text for cases
completed there, as the text refers cases to homework.

10.3.5 Final Result

And now we are in a position to get the final result. This works just as before. First,

T10.10. If ¥’ is consistent, then M'[Z'] = T. (%)

Suppose ¥’ is consistent, but M'[Z] # T. From the latter, there is some
formula B € ¥’ such that M'[B] # T. Since B € ¥/, by construction, B €
3", s0 X" B; so, where B€ is the universal closure of B, by application of
Gen as necessary, X" = B¢; so since X' is consistent, by T10.9, M'[B¢] = T;
so by applications of T7.7 as necessary, M'[8] = T. This is impossible; reject
the assumption: if X’ is consistent, then M'[X/] = T.
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Notice that this result applies to arbitrary sets of formulas. We are able to bridge
between formulas and sentences by T10.7 and Gen. But now we have the () that we
have needed for adequacy.

So that is it! All we needed for the proof of adequacy was (x). And we have it.
So here is the final argument. Suppose the members of I" and & are formulas of £’

T10.11. If ' E P,then ' F P.  (quantificational adequacy)

Suppose I' E & but ' ¥ P. Say, for the moment that I' = ~~%P¢; by
T3.10, = ~~P¢ — P¢;s0 by MP, I' = P€; so by repeated applications of
A4 and MP, I I &; but this is impossible; so I' ¥ ~~&€. Given this, since
~~&P¢€ is a sentence, by T10.6, ' U{~P¢} = X' is consistent; so by T10.10,
there is a model M’ constructed as above such that M'[¥'] = T. SoM'[I'] =T
and M'[~P€] = T; from the latter, by T8.6, M'[P€] # T, so by repeated
applications of T7.7, M'[P] # T; so by QV, I' ¥ £. This is impossible;
reject the assumption: if ' F & then I - £.

Again, you should try to get the complete picture in your mind: The key is that
consistent sets always have models. If ' U {~&} is not consistent, then there is a
derivation of # from I'. So if there is no derivation of & from I', ' U {~P} is
consistent and so must have a model — with the result that I' ¥ #. We get the
key point, that consistent sets have models, by finding a relation between consistent,
and maximal, consistent, scapegoat sets. If a set is maximal and consistent and a
scapegoat set, then it contains enough information to specify a model for the whole.
The model for the big set then guarantees the existence of a model M for the original
I". All of this is very much parallel to the sentential case.

E10.20. Consider a quantificational language &£ which has function symbols as usual
but with A, ~, and 3 as primitive operators. Suppose axioms and rules are as
in A4 of E10.3 on p. 473. You may suppose there is no symbol for equality,
and there are infinitely many constants not in I". Provide a complete demon-
stration that A4 is adequate. You may appeal to any results from the text
whose demonstration remains unchanged, but should recreate parts whose
demonstration is not the same.

Hints: As preliminaries you will need revised versions of DT and T10.12. In
addition, a few quick theorems for derivations, along with an analog to one
side of T7.7 might be helpful,

(a) H Elyj); — IxP y free for x in & and not free in Ix P
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(b) F~dxP — ’\*E'yﬂj; ¥ free for x in & and not free in Ix P
(C) ~ O;C F ~dx P use JE with @ some X A ~X; note that F ~(X A ~X)

(7.6%) If [~3xP] = Tthen I[~P] = T

Then redefine key notions (such as ‘scapegoat set’) in terms of the existential
quantifier, so that you can work cases directly within the new system. Say
P¢ is the existential closure of #. Note that ~(~P)¢ is equivalent to P°
(imagine replacing all the added universal quantifiers in ¢ with ~3x~ and
using DN on inner double tildes). This will help with T10.10 and T10.11.

10.4 Quantificational Adequacy: Full Version

So far, we have shown that if ' & £, then I = & where the members of I" and &
are formulas of £’. Now allow that the members of I" and & are in an arbitrary quan-
tificational language &£. Then we we shall require require not () with application
just to £’, but the more general,

(%) For any consistent set of formulas X, there is an interpretation M such that
M[Z] =T.

Given this, reasoning is exactly as before.

1. I' U {~%€} has a model =4 r#e
2. I' U {~&€} is consistent = I' U {~&€} has a model (%%)
3. ' U {~%€} is not consistent == r-e

Reasoning for (1) and (3) remains the same. (2) is (xx). Now suppose I' E P;
then from (1), I' U {~5€} does not have a model; so by (2), I' U {~5€} is not
consistent; so by (3), ' = #. Soif I' F 2, then I' - #. Supposing that (xx)
has application to arbitrary sets of formulas, the result has application to arbitrary
premises and conclusion. So we are left with two issues relative to our reasoning
from before: £ might lack the infinitely many constants not in the premises, and £
might include equality.
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10.4.1 Adding Constants

Suppose &£ does not have infinitely many constants not in I". This can happen in dif-
ferent ways. Perhaps &£ simply does not have infinitely many constants. Or perhaps
the constants of £ are a1, a5...and I' = {Ray, Ra,...}; then £ has infinitely
many constants, but there are not any constants in £ that do not appear in I'. And
we need the extra constants for construction of the maximal, consistent, scapegoat
set. To avoid this sort of worry, we simply add infinitely many constants to form a
language &£’ out of &£.

Cns¥’ Where £ is a language whose constants are some of a1, a5 ... let £’ be like
& but with the addition of new constants ¢, €3 . . .

By reasoning as in the countability reference on p. 36, insofar as they can be lined up,
ai, €1, 42, €2 ... the collection of constants remains countable, so that £’ remains
a perfectly legitimate quantificational language. Clearly, every formula of &£ remains
a formula of £’. Thus, where X is a set of formulas in language £, let X/ be like X
except that its members are formulas of language £’

Our reasoning for (x) has application to sets of the sort 3’. That is, where &£’ has
infinitely many constants not in X', we have been able to find a maximal, consistent,
scapegoat set X", and from this a model M’ for ¥’. But, give an arbitrary ¥ of
formulas in &£, we need that i has a model M. That is, we shall have to establish a
bridge between X and X/, and between M’ and M. Thus, to obtain (x*), we show,

2a. > 1is consistent — ¥/ is consistent
2b. ¥/ is consistent = >’ has a model M’
2c. ¥’ has a model M/ — ¥ has a model M

(2b) is just () from before. And by a sort of hypothethical syllogism, together these
yield (x%).

For the first result, we need that if ¥ is consistent, then ¥’ is consistent. Of
course, X and X’ contain just the same formulas, only sentences of the one are in a
language with extra constants. But there might be derivations in £’ from X’ that are
not derivations in £ from X. So we need to show that these extra derivations do not
result in contradiction. For this, the overall idea is simple: If we can derive a con-
tradiction from X’ in the enriched language then, by a modified version of that very
derivation, we can derive a contradiction from ¥ in the reduced language. So if there
is no contradiction in the reduced language £, then there can be no contradiction in
the enriched language &£’. The argument is straightforward, given the preliminary
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result T10.12. Let X be a set of formulas in £, and ¥’ those same formulas in £’.

We show,

T10.13. If X is consistent, then ¥’ is consistent.

Suppose X is consistent. If 3’ is not consistent, then there is a formula #4 in
&£’ suchthat X' - 4 and &/ = ~s; butby T9.4, - A — [~A — (AA~A)];
so by two instances of MP, ¥’ = A A ~ws. So if ¥/ is not consistent, there is
a derivation of a contradiction from X’. By induction on the number of new

constants which appear in a derivation D = (8B, B> ...), we show that no
such D is a derivation of a contradiction from ¥’

Basis:

Assp:

Show:

Indct:

Suppose D contains no new constants and D is a derivation of some
contradiction #4 A ~ from X’. Since D contains no new constants,
every member of D is also a formula of £, so D = (B, B,...) is
a derivation of 4 A ~#A from X; so by T3.19 and T3.20 with MP,
Y F #Aand X F ~A; so X is not consistent. This is impossible; reject
the assumption: D is not a derivation of a contradiction from X’.

For any i, 0 < i < k, if D contains i new constants, then it is not a
derivation of a contradiction from X’.

If D contains & new constants, then it is not a derivation of a contra-
diction from X'.

Suppose D contains k new constants and is a derivation of a contradic-
tion A A ~sA from /. Where ¢ is one of the new constants in D and
x is a variable not in D, by T10.12, Dy is a derivation of [A A ~A]f
from X' %£. But all the members of ¥’ are in &£; so ¢ does not appear
in any member of X’; 50 X' ¢ = X', And [A A ~A]S = AL A~[AL].
So D% is a derivation of a contradiction from X’. But D£ has k — 1
new constants and so, by assumption, is not a derivation of a contra-
diction from X’. This is impossible; reject the assumption: D is not a
derivation of a contradiction from X'.

No derivation D is a derivation of a contradiction from X'.

Soif ¥ is consistent, then X is consistent. So if we have a consistent set of sentences
in £, and convert to £’ with additional constants, we can be sure that the converted
set is consistent as well.

With the extra constants in-hand, all our reasoning goes through as before to
show that there is a model M’ for ¥’. Officially, though, an interpretation for some
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sentences in £’ is not a model for some sentences in £: a model for sentences in
&£ has assignments for its constants, function symbols and relation symbols, where a
model for £’ has assignments for its constants, function symbols and relation sym-
bols. A model M’ for X', then, is not the same as a model M for X. But it is a short
step to a solution.

CnsM Let M be like M’ but without assignments to constants not in &£.

M is an interpretation for language &£. M and M’ have exactly the same universe of
discourse, and exactly the same interpretations for all the symbols that are in &£. It
turns out that the evaluation of any formula in &£ is therefore the same on M as on
M’ — that is, for any & in £, M[P] = T iff M'[] = T. Perhaps this is obvious.
However, it is worthwhile to consider a proof. Thus we need the following matched
pair of theorems (in fact, we show somewhat more than is necessary, as M and M’
differ only by assignments to constants). The proofs are straightforward, and mostly
left as an exercise. I do just enough to get you started.

Suppose £’ extends &£ and M’ is like M except that it makes assignments to
constants, functions symbols and relation symbols in &£’ but not in £.

T10.14. For any variable assignment d, and for any term ¢ in &, My[#] = M}[¢].

The argument is by induction on the number of function symbols in . Let d
be a variable assignment, and # a term in £.

Basis: Homework

Assp: Foranyi,0 <i <k, if ¢ has i function symbols, then Mg[#] = M[¢].

Show: 1If ¢ has k function symbols, then Mg[2] = M[¢].
If ¢ has k function symbols, then it is of the form, A" ..., for
function symbol 4" and terms #; ... 4, with < k function symbols.
By TA(f), My[t] = Mg[A" 11 ... 1n] = M[A"](Mq[21] .. . Mg[#n]); sim-
ilarly, Mj[¢] = M|[A" 21 ... 4n] = MA"|(My[21] ... M|[¢,]). But
by assumption, Mg[¢1] = M}[#1], and ...and M4[z,] = M}[¢,]; and
by construction, M[A"] = M[A"]; so M[A"](Mg[t1]...Mq[tn]) =
M [A"[(Mg[#1] . . . M{[£n]); so Mg[#] = M}[z].

Indct: For any ¢ in &, Mg[¢] = M} [¢].

T10.15. For any variable assignment d, and for any formula & in £, My[] = S iff
My[P] = S.
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The argument is by induction on the number of operator symbols in . Letd
be a variable assignment, and J# a formula in £.

Basis: If  has no operator symbols, then it is a sentence letter § or an atomic
R™tq ... 1, for relation symbol R”" and terms #1 ... 1%, in £. In the
first case, by SF(s), Myq[8] = S iff M[§] = T; by construction, iff
M'[8] = T; by SF(s), iff My[8] = S. In the second case, by SF(r),
My[P] = Siff Mg[R" 11 ... tn] = S;iff (Mg[#1] . .. Mg[i]) € M[R"];
similarly, M{[P] = Siff M{[R" 21 ... t5] = S;iff (M{[#1]... M[2a])
e M'[R"]. But by T10.14, Mg[¢1] = M}[¢1], and ...and My[¢,] =
Mj[#,]; and by construction, M[R"] = M'[R"]; so (Mq[£1] . . . Mg[¢x])
€ M[R"]iff (My[£1] . .. My[2n]) € M'[R"]; so My[P] = Siff My[P] =
S.

Assp: For any i, 0 < i < k, and any variable assignment d, if & has i
operator symbols, Mgq[] = S iff M{[P] = S.

Show: Homework

Indct: For any formula & of £, Myq[P] = S iff Mj[#] = S.

And now we are in a position to show that M is indeed a model for X. In particular,
it is easy to show,

T10.16. If M'[X'] = T, then M[X] = T.

Suppose M'[X] = T, but M[Z] # T. From the latter, there is some formula
B € X such that M[B] # T; so by TI, for some d, Myq[8B] # S; so by T10.15,
My[8B] # S; so by TI, M'[8B] # T; and since B € X, we have B € X'; so
M'[Z'] # T. This is impossible; reject the assumption: if M'[Z'] = T, then
M[Z] = T.

T10.13, T10.10, and T10.16 together yield,

T10.17. &£, if X is consistent, then ¥ has a model M (&£ without equality).

Suppose X is consistent; then by T10.13, X/ is consistent; so by T10.10, X’
has a model M’; so by T10.16, X has a model M.

And that is what we needed to recover the adequacy result for £ without the con-
straint on constants. Where &£ does not include infinitely many constants not in T,
we simply add them to form &£’. Our theorems from this section ensure that the
results go through as before.
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*E10.21. Complete the proof of T10.14. You should set up the complete induction,
but may refer to the text, as the text refers to homework.

*E10.22. Complete the proof of T10.15. As usual, you should set up the complete
induction, but may refer to the text for cases completed there, as the text refers
to homework.

E10.23. Adapt the demonstration of T10.11 for the supposition that £ need not be
the same as £’. You may appeal to theorems from this section.

10.4.2 Accommodating Equality

Dropping the assumption that language &£ lacks the symbol ‘=’ for equality re-
sults in another sort of complication. In constructing our models, where #; and i3
from the enumeration of variable-free terms are constants and X" + R1;43, we set
M'[¢1] = 1, M'[¢3] = 3 and (1,3) € M'[R]. But suppose R is the equal sign, ‘=";
then by our procedure, (1,3) € M'[=]. But this is wrong! Where U = {1,2...},
the proper interpretation of ‘=" is {(1,1),(2,2) ...}, and (1, 3) is not a member of
this set at all. So our procedure does not result in the specification of a legitimate
model. The procedure works fine for relation symbols other than equality. There are
no restrictions on assignments to other relation symbols, so nothing stops us from
specifying interpretations as above. But there is a restriction on the interpretation of
‘=". So we cannot proceed blindly this way.

Here is the nub of a solution: Say X" F a1 = as3; then let the ser {1,3} be
an element of U, and let M'[a;] = M'[a3] = {1,3}. Similarly, if a = a4 and
a4 = as are consequences of X, let {2,4,5} be a member of U, and M'[a,] =
M'as] = M[as] = {2,4,5}. That is, let U consist of certain sets of integers —
where these sets are specified by atomic equalities that are consequences of X”. Then
let M'[a,] be the set of which z is a member. Given this, if X" = R"t, ..., then
include the tuple consisting of the set assigned to 4, and ...and the set assigned
to ¢p, in the interpretation of R”. So on the above interpretation of the constants,
if 7 F Rajag, then ({1,3},{2,4,5}) € M[R]. And if ¥” + a; = a3, then
({1,3},{1,3}) € M'[=]. You should see why this is so. And it is just right! If
{1,3} € U, then ({1, 3}, {1, 3}) should be in M'[=]. So we respond to the problem
by a revision of the specification for CnsM’.

Let us now turn to the details. Put abstractly, the reason the argument in the basis
of T10.9 works is that our model M’ assigns each ¢ in the enumeration of variable-
free terms an object m such that whenever ¥” - Rt then m € M'[R]; and for the
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universal case, it is important that for each object there is a constant to which it is
assigned. We want an interpretation that preserves these features. And it will be
important to demonstrate that our specifications are coherent. A model consists of a
universe U, along with assignments to constants, function symbols, sentence letters,
and relation symbols. We take up these elements, one after another.

The universe. The elements of our universe U are to be certain sets of integers.*
Consider an enumeration #j, £5 ... of all the variable-free terms in &£’, and let there
be a relation >~ on the set {1,2...} of positive integers such that i ~ jiff X"
ti = tj. Let n be the set of integers which stand in the =~ relation to n — that is,
n = {z|z >~ n}. So whenever z >~ n, then z € n. The universe U of M’ is then the
collection of all these sets — that is,

CnsM’ For each integer greater than or equal to one, the universe includes the class
corresponding to it. U = {n | n > 1}.

The way this works is really quite simple. If according to ¥”, ¢; equals only itself,
then the only z such that z ~ 1 is 1; so 1 = {1}, and this is a member of U. If,
according to X", #1 equals just itself and #,, then 1 ~ 2 so that | = 2 = {1,2},
and this set is a member of U. If, according to X", ¢; equals itself, ¢ and #3, then
1~2~3sothat ] =2 = 3 = {1,2,3}, and this set is a member of U. And so
forth.

In order to make progress, it will be convenient to establish some facts about the
~ relation, and about the sets in U. Recall that ~ is a relation on the integers which
is specified relative to expressions in X", so that i >~ jiff ¥” F #; = ;. First we
show that ~~ is reflexive, symmetric, and transitive.

Reflexivity. For any i, i >~ i. By T3.32, - t; = #;;s0 " #; = t;; so by
construction, i 2~ i.

Symmetry. For any i and j, if i ~ |, then j >~ i. Suppose i ~~ j; then by
construction, X" = #; = ¢;; but by T3.33, - #; = 4; — t; = #;; s0 by MP,
X"+ t; = t;; so by construction, j > i.

Transitivity. For any i, jand k, if i >~ jand j >~ Kk, then i >~ k. Suppose i >~ j
and j ~ k; then by construction, X" - #; = #; and X" F #; = #; but by

4 Again, it is common to let the universe be sets of terms in £’. There is nothing the matter with
this. However, working with the integers emphasizes continuity with other models we have seen, and
positions us for further results.
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T334, -t = t; — (t; = tx — ti = 1x); so by two instances of MP,
Y" b t; = t; so by construction, i >~ k.

A relation which is reflexive, symmetric and transitive is called an equivalence re-
lation. As an equivalence relation, it divides or partitions the members of {1,2...}
into mutually exclusive classes such that each member of a class bears ~ to each
of the others in its partition, but not to integers outside the partition. More particu-
larly, because >~ is an equivalence relation, the collections 1 = {z |z >~ n} in U are
characterized as follows.

Self-membership. For any n, n € n. By reflexivity, n >~ n; so by construction,
n € n. Corollary: Every integer i is a member of at least one class.

Uniqueness. For any i, i is an an element of at most one class. Suppose i is an
element of more than one class; then there are some m and n such thati € m
and i € nbut m # n. Since M # n there is some j such that j € mand j & n,
orj € nand j & m; without loss of generality, suppose j € m and j & n. Since
j € m, by construction, | >~ m; and since i € m, by construction i >~ m; so by
symmetry, m =~ i; so by transitivity, j ~ i. Since i € n, by construction i 2~ n;
so by transitivity again, j >~ n; so by construction, j € n. This is impossible;
reject the assumption: i is an element of at most one class.

Equality. For any mand n, m >~ niff m = n. (i) Suppose m >~ n. Then
by construction, m € n; but by self-membership, m € m; so by uniqueness,
n = m. Suppose m = n; by self-membership, m € m; so m € n; so by
construction, m =~ n.

Corresponding to the relations by which they are formed, classes characterized by
self-membership, uniqueness and equality are equivalence classes. From self-mem-
bership and uniqueness, every n is a member of exactly one such class. And from
equality, m =~ n just when m is the very same thing as n. So, for example, if 1 >~ 1
and 2 ~ 1 (and nothing else), then 1 = 2 = {1,2}. You should be able to see that
these formal specifications develop just the informal picture with which we began.

Terms. The specification for constants is simple.

CnsM’ If t, in the enumeration of variable-free terms #1, #> ... is a constant, then
M[t;] =z
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Thus, with self-membership, any constant ¢, designates the equivalence class of
which z is a member. In this case, we need to be sure that the specification picks
out exactly one member of U for each constant. The specification would fail if the
relation ~ generated classes such that some integer was an element of no class, or
some integer was an element of more than one. But, as we have just seen, by self-
membership and uniqueness, every z is a member of exactly one class. So far, so
good!

CnsM’ If ¢, in the enumeration of variable-free terms #1, ... 1is A" t, ... 1} for
function symbol A" and variable-free terms Z, ... 1, then ((@...b),Z) €
M'[A™].

Thus when the input to 4" is (@...b), the output is Z. This time, we must be sure

that the result is a function — that (i) there is a defined output object for every input

n-tuple, and (ii) there is at most one output object associated with any one input 7n-
tuple. The former worry is easily dispatched. The second concern is that there might

be some t,, = fity and i, = #Aip in the list of variable-free terms, where a = b.

Then (3, m), (b,n) € M’[#], and we fail to specify a function.

(i) There is at least one output object. Corresponding to any (a...b) where
a...b are members of U, there is some variable-free ¢, = h"#, ... tp in the
sequence 11, 1 ...; so by construction, ((@...b),z) € M'[A"]. So M'[A"]

has a defined output object when the input is (a...b).

(ii) There is at most one output object. Suppose ((a...c),m) € M[A"]
and ((d...f),n) € M'[A"], where (a...C) = (d...f), but m # n. Since
(@a...c) = (d...f),a =d,and...and T = f; so by equality, a ~ d, and
...and ¢ = f; so by construction, X" - 1, = 44, and ...and 2" - 1, = ¢ .
Since ((a...c),m) € M'[A"] and ((d...f),n) € M'[A"], by construction,
there are some variable-free terms, #,, = A" 14 ... 1c and t, = h"14 ... 15
in the enumeration; but by T3.36, = &5 = te — A"ig... 4p...1c =
h"tq ... te... e, and so forth; so collecting repeated applications of this
theorem with MP and T3.35, X" = A"1, ...t = h"t4 ... 1 s; but this is to
say, " & t;, = tn; so by construction, m >~ n; so by equality, m = n.
This is impossible; reject the assumption: if ((a...c),m) € M[A"] and

((d...f),n) e M[A"], where (3...C) = (d...f), thenm =n.

So, as they should be, functions are well-defined.
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We are now in a position to recover an analogue to the preliminary result for
demonstration of T10.9: for any variable-free term #, and variable assignment d,
Mj[2;] = Z. The argument is very much as before. Suppose ¢, is a variable-free
term. By induction on the number of function symbols in #.

Basis: If t, has no function symbols, then it is a constant. In this case, by construc-
tion, M'[¢,] = Z; so by TA(c), My[#;] = Z.

Assp: Foranyi,0 <i <k, if ¢; has i function symbols, then Mé[tz] =7z
Show: 1If t has k function symbols, then M{j[#;] = Z.

If #, has k function symbols, then it is of the form, 4" ¢, ... tp where #4 ... 1p
have < k function symbols. By TA(f) we have, My[z;] = M|[A" 14 ... 1p] =
M A" (M [24] . . . M{[£p]); but by assumption, M}[#,] = @, and ... and M}[#p]
= b; so M4[¢;] = M'[A"](a...b). But since t; = A", ...1p is a variable-

free term, ((@...b),Zz) € M'[A"]; so M'[A"](a...b) = Z; so Mj[t;] = Z.

Indct: For any variable-free term ¢, M}[¢,] = Z.

So the interepretation of any variable-free term is the equivalence class corresponding
to its position in the enumeration of terms.

Atomics. The result we have just seen for terms makes the specification for atomics
seem particularly natural. Sentence letters are easy. As before,

CnsM’ For a sentence letter 8§, M'[8] = Tiff X - §.

Then for relation symbols, the idea is as sketched above. We simply let the assign-

ment be such as to make a variable-free atomic come out true iff it is a consequence
of .

CnsM’ For a relation symbol R, where 4, . .. £, are n members of the enumeration
of variable-free terms, let (a...b) € M'[R"]iff " - R"1, ... 1p.

To see that the specification for relation symbols is legitimate, we need to be clear
that the specification is consistent — that we do not both assert and deny that some
tuple is in the extension of R”, and we need to be sure that M'[=] is as it should be
— that it is {{n,n) | n € U}. The case for equality is easy. The former concern is that
we might have some @ € M'[R] and b ¢ M'[R] buta = b.
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(i) The specification is consistent. Suppose otherwise. Then there is some
(@a...c) e M[R"] and (d...f) & M'[R"], where (a...C) = (d...f). From
the latter,a = d, and ...and ¢ = f; so by equality,a >~ d, and ...and ¢ =~ f;
so by construction, X" = ¢, = t4,and ...and X" I . = #7. But since
(@a...c) e M[R"]and (d...f) &€ M'[R"], by construction, X" - R" 4, ... t¢
and X" ¥ R"tg ... tr;and by T3.37, = 1y = te = (R"1q.. . 1p.. . 1c —
R4 ... 1e ... 1c), and so forth; so by repeated applications of this theorem
with MP, 2" = R"14 ...t 7. This is impossible; reject the assumption: if
(@a...c) e M[R"] and (d...f) ¢ M'[R"], then (a...C) # (d...f).

(ii) The case for equality is easy. By equality, m = n iff m >~ n; by construc-
tion iff X" b ¢, = t,; by construction iff (m,n) € M'[=].

This completes the specification of M’. The specification is more complex than for
the basic version, and we have had to work to demonstrate its consistency. Still,
the result is a perfectly ordinary model M’, with a domain, assignments to constants,
assignments to function symbols, and assignments to relation symbols.

With this revised specification for M’, the demonstration of T10.9 proceeds as
before. Here is the key portion of the basis. We are showing that M'[8] = T iff
¥+ 8.

Suppose B is an atomic R" 1, ... tp; then by TI, M[R" 1, ... 1p] = T iff for
arbitrary d, M[R" 44 ... tp] = S; by SF(r), iff (M}[44] ... Mj[2p]) € M'[R"];
since f4...1p are variable-free terms, as we have just seen, iff (a...b) €
M’[R"]; by construction, iff X" = R" ¢, ... 1. SOM[B] = Tiff X" - B.

So all that happens is that we depend on the conversion from individuals to sets
of individuals for both assignments to terms, and assignments to relation symbols.
Given this, the argument is exactly parallel to the one from before.

E10.24. Suppose the enumeration of variable-free terms begins, a, b, fla, f1b...
(so these are 77 ... #4) and, for these terms, X" Fjusta = a, b = b, fla =
fla, f'b = f'b,a = fla, and fla = a. What objects stand in the ~

relation? What are 1, 2, 3, and 4? Which corresponding sets are members of
u?

E10.25. Return to the case from E10.24. Explain how =~ satisfies reflexivity, sym-
metry and transitivity. Explain how U satisfies self-membership, uniqueness
and equality.
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E10.26. Where X" and U are as in the previous two exercises, what are M’[a], M'[]
and M'[ /]2 Supposing that ¥” - R'a, R' fla and R f1b, but " ¥ R'b,
what is M'[R1]? According to the method, what is M'[=]? Is this as it should
be? Explain.

10.4.3 The Final Result

We are really done with the demonstration of adequacy. Perhaps, though, it will be
helpful to draw some parts together. Begin with the basic definitions.

Con A set X of formulas is consistent iff there is no formula + such that ¥ - 4
and ¥ F ~A.

Max A set X of formulas is maximal iff for any sentence 4, X - A or X - ~A.

Scgt A set ¥ of formulas is a scapegoat set iff for any sentence ~Vx P, if &
~Vx P, then there is some constant « such that ¥ = ~P7.

Then we proceed in language &£’, for a maximal, consistent, scapegoat set ¥ con-
structed from any consistent X',

T10.6 For any set of formulas ¥ and sentence &, if ¥ ¥ ~&P, then ¥ U {P} is
consistent.

T10.7 There is an enumeration @, @, ... of all the formulas, terms, and the like,
in £’

CnsX” Construct X” from X’ as follows: By T10.7, there is an enumeration, @1,
@,...of all the sentences in £’ and also an enumeration ¢1, <3 ... of con-
stants not in ¥’. Let Qo = X’. Then for any i > 0, let Q; = Q;_q if
Qi1 F ~@;. Otherwise, Q;+ = Q;_1 U{Q;}if Q;—1 ¥ ~@;. Then
Q; = Q;« if @; is not of the form ~VxP, and Q; = Q;+ U {~P}} if
@; is of the form ~Vx P, where ¢ is the first constant not in Q;+. Then
= Uiso €i-

T10.8 If ¥ is consistent, then X" is a maximal, consistent, scapegoat set.

Given the maximal, consistent, scapegoat set X", there are results and a definition
for a model M’ such that M'[¥'] = T.
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CnsM’ U = {n|n > 1}. If ¢, in an enumeration of variable-free terms #1, #5 ...
is a constant, then M'[t,] = Z. If t, is A" 1, ... t} for function symbol £#"
and variable-free terms #, . .. Z3, then ((@...b),Z) € M'[4"]. For a sentence
letter 8, M'[8] = Tiff " I §. For a relation symbol R", where #, . . . 1} are
n members of the enumeration of variable-free terms, let (a...b) € M'[R"]

iff X' Ry ... 1p.

This modifies the relatively simple version where U = {1,2...}. And for an
enumeration of variable-free terms, if #, is a constant, M'[¢;] = z. If ¢, =
h"iq ... tp for some relation symbol #” and n variable-free terms %, . .. 1p,
({(a...b),z) € M'[A"]. For a sentence letter §, M'[§] = Tiff X" - 8. And
for a relation symbol R”, (a...b) € M'[R"]iff T+ R" 4, ... 1p.

T10.9 If X' is consistent, then for any sentence B of £', M'[B] = Tiff " - B.

T10.10 If ¥’ is consistent, then M'[X'] = T. (%)
Then we have had to connect results for ¥’ in £’ to an arbitrary X in language £.

T10.13 If X is consistent, then X’ is consistent.

This is supported by T10.12 on which if D is a derivation from ¥’, and x is a
variable that does not appear in D, then for any constant @, D is a derivation
from X' ¢.

T10.16 If M'[Z'] =T, then M[Z] = T.

This is supported by the matched pair of theorems, T10.14 on which, ifdis a
variable assignment, then for any term ¢ in &, My[#] = M}[¢], and T10.15 on
which, if d is a variable assignment, then for any formula & in £, My4[P] = S
iff Mj[P] = S.

These theorems together yield,
T10.17. If X is consistent, then X has a model M. (£ unconstrained) (xx)

This puts us in a position to recover the main result. Recall that our argument runs
through &€ the universal closure of 8.

T10.11. If ' E P, then ' F P.  (quantificational adequacy)

Suppose I' F & but I' ¥ £. Say, for the moment that I' = ~~%P¢; by
T3.10, F ~~P¢ — P€; so by MP, I" = £€; so by repeated applications
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of A4 and MP, I' F &; but this is impossible; so I' ¥ ~~P¢. Given
this, since ~~&€ is a sentence, by T10.6, I' U {~&°} is consistent. Since
3 = T' U {~P°} is consistent, by T10.17, there is a model M constructed
as above such that M[X] = T. So M[I'] = T and M[~%€] = T; from the
latter, by T8.6, M[#€] # T; so by repeated applications of T7.7, M[P] # T,
soby QV, I ¥ &P. This is impossible; reject the assumption: if I' E P then
r+e.

The sentential version had parallels to Con, Max, CnsX” and CnsM’ along with theo-
rems T10.65 - T10.115. (The distinction between () and (x*) is a distinction without
a difference in the sentential case.) The basic quantificational version requires these
along with Sgt, T10.12 and the simple version of CnsM’. For the full version, we
have had to appeal also to T10.13 and T10.16 (and so T10.17), and use the relatively
complex specification for CnsM’.

Again, you should try to get the complete picture in your mind: As always, the
key is that consistent sets have models. If ' U {~%} is not consistent, then there is
a derivation of & from I". So if there is no derivation of & from I, then I' U {~P}
is consistent, and so has a model — and the existence of a model for I' U {~P} is
sufficient to show that I' ¥ #. Put the other way around, if I" F #, then there is a
derivation of & from I'. We get the key point, that consistent sets have models, by
finding a relation between consistent, and maximal consistent scapegoat sets. If a set
is a maximal consistent scapegoat set, then it contains enough information to specify
a model for the whole. The model for the big set then guarantees the existence of a
model M for the original I".

E10.27. Return to the case from E10.20 on p. 500, but dropping the assumptions
that there is no symbol for equality, and that &£ is identical to £’. Add to the
derivation system axioms,

A3 Ht=1

A4 l_ Y =4 —> (J) — j)’)‘/d) — where 4 is free for replaced instances of » in P

Provide a complete demonstration that this version of A4 is adequate. You
may appeal to any results from the text whose demonstration remains un-
changed, but should recreate parts whose demonstration is not the same. Hint:
You may find it helpful to demonstrate a relation to T8.5 as follows,
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T8.5* For any formula &, terms s and ¢, constant <, and variable x, [P */;]¢
is the same formula as [5);]4,?/% — where the same instance(s) of 4
are replaced in each case.

E10.28. We have shown from T10.4 that if a set of formulas has a model, then it is
consistent; and now that if an arbitrary set of formulas is consistent, then it has
a model — and one whose U is this set of sets of positive integers. Notice that
any such U is countable insofar as its members can be put into correspondence
with the integers (we might, say, order the members by their least elements).
Considering what we showed in the more on countability reference on p. 50,
how might this be a problem for the logic of real numbers? Hint: Think about
the consequences sentences in an arbitrary I' may have about the number of
elements in U.

E10.29. For each of the following concepts, explain in an essay of about two pages,
so that (college freshman) Hannah could understand. In your essay, you
should (i) identify the objects to which the concept applies, (ii) give and ex-
plain the definition, and give and explicate examples (iii) where the concept
applies, and (iv) where it does not. Your essay should exhibit an understand-
ing of methods from the text.

a. The soundness of a derivation system, and its demonstration by mathematical
induction.

b. The adequacy of a derivation system, and the basic strategy for its demon-
stration.

¢. Maximality and consistency, and the reasons for them.

d. Scapegoat sets, and the reasons for them.
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Theorems of Chapter 10

T10.1 For any interpretation |, variable assignment d, with terms ¢ and #*, if l4[»] = o,
then lycxjo)[2] = la[2}].

T10.2 For any interpretation |, variable assignment d, term », and formula @, if I4[»] =
0, and * is free for x in @, then I4[@%] = Siff ly|)[@] = S.

T103 IfI' k-, P, then' E P. (Soundness)

T10.4 If there is an interpretation M such that M[I'] = T (a model for I'), then I is
consistent.

T10.5 If there is an interpretation M such that M[[" U {~A}] = T, then I" ¥* A.

T10.65 For any set of formulas X and sentence P, if ¥ ¥ ~%, then X U{P} is consistent.
T10.6 For any set of formulas X and sentence P, if ¥ ¥ ~%, then ZU{5} is consistent.
T10.7; There is an enumeration @4, @, ... of all formulas in L.

T10.7 There is an enumeration @1, @, . .. of all the formulas, terms, and the like, in &£’.
T10.8; If X’ is consistent, then ¥ is maximal and consistent.

T10.8 If X/ is consistent, then X is a maximal, consistent, scapegoat set.

T10.9; If X/ is consistent, then for any sentence B, of &£5, M'[B] = Tiff =" F B.

T10.9 If X/ is consistent, then for any sentence B of £/, M'[B] = Tiff ¥ - B.
T10.10y If X’ is consistent, then M'[Z'] = T. (%)

T10.10 If X' is consistent, then M'[Z'] =T.  (x)

T10.11; T E P, then " = P.  (sentential adequacy)

T10.11 IfT' E P, then ' = P.  (quantificational adequacy)

T10.12 If D is a derivation from X/, and x is a variable that does not appear in D, then
for any constant @, D¥ is a derivation from X’ ¢.

T10.13 If X is consistent, then ¥’ is consistent.
T10.14 For any variable assignment d, and for any term # in £, Mg[¢] = M[¢].

T10.15 For any variable assignment d, and for any formula # in £, My[P] = S iff
My[P] = S.

T10.16 If M'[Z'] =T, then M[X] = T.
T10.17a If X is consistent, then X has a model M. (&£ without equality)

T10.17 If X is consistent, then ¥ has amodel M. (£ unconstrained) (x*)




Chapter 11

More Main Results

In this chapter, we take up results which deepen our understanding of the power and
limits of logic. The first sections restrict discussion to sentential forms, for discussion
of expressive completenes, unique readability and independence. Then we turn to
discussion of the conditions under which models are isomorphic, and transition to
a discussion of submodels, and especially the Lowenheim-Skolem theorems, which
help us see some conditions under which models are not isomorphic.'

11.1 Expressive Completeness

In chapter 5 on translation, we introduced the idea of a truth functional operator,
where the truth value of the whole is a function of the truth values of the parts. We
exhibited operators as truth functional by tables. Thus, if some ordinary expression
& with components 4 and B has table,

(A)

then it is truth functional. And we translate by an equivalent formal operator: in this
case A A B does fine. Of course, not every such table, or truth function, is directly
represented by one of our operators. Thus, if & is ‘neither + nor 8’ we have the
table,

I'This chapter is not in finished form. It contains some parts which I've had occasion to write up
and found useful from time to time. But it’s not worked into a fully-formed textbook chapter. Take it
in the spirit with which it’s provided!

517
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(B)

where none of our operators is equivalent to this. But it takes only a little ingenuity
to see that, say, (~#A A ~B) or ~(A Vv B) have the same table, and so result in a
good translation. In chapter 5 (p. ??), we claimed that for any table a truth functional
operator may have, there is always some way to generate that table by means of our
formal operators — and, in fact, by means of just the operators ~ and A, or just the
operators ~ and V, or just the operators ~ and —. As it turns out, it is also possible
to express any truth function by means of just the operator I. In this section, we prove
these results. First,

T11.1. It is possible to represent any truth function by means of an expression with
just the operators ~, A, and V.

The proof of this result is simple. Given an arbitrary truth function, we provide a
recipe for constructing an expression with the same table. Insofar as for any truth
function it is always possible to construct an expression with the same table, there
must always be a formal expression with the same table.

Suppose we are given an arbitrary truth function, in this case with four basic
sentences as on the left.

81 8 83 84 | P

1 T T T T | F € =81A82A83A8,

2 T T T F | F € =81A82A83~A8,

3 T T F T | T € =81A8A~83A8,

4 T T F F | F € =8 A8A~83A~8,

5 T F T T | T € =8A~85A83A8,

6 T F T F |F € =81A~82A8A~8

7 T FF T |F € =8A~8A~83A8,
©) 8 T FF F |F € =81A~8A~83A~8s

9 F T T T |F € =~81A8A83A8,

10 F T T F | F Cio=~81A82A8A~8

M F T FT|F Ciu=~8iA82A~83158

12 F T F F | T Cn=~81A8A~83A~S8,

13 F F T T T Ciz=~81A~82A83A8,

14 F F T F |F Cia=~81A~82A83A~84

15 F F F T |F ©Cis=~81A~8A~83A8

16 F F F F | F €i16=~81A~82A~83A~84

For this sentence J with basic sentences &7 . .. 8, begin by constructing the charac-
teristic sentence €; corresponding to each row: If the interpretation |; corresponding
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torow j has |;[8;] = T, thenlet 8] = 8;. If |;[8;] = F, let 8§/ = ~8;. Then the
characteristic sentence €; corresponding to I; is the conjunction of each &/. So
€; = 8] A... A S, (with appropriate parentheses). These sentences are exhibited
above. The characteristic sentences are true only on their corresponding rows. Thus
€4 above is true only when I[81] =T, [[§2] = T, I[83] = F, and I[[84] = F.

Then, given the characteristic sentences, if & is F on every row, §; A ~&1 has
the same table as J. Otherwise, where & is Tonrows a, b...d, €, V€, VvV ... €,
(with appropriate parentheses) has the same table as 2. Thus, for example, €3 Vv
C5 Vv €12 V €13, that is,

BIASBA~EIAS)V(EIA~EAEIAS)V (~EIAEIA~EINA~E)V (~E1 A~82 AS3 A Sy)

has the same table as #. Inserting parentheses, the resultant table is,

81 82 83 84 | (C3 V&)V (Cp Vv Ci3) P
1T TTT| FFFFFFF F
2T TTF|FFFFFFTF F
3T TFT|TTFTFFF T
4 TTFF|FFFFFFTF F
5 T F T T FTTTFF F T
6 TFTF | FFFFFFTF F
7 TFFT| FFFFFFF F

(D) 8 TFFF|FFFFFFF F
9 F TTT)| FFFFFFTF F
10 F TTF|FFFFFFTF F
M FTFT| FFFFFFTF F
2 F TFF|FFFTTTF T
3 FFTT|FFFTFTT T
4 F FTF| FFFFFFTF F
5 F FFT|FFFFFFTF F
6 F FFF|FFFFFFTF F

And we have constructed an expression with the same table as 2. And similarly for
any truth function with which we are confronted. So given any truth function, there
is a formal expression with the same table.

In a by-now familiar pattern, the expressions produced by this method are not
particularly elegant or efficient. Thus for the table,

(E)

by our method we get the expression (4 A B) V (~A A B) V (~A A ~B). It has
the right table. But, of course, A — B is much simpler! The point is not that the
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resultant expressions are elegant or efficient, but that for any truth function, there
exists a formal expression that works the same way.

We have shown that we can represent any truth function by an expression with
operators ~, A, and V. But any such expression is an abbreviation of one whose only
operators are ~ and —. So we can represent any truth function by an expression with
just operators ~ and —. And we can argue for other cases. Thus, for example,

T11.2. It is possible to represent any truth function by means of an expression with
just the operators ~ and A.

Again, the proof is simple. Given T11.1, if we can show that any & whose
operators are ~, A and V corresponds to a * whose operators are just ~ and A,
such that # and $* have the same table — such that [[P] = I[P *] for any | — we
will have shown that any truth function can be represented by an expression with just
~ and A. To see that this is so, where P is an atomic &, set P* = §; where P is
~dh, set P* = ~A*; where P is A A B, set P* = A* A B*; and where P is
AV B, set P* = ~(~A" A ~B*). Suppose the only operators in P are ~, A, and
Vv, and consider an arbitrary interpretation |.

Basis: Where P is a sentence letter §, then £* is 8. So I[P] = I[P*].
Assp: Foranyi,0 <i < k,if # has i operator symbols, then I[P] = I[P *].
Show: 1If P has k operator symbols, then I[P] = I[P *].
If # has k operator symbols, then it is of the form ~A, A A B, or A VvV B
where 4 and B have < k operator symbols.

(~) Suppose P is ~A; then P* is ~A*. [[P] = Tiff I[~A] = T; by ST(~),
iff I[A] = F; by assumption iff I[A*] = F; by ST(~), iff I[~A*] = T, iff
[P*]=T.

(A) Suppose P is A A B; then P* is A* A B*. [[P] = Tiff |[AAB] =T,
by ST/(A), iff I[A] = T and I[8B] = T; by assumption iff I[A*] = T and
I[B*] = T; by ST/(A), iff I[A* A B*] = T, iff I[P*] =T.

(V) Suppose P is A V B; then P* is ~(~A* A ~B*). I[P] = Tiff [[A V
B] = T; by sT/(V), iff [[A] = T or I[B] = T; by assumption iff [[A*] = T
or I[B*] = T, by ST(~), iff I|[~A*] = F or I[~8B*] = F; by sT/(A), iff
[[~A* A ~B*] = F; by ST(~), iff I[~(~A* A ~B*)] = T, iff I|P*] =T.

If & has k operator symbols then I[P] = [P *].
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Indct: For any P, I[P] = I[P*].

So if the operators in & are ~, A and V, there is a P * with just operators ~ and A that
has the same table. Perhaps this was obvious as soon as we saw that ~(~4A A ~8B)
has the same table as 4 v B. Since we can represent any truth function by an
expression whose only operators are ~, A and Vv, and we can represent any such
P by a P* whose only operators are ~ and A, we can represent any truth function
by an expression with just operators ~ and A. And, by similar reasoning, we can
represent any truth function by expressions whose only operators are ~ and Vv, and
by expressions whose only operator is I. This is left for homework.

In E8.11, we showed that if the operators in J are limited to —, A, Vv, and <«
then when the interpretation of every atomic is T, the interpretation of & is T. Perhaps
this is obvious by consideration of the tables. It follows that not every truth function
can be represented by expressions whose only operators are —, A, V, and <>; for
there is no way to represent a function that is F on the top row, when all the atomics
are T. Though it is much more difficult to establish, we showed in E8.20 that any
expression whose only operators are ~ and <> (with at least four rows in its truth
table) has an even number of Ts and Fs under its main operator. It follows that not
every truth function can be represented by expressions whose only operators are ~
and <.

E11.1. Use the method of this section to find expressions with tables corresponding
to P1, P>, and P3. Then show on a table that your expression for J#; in fact
has the same truth function as & .

A BC
TTT

)
o3
N
e
>

b A e e s R A B B |
M A AT
L e M o I I B I B 1 |
4T A4TmA 4
b e e e e 1 R R |
e e e e

E11.2. (i) Show that we can represent any truth function by expressions whose only
operators are ~ and V. (ii) Show that we can represent any truth function
by expressions whose only operator is I. Hint: Given what we have shown
above, it is enough to show that you can represent expressions whose only
operators are ~ and —, or ~ and A.
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E11.3. Show that it is not possible to represent arbitrary truth functions by expres-
sions whose only operator is ~. Hint: it is easy to show by induction that any
such expression has at least one T and one F under its main operator.

11.2 Unique Readability

Unique readability is a result like our first case from chapter 8 (p. 387) where the
conclusion may seem to obvious to merit argument. We show that every formula of
&£, is parsed uniquely. Things are set up so that this is so. But suppose instead of
FR(—) we had,

(*¢) If # and @ are formulas, then P — @ is a formula.

without parentheses. Then, for atomics A, B and C, say, A — B is a formula so that
A — B — C is a formula. But again, B — C is a formulasothat A - B — C
is a formula. So there are different ways to understand the parts of A — B — C.
Suppose 1[A] = I[B] = I[C] = F. Then on the first account, I[A — B] = T so
that [A — B — C] = F. But on the second account, I[B — C] = T so that
[A - B — C] = T. Thus it is important for our definitions that there is just one
way to understand  — @. And we can demonstrate the result. According to unique
readability,

T11.3. For any formula & of £,, exactly one of the following holds.

(s) &P is a sentence letter.
(~) There is a unique formula #4 such that P is ~A.

(—) There are unique formulas # and B such that P is (A — B).

We build to this result by some preliminary theorems.
First, ignoring uniqueness,

T11.4. For any formula # of &£, at least one of the following holds: (i) & is a
sentence letter; (ii) there is a formula 4 such that & is ~; (iii) there are
formulas 4 and B such that P is (A — B).

This is a (trivial) induction on the number of operators in 5.
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T11.5. For any formula & of £, at most one of the following holds: (i) & is a
sentence letter; (i1) there is a formula »A such that & is ~; (iil) there are
formulas 4 and B such that P is (A — B).

If & is a sentence letter it begins with a sentence letter; if J is ~o4 it begins
with ‘~’; and if £ is (A — B) it begins with ‘(. (i) Suppose £ is a sentence
letter; then it does not begin with ‘~” or ‘(’; so not (ii) and not (iii). Suppose
P is ~A; then it does not begin with a sentence letter or ‘(’; so not (i) or (iii).
Suppose & is (A — B); then it does not begin with a sentence letter or ‘~’
so not (i) or (ii).

By T11.4 and T11.5 together, For any formula & of £;, exactly one of, (i) & is a
sentence letter; (ii) there is a formula + such that & is ~«; (iii) there are formulas
A and B such that P is (A — B).

For some expression 4 say B is an initial segment of A just in case there is
some € such that A = BE€ — just in case +4 is the concatenation of B and €.
If € is a non-empty sequence so that B is not all of 4, then B is a proper initial
segment of 4. So ‘AB’ is a proper initial segment of ‘ABC’. To make progress on
the uniqueness conditions, we show the following.

T11.6. No proper initial segment of a formula # is a formula. Suppose 4 is a
formula.

Basis:

Assp:

Show:

(~)

(=)

If A is atomic, then A = BE€ only if A = € and B is empty. But
from T11.4 no empty sequence is a formula. So no proper initial seg-
ment of # is a formula.

For any i, 0 < i < k, if +A has i operator symbols, then no proper
initial segment of + is a formula.

If A has k operator symbols, then no proper initial segment of 4 is a
formula. If 4 has k operator symbols then it is ~% or (P A @) for
formulas & and @ with < k operator symbols.

A is ~J for some formula &. Suppose some proper initial segment
of » is a formula; then for some formula B, A = BE€. B is either
empty or starts with ‘~’; so with T11.4 and T11.5, B is ~D for some
formula D. So A = ~P = ~DE; s0 P = DE; so D is a proper
initial segment of J; so by assumption, D is not a formula. Reject the
assumption: no proper initial segment of +4 is a formula.

A 18 (P — @). Suppose some proper initial segment of # is a for-
mula; then for some formula 8, A = BE€. B is either empty or
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starts with ‘(’; so with with T11.4 and T11.5, 8 is (D — &) for
some formulas D and &; so A = (P — Q) = (D — &)C; so
P - Q) = D — §)C; soeither P = D or one is a proper initial
segment of the other; suppose one is a proper initial segment of the
other; then by assumption one or the other is not a formula; this is im-
possible. So P = D; s0 @) = &)€; so & is a proper initial segment
of @; so by assumption & is not a formula. Reject the assumption, no
proper initial segment of « is a formula.

Indct: For any formula +, no proper initial segment of # is a formula.

Observe that we “add” and “subtract” from sequences so that, for example ~& =
~Q iff P = Q.

And now we are ready to establish T11.3 for unique readability. For any formula
P of £5, by T11.4 and T11.5, exactly one of,

(i) & is a sentence letter.

(ii) There is a formula 4 such that & is ~cA.
Uniqueness: Suppose there is a formula B such that ~A = ~8B; then A = B.
So there is a unique formula + such that » = ~A.

(iii) There are formulas 4 and B such that & is (A — B).

Uniqueness: Suppose there are formulas € and O such that (A — B) =
(€ - D); then A > B) = € — D); so either A = € or one is a proper
initial segment of the other; but by T11.6, neither is a proper initial segment of
the other; so A = €; 50 B) = D); so B = D. So there are unique formulas
A and B such that P = (A — B).

Thus T11.3 is established.
E11.4. Demonstrate T11.4 by induction on the length of f.

E11.5. Show unique readability for the terms of &, that for every term t of &g,
exactly one of the following holds,

(v) t1is a variable.

(c) % 1s a constant.



CHAPTER 11. MORE MAIN RESULTS 525

(f) There are unique function symbol 4" and terms #; ... ¢, such that t =
At .. 1y

Hint: The argument is based on TR; you will want to show that no proper
initial segment of a term is a term.

E11.6. Show unique readability for the formulas of &, that for every formula > of
&Ly, exactly one of the following holds,

(s) &P is a sentence letter.

(r) There are unique relation symbol R” and terms Z .. . 1, such that =
Rty .. .

(~) There is a unique formula 4 such that P = ~#.
(—) There are unique formulas # and B such that = (A — B).

(V) There are unique variable x and formula «# such that J* = Vx .

Hint: This time the argument is based on FR.

11.3 Independence

As we have seen, axiomatic systems are convenient insofar as their compact form
makes reasoning about them relatively easy. Also, theoretically, axiomatic systems
are attractive insofar as they expose what is at the base or foundation of logical sys-
tems. Given this latter aim, it is natural to wonder whether we could get the same
results without one or more of our axioms. Say an axiom or rule is independent in a
derivation system just in case its omission matters for what can be derived. In par-
ticular, then, an axiom is independent in a derivation system if if cannot be derived
from the other axioms and rules. For suppose otherwise: that it can be derived from
the other axioms and rules; then it is a theorem of the derivation system without the
axiom, and any result of the system with the axiom can be derived using the theorem
in place of the axiom; so the omission of the axiom does not matter for what can be
derived, and the axiom is not independent. In this section, we show that A1, A2 and
A3 of the sentential fragment of AD are independent of one another.

Say we want to show that Al is independent of A2 and A3. When we showed,
in chapter 8, that the sentential part of AD is weakly sound, we showed that A1, A2,
A3 and their consequences have a certain feature — that there is no interpretation
where a consequence is false. The basic idea here is to find a sort of “interpretation”
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on which A2, A3 and their consequences are sustained, but A1 is not. It follows that
Al is not among the consequences of A2 and A3, and so is independent of A2 and
A3. Here is the key point: Any “interpretation” will do. In particular, consider the
following tables which define a sort of numerical property for forms involving ~ and
—.

PQA|r—aQ

00 0

0 1 2

P|~P 02 2

0|1 10 2

Al(~) P Al(—) 1 )
210 12 0

20 0

2 1 0

22 0

Do not worry about what these tables “say”; it is sufficient that, given a numerical
interpretation of the parts, we can always calculate the numerical value N of the
whole. Thus, for example,

4© @
F ~AM By Al(~) row 1
~A — BO By Al(—) row 6

if N[A] = 0 and N[B] = 2, then N[~A — B] = 0. The calculation is straightfor-
ward, based on the tables. And similarly for sentential forms of arbitrary complexity.
Say a form is select iff it takes the value O on every numerical interpretation of its
parts. (Compare the notion of semantic validity on which a form is valid iff it is T
on every interpretation of its parts.) Again, do not worry about what the tables mean.
They are constructed for the special purpose of demonstrating independence: We
show that every consequence of A2 and A3 is select, but A1l is not. It follows that A1l
is not a consequence of A2 and A3.

To see that A3 is select, and that Al is not, all we have to do is complete the
tables.



CHAPTER 11. MORE MAIN RESULTS 527

AB|A—>(B—>A) (B> ~A) > [(~B > A) > B]

00 0 0 1 2 1 0 1 2 0

01 2 2 1 2 1 0 1 2 0

0 2 0 0 0 2 1 0 O 0 2
(G) 10 0 2 1 2 1 0 1 2 0

11 0 2 1 2 1 0 1 2 0

1 2 2 0 0 2 1 0 O 2 0

20 0 2 1 20 0 1 0 0

21 0 0 1 20 0 1 0 2

2 2 0 0 0 00 0 O 2 0

Since A1 has twos in the second and sixth rows, A1 is not select. Since A3 has zeros
in every row, it is select. Alternatively, for A1, we might have reasoned as follows,

Suppose N[A] = 0 and N[8B] = 1. Then by Al(—), N[B — A] = 2; so by Al(—)
again, N[A — (8 — +4A)] = 2. Since there is such an assignment, A — (8 — #A) is
not select.

And the result is the same. To see that A2 is select, again, it is enough to complete
the table — it is painful, but we can do it:
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(A—> (B —>TC) > (A—> B)—> (A>T

o
o
(=]
o
o
o

(H)

O OO OO OO OIMDMMNMNMNMNNMNOODODONMNODOOOMNMMNMDMNDDN
O OO O0OO0OCOoOOO|lcocoo MMM NMNDMNNMOO

MMM POPNOMNNODNOMNOMNONN2 A 4 4 a4 a0 000000000 S
O OO0 OO OO O0O|IONMNNOODODOOOO(0OOOCOCOOMNMDN
OO OO O0OCOoOOoOOoO|OoOoMNMMMOMNMMNMNOMNMNNMIMDNMNONMDNMNOMNDN

MDD = =2 2 000N = = =4 OO0 O0 NI\)N—*—*—*OOO&
N 2 ON—=2ON—=-O|N—=-ON—-=-0N—=-ON=2ON—=ON—=O|C

O OO O MNMNMNMNNMNMNNMNMNOOCOOOMNMMNMMNMMNMNO OOOODMNMDMMNDDNDDDND
L= T~ T = T~ - e e O~ e = R = R e R R e R T T~ T = = L = I i~ I~ I e }

o
o
o
o

So both A2 and A3 are select. But now we are in a position to show,

T11.7. Al is independent of A2 and A3.

Consider any derivation (@1, &, ... &,) where there are no premises, and
the only axioms are instances of A2 and A3. By induction on line number,
for any i, @; is select.

Basis: @ is an instance of A2 or A3, and as we have just seen, instances of
A2 and A3 are select. So @ is select.

Assp: Foranyi,0 <i <k, @; is select.

Show: @ is select.
@, is an instance of A2 or A3 or arises from previous lines by MP. If
@y, is an instance of A2 or A3, then by reasoning as in the basis, @
is select. If @ arises from previous lines by MP, then the derivation
has some lines,
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a. B
b. B—->F€
k. € a,b MP

where a,b < k and € is @j. By assumption, 8 and 8 — € are
select. But by Al(—), both 8 and 8 — € evaluate to 0 only in the
case when € also evaluates to 0; so if both 8 and 8 — € are select,
then € is select as well. So @, is select.

Indct: For any n, @, is select.

So Al cannot be derived from A2 and A3 — which is to say, Al is indepen-
dent of A2 and A3.

E11.7. Use the following tables to show that A2 is independent of A1 and A3.

P QP —a
00 0
0 1 2
P\ ~P 02 1
01 10 0
A2(~) 1 1o A2(—) 1 0
21 12 0
20 0
21 0
22 0

E11.8. Use the table method to show that A3 is independent of Al and A2. That
is, (i) find appropriate tables for ~ and —, and (ii) use your tables to show
by induction that A3 is independent of Al and A2. Hint: You do not need
three-valued interpretations, and have already done the work in E8.14.

11.4 Isomorphic Models

Interpretations are isomorphic when they are structurally similar. Say a function f
from r" to s is onto set s just in case for each 0 € s there is some (m;...m,) €
r" such that ({(my...m,),0) € f; a function is onto set s when it “reaches” every
member of s. Then,
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IS For some language &£, interpretation | is isomorphic to interpretation |’ iff there
is a 1:1 function ¢ (iota) from the universe of | onto the universe of I’ where:
for any sentence letter 8, I[8] = I'[8]; for any constant ¢, I[c] = miff I'[c] =
t(m); for any relation symbol R”, (m, ... mp) € I[[R"] iff (t(mg)...t(mp)) €
I"(R™); and for any function symbol £”, ((m, ... mp),0) € [[A"]iff ((t(mg) ...
t(mp)), 1(0)) € I'[A"].

If | is isomorphic to I', we write, | = I’. Notice that the condition on constants requires
just that ¢(1[¢]) = I'[c]; applying ¢ to the thing assigned to ¢ by I, results in the thing
assigned to ¢ by I'. And similarly, the condition on function symbols requires that
t(I[A™){mg ... mp)) = I'TA"]{t(mg) ...t(mp)); for we have I[A"](m,...mp) = o,
and ((0) = I'[A"]{t(mg)...1(mp)). We might think of the two interpretations as
already existing, and finding a function ¢ to exhibit them as isomorphic. Alternatively,
given an interpretation |, and function ¢ from the universe of | onto some set U’, we
might think of I" as resulting from application of ¢ to I.

Here are some examples. In the first, it is perhaps particularly obvious that | and

I" have the required structural similarity.

u: Rover Fido Morris  Sylvester
€y) i \ \ \
U Ralph Fredo Manny Salvador

U = {Rover, Fido, Morris, Sylvester}. As represented by the arrows, function ¢ maps
these onto a disjoint set U". Then given | as below on the left, the corresponding
isomorphic interpretation is I” as on the right.

I[r] = Rover I'lr] = Ralph

I[m] = Morris I'[m] = Manny

I[D] = {Rover, Fido} I'lD] = {Ralph, Fredo}

I[C] = {Morris, Sylvester} I'[C] = {Manny, Salvador}

I[P] = {{Rover, Morris), (Fido, Sylvester)} I'[P] = {(Ralph, Manny), (Fredo, Salvador)}

On interpretation |, where Rover and Fido are dogs, and Morris and Sylvester are
cats, we have that every dog pursues at least one cat. And, supposing that Ralph and
Fredo are dogs, and Manny and Salvador are cats, the same properties and relations
are preserved on I" — with only the particular individuals changed.

For a second case, let U be the same, but U’ the very same set, only permuted or
shuffled so that each object in U has a mate in U’.

uU: Rover  Fido  Morris  Sylvester
Q) \ \ i i

v Rover Morris  Fido  Sylvester
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So ¢ maps members of U to members of the very same set. Then given | as before,
the corresponding isomorphic interpretation is I’ is as follows.

I[r] = Rover I'[r] = Rover

I[m] = Morris I'lm] = Fido

I[D] = {Rover, Fido} I'[D] = {Rover, Morris}

I[C] = {Morris, Sylvester} I'[C] = {Fido, Sylvester}

I[P] = {{(Rover, Morris), (Fido, Sylvester)} I'[P] = {(Rover, Fido), (Morris, Sylvester)}

This time, there is no simple way to understand I'[ D] as the set of all dogs, and I'[C]
as the set of all cats. And we cannot say that the interpretation of P reflects dogs
pursuing cats. But Morris plays the same role in | as Fido in |; and similarly Fido
plays the same role in I as Morris in I. Thus, on I, each thing in the interpretation of
D is such that it stands in the relation P to at least one thing in the interpretation of
C — and this is just as in interpretation .

A final example switches to £; and has an infinite U. We let U be the set N of
natural numbers, U’ be the set P of positive integers, and ¢ be the function n + 1.

U: 0 1 2 3
(K) R R
U 1 2 3 4

Then where N is the standard interpretation for symbols of £33,
N[@] = 0
N[<] = {{m,n) | m,n € N, and m is less than n}
N[S] = {{(m,n) | m,n € N, and n is the successor of m}

N[+] = {{{m,n),0) [ m,n,0 € N, and m plus n equals 0}

we obtain N’ as follows,

N'[g] =1

N[<]={(m+1,n+1)|m,ne N,and mis less than n}

N'[S] = {{(m+1,n+1) | m,n € N, and n is the successor of m}
N[+] = {{{m+1,n+1),0+ 1) | m,n,0 € N, and m plus n equals o}

Observe that anything in N’ is taken from P. In this case, we build N” explicitly by
the rule for isomorphisms — simply finding ¢(m) = m 4+ 1 from the corresponding
element of N.
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11.4.1 Isomorphism implies Equivalence

Given these examples, perhaps it is obvious that when interpretations are isomorphic,
they make all the same formulas true.” Say,

EE For some language £, interpretations | and I are elementarily equivalent iff for
any formula 2, I[P] = Tiff '[P] = T.

If | is elementarily equivalent to I, write | = I'. We show that isomorphic interpre-
tations are elementarily equivalent. This is straightforward given a matched pair of
results, of the sort we have often seen before.

T11.8. For some language &£, if interpretations D = H, and assignments d for D
and h for H are such that for any x, t(d[x]) = h[x], then for any term %,

t(Dgl#]) = Hnlz].
Suppose D = H, and corresponding assignments d and h are such that for any
%, t(d(x)) = h(x). By induction on the number of operator symbols in £.

Basis: If t has no function symbols, then it is a variable or a constant. If # is
a variable x, then by TA(v), Dg[x] = d(x); so t(Dg[x]) = ¢(d[x]); but
we have supposed ¢(d[x]) = h[x]; and by TA(v) again, h[x] = Hy[x];
so t(Dg[x]) = Hp[x]. If # is a constant ¢, then by TA(c), Dg[c] = Dl[c];
so t(Dg[¢]) = t(D[c]); butsince D = H, ¢«(D[c]) = H[c]; and by TA(c)
again, H[c] = Hy[c]; so t(Dg[¢]) = Hnlc].

Assp: Forany i, 0 < i < k if  has i function symbols, then ((Dg4[%]) =
Hn[4].

Show: If ¢ has k function symbols, then ¢(Dqy[#]) = Hn[¢].

If £ has k function symbols, then it is of the form 4", . .. ¢, for rela-
tion symbol 4" and terms 11 . .. ¢, with < k function symbols. Then
Dg[#] = Dalh"11... 2]; by TA(f), Dg[h" 21 ... a] = D[A"]{Dg[t1]
...Dg[tn]). So t(Dg[£]) = ¢(D[A"]{Dglt1]-..Dg[ts])); but since D =
H, «(D[A"](Dglt1] . . . Dg[tn])) = H[A"]{t(Dglt1]) . .. t(D4[tn])); and by
assumption, t(Dg[41]) = Hn[#1], and ...and ¢(Dg[t,]) = Hn[ta];
so H[A"]{t(Dg[t1]) ... t(Da[ts])) = H[A"](Hn[t1]...Hn[ta]); and by
TA®), H[A"(Hn[t1] . . . Hr[tr]) = Hr[A" 41 . .. £,]; which is just Hy[£];
s0 t(Dg[4]) = Hp[z].

2In Reason, Truth and History, Hilary Putnam makes this point to show that truth values of sen-
tences are not sufficient to fix the interpretation of a language. As we shall see in this section, the
technical point is clear enough. It is another matter whether it bears the philosophical weight he means
for it to bear!
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Indct: For any #, t(Dg[£]) = Hn[£].

So when D and H are isomorphic, and for any variable x, ¢ maps d[x] to h[x], then
for any term £, ¢ maps Dgy[#] to Hp[#].

Now we are in a position to extend the result to one for satisfaction of formulas.
If D and H are isomorphic, and for any variable x, ¢ maps d[x] to h[x], then a formula
& will be satisfied on D with d just in case it is satisfied on H with h.

T11.9. For some language &£, if interpretations D =~ H, and assignments d for D
and h for H are such that for any x, t(d[x]) = h[x], then for any formula 7,
Dg[#] = Siff Hy[P] = S.

By induction on the number of operators in . Suppose D =~ H.

Basis: Suppose & has no operator symbols and d and h are such that for any
x, t(d[x]) = h[x]. If & has no operator symbols, then it is sentence
letter § or an atomic R"4; ... ¢, for relation symbol R” and terms
11 ... 1n. Suppose the former; then by SF(s), Dy4[8] = Siff D[§] = T;
since D =~ H iff H[&] = T, by SF(s), iff Hy[§] = S. Suppose the
latter; by SF(r), Dg[R" ¢ ... tn] = Siff (Dg[#1]...Dg[tx]) € D[R"];
since D = H, iff (¢(Dq4[¢1]) ... t(Dg[tn])) € H[R"]; since D = H and
t(d[x]) = h[x], by T11.8, iff (Hy[#1]...Hn[tn])) € H[R"]; by SF(r),
iff Hy[R"#1 ... 14] = S.

Assp: Foranyi,0 <i < k, for d and h such that for any x, ¢(d[x]) = h[x]
and # with i operator symbols, Dy[?] = S iff Hy[] = S.

Show: For d and h such that for any x, ¢(d[x]) = h[x] and # with k operator
symbols, Dy4[P] = Siff Hy[P] = S.

If P has k operator symbols, then it is of the form ~#, A — B, or
Vx s for variable x and formulas # and 8 with < k operator symbols.
Suppose for any x, ¢(d[x]) = h[x].

(~) Suppose P is of the form ~A. Then Dy[] = S iff Dy[~+A] = S; by
SE(~), iff Dy4[+A] # S; by assumption, iff Hy[4] # S; by SF(~), iff
Hn[~#A] = S; iff Hy[P] = S.

(—) Homework.

(V) Suppose £ is of the form Vx . Then Dy[] = S iff Dg[VxA] = S;
by SF(V), iff for any m € Up, Dy(xjm)[-A] = S. Similarly, Hy[?] = S
iff Ho[VxA] = S; by SE(Y), iff for any n € Up, Hngem 4] = S. (i)
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Suppose Hp[P] = S but Dg[P] # S; then any n € Uy is such that
Hh(x|n)[#4] = S, but there is some m € Up such that Dy(y|m)[+] # S.
From the latter, insofar as d(x|m) and h(x|¢(m)) have each member
related by ¢, the assumption applies and, Hp(x|,(m))[#] # S: so there
is an n € Uy such that Hyyn)[A] # S; this is impossible; reject
the assumption: if Hy[#] = S, then Dy4[#] = S. (ii) Similarly, [by
homework] if Dy4[?] = S, then Hy[?] = S. Hint: given h(x|n), there
must be an m such that ((m) = n; then d(x|m) and h(x|n) are related
so that the assumption applies.

For d and h such that for any x, ¢(d[x]) = h[x] and & with k operator
symbols, Dg4[P] = S iff Hy[P] = S.

Indct: Ford and h such that for any x, ¢(d[x]) = h[x], and any &, D4[P] = S
iff Hy[P] = S.

As often occurs, the most difficult case is for the quantifier. The key is that the
assumption applies to Dg[#] and Hy[P] for any assignments d and h related so that
for any x, ¢(d[x]) = h[x]. Supposing that d and h are so related, there is no reason
to think that d(x|m) and h remain in that relation. The problem is solved with a
corresponding modification to h: with d(x|m); we modify h so that the assignment
to x simply is ¢(m). Thus d(x|m) and h(x|c(m)) are related so that the assumption
applies.

Now it is a simple matter to show that isomorphic models are elementarily equiv-
alent.

T11.10. If D = H, then D = H.

Suppose D =~ H. By TI, D[#] # T iff there is some assignment d such
that Dy4[P] # S; since D = H, where d and h are related as in T11.9, iff
Hn[P] # S; by TLLiff H[P] # T. So D[P] = Tiff H[P] = T; and D = H.

Thus it is only the structures of interpretations up to isomorphism that matter for the
truth values of formulas. And such structures are completely sufficient to determine
truth values of formulas. It is another question whether truth values of formulas are
sufficient to determine models, even up to isomorphism.

*E11.9. Complete the proof of T11.9. You should set up the complete induction, but
may refer to the text, as the text refers to homework.
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E11.10. (i) Explain what truth value the sentence Vx(Dx — 3y(Cy A Pxy)) has
on interpretation | and then I’ in example (I). Explain what truth values it
has on | and then |" in example (J). (ii) Explain what truth value the sentence
S@ + S® = SS0 has on interpretations N and N’ in example (K). Are these
results as you expect? Explain.

11.4.2 When Equivalence implies Isomorphism

It turns out that when the universe of discourse is finite, elementary equivalence is
sufficient to show isomorphism. Suppose Up is finite and interpretations D and H are
elementarily equivalent, so that every formula has the same truth value on the two
interpretations. We find a sequence of formulas which contain sufficient information
to show that D and H are isomorphic.

For some language £, suppose D = H and Up = {m;,m,...m,}. For an enu-
meration x1, X2 ... of the variables, consider some assignment d such that d[x{] =
my, d[x2] = my, and ...and d[x,] = mj, and let €y be the open formula,

[(x1 FxaoAx] ZX3A L AXT FExn) AX2 ZX3A . AX2 F xXn) A (Xn—1 F xn)] A
YVo(vr =x1 VU =% V...VU =%xp)

with appropriate parentheses. You should see this expression on analogy with quan-
tity expressions from chapter 5 on translation. Its existential closure, that is, 3x3x,
... %, Cp is true just when there are exactly n things.

Now consider an enumeration, #7, 4, ... of those atomic formulas in £ whose
only variables are x1 ...x,. And set €; = €;_1 A A; if Dg[sA;] = S, and otherwise,
€ = €1 A ~A;. Itis easy to see that for any i, Dy[€;] = S. The argument is by
induction on i.

T11.11. For any i, D4[€;] = S.

Basis: For any a and b such that 1 < a,b < n and a # b, since x4 and xp
are assigned distinct members of Up, Dgq[x, = xp] # S; so by SF(~),
Dg[xa # xp] = S; so by repeated applications of SF(A), Dg[(x1 #
XIAXL £ X3A.AXL F X)) A(X2 £ X3A. . AXD F X)) A(Xp—1 F#
xn)] = S. And since each member of Up is assigned to some variable
in xq...xp, for any m € Up, there is some a, 1 < a < n such that
Da(v|m)[v = x4] = S. So by repeated applications of SF(V), for any
m € Up, Dywm[v = x1 Vv = x2 V...v = x,] = S; so by
SE(Y), Dg[Vv(v = x1 Vv = x5 V... v = xy)] = S; so by SF(A),
Da[Co] = S.
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Assp: Foranyi,0 <i <k, D4[€;] = S.

Show: Dy4[€;] = S.
€y is of the form €;_1 A A or €,_1 A ~Af. In the first case, by
assumption, D4[€;_1] = S, and by construction, Dgq[+Ax] = S; so by
SFE(A), Dg[€r—_1 A #Ar] = S; which is to say, Dg[€r] = S. In the
second case, again Dy4[€;_1] = S; and by construction, Dgq[4Ar] # S;
so by SF(~), Dg[~+Ag] = S; so by SF(A), D4[€Cr—1 A ~Ar] = S;
which is to say, D4[€x] = S.

Indct: For any i, D4[€;] = S.

So these formulas, though increasingly long, are all satisfied on assignment d.

Now, for the specification of an isomorphism between the interpretations, we set
out to show there is a corresponding assignment h on which all the same expressions
are satisfied. First, for any €;, consider its existential closure, Ix...3x,€;. Itis
easy to see that for any €;, H[3x; ...3x,€;] = T. Suppose otherwise; then since
D = H, D[3xy...3x,€;] # T, so by TI, there is some assignment d’ such that
Dy/[3x1 ...3x,€i] # S; so, since the closure of €; has no free variables, by T8.4,
Dg[Fx1 ... 3%, €] # S; so by repeated application of SF(3), Dy[€;] # S; but by
T11.11, this is impossible; reject the assumption: H[3x;...3x,€;] = T. When
the existential is not satisfied on d, as we remove the quantifiers, in each case, the
resultant formula without a quantifier is unsatisfied on d(x|m) for any m € Up; so
it is unsatisfied when m = d[x] — so that the formula without the quantifier is
unsatisfied on the original d. Observe that there are thus exactly n members of Uy:
H[3x; ...3x, €] = T; and, as we have already noted, this can be the case iff there
are exactly n members of Uy.

Now for some assignment h’, let h range over assignments that differ from h’ at
most in assignment to x ...%x,. Set Q; = {h|Hy[€;] = S}, and Q = ();5 2.
Observe: (i) No €2; is empty. Since H[3x; ... 3x,€;] = T, by TI, for any assig?lment
h*, Hp«[Fx1 ... 3%, €] = S;soHy[Ix; ... Ix, €] = S; so by repeated applications
of SF(3), there is some h such that Hy[€;] = S. When the quantifiers come off, the
result is some assignment that differs at most in assignments to x; ...%x, and so
some assignment in £2;. (ii) For any j > i, Q; C ;. Suppose otherwise; then
there is some h such that h € Q; but h & Q;; so by construction, Hy[€;] = S but
Hn[€;:] # S; if j = i this is impossible; so suppose j > i; then €; is of the sort,
C ANBig1 ANBiga A... AN Bj where B;q...B; are either atomics or negated
atomics; so by repeated application of SF(A), Hy[€;] = S; this is impossible; reject
the assumption: £2; C €;. (iii) Finally, there are at most finitely many assignments



CHAPTER 11. MORE MAIN RESULTS 537

of the sort h. Since any h differs from h’ at most in assignments to xi ... %, and
there are just n members of Uy, there are n” assignments of the sort h.

From these results it follows that € is non-empty. Suppose otherwise. Then
for any h, there is some €2; such that h ¢ ;. But there are only finitely many
assignments of the sort h. So we may consider finitely many €2, ... 2p from which
for any h there is some 2; such that h ¢ Q;. But where each subscriptina...b is
< b, for each Q;, Qp C Q;; and since each h is missing from at least one 2;, we
have that €25 is therefore empty. €25 must lack each of the assignments missing from
prior members of the sequence. But this is impossible; reject the assumption: €2 is
not empty. So we have what we wanted: any h in €2 is an assignment that satisfies
every €;.

Now we are ready to specify a mapping for our isomorphism! Indeed, we are
ready to show,

T11.12. If D = H and Up is finite, then D =~ H.

Suppose D = H and Up is finite. Then there are 2 and formulas €; as above.
For some particular h € @, forany i, | <i < n,let¢(d[x;]) = h[x;]. Since
h € Q, for any €;, Hy[€;] = S. So Hp[€p] = S. So & assigns each x; to a
different member of Uy, and ¢ is onto Uy, as it should be. We now set out to
show that the other conditions for isomorphism are met.

Sentence letters. Since D = H, for any sentence letter 8, D[§] = T, iff H[8] = T,
so D[&] = H[S].

Constants. We require that for any constant ¢, D[c] = m; iff H[¢] = «(m;). (i)

For some constant ¢, suppose D[¢] = m;. Since d[x;] = m;, t(m;) =
t(d[x;]) = h[x;]. By TA(c), Dg[c] = D[c¢] = m;; and by TA(v), Dg[x;] =
d[x;] = m;; so Dg[c] = Dq[x;]; so (Da[c], Da[x;]) € D[=]; so by SF(r),
Dglc = «xi] = S; so ¢ = «x; is a conjunct in some €,; but Hy[E,] =
S; so by repeated applications of SF(A), Hh[e = x;] = S; so by SF(r),
(Hn[c], Hrlxi]} € H[=]; so Hn[c] = Hn[x;]; but by TA(c), Hn[c] = H[c], and
by TA(v), Hn[x;] = h[x;]; so H[¢] = h[x;]; so H[c] = ¢(m;).
(ii) Suppose D[c] # m;. As before, «(m;) = h[x;]; and Dy[x;] = m;.
But by TA(c), Dg[c] = D[c]; so Dg[e¢] # m;; so Dg[e] # Dg[xi]; so
(Dgle], Dg[xi]) & D[=]; so by SF(r), Dglc = x;] # S; so ¢ # «x; is a
conjunct in some €, ; but H,[€,] = S; so by repeated applications of SF(A),
Hih[c # xi] = S; so by SF(~), and SF(r), (Hn[¢], Hn[xi]}) & H[=]; so
Hn[c] # Hn[x;]; but by TA(c), Hn[¢] = H[c], and by TA(v), Hn[x;] = h[x;];
so H[¢] # h[x;]; so H[¢] # t(m;).
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Relation Symbols. We require that for any relation symbol R”, (m, ... m,) € D[R"]
iff (t(mg)...t(mp)) € H(R™). (i) Suppose (M, ...mp) € D[R"]. Since
d[xs] = mg, and ...and d[xp] = mp we have, ((m;) = t(d[x4]) = h[x4],
and ...and t(mp) = t(d[xp]) = h[xp], and also by TA(V), Dg[xs] = mg,
and ...and Dg[xp] = mp; so (Dg[xg4],..-Dg[xp]) € D[R"]; so by SF(r),
Da[R"xq ... xp] = S; 50 R x4 ... xp is a conjunct of some €, ; but Hy[€,] =
S; so by repeated applications of SF(A), Hp[R" x4 ... xp] = S; so by SFE(r),
(Hn[xal. ... Hnl[xp]) € H[R"]; but by TA(v), Hn[xa] = h[x4] = t(Mg), and
...and Hp[xp] = h[xp] = t(mp); so (t(mg) ... t(mp)) € H[R"].

(ii) Suppose (Mg ...mp) & D[R"]. As before, t(mg;) = h[x4], and ...and
t(mp) = h[xp]; similarly, Dg4[xz] = mg, and ...and Dg[xp] = mp; so
(Dg[xal,...Dg[xp]) € D[R"]; so by SF(r), Dg[R"xq...xp] # S; and
~R"x4 ...xp is a conjunct of some €,; but Hy[€,] = S; so by repeated
applications of SF(A), Hy[~R"x4...xp] = S; so by SF(~) and SF(r),
(Hn[xal, ... Hnlxp]) & H[R"]; but as before, Hn[xs] = t(mg), and ...and
Hn[xp] = t(mp); so (t(Mg) ... t(mp)) & H[R"].

Function symbols. We require that for any function symbol 4", ({m, ... m), m) €
D[A™]iff ((t(mg) ...t(mp)), t(mc)) € H[A"]. (i) Suppose ({(m, ... mp), m.) €
D[A™"]. Since d[x4] = mg, and ...and d[xp] = mp, and d[x.] = m,, we
have, t(mg) = t(d[x4]) = h[xg], and ...and ((mp) = ¢(d[xp]) = h[xp], and
t(me) = t(d[xc]) = h[xc]; and also by TA(v), Dg[x4] = M4, and ...and
Dg[xp] = mp, and Dy[x.] = m¢; so ((Dg[xa]...Dg[xp]}, Da[xc]) € D[A"];
so D[A"](Dg[xq]...D4[xp]) = Dglxc]; so by TA(), Dg[ha"xq...xp] =
Dg[xc]; s0 (Dg[A"xq ... xp], Dg[xc]) € D[=]; soby SE(r), Dg[A"xq ... xp =
xXc] = S; 80 A"x4 ... xp = %, is a conjunct of some C,; but Hy[€,] = S;
so by repeated applications of SF(A), Hy[A" x4 ...xp = x¢] = S; so by
SFE(r), (Hh[A"xq ... xp], Halxc]) € H[=]; so Hh[A" x4 ... xp] = Hn[x,]; but
by TA(f), Hh[A"xq4 . .. xp] = H[A"](Hn[x4] - - - Hnl[xp]); so H[A® | (Hn[x4] - - -
Hh[xp]) = Hnlxc]; so ({Hn[xa] ... Hnlxp]), Halxc]) € H[A™]; but by TA(v),
Hnlxa] = h[xa] = t(mg), and ... Hn[xp] = h[xp] = t(mp), and Hn[x] =
h[xc] = t(me);so ((t(Mq) ... 1(Mp)), L(mc)) € H[A"].

(i1) Suppose {({(mg...mp), m.) & D[A"]. As before, t(m;) = h[x,], and
...and ((mp) = h[xp], and t(m;) = h[x.]; and also Dg[xs] = mg, and
...and Dg[xp] = mp, and Dg[xc] = m¢; so ({Dg[xa]...Da[xp]), Da[xc]) &
D[A"]; so D[A"](Dg[xa] . .. Da[xp]} # Dalxc]; so by TA(f), Da[#" x4 . . . xp]
# Dalxc]; so (DalA"xq ... xp], Da[xc]) & D[=]; soby SF(x), Dg[A" xqa ... xp
= X¢] # S;80 A" xq ... xp # xc is a conjunct of some €, ; but Hy[€,] = S;
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so by repeated applications of SF(A), Hh[A"xq...xp # x¢] = S; so by
SFE(~) and SF(r), (Hh[A"xq ... xp], Ha[xc]) € H[=]; so Hh[A" x4 ... xp] F#
Hh[xc]; but by TA(f), Hn[A"xq ... xp] = H[A"](Hn[x4]...Hn[xp]); and
H[A"](Hn[x4] . .. Hnlxp]) # Hilxc]: so ((Hnlxal . .. Hu[xp]). Hul[xc]) & H[A™];
but as before, Hp[x,] = t(mg), and ... Hp[xp] = t(mp), and Hy[x.] = t(m¢);

50 {(t(Mg) ... L(Mp)), t(me)) & HA"].

Thus elementary equivalence is sufficient for isomorphism in the case where the uni-
verse of discourse is finite. This is an interesting result! Consider any interpretation
D with a finite Up, and the set of formulas A (Delta) true on D. By our result, any
other model H that makes all the formulas in A true — any H such that D = H —
is such that D is isomorphic to H. As we shall shortly see, the situation is not so
straightforward when Up is infinite.

11.5 Compactness and Isomorphism

Compactness takes the link between syntax and semantics from adequacy, and com-
bines it with the finite length of derivations. The result is simple enough, and puts us
in a position to obtain a range of further conclusions.

ST A set ¥ of formulas is satisfiable iff it has a model. ¥ is finitely satisfiable iff
every finite subset of it has a model.

Now compactness draws a connection between satisfiability, and finite satisfiability,

T11.13. A setof formulas ¥ is satisfiable iff it is finitely satisfiable. (compactness)

(i) Suppose X is satisfiable, but not finitely satisfiable. Then there is some
M such that M[X] = T, but there is a finite X’ C X such that any M’ has
M'[X'] # T; so M[X'] # T, so there is a formula & € X’ such that M[P] # T,
but since ¥’ € X, £ € X; so M[X] # T. This is impossible; reject the
assumption: if ¥ is satisfiable, then it is finitely satisfiable.

(ii) Suppose X is finitely satisfiable, but not satisfiable. By T10.17, if ¥
18 consistent, then it has a model M. But since X is not satisfiable, it has no
model; so it is not consistent; so there is some formula + such that ¥ - A and
Y b ~u; consider derivations of these results, and the set X* of premises
of these derivations; since derivations are finite, ©* is finite; and since X*
includes all the premises, X* = 4 and X* F ~A; so by soundness, * E A
and X* F ~u; since X is finitely satisfiable, there must be some model M*
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such that M*[X*] = T, then by QV, M*[A] = T and M*[~A] = T. But
by T7.5, there is no M* and + such that M*[A] = T and M*[~A] = T.
This is impossible; reject the assumption: if X is finitely satisfiable, then it is
satisfiable.

This theorem puts us in a position to reason from finite satisfiability to satisfiabil-
ity. And the results of such reasoning may be startling. Consider again the standard
interpretation N1 for £,

N[g] =0

N[<] = {{m,n) | m,n € N, and m is less than n}

N[S] = {{(m,n) | m,n € N, and n is the successor of m}
N[+] = {{{m,n),0) | m,n,0 € N, and m plus n equals 0}

N[x] = {{{m,n),0) | m,n,0 € N, and m times n equals 0}

Let T include all the sentences true on N. Now consider a language £’ like £ but
with the addition of a single constant ¢c. And consider a set of sentences,

Y=XU{@<c,S0<c,SS0<c,SSSP<c,SSSSO <c...}

that is like X but with the addition of sentences asserting that ¢ is greater than each
integer. Clearly there is no such individual on the standard interpretation N. A finite
subset of X’ can have at most finitely many of these sentences as members. Thus a
finite subset of X’ is a subset of,,

nS’s

e N—
YU{@<c,S0<c,SSO<c...S5S5...50 <c}

for some n. But any such set is finitely satisfiable: Simply let the interpretation N’ be
like N but with N[c] = n + 1. It follows from T11.13 that X’ has a model M’. But,
further, by reasoning as for T10.16, a model M like M’ but without the assignment to
¢ is a model of £ for all the sentences in . So N = M. But N 22 M. For there must
be a member of Uy with infinitely many members of Uy that stand in the < relation
to it. [Clean this up.]

It is worth observing that we have demonstrated the existence of a model for the
completely nonstandard M by appeal to the more standard models M’ for finite subsets
of ¥’, through the compactness theorem. Also, it is now clear that there can be no
analog to the result of the previous section for models with an infinite domain: For
models with an infinite domain, elementary equivalence does not in general imply
isomorphism. In the next section, we begin to see just how general this phenomenon
is.
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11.6 Submodels and Lowenheim-Skolem

The construction for the adequacy theorem gives us a countable model for any con-
sistent set of sentences. Already, this suggests that sentences for some models do not
always have the same size domain. Suppose X has a model I. Then by T10.4, ¥ is
consistent; so by T10.17, ¥ has a model M — where the universe of this latter model
is constructed of disjoint sets of integers. But this means that if 3 has a model at all,
then it has a countable model, for we might order the members of Uy by, say, their
least elements into a countable series. In fact, we might set up a function ¢ from each
setin Uy to its least element, to establish an isomorphic interpretation M* whose uni-
verse just is a set of integers. Then by T11.10, M*[X] = T. So consider any model
whose universe is not countable; it must be elementarily equivalent to one whose
universe is a countable set of integers. But, of course, there is no one-to-one map
from an uncountable universe to a countable one, so the models are not isomorphic.

This sort of result is strengthened in an interesting way by the Lowenheim-
Skolem theorems. In the first form, we show that every model has a submodel with a
countable domain.

11.6.1 Submodels
SM A model M of a language £ is a submodel of model N (M C N) iff

1. Uy € Un,

2. For any sentence letter §, M[§] = N[§],
3. For any constant ¢ of £, M(¢) = N(c¢),
4

. For any function symbol 4" of £ and any (a; ...a,) from the members
of Uy, ({(a1...an),b) € M(A") iff ((a; ... a,),b) € N(A"),

5. For any relation symbol R" of &£ and any (a; . ..a,) from the members
of Uy, (a1 ...a,) € M(R") iff (a; ...a,) € N(R").

The interpretation of 2" and of R” on M are the restrictions of their respective inter-
pretations on N. Observe that a submodel is completely determined, once its domain
is given. A submodel is not well defined if it does not include objects for the inter-
pretation of the constants, and the closure of its functions.

ES Say d is a variable assignment into the members of Uy. Then M is an elemen-
tary submodel of N iff M C N and for any formula & of £ and any such d,
My[P] = Siff Ng[P] = S.
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If M is an elementary submodel of N, we write, M < N. First,

T11.14. If M < N then for any sentence & of £, M[P] = Tiff N[P] =T.

Suppose M < N and consider some sentence #. By TI, M[] = T iff
My[#] = S for every assignment d into Uy; since & is a sentence, by T8.4, iff
for some particular assignment h, My[P] = S; since M < N, iff N,[P] = S;
since & is a sentence, by T8.4, iff Ng[P] = S for every d into Uy; by T, iff
N[P]=T. SoM[P] =Tiff N[P] =T.

This much is clear. It is not so easy demonstrate the conditions under which a sub-
model is an elementary submodel. We make a beginning with the following theo-

rems.

T11.15. Suppose M C N and d is a variable assignment into Uy. Then for any term
£, Myg[t] = Ng[£].

By induction on the number of function symbols in #. Suppose M € N and d

is a variable assignment into Up.

Basis:

Assp:
Show:

Suppose ¢ has no function symbols. Then # is a variable x or a con-
stant ¢. (i) Suppose # is a constant ¢. Then Mq[#] is Mg[¢]; by TA(c)
this is M[¢]; and since M € N, this is N[¢]; by TA(c) again, this is
Ng[c]; which is just Ng[¢]. (ii) Suppose ¢ is a variable x. Then My[#]
is Mg[x]; by TA(v), this is d[x] and by TA(v) again, this is Ng[x];
which is just Ng[#].

Forany i, 0 <i < k, if ¢ has i function symbols, then My[¢] = Nq[#].
If ¢ has k function symbols, My[#] = Ng[£].

If £ has k function symbols, then it is of the form 4" 41 ... ¢, for some
terms {1 . .. £, with < k function symbols. So Mq[#]is Mg[A" 41 ... tx];
by TA(f) this is M[A"]{Mg[¢1], . . . Mg[#x]); since M C N, with the as-
sumption, this is N[#"][(Ng[£1], . . . Ng[£x]); by TA(f), this is Ng[h" 1
... 1n]; which is just Ng[#].

Indct:

For any term ¢, My[#] = Ng[¢].

T11.16. Suppose that M C N and that for any formula J and every variable assign-
ment d such that Ng[3x ] = S there is an m € Uy such that Ny(x|m)[&’] = S.
Then M < N.
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Suppose M C N and that for any formula & and every variable assignment d
such that Ng[3x] = S there is an m € Uy such that Ny m)[#] = S. We
show by induction on the number of operators in J, that for d any assignment
into the members of Uy, My[] = S iff Ng[P] = S.

Basis:

Assp:

Show:

(~)

(=)

(€))

If  is atomic then it is either a sentence letter § or an atomic of the
form R"%; ... 1, for some relation symbol K" and terms %y ... 1.
(i) Suppose P is 8. Then My[P] = S iff My[8] = S; by SF(s), iff
M[8] = T; since M C N, iff N[§] = T; by SF(s), iff Ng[8] = S;
iff Ng[?] = S. (ii) Suppose P is R" 41 ...14y. Then My[P] = S
iff Mg[R™ 21 ... 14] = S; by SE() iff (Mg[£1],...Mg[tn]) € M[R"];
since M € N with T11.15 iff (Ng[1], ... Nqg[£x]) € N[R"]; by SF(r)
iff Ng[R" 11 ... 14,] = S; iff Ng[P] = S.

For any i, 0 < i < k, for d any assignment into the members of Uy,
if 2 has i operator symbols, then Myq[P] = S iff Ng[P] = S.

If & has k operator symbols, then for d any assignment into the mem-
bers of Uy, My[P] = S iff Ng[#] = S.

If # has k operator symbols, then it is of the form ~#A, A — B or
dx A for variable x and formulas A and B with < k operator symbols
(treating universally quantified expressions as equivalent to existen-
tially quantified ones). Let d be an assignment into the members of
Uwm.

Suppose P is ~A. My[P] = S iff M4[~A] = S; by SF(~) iff
Mq[4] # S; by assumption iff Ng[+4] # S; by SF(~) iff Ng[~#4] = S;
iff Ng[] = S.

Homework.

Suppose & is IxA. (i) Suppose Myq[P] = S; then Myq[IxA] = S;
so by SF(3), there is some 0 € Uy such that My(y|o)[A] = S; so
since d(x|o) is an assignment into the members of Uy, by assump-
tion, Ny(x|o)[A] = S; so by SF(3), Ng[FxA] = S; so Ng[P] = S.
(ii) Suppose Ng[?] = S; then Ng4[IxA] = S; so by the assump-
tion of the theorem, there is an m € Uy such that Ny(x|m)[A] = S;
since d(x|m) is an assignment into the members of Uy, by assumption
Mg(x|m)[#4] = S; so by SF(3), Mg[IxA] = S; so My[P] = S. So
My[P] = Siff Ng[P] = S.

In any case, if & has k operator symbols, Mq[P] = S iff Ng[P] = S.

Indct:

For any #, My[#P] = S iff Ng[P] = S.
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So the result works, only so long as the quantifier case is guaranteed by “witnesses”
for each existential claim in the universe of the submodel. The Lowenheim Skolem
Theorem takes advantage of what we have done by producing a model in which these
witnesses are present.

11.6.2 Downward Lowenheim-Skolem

The Lowenheim Skolem Theorem takes advantage of what we have just done by
producing a model in which the required witnesses are present.

Um Consider some model N and suppose a well-ordering of the objects of Uy. We
construct a countable submodel M as follows. Let Ay be a countable subset
of Un. We construct a series Ag, A1, Ay .... For a formula of the form Jx P
in the language £, and a variable assignment d into A;, let d’ be like d for
the initial segment that assigns to variables free in J, and after assigns to a
constant object mg in Ag. Then for any & and d such that Ng[FxP] = S,
find the first object 0 in the well-ordering of Uy such that Ny (x|o)[’] = S.
To form A; 41, augment A; with all the objects obtained this way. Because
there are countably many formulas, and countably many initial segments of
the variable assignments, countably many objects are added to form A; 41,
and if A; is countable, A; 1 is countable. Let Uy be | ;- o A;. Again, if each
A; is countable, Uy is countable. -

There may be uncountably many variable assignments into a given A;. However,
for a given formula &, no matter how may assignments there may be on which it is
satisfied, there can be at most countably many initial segments of the sort d’. So at
most countably many objects are added. The functions from formulas and variable
assignments to individuals are Skolem functions, and we consider the closure of A
under the set of all Skolem functions.

T11.17. With Uy constructed as above, a submodel M of N is well-defined.

Clearly Uy € Uy. For constants, consider the case when Ix is 3x(x = ¢);
then at any stage i, My (xjo)[x = <] = Siff o = M[¢]. So M[c] is a
member of A; 41 and so of Uy. Similarly, for functions, consider the case
when 3x P is Ix (A" vy ... v, = x) for some function symbol A" and vari-
ables vy ...v, and x. For any d, consider some d’ which assigns objects
to each of the variables v ...vy,; then there there is some A; such that
d’ is an assignment into it; so by construction, A;4; includes an object 0
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such that Ny (x|o)[A"v1...vn = x] = S. But this must be the object
N[A"](Na[v1], ... Nor[v1]).

T11.18. For any model N there is an M < N such that M has a countable domain.
(Lowenheim-Skolem)

To show M < N by T11.16, it remains to show that for any formula & and
every variable assignment d such that Ng[dx&] = S there is an m € Uy
such that Ng(xm)[#’] = S. But this is easy. Suppose Nyg[IxP] = S; then
where d and d’ agree on assignments to all the free variables in &, by T8.4,
Ng’[3xP] = S. But all assignments from d’ are elements of some A;; so by
construction there is object m such that Ny (x|m)[#’] = S in A; 11 and so in
Uwm; and since d and d” agree on their assignments to all the free variables in
fP, by T8.4, Nd(x|m) [fP] =S.

[applications]

11.6.3 Upward Lowenheim-Skolem
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Introductory

In Part I1I we showed that our semantical and syntactical logical notions are related
as we want them to be: exactly the same arguments are semantically valid as are
provable. So,

(A) r=e iff TEP

Thus our derivation system is both sound and adequate, as it should be. In this part,
however, we encounter a series of limiting results — with particular application to
arithmetic and computing.

First, it is natural to think mathematics is characterized by proofs and derivations.
Thus, one might anticipate that there would be some system of premises A such that
for any & in &yr, we would have,

(B) AP iff NP =T

where N is the standard interpretation of number theory. Note the difference between
our claims. In (A) derivations are matched to entailments; in (B) derivations (and
so entailments) are matched to truths on an interpretation. Perhaps inspired by sus-
picions about the existence or nature of numbers, one might expect that derivations
would even entirely replace the notion of mathematical truth. And Q or PA may
already seem to be deductive systems as in (B). But we shall see that there can be
no such deductive system. From Gdodel’s first incompleteness theorem, under certain
constraints, no consistent deductive system has as consequences either J? or ~ for
every & of Lyr; any such theory is (negation) incomplete. But then, subject to those
constraints, any consistent deductive system must omit some truths of arithmetic
from among its consequences.’

Suppose there is no one-to-one map between truths of arithmetic and conse-
quences of our theories. Rather, we propose a theory R(eal) whose consequences

3Godel’s groundbreaking paper is “On the Formally Undecidable Propositions of Principia Math-
ematica and Related Systems.”

547
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are unproblematically true, and another theory I (deal) whose consequences outrun
those of R and whose literal truth is therefore somehow suspect. Perhaps R is suffi-
cient only for something like basic arithmetic, whereas I seems to quantify over all
members of a far-flung infinite domain. Even though not itself a vehicle for truth,
theory / may be useful under certain circumstances. Suppose,

(a) For any & in the scope of R, if & is not true, then R = ~&
(b) I extends R: If R P then I -+ &

(¢) I is consistent: There isno & suchthat / - P and I - ~P

Then theory I may be treated as a tool for achieving results in the scope of R: Sup-
pose & is a result in the scope of R, and / F J; then by consistency, I  ~5;
and because I extends R, R I/ ~&; so by (a), & is true. This is (a sketch of) the
famous ‘Hilbert program’ for mathematics, which aims to make sense of infinitary
mathematics based not on the truth but rather the consistency of theory 1.

Because consistency is a syntactical result about proof systems, not itself about
far-flung mathematical structures, one might have hoped for proofs of consistency
from real, rather than ideal, theories. But Godel’s second incompleteness theorem
tells us that derivation systems extending PA cannot prove even their own consis-
tency. So a weaker “real” theory will not be able to prove the consistency of PA and
its extensions. But this seems to remove a demonstration of (¢) and so to doom the
Hilbert strategy.*

Even though no one derivation system has as consequences every mathematical
truth, derivations remain useful, and mathematicians continue to do proofs! Given
that we care about them, there is a question about the automation of proofs. Say a
property or relation is effectively decidable iff there is an algorithm or program that
for any given case, decides in a finite number of steps whether the property or relation
applies. Abstracting from the limitations of particular computing devices, we shall

4We are familiar with the Pythagorean Theorem according to which the hypotenuse and sides of
a right triangle are such that a®> = b2 + ¢2. In the 1600s Fermat famously proposed that there are
no integers a, b, ¢ such that a® = b" + ¢" for n > 2; so, for example, there are no a, b, ¢ such
that > = b3 + ¢3. In 1995 Andrew Wiles proved that this is so. But Wiles’s proof requires some
fantastically abstract (and difficult) mathematics. Even if Wiles’s abstract theory (/) is not true Hilbert
could still accept the demonstration of Fermat’s (real) theorem so long as / is shown to be consistent.
Godel’s result seems to doom this strategy. Of course, one might simply accept Wiles’s proof on the
ground that his advanced mathematics is frue so that its consequences are true as well. But this is a
topic in philosophy of mathematics, not logic! See, for example, Shapiro, Thinking About Mathematics
for an introduction to options in the philosophy of mathematics. Our limiting results may very well
stimulate interest in that field!
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identify a class of relations which are decidable. A corollary of Godel’s first theorem
is that validity in systems like ND and AD is not among the decidable relations. Thus
there are interesting limits on the decidable relations — where it is possible also to
look back through this lense at Godel’s first theorem.

Chapter 12 lays down background required for chapters that follow. It begins
with a discussion of recursive functions, and concludes with a few essential results,
including a demonstration of the incompleteness of arithmetic. Chapters 13 and 14
deepen and extend those results in different ways. Chapter 13 includes Godel’s own
argument for incompleteness from the construction of a sentence such that neither
it nor its negation is provable, along with demonstration of the second incomplete-
ness theorem. Chapter 14 again shows that there must exist a sentence such that
neither it nor its negation is provable, but this time in association with an account of
computability. Chapter 12 is required for either chapter 13 or chapter 14; but those
chapters may be taken in either order.



Chapter 12

Recursive Functions and Q

A formal theory consists of a language, with some axioms and proof system. Q and
PA are example theories. A theory T is (negation) complete iff for any sentence J” in
its language £, either T = P or T = ~&. Observe again that a derivation system is
adequate when it proves every entailment of some premises. Our standard logic does
that. Granting then, the adequacy of the logic, negation completeness is a matter of
premises proving a sufficiently robust set of consequences — proving consequences
which include & or ~J for every & in the language.

Let us pause to consider why completeness matters. From E8.27, as soon as a
language £ has an interpretation I, for any sentence & in £, either I[] = T or
[[~P] = T. So if we set out to characterize by means of a theory the sentences that
are true on some interpretation, our theory is bound to omit some sentences unless
it is such that for any P, either T - P or T = ~%. To the extent that we desire
a characterization of all true sentences in some domain, of arithmetic or whatever, a
complete theory is a desirable theory.'

By itself negation completeness is no extraordinary thing. Consider a theory
whose language has just two sentence letters A and B, along with the usual sentential
operators and rules. The axioms of our theory are just A and ~B. On a truth table,
there is just one row were these axioms are both true, and on that row, any 4 in the
language is either T or F, so that one of J” or ~f is T.

'We thus restrict ourselves to consideration of sentences as theorems — or, equivalently treat open
formulas as equivalent to their universal closures (see p. 489)

550
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AB|A ~B | P ~P
TT|T F - -

(A) TF|T T TIF FIT
FT|F F - -
FFIF T - -
P

So for any P, either A,~B F &# or A,~B F ~%. But from the adequacy of the
derivation system if I' E &, then I' = & (T10.11, p. 485); so for any P, either
A,~B F P or A,~B I ~%. So our little theory with its restricted language is
negation complete. Contrast this with a theory that has the same language and rules,
but A as its only axiom. In this case, it is easy to see from truth tables that, say,
A Band A ¥ ~B. But by soundness, if ' = £ then ' E &P (T10.3, p. 472); it
follows that A ¥ B and A I/ ~B. So this theory is not negation complete.

These theories are not very interesting. However, let £%f be a language like &y
whose only function symbols are S and + (without x), and let £t be a language like
£yt whose only function symbol is x (without S and +). Then there is a complete
theory for the arithmetic of £+ (Presburger Arithmetic), and a complete theory
for the arithmetic of &£xXt (Skolem Arithmetic).” These are interesting and powerful
theories. So, again, by itself negation completeness is not so extraordinary.

However there is no complete theory for the arithmetic of &£y which includes
all of S, + and x. It turns out that theories are something like superheros. In the
ordinary case, a complete, and so a “happy” life is at least within reach. However,
as theories acquire certain powers, they take on a “fatal flaw” just because of their
powers — where this flaw makes completeness unattainable. On its face, theory Q
does not appear particularly heroic. We have seen already in E7.21 that Q I/ x x y =
yxxand Q I ~(x x y = y x x). So Q is negation incomplete. PA which does
prove x x y = y x x along with other standard results in arithmetic might seem
a more likely candidate for heroism. But Q includes already features sufficient to
generate the flaw which appears also in any theories, like PA, which have at least all
the powers of Q. It is our task to identify this flaw.

It turns out that a system with the powers of Q including S, + and x can express
and capture all the recursive functions — and a system with these powers must have
the fatal flaw. Thus, in this chapter we focus on the recursive functions, and associate
them with powers of our formal systems. We begin in 12.1 saying what recursive
functions are; then in 12.2 and 12.3 we show that Q expresses and captures the re-
cursive functions; 12.4 extends the range of recursive functions to include a function

ZFor demonstration of completeness for Presburger Arithmetic, see Fisher, Formal Number Theory
and Computability chapter 7 along with Boolos, Burgess and Jeftrey, Computability and Logic chapter
24.
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that identifies proofs. Finally, from these results, section 12.5 concludes with some
applications, including the incompleteness of arithmetic.

12.1 Recursive Functions

In chapter 6 (p. 318) for Q and PA we had axioms of the sort,

a. x+0=x

b. x+Sy=Sk+y)
and

c. xx@0=49

d xxSy=(@xxy)+x

These enable us to derive x + y and x x y for arbitrary values of x and y. Thus, by
(a)2+ 0 =2;soby (b) 2+ 1 = 3; and by (b) again, 2 + 2 = 4; and so forth. From
the values at any one stage, we are in a position to calculate values at the next. And
similarly for multiplication. From E6.35 on p. 319, all this should be familiar.

While axioms thus supply effective means for calculating the values of these
functions, the functions themselves might be similarly identified or specified. So,
given a successor function suc(x), we may identify the functions plus(x, y):

a. plus(x,0) =x
b. plus(x, suc(y)) = suc(plus(x, y))
and times(x, y):

c. times(x,0) =0
d. times(x,suc(y)) = plus(times(x,y), x)

For ease of reading, let us typically revert to the more ordinary notation S, 4+ and
x for these functions, though we stick with the (emphasized) sans serif font. We
have been thinking of functions as certain complex sets. Thus the plus function is a
set with elements {... ((2,0),2), ((2,1),3), ((2,2),4)...}. Our specification picks
out this set. From the first clause, plus(x, y) has ({2, 0),2) as a member; given this,
({2, 1), 3) is a member; and so forth. So the two clauses work together to specify the
plus function. And similarly for times.

But these are not the only sets which may be specified this way. Thus the standard
factorial fact(x):

e. fact(0) = S0
f. fact(Sy) = fact(y) x Sy

Again, we will often revert to the more typical x! notation. Zero factorial is one. And
the factorial of Sy multiplies 1 x 2 x ... x y by Sy. Similarly power(x, y):
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g. power(x,0) = SO
h. power(x, Sy) = power(x,y) x x

Any number to the power of zero is one (xX° = 1). And then x5 multiplies XY =
X X X...X X (y times) by another x.

We shall be interested in a class of functions, the recursive functions, which may
be specified (in part) by this strategy. To make progress, we turn to a general account
in five stages.

12.1.1 Initial Functions

Our examples have simply taken suc(x) as given. Similarly, we shall require a stock
of initial functions. There are initial functions of three different types.

First, we shall continue to include suc(x) among the initial functions. So suc(x) =
{(0,1),(1,2),(2,3)...}.

Second, zero(x) is a function which returns zero for any input value. So zero(x) =
{(0,0), (1,0), (2,0) ...}. _

Finally, for any 1 < k < j, we require a collection of identity functions idnt’k(x1
...%j). Each idnt"k function has j places and simply returns the value from the k"
place. Thus idnt3(4,5,6) = 5. So, idnt3 = {...((1,2,3),2)...((4,5,6),5)...}.
And in the simplest case, idnt](x) = x.

12.1.2 Composition

In our examples, we have let one function be composed from others — as when
we consider times(x, suc(y)) or the like. Say X, y and Z represent (possibly empty)
sequences of variables X1 ...Xp, Y1 ...Ynand zy ... Zz,.

CM Let g(y) and h(x, w, Z) be any functions. Then f(X, y, Z) is defined by composi-

tion from g(y) and h(x, w, Z) iff (X, y, Z) = h(X, g(y), Z).

So h(X,w, Z) gets its value in the w-place from g(y). Here is a simple example:
f(y,z) = zero(y)+z results by composition from substitution of zero(y) into plus(w, z);
so plus(w, z) gets its value in the w-place from zero(y). The result is the set with
members, {...((2,0),0), ((2,1),1),((2,2),2)...}. Given, say, input (2, 2), zero(y)
takes the input 2 and supplies a zero to the first place of the plus(x, y) function; then
from plus(x, y) the result is a sum of 0 and 2 which is 2. And similarly in other cases.
In contrast, zero(x + y) has members {. .. ((2,0),0), ({2, 1),0), ((2,2),0) ...}. You
should see how this works.
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12.1.3 Recursion

For each of our examples, plus(x,y), times(x, y), fact(y), and power(x, y), the value
of the function is set for y = 0 and then for suc(y) given its value for y. These
illustrate the method of recursion. Put generally,

RC Given some functions g(X) and h(x, y, u), f(X, y) is defined by recursion when,

f(x,0) = g(x)
f(X, Sy) = h(x,y,f(X.y))

We adopt the general scheme so that we can operate on recursive functions in a
consistent way. However the general scheme includes flexibility that is not always
required. In the cases of plus, times and power, X reduces to a simple variable x; for
fact, X disappears altogether, so that the function g(X) reduces to a constant. And, as
we shall see, the function h(X, y, u) need not depend on each of its variables x, y and
u.

However, by clever use of our initial functions, it is possible to see each of our
sample functions on this pattern. Thus for plus(x,y), set gplus(x) = idnt}(x) and
hplus(x,y,u) = suc(idntg(x, y,u)). Then,

a’ plus(x,0) = idnt](x)
b’ plus(x, Sy) = suc(idnt3(x, y, plus(x, y)))

plus(x, 0) is set to gplus(x) and plus(x, Sy) to hplus(X,y, plus(x,y)). And these
work as they should: idnt}(x) = x and suc(idntg(x,y, plus(x,y))) is the same as
suc(plus(x,y)). So we recover the conditions (a) and (b) from above.

Similarly, for times(x, y), we can let gtimes(x) = zero(x) and htimes(x, y,u) =
plus(idnt3(x, y, u), x). Then,

¢’ times(x,0) = zero(x)

d  times(x, Sy) = plus(idnt3(x, y, times(x, y)), X)

So times(x, 0) = 0 and times(x, Sy) = plus(times(x, y), x)), and all is well. Observe
that we would obtain the same result with htimes(x, y, u) = plus(u, idnt? (x,y,u)) or
perhaps, plus(idnt3(x, y, u), idnt3(x, y, u)). The role of the identity functions in these
formulations is to preserve h as a function of X, y and u, even where not each place
is required — as the y-place is not required for times, and so to adhere to the official
form which makes h(x, y, u) a function of variables in each place. And there are these
different ways to produce a function of all the variables to achieve the desired result.

In the case of fact(y), there are no places to the X vector. So gfact is reduced
to a zero-place function, that is, to a constant, and hfact to a function of y and u.
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In contrast, for times(x,y), X retains one place, so gtimes(x) is not reduced to a
constant; rather gtimes(x) = zero(x) remains a full-fledged function — only one
which returns the same value for every value of x. For fact(y), set gfact = suc(0)
and hfact(y, u) = times(u, suc(y)). Again, identity functions work to preserve h as a
function y, and u, even where not each place is required, in order to adhere to the offi-
cial form. However, there is no requirement that the places be picked out by identity
functions! In this case, each variable is used in a natural way, so identity functions
are not required. It is left as an exercise to show that gfact and hfact identify the same
function as constraints (e), (f), and to then to find gpower(x) and hpower(x, y, u).

12.1.4 Regular Minimization

So far, the method of our examples is easily matched to the capacities of computing
devices. To find the value of a recursive function, begin by finding values for y = 0,
and then calculate other values, from one stage to the next. But this is just what
computing devices do well. So, for example, in the syntax of the Ruby language,’
given some functions g(x) and h(x,y,u),

1. def recfunc(a,b)

2. k= ga)

3. for y in 0..b-1
(B) 4k =nh(a,y,0

5 end

6. return k

7. end

Using g(a) this program calculates the value of k for input (a,0). And then, given
the current value of y, and of k for input (a,y), repeatedly uses h to calculate k for
the next value of y, until it finally reaches and returns the value of k for input (a,b).
Observe that the calculation of recfunc(a,b) requires exactly b iterations before it
completes.

But there is a different repetitive mechanism available for computing devices —
where this mechanism does not begin with a fixed number of iterations. Suppose
we have some function g(a,b) with values g(a,0), g(a,1), g(a,2)...where for
each a there are at least some values of b such that g(a,b) = 0. For any value of a,
suppose we want the least b such that g(a,b) = 0. Then we might reason as follows.

3Ruby is convenient insofar as it is interpreted and so easy to run, and available at no cost on
multiple platforms (see http://www.ruby-lang.org/en/downloads/). We depend only on very
basic features familiar from most any exposure to computing.
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CHAPTER 12. RECURSIVE FUNCTIONS AND Q 556

The Recursion Theorem

One may wonder whether our specification f(x,y) by recursion from g(X) and h(X,y, u)
results in a unique function. However it is possible to show that it does.

RT Suppose g(X) and h(X, y, u) are total functions on N ; then there exists a unique func-
tion f(X, y) such that,

(r) Forany X andy € w,

a. f(X,0) = g(X)
b. f(X, suc(y)) = h(x,y, f(X,y))

We identify this function as a union of functions which may be constructed by means of g
and h. The domain of a total function from r" to s is always r"; for a partial function, the
domain of the function is that subset of r" whose members are matched by the function to
members of s (for background see the set theory reference p. 117). Say a (maybe partial)
function s(X, y) is acceptable iff,

i. If {X,0) € dom(s), then s(X, 0) = g(X)

ii. If (X, suc(n)) € dom(s), then (X, n) € dom(s) and s(X, suc(n)) = h(x, n,s(X, n))

A function with members {{{X, 0}, g(X)), ({X, 1), h(X,0, g(X)))} would satisfy (i) and (ii).
A function which satisfies (r) is acceptable, though not every function which is acceptable
satisfies (r); we show that exactly one acceptable function satisfies (r). Let F be the col-
lection of all acceptable functions, and f be | JF. Thus ((X,n),a) € fiff ((x,n),a) is a
member of some acceptable s; iff s(X, n) = a for some acceptable s. We sketch reasoning
to show that f has the right features.

I. For any acceptable s and &', if {{X,n),a) € s and ((X,n),b) € &, thena = b. By
induction on n: Suppose {{(x,0),a) € s and ({X,0),b) € §'; then by (i),a = b =
g(X). Assume that if ({X,k),a) € s and {{(x,k),b) € s’ then a = b. Show that if
((x,suc(k)),c) € s and ((X,suc(k)),d) € s’ then ¢ = d. Suppose ({x, suc(k)),c) €
s and ({X, suc(k)),d) € s’. Then by (ii) ¢ = h(X, k, s(X,k)) and d = h(X, k, s'(X, k)).
But by by assumption s(X, k) = s'(X,k); so ¢ = d.

II. dom(f) includes every (X,n). By induction on n: For any X, {{{(X,0),g(X))} is it-
self an acceptable function. Assume that for any X, (X,k) € dom(f). Show that
for any X, (X, suc(k)) € dom(f). Suppose otherwise, and consider a function, s =
f U {{{X, suc(k)), h(X,k, f(X,k)))}. But we may show that s so defined is an accept-
able function; and since s is acceptable, it is a subset of f; so (X, suc(k)) € dom(f).
Reject the assumption.

III. Now by (I), if ((X,n),a) € fand ((X,n),b) € f, then a = b; so f is a function; and
by (II) the domain of f includes every (X, n); by construction it is easy to see that f is
itself acceptable. From these, f satisfies (r). Suppose some f also satisfies (r); then
f' is acceptable; so by construction, f' is a subset of f; but since ' satisfies (r), it’s
domain includes every (X, n); so ' = f. So (r) is uniquely satisfied.

*We employ weak induction from the induction schemes reference p. 388. Enderton, Elements of
Set Theory, and Drake and Singh, Intermediate Set Theory, include nice discussions of this result.
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1. def minfunc(a)

2. y=0

3. until g(a,y) == 0
© 4. y = y+i

5. end

7. return y

8

. end

This program begins with y = 0 and tests each value of g(a,y) until it returns a
value of 0. Once it finds this value, minfunc(a) is set equal to y. Given g(a,b),
then, minfunc(a) calculates a function which returns some value of y for any input
value a.

But, as before, we might reason similarly to specify functions so calculated. For
this, recall that a function is fotal iff it is defined on all members of its domain. Say
a function g(X, y) is regular iff it is total and for all values of X there is at least one y
such that g(X, y) = 0. Then,

RM If g(X,y) is a regular function, the function f(x) = pwy[g(X,y)] which for each
X takes as its value the least y such that g(X,y) = O is defined by regular
minimization from g(X, y).

For a simple example, consider a domain which consists of nonempty sets of integers
with g(x, y) such that g(x,y) = 0if y € x and otherwise g(x,y) = 1. Then for any
set x, f(x) = py[g(x, y)] is the least element of x.

12.1.5 Final Definition

Finally, our sample functions are cumulative. Thus plus(x,y) depends on suc(x);
times(x, y), on plus(x, y), and so forth. We are thus led to our final account.

RF A function fy is recursive iff there is a series of functions fg, f1... fx such that
for any i <Kk,
(i) f; is an initial function suc(x), zero(x) or idntl (xs . .. x)).
(c) There are a,b < i such that f;(X, y, Z) results by composition from f,(y)
and f, (X, W, Z).
(r) There are a,b < i such that (X, y) results by recursion from f,(X) and
fo (X, y, u).

(m) There is some a < i such that f;(X) results by regular minimization from
fa (;(v Y) N
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If there is a series of functions fg, fy... fx such that for any i < k, just (i), (c) or (r),
then (PR) fx is primitive recursive.

So any recursive function results from a series of functions each of which sat-
isfies one of these conditions. And such a series demonstrates that its members are
recursive. For a simple example, plus is primitive recursive.

1. idnt!(x) initial function
2. idntg(x, y,u) initial function
(D) 3. suc(w) initial function
4. suc(idnt3(x,y,u)) 2,3 composition
5. plus(x,y) 1,4 recursion

From this list by itself, one might reasonably wonder whether plus(x, y), so defined,
is the addition function we know and love. What follows, given primitive recursive
functions idnt] (x) and suc(idnt3(x, y, u)) is that a primitive recursive function results
by recursion from them. It turns out that this is the addition function. It is left as an
exercise to exhibit times(x, y), fact(x) and power(x, y) as primitive recursive as well.

*E12.1. (a) Show that the proposed gfact and hfact(y, u) result in conditions (e)
and (f). Then (b) produce a defininition for power(x, y) by finding functions
gpower(x), and hpower(x, y, u) and then show that they have the same result
as conditions (g) and (h).

E12.2. Generate a sequence of functions sufficient to show that power(x, y) is prim-
itive recursive.

E12.3. Install some convenient version of Ruby on your computing platform (see
http://www.ruby-lang.org/en/downloads/) and open recursivel.rb
from the text website (bhttp://rocket.csusb.edu/ troy/int-ml.html).
Extend the sequence of functions started there to include fact (x) and power (x,y).
Calculate some values of these functions and print the results, along with your
program (do not worry if these latter functions run slowly for even moderate
values of x and y). This assignment does not require any particular com-
puting expertise — especially, there should be no appeal to functions except
from earlier in the chain. (This exercise suggests a point, to be developed in
chapter 14, that recursive functions are computable.)


http://www.ruby-lang.org/en/downloads/
http://rocket.csusb.edu/~troy/int-ml.html
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12.2 Expressing Recursive Functions

Having identified the recursive functions, we turn now to the first of two powers to
be associated with theory incompleteness. In this case, it is an expressive power.
Say a theory is sound iff its axioms are true and its proof system is sound. So all
the theorems of a sound theory are true. Then we shall be able to show that if a
theory is sound and its interpreted language expresses all the recursive functions, it
must be negation incomplete. In this section, then, we show that Ly, on its standard
interpretation, expresses the recursive functions.

12.2.1 Definition and Basic Results

For a language £ and interpretation I, suppose that for each m € U, a variable-
free term m is such that, in the sense of definition Al, I(m) = m — so for any
variable assignment d, Iq[m] = m. The simplest way for this to happen is if each
m € U has exactly one constant assigned to it; then for any m, m is the constant to
which m is assigned. But the standard interpretation for number theory N also has
the special feature that variable-free terms are assigned to each member of U. On
this interpretation different variable-free terms may be assigned the same object (as
SS® and SO + SO are each assigned 2). However, on the standard interpretation
for number theory, for any n, we simply take as n, S ... S@ with n repetitions of the
successor operator. So 0 abbreviates the term @, 1 the term S9, etc.

Given this, we shall say that a formula R(x) expresses a relation R(X) on inter-
pretation |, just in case if m € R then I[[R(M)] = T and if m & R then I[~R(M)] = T.
So the formula is true when the individual is a member of the relation and false when
it is not. To express a relation on an interpretation, a formula must “say” which
individuals fall under the relation. Expressing a relation is closely related to trans-
lation. A formula R (x) expresses a relation R(x) when every sentence R(m) is a
good translation of the sentence m € R on the single intended interpretation | (com-
pare chapter 5). So there is a single intended interpretation |, and a corresponding
class of good translations when R (x) expresses R(x) on the interpretation I. Thus,
generalizing,

EXr For any language &£, interpretation I, and objects my...my € U, relation
R(Xq ...Xpn) is expressed by formula R(x1 ... xp) iff,

(i) If (my...my) erthenI[R(My...Mp)] =T
(i) If (mqy...mp) € Rthen l[~R(My...my)] =T
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Similarly, a one-place function f(x) has members of the sort (x, v) and so is really
a kind of two-place relation. Thus to express a function f(x), we require a formula
F (x,v) where if (m,a) € f, then I[F (m,a)] = T. It would be natural to go on to
require that if (m,a) ¢ f then I[[~% (m, a)] = T. However this is not necessary once
we build in another feature of functions — that they have a unigue output for each
input value. Thus we shall require,

EXf For any language &£, interpretation |, and objects my...m,,a € U, function
f(Xq ...Xpn) is expressed by formula F (xy ... xp, v) iff,

if ((my...my),a) € fthen
@ I[F(mMq...my,a)] =T
G) I[Vz(F(my...mp,z) > z=2a)| =T

From (i), ¥ is true for a; from (ii) any z for for which it is true is identical to a.

Let us illustrate these definitions with some first applications. First, on any in-
terpretation with the required variable-free terms, the formula x = y expresses the
equality relation EQ(x, y). For if (m, n) € ea then I[[m] = I[n] so that [m =n] = T;
and if {m, n) ¢ eq then I[m] # I[n] so that I[[m # n] = T. This works because I[=]
just is the equality relation ea.* Similarly, on the standard interpretation N for number
theory, suc(x) is expressed by Sx = v, plus(x,y) by x + y = v, and times(x, y) by
x x y = v. Taking just the addition case, suppose ({m, n), a) € plus; then Njm+n =
a] = T. And because addition is a function, N[Vz(M+n=2z) >z =3a)] = T.
Again, this works because N[+] just is the plus function. And similarly in the other
cases. Put more generally,

T12.1. For an interpretation with the required variable-free terms assigned to mem-
bers of the universe: (a) If R is a relation symbol and R is a relation, and
I[R] = R(Xy...Xn), then R(Xq...Xp) is expressed by Rx;...x,. And (b)
if £ is a function symbol and h is a function and I[#] = h(xj...Xn) then
h(X1 ...Xp) is expressed by x1...x, = v.

It is possible to argue semantically for these claims. However, as for transla-
tion, we take the project of demonstrating expression to be one of providing
or supplying relevant formulas. So the theorem is immediate.

4Observe that inside the square brackets ‘=’ is a relation symbol of the object language whose

interpretation is built into I; outside square brackets ‘=" is a metalinguistic symbol used to indicate
equality.
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Also, as we have suggested, (i) and (ii) of condition EXf taken together are suf-
ficient to generate a condition like EXr(ii). Recall from the set theory reference (p.
117) that a function is total just in case it has an output for any input.

T12.2. Suppose total function f(x1 ...X,) is expressed by formula F (xq ... X, y);
thenif ((my...mp),a) €f, I[~F(My...mp,a)] =T.

For simplicity, consider just a one-place function f(x). Suppose f(x) is ex-
pressed by F (x, y) and (m, a) ¢ f. Then since f is total, there is some b such
that (m,b) € f for a # b and so (a,b) ¢ Q. Suppose [[~F (M, a)] # T; then
by TI, for some d, l4[~F (m, a)] # S; let h be a particular assignment of this
sort; so Iy[~F (m, a)] # S; so by SF(~), Ih[F (m,a)] = S.

But since (m,b) € f by EXf(ii), I[Vz(F (M, z) — z = b)] = T; so by TI, for
any d, lg[Vz(F(M,z) - z =b)] = S;so h[Vz(F(M,z) - z =b)] = S;
s0 by SE(Y), In(z|ay[F (M, z) — z = b] = S; so since Iy[a] = a, by T10.2,
In[# (M,a) — a = b] = S; so by SF(—), [ (m,a)] # Sorl[a=b] =S;
so Iy[a = b] = S; but Iy[a] = a and Iy[b] = b; so by SF(r), (a,b) € I[=]; so
(a,b) € Eq. This is impossible; reject the assumption: If f(x) is expressed by
F (x,y)and {m,a) &f, then I[~F (m,a)] =T.

Soif both (m, a) & fand [[~% (M, a)] # T, with condition EXf(i), we end up with an
assignment where both In[# (M, 3)] = S and Iy[F (M, b)] = S. But this violates the
uniqueness constraint EXf(ii). So if (m,a) ¢ f then I[~% (m,a)] = T. So this gives
us the same kind of constraint for functions as for relations.

E12.4. Provide semantic arguments to prove both parts of T12.1. So, for the first part
assume that [[R(x7...x,)] = R(X1...Xn). Then show (i) if (m;...mpy) € R
then I[R(My ... My)] = T; and (i) if (¢ ... m,) € Rthen [[~R(My...M,)] =
T. And similarly for the second part based on EXf, where you may treat
{{(mq...my), a) as the same object as (M ...mp, a).

12.2.2 Core Result

So far, on interpretation N, we have been able to express the relation eq, and the func-
tions, suc, plus, and times. But our aim is to show that, on the standard interpretation
N of £yr, every recursive function f(X) is expressed by some formula % (X, v).

But it is not obvious that this can be done. At least some functions must remain
inexpressible in any language that has a countable vocabulary, and so in &£y;. We
shall see a concrete example later in the chapter. For now, consider a straightforward
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diagonal argument. By reasoning as from T10.7 (p. 478) there is an enumeration
of all the formulas in a countable language. Isolate just formulas $y, &1, &5. .. that
express functions of one variable, and consider the functions fy(x), f1(x), f2(x)...s0
expressed. These are all the expressible functions of one variable. Consider a grid
with the functions listed down the left-hand column, and their values for each integer
from left-to-right.

0 1 2

fox) | f0(0) fo(1) fo(2)
f1x) | f1(0) f1 (1) f1(2)
fa(x) | 12(0) f2(1) £2(2)

Moving along the diagonal, consider a function f4(x) such that for any n, fg(n) =
fa(n) + 1. So fg(x) is {(0,fo(0) + 1), (1,f1(1) + 1), (2,f2(2) + 1),...}. So for any
integer n, this function finds the value of f, along the diagonal, and adds one. But
fq(x) cannot be any of the expressible functions. It differs from fy(x) insofar as
fq(0) # fo(0); it differs from f;(x) insofar as fq(1) # f1(1); and so forth. So f4(x) is
an inexpressible function. Though it has a unique output for every input value, there
is no finite formula sufficient to express it.

We have already seen that plus(x, y) and times(x, y) are expressible in Lyr. But
there is no obvious mechanism in £ to express, say, fact(x). Given that not all
functions are expressible, it is a significant matter, then, to see that all the recursive
functions are expressible with interpretation N in £yr. Our main argument shall be
an induction on the sequence of recursive functions. For one key case, we defer
discussion into the next section.

T12.3. On the standard interpretation N of £y, each recursive function f(X) is ex-
pressed by some formula & (X, v).

For any recursive function f, there is a sequence of functions fg, fy...f; such
that each member is an initial function or arises from previous members by
composition, recursion or regular minimization. By induction on functions in
this sequence.

Basis: fg is an initial function suc(x), zero(x), or idntjk(x1 CX)).
(s) fois suc(x). Then by T12.1, fy is expressed by F (x,v) =4 Sx = v.
(z) fo is zero(x). Then fy is expressed by F (x,v) =4s X = x AV = 0.
Suppose (m, a) € zero. Then since ais zero, Nm =maAa=0] =T.
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And any z that is zero is equal to a — so that N[Vz(m = m Az =
d—-z=2a)]=T.

(i) fois idntjk(x1 ...X). Then fo is expressed by F (x1 ... X, v) =4 (x1 =
X1 A...AXj = X;)A X =v.” Suppose ((mq...m),a) € idnth.
Thensincea = m, N[(My =my A...AmM=m) Amg=2a] =T.
And any z = mgisequal toa—so that N[Vz((My =My A...AM; =
ﬁj/\ﬁkzz)az:é)]:T.

Assp: Foranyi, 0 <i <k, fi(X) is expressed by some F (X, v)

Show: fx(x) is expressed by some F (X, v).
fi is either an initial function or arises from previous members by com-
position, recursion or regular minimization. If it is an initial function
then as in the basis. So suppose fi arises from previous members.

(¢) fk(X.y.Z2) arises by composition from g(y) and h(x,w, Z). By assump-
tion g(y) is expressed by some g (¥, w) and h(X, w, Z) by # (X, w, Z, v);
then their composition f(X,y,Z) is expressed by F (X, V,Z,v) =g
Jw[€(y,w) A H (X, w, Z,v)]. For simplicity, consider a case where X
and Z drop out and y is a single variable y; so  (y, v) =4 Jw[F (¥, w)A
H(w, v)]. Suppose (m, a) € fx; then by composition there is some b
such that {(m,b) € g and (b, a) € h. Because § and # express g and
h, N[¢(m,b)] = T and N[#(b,a)] = T; so N[¢(m,b) A #(b.a)] =
T, and N[Jw(¥(m,w) A H(w,a))] = T. Further, by expression,
N[Vz(¢(M,z) - z = b)] = Tand N[Vz(H(b,z) - z =a)] = T;
so that for a given m, there is just one w = b and so one z = a to sat-
isfy §(m, w) A H(w, z) and N[VzEw(E (M, w) A H(w,z)) —> z =
a)]=T.

(r) fx(X,y) arises by recursion from g(X) and h(x,y,u). By assumption
g(X) is expressed by some ¢ (X, v) and h(X, y, u) is expressed by # (X,
y,u,v). And the expression of fy(X,y) in terms of § and J utilizes
Godel’s B-function, as developed in the next section.

(m) f(X) arises by regular minimization from g(X,y). By assumption,
g(X,y) is expressed by some § (X, y,z). Then f(X) is expressed by
F(X,v) = (X, 0,0) A (Vy < v)~F(X,y,d). Suppose X reduces
to a single variable and (m,a) € f; then ({(m,a),0) € g and for any

SPerhaps it will have occurred to the reader that idntg (x,y,2), say, is expressed by x = x Az =
zAy =vaswellasx = XAy =y Az =zAYy = v— where the first is relatively “efficient” insofar
as it saves a conjunct. But we are after a different “efficiency” of notation and demonstration, where
the formulation above serves our purposes nicely.
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n < a, {{(mn),0) & g. So because § expresses g, N[§(m, a, d) A
Vy < a)~§(m,y,0)] = T. And the result is unique: for any
k < a, N[§(m, K, @) # T, so when z < a, the value of the con-
junction N[§(m,z,0) A (Vy < z)~§(m,y,0)] # T. And since
N[g(m,a,d)] = T, N[~§(m,a,?)] # T, and any case where k > a
has N[(Vy < k)~ (m, y,@)] # T; so the conjunction N[§(m, z, @) A
(Vy < z)~&(m, y,0)] # T. So the only case in which ¥ (m, z) =
(M, z,0) A (Vy < z)~§(m,y,0) is satisfied when z is a, and
N[Vz(¥(m,z) >z =2a)]=T.

Indct: Any recursive f(X) is expressed by some % (X, v)

Some of the reasoning is merely sketched — however, the general idea should be
clear. There might be formulas other than the stated % (X, v) to express a recursive
f(x) — for example, if (X, v) expresses f(X), then so does F (X¥,v) A + for any
logical truth 4. We shall see an important alternative in the following. Let us say that
F (X, v) so-described is the original formula by which f(X) is expressed. It remains
to fill out the case for the recursion clause. This is the task of the next section.

*E12.5. From T13.3 there is some formula to express any recursive function: the
argument by induction works by showing how to construct a formula for
each recursive function. Following the method of our induction, write down
formulas to express the following recursive functions.

a. suc(zero(x))

b. idnt3(x, suc(zero(x)), z)

Hint: As setup for the compositions, give each function a different output
variable, where the output to one is the input to the next.

*E12.6. Fill out semantic reasoning to demonstrate that proposed (original) formu-
las satisfy the conditions for expression for the (z), (i), (c) and (m) clauses
to T12.3. For case (m), rather than go to the unabbreviated form for the
bounded quantifier it will be fine to anticipate T12.6 to apply the (obvious)
semantic clause directly. Hints: So, for example, for (c) you will apply se-
mantic definitions to show that N[Jw (¥ (m, w) A H(w,a))] = T and that
N[Vz(Fw (& (m, w) A H(w,z)) — z = a)] = T, in places you may find that
T10.2 will smooth the result; and for (m) at one stage it will be helpful to
observe that for any n,n < aVv n = aVvn > aand reason separately for each
case.
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12.2.3 The B-Function

Suppose a recursive function f(m, n) = a. Then for the given value of m, there is a
sequence ko, K1 ... ky with k, = a, such that kq takes some initial value, and each of
the other members is specially related to the one before. Thus, in the simple case of
plus(m, n), if m = 2 then kg = 2, and each k; is the successor of the one before. So
corresponding to 2 + 5 = 7 is the sequence,

2 3 4 5 6 7

whose first member is set by gplus(2), where subsequent members result from the
one before by plus(2, Sy) = hplus(2,y, plus(2,y)), whose last member is 7. And,
generalizing, we shall be in a position to express recursive functions if we can express
the existence of sequences of integers so defined. We shall be able to say f(m,n) = a
if we can say “there is a sequence whose first member is g(m), with members related
one to another by f(m,Sy) = h(m,y,f(m,y)), whose n" member is a> This is
a mouthful. And £y is not obviously equipped to do it. In, particular, £y has
straightforward mechanisms for asserting the existence of integers — but on its face,
it is not clear how to assert the existence of the arbitrary sequences which result from
the recursion clause.

But Godel shows a way out. We have already seen an instance of the general
strategy we shall require in our discussion of Godel numbering from chapter 10 (p.
478). In that case, we took a sequence of integers (keyed to vocabulary), go, g1 - .- &n
and collected them into a single Godel number G = 280 x 381 x ... x 75" where 2,
3... 1y, are the first n primes. By the fundamental theorem of arithmetic, any number
has a unique prime factorization, so the original sequence is recovered from G by
factoring to find the power of 2, the power of 3 and so forth. So the single integer G
represents the original sequence. And £; has no problem expressing the existence
of a single integer! Unfortunately, however, this particular way out is unavailable to
us insofar as it involves exponentiation, and the resources of &£y so-far include only
S, + and x.°

All the same, within the resources of £yr, by the Chinese remainder theorem
(whose history reaches to ancient China), there must be pairs of integers sufficient to
represent any sequence. Consider the remainder function rm(x, y) which returns the
remainder after x is divided by y. The remainder of x divided by y equals z just in
case z < y and for some w, x = (y X w) + z. Then let,

6Some treatments begin with a language including exponentiation precisely in order to smooth the
exposition at this stage. But our results are all the more interesting insofar as even the relatively weak
£ retains powers sufficient for the fatal flaw.
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B(P.q9,i) = rm[p, S(q x S(i))]

So for some fixed values of p and q the 8 function yields different remainders for
different values of i. By the Chinese remainder theorem, for any sequence ko, K1 . . . K
there are some p and g such that fori < n, 8(p, q,i) = k;. So p and q together code the
sequence, and the B-function returns member k; as a function of p, q and i. Intuitively,
when we divide p by S(q x S(i)), fori < n, the result is a series of #n 4+ 1 remainders.
The theorem tells us that any series ko, K1 .. . ky may be so represented (see the beta
function reference).

Here is a simple example. Suppose ko, ki and ko are 5, 2, 3. So the last subscript
in the series n = 2. As developed in the beta function reference, the proof of the
remainder theorem asks us first to find s = max(n,5,2,3) = 5, and then to set
g =s! = 120. So B(p,q,i) = rm[p, S(120 x S(i))]. So as i ranges between 0 and
n = 2, we are looking at,

rm(p, 121) rm(p, 241) rm(p, 361)

But 121, 241 and 361 so constructed must have no common factor other than 1; and
the remainder theorem then tells us that as p varies between 0 and 121 x 241 x 361 —
1 = 10527120 the remainders take on every possible sequence of remainder values.
But the remainders will be values up to 120, 240 and 360, which is to say, q = s! is
large enough that our simple sequence must therefore appear among the sequences
of remainders. In this case, p = 5219340 gives rm(p, 121) = 5, rm(p, 241) = 3 and
rm(p, 361) = 2. There may be easier ways to generate this sequence. But there is
no shortage of integers (!) so there are no worries about using large ones, and by this
method Godel gives a perfectly general way to represent the arbitrary finite sequence.

And we can express the S-function with the resources of £yr. Thus, for (p, q, i),

B(p.q.i,v) =w Qw = p)[p = (S(g x Si) xw) +vAv < S(g xSi)]

So v is the remainder after p is divided by S(g x Si). And for appropriate choice of
p and g, the variable v takes on the values kg through k, as i runs through the values
@ ton.

Now return to our claim that when a recursive function f(m,n) = a there is a
sequence Ko, K1 ...Kky with k, = a such that ky takes some initial value, and each
of the other members is related to the one before according to some other recursive
function. More officially, a function f(X,y) = z just in case there is a sequence
Ko, K ... ky with,
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Arithmetic for the Beta Function

Say rm(c, d) is the remainder of ¢/d. For a sequence, dg, di ...dn, let |D| be the
product dg x di X ... x dn. We say dp, dy ...d, are relatively prime if no two
members have a common factor other than 1. Then,

L

IL.

III.

V.

For any relatively prime sequence dg, d1 . ..dn, the sequences of remainders
rm(c, dg), rm(c, dy)...rm(c, d,) as ¢ runs from 0 to |D| — 1 are all different
from each other.

Suppose otherwise. Then there are ¢y and ¢, 0 < ¢y < c2 < |D|
such that rm(cy,dg), rm(cy,dq)...rm(cq,dn) is the same as rm(cg, dp),
rm(cg,dq)...rm(c2,dy). So for each di, rm(cy,dj)) = rm(cy,di); say
¢t = adi + r and c; = bd; + r; then since the remainders are equal,
C> — C1 = bd; — ad;; so each d; divides ¢y — cp evenly. So each d; col-
lects a distinct set of prime factors of ¢, — ¢1; and since ¢ — ¢1 is divided by
any product of its primes, ¢, — ¢1 is divided by |D|. So |D| < ¢2 — c. But
0 <cy < cp < |D|soco —cy < |D|. Reject the assumption: The sequences
of remainders as ¢ runs from O to |D| — 1 are distinct.

The sequences of remainders rm(c, dp), rm(c, dy)...rm(c, d,) as ¢ runs from
0 to |D| — 1 are all the possible sequences of remainders.

There are d; possible remainders a number might have when divided by d;,
(0,1,...dy—1). Butif rm(c, dg) takes dy possible values, rm(c, d;) may take
its dy values for each value of rm(c, dp); etc. So the there are |D| possible
sequences of remainders. But as ¢ runs from O to |D| — 1, by (I), there are
|D| different sequences. So there are all the possible sequences.

Let s be the maximum of n, Kg, Ky ...k,. Then for 0 < i < n, the numbers
di = s!(i 4+ 1) + 1 are each greater than any kj and are relatively prime.

Since s is the the maximum of n, kg, K1 . . . ky, the first is obvious. To see that
the d; are relatively prime, suppose otherwise. Then for some j,k, 1 < j <
k <n+1,s!j4+ 1 and s!k 4+ 1 have a common factor p. But any number up
to s leaves remainder 1 when dividing s!j + 1; so p > s. And since p divides
slj+ 1 and s'k 4 1 it divides their difference, s!(k — j); but if p divides s!,
then it does not evenly divide s!j + 1; so p does not divide s!; so p divides
k—j.But1 <j<k<n+1;s0k—j<n;sop <n;sop <s. Reject the
assumption: the d; are relatively prime.

For any ko, K1 .. .Kn, we can find a pair of numbers p, q such that for i < n,
ﬁ(pv q, I) = ki-

With s as above, set g = s!, and let 8(p,q,i) = rm(p,q(i+ 1) +1). By
(IID), for 0 < i < n the numbers g; = q(i + 1) + 1 are relatively prime. So
by (II), there are all the possible sequences of remainders as p ranges from 0
to |D|—1. And since by (IIT) each of the q; is greater than any k;, the sequence
ko, K1 . . . kn is among the possible sequences of remainders. So there is some
p such that the kj are rm(p, q(i + 1) + 1).
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(i) ko = g(x)
(i) ifi <y, then kg = h(X, i, ki)
(iii) k, =z

Put in terms of the B-function, this requires, f(X,y) = z just in case there are some p,
g such that,

(i) B(p.q,0) = g(X)
(i) ifi <y, then B(p,q, Si) = h(X,i, B(p,q.i))
(iii) B(p.q.y) =z

By assumption, g(X) is expressed by some § (X, v) and h(X, y, u) by some # (X, y, u, v).
So we can express the combination of these conditions as follows. f(X, y) is expressed
by F (X, y.2) =uw

Ap3g{Iv[B(p.q.0,v) AG(X,v)] A

(Vi < y)u[B(p.q,i,u) AB(p,q,Si,v) AF(X,i,u,v)]A

B(p.q,y,2)}

So € is satisfied by the first member; then for any i < y, # is satisfied by the i"
member and and its successor; and the y’ h member of the series is z.

In the case of factorial, we have § (v) =, (v = S@) and K (y,u,v) =4 (v =
Sy x u). So the factorial function is expressed by F (v, z) =

Ap3Iq{Fv[B(p,q,9,v) Av = SO A
(Vi < y)uav[B(p,q,i,u) A B(p,q,Si,v) Av==Si xu]A

B(p.q.y.2)}

This expression is long — particularly if expanded to unabbreviate the S-function,
but it is just right. If (n,a) € fac, then N[F (n,a)] = T and the expression satisfies
uniqueness as well. And similarly in the general case. So with £ we satisfy the re-
cursive clause for T12.3. So its demonstration is complete, and £ has the resources
to express any recursive function.
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E12.7.

E12.8.

E12.9.

12.3

Suppose Ko, K1, ko and k3 are 3, 4, 0, 2. By the method of the text, find values
of p and g so that B(i) = k;. Use your values of p and q to calculate B(p, g, 0),
B(p,q,1), B(p,q,2) and B(p,q,3). You will need some programmable de-
vice to search for the value of p. In Ruby, a routine along the following lines,
with numerical values for a, b, ¢ and d should suffice.

1. def loop

2. p=0

3. untilpja==3andplb==4andp%c==0andp%d==2
4 p = ptl

5. puts "p = #{p}"
6. end

7. return p

8. end

9. puts "p = #{loop}t"

In Ruby x % y returns the remainder of x divided by y. So, for this routine,
you insert the denominators and then search (by brute force) for the value of
p that returns the right remainders. Be prepared for it to take a while!

Produce a formula to show that £y, expresses the plus function by the initial
functions with the beta function. You need not reduce the beta form to its
primitive expression!

Say a function fy is simple iff there is a series of functions fy, f...fx such that
for any i <k,

(b) fgis plus(x,y)

(r) There are a,b < i such that f;(X, y) is plus(fa(X), fo (¥))
Show that on the standard interpretation N of &y each simple f(X) is expressed
by some formula % (X, v). You may appeal to T10.2 as appropriate — and

your reasoning may have the “quick” character of T12.3. Hint: (r) yields
functions by a sort of “double” composition.

Capturing Recursive Functions

The second of the powers to be associated with theory incompleteness has to do with
the theory’s proof system. In section 12.5 we shall be able to show that if a theory
is consistent and captures recursive functions, then it is negation incomplete. In this
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section, we show that Q, and so any theory that includes Q, captures the recursive
functions.

12.3.1 Definition and Basic Results

Where expression requires that if objects stand in a given relation, then a corre-
sponding formula be true, capture requires that when objects stand in a relation, a
corresponding formula be provable in the theory.

CP For any language £, interpretation I, objects my ... mp,a € U and theory T,
(r) Relation R(X1 ...Xn) is captured by formula R(x; ... x,, y) in T just in case,

@ If(my...my) erthen T - R(My...My)
@G) If (my...my) €rthen T = ~R(my...mp)

(f) Function f(X1 ...X,) is captured by formula ¥ (x1 ... xp, y) in T justin case,

if ((my...my),a) € fthen
) THF(my...my,a)
(i) TEVYz(F(mMy... My, z) >z =2a)
As a first result, and to see how these definitions work, it is easy to see that in a

theory at least as strong as Q, conditions (f.i) and (f.ii) combine to yield a result like

(r.i).

T12.4. If T includes Q and total function f(x; ...Xp) is captured by formula ¥ (x
...Xn,Y) so that conditions (f.i) and (f.ii) hold, then if ({(m;...my},a) & f
then T F ~% (mMy ... My, a).

Suppose f(x1 ...Xn) is captured by F (x1...xp,y) and ((My...mp),a) & f.
Then, since f is total, there is some b # a such that ({my...m),b) € f; so
by (fi), T = F (M1 ... My, b); and instantiating (f.ii) toa, 7 - F (M ... My,
a) — a = b. But since a # b, and T includes Q, by T8.14, T F a # b; so
by MT, T = ~% (M ... My, a).

Our aim is to show that recursive functions are captured in Q. In chapter 8,
we showed that Q correctly decides atomic sentences of £y;. As a preliminary to
showing that Q captures the recursive functions, in this section we extend that result
to show that Q correctly decides a broadened range of sentences.

To understand the result to which we build in this section, we need to identify
some important subclasses of formulas in £y: the Ag, X and I1; formulas.
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Ao (b) If P isoftheform s = 4, 4 < t or 4 < £ for terms s and £, then & is a
Ao

(s) If  and @ are A¢ formulas, then so are ~&, and (# — @).

formula.

(q) If # is a Ag formula, then so are (Vx < ¢)J and (Vx < )P where x
does not appear in .

(c) Nothing else is a Ay formula.

31 A formula is strictly 34 iff it is of the form Jx;3x, ... Ix, P for Ag P. A
formula is ¥ iff it is equivalent to a strictly ¥; formula.

IT; A formula is strictly I iff it is of the form Vx1Vx,...Vx,P for Ag . A
formula is I iff it is equivalent to a strictly IT; formula.

Given the soundness and adequacy of our derivation systems, we may understand
equivalence in either the semantic or syntactical sense so that ” and @ are equivalent
justincase F P < Qork £ < Q. A Ao formula is (trivially) both ¥, and IT;
insofar as it is preceeded by a block of zero unbounded quantifiers. We allow the
usual abbreviations and so A, V and <> and bounded existential quantifiers. So, for
example, n # @ A (v < n)(SSP x v = n) is Ag by a tree that works like ones we
have seen many times before.

d<n SSOxv=n By Ag(b)
Fv <n)(SSO xv =n) By A¢(q)
B<nA@v=<n)(SSOxv=n) By Ap(s)

It turns out that this formula is true just in case # is an even number other than zero.
For a Ap formula, all is as usual, except quantifiers are bounded. Its existential
quantification,

(E) Im[@ <nA@v<n)(SSPxv=n)|
is strictly 31, for it consists of an (in this case single) unbounded existential quantifier

followed by a A formula. This sentence asserts the existence of an even number
other than zero. Observe that,

F) k=kAan[@<nA@v<n)(SSOxv=n)]
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is not strictly ¥;. For it does not have the existential quantifier attached as main
operator to a Ay formula. However, by standard quantifier placement rules, the un-
bounded existential quantifier can be pulled out to the front to form an equivalent
strictly ¥ sentence. Because (F) is equivalent to a sentence that is strictly X, it
too is X ;. Finally, by reasoning as for QN in ND, observe that the negation of a ¥
formula is not X1 — rather it is Iy, and the negation of a IT; formula is X;.

We shall show that Q correctly decides A sentences: if P is Ag and N[P] =T
then Q k, &, and if N[] # T then Q k,, ~&. Further, Q proves true X
sentences: if & is X1 and N[#] = T, then Q I, . Observe that for a X formula
P, if N[P] # T, then N[~P] = T — but ~P is not ;. So, though we show
Q correctly decides Ag sentences and proves true 37 sentences, we will not have
shown that Q proves ~J when N[#] # T and so not have shown that Q decides all
31 sentences.

We begin with some preliminary theorems to set up the main result. These are not
hard, but need to be wrapped up before we can attack the main problem. First some
semantic theorems that work like derived clauses to SF for inequalities and bounded
quantifiers. We could not obtain these in chapter 7 because they rely on theorems
from chapter 8 (and since they are not inductions, they did not belong in chapter 8).
However, we introduce them now in order to make progress.

T12.5. On the standard interpretation N for &£yr, (i) Ng[4 < #] = Siff Ng[s] < Ng[£],
and (ii) Ng[s < #] = Siff Ng[s] < Ng[£].

(i) By abv Ng[s <t] = Siff Ng[Fv(v + s = ¢)] = S, where v is not free in ¢
or ¢; by SF(3), iff there is some m € U such that Ny(,|m)[v+4 = ¢] = S. But
d(v|m)[v] = m; so by TA(V), Ng(yjm)[v] = m; so by TA(), Nywjm)[v + 3] =
N[+]{m. Ng(w|m)[s]) = M+ Ng(v|m)[¢]. So by SE(), Ng@wim[v+4 = 1] =S
iff (M + Najm)[s], Na@imy[2]) € N[=]5 iff m 4+ Ngm)[$] = Nacjm)[4]-
But since v is not free in 4 or #, d and d(v|m) make the same assignments
to variables free in s and #; so by T8.3, Ng[4] = Ngym)[4] and Ng[t] =
Nacim)[4]: s0 M + Ngwjm)[s] = Najm[#] iff m + Ng[s] = Ng[z]; and
there exists such an m just in case Ng[s] < Ng[¢]. So Ng[s < t] = S iff
Na[s] < Ng[#].

(i1) is homework.

As an immediate corollary, Ng[4 < t] # S just in case Ng[4] > Ng[#]; and similarly
for >.
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T12.6.

T12.7.

On the standard interpretation N for &£yr, (i) Ng[(Vx < ¢)P] = S iff for
every m < Ng[z], Ng(x|m)[°] = S and (ii), Ng[(Vx < t)P] = S iff for every
m < Ng[#], Ng(xm)[P] = S.

(i) By abv Ng[(Vx < 1)P] = Siff Ng[Vx(x < ¢ — P)] = S where x does
not appear in £; by SF(V), iff for any m € U, Nyxm)[x < + — P] = S; by
SF(—), iff for any m € U, Ny(xjm)[x < 2] # S or Nyxm)[#] = S; which is
to say, iff for any m € U, if Ng(xjm)[x < ¢] = S, then Ny(xm)[’] = S. But
d(x|m)[x] = m; s0 Ng(x|m)[x] = m; and since x is not free in £, d and d(x|m)
agree on assignments to variables free in ¢; so by T8.3, Ng(xm)[#] = Ng[1];
so with T12.5, Ng(xm)[x < #] = Siff m < Ng[¢]; so Ng[(Vx < £)P] = Siff
for any m, if m < Ng[¢], then Ny(x|m)[&?] = S.

(i1) is homework.

On the standard interpretation N for &yr, (i) Ng[(Ax < #)P] = S iff for
some M < Ng[¢], Ngxjm)[’] = S and (ii), Ng[(3x < 7)&] = S iff for some
m < Na[¢], Ng(x|m)[] = S.

Homework

We are finally ready for the results to which we have been building: First, Q
correctly decides Ag sentences of Lyr.

T12.8.

Basis:

Assp:

Show:

For any A sentence &, if N[’] = T, then Q I, &, and if N[?] # T, then
Qlp ~P.

By induction on the number of operators in 5.

If & is an an atomic Ag sentence itis 1 = 4, ¢ < g4 or ¢t < 4. So by T8.14, if
N[P]=T,QH, £, andif N[P] #T,Q I, ~P.

For any i,0 < i < k, if a A setntence & has i operator symbols, then if
N[P]=T,QH, £ andif N[P] #T,Q K, ~&.

If a Ag sentence & has k operator symbols, then if N[P] =T, Q I, & and
itN[P] #T,QH, ~P.

If a Ag sentence P has k operator symbols, then it is of the form ~A, A —
B, (Vx < t)A or (Vx < 1)A where A, B have < k operator symbols and x
does not appear in £.
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(~)

(=)

V2

V<)

Indct:

P is ~A. (i) Suppose N[P] = T; then N[~A] = T; so by T8.6, N[A] # T;
so by assumption, Q I, ~; so Q b, #. (ii) Suppose N[P] # T; then
N[~A] # T; so by T8.6, N[A] = T; so by assumption Q ,, #; so by DN,
Qhyp ~~A;50Q by ~P.

P is A — B. (i) Suppose N[A — B] = T; then by T8.6, N[A] # T or
N[8B] = T. So by assumption, Q I, ~A or Q k,, B. So by VI twice
QhHp ~AVBorQ b, ~AV B;s0Q k, ~AV B; so by Impl,
Q b A — B. Part (ii) is homework.

P is (Vx < t)A(x). Since P is a sentence, x is the only variable free in
J; in particular, since x does not appear in #, £ must be variable-free; so
Ng[#] = N[¢] and where N[¢] = n, by T8.13, Q k,, ¢+ = n; so by =E,
Q 5y P justincase Q b5, (Vx < n)A(x).

(1) Suppose N[P] = T; then N[(Vx < #)A(x)] = T; so by TI, for any d,
Ng[(Vx < £)A(x)] = S; so by T12.6, for any m < Ng[¢], Ng(x|m)[A(x)] =
S; so where Ng[t] = N[tz] = n, for any m < n, Ny m[+(x)] = S; but
Ng[m] = m, so with T10.2, for any m < n, Ngq[-A(mM)] = S; since x is the
only variable free in #4, #A(M) is a sentence; so with T8.5, for any m < n,
N[4(m)] = T; so N[A(2)] = T and N[4(1)] = T and ...and N[4A(n)] = T;
so by assumption, Q k,, A(?) and Q I, (1) and ...and Q K, #4(N); so
by T8.21, Q i, (Yx < N)A(x); so with our preliminary result, Q b, &.
(i1) Suppose N[P] # T; then N[(Vx < t)A(x)] # T, so by TI, for some d,
Ng[(Vx < £)A(x)] # S; so by T12.6, for some m < Ng[], Ng(x|m)[A(x)] #
S; so where Ng[t] = N[z] = n, for some m < n, Ngcxm)[A(x)] # S; but
Ng[m] = m, so with T10.2, for some m < n, Ng[A(M)] # S; so by TI, for
some m < n, N[A(m)] # T; so by assumption for some m < n, Q
~A(m); so by T8.20, Q ,, (Ix < n)~+A(x); so by bounded quantifier
negation (BON), Q H,, ~(Vx < n)A(x); so with our preliminary result,
Qlp ~P.

homework.

So for any Ag sentence P, if N[’] = T, then Q k,, P, and if N[P] # T,
then Q k5, ~2.

And now, Q proves true X sentences.

T12.9. For any (strict) X1 sentence & if N[’] = T, then Q I, &.
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This is a simple induction on the number of unbounded existential quantifiers
in . Hint: If # has no unbounded existential quantifiers, then it is Ay.
Otherwise, if Ix is true, it will be easy to show that for some m, J(m) is
true; you can then apply your assumption, and JI.

Corollary: For any X1 sentence &, if N[’] = T, then Q F,, #. Suppose
a X1 & is such that N[?] = T, then by equivalence there is some strict
31 #* such that N[£*] = T; so by the main theorem, Q F,,, #*; and by
equivalence again, Q I, P.

This completes what we set out to show in this subsection. These results should seem
intuitive: Q proves results about particular numbers, 1 + 1 = 2 and the like. But Ag
sentences assert (potentially complex) particular facts about numbers — and we show
that Q proves any Ag sentence. Similarly, any X; sentence is true because of some
particular fact about numbers; since Q proves that particular fact, it is sufficient to
prove the ¥ sentence.

E12.10. Complete the demonstration of T12.5 - T12.7 by showing the remaining
parts. These should be straightforward, given parts worked in the text.

*E12.11. (i) Complete the demonstration of T12.8 by finishing the remaining cases.
You should set up the entire argument, but may appeal to the text for parts
already completed, as the text appeals to homework. (ii) Show directly cases
(3 <)and (3 <).

E12.12. Provide an argument to demonstrate T12.9.

12.3.2 Basic Result

We now set out to show that Q captures all the recursive functions. We begin showing
that the original formulas by which we have expressed recursive functions are .
After that, we get our result in in two forms. First a straightforward basic version.
However, this version gets a result slightly weaker than the one we would like. But
it is easily strengthened to the final form.

First, then, an argument that the original formulas by which we have expressed
recursive functions are X1. This argument merely reviews the strategy from T12.3
for expression to show that each formula is equivalent to a strictly 3 formula and
SO 1S X7.
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T12.10. The original formula by which any recursive function is expressed is 2.

By induction on the sequence of recursive functions.

Basis: From T12.3, suc(x) is originally expressed by Sx = v; zero(x) by
x =xAv = 0 and idnt’k(x1...x,-) by (X1 = X1 A ... AX; =
Xj) A xg = v. These are all Ao, and therefore X1.

Assp: Foranyanyi,0 <i < k, the original formula ¥ (X, v') by which f;(x)
is expressed is X1

Show: The original formula ¥ (X, v) by which f(X) is expressed is X
fi is either an initial function or arises from previous members by com-
position, recursion or regular minimization. If it is an initial function,
then as in the basis. So suppose fi arises from previous members.

(c) fk(X,y,Z) arises by composition from g(y) and h(X, w, Z). By assump-
tion g(y) is expressed by some ¥ formula equivalent to 3 j g(y,w)
and h(X, w, Z) by a £ formula equivalent to 3k J¢ (¥, w, 7, v) where §
and # are 1nd1v1dually Ag. Then their original composmon F(X,y,Z,v)
is equivalent to EIw[Eljﬁ(y w) A Elk%(x w,Z,v)]; and by standard
quantlﬁer placement rules, this is equivalent to Jw3; FED gV, w) A
H (X, w,Z,v)], where this is 1.

(r) fx(X,y) arises by recursion from g(X) and h(x y,u). By assumption

(x) is expressed by some X; formula Eljﬁ(x v) and h(X,y,u) by
EIkJ((x y,u,v). And, as before, the S-function B(p, q,i,v) is ex-
pressed by,

Aw < p)lp = (S(gxSi)xw)+vAv<S(gxSi)]

where this is Ag. Then the original formula ¥ (X, y,z) by which
f(X,y) is expressed is equivalent to,

3p3g{Iv[B(p.q.9.v) AIjE(E. V)] A

Vi < y)uv[B(p,q,i,u) A B(p.q,Si,v) A 312.%’()?, i, u, V)] AB(p,q,y,2)}
This time, standard quantifier placement rules are not enough to iden-
tify the formula as ;. We can pull the initial v and f quantifiers
out. And the k quantifiers come out with the u# and v quantifiers. The
problem is getting these past the bounded universal i quantifier.

For this, we use a sort of trick: For a simplified case, consider (Vi <
y)AvP (i, v); this requires that for each i < y there is at least one v
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that makes & (i, v) true; for each i < y consider the least such v, and
let a be the greatest member of this collection. Then (Vi < y)(Fv <
a)P (i, v) is equivalent to the original expression — for there is an i <
a to satisfy & just in case there is some i to satisfy J2. And therefore,
no matter what y may be, 3j(Vi < y)(3Jv < j)P(i,v) is true iff
the original expression is true. So the existential quantifier comes past
the bounded universal, leaving behind a bounded existential “shadow.”
Thus the existential ¥, v and k quantifiers come to the front, and the
result is >7.

(m) f(X) arises by regular minimization from g(X,y). By assumption,
g(X,y) is expressed by some Elfﬁ (X,y,z). Then the original expres-
sion by which f(X) is expressed is equivalent to Elfﬁ (X,v,9)A(Vy <
v)~3f‘§(5é, v, 0); but since § expresses a function, ~Hf§()?, v, 0)
just when Hz[ﬂfﬁ(?c, v,z) Az # @]; so the original expression is
equivalent to, 3/ 8(¥,v,0) A (Vy < v)3z[F/E(F, y.2) Az # 0]
The first set of j quantifiers come directly to the front, and the second
set, together with the z quantifier come out, as in the previous case,
leaving bounded existential quantifiers behind. So the result is X;.

Indct: The original formula by which any recursive function is expressed is
.

It is not proper to drag an existential quantifier out past a universal quantifier; how-
ever, it is legitimate to drag an existential past a bounded universal, with a bounded
existential quantifier left behind as “‘shadow” or “witness.”

Now for our main result. Here is the sense in which our result is weaker than
we might like: Rather than Q, let us suppose we are in a system Qs, strengthened Q,
which has (as an axiom or) a theorem uniqueness of remainder as follows,

Vy[(Qw <m)im=Snxw+ara<Sn]A@w <m)m=Snxw+yAry<Sn]) >a=y]

If ais the remainder of m/(n+1) and y is the remainder of m/(n+1) thena = y. As
we shall see, PA is a system of this sort (see Def[rm] in chapter 13) though, insofar
as m and n are free variables rather than numerals, Q is not. Notice that m and n are
free in this formulation; if they are instantiated to p and g x Si respectively, from
uniqueness for remainder there immediately follows a parallel uniqueness result for
the B-function.
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Further, if ((p, q,i),a) € B then since B expresses the B-function, N[B(p.q, i,a)] =
T; and since B is Ag, by T12.8, Q I, 8(p.q, i, a). From this, with uniqueness, it
is immediate that Qs b, Yy[B(P,3, i,y) — y = a]. So B captures B in Q.

Now we are positioned to offer a perfectly straightforward argument for capture
of the recursive functions in Qs;. Again our main argument is an induction on the
sequence of recursive functions. We show that Qg captures the initial functions, and
then that it captures functions from composition, recursion and regular minimization.

T12.11. On the standard interpretation N for £y, any recursive function is captured
in Qg by the original formula by which it is expressed.

By induction on the sequence of recursive functions.

Basis: fg is an initial function suc(x), zero(x), or idntL(x1 S X))
(s) The original formula ¥ (x, v) by which suc(x) is expressed is Sx = v.
Suppose (m, a) € suc.
(i) Since Sx = v expresses suc(x), N[Sm = a] = T; so, since it is
A, by T12.8,Q F,, Sm =12a;s0 Qs k5, F (M, a).

(i1) Reason as follows,

l.|Sm=a from (i)
2. | sm= A (g, =D
3.||j=2a 12=E
4.|Sm=j—>j=a 2-3 —>1
5./Vz(Sm=z—z=2a) 4 VI

So Qs Hyp Vz[F (M, z) — z =2].
(oth) Itis left as homework to show that zero(x) is captured by x = x Av =
Q)andidntjk(x1 LX) by (X1 = X1 ALLLAX; = X)) A X = .

Assp: Forany i, 0 < i < k, fi(X) is captured in Qs by the original formula
by which it is expressed.

Show: f(X) is captured in Qs by the original formula by which it is expressed.
fi is either an initial function or arises from previous members by com-
position, recursion or regular minimization. If it is an initial function,
then as in the basis. So suppose fi arises from previous members.

(c) fk(X,y,Z) arises by composition from g(y) and h(X, w, Z). By assump-
tion g(y) is captured by some §(y, w) and h(X, w, Z) by # (X, w, Z, v);
the original formula % (X, y, Z, v) by which the composition f(X, y, Z)
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(r)

(m)

is expressed is Jw[& (¥, w) A H (X, w, Z, v)]. For simplicity, consider
a case where X and Z drop out and y is a single variable y. Suppose
(m, a) € fg; then by composition there is some b such that (m,b) € g
and (b, a) € h.

(i) Since (m, a) € fy, and F (y, v) expresses f, N[F (m,a)] = T; so,
since ¥ (y,v) is X1, by T12.9, Qs k5, F (M, ).

(ii) Since §(y, w) captures g(y) and J# (w, v) captures h(w), by as-
sumption Qs b, Vz(¢(M,z) — z = b) and Qs b, Vz(H(b,z) —
z = a). Itis then a simple derivation for you to show that Qs
Vz(@Aw[&(m, w) A H(w,z)] — z = a).

f(X,y) arises by recursion from g(x) and h(X,y,u). By assumption
g(x) is captured by some g (X, v) and h(X,y,u) by (X, y,u,v); the
original formula ¥ (X, y, z) by which fx(X, y) is expressed is,
3p3g{T[B(p. 4,0, v) ASE, VAV < ) TuTv[B(p,q,i, W) AB(p,q, Si,v) ALK (R, i u, v)]A
B(p.q,y,2)}

Suppose X reduces to a single variable and (m,n,a) € fx. (i) Then
since ¥ (x, y, z) expresses f, N[ (m,n,a)] = T, so, since F (x, y, z)
is X1, by T12.9, Qs b5, F(m,n,a). And (ii) by T12.12, immediately
following, Qs k,, Yw[¥ (M, n, w) — w = aJ.

f«(X) arises by regular minimization from g(X,y). By assumption,
g(X,y) is captured by some g (X, y, z); the original formula by % (X, v)
by which fc(X) is expressed is § (X, v, D) A(Yy < v)~& (X, y,?d). Sup-
pose X reduces to a single variable and (m, a) € fi.

(i) Since (m,a) € fi, and F (x, v) expresses f, N[ (m,a)] = T; so
since ¥ (x,v) is X1, by T12.9, Q, 5, ¥ (m, a).

(i1) Reason as follows,
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1.1 6(M,a,0) A (Vy <a)~g(m, y,?d) from (i)
2.|j<avj=ava<; T8.19
3 |Fm, . O)A(Vy < j)~F(m, y.0) A(g, =D
al|lj<a A (¢, ~T)
5. g(m, j, ) 3 AE
6. (Vy <a)~g(m, y,?d) 1 AE
7. ~g(m, j.0) 6,4 (VE)

8. 1 5,7 11
9.11j £a 4-8 ~1
10.| | |a<j A (e, ~I)
11.| | | g3 0) 1 AE

12. Vy < j)~§(m, y,d) 3 AE

13.] | |~¢@m.a,0) 12,10 (VE)
14. 1 11,13 LI
15. |a¢ 10-14 ~1
16.| |j=1a 2,9,15DS
17.{[8(M, j,0) A(Vy < j)~§(m,y,0)] — j =a 3-16 —I
18. | Vz([(M,z,0) A (Vy < z)~§(m, y,0)] > z =23) 17 VI

SoQshp, Vz([§(M,z,0) A (Vy < z)~§(m,y,0)] — z = a).

Indct: Any recursive f(X) is captured by the original formula by which it is
expressed in Q.

For this argument, we simply rely on the ability of Q to prove particular truths, and
so the X sentences that express recursive functions. The uniqueness clauses are not
31, so we have to show them directly. The case for recursion remains outstanding,
and is addressed in the theorem immediately following.

T12.12. Suppose f(X, y) results by recursion from functions g(x) and h(X, y, u) where
g(X) is captured by some ¢ (X, v) and h(X,y, u) by # (X, y,u,v). Then for
the original expression ¥ (X, y, z) of f(X,y), if ({(m;...mp,n),a) € f, Qs F
Vw[?(ﬁ o .ﬁb,ﬁ, w) — W = 5]

Suppose X reduces to a single variable and (m,n,a) € f. When (m,n,a) € f, there
are ko ...k such that k, = a; kg = g(m); for 0 < i < n, there are p, q such that
B(p,q,i) = ki; B(p,q,Si) = kgj; and h(m, i, ki) = kgj. The argument is by induction
on the value of n from f(m,n) = a. Observe that ¥ is long, and we shall better be
able to manage the formulas given its general form 3p3g[P A @ A B]. Also, given
the structure of the definition for this recursion clause, it will be convenient to lapse
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into induction scheme III from the induction schemes reference on p. 388, making
the assumption for a single member of the series n, and then showing that it holds for
the next. Thus, beginning with the basis, we then assume Q; - Yw[# (m,n, w) —
w = k], and show Q, - Yw[F (M, SA, w) — w = ksn].

Basis: Suppose n = 0. From capture, Qs b, Vz[¢(M,z) — z = ko]. By unique-
ness of remainder (and generalizing on p and q), Qs 5, YpVgVy[(B(p,
4.9, ko)AB(p.q.9,y)) — ko = y]. F is of the sort, ApIg{Iv[B(p. q. 0. v)A
(X, v)]AQAB(p,q.9,2)}. Youneed to show Qs - Yw([IpIg{Iv[B(p.q,
@, v) AE(M, )] AQAB(p,q.0,w)} — w = kol. This is straightforward.
So Qs F Yw[F (M, 0, w) — w = ko).

Assp: Qg b Vw[F (M. 7, w) - w = ky]
Show: Qg Vw[?(ﬁ, Sn,w) > w = RSn]

From capture, Qs F,, Yw[H# (M, A, kn, w) — w = kgn]. And again we make
an appeal to uniqueness:
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L. | Yw[F @, 7, w) - w = ky] by assumption

2. | Yw[H (M, N, ky, w) = w = kgp] by capture

3. VpVYqVy[(B(p.q, S0, ksn) A B(p,q,Sn, y)) = ksn = ¥] uniqueness

4.| | Fm,Sn, j) Ag, —D

5.1 [3pFq[P(p,q.m) A Q(p,q,m,Sn) A B(p,q,Sn, j)] 4 abv

6.| | [Fq[P(p.q. M) AQ(p.q. M, SN) A B(p.q. 50, j)] A (g, 53B)

7. P(p,q.m)AQ(p,q,m,Sn) A B(p,q,Sn, j) A (g, 63E)

8. [B(p,q,9,v) AG(M,v)] 7 AE (P)

. Vi < SM)uv[B(p,q.i,u) A B(p,q,Si,v) A H(m,i,u,v)] 7 AE (Q)

10. B(p.q,8n,j) 7 AE

11. n<Sn T8.14
12. JuIv[B(p,gq,n,u) A B(p,q,Sn,v) A H(m,n,u,v)] 9,11 (VE)

13. [B(p,q,n,u) A B(p,q,Sn,v) A H(mM,N,u,v)] A (g, 123E)
14. B(p,q,n,u) AB(p,q,Sn,v) A HM,n,u,v) A (g, 133E)
15. B(p,q,n,u) 14 AE

16. (Vi <nm)Fuv[B(p,q,i,u) A B(p,q,Si,v) A FH (M, i,u,v) 9 with T8.21
17. F(m,n,u) 8,16,15 with 3l
18. u = kp 1,17 with VE
19. H(m,n,u,v) 14 AE
20. H(m, 0, kn, v) 19,18 =E
21. v = kg 2,20 with YE
22. B(p,q,Sn,v) 14 AE
23. B(p.,q, SN, ksn) 22,21 =E
24, Jj = Ksn 3,10,23 with VE
25. Jj = ksn 13,14-24 3E
26. j = ksn 12,13-25 3E
27.| | | j = Ken 6,7-26 IE
28.| | j = ksn 5,6-27 3E
29.| ¥ (m, S, j) = j =ksn 4-28 -1
30. | Yw[F (M, ST, w) = w = kgn] 29 VI

Lines 8 - 10 of show the content of the assumptions on 4 - 7 which are too long
to display in expanded form. Once we are able to show % (m, n, u) at (17), the
inductive assumption lets us “pin” u onto k,. Then uniqueness conditions for
H and B allow us to move to unique outputs for # and B and so for . Line
16 perhaps obviously follows from (9), but its derivation may be obscure: by
T8.14,QF 0 < Snand...and Q - n— 1 < SN; so where # is the formula
quantified on (9) by (VE), Q - #4(0) and ...and Q  #(n — 1); then with
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T8.21 it follows that Q - (Vi < n)A(i).

Indct: Forany n, Qg b, Yw[F (M, 7, w) - w = ky].

Observe that in both the basis and show clauses we require the generalized unique-
ness for B: this is because it is being applied inside assumptions for JE, where p
and ¢q are arbitrary variables, not numerals p and g, to which the ordinary notion of
capture for 8 would apply. So Vw[F (m,n, w) — w = a]. So we satisfy the recur-
sive clause for T12.11. So the theorem is proved. And we have shown that Qg has
the resources to capture any recursive function.

This theorem has a number of attractive features: We show that recursive func-
tions are captured directly by the original formulas by which they are expressed. A
byproduct is that recursive functions are captured by X1 formulas. The argument is
a straightforward induction on the sequence of recursive functions, of a type we have
seen before. But we do not show that recursive functions are captured in Q. It is that
to which we now turn.

*E12.13. Complete the demonstration of T12.11 by completing the remaining cases,
including the basis and part (ii) of the case for composition.

*E12.14. Produce a derivation to show the basis of T12.12.

E12.15. Return to the simple functions from from E12.9. Show that on the standard
interpretation N of &£y; each simple function f(X) is captured in Qg by the
formula used to express it. Restrict appeal to external theorems just to your
result from E12.9 and T8.14 as appropriate.

12.3.3 The result strengthened

T12.11 shows that the recursive functions are captured in Qs by their X; original
expressers. As we have suggested, this argument is easily strengthened to show that
the recursive functions are captured in Q. To do so, we give up the capture by original
expressers, though we retain the result that the recursive functions are captured by
31 formulas.

In the previous section, we appealed to uniqueness of remainder for the §-function.
In Qs, the original formula B captures the B-function, and gives a strengthened
uniqueness result important for T12.12. But we can simulate this effect by some
easy theorems. Recall that the S-function is originally expressed by a Ay formula

B.
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T12.13. If atotal function f(X) is expressed by a Ag formula % (X, v), then F/(X, v) =
F(X,v)A(Vz <v)[F(X,z) = z = v] is Ag and captures f in Q.

Suppose a total f(X) is expressed by a Ao formula (X, v). Suppose X reduces
to a single variable and (m, a) € f. (a) Then, N[¥ (m,2)] = T; and since ¥
is Ag, by T12.8, Q k,, ¥ (m,a). (b) Suppose n # a; then (m,n) & f; so
with T12.2, N[~¥ (m,n)] = T and N[¥ (m,n)] # T; so by T12.8, Q I,
~F (m,n).

(1) From (a), Q - ¥ (m,a). And+a =1a,soF ¥(m,a) — a = a; and from
(b), for g < a, Q = ~F (M, Qq); so trivially, Q = £ (m,q) — q = a; so for
anyp <a,QF F(mM,p) >p=2a;s0by T8.21,QF (Vz <a)(¥ (m,z) —
z =2a). Sowith AL Q- F(m,a) A (Vz <a)(¥(m,z) — z = a); which is
to say, Q - F'(m, a).

(i1) Hint: You need to show Q - Vw([F (M, w)A(Vz < w)(F (M, z) - z =
w)] — w = a). Take as premises F (M,a) A (Vz <a)(F(M,z) - z = a)
from (i), along with j <ava < j from T8.19.

So if conditions (a) and (b) are met, ' captures f. F’ is not the same as the orig-
inal ¥ to express the function. Still, since the Ay B expresses the S-function, B’
captures it in Q.

Intuitively, the second conjunct of ¥ asserts explicitly that at most one v satisfies
F'. Thus it is not surprising that formulas of the sort #” yield a uniqueness result.

T12.14. For F'(X,v) =4t F (X, v) A(Vz < 0)[F (X,z) — z = v] as above, for any
n, Q F VEVY[(F'(F.0) A F'(F. y) - ¥ =l

Suppose X reduces to a single variable and reason as follows,
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1.|Vx(x <nvn<ux) T8.19

201 F' (M AF(j, k) A(g =D

30| FU ANz ZN)F(j,z) > z=n) 2 AE (unabv)
4| 1 FU ANz <k(F(j,z) > z=k) 2 AE (unabv)
5./ lk<nvn<k 1 VE

6. | [k<n A (g SVE)
7. Vz<n)(F(j,z) > z=n) 3 AE

8.1 | |FG.k)=k=n 7,6 (VE)

9. F (k) 4 AE

10. k=n 8,9 -E

.|| A<k A (g SVE)
12. k=n

13.| |[k=n 5,6-10,11-12 VE
4. (F'G. R AF'( k) = k=n 2-13 1

15| VY[(F'G. D AF'(j,y) =y =7] 14 VI

16. | VXVy[(F'(x,m) A F'(x,y)) — y =7] 15 VI

Reasoning for the second subderivation is similar to the first.

So where p, ¢ and v are universally quantified we shall have, Q - V pVgVv[(B'(p. q,
m,n) A B'(p,q,m,v)) — v = n]. This is what we had before except applied to B’
rather than 8.

Observe also that insofar as (X, v) is built on an % (X, v) that expresses f(X),
F'(X,v) continues to expresses f(x). Perhaps this is obvious given what #’ says.
However, we can argue for the result directly.

T12.15. If (X, v) expresses a total f(X), then F' (X, v) = F (X, v)A(Vz < v)[F (X,z2)
— z = v] expresses f(X).
Suppose X reduces to a single variable and total f(x) is expressed by F (x, v).
Suppose {m, a) € f. (a) By expression, N[¥ (m,a)] = T. (b) Suppose n # a;
then (m,n) & f; so with T12.2, N[~% (m,n)] = T.
(i) Suppose N[F/(m, a)] # T. This is impossible. You will need applications
of T12.6 and T10.2; observe that for n < a eithern = a or n < a (so that
n # a).
(ii) Suppose N[Vw([F (M, w) A (Vz < w)(F(M,z) > z = w)] > w =
a)] # T. This is impossible. This time, you will be able to reason that for any
neithern = aorn # a.
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And now we are in a position to recover the main result, except that the recursive
functions are captured in Q rather than Q.

T12.16. Any recursive function is captured by a ¥ formula in Q

The B-function is total and expressed by a Ag formula B(p,q,i,v); so by
T12.15 and T12.13 there is a Ao formula B'(p,q,i,v) that expresses and
captures it in Q. For any f(x) originally expressed by % (X, v), let ' be like
F except that instances of B are replaced by B’. Since B’ is Ag, ¥ remains
3.

The argument is now a matter of showing that demonstrations of T12.3,
T12.11 and T12.12 go through with application to these formulas and in Q.
But the argument is nearly trivial: everything is the same as before with for-
mulas of the sort #' replacing % .

Be clear that expressions of the sort &' might appear all along in the show part
of T12.3, T12.11 and T12.12. Expressions from the basis do not involve B. It is
included by recursion; after that, composition and regular minimization might be
applied to expressions of any sort, and so to ones which involve 8 as well.

As in for the case of expression, formulas other than (X, v) might capture the
recursive functions — for example, if #7 (X, v) captures f(X), then so does ' (¥, v) A
A for any theorem . Let us say that 7 (X, v) is the canonical formula that captures
f(x) in Q. Of course, the canonical formula which captures f(X) need not be the
same as the corresponding original formula — for the B-function is not captured
by its original formula (and so any formula which includes a B-function fails to be
original). Because the S-function is captured by a Ao formula we do, however, retain
the result that every recursive function is captured in Q by some ¥; formula.

For the rest of this chapter, unless otherwise noted, when we assert the existence
of a formula to express or some capture recursive function, we shall have in mind the
canonical formula. Thus a function is expressed and captured by the same formula.

E12.16. Provide an argument to demonstrate (ii) of T12.13.

E12.17. Finish the derivation for T12.14 by completing the second subderivation.

E12.18. Complete the demonstration of T12.15.
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*E12.19. Work carefully through the demonstration of T12.16 by setting up revised
arguments T12.37, T12.117 and T12.12". As feasible, you may simply explain
how parts differ from the originals.

12.4 More Recursive Functions

Now that we have seen what the recursive functions are, and the powers of our logical
systems to express and capture recursive functions, we turn to extending their range.
In fact, in this section, we shall generate a series of functions that are primitive re-
cursive. In addition to the initial functions, so far, we have seen that plus, times, fact
and power are primitive recursive. As we increase the range of (primitive) recursive
functions, it immediately follows that our logical systems have the power to express
and capture all the same functions.

12.4.1 Preliminary Functions

We begin with some simple primitive recursive functions that will serve as a founda-
tion for things to come.

Predecessor with cutoff. Set the predecessor of zero to zero itself, and for any
other value to the one before. Since pred(y) is a one-place function, gpred is a
constant, in this case, gpred = 0. And hpred = idntf(y,u). So, as we expect for

pred(y),
pred(0) =0
pred(suc(y)) =y

So predecessor is a primitive recursive function.

Subtraction with cutoff. When y > x, subc(x,y) = 0. Otherwise subc(x,y) =
x—y. For subc(x, y), set gsubc(x) = idnt] (x). And hsubc(x, y, u) = pred(idnt3(x, y, u)).
So,

subc(x,0) = x

subc(x, suc(y)) = pred(subc(x, y))
So as y increases by one, the difference decreases by one. Informally, indicate
subc(x,y) = (x = ).
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Absolute value. absval(x-y) = (x = y) + (y = x). So we find the absolute value
of the difference between x and y by doing the subtraction with cutoff both ways.
One direction yields zero. The other yields the value we want. So the sum comes out
to the absolute value. This is a function with two arguments (only separated by ‘-’
rather than comma to remind us of the nature of the function). This function results
entirely by composition, without a recursion clause. Informally, we indicate absolute
value in the usual way, absval(x -y) = |x-y|.

Sign. The function sg(y) is zero when y is zero and otherwise one. For sg(y), set
gsg = 0. And hsg(y, u) = suc(zero(idntf(y, u))). So,

sg(0) =0

sg(suc(y)) = suc(zero(y))

So the sign of any successor is just the successor of zero, which is one.

Converse sign. The function csg(y) is one when y is zero and otherwise zero. So it
inverts sg. For csg(y), set gcsg = suc(0). And hesg(y, u) = zero(idntf(y, u)). So,

csg(0) = suc(0)
csg(suc(y)) = zero(y)

So the converse sign of any successor is just zero. Informally, we indicate the con-
verse sign with a bar, sg(y).

E12.20. Consider again your file recursivel.rb from E12.3. Extend your se-
quence of functions to include pred (x), subc(x,y), absval(x - y), sg(x),
and csg(x). Calculate some values of these functions and print the results,
along with your program. Again, there should be no appeal to functions ex-
cept from earlier in the chain.

12.4.2 Characteristic Functions

The characteristic function chg(X) of a relation R takes the value 0 when X € R and 1
when X ¢ R.

(CF) For any function p(X), sg(p(X)) is the characteristic function of the relation R
such that X € Riff sg(p(X)) = 0.
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So a characteristic function for relation R takes the value 0 if R(X) is true, and 1 if R(X)
is not true.” A (primitive) recursive property or relation is one that has a (primitive)
recursive characteristic function. When a function p already takes just the values 0
and 1 so that sg(p(X)) = p(X), we generally omit sg from our specifications.

These definitions immediately result in corollaries to T12.3 and T12.16.

T12.3 (corollary). On the standard interpretation N of £y, each recursive relation
R(X) is expressed by some formula R (¥).

Suppose R(X) is a recursive relation; then has a recursive and so total charac-
teristic function chg(X); so by T12.3 there is some formula R (X, y) that ex-
presses chg(X). So in the case where X reduces to a single variable, if m € R,
then (m,0) € chg; and by expression, [[R(m,d)] = T; and if m ¢ R, then
(m,0) ¢ chg, so that with T12.2, I[~R(m, @)] = T. So, generally, R (X, ?)
expresses R(X).

T12.16 (corollary). Any recursive relation is captured by a ¥ formula in Q.

Suppose R(X) is a recursive relation; then it has a recursive and so total char-
acteristic function chy(X); so by T12.16 there is some £ formula R(X, y)
that captures chg(X). So in the case where X reduces to a single variable, if
m € R, then (m,0) € chg; and by capture 7 = R(m,0); and if m & R,
then (m, 0) ¢ chg; so by capture with T12.4, T = ~R(m, @). So, generally
R(X,0) captures R(X).

So our results for the expression and capture of recursive functions extend directly to
the expression and capture of recursive relations: a recursive relation has a recursive
characteristic function; as such, the function is expressed and captured; so, as we
have just seen, the corresponding relation is expressed and captured.

Equality. Say t(X) is a recursive term just in case it is a variable, constant, or a
recursive function. Then for any recursive terms s(X) and t(y), ea(s(X),t(y)) —
typically rendered s(X) = t(y), is a recursive relation with characteristic function
cheq(X,y) = sg|s(X) - t(y)|. When s(X) is equal to t(y), the absolute value of the
difference is zero so the value of sg is zero. But when s(X) is other than t(y), the
absolute value of the difference is other than zero, so value of sg is one. And, sup-
posing that s(X) and t(X) are recursive, this characteristic function is a composition of
recursive functions. So the result is recursive. So s(X) = t(y) is a recursive relation.

71t is perhaps more common to reverse the values of zero and one for the characteristic function.
However, the choice is arbitrary, and this choice is technically convenient.
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A couple of observations: First, be clear that eq is the standard relation we all
know and love. The trick is to show that it is recursive. We are not given that EQ is a
recursive relation — so we demonstrate that it is, by showing that it has a recursive
characteristic function. Second, one might think that we could express f(X) = g(y) by
some relatively simple expression that would compose expressions for the functions
with equality as, JuIv[F (X,u) A §(¥,v) A u = v]. This would be fine. However
we have offered a general account which, as is often the case for these things, need
not be the most efficient. Where sg|f(x) - g(y)| is expressed and captured by some
8 (X, y,v) our approach, which works by modification of the characteristic function,
generates the relatively complex, &(X, ) = S(X, ¥, 0).

Inequality. The relation LEQ(s(X), t(y)) has characteristic function sg(s(x) = t(y)).
When s(X) < t(y), s(X) = t(y) = 0; so sg = 0; Otherwise the value is 1. The relation
Less(s(X), t(y)) has characteristic function sg(suc(s(X)) = t(y)). When s(X) < t(y),
suc(s(X)) = t(y) = 0; so sg = 0. Otherwise the value is 1. These are typically
represented s(X) < t(y) and s(X) < t(y).

With equality and inequality, we have atomic recursive relations. And we set out
to exhibit ones that are more complex in the usual way.

Truth functions. Suppose P(X) and Q(X) are recursive relations. Then NEG(P(X))
and psJ(P(X), Q(X)) are recursive relations. Suppose chs(X) and chy(X) are the char-
acteristic functions of P(X) and Q(X).

NEG(P(X)) (typically ~P(X)) has characteristic function Sg(che(X)). When P(X)
does not obtain, the characteristic function of p(X) takes value one, so the converse
sign goes to zero. And when when pP(X) does obtain, its characteristic function is
zero, so the converse sign is one — which is as it should be.

psJ(P(X), a(y)) (typically P(X) vV a(y)) has characteristic function chs(X) X chq(Y).
When one of P(X) or a(y) is true, the disjunction is true; but in this case, at least one
characteristic function, and so the product of functions goes to zero. If neither P(X)
nor Q(y) is true, the disjunction is not true; in this case, both characteristic functions,
and so the product of functions take the value one.

Other truth functions are definable in the same terms as for negation and disjunc-
tion. So, for example, IMP(P(X), a(y)) that is, P(X) = a(y) is just ~P(X) V a(y).

Bounded quantifiers: Consider a relation s(x,z) = (3y < z)P(X, z,y) which ob-
tains when there is a y less than or equal to z such that P(X,z,y). As usual, y is
distinct from the bound z (compare the language of arithmetic reference). But z may
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appear as a variable of the relation p (as for factor or prime number just below); so
we give it a place in our general form. Given chy(X, z, y), consider a further relation
R(X, z, V) corresponding to (3y < V)P(X, z,Yy). So R treats the bound as a separate vari-
able, and will let us reason by induction as the bound ranges from 0 to z. If we can
find chg(X, z, v) then chs(X, z) is automatic as chg(X, z, z). For this chg(X, z, V) set,

gchg(X, z) = che(X, z,0)
hchg(X, z, v, u) = u x che(X, z, Sv)

In the simple case where X drops out, chs(z,0) = chs(z,0). And chgy(z,Sv) =
chg(z, V) x chp(z, Sv). In the case where v is a successor, the result is,

chgr(z,v) = che(z,0) x chp(z,1) x ... x che(z,V)

Think of these as grouped to the left. So the result has chg(z,n) = 1 unless and
until one of the members is zero, and then stays zero. So the function for R(z, n)
goes to zero just in case P(z,V) is true for some value between 0 and n. So set
chs(X,z) = chg(X, z,z) — so the characteristic function for the bounded quantifier
runs the R function up to the bound z.

For (3y < z)p(X, z,y), it simplest simply to take (3y < z)(y # z A P(X, z,y)). For
(Vz < y)p(X,2) and (Vz < y)P(X, ), we may consider ~(3z < y)~P(X, z); and simi-
larly in the other case. And we are done by previous results.

Least element: Let m(X,z) = (py < z)P(X,z,y) be the least y < z such that
P(X,z,y) if one exists, and otherwise z. Again, the bound may be a variable free
in p. Then if P(X, 2, y) is a recursive relation, (Ly < z)P(X, z,Y) is a recursive func-
tion. First take R(X, z, v) for (Jy < v)P(X, z, y) and chy(X, z, v) as described above. So
chr(X, z,V) goes to 0 when P is true for some j < v. Then, second, we introduce a
function q(X, z, v) whose output is the value of (juy < v)P(X,z,y). Given this, very
much as before, m(X, z) is automatic as q(X, z, z). For q(X, z, v) set,

gq(x, z) = zero(chy(X, z, 0))
hq(x, z,v,u) = u + chg(X, z, V)

So in the simple case where X drops out, q(z, 0) = 0; for the least y < 0 that satisfies
any P(z,y) can only be 0. And then q(z, Sv) = q(z, V) + chg(z, V). The result is,

g(z,Sn) = 0 + chg(z,0) + ... 4 chg(z,n)

where chy is 1 until it hits a member that is P and then goes to 0 and stays there. Set
the first member to the side. Then since this series starts with v = 0 and ends with
v = nithas Sn members. So if all the values are 1 it evaluates to Sn. If there is some
a such that chg(z, @) is zero, then all the members prior to it are 1 and the sum is a.
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So set m(X,z) = q(X, z, z), so that we take the sum up to the limit z. Observe that
(wy < 2)P(X,2,y) = z does not require that P(X, z, z) — only that no a < z is such
that p(X, z, a).

Selection by cases. Suppose fo(X) . . . fx(X) are recursive functions and ¢ (X) . . . ck(X)
are mutually exclusive recursive relations. Then f(X)/co ... ck defined as follows is

recursive.
fo(X) if co(X)
f1 (%) if c1(X)
f(x) = :
fio(X) if ck(X)
and otherwise a
Observe that, f(x) =

[5g(chc, (X)) x fo(X) + 5g(che, (X)) x f1(X) + ... + 5g(che, (X)) x f(X)] +
[che, (X) x chg, (X) X ... X chg, (X) x a]

works as we want. Each of the first terms in this sum is 0 unless the ¢; is met in which
case 8g(chg, (X)) is 1 and the term goes to fi(X). The final term is 0 unless no condition
ci is met, in which case it is a. So f(X) is a composition of recursive functions, and
itself recursive.

We turn now to some applications that will be particularly useful for things to
come. In many ways, the project is like a cool translation exercise — pitched at the
level of functions.

Factor. Let FCTR(m, n) be the relation that obtains between m and n when m + 1
evenly divides n (typically, m | n). Division is by m + 1 to avoid worries about
division by zero.® Then m | n is recursive. This relation is defined as follows.

Ay =n)(Smxy =n)

Observe that this makes (the predecessor of) both 1 and n factors of n, and any
number a factor of zero. Since each part is recursive, the whole is recursive. The
argument is from the parts to the whole: Sm x y = n has a recursive characteristic

81n fact, this is a (minor) complication at this stage, but it will be helpful down the road. See p.
644nl1.
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function; so the bounded quantification has a recursive characteristic function; so the
factor relation is recursive.

Prime number. Say PRIME(N) is true just when n is a prime number. This property
is defined as follows.

n>1Aj<n)j|n—>(Sj=1vVvSj=n)]

So n is greater than 1 and the successor of any number that divides it is either 1 or n
itself.

Prime sequence. Say the primes are mg, 1. ... Let the value of the function pi(n)
(usually 1t(n)) be 1tn. Then wt(n) is defined by recursion as follows.

gpi = suc(suc(0))
hpi(y,u) = (ry < u! + 1)(u <y A PRIME(Y))

So the first prime, ©(0) = 2. And ®(Sn) = (py < w(n)! + 1)(x(n) <y A PRIME(Y)).
So at any stage, the next prime is the least prime which is greater than m(n). This
depends on the point that all the primes < 7, are included in the product m(n)! Let
p(n) = 7o X My X ... X Tn. By a standard argument (see G2 in the arithmetic for
Godel numbering reference, p. 480), p(n) + 1 is not divisible by any of the primes
up to 1tp; so either p(n) + 1 is itself prime, or there is some prime greater than 7, but
less than p(n) + 1. But since 1t(n)! is a product including all the primes up to m,
p(n) < w(n)!; so either w(n)! 4 1 is prime or there is a prime greater than 7, but less
than m(n)! + 1 — and the next prime is sure to appear in the specified range.

Prime exponent. Let exp(n,i) be the (possibly 0) exponent of m; in the unique
prime factorization of n. Then exp(n, i) is recursive. This function may be defined as
follows.

(nx < n)[pred(x}) | n A pred( ™) 4 n]

And, of course, m; is just m(i). Observe that no exponent in the prime factorization
of n is greater than n itself — for any x > 2, x" > n — so the bound is safe. This
function returns the first x such that =t divides n but Jl',ix+1 does not.



CHAPTER 12. RECURSIVE FUNCTIONS AND Q 594

Prime length. Say a prime nt, is included in the factorization of n just in case there
is some b > a and e > 0 such that (the predecessor of) =y is a factor of n. So we
think of a prime factorization as,

€p (2] €p
Ty X Ty X ... X T

where ep > 0, but exponents for prior members of the series may be zero or not.
Then len(n) is the number of primes included in the prime factorization of n; so
len(0) = len(1) = 0 and otherwise, since the series of primes begins with zero,
len(n) = b + 1. For this set,

len(n) =ur (Wy =n)(Vz:y =z =<nexp(n.z) =0

Officially: (py < n)(Vz < n)[z = y — exp(n,z) = 0]. So we find the least y such
that none of the primes between 7y and 7, are part of the factorization of n; but then
all of the primes prior to it are members of the factorization so that y numbers the
length of the factorization. This depends on its being the case that n < m, so that
primes greater than or equal 7, are never included in the factorization of n.

E12.21. Returning to your file recursivel.rb from E12.3 and E12.20, extend the
sequence of functions to include the characteristic function for FcTr(m, n).
You will need to begin with cheq(a,b) for the characteristic function of
a = b and then the characteristic function of Sm x y = n. Then you will
require a function like chg(m, n, v) corresponding to (y < v)(Sm x y = n).
Calculate some values of these functions and print the results, along with your
program.

E12.22. Continue in your file recursivel.rb to build the characteristic function for
PRIME(N). You will have to build gradually to this result (where the universal
quantifier appears as ~(3j < n)(j # n A ~P). You will need chless(a,b)
and then chneg(a), chdsj(a,b), chimp(a,b), and chand(a,b) for the rel-
evant truth functions. With these in hand, you can build a function chp(n, j)
corresponding toj # nV ~(j | n = (Sj = 0 v Sj = n)). And with that, you
can obtain a function like R(n, j, v) and then the characteristic function of the
bounded existential. Then, finally, build prime (n). Calculate some values of
these functions and print the results, along with your program.
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E12.23. Continue in your file recursivel.rb to generate Icm(m, n) the least com-
mon multiple of Sm and Sn — that is, (Ly < SmxSn)[y > 0AmM | yAn |y].
For this you will need the characteristic function of y > 0AmM | yAn | y; and
then one like chg(m, n, v) corresponding to (Jy < v)[y >0AmM|yAn|y].
Then you will be able to find the function like g(m, n, v) corresponding to
(hy =V)[y>0AmM|yAn|y]and finally the lcm.

E12.24. Provide definitions for the recursive functions rm(m, n) and gt(m, n) for the
remainder and quotient of m/n + 1.

*E12.25. Functions f{(X,y) and fo(X, y) are defined by simultaneous (mutual) recur-
sion just in case,

f1(X,0) = g1(X)
f2(X, 0) = g2(X)
f1(X, Sy) = h1(X,y, f1(X,y), fa(X, y))
fa(X, Sy) = ha(X, y, f1(X,y), fa(X, ¥))

Show that f; and f, so defined are recursive. Hint: Let F(X,y) =
KZZ(;,Y).

f1(X,y)
T[O X

then find G(X) in terms of g1 and g», and H(X, y, u) in terms of hy
and hy so that F(x,0) = G(X) and F(X,Sy) = H(X,y,F(X,y)). So F(X,y) is
recursive. Then f{(X,y) = exp(F(X,y),0) and f2(X, y) = exp(F(X,y), 1); so f;
and fo are recursive.

12.4.3 Arithmetization

Our aim in this section is to assign numbers to to expressions and sequences of ex-
pressions in &y and build a (primitive) recursive property PRFQ(m, n) which is true
just in case m numbers a sequence of expressions that is a proof of the expression
numbered by n. This requires a number of steps. In this part, we develop at least the
notion of a sentential proof which should be sufficient for the general idea. The next
section develops details for the the full quantificational case.

Godel numbers. We begin with a strategy familiar from 10.2.2 and 10.3.2 (to
which you may find it helpful to refer), now adapted to Lyr. The idea is to as-
sign numbers to symbols and expressions of Lyr. Then we shall be able to operate
on the associated numbers by means of ordinary numerical functions. Insofar as the
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variable symbols in any quantificational language are countable, they are capable of
being sorted into series, xg, X1 ... Supposing that this is done, begin by assigning to
each symbol « in &£y; an integer g[w] called its Godel Number.

a. glj=3 f. g[vV]=13
b. gDl=>5 g glol=15
c. gl~=7 h. g[S]=17
d g[—=]=9 i g[+]=19
e. g[=]=11 . glx]=21

k. g[xi] =23+ 2i
So, for example, g[x5] = 23+ 2 x5 = 33. Clearly each symbol gets a unique Godel
number, and Godel numbers for individual symbols are odd positive integers.’
Now we are in a position to assign a Godel number to each formula as follows:

Where ap, o1 . ..o, are the symbols, in order from left to right, in some expression
Qs

glQ] = 28leol o 3glen] ¢ 5elen] o g, &lon]

where 2, 3, 5... 7, are the first n prime numbers. So, for example, g[xg X x5] =
223 x 321 x 533 This is a big integer. But it is an integer, and different expressions
get different Godel numbers. Given a Godel number, we can find the corresponding
expression by finding its prime factorization; then if there are twenty-three 2s in the
factorization, the first symbol is xp; if there are twenty-one 3s, the second symbol is
x; and so forth. Notice that numbers for individual symbols are odd, where numbers
for expressions are even.

Now consider a sequence of expressions, Qg, @;...&, (as in an axiomatic
derivation). These expressions have Godel numbers go, g1-.., €. Then,

80 81 82 &n
Wy X M, XWX X T

is the super Godel number for the sequence @Q¢, @;...Q,. Again, given a super
Godel number, we can find the corresponding expressions by finding its prime fac-
torization; then, if there are gg 2s, we can proceed to the prime factorization of gg, to
discover the symbols of the first expression; and so forth. Observe that super Godel
numbers are even, but are distinct from Gddel numbers for expressions, insofar as
the exponent of 2 in the factorization of any expression is odd (the first element of
any expression is a symbol and so has an odd number); and the exponent of 2 in the

9There are many ways to do this, we pick just one.
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factorization of any super Godel number is even (the first element of a sequence is
an expression and so has an even number).

Recall that exp(n, i) returns the exponent of 7t in the prime factorization of n. So
for a Gddel number n, exp(n, i) returns the code of «;; and for a super Godel number
n, exp(n, i) returns the code of @;.

Where # is any expression, let " # " be its Godel number; and T 27 the standard
numeral for its Godel number. Indicate individual symbol codes with angle quotes
around the symbol. So (% = 15 but "¢ = 215 — for we take the number of the
bracketed expression.

Concatenation. Suppose m and n number expressions or sequences of expressions.
Then the function cncat(m, n) — ordinarily indicated mn, returns the Godel number
of the expression or sequence with Gédel number m followed by the expression or
sequence with Godel number n. So "x x y'x"=z" = Tx x y =z, for some
numbered variables x, y and z. This function is (primitive) recursive. Recall that
len(n) is recursive and returns the number of distinct prime factors of n. Set m x n to,

(X < Bm,n)[x = 1 A (Vi < len(m)){exp(x,i) = exp(m,i)} A (Vi < len(n)){exp(x, i+ len(m)) = exp(n,i)}]

We search for the least number x (greater than or equal to one) such that exponents of
initial primes in its factorization match the exponents of primes in m and exponents of
primes later match eponents of primes in n. The bounded quantifiers take i < len(m)
and i < len(n) insofar as len returns the number of primes, but exp(X, i) starts the list
of primes at 0; so if len(m) = 3, its primes are 19, 711 and 7,. So the first len(m)
exponents of x are the same as the exponents in m, and the next len(n) exponents of
x are the same as the exponents in n.

To ensure that the function is recursive, we use the bounded least element quan-
tifier as main operator, where B, , is the bound under which we search for x. In this
case it is sufficient to set

( m+n )Ien(m)+|en(n)

Bm,n = I‘Ien(m)-i—len(n)

The idea is that all the primes in X will be < Tgn(m)-ien(n)- And any exponent in the
factorization of m must be < m and any exponent for n must be < n; so that m 4+ n
is greater than any exponent in the factorization of x. So B results from multiplying
a prime larger than any in X to a power greater than that of any in x together as many
times as there are primes in x; so X must be smaller than B.
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Observe that corresponding to association for multiplication (m * n) *x 0 = m
(n % 0); so we often drop parentheses for the concatenation operation. Also the
requirement that m x n > 1 does not usually matter since we will be interested
in cases with m,n > 1; it does, however have the advantage that m » n is always
equivalent to the product of its primes — where this will smooth results down the
road (see, for example T13.47i,m).

Terms and Atomics. TERM(N) is true iff n is the Godel number of a term. Think of
the trees on which we show that an expression is a term. Put formally, for any term
1n, there is a term sequence 1o, 11... 1, such that each expression is either,

a. 0

b. a variable

c. St; where ¢, occurs earlier in the sequence

d. +2#;t; where t; and t; occur earlier in the sequence

e. xt;tj where t; and z; occur earlier in the sequence

where we represent terms in unabbreviated form. A term is the last element of such
a sequence. Let us try to say this.

First, vaR(n) is true just in case n is the Godel number of a variable — conceived
as an expression, rather than a symbol. Then VAR is (primitive) recursive. Set,

VAR(N) =g; (Ax = n)(n = 223+2x)

If there is such an x, then n must be the Godel number of a variable. And it is clear
that this x is less than n itself. So the result is recursive.
Now TERMSEQ(M, n) is true when m is the super Godel number of a sequence of

terms whose last member has Gédel number n. For TERMSEQ(m, n) set,

exp(m,len(m) = 1) =nAm> 1A (Vk < len(m)){

exp(m,k) = "@7 v var(exp(m, k)) v

Fj < k)[exp(m,k) = "S7 x exp(m, j)] v

Fi < k)(3j < k)[exp(m, k) ="+ x exp(m, i) » exp(m, )] Vv

Fi < k)] < K)[exp(m, k) = "x "% exp(m, i) * exp(m, j)]}
Recall that len(m) returns the number of primes in the prime factorization of m; so
supposing that m is other than zero or one, len(m) > 1 and if there is one prime it
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is my, if there are two primes they are mp and 71, etc. So the last member of the
sequence has Godel number n and any member of the sequence is a constant or a
variable, or made up in the usual way by prior members.

Then set TERM(N) as follows,

TERM(N) =4 (X < Bpn)TERMSEQ(X, N)

If some x numbers a term sequence for n, then n is a term. In this case, Godel numbers
of all prior members in a standard sequence ending in n are less than n. Further, the
number of members in the sequence is the same as the number of variables and
constants together with the number of function symbols in the term (one member for
each variable and constant, and another corresponding to each function symbol); so
the number of members in the sequence is the same as len(n); so all the primes in
the sequence are < Tgn(n). So multiply 7)) together len(n) times and set B, =

len(n)
(nlnen(n))len(n). We take a prime mgn(y) greater than all the primes in the sequence,
to a power n greater than all the powers in the sequence, and multiply it together as
many times as there are members of the sequence. The result must be greater than x,
the number of the term sequence.
Finally atomic(n) is true iff n is the number of an atomic formula. The only

atomic formulas of £y are of the form =#14>. So it is sufficient to set,

ATOMIC(N) =4e¢ (AX = n)(Ay < N)[TERM(X) A TERM(Y) AN ="T="Tx X x Y|
Clearly the numbers of #1 and ¢, are < n itself.

Formulas. wrr(n) is to be true iff n is the number of a (well-formed) formula.
Again, think of the tree by which a formula is formed. There is a sequence of which
each member is,

a. an atomic
b. ~& for some previous member of the sequence 5
c. (P — @) for previous members of the sequence J and @

d. VxJ for some previous member of the sequence 4 and variable x

So, on the model of what has gone before, we let FORMSEQ(m, n) be true when m is
the super Godel number of a sequence of formulas whose last member has Godel
number n. For FORMSEQ(M, n) set,
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exp(m,len(m) = 1) =nAm> 1A (VYk < len(m)){

AToMIc(exp(m, k)) v

3j < K)exp(m.k) = "~ exp(m.))] v

Fi <k)(3j < K)[exp(m, k) ="(" x exp(m,i) * "= x exp(m,j) x ") v
3i < k)(3j < n)[VAR(j) A exp(m, k) ="V xj*x exp(m,i)]}

So a formula is the last member of a sequence each member of which is an atomic,
or formed from previous members in the usual way. Clearly the number of a variable
in an expression with number n is itself < n. Then,

WFF(n) =g (3x < Bp)FORMSEQ(X, n)

An expression is a formula iff there is a formula sequence of which it is the last
member. Again, Godel numbers of prior formulas in a standard sequence are < n.
And there are as many members of the sequence as there are atomics and operator
symbols in the formula numbered n. So all the primes are < gn(n); SO multiply

nlnen(n) together len(n) times and set B, = (n{;n(n))len(n).

Sentential Proof. PRFADS(M, n) is to be true iff m is the super Gdel number of a
sequence of formulas that is a (sentential) proof of the formula with Gédel number
n. We revert to the relatively simple axiomatic system of chapter 3. So, for example,
Al is of the sort, (# — (@ — #)), and the only rule is MP. For the sentential case
we need, AXIOMADS(n) true when n is the number of an axiom. For this,

AXIOMAD1(N) =4t (AXx = N)Ay = N)WFFX) AWFF(Y) AN ="T(TxXx* "> T+« T(TxyxT>Txx % ))7]
AXIOMAD2(N) =4 Homework.

AXIOMAD3(N) =¢; Homework.

Then,

AXIOMADS(N) =g; AXIOMAD1(N) V AXIOMAD2(N) V AXIOMAD3(Nn)

In the next section, we will add all the logical axioms plus the axioms for Q. But this
is all that is required for proofs of theorems of sentential logic.

Now cnd(n,0) = mwhenn="P " 0="Q"andm =" (£ — @), for good
measure we include neg(n) and unv(v, n). And MP(m, n, 0) is true when the formula
with Godel number o follows from ones with numbers m and n.

cnd(n,0) ="(T*nx"—>Txo0*xM)7
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neg(n) ="~7xn
unv(v,n) ="V71xvxn

MP(M, N, 0) =4 cnd(n,0) = m

So for Mmp, m numbers the conditional, n its antecedent, and o the consequent.

And prrADS(m, n) when m is the super Godel number of a sequence that is a proof
whose last member has Godel number n. This works like TERMSEQ and FORMSEQ. For
PRFADS set,

exp(m,len(m) = 1) =nAm> 1A (Yk < len(m)){
AXIOMADS (exp(m, k)) vV
3 < k)(3j < k)mP(exp(m, i), exp(m,j), exp(m, k))}

So every formula is either an axiom or follows from previous members by MP. It is
a significant matter to have shown that there is such a function! Again, in the next
section, we will extend this notion to include the rule Gen.

This construction for PRFADS exhibits the essential steps that are required for the
parallel relation PrRFa(m, n) for theorems of Q. That discussion is taken up in the
following section, and adds considerable detail. It is not clear that the detail is re-
quired for understanding results to follow — though of course, to the extent that those
results rely on the recursive PRFQ relation, the detail underlies proof of the results!

E12.26. Find Godel numbers for each of the following. Treat the first as an expres-
sion, rather than as simple symbol; the last is a sequence of expressions. For
the latter two, you need not do the calculation!

X2 X0 = X1 ’)602961,@:960,@:%1

E12.27. Complete the cases for AxiomAD2(n) and AXIOMAD3(N).

E12.28. In chapter 8 we define the notion of a normal sentential form (p. 393).
Supposing that our numbering system is modified to include "V and "A™
and using Atomic from above, define a recursive relation NORM(N) for Fyr.
Hint: You will need a formula sequence to do this.
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12.4.4 Completing the Construction

Quantifier rules for derivations include axioms like (A4), (Vv &P — P ) where term
s is free for variable v in J. This is easy enough to apply in practice. But it takes
some work to represent. We tackle the problem piece-by-piece.

Substitution in terms. Sayt="¢",v="v", and s = "4 for some terms s, £,
and variable v. Then TERMSUB(Y, v, s, U) is true when u is the Godel number of ¢7 .
For this, we begin with a term sequence (with Gédel number m) for £, and consider
a parallel sequence, not necessarily a term sequence (with Gédel number n), that
includes modified versions of the terms in the sequence with Gédel number m. For
TsuBseQ(m, n,t,v, s, u) set,

TERMSEQ(M, t) A len(m) = len(n) A exp(n,len(n) = 1) = u A (Vk < len(m)){

[exp(m,k) = "3 A exp(n, k) =07 v

[vAR(exp(m, k)) A exp(m, k) # v A exp(n, k) = exp(m, k)] v

[vAr(exp(m, k)) A exp(m,k) = v A exp(n,k) =s] v

Fi < k)[exp(m,k) =TS x exp(m, i) A exp(n,k) ="S7 x exp(n,i)] v

Fi <k)3j < k)[exp(m, k) = "+ * exp(m, i) x exp(m, j) A exp(n,k) ="+ x exp(n,i) * exp(n,j)] v

Fi < k)(Fj < K)[exp(m, k) = "x" % exp(m, i) » exp(m,j) A exp(n,k) = "x7" % exp(n,i) » exp(n, )]}
So the sequence for #7 (numbered by n) is like one of our “unabbreviating trees”
from chapter 2. In any place where the sequence for ¢+ (numbered by m) numbers @,
the sequence for ¥ numbers #. Where the sequence for # numbers a variable other
than v, the sequence for +Y numbers the same variable. But where the sequence for
¢ numbers variable v, the sequence for 2 numbers s. Then later parts are built out
of prior in parallel. The second sequence may not itself be a term sequence, insofar
as it need not include all the antecedents to s (just as an unabbreviating tree would
not include all the parts of a resultant term or formula).

Now set TERMSUB(1, v, s, U) as follows,

TERMSUB(1, v, S, U) =4 (Ax < X)(Fy < Y)TSuBseQ(x, y,t,Vv, s, u)

In this case, reasoning as for wrr, the Godel numbers in a standard sequence with
number m are less than t and numbers in the sequence with number n less than u. And

len(t)
primes in the sequence range up to Ten(r). So it is sufficient to set X = (n}en(t))

len(t)
andY = (nluen(t)) © .
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Substitution in atomics. Say p = ", v = "v, and s = "4 for some
atomic formula J, variable v and term s. Then ATomMsuB(p, Vv, s, q) is true when
q is the Godel number of ;. The condition is straightforward given TErRMsUB. For
ATOMSUB(P, v, S, q),

(3a < p)@b < p)(Fa’ < )@’ < g)[Term(a) A TERM(D) Ap = "=" % a * b A TERVSUB(a, V, S, a’) A TERMSUB(b,V,s,b') Ag="=Txa’ xb']
P7 simply substitutes into the terms on either side of the equal sign.

Substitution into formulas. Wherep = "', v = "o, and s = "4 for an
arbitrary formula J, variable v and term 4, FORMSUB(p, v, S, Q) is true when q is the
Godel number of &7 . In the general case, ] is complicated insofar as s replaces
only free instances of v. Again, we build a parallel sequence with number n. No
replacements are carried forward in subformulas beginning with a quantifier binding
instances of variable v. For Fsussea(m, n,p, v, s, q) set,

FORMSEQ(m, p) A len(m) = len(n) A exp(n,len(n) = 1) = g A (Vk < len(m)){

[aTomic(exp(m, k)) A ATOMSUB(exp(m, k), v, s, exp(n, k))] v

(3i < k)[exp(m, k) = neg(exp(m,i)) A exp(n,k) = neg(exp(n,i))] v

(3i < k)3 < k)[exp(m, k) = cnd(exp(m, i), exp(m,j)) A exp(n, k) = cnd(exp(n, i), exp(n,j))] v

3i < k)(3j < p)[VAR() A j F# v A exp(m, k) = unv(j, exp(m,i)) A exp(n, k) = unv(j, exp(n,i))] v

Fi < k)(3j < p)[VAR() Aj = Vv A exp(m, k) = unv(j, exp(m,i)) A exp(n, k) = exp(m, k)]}
So substitutions are made in atomics, and carried forward in the parallel sequence —
so long as no quantifier binds variable v, at which stage, the sequence reverts to the
form without substitution.

And FormsuB(p, v, s, q) is,

FORMSUB(P, V. s, Q) =q¢r (3x = X)(Jy < Y)FsUBSEQ(X.Y.p.V,s.q)

) P len(p) q len(p)
Again, set X = (Tt|en(p)) and Y = (Tt|en(p)) .

Given ForRMsUB(p, v, S, q), there is a corresponding function formusb(p,v,s) =
(hq < Z)FormsuB(p, v, s,q). In this case, the number of symbols in / is sure to
be no greater than the number of symbols in J times the number of symbols in s.
And any symbol is s or an element of #; so the Godel number of each symbol is

no greater than the maximum of p and s and thus p + s. So it is sufficient to set
pts len(p) xlen(s)

Z= <nlen(p)xlen(s))

symbol, to a power greater than that of any exponent, and multiply it as many times

as there are symbols.

. Again, we take a prime at least great as that of any
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Free and bound variables. FRee(p,Vv) is true when v is the Godel number of a
variable that is free in a term or formula with Godel number p. For a given variable
x; initially assigned number 23 + 2i, "x; 7 = 22372/, and Tx; 4 ' x 22 = 22312042
is the number of the next variable. In particular then, for v the number of a variable,
v x 22 (that is v x 4) numbers a different variable. The idea is that if there is some
change in an expression upon substitution of a variable different from v, then v must
have been free in the original expression. For terms and formulas respectively,

FREEt(t, V) =gt ~TERMSUB(t, Vv,V X 4,1)

FREEF(P, V) =qe ~FORMSUB(p, V,V X 4, p)

So v is free if the result upon substitution is other than the original expression.
Given FREEf(p, V), it is a simple matter to specify SENT(n) true when n numbers a
sentence.

SENT(N) =4 WFF(n) A (VX < n)[VAR(X) = ~FREE#(N, X)]

So n numbers a sentence if it numbers a formula and nothing is a number of a variable
free in the formula numbered by n.

Finally, suppose s = "s'and v = "v'; then FREEFOR(S, v, U) is true iff 4 is
free for v in the formula numbered by u. For this, we set up a modified formula
sequence, that identifies just “admissable” subformulas — ones where 4 is free for
v in the formula numbered by u. For FFsea(m, s, v, u) set,

exp(m,len(m) = 1) =uAm> 1A (VYk < len(m)){
ATomic(exp(m, k)) v

(3j < K)[exp(m. k) = neg(exp(m. j))] v

(3i < k)(3j < k)[exp(m, k) = cnd(exp(m, i), exp(m,j))] v
(3p = w)[wrF(p) A exp(m, k) = unv(v,p)] v

(3i < k)(3j = U)[VAR() A j # v A (~FREEt(S, |) V ~FREEf(exp(m, i), V)) A exp(m, k) = unv(j, exp(m,i))]}

If the main operator of a subformula @ binds variable v, then no variables in 4 are
bound upon substitution, because there are no substitutions — as only free instances
of v are replaced; observe that this @ need not appear earlier in the sequence, as
any formula with the v quantifier satisfies the condition. Alternatively, if the main
operator binds a different variable, we require either that the variable is not free in s
(so that no instances are bound upon substitution) or that v is not free in @ (so that
there are no substitutions). Given this,

FREEFOR(S, V, U) =4 (Ix < By)FFSEQ(X, S, V, U)
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In this case, every member of the sequence for FFSEQ is a member of the FORMSEQ for
u so By may be set as before.

Proofs. After all this work, we are finally ready for all the axioms of AD and of Q.
AXIOMAD4(n) obtains when n is the Godel number of an instance of A4. Intuitively,
AXIOMAD4(n) just in case there is an s such that,

(3p = n)(3v < n)[WFF(p) A VAR(V) A TERM(S) A FREEFOR(S,V,p) A n = cnd(unv(v, p), formsub(p, v, s))]

So there is a formula J#, variable v and term s where s is free for v in J; and the
axiom is of the form, (Vv — &7). Unfortunately, our statement is inadequate
insofar as s is left free. We cannot simply supply a prefix 3s as the result would not
be recursively specified. It is tempting to add a bounded (3s < n) with the idea that
the number of s must be smaller than the number of 7. This almost works. The
difficulty is the (rarely encountered) situation where the quantified variable v is not
free in & (as when a quantifier is added to some J that is already a sentence); in this
case, &} is just &, and there is nothing to say that s is less than n. Here is a way to
do the job. Set AxioMmAD4(n) as,
(3p = n)(Av < n){wWFF(p) A VAR(V) A [
(~FREE(V, p) A n = cnd(unv(v,p),p)) vV
(s < n)(FREE(V, p) A TERM(S) A FREEFOR(S, v, p) A n = cnd(unv(v, p), formsub(p, v, s))]}

When ~FREE(V, p), p = formsub(p, v, s); and when FRee(v, p), s < formsub(p, v, s).
Either way, n is set to cnd(unv(v, p), formsub(p, v, s)). The result, then is primitive
recursive and equivalent to our original intuitive specification.

Given what we have done, AxiomaDs(n) is straightforward. Gen(m, n) holds when
n is the Godel number of a formula that follows by Gen from a formula with Godel
number m. And axioms for equality are not hard. A couple are worked as examples.
For axiomaDs(n),

AXIOMADB(N) =4 (v < N)[VAR(V) AN =v x "=TxV]|

For “simplicity” I drop the unabbreviated style of the original formulas. Axiom seven
is of the sort, (x; = ¥) —> (A"x1...%i...xn = A"x1...y...xy) for relation
symbol # and variables x;...%x, and %. In &y the function symbol is S, + or x.
Because just a single replacement is made, we do not want to use TERMSUB. However,
we are in a position simply to list all the combinations in which one variable is
replaced. So, for AxiomaD7(n),
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Bs =n)At=n)@Ax = n)Ay = N){VAR(X) AVAR(Y) AN=T(="xx*y*x"—> =Txs*xtx")TA

[s="S"*xAt="S"xy]v

Az <nN)VAR@)A((s="T+"xx*xzAt=T+Txyx2)V(s="+TxzxxAt="4+T%xzxry))]V

Az <nN)VARZ)A((S="TXxT*x*ZAt=TxT*xy*x2) V(S="X"xz2xXxAt="XT"xzxy))])}
So there is a term s and a term ¢ which replaces one instance of x in ¢ with . Then
the axiom is of the sort =xy — =4¢. Axiom eight is similar. It is stated in terms
of atomics of the sort R"x ...x, for relation symbol R and variables xi...x,. In
£xr the relation symbol is the equals sign, so these atomics are of the form, x = .
Again, because just a single replacement is made, we do not want to use FORMSUB.
However, we may proceed by analogy with Axiomap7. This is left as an exercise. Thus
we have a complete AxiomaD and with that PRFAD. For the latter, it is convenient to
introduce a relation ICON(m, n, 0) true when the formula with Godel number 0 is an
immediate consequence of ones numbered m and n

ICON(M, N, 0) =g MP(M,N,0) V (M = n A GEN(n, 0))

The axioms of Q are particular sentences. So, for example, axiom Q2 is of the
sort, (Sx = Sy) — (x = y). Let x and y be x¢ and x; respectively. Then,

AXiIoMQ2(n) =gs N ="(Sx = Sy) - (x = y)"

For “ease of reading,” I do not reduce it to unabbreviated form. Other axioms of Q
may be treated in the same way. And now it is straightforward to produce Axioma(n)
and PRFQ(m, n).
It is worth noting that with Axiompa7(n),
(3p = n)(Av = n)[WFF(p) A VAR(V) AN =
cnd(neg(cnd(formsub(p, v, "37), neg(unv(v, cnd(p, formsub(p, v, " S 'xv)))))), unv(v, p))]

we have also Axiompa(n) and PRFPA(M, n) for PA.'0

It is a significant matter to have found these functions. Now we put them to work.

*E12.29. (i) Complete the construction with recursive relations for AxiomaDbs(n), GEN(m, n),
AxiomAD8(n), and so AxiomAD(n) and PRFAD(M, n). (ii) Complete the remaining
axioms for Robinson arithmetic, and then Axioma(n) and PrRFa(m, n). (iii)
Construct also axiomar(n), like axioma less Axioma7, and then Axiompa(n) and
PRFPA(M, N).

10g¢ you follow it out, the last line above unpacks to,

T (~(" * formsub(p, v, "@") * T— ~V¥ T x v T (T *p * "= * formsub(p,v,"STxv) x 7)) = Vixvxpx )T

which numbers instances of PA7 (where the conjunction is unpacked to its primitive form).
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E12.30. Supposing now that our numbering system is modified to include " v, " A
and "3, and with the obvious modification of FORMSEQ to accommodate
the new operators and with functions dsj, cnj and exs, construct function
UNABBSEQ(M, N, p, q) such that m numbers a formula sequence for p (which
may contain abbreviations) and n numbers a sequence whose last member is
the unabbreviated version of p. Then construct UNABB(P, q) where q is the
number of the unabbreviation of p. Hint you may want to think again about
“unabbreviating trees” from chapter 2 along with FSUBSEQ as a model.

12.5 Essential Results

In this section, we develop some first fruits of our labor. We shall need some initial
theorems, important in their own right. With these theorems in hand, our results
follow in short order. The results are developed and extended in later chapters. But it
is worth putting them on the table at the start. (And some results at this stage provide
a fitting cap to our labors.) We have expended a great deal of energy showing that,
under appropriate conditons, recursive functions can be expressed and captured, and
then that there exist certain recursive functions and relations including PRFQ. Now
we put these results to work.

12.5.1 Preliminary Theorems

A couple of definitions: If f is a function from (an initial segment of) N onto some set
— so that the objects in the set are f(0), f(1)...say f enumerates the members of the
set. A set is recursively enumerable if there is a recursive function that enumerates it.
Also, say T is a recursively axiomatized formal theory if there is a recursive relation
PRFT(m, n) which holds just in case m is the super Godel number of a proofin T of the
formula with Godel number n. We have seen that Q is recursively axiomatized; but
so is PA and any reasonable theory whose axioms and rules are recursively described.

T12.17. If T is a recursively axiomatized formal theory then the set of theorems of
T is recursively enumerable.

Consider pairs (p, t) where p numbers a proof of the theorem numbered t, each
such pair itself associated with a number, 2° x 3!. Then there is a recursive
function from the integers to these codes as follows.

code(0) = pz(Ap < z)(3t < z)[z = 2P x 3! A PRFT(p, 1)]
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First Results of Chapter 12

T12.1

T12.2

T12.3

T12.4

T12.5

T12.6

T12.7

T12.8

T12.9
T12.10

T12.11

T12.12

T12.13

T12.14

T12.15

T12.16

For an interpretation with the required variable-free terms: (a) If R is a relation
symbol and R is a relation, and I[R] = R(X; ...Xpn), then R(X; ...Xp) is expressed
by Rx1...x,. And (b) if £ is a function symbol and h is a function and I[4] =
h(x;...xn) then h(xy ...xp) is expressed by x; ...x, = v.

Suppose total function f(xy ...X,) is expressed by formula ¥ (x; ... x,, y); then
if ((my...mp),a) €f,I[~F(m;...mp,a)]=T.

On the standard interpretation N of &£y, each recursive function f(X) is expressed
by some formula ¥ (X, v). Corollary: On the standard interpretation N of &y,
each recursive relation R(X) is expressed by some formula R (X).

If T includes Q and total function f(X; ...X,) is captured by formula ¥ (x; ...
Xn, ) so that conditions (f.i) and (f.ii) hold, then if ({(m;...m,),a) &€ fthen T F
~%F (mq...my,a).

On the standard interpretation N for &y, (i) Ng[s < 1] = Siff Ng[s] < Ng[£], and
(i) Ng[s < t] = Siff Ng[4] < Ng[t].

On the standard interpretation N for £yr, (i) Ng[(Vx < 1)P] = S iff for every
m < Ng[#], Ngcxm)[] = S and (ii), Ng[(Vx < £)&P] = Siff for every m < Ng[z],
Nd(xlm)[‘?] =S.

On the standard interpretation N for &yr, (i) Ng[(Ix < 7)P] = S iff for some
m < Ng[2], Ngixm)[#?] = S and (ii), Ng[(Ix < ¢)P] = S iff for some m < Ng[z],
Nd(xlm)[‘?] =S.

For any Ag sentence P, if N[?] = T, then Q ,, &, and if N[?] # T, then
QhHyp ~P.

For any X; sentence & if N[] =T, then Q I, 7.
The original formula by which any recursive function is expressed is ;.

On the standard interpretation N for £yr, any recursive formula is captured by the
original formula by which it is expressed in Q.

Suppose f(X,y) results by recursion from functions g(X) and h(X,y,u) where
g(x) is captured by some §(X,z) and h(X,y,u) by H(¥,y,u,z). Then for
the original expression ¥ (X, y,z) of f(X,y), if {({(my...mp,n),a) € f, Qs F
Yw[F (M ...Mp,N, w) > w = aJ.

If a total function f(x; ...X,) is expressed by a A¢ formula & (x; ... x,, y), then
there is a Ay formula % that captures f in Q.

For F/(X,y) =w F(X. ) A (Vz < »)[F(X,2) —» z = y], and for any n,
QF VXVy[(F'(X,m) A F'(X,y)) - y =n].

If F(X,y) expresses a total f(X), then F'(X,y) = F(X,y) A (Vz <
W[F (X, z) — z = y] expresses f(X).

Any recursive function is captured by a £, formula in Q. Corollary: Any recur-
sive relation is captured by a ¥, formula in Q.
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code(Sn) = nz(@p < 2)(3t < z)[z > code(n) A z = 2P x 3! A PRFT(p, 1)]

So 0 is associated with the least integer that codes a proof of a sentence, 1
with the next, and so forth. Then,

enum(n) = exp(code(n), 1)

returns the Godel number of theorem n in this ordering.

Recall that w; is 3; so exp(code(n), 1) returns the number of the proved formula.
A given theorem might appear more than once in the enumeration, corresponding to
codes with different proofs of it, but this is no problem, as each theorem appears in
some position(s) of the list. Observe that we have, for the first time, made use of
regular minimization — so that this function is recursive but not primitive recursive.
Supposing that 7" has an infinite number of theorems, there is always some z at which
the characteristic function upon which the minimization operates returns zero — so
that the function is well-defined. So the theorems of a recursively axiomatized formal
theory 7" are recursively enumerable.

Suppose we add that T is consistent and negation complete. Then there is a
recursive relation THRMT(p) true just of numbers for theorems of T': Intuitively, we
can enumerate the theorems; then if 7" is consistent and negation complete, for any
sentence #, exactly one of # or ~J must show up in the enumeration. So we can
search through the list until we find either & or ~J? — and if the one we find is P,
then & is a theorem. In particular, we find # or ~J at the position, pun[enum(n) =
TP7v enum(n) = "~P 7). Recall that if p is the number of a formula &, neg(p) is
the number of ~2. Then,

T12.18. For any recursively axiomatized, consistent, negation complete formal the-
ory T there is a recursive relation THRMT(P) true just in case p numbers a
theorem of 7. Set,

pos(p) = wn([~SENT(p) A n = 0] V [SENT(p) A (enum(n) = p Vv enum(n) = neg(p))])

THRMT(P) =4 €enum(pos(p)) = p

First, pos(p) takes one of three values: if p does not number a sentence it is just 0; if
p appears in the enumeration of theorems it is the position of p; and if neg(p) appears
in the enumeration of theorems, it is the position of neg(p). Then THRMT(p) is true
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just in case pos takes the second option — just in case p numbers a sentence and
p rather than neg(p) appears in the enumeration of theorems. Observe that pos(p)
returns 0 both when p does not number a sentence, and when p is the number of
the first theorem in the enumeration. But when pos(p) = 0, enum(pos(p)) always
numbers the first theorem of the enumeration — so that if p is not the number of a
sentence THRMT(p) is false, and when p is the number of the first theorem it is true
(as it should be). Again, we appeal to regular minimization. It is only because T
is negation complete that the function to which the minimization operator applies is
regular. So long as p numbers a sentence, the characteristic function for the second
square brackets is sure to go to zero for one disjunct or the other, and when p does
not number a sentence, the function for the first square brackets goes to zero. So the
function is well-defined.

Now consider a formula & (x) with free variable x. The diagonalization of P is
the formula 3x (x = TP A £ (x)). So the diagonalization of P is true just when
applies to its own Godel number. To understand this nomenclature, consider a grid
with formulas listed down the left in order of their Godel numbers and the integer
Godel numbers across the top.

a b c

a(x) | Pa@) Fa (5_) Pa(C)
b(x) | Po(@ Po(b) F%(C)
c(x) | Pe(a) j)c(B) Pc(c)

D

So, going down the main diagonal, formulas are of the sort $,(n) where the formula
numbered n is applied to its Gddel number n.
Let num(n) be the Godel number of the standard numeral for n. So,
num(0) = "¢~

num(Sy) =S x num(y)

So num is (primitive) recursive. Now diag(n) is the Godel number of the diagonal-
ization of the formula with Gédel number n.

diag(n) =g "Ix(x =T xnum(n) * "TATxnx )7

It should be clear enough how to unabbreviate "3 " and " A™. Since diag(n) is recur-
sive, for any theory 7 extending Q there is a formula Diag(x, y) that captures it. So
if diag(m) = n, then T F Diag(m,n) and T F Vz[Diag(m,z) — z =n] .
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T12.19. Let T be any theory that extends Q. Then for any formula ¥ (y) containing
just the variable y free, there is a sentence # suchthat T + #H < F (" H ).
The Diagonal Lemma.

Suppose 7" extends Q; since diag(n) is recursive, there is a formula Diag(x, y)
that captures diag. Let A(x) =4 Jy[F (¥) A Diag(x,y)]anda ="A", the
Godel number of #. Intuitively, 4 says ¥ applies to the diagonalization of
x. Then set H =y Ix(x = a A IY[F (y) A Diag(x,y)]) and h = "H7,
the Godel number of #. J is the diagonalization of 4; so diag(a) = h.
Intuitively, then J€ says that & applies to the diagonalization of <, which is

just to say that according to #, ¥ (" # ). Reason as follows.

1.
2.
3.

4.

o

10.
11.
12.
13.
14.
15.
16.
17.

18.

19.
20.
21.
22.
23.
24.
25.
26.

H < Ax(x =aATy[F (y) A Diag(x, y)])

Diag(a, h)

Vz(Diag(a,z) — z = h)

H

Ax(x =aAAy[F(y) A Diag(x, y)])
|/ =aA3y[F(y) ADiag(j.y)]
j=a
Ay[F (y) A Diag(j. y)]

F (k) A Diag(j, k)

F (k)

Diag(j, k)

Diag(a, k)

Diag(a,k) -k =h

k=h

¥ (h)
7 (h)
7 (h)

¥ (h)

F (h) A Diag(a, h)
3y[¥ (y) A Diag(a, y)]
a=a

a=an3y[F(y) ADiag(@, y)]
Ix(x =aA3Iy[F(y) A Diag(x, y)])
H
H < F(h)
H o FCH)

SoTF JH < FH.

from def H
from capture
from capture

A (g <D

1,4 <E
A (g 53E)

6 AE
6 AE
A (g 83E)

9 AE

9 AE

11,7 =E
3VE
13,12 -E
10,14 =E
8,9-15 3E
5,6-16 9E

A gl

18,2 Al

1931

=I

21,20 AL

2231

1,23 -+E
4-17,18-24 <1
25 abv
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If n is such that f(n) = n, then n is said to be a fixed point for f. And by a (possibly
strained) analogy, # is said to be a “fixed point” for & (y).

Now we are very close to the incompleteness of arithmetic. As a final prelimi-
nary,

T12.20. Forno consistent theory T that extends Q is there a recursive relation THRMT(n)
that is true just in case n is a Godel number of a theorem of 7T'.

Consider a consistent theory extending Q; and suppose there is a recursive
relation THRMT(n) true just in case n numbers a theorem of 7. Since T extends
Q and THRMT is recursive, with T12.16 there is some formula Thrmt(y) that
captures THRMT, and so a formula ~Thrmt(y). And again since 7 extends
Q, by the diagonal lemma T12.19, there is a formula # with Godel number
TJ 7 = h such that,

TEH < ~Thrmt("H ™)

Suppose T H H; then # is not a theorem of T so that h & THRMT; so by
capture, T+ ~Thrmt("H7); so by <E, T + #. This is impossible; reject
the assumption: 7+ #. But then J is a theorem of T'; so h € THRMT; S0
by capture, T Thrmt('_JT—'); soby NB, T F ~J, and T is inconsistent;
but by hypothesis, T is consistent. Reject the original assumption: there is no
recursive relation THRMT.

Given a recursive THRMT there is ~Thrmt; but we show there is no such THRMT; so we
have not yet found a sentence § such that PA - § < ~Thrmt(T€7). That waits
for the next chapter. From T12.18 any recursively axiomatized, consistent, negation
complete formal theory has a recursive relation THRMT(Nn) true just in case n numbers
a theorem. But from T12.20 for no consistent theory extending Q is there such a
relation. This already suggests results to follow.

E12.31. Let T be any theory extending Q and sBTHT(n) a recursive function such that
if sBTHT(n) then n numbers a theorem of 7 (one such function is sure to be
THRMADS(n) for the theorems of sentential logic). Use the diagonal lemma to
find a sentence J such that 7 = J but "H ' ¢ sBTHT. Demonstrate your
results.

*E12.32. Let T be any theory that extends Q. For any formulas %7 (y) and 55(y),
generalize the diagonal lemma to find sentences #; and #, such that,
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TF g < F1(CHo)
TF Js < F2(CH )

Demonstrate your result. Hint: You will want to generalize the notion of
diagonalization so that the alternation of formulas #1(z), #2(z), with a for-
mula 2 is JwIxIy(w =P Ax =TF Ay =TF T ATzZ(F1(2) A P)).
Then you can find a recursive function alt(p, f1, f2) whose output is the num-
ber of the alternation of formulas numbered p, f; and fo, where this function
is captured by some formula Alf(w, x, y, z) that itself has Godel number a.
Then alt(a, 1y, ?2) and alt(a, Tg,ﬂ) number the formulas you need for #;
and J5.

E12.33. Use your version of the diagonal lemma from E12.32 to provide an alternate
demonstration of T12.20. Hint: You will be able to set up sentences such that
the first says the second is not a theorem, while the second says the first is a
theorem.

12.5.2 First Applications

Here are three quick results from our theorems. Do not let the simplicity of their proof
(if the proof can seem simple after all we have done) distract from the significance
of their content!

The Incompleteness of Arithmetic.

We are finally ready for the incompleteness of arithmetic.

T12.21. No consistent, recursively axiomatizable theory extending Q is negation
complete.

Consider a theory 7 that is a consistent, recursively axiomatizable extension
of Q. Then since T consistent and extends Q, by T12.20, there is no recursive
relation THRMT(n) true iff n is the Godel number of a theorem. Suppose T is
negation complete; then since T is also consistent and recursively axioma-
tized, by T12.18 there is a recursive relation THRMT(n) true iff n is the Godel
number of a theorem. This is impossible, reject the assumption: 7' is not
negation complete.
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It immediately follows that Q and PA are not negation complete. But similarly for
any consistent recursively axiomatizable theory that extends Q. We already knew that
there were formulas & such that Q I/ # and Q I/ ~&. But we did not already have
this result for PA; and we certainly did not have the result generally for recursively
axiomatizable theories extending Q.

There are other ways to obtain this result. We explore Godel’s own strategy in
the next chapter. And we shall see an approach from computability in chapter 14.
However, this first argument is sufficient to establish the point.

The Decision Problem

It is a short step from the result that if Q is consistent, then no recursive relation
identifies the theorems of Q, to the result that if Q is consistent, then no recursive
relation identifies the theorems of predicate logic.

T12.22. If Q is consistent, then no recursive relation THRMPL(N) is true iff N numbers
a theorem of predicate logic.

Suppose otherwise, that Q is consistent and some recursive relation THRMPL(N)
is true iff n numbers a theorem of predicate logic. Let @ be the conjunction
of the axioms of Q; then  is a theorem of Q iff - @ — P. Letq="Q";
then,

THRMQ(N) =g4¢ THRMPL(cNd(q, n))

defines a recursive function true iff n numbers a theorem of Q. But, given
the consistency of Q, by T12.20, there is no function THRMQ(n). Reject the
assumption, if Q is consistent, then there is no recursive relation THRMPL(N)
true iff n numbers a theorem of predicate logic.

And, of course, given that Q is consistent, it follows that no recursive relation num-
bers the theorems of predicate logic. From T12.20 no recursive relation numbers the
theorems of Q. Now we see that this result extends to the theorems of predicate logic.
At at this stage, these results may seem to be a sort of curiosity about what recursive
functions do. They gain significance when, as we have already hinted can be done,
we identify the recursive functions with the computable functions in chapter 14.
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Tarski’s Theorems

A couple of related theorems fall under this heading. Say TRUE(n) is true iff n numbers
a true sentence of some language &£. We do not assume that TRUE(n) is recursive —
only that, by definition, it applies to numbers of true sentences. Suppose True(x)

expresses TRUE(n). Then by expression, |[True(" P ") = T iff "P 7 € TRUE; and this
iff I[[?] = T. So, with some manipulation,

[True("P7) < Pl =T

Let us say T is a truth theory for language £, iff for any sentence of £, T proves
this result.

T &+ True("P7) < P

Nothing prevents theories of this sort. However, a first theorem is to the effect that
theories in our range cannot be theories of truth for their own language £.

T12.23. No recursively axiomatized consistent theory extending Q is a theory of
truth for its own language £.

Suppose otherwise, that a recursively axiomatized consistent 7" extending Q
is a theory of truth for its own £. Since 7 extends Q, by the diagonal lemma,
there is a sentence ¥ (a false or liar sentence) such that

THF < ~True("¥7)

But since T is a truth theory, T F True(" ¥ ™) <> F;s0 T = True(" ¥ ) <
~True(" ¥ ™); so T is inconsistent. Reject the assumption: 7 is not a truth
theory for its language £.

This theorem explains our standard jump to the metalanguage when we give con-
ditions like ST and SF. Nothing prevents stating truth conditions — trouble results
when a theory purports to give conditions for all the sentences in its own language.
A second theorem takes on the slightly stronger (but still plausible) assumption
that Q is a sound theory, so that all of its theorems are true. Under this condition,
there is trouble even expressing a truth predicate for language &£ in that language £.

T12.24. If Q is sound, and £ includes £y, then there is no True to express TRUE in
L.
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Suppose otherwise, that Q is sound and some formula True(x) expresses
TRUE(N) in £; since Q is a theory that extends Q, by the diagonal lemma,
there is a sentence F such that Q - ¥ <> ~True("F 7); since the theorems
of Q are true, N[F <> ~True("F )] = T; so with a bit of manipulation,

N[F] = Tiff N[~True("F )] = T; iff N[True(CF )] £ T

(i) Suppose N[True(" % )] # T; then by expression, "% 7 & TRUE, so that
N[F] # T: so by the above equivalence, N[True("F 7)] = T; reject the as-
sumption. (i) So N[True("F 7)] = T; but then by the equivalence, N[F] # T;
so " F 7 & TRUE; so by expression, N[~True("F )] = T; so N[True(" % )] #
T; this is impossible.

Reject the original assumption: no formula True(x) expresses TRUE(N).

Observe that some numerical properties are both expressed and captured — as the
recursive relations. And if a property can be captured by a recursively axiomatized
consistent theory extending Q, then it can be expressed.'! As we have seen, even
though THRMQ(n) is a relation on the integers, it is not not a recursive relation. It can
however be expressed by the formula, xPrfg(x,n). In the following (T14.10) we
show that that every function captured by a consistent recursively axiomatized theory
extending Q is recursive; it follows that THRMa(n) is expressed but not captured. And
now we have seen a relation TRUE(n) not even expressed in &yr.

This is a decent start into the results of Part IV of the text. In the following, we
turn to deepening and extending them in different directions.

E12.34. Use the alternate version of the diagonal lemma from E12.32 to provide
alternate demonstrations of T12.23 and T12.24. Include the “bit of minipula-
tion” left out of the text for T12.24.

E12.35. For each of the following concepts, explain in an essay of about two pages,
so that (college freshman) Hannah could understand. In your essay, you
should (i) identify the objects to which the concept applies, (ii) give and ex-
plain the definition, and give and explicate examples (iii) where the concept
applies, and (iv) where it does not. Your essay should exhibit an understand-
ing of methods from the text.

TSince we use the same canonical formulas for expression and capture, it is perhaps obvious that
canonical capture in a sound theory implies expression. Further, from T14.10 if a function can be
captured by a consistent recursively axiomatized theory extending Q it is recursive; so by T12.3 it is
expressed on the standard interpretation N for &yr.
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Final Results of Chapter 12

T12.17 If T is a recursively axiomatized formal theory then the set of theorems of 7T is
recursively enumerable.

T12.18 For any recursively axiomatized, consistent, negation complete formal theory 7'
there is a recursive relation THRMT(N) true just in case n numbers a theorem of 7.

T12.19 Let T be any theory that extends Q. Then for any formula % (y) containing just
the variable y free, there is a sentence # such that T = H <« F("H™). The
Diagonal Lemma.

T12.20 For no consistent theory T that extends Q is there a recursive relation THRMT(N)
that is true just in case n is a Godel number of a theorem of 7.

T12.21 No consistent, recursively axiomatizable extension of Q is negation complete.
The incompleteness of arithmetic.

T12.22 If Q is consistent, then no recursive relation THRMPL(N) is true iff N numbers a
theorem of predicate logic

T12.23 No recursively axiomatized consistent theory extending Q is a theory of truth for
its own language £.

T12.24 If Q is sound, and &£ includes Ly then there is no True to express TRUE in £.

a. The recursive functions and the role of the beta function in their expression
and capture.

b. The essential elements from this chapter contributing to the proof of the in-
completeness of arithmetic.

c. The essential elements from this chapter contributing to the proof of that no
recursive relation identifies the theorems of predicate logic

d. The essential elements from this chapter contributing to the proof of Tarski’s
theorem.



Chapter 13

Godel’s Theorems

We have seen a demonstration of the incompleteness of arithmetic. In this chapter,
we take another run at that result, this time by Godel’s original strategy of producing
sentences that are true iff not provable. This enables us to extend and deepen the
incompleteness result, and puts us in a position to take up Gddel’s second incom-
pleteness theorem, according to which theories (of a certain sort) are not sufficient
for demonstrations of consistency.

13.1 Godel’s First Theorem

Recall that the diagonalization of a formula £ (x) is Ix(x = TP A P(x)). In
addition, there is a recursive function diag(n) which numbers the diagonalization of
the formula with number n and, if T is recursively axiomatized, a recursive relation
PRFT(M, n) true when m numbers a proof of the formula with number n. Our previous
argument for incompleteness required PRFT(m, n) for T12.17, and a Diag(x, y) to
capture diag(n) for the diagonal lemma. Under the assumption that there is a THRMT
and so a formula ~Thrmt, we applied the diagonal lemma to obtain an # such that
T + H# < ~Thrmt("H7); but this is impossible — so that there is no THRMT.
And from this we argued that there must be a sentence such that neither it nor its
negation is provable — without any suggestion what that sentence might be. This
time, by related methods, we construct a particular sentence such that neither it nor
its negation is provable.

618
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13.1.1 Semantic Version

Consider some recursively axiomatized theory 7" whose language includes &£y;. Since
PRFT(m, n) and diag(n) are recursive, they are expressed by some formulas Prft(x, y)
and Diag(x, y). Let A(z) =4 ~IxIy(Prft(x, y) A Diag(z,y)),anda ="A". So
A says nothing numbers a proof of the diagonalization of a formula with number z.
Then,

G =, 3z(z = a A ~3IxIy(Prft(x, y) A Diag(z, y)))

So § is the diagonalization of «+, and intuitively ¥ “says” that nothing numbers a
proof of it. Let g = "§7. Observe that § is defined relative to Prft for T'; so each
T yields its own Godel sentence (if it were not ugly, we might sensibly introduce
subscripts §7). Thus,

T13.1. For any recursively axiomatized theory 7" whose language includes Ly, § is
true iff it is unprovable in 7 (N[§] = Tiff T ¥* §).
Consider a recursively axiomatized theory 7" whose language includes &£yr
and the formula ¥ as described above. Skipping some steps, (i) Suppose
N[€] = T; then for any d, Ng[€] = S; so with T10.2, Ng[~3IxIy (Prft(x, y) A
Diag(a, y))] = S; so there are no m,n such that N[Prft(m,n)] = T and
N[Diag(a,n)] = T; so by expression, there are no m, n such that (m,n) €
PRFT and (a,n) € diag; but diag(a) = g; so no m numbers a proof of &,
which is to say Tt/ §. (ii) Suppose N[§] # T; then there is some d such
that Ng[§] # S and for any n € N, Ny [z = a A ~3xIy(Prft(x,y) A
Diag(z,y))] # S; 80 Ny(zja)[z = @A ~IxTy (Prfi(x, y) A Diag(z, y))] # S;
soby T10.2, Ng[~3x3y (Prft(x, y)ADiag(a, y))] # S; so Ng[IxIy (Prft(x, y)
A Diag(a, y))] = S; so there are m and n such that both Prfi(m,n) and
Diag(a,n) are S on N with d; so N[~Prft(m,n)] # T and N[~Diag(a,n)] #
T; and by expression {m, n) € PRFT and (a, n) € diag; but again, diag(a) = g;
so {m, g) € PRFT; so T F §; so by transposition, if 7 |/ g, then N[§] = T.

It is not a difficult exercise to fill in the details. Intuitively this result should seem
right. Suppose § “says” that it is unprovable: then if it is true it is unprovable; and if
it is unprovable it is true; so it is true iff it is unprovable.

Now suppose that T is a recursively axiomatized, and sound theory (so that its
theorems are true), whose language includes £yr. Then T is negation incomplete.

T13.2. If T is a recursively axiomatized sound theory whose language includes &y,
then 7' is negation incomplete.
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Suppose T is a recursively axiomatized theory whose language includes &Lyr;
then there is a sentence § to which the conditions for T13.1 apply. (i) Suppose
T + g, then, since T is sound, § is true; so by T13.1, T I/ §; reject the
assumption, 7't/ §. Suppose T F ~§; then since T is sound, ~§ is true; so
§ is not true; so by T13.1, T &; so by soundness again, § is true; reject
the assumption: 7' I/ ~§.

So § is a sentence such that if 7 is a recursively axiomatized sound theory whose
language includes &Ly, neither ¥ nor its negation is a theorem. And, from T13.1,
given that ¢ is unprovable, if T is a recursively axiomatized theory whose language
includes &y, then § is a true non-theorem. This version of the incompleteness result
depends on the ability to express &, together with the soundness of theory 7.

13.1.2 Syntactic Version

Godel’s first theorem is usually presented with the capture and consistency, rather
than the expression and soundness constraints. We turn now to a version of this first
sort which, again, builds a particular sentence such that neither it nor its negation is
provable.

Since PRFT(M, n) and diag(n) are recursive, in theories extending Q they are cap-
tured by canonical formulas Prft(x, y) and Diag(x,y). As before, let A(z) =y
~3Ax3y (Prft(x, y) A Diag(z,y)),anda = "A". So +4 says nothing numbers a proof
of the diagonalization of a formula with number z. Then,

8 =4 Jz(z = a A ~3IxTy(Prft(x, y) A Diag(z, y)))

So § is the diagonalization of «#; let g be the Godel number of . This time, we shall
be able to establish in T the relation between § and its proof. Reasoning as for the
diagonal lemma,

T13.3. Let T be any recursively axiomatized theory extending Q; then 7 - § <
~3IxPrft(x," 7).

Since T is recursively axiomatized, there is a recursive PRFT and since 7" ex-
tends Q there are Prft and Diag that capture PRFT and diag. From the definition
of 9, T H9 < 3z(z =a A ~3IxAy[Prft(x, y) A Diag(z, y)]); from capture
T + Diag(a,qg); and T + Vz(Diag(a,z) — z = g). From these it follows
that T - & < ~3xPrft(x,g); which is to say, T - § < ~3AxPrft(x,7§7)
(homework).
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From the diagonal lemma, under appropriate conditions, given a formula ¥ (y), there
is some J such that T + # < % (TH ). Under the assumption that there is THRMT,
we applied this to show there would be some # such that T - # <> ~Thrmt(TH 7).
This led to contradiction. In this case, however, we show that there really is a partic-
ular sentence € such that T - § < ~3AxPrft(x,” 7).

Our idea is to show that if 7" is a consistent, recursively axiomatized theory ex-
tending Q, then 7 I/ § and T I/ ~§. The first is easy enough.

T13.4. If T is a consistent, recursively axiomatized theory extending Q, then 7' t/ §.

Suppose T is a consistent recursively axiomatized theory extending Q. Sup-
pose T G, then since T is recursively axiomatized, for some m, PRFT(M, g);
and since T extends Q, by capture, T F Prft(m, g); soby 3I, T - IxPrft(x, g),
which is to say, 7+ 3xPrft(x,"67). Butsince T + &, by T13.3, T I
~3xPrft(x,7§7). So T is inconsistent; reject the assumption: T F §.

That is the first half of what we are after. But we can’t quite get that if 7" is a con-
sistent, recursively axiomatized theory extending Q, then 7' I/ ~§. Rather, we need
a strengthened notion of consistency. Say a theory T is w-incomplete iff for some
&P (x), T can prove each #(m) but 7 cannot go on to prove Vx & (x). Equivalently, T’
is w-incomplete iff for every m, it can prove each T - ~P(m) but T I/ ~3Ix P (x).
We have seen that Q is w-incomplete: we can prove, say N x m = m x n for ev-
ery m and n, but cannot go on to prove the corresponding universal generalization
VxVy(x xy =y x x). Say T is w-inconsistent iff for some & (x), T proves each
& (m) but also proves ~Vx & (x). Equivalently, T is w-inconsistent iff for every m,
it can prove each T = ~P(m) and T F IxP(x). w-incompleteness is a theoretical
weakness — there are some things true but not provable. But w-inconsistency is a
theoretical disaster: It is not possible for the theorems of an w-inconsistent theory all
to be true on any interpretation (assuming some m for each m € U). w-inconsistency
is not itself inconsistency — for we do not have any sentence such that 7 - & and
T F ~&. But inconsistent theories are automatically w-inconsistent — for from
contradiction all consequences follow (including each & (m) and also ~Vx £ (x));
transposing, w-consistent theories are consistent. Now we show,

T13.5. If T is an w-consistent, recursively axiomatized theory extending Q, then
T ~.

Suppose T is an w-consistent recursively axiomatized theory extending Q.
Suppose T = ~§; since T is w-consistent, it is consistent, so T I/ §; so since
T is recursively axiomatized, for all m, (m, g) & PRFT; and since T extends Q,
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by capture, T = ~Prft(m, g); and since T is w-consistent, 7' I/ AxPrft(x,g);
which is to say, T I/ AxPrft(x,"§"). Butsince T - ~§, by T13.3 with NB,
T = 3xPrft(x,"§™). This is impossible; reject the assumption: 7 I/ ~§.

So if a recursively axiomatized theory extending Q has the relevant consistency prop-
erties, then it is negation incomplete. Further, insofar as 7' canonically captures the
recursive functions, it expresses the recursive functions; so by T13.1, § is true iff
T ¥ §. Soif T is a consistent recursively axiomatized theory extending Q, then §
is both unprovable and true.

This is roughly the form in which Godel proved the incompleteness of arithmetic
in 1931: If T is a consistent, recursively axiomatized theory extending Q, then 7" F/
§g; and if T is an w-consistent, recursively axiomatized theory extending Q, then
T t/ ~%. Since we believe that standard theories including Q and PA are consistent
and w-consistent, this sufficient for the incompleteness of arithmetic.

E13.1. Fill in the details for the argument of T13.1.

*E13.2. Complete the demonstration of T13.3 by providing a derivation to show
T 8§ < ~3xPrft(x,"§"). The demonstration for the diagonal lemma is a
model, though steps will be adapted to the particular form of these sentences.

13.1.3 Rosser’s Sentence

But it is possible to drop the special assumption of w-consistency by means of a
sentence somewhat different from §.' Recall that neg(n) is the Godel number of the
negation of the sentence with number n. So PRFT(m, n) =,; PRFT(M, neg(n)) obtains
when m numbers a proof of the negation of the sentence numbered n. Since it is
recursive, it is captured by some Prft(x, y). Set,

RPrft(x, y) = Prft(x.y) A (Yw < x)~Prft(w. y)

So RPrft(x, y) just in case x numbers a proof of the sentence numbered y and no
number less than or equal to x is a proof of the negation of that sentence. Now,
working as before, set A’ (z) =4 ~3IxIy (RPrft(x, y) A Diag(z,y)),anda ="A"".
So A’ says nothing numbers an R-proof of the diagonalization of a formula with
number z. Then,

IBarkley Rosser, “Extensions of Some Theorems of Godel and Church.”
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R =4t Iz(z = a A ~IxAy(RPrft(x, y) A Diag(z, y)))

So R is the diagonalization of A’; let r be the Godel number of R. And R has
the key syntactic property just like §. Again, reasoning as we did for the diagonal
lemma,

T13.6. Let T be any recursively axiomatized theory extending Q; then 7 -+ R <«
~3xRPrft(x," RM).

You can show this just as for T13.3.
Now the first half of the incompleteness result is straightforward.

T13.7. If T is a consistent, recursively axiomatized theory extending Q, then 7" I/ R.

Suppose T is a consistent recursively axiomatized theory extending Q. Sup-
pose T = R; then since T is recursively axiomatized, for some m, PRFT(m, r);
and since T extends Q, by capture, T + Prft(m,r). But by consistency,
T H/ ~R; so for all n, and in particular all n < m, (n,r) & PRFT; so by
capture, T + ~Prft(n,7); so by T821, T F (Yw < m)~Prft(w,); so
T + Prit(m,7) A (Yw < m)~Prft(w,7); so T + RPrft(m,7); so T +
AxRPrft(x,r), which is to say, T + IxRPrft(x,"R7"). But since T + R,
by T13.6, T + ~3xRPrft(x,"R7); so T is inconsistent. This is impossible;
reject the assumption: 7 F R.

So, with consistency, it is not much harder to prove T AxRPrft(x, TR7) from the
assumption that 7+ R than to prove T+ 3xPrft(x, §7) from the assumption that
THS.

Reasoning for the other direction is somewhat more involved, but still straight-
forward.

T13.8. If T is a consistent, recursively axiomatized theory extending Q, then 7' I/
~R.

Suppose T is a consistent recursively axiomatized theory extending Q. Sup-
pose T = ~R. Then since T is recursively axiomatized, for some m, (m,r) €
PRFT; and since T extends Q, by capture, T Prft(m,¥). By consistency,
T B R; so for any n, and in particular, any n < m, (n,r) & PRFT; so by
capture, T+ ~Prft(n,r); and by T8.21, T - (Vw < m)~Prft(w,r). Now
reason as follows.
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1| ~R from T
2.| Prft(m,7) capture
3. (Yw < m)~Prft(w,T) capture and T8.21
4. | R < ~IxRPrft(x,1) from T13.6
5. | IxRPrf1(x, ) 1,4NB
6. | Ix[Prft(x,F) A (Yw < x)~Prft(w,F)]  5abv
7.0 | Prft(j,H) A (Yw < j)~Prfi(w,7)] A (g, 63E)
j<mvm<j T8.19
Jj=m A (g 8VE)
10. Prft(j,1) 7AE
11. ~Prft(j,7) 3,9 (VE)
12. 1 10,11 LI
13. m<j A (g, 8VE)
14. (Yw < j)~Prfi(w,7)] 7 AE
15. ~Prft(m, ) 14,13 (VE)
16. L 2,15 11
17.] | L 8,9-12,13-16 VE
18.| L 6,7-17 dE

SoT F1,thatis T = Z A ~Z and T is inconsistent. Reject the assumption,
Tt ~R.

In the previous case, with §, we had no way to convert Ix Prft(x, g) to a contradic-
tion with ~Prft(0,g), ~Prft(1,9)...; that is why we needed w-consistency. We can,
however, move from ~Prft(0,t), ~Prft(1,7) ... ~Prft(M,T) to a bounded quantifica-
tion (Vw < m)~Prft(w,r) or equivalently ~(3w < m)Prft(w,r). Then the special
nature of R aids the argument: From RPrft(j,T) suppose j < m; then Prft(j,r)
and we contradict the bounded quantification in the usual way. Suppose j > m;
then RPrft is designed so that nothing less than j (including m) numbers a proof of
neg(r); but we have Prft(m,T) from the assumption. So T I/ R and T I/ ~R

Let us close this section with some reflections on what we have shown. First,

Qis sound = Q is w-consistent = Q is consistent

So our results are progressively stronger, as the assumptions have become corre-
spondingly weaker. But,

capture = expression

So the second requirement is increased as we move from expression to capture.
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Second, we have not shown that there are truths of £y not provable in any re-
cursively axiomatizable, consistent theory extending Q. Rather, what we have shown
is that for any recursively axiomatizable consistent theory extending Q, there are
some truths of &y not provable in that theory. For a given recursively axiomatiz-
able theory, there will be a given relation PRFT(m, n) and Prft(x, y) depending on the
particular axioms of that theory — and so unique sentences ¥ and R constructed as
above. In particular, given that a theory cannot prove, say, R, we might simply add
R to its axioms; then of course there is a derivation of R from the axioms of the
revised theory! But then the new theory will generate a new relation PRFT(m, n) and
a new Prft(x, y) and so a new unprovable sentence R’. So any theory extending Q
is negation incomplete.

But it is worth a word about what are theories extending Q. Any such theory
should build in equivalents of the &£y vocabulary @, S, 4, and x — and should have
a predicate Nat(x) to identify a class of objects to count as the numbers. Then if the
theory makes the axioms of Q true on these objects, it is incomplete. Straightforward
extensions of Q are ones like PA which simply add to its axioms. But ordinary ZF set
theory also falls into this category — for it is possible to define a class of sets, say,
@, {0}, {0,{0}}, {©.{2},{0.{@}}}... where any n is the set of all the numbers
prior to it, along with operations on sets which obey the axioms of Q.” It follows
that ZF is negation incomplete. In contrast, the domain for the standard theory of
real numbers has all the entities required to do arithmetic. However that theory does
not have a predicate Nat(x) to pick out the natural numbers, and cannot recapitulate
the theory of natural numbers on any subclass of its domain. So our incompleteness
theorem does not get a grip, and in fact the theory of real numbers is demonstrably
complete. Observe, though, that it is a weakness in this theory of real numbers, its
inability to specify a certain class that makes room for its completeness.”

E13.3. Demonstrate T13.6.

2For discussion, see any introduction to set theory, for example, Enderton, Elements of Set Theory,
chapter 4.

3There are real numbers 0 and 1; so it is natural to identify the integers with 0,0 + 1,0+ 1 + 1
and so forth. The difficulty is to define a property within the theory of real numbers that picks out just
the members of this series, as we have been able to define infinite recursive properties in &£yr. The
completeness of the theory of real numbers was originally proved by Tarski, and is discussed in books
on model theory, for example, Hodges A Shorter Model Theory, theorems 2.7.2 and 7.4.4.
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13.2 Godel’s Second Theorem: Overview

We turn now to Godel’s second incompleteness theorem on the unprovability of con-
sistency. The discussion is divided into four main parts. First, in this section, Godel’s
second theorem is proved subject to three derivability conditions. Then we turn to the
derivability conditions themselves. The first is easy. But the second and third require
extended discussion. There is some background (section 13.3). Then discussion
of the second condition (section 13.4), and the third condition (section 13.5). This
completes the proof. We conclude with some reflections and consequences from
our results (section 13.6). There are alternative approaches to the second theorem
(for references see section 3 of Raatikainen, “Godel’s Incompleteness Theorems”).
Our’s is a straight-ahead development of the standard approach based on the deriv-
ability conditions. This is, surely, a natural place to start. Textbooks ordinarily end
their discussion of the second theorem with the demonstration from the derivability
conditions, offering just some general perspective on how the conditions are to be
obtained.* However, even if you decide to bypass the details, this general perspec-
tive will be enhanced if you have some object at which to “wave” as you pass them
by.

For this discussion we switch to theories including PA. The result is that that
PA and its its extensions cannot prove their own consistency. The reason for this
switch will become vivid in demonstration of the derivability conditions — as many
arguments that would have been by induction are forced into the theory and so are
by IN. Coinciding with the move to PA we revert to considering original rather than
canonical formulas to capture recursive functions: this avoids some complication,
and since PA has all the resources of Q, all our incompleteness results are preserved.’

Main argument. We have seen that for recursively axiomatized theories there is
a recursive relation PRFT(m, n). Since it is recursive, in theories extending Q, this
relation is captured by a corresponding Prft(x, y). Let

4So, for example, “the details of this are long and tedious, and will not be discussed here” (George
and Velleman, Philosophies of Mathematics, 201; and “the proofs of the [second and third derivability
conditions] are omitted from virtually all books on the level of this one, not because they involve any
terribly difficult new ideas, but because the innumerable routine verifications they — and especially the
last — require would take up too much time and patience” (Boolos, Burgess and Jeftrey, Computability
and Logic, 234.) The only other (relatively) complete development in English that I have been able to
track down is Tourlakis, Lectures in Logic and Set Theory: 1.

SBut the argument goes through for certain theories weaker than PA. Of relevance to Hilbert, it
goes through for primitive recursive arithmetic (PRA) — whose theorems are like those of PA with
application of the induction schema restricted to only IT; formulas. Though he is not entirely clear,
arguably, PRA is Hilbert’s real theory R (see p. 547). We set aside such details.
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Prvt(y) =g IxPrft(x,y)

So Prvt(y) just when something numbers a proof of the formula numbered y —
when the formula numbered by y is provable. Insofar as the quantifier is unbounded,
there is no suggestion that there is a corresponding recursive relation — in fact, we
have seen in T12.20 that no recursive relation is true just of numbers for the theorems
of Q. Let,

Cont =44 ~Prvi("0 = SO7)

So Cont is true just in case there is no proof of 0 = 1. There are different ways to
express consistency, but for theories extending Q this does as well as any other. Let
T extend Q. Suppose T is inconsistent; then it proves anything; so 7 - 0 = 1.
Suppose T 0 = 1; since T extends Q, 7 - 0 # 1; so T proves a contradiction and
is inconsistent. So 7 is inconsistent iff 7 = 0 = 1; and, transposing, T is consistent
iff Tt 0 = 1 (for further discussion see 13.6.1).

The second theorem is this simple result: Under certain conditions, if 7" is con-
sistent, then T # Cont. If it is consistent, then 7" cannot prove its own consistency.
Suppose the first theorem applies to 7', and suppose we could show,

(x%) T+ Cont — ~Prvi(T§"7)

Then, given what has gone before, we could make the following very simple argu-
ment. Suppose 7T is a recursively axiomatized theory extending Q.

ByT13.3, T - § < ~3xPrft(x,7§7), whichistosay, T - § < ~Prvt("§7);
from this and (xx), T + Cont — §; soif T = Cont then T  §; but from
the first theorem (T13.4), if T is consistent, then T t/ §; so if T is consistent,
T t/ Cont.

So the argument reduces to showing (). Observe that, in reasoning for T13.4 we

have already shown,
T is consistent = T I/ §

So the argument reduces to showing that 7' proves what we have already seen is so.
There is nothing mysterious about this: Cont, Prvt and the like are formulas, and so
just the sort of thing to which our proof apparatus applies.

Let us abbreviate Prvt('—JT) by OJ. Observe that this obscures the corner
quotes. Still, we shall find it useful. So we need T+ Cont — ~0O¥, which is
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justtosay, T - ~0(0 = 1) — ~O¥. Suppose T satisfies the following derivability
conditions.

DI. f T+ P then T O
D2. THOP — @) - (0f — 0Q)
D3. T +o® — oaP

Then we shall be able to show T - Cont — ~O9.

The utility of O in this context is that D1 - D3 are exactly the conditions that
define a standard modal logic, K4 — and it is not surprising that provability should
correspond to a kind of necessity.® There is an elegant natural derivation system for
this modal logic. For this you might check out Roy, Natural Derivations for Priest §2
(but in the nomenclature there borrowed from Priest, the system is NKt). However
rather than explain and introduce a new derivation system, we obtain a version of K4
simply by adding Al - A3 and MP from AD; to D1 - D3. So K4 has D1 as a new
rule, and D2 and D3 as new axioms. Since Al - A3 and MP remain, we have all the
theorems from before. Thus, as a simple example,

I. ~? > (P —>Q T3.9
(A) 2. O~P — (P - Q)] 1 D1

3. O~P - (P - Q)] — [O0~P - O(P - Q)] D2

4. O~P > 0P —> Q) 3,2 MP

So in this system - O~P — O(P — Q).
Now, given that T + § — ~3xPrft(x,"§™") from T13.3 we shall be able to
show that T + Cont — ~0O§.

T13.9. Let T be a recursively axiomatized theory extending Q. Then supposing T
satisfies the derivability conditions and so the K4 logic of provability, T
Cont — ~Prvt("§7).

SWhile K4 correctly represents these principles, it is not a complete logic of provability. We get
a complete system if we add to K4 a rule according to which from O — & we may infer J. For
discussion see subsection 13.6.2 and Boolos, The Logic of Provability.
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1. § > ~0O8 from T13.3
2. O( — ~O%) 1 DI
3. O(¢ —» ~0%) —» (0% — O~09%) D2
4. 0§ —» O~09 3,2 MP
5. O~0¢ - 0@ - 0=1) (A)
6. 0 - 0O@g - 0=1) 45T3.2
7. O(@¢ - 0=1) - (O0¢ — 00 = 1)) D2
8. 0§ - (OO0¢ — 00 =1)) 6,7 T3.2
9. [O¢ — (OO¥ — 00 =1))] — [(O¢ — O0%) — (OF - 00 =1))] A2
10. (09 — Oo¥%) — (O0F — 00 = 1)) 9,8 MP
11. 0§ —» Ooog D3
12. O - o0 =1) 10,11 MP
13. [0¢ - 00 =1)] - [~00 = 1) > ~0O9] T3.13
14. ~O00 =1) > ~0OF 13,12 MP

Which is to say, T - Cont — ~Prvt("§7).

As usual for an axiomatic derivation, the reasoning is not entirely transparent. How-
ever we are at the stage where, given the derivability conditions, 7" proves the result.
Given this, reason as before,

T13.10. Let T be a recursively axiomatized theory extending Q. Then supposing T
satisfies the derivability conditions, if 7" is consistent, T I# Cont.

Suppose T is a recursively axiomatized theory extending Q that satisfies the
derivability conditions. Then by T13.9, T + Cont — ~Prvt(T§€7); and by
T133, T - € < ~Prt(T€7); so T F Cont — §; soif T + Cont then
T g, but from the first incompleteness theorem (T13.4), if T is consistent,
then T t# §; soif T is consistent, Tt/ Cont.

One might wonder about the significance of this theorem: If 7" were inconsistent,
it would prove Cont. So a failure to prove Cont is no reason to think that 7" is
inconsistent. And a proof of Cont might itself be an indication of inconsistency!
The interesting point here results from using one theory to prove the consistency of
another. Recall the main Hilbert strategy as outlined in the introduction to Part IV;
a key component is the demonstration by means of some real theory R that an ideal
theory [ is consistent. But, supposing that PA cannot prove its own consistency, we
can be sure that no weaker theory can prove the consistecy of PA. And if PA cannot
prove even the consistency of PA, then PA and theories weaker than PA cannot be
used to prove the consistency of theories stronger than PA.” So a leg of the Hilbert

7 And the same goes for Hilbert’s PRA (see note 5).
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strategy seems to be removed. Observe, however, that the theorem does not show
that the consistency of PA is unprovable: a theory stronger than PA at least in some
respects might still prove the consistency of PA.® This may be a straightforward
theorem of the second theory. Of course, as a means of demonstrating consistency
such an argument may seem problematic insofar as one requires some reason for
thinking the second theory sound which does not already attach to the first, and so
already show that the first theory is consistent.
Another theorem is easy to show, and left as an exercise.

T13.11. Let T be a recursively axiomatized theory extending Q. Then supposing T
satisfies the derivability conditions and so the K4 logic of provability, T
Cont <> ~Prvt("Cont™).

Hints: (i) Show that T = Cont — ~0OCont; you can do this starting with
Cont — ~0§ from T13.9 and ~0O0¢ — § from T13.3. Then (ii) show T +
~OCont — Cont; for this, use T3.39 with T3.9 to show T + 0 = 1 — Cont;
then you should be able to obtain ~O0Cont — ~0(0 = 1) which is to say
~OCont — Cont. Together these give the desired result.

From this theorem, supposing the derivability conditions, Cont is another J which,
like €, is such that T F £ < ~Prt(TP7); so Cont is another fixed point for
~Prvt(x). It follows that Cont is another sentence such that both it and its negation
are unprovable. Interestingly, Cont uses the notion of provability, but is not con-
structed so as to say anything about its own provability — and so this instance of
incompleteness does not depend on self-reference for the unprovable sentence.

We have shown that the second theorem holds for a theory if it meets the deriv-
ability conditions. But this is not to show that the theorem holds for any theories! In
order to tie the result to something concrete, we turn now to showing that PA meets
the derivability conditions, and so that PA, and theories extending PA, satisfy the
theorem.

Demonstration of the first condition is simple.

T13.12. Suppose T is arecursively axiomatized theory extending Q. Thenif T - P,
then 7 - OP.

8G. Gentzen shows this very thing, “The Consistency of Elementary Number Theory,” and “New
Version of the Consistency Proof for Elementary Number Theory,” both in The Collected Papers of
Gehard Gentzen, ed. Szabo. See also Gentzen, “The Concept of Infinite in Mathematics™ also in
Szabo, along with Pohlers, Proof Theory, chpater 1, and Takeuti, Proof Theory, §12.
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Suppose T I P; then since T is recursively axiomatized, for some m,
PRFT(M, " P ); and since T extends Q, there is a Prft that captures PRFT; SO
T F Prft(m,"P7); soby 31, T + IxPrft(x,"P7); so T F Prvt("P7); so
T+o2.

The next conditions are considerably more difficult. We build gradually to the re-
quired results in PA.

E13.4. (i) Produce derivations to show both parts of T13.11. (ii) Use your result to
demonstrate that T is negation incomplete — that if T is recursively axiom-
atized theory extending Q that satisfies the derivability conditions, then if T’
is consistent, T ¥ Cont, and if T is w-consistent, T ¥ ~Cont.

13.3 The Derivability Conditions: Background

In this section we develop some results required for demonstration of derivability
conditions two and three. We proceed by introducing functions and relations into PA
by definition, and then proving some results about them.

13.3.1 Remarks on Definition

So far, we have taken a language, as &4 or &y as basic, and introduced any additional
symbols, for example <, as means of abbreviation for expressions in the original
language. But in more complex contexts — especially involving function symbols,
it will be convenient to extend the language by the definition of new symbols. Thus
given a theory 7 in language £, we might introduce symbols and corresponding
axioms to obtain 7’ and £’ as follows,

Symbol  Axiom Condition

3 IP < ~Vx~P

< xX<y<IzE+x=y)

@ y=0 < Vx(x€y) TH3yVx(x €y)

S y=Sx<oVzlzey<w(zexvz=x) TFIAYVzzey<o (zexVvz=yx)]

We are familiar with the first two cases. Strictly, the first lists an axiom schema,
representing different axioms for different instances of &. So far, we have thought of
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Additional Theorems of PA
*T13.13. The following are theorems of PA:

(@ PAF(r<sAhns<t)>r=<1i
b)) PAF(r<sAs<it)—>r<ti
© PAF(r<sAhns<it)m>r<t
d PAF@ <1t

(e) PAFO < Sk

) PAFt#£0 <0<t

(h) PAF £ < St

(i) PAFSt=3s—>1t<4

() PAFs <1t < Ss <S8t

k) PAFs <t < Ss< St

D PAFs <t Ss<1t

m) PAFs <t<s<iVs=t
m) PAFs <St<s<tVvs=1
W PAFs<St<s<tvs=St
(p) PAFs <tvs=tVi<s
(@ PAFs<tvi<s

) PAFs <t <t £s

) PAFt<s—>1t#3

O PAF(<tAt<4s)—>3s=1
(w) PAFs<s+121
V)YPAFr<s<r+t<s+t
W) PAFr<s < r+t<s+t

(z) PAFG <t —>s<sxt

(aa) PAF <3 > rxt<sXt

(ab) PAFr x4 >0—> 435>0

(ac) PAF (r>1TAs>0) > 2 xs>4

(ad) PAF (>0 Ar<3s)>rXt<iaxXi

(af) PAF Vx[(Vz < x)P} — P] > VxP
(ag) PAF Py AVX[(Vz < )P} — P§,]

(ah) PAF IxP — I[P A (Vz < x)~PF]

a free variable) in the object formula.

(g PAF >0 -3y =Sy) ¥ not in £.

X) PAF(r<sAt<u)—>r+t<s+u

) PAF(r<sAt<u)—>r+it<s+u

(ae) PAF(r<s At <u) > rxXt<sxu
strong induction (a)
— Vx&P  strong induction (b)

least number principle

Some of these are related to results we obtained in chapter 8 for Q. But there results were of the
sort, forany n, Q - ¢t <NV ¢ =nvn < & with PA, the induction is in the logic rather than in
the metalanguage, and we obtain the universal quantifier (or rather, an arbitrary term which may be
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these as abbreviations — and as such the listed axioms are of the sort @ < @ with
the abbreviated form on one side, and the unabbreviated on the other. A theory is not
extended by the addition of an “axiom” of this sort. But is possible to see the symbols
as new vocabulary. In all four cases 7" includes a new axiom. The last two require
also a uniqueness condition in the original 7. For these, let 3!y (y) abbreviate
Ay[P(y)AVz(P(z) — z = y)] orequivalently Iy P (y)AVyYVz[(P(Y) AP (2)) —
y = z] so that exactly one thing is #. Then the cases for a constant and function
symbol are standard examples from set theory, where zero and successor are defined
(the condition for successor sets Sx = x U {x} so that the members of Sx are x and
all the members of x). The details of the examples are not important; we illustrate
only the idea of definition. We begin with a formal account, and extend it in different
directions.

Basic Account

Consider some theory 7 and language &£. We will consider a language £’ extended
with some new symbol and theory 7’ extended with the corresponding axiom. There
are separate cases for a relation symbol, operator symbol, constant symbol and func-
tion symbol.

Relation symbol. To introduce a new relation symbol RX we require an axiom in
the extended theory such that,

T F R(F) < QF)

where @(X) is in £. Then for a formula " including the new symbol, there should
be a conversion € such that €[F'] = ¥ for ¥ in the original &£, and

T'- % iff T+ G[F]

So €[#”] is like our unabbreviated formula, always available in the original 7" when
F' is a theorem of T’. The conversion for a relation R3 is straightforward. Make
sure the bound variables of @ do not overlap the variables of 5. Then C[F'] =
N gé) So, from the example above,

T'Ex<y<3zEz+x=y).

So R(x,y) = x < yand @(x,y) = Iz(z + x = y). Suppose ¥’ = Vz(a < z).
Then we want to instantiate x and y from the axiom to a and z. But z is not free
for y in the axiom. We solve the problem by revising bound variables; so T/ F x <
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y < dw(w +x =y)andthen T’ a < z < Jw(w + a = z). So €[F ] replaces
(a < z)in F" with Jw(w + a = z) to obtain VzIw(w + a = z).

Operator symbol. Extend notation in the obvious way so that (9[5’] indicates
that operator symbol () operates on formulas J; ... $,. To introduce a new operator
symbol @[P] we require axioms in the extended theory such that,

T/ O[P] < Q[P]

where (Q[j’] is an expression in £. Again for ' including the new symbol, there
should be a conversion € such that €[] = F for F in the original £ and T’ - ¥’
iff T = C[F’]. This time set C[F'] = F’ ZE; Thus, from example above, we
are given T/ + 3zRxz <> ~Vz~Rxz. Suppose ' = VxIzRxz. Then C[F'] =
Vx~Vz~Rxz.

Constant symbol. To introduce a new constant symbol we require an axiom in
the extended theory, along with a condition in the original theory such that,

T'Ey=c< Q>») and TH3Iya(y)

Again for a formula ¥’ including the new symbol, we expect a conversion € such
that C[F'] = F, where T’ - ¥/ iff T - C[F]. Let z be a variable that does not
appear in ¥’ or @. Then

C[F'] = I(Q) A F'°

So, from the example above, we are given T/ F y = @ < Vx(x € y); suppose
F' = Ax(@ € x). Then z is a variable that does not appear in ¥ or @ — in
Ix(@ € x) or Vx(x € y). So €[F'] = Fz[Vx(x & 2) A Ix(z € x)].

Function symbol. To introduce a function symbol, there is an axiom and condi-
tion,

T'ky=hx < Q. y) and TH3yQx,y)

The conversion for a function symbol works like that for constants when a single
instance of #3 appears in ¥’. Again, make sure the bound variables of @ do not
overlap the variables of 3 and let z be a variable that does not appear in ¥’ or in
@. Then it is sufficient to set C[F'] = 3z(Q(3,z2) A ?’fz). In general, however,
¥’ may include multiple instances of #, including one in the scope of another. For
the general case, begin where ¥’ is an atomic R’ = Riy...1, and {7 ... 1, may
involve instances of £ 3. Order instances of 3 in K’ from the left (or, on a chapter 2
tree, from the bottom) into a list 431,435, ... A%, so that when i < j, no A3;
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appears in the scope of #3 ;. Then set Rg = R, and fori > 1, R; = Iz(Q(Ei, 2) A
(,Ri_l)f"'). Then €[R'] = Ry, and for an arbitrary ', C[F'] = ?’%iﬂ So, for
example, if R’ = Ro = RhZh?>xyh?yz, the tree is as follows,

X Yy y z
h2xy h2yz
(B) \ /
h2h2xyh?yz
Rh2h2xyh?yz

So instances of f¢» are ordered (h2h?xyh?yz, h?xy,h?yz). Then we use @ to
replace instances of £, working our way up through the tree. So,

Ro = Rh?h%xyh?y:z

R1 = u[@h?xyh?yzu A Ru]

Ry = W (@xyv A Ju[Quh?yzu A Rul)

R3 =Fw[@yzw A Fv(@xyv A Fu[Quwu A Rul)]

R uses @ to replace all of h2h%2xyh?yz, operating on the terms h%xy and h2yz.
Ry uses @ to replace h2xy in Ry, and R3 uses @ to replace h?yz in Ry. Observe
that free variables are the same as in R’'.

To show that this works, that 7/ = F” iff T - ¥ we need a couple of theorems.
The idea is to show that T’ = ¥/ <> ¥ and then that 7' - ¥ iff T - % . Together,
these give the result we want. First,

T13.14. For a defined symbol, with its associated axiom and conversion procedure,
T < F.
(r) For a relation symbol, we are given T’ = RX <> @(X); then so long as the
bound variables of @ do not overlap the variables of R3 (which we guarantee
by reasoning as for T3.27) 3 is free for X in @, so T’ = R3 < @(3); so by

T9.9, T/|—37’<—>37’£(33);SOT’|—37’<—>.77.

(0) For an operator symbol, we are given T’ I (9[5’] <~ Cfl[j’]; so by T9.9,
T'FF &7 00T -F « F.

QL
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(c) The case for constants is left as an exercise.

(f) For a function symbol #, begin with a derivation to show 77 F R;_1 <>
R;i. Given R;_1[h(3)], Ri(3) is Iz(Q(3,2) A Ri_1[z]). We have as an
axiom that 7' F y = AX < Q(X, y).

L] [Rioa 1G] AGg <D
2.1 1 h(EB) = h(3) < QG, A(3)) from T’
3.1 | A3 = A3 =1

4| @G, G 23 <E
5.0 | QG AG)) AR—1[A(3)] 1,4 Al

6. HZ(@(Z,Z)/\QZ'_I[Z]) 531

7. EIZ(CQ(Z,Z)A,Ri,l[z]) A (g <)
8. *@(Z,J‘)/\Ri—l[j] A (g 73E)
9. Q@G,j) 8 AE
10. j=h(3E) < QG j) from T’
1.l j =23 10,9 »E
12. Ri—l[j] 8 AE
13 | | Rica[hG)] 11,12 =E
14, | Ri_1[h(3)] 7.8-13 3E
15. | Rizi[hG)] © 32(QG.2) A Ri1[z]) 1-67-14 1

Things are arranged so that the variables of 3 are not bound upon substitution
into @. So instances of the axiom at (2) and (10) and 3I at (6) satisfy con-
straints. So T’ F R;_1 <> R;; and by repeated applications of this theorem,

T'F R < Rm;sobyT9.9, T/l—?/e?/%n;soT’l—?/e?.

So far, so good, but this only says what the extended 7"’ proves — that the richer
T’ proves ¥ iff it proves ¥ . But we want to see that 7’ proves ¥ iff the original T
proves . We bridge the gap between T and 7" by an additional theorem.

T13.15. Fora T and &£, given a defined symbol with its associated axiom, and for

any formula ¥ in the original £, T+ F iff T - %

Since T proves everything T proves, the direction from right to left is obvi-
ous. So suppose T’ = ¥ ; by soundness, T’ F F; we show T F F; so that,
by adequacy, T+ F. To show T E F, suppose there is a model M such that
M[T] = T; our aim is to show M[F] = T.

(r) Relation symbol. Extend M to a model M’ like M except that for arbitrary d,
(d[x1]...d[xs]) € M'[R]iff Mg[@(x1 ...xp,)] = S; iff M{[Q(x1...x,)] =
S (the latter by T10.15 since M and M’ agree on assignments to symbols
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in @). Since M’ and M agree on assignments to symbols other than R, by
T10.15 M'[T] = T. And M'[RX < @(X)] = T: suppose otherwise; then
by TI there is some d such that M[Rxq...x, < @Q(x1...x,)] # S; so
by SF(«>), M{[Rx1...x,] # S and Mj[@(x1...x,)] = S (or the other
way around); so (d[x1]...d[x,]) & M'[R] and M{[@(x;...x,)] = S; but
by construction, this is impossible; and similarly in the other case; reject
the assumption, M'[RX < Q(X)] = T. So M'[T’] = T;sosince T’ E ¥,
M'[#] = T; and by T10.15 again, M[] = T; and since this reasoning applies
for arbitrary M, T = F

(o) Operator symbol. We we do not usually think of the specification for an
operator as part of an interpretation and, so long as this is so, cannot extend
an interpretation for operator symbols as above. Still, it is possible to pro-
vide an equivalent to the usual formulation on which operator symbols are
interpreted. For any & and M, let ||y be the set of all variable assignments
on which 2 is satisfied. So & is T when ||y is the set of all assignments,
and & is F when |#|y is the empty set. We have understood the interpre-
tation of a relation symbol as a set of tuples — and so as a specification of
the set of interpretations on which the relation symbol is satisfied. After that,
for an n-place operator @, M[(] is a function with members ({V; ... V,), V)
where V7 ...V, and V are sets of assignments; and Q[P ... Py] is satisfied
on d just in case d € M[O]{|P1|m - .- |Pn|m). So, for example, conjunction
is a function that takes |1 |u and |P2|m to |P1|m N [P2|m — a conjunction
P1 A P is satisfied on d just in case d is among the assignments that satisfy
both #; and $,. And an existential x-quantifier takes ||y to the set of all
assignments that have an x-variant in |2 |y.’

Now extend M to a model M’ like M except that d € M’ [O](|P1|m - - - |PnIm)
iff Mg[@Q(P1 ... Pn)] = S; iff M{[Q(P1 ... Py)] = S (this by a simple ex-
tension of T10.15). Again since M’ and M agree on assignments to symbols
other than @, with T10.15, M'[T] = T. And M’ [(9(:7’) <~ (,‘2(,7’)] = T: sup-
pose otherwise; then by TI there is some d such that M[O (P) < (Q(!P)] #
S; so by SF(<»), M. [(9(3’)] # S and M/ [(Q(J’)] S (or the other way
around); from the second, by construction, d € M'[O]{|P1|m ... |Pnlm); so
My[O (JP)] = §; this is impossible; and similarly in the other direction; reject
the assumption: M'[O(P) < Q(P)] = T. So M[T'] = T; so since T’ E F,

9These examples are illustrative. For the primitive operators, let |J | be the complement of | P |u.
Then |[~P|m = [Plys |P = Qm = [Py U |Q|m, and d € |VxP |y just in case all of its x-variants
are in |P|u.
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M'[#] = T; and by T10.15 again, M[] = T; and since this reasoning applies
for arbitrary M, T E F.

(c) The case for constants is left as an exercise.

(f) Function symbol. Since 7'+ 3!y@(X, y), by soundness T = 3!yQ (X, y);
so since M[T] = T, M[3!y@(X, y)] = T; so by TI, for any d, Mg[3!yQ(X, y)]
= S, and there is exactly one m € U such that My(,,|m)[@(X, y)] = S. Extend
M to a model M’ like M except that for arbitrary d, ((d[x1]...d[x,]),m) €
M'[A] iff Mgy m) [@ (X1 . .. x5, ¥)] = S; by T10.15 iffM;(ylm)[é‘Z(xl X )]
= S. Since M’ and M agree on assignments to symbols other than %, by
T10.15M'[T] = T. And M'[y = AX < Q(X,y)] = T: suppose otherwise;
then by TI there is some h such that M; [y = AX < Q(X,y)] # S; so by
SF(«<>), M{[y = £X] # S and M [@(X, y)] = S (or the other way around).
Where for some a, h(y) = a, h = h(y|a), and M;(yla)[(il(xl X, V)] =S
so by construction with TA(f), M [#x1 ...x,] = a; and since h(y) = a,
Mi[y] = a; so M{[y = #x1...x,] = S; this is impossible; and similarly
in the other case; reject the assumption, M'[y = AX < Q(X,y)] = T. So
M'[T'] = T;sosince T' E F, M'[#] = T; and by T10.15 again, M[¥] = T,
and since this reasoning applies for arbitrary M, T = ¥ .

These reasonings work insofar as M and M’ give the same results for a @ in the
original £. It is, in fact, important to show that the specifications are consistent —
that we do not both assert and deny that some objects are in the interpretation of a
symbol. But this is easily done. Here one case and the start for another.

(r) The specification for a relation symbol is consistent: Suppose otherwise;
that is, suppose there are some assignments d and h such that ({(d[x{]...
d[x,]),m) € M'[4] and ({(h[x1]...h[x,]),m) & M'[£] but d[x;] = h[x;] and
...and d[x,] = h[x,]. From the first, My(,|m)[€(X1 ... Xn, y)] = S; from the
second, Mp(yim)[@(x1 ... Xn, y)] # S; but d(y|m) and h(y|m) make the same
assignments to variables free in @(X, y); so by T8.4, My(ym)[Q(X, y)] =
Mn(yim)[Q(X, »)]; 30 Mi(ym [@(X, )] = S; reject the assumption: if d[x;] =
h[x;] and ...and d[x,] = h[x,] and ({(d[x{]...d[x,]),m) € M[#4] then
((h[x1]...h[xa]), m) € M'[A].

(o) The specification for an operator symbol is consistent: Suppose other-
wise; that is, suppose d € M'[O]{|A1|w . .. |Ax|w) andd & M'[O]{|B1|w - ..
|:Bn||v|/) but |:A)1|M/ = |£1|M’ and ...and |eA>n|M’ = |£n|M’- From the first,
My[@(A7 ... A,)] = S and from the second, Mi[@(B ... B,)] # S. Now
reasoning is similar except with T9.10 instead of T8.4.
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And now our desired result is simple. The basic idea is that for some 7" and
&£ with a defined constant, relation symbol or function symbol, from T13.14 T’

F' < FandfromTI13.15 7' - Fiff T+ F;sothat T/ = F/iff T = % . Put more
generally,

T13.16. For some defined symbols, with their associated axioms and conversion pro-
cedures, 7'+ F/iff T - F.

Consider a sequence of formulas ¥y ... ¥, and theories Ty ... 7T, ordered
according to the number of new symbols where for any i, ¥; = €[¥;+1]. By
ourresults, Tj+1 F Fi+1 < F;,and Tj 1 F F; iff T; -+ F;. It follows that
Tiy1 F Fi4q iff T; = F;. And by a simple induction, T,, = %, iff To = Fo,
whichistosay 7/ F F/iff T - F.

In the following, we will be clear about when new symbols and associated axioms
are introduced, and about the conditions under which this may be done. In light of
the results we have achieved however, we will not generally distinguish between a
theory and its definitional extensions.

It is worth remarking on the increased requirement for definition relative to cap-
ture. In particular, for a function, capture requires 7 - Vz[F (M ... My, z) —> z =
a]. For definition, from uniqueness, the comparable conditionis T + Yy Vz[(¥ (X, y)
A F(X,z)) — y = z]. So definition builds in a sort of generality not required in
the other case. Q is great about proving particular facts — but not so great when it
comes to generality (this was a sticking point about the shift between Q and Qg in
chapter 12 (p. 577 and below). But this is just the sort of thing PA is fitted to do.'”

E13.5. Supposing that T’ - y = A%uv <> Q(u, v, y) use the method of the text to
find €[4 A BhZh%xy].

E13.6. (i) From the definitions in p. 637n9 and the standard abbreviations, show that
the conditions in the main text for A and 3 obtain. (ii) What is the condition
for v? Hint: it should not involve complement.

*E13.7. Show T13.13af and T13.13ah. Hard core: show each of the results in
T13.13.

1015 definition so described necessary for reasoning to follow? We might continue to think in terms
of abbreviation — or even unabbreviated formulas themselves, so that there are no new symbols. Even
so, the conditions on such formulas would be like those for definition, so that the overall argument
would remain the same.
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E13.8. (i) Complete the unfinished cases for constants in T13.14 and T13.15. (ii)
Show consistency results for operator, relation and constant symbols.
First applications

Here are a couple of quick results that will be helpful as we move forward. First,
if PA defines some functions /4(X,w,Z) and g(3), then PA defines their composi-
tion f(X,y,zZ) = h(x,g(y¥),Z). We introduce a definition and then show that the
condition is met. This pattern will repeat many times.

T13.17. If PA defines some h(X,w,Z) and g(y), then PA defines f(X,y,Z) =
h(x,g(¥),Z). Suppose PA defines some i (X, w,Z) and g(y). Let,

Def[f(X,y,2)] PAFv = f(X,y,Z) < v =h(xX,g()),Z). Then,

(i) PA F Fv[v = h(xX, g(¥),2)]

L|h(x,g(y).2) =h(x.g(y).Z) =l

2. 3o = hE. g(5). )] El

(ii) PA = YuVo[(u = h(xX,g(3),2) Av = h(X, g(y),2)) — u = ]
L{|j=h&xg()2)rnk=hg(y)2) Ag =D

2.1 | j =h(x,g0(),2) 1 AE

3| [k = hE 2(). %) | AE
allj=k 2,3 =E

50/ =h(X,g(y).2) Ak =h(x,2(3),2) > j =k 1-4 -1

6. | Yu[(j = h(X,g(¥),2) Av =h(X g(}).2) — j =] 5VI

7. YuVv[(u = h(x,2(¥),2) Av = h(X,2(¥),2)) - u =] 6 VI

So PA - 3w[v = h(X, g(¥), Z)] and PA defines f (X, y,Z).

In addition, we can introduce a function for minimization. The idea is to set
v = uy@(X,y) < [Q(X,v) A (Vz < v)~Q(X,z)]. In the ordinary case, a new
function symbol 4 is introduced with an axiom of the sort v = X <> @(X, v) under
the condition 7 + 3!v@(X, v). But, in this case, the situation is simplified by the
following theorem.

T13.18. If PA F 0@ (X, v), then PA - Aw[@Q(X,v) A (Vz < v)~Q(X,v)].

(i) Suppose PA - Jv@(X, v). Then by the least number principle T13.13ah,
PA F Fv[@Q(X,v) A (Vz < v)~Q(X,v)].
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(ii) Further, PA = VuVo[(Q(X,u) A (Vz < u)~Q(X,z) AQ(X,v) A (Vz <
v)~Q(X,z)) - u = v].
L [@G. ) A (V2 < H)~QE.2) A QGEK) A (V2 < )~Q(E.2)

2| |j<kvj=kvk<]j
j <k

et

Vz < k)~Q(X,z2)
~Q(X, j)

Q. j)

1

~(j <k)

i<

R S B AN

10. (Vz < j)~Q(X,z)

11. ~Q(x, k)
12. Q(x, k)
13. 1

14| |~k < j)
15| |j=k

16. | (QX, j)A(Vz < j)~QX,2) AQX k) A(Vz <k)~Q(X,2) = j =k
17. | VU@, j) A (V2 < )~@(F, 2) A QEF,v) A (V2 < 0)~@Q(F,2)) — j = 1]
18. | YuVvVo[(Q(X,u) A (Vz < u)~Q(X,2) A QX,v) A (Vz < 0)~Q(X,2)) > u = V]

So under the condition Jv@ (X, v), we have AW [Q(X,v) A (Vz < v)~Q(X,v)]. As
from the strengthened capture result (chapter 12, p. 583) this is because the bounded
quantifier builds in that at most one thing satisfies the expression. Thus we may define
functions for minimization and bounded minimization under revised conditions. Let,

Def[uv@(X,v)] PAF v = uv@(%,v) < [Q(X,v) A (Vz < v)~Q(X, V)]
(i) PA F I[Q(X,v) A (Vz < v)~Q(X,v)].

(i) VuVo[(Q(X, u) A(Vz < u)~Q(X,2) AQ(X,v)A(Vz < v)~Q(X,z2)) —
u = v

But given T13.18, these conditions are met so long as PA - Jv@(X, v).
And,

Def[(uy < 2)Q(%,z, )] PAF v = (uy < 2)Q(X,z,y) < v = pyly =z V
Q(x,z,y)]

Let m(X,z) = uy[y = z vV @(X, z, y)] then we require,

A (g =D

T13.13p
A (c ~D)

1 AE
4,3 (VE)
1 AE
6,5 11
3-7~1
A(c~D

1 AE
10,9 (VE)
1 AE
12,11, LI
9-13 ~1
2,8,14 DS
1-15 =1
16 VI

17 VI
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(i) PAF Jv(v = m(X, 2))
(i) PAF VuVu(u = m(x,z) Av=m(X,z)] > u = v)

These conditions are trivially met so long as m (X, z) is defined; and for this,
the existential condition PA F 3y[y = z v @(X, z, y)] follows immediately
from PA F z = z; so the conditions for bounded minimization are automati-
cally satisfied.

Given these notions, we may write down some immediate, simple results.
*T13.19. Let m(X) = uv@ (X, v); then,

(@) PAF Q(X,m(X)) A (Vz < m(X))~Q(X,z)

(b) PAF Q(X,m(X))

(c) PAF (Vz < m(X))~Q(X, 2)

(d PAFQ(X,v) > m(X) <v

Because it is always possible to switch bound variables so that @ is con-
verted to an equivalent @ whose bound variables do not overlap with vari-
ables free in m(X), we simply assume m(X) is free for v in @(X,v) (and
we will generally make this move). Thus (a) follows from the definition
v =m(X) < [QX,v) A (Vz < v)~@(X,v)] with v instantiated to m(X)
together with m(X) = m(X). Both conjuncts, and so (b) and (c) follow from
(a). And (d) can be done in eight or nine lines with (c).

Of these, (a) - (c) simply observe that the definition applies to the function defined.
From (d), the least v such that @ (X, v) is always < an arbitrary v such that @ (X, v).
In addition, a couple of results for bounded minimization.

T13.20. The following result in PA,
(@ PAF (uy <9)Q((X.0,y) =0

(b) If PA = (v < t(u))Q(X,u,v) then (i) PA defines uv@(X,u,v) and (ii)
PA F (uv < t(u)Q(X,u,v) = pv@Q(x,u,v).
Hints: (a) follows easily from the definition. For (b), the existential for (i)
follows simply from (v < #(u))@(X, u, v). For (ii),
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=~

9.
10.

11.
12.

13.

14.
15.

16.

17.
18.
19.
20.
21.
22.
23.
24.

25.
26.
27.
28.
29.
30.
31.
32.

AR ol

@ = tw)Q(X,u,v)

| t(u) = n(X,u)
QX u, t(u))
QX u,m(X,u))

[ 10) # n(E0)

QX u,n(X,u))
Q(X,u,n(X,u))

J <)
j=tw)VvaX,u,j)
n(x,u) <j

n(x,u) < t(u)
n(x,u) # t(u)

QX u,n(X,u))
Q(X,u,n(x,u))

[ <n(X,u)

~=tu) v QX u,l)]

I # t(u) A ~Q(X,u,l)
~Q(X,u,l)

Yw < n(x,u))~Q(X,u,w)

n(x,u) = pv@(x,u,v)

n(x,u) = pv@(x,u,v)

n(x,u) = (uv < t(w)Q(x,u,v)
n(x,u) = pvfv = t(u) v Q(X,u,v)]
nX,u) =t(u) v QX,u,n(x,u))

QG u, j)

j =t

j<itw)Vvj=iu)

[ =t

tw) =n(x,u) Vv i(u) #n(x,u)

NYw < n(x, u))~w = tu) v AKX, u, w)]

QX u,n@ u) A Nw < nX u)~Q(X, u, w)

(nv < t(w)@Q(X,u,v) = pv@(x,u,v)

643

P

abv

2 def
3T13.19b
A (g 1(3E)

6 T13.13m
A (g 7VE)

T3.1
A (g 9VE)

5,8 =E
11,10 =E

A (g 9VE)

4,13 DS
9,10-12,13-14 VE

A (g 7VE)

5vI

3,17 T13.19d
18,16 T13.13c¢
19 T13.13s
4,20 DS
7,8-15,16-21 VE
3T13.19¢

A (g (YD)

23,24 (VE)
25 DeM
26 AE
24-27 (V1)
22,28 Al
29 def
1,5-30 (FE)
31 abv

t(u) is the bound, there is a j < 7(u) such that Q(X,u, j), and n(X, u) is the
least v < f(u) such that @(X,u,v). Recall that, generally, when n(X,u) =
t(u), n(X,u) need not be such that @Q(X,u,n(x,u)); but if j = t(u) =
n(x,u), we have from the premise that @(X,u,n(X,u)). And in any case
when n(X, u) is other than the bound, @ (X, u,n(x,u)). In each case, then,
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the least v such that @ (X, u, v) is the same as n(X, u).

From T13.20a it does not matter about @, the least y under the bound @ is always
@. T13.20b converts between a bounded minimization and one without a bound; thus
when T13.20b applies, results from from T13.19 for unbounded minimization apply
to the bounded case.

*E13.9. Produce the quick derivation to show T13.19d.

E13.10. Complete the unfinished parts of T13.20.

13.3.2 Definitions for recursive functions

Our aim is to show T+ Cont — ~ Prvt("§7) — where this corresponds to our pre-
vious result that if 7" is consistent, then 7' }* §. For this it is no surprise that we shall
want to define and manipulate functions corresponding to the recursive functions of
chapter 12. Thus we begin by showing that PA defines relations and functions corre-
sponding to recursive relations and functions.

Insofar as we understand what a theorem of PA is, not all of the demonstrations
are required to understand the argument — and some may obscure the overall flow.
Thus, for our main argument, we often list results (with hints), shifting demonstra-
tions into exercises and answers to exercises. To retain demonstration of results, a
great many exercises are in fact worked in the answers section. Also since the only
constant in Ly is @, there is no need to reserve letters for constants. Thus it is con-
venient to suppose that all of a . . . z are variables of the language.

The core result

The main argument is an induction on the sequence of recursive functions. However,
with an eye to the S-function, we begin showing that PA defines remainder rm(m, n)
and quotient gt(m, n) functions corresponding to m/(n 4 1). Division is by n 4+ 1 to
avoid the possibility of division by zero.'!

*Def[rm] Let PAF v = rm(m,n) < Qw <m)[m = Snxw +v Av < Sn].

TA choice is made: Another option is define the functions so that an arbitrary value is assigned
for division by zero (as for example Boolos, The Logic of Provability, p. 27). Our selection makes
for somewhat unintuitive statements of that which is intuitively true — rather than (relatively) intuitive
statements including that which is intuitively undefined or false.
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OPAFIXAw <m)[m = Snxw+xAx < Sn]. Hint: This is an argument
by IN on m. It is easy to show Ix (Jw < 0)[@ = Snxw +x Ax < Sn], from
@ =Snx@+@A0 < Sn with (31) and 31. Then you want to show that if the
result holds for j, it holds for Sj. For remainder k, k < n v k = n. In the
first case S is divided by leaving the quotient / the same, and incrementing
k; in the second case Sj is divided by S/ with remainder zero.

() PAFVxVy[(Qw <m)im = Snxw+xAx <Sn]A(Fw <m)[m =
Snxw+ yAy < Sn]) - x = y]. Hint: This does not require IN,
but is an involved derivation all the same. Once you instantiate the bounded
existential quantifiers to quotients p with remainder j and ¢ with remainder
k,youhave p < gV p =¢qgVvgqg < p. When p = g, j = k follows easily
with cancellation for addition. And the other cases contradict. So, if p < ¢,
you will be able to set up an / such that S/ + p = ¢, and show j £ Sn. And
similarly in the other case.

Def[gt] Let PAF v = gt(m,n) < m = Sn x v + rm(m, n).

(1) PAF Ax[m = Sn x x + rm(m, n)]. Hint: By =I, rm(m, n) = rm(m, n);
so with Def[rm], Qw < m)[m = Sn x w + rm(m,n) A rm(m,n) < Snj;
and the result follows easily.

() PAF VxVy[(m = Snxx+rm(m,n)Am = Snxy+rm(m,n)) - x =
y]. Hint: This is easy with cancellation laws for addition and multiplication.

Def[B] PAF B(p.q.i) = rm(p,q x Si).

Since this is a composition of functions, immediate from T13.17.

Observe that, from the definition, PA - v = B(p,q,i) < Qw < p)[p = S(g x
Si)yxw+vAv < S(gxSi)], whichistosay PAF-v = B(p,q,i) < B(p,q,i,v),
where B is the original formula to express the beta function.

And now our main argument that PA defines relations and functions correspond-
ing to recursive relations and functions. The main result is for functions; relations
follow as an easy corollary. But we shall not be able to show that PA defines relations
and functions corresponding to all the recursive relations and functions: Say an ap-
plication of regular minimization to generate f(X) from g(X, y) is (PA) friendly just in
case PA F 3y9 (X, y, @) where §(X, y, v) is the original formula that expresses and
captures g(X, y); and a recursive function is (PA) friendly just in case it is an initial
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function or arises by applications of composition, recursion or friendly regular min-
imization. Observe that all primitive recursive functions are automatically friendly
insofar as they involve no applications of minimization at all.

*T13.21. For any friendly recursive function r(x) and original formula R(X,v) by
which it is expressed and captured, PA defines a function (X) such that PA
v =r(X) < R(X,v).

By induction on the sequence of recursive functions.

Basis:

(s)

(2)

(1)

Assp:

Show:

(©

ro(X) is an initial function suc(x), zero(x) or idnt, (x; . .. x;).

ro(X) is suc(x). Let PA - v = suc(x) < Sx = v. But Sx = v is the
original formula Suc(x, v) by which suc(x) is expressed and captured;
s0 PA F v = suc(x) <> Suc(x, v). And by reasoning as follows,

.| Sx = Sx =I .| |[Sx=jASx=k A (g =D
2.3y Sx=y) 131 2| sy = | AE
3| | Sx =k 1 AE
4.1 |j=k 23=E
5/(Sx=jASx=k)—>j=k 1-4 —>1
6.|Vz[(Sx =jASx=2)— j =2 5VI
T\ VYVzZ[(Sx =y ASx=2) >y =2] 6 VI

PAF 3!y(Sx = y). So PA defines suc(x).

ro(X) is zero(x). Let PA F v = zro(x) <+ x = x Av = @. Then
PA F v = zro(x) < Zero(x,v). And by (homework) PA defines
zero(x).

ro(X) is idntl (x1 ...x). Let PA F v = idnf(x1...x;) < (x1 =
XitA...ANX; =xj)AX =v. ThenPAF v = idnli(xl...xﬂ <~
Idnt,i (x1...xj,v). And by (homework) PA defines idnt;{(xl S Xj).
Forany i, 0 < i < k, and r;(X) with R; (X, v), PA defines r;(X) such
that PA - v = ri(X) < R;i(X,v).

PA defines r(X) such that PA - v = r(X) < R (X, v).

rk(X) is either an initial function or arises by composition, recursion or
PA friendly regular minimization. If rc(X) is an initial function, then
reason as in the basis. So suppose one of the other cases.

rc(X, Y, 2) is h(x, g(y), Z) for some hi(X, w,z) and g;(y) where i,j < k.
By assumption PA defines A(X, w, Z) such that PA - v = h(X, w, ?)
< J(X,w,Z,v) and PA defines g(y) such that PA - w = g(y) <
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(r)

647

9(y,w). Let PA F ri(x,5,2) = h(X, g(y),Z). Then by T13.17 PA
defines r;. And, where the original Ry is of the sort Jw[g (¥, w) A
H(X,w,Z,v),PAF v = r(X,y,Z) < Ri(X,¥,Z,v). Thus, drop-
ping X and Z and reducing y to a single variable,

1| r(y) = h(g(y))

W N

&

15.
16.

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

v =b(w) < H(w,v)
Jw=gy) e F(y.w)

v=r(y)

v = h(g(y))

gy) =gy

gy) =g(y) < 4y, g(»)

5(y,8(»)

h(g(y)) = h(g(y))

h(g(y)) = h(g(y)) < H(g(y), h(g(y)))
H(g(y), h(g(y)))

H(g(y),v)

G(y,8(») A H(g(y),v)

w[E(y, w) A H(w,v)]

[ 3wlG(y,w) A H(w, v)]

5. J)AH(j.v)
J=g0)<%0.))
50, J)

J =g
v=h(j) < H{jv)
H(j.v)

v =h(j)

v = h(g(y))
v=r(y)

v =r(y)

v=ry) < wEQ,w) A H(w,v)]

def
by assp
by assp

A(g <D

1,4 =E
=I

3VE
7,6 <E
=I

2 VE
10,9 «<E
11,5 =E
8,12 Al
13 31

A (g <D
A (g 153E)

3VE

16 AE

17,18 <E

2 VE

16 AE

20,21 <E
22,19 =E

1,23 =E
15,16-24 JE
4-14,15-25 <1

In the first subderivation, as usual, we suppose that quantifiers are ar-
ranged so that substitutions are allowed — and in particular so that
2(y) is free for w in #(w,v) and §(y, w). And with dropped vari-
ables restored we have that PA - v = r (X, 7,Z) < Jw[g(J,w) A
J (X, w,Z,v)] which is to say, PA - v = r(X) < R (X, v).

rc(X, y) arises by recursion from some g;(X) and h;(X, y, u) where i,j <
k. By assumption PA defines g(X) such that PA F v = g(X) <
9(X,v) and PA defines h(X, y,u) such that PA - v = h(X, y,u) <
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H(X,y,u,v). Let PAF z = 1 (X, y) <

Ap3q[B(p.q.9) = g(X) A (Yi < Y)h(X,i,B(p,q,1)) = B(P.q,Si) AB(p.q,y) = z]
By the argument of the next section, PA defines (X, y). And where
the original R(X, y,z) =

3pg{I[B(p.q, 9, V)AEG R, VAN < y)IuIv[B(p,q,i,u) AB(p,q, Si, V) AH(X,i,u,v)] A

B(p,q,y,2)}
we require PA F z = r (X, y) < Ri(X,y,z). Here is the argument
from left to right.
1. U=ﬂ(p5Qai)(_)£(paqsisv)
2.|v=gXx) < §(X,v)
3.|v =nx,y,u) < K, y,u,v)
4.0 |z= r(%,y)
5.0 |3pq(B(p,q.9) = 2(X) A (Vi < YIWEZ, i, B(p,q,1)) = B(p,q,Si) AB(p.q,y) = z]
6.| | [Ba,b,0) =g(x) A (Vi <y)h(X,i,B(a,b,i)) = Bla,b,Si) AB(a,b,y) =z
7. B(a,b,0) = 2(X)
8.| | |8, 2(X)
9. B(a,b,0,B(a,b, )
10.] | | B(a,b, 0, 2(X))
11. B(a,b,0,8(X)) A E(Z, g(X))
12. Jv[B(a,b,d,v) AE(X,v)]
13. Vi < y)W(X,i,B(a,b,i)) = B(a,b,Si)
14. l <y
15. h(%,1,B(a,b,1)) = B(a,b,SI)
16. B(a,b,l,B(a,b,l))
17. B(a,b,Sl,B(a,b,SI))
18. H(x,1,B@a,b, 1), nx,1,Ba,b,l)))
19. H(%,1,B(a,b,1),B(a,b,S))
20. B(a,b,l,B(a,b, 1)) AB(a,b,SI,B(a,b,S)) AF(%,1,B(a,b,l),B(a,b,S]))
21. uIv[B(a,b,l,u) A B(a,b,SI,v) AFH(X,1,u,v)]
22. Vi < y)3uIv[B(a,b,i,u) A B(a,b,Si,v) A H(X,i,u,v)]
22. Ba,b,y) =1z
23. B(a,b,y,B(a,b,y))
24, B(a,b,y,z)
25. v[B(a,b,B,v) AE(X,v)]A
(Vi < y)Juv[B(a,b,i,u) A B(a,b,Si,v) AH(X,i,u,v)]AB(a,b,y,z)
26.| | |3p3g{Iv[B(p,q,9,v) A (X, V)] A
(Vi < ) [B(p.q.i,u) AB(p,q,Si,v) AH(X,i,u,v)] A B(p,q,y,2)}
27. R(Z,y,2)
28.| | R(X,y,2)

29.|z = r(X,y) => R(X, y,2)

The other direction is left as an exercise.

def B
assp

assp

A(g =)

4 def r
A (g 53E)

6 AE
from 2
from 1

7,9 =E
10,8 Al
1131

6 AE

A (g (VD)

13,14 (VE)
from 1
from 1
from 3
18,15 =E
16,17,19 AI
2031
14-21 (VI)
6 AE

from 1
23,22 =E

12,22,24 A1

2541
26 def

5,6-27 3E
4-28 —1
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(m) fx(X) arises by friendly regular minimization from g(X, y). By assump-
tion PA defines g(X, y) such that PA - v = g(X,y) < 9(X,y,v)
where § is the original formula to express and capture g. Let PA F
r(X) = puyg(X,y,0). Since the minimization is friendly, PA F
dyg (X, y,d); so by T13.19, PA defines r(X). And by definition,
PAFv =rn(x) < X v,0) ANy < v)~4(X,y,0). SoPA -
v =r(X) < Rp(X,v).

Indct: For any friendly recursive function r(X) and the original formula R (X, v)
by which it is expressed and captured, PA defines a function r(X) such
that PA v = r(X) < R(X, v) (subject to the recursion clause) .

*E13.11. Complete the justifications for Def[rm] and Def|qgt].

*E13.12. Complete the unfinished cases to T13.21. You should set up the entire in-
duction, but may refer to the text as the text refers unfinished cases to home-
work.

The Recursion Clause

We turn now to a series of results with the aim of showing that PA defines r in the
case when r arises by recursion. This will require a series of definitions and results
in PA. Some of the functions so defined parallel ones that will result from recursive
functions. However, insofar as we have not yet proved the core result, we cannot use
it! So we are showing directly that PA gives the required results.

Uniqueness. It will be easiest to begin with the uniqueness clause. Where ¥ (X, y, v)
is our formula,

Ap3q[B(p.q.9) = g(X) A (Vi < YIW(R,i,B(p.q.1)) = B(p.q.Si) A B(p.q.y) = 2]

we want PA = VmVn[(¥ (X, y,m) A F(X,y,n)) — m = n]. The argument is
structured very much as for the parallel uniqueness case in Q (T12.12) except that
the argument is in PA and so by IN, and uniqueness conditions are simplified by the
use of function symbols. The argument is simplified — but that does not mean that
it is simple!

T13.22. With (X, y, v) as described above, PA = VmVn[(F (X, y,m)AF (X, y,n))
— m = n).
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First theorems of chapter 13

T13.1

T13.2

T13.3

T13.4

T13.5

T13.6

T13.7

T13.8

T13.9

T13.10

T13.11

T13.12

T13.13

T13.14

T13.15

T13.16

T13.17

T13.18

T13.19

T13.20

For any recursively axiomatized theory 7" whose language includes £y, & is true iff it is
unprovable in T (iff T ¥~ §).

If T is a recursively axiomatized sound theory whose language includes &£y, then T is
negation incomplete.

Let T be any recursively axiomatized theory extending Q; then 7 + § <«
~IAxPrft(x,"g7).

If T is a consistent, recursively axiomatized theory extending Q, then 7' t/ §.
If T is an w-consistent, recursively axiomatized theory extending Q, then T I/ ~§.

Let T be any recursively axiomatized theory extending Q; then 77 F R <«
~3xRPrft(x," R7).

If T is a consistent, recursively axiomatized theory extending Q, then T I/ R.
If T is a consistent, recursively axiomatized theory extending Q, then 7' t/ ~R.

Let T be a recursively axiomatized theory extending Q. Then supposing 7" satisfies the
derivability conditions and so the K4 logic of provability, T - Cont — ~Prvt("§ ™).

Let T be a recursively axiomatized theory extending Q. Then supposing 7" satisfies the
derivability conditions, if T is consistent, T’ I Cont.

Let T be a recursively axiomatized theory extending Q. Then supposing 7" satisfies the
derivability conditions and so the K4 logic of provability, T = Cont <> ~Prvt(" Cont™).

Suppose T is a recursively axiomatized theory extending Q. Thenif 7 - £, then T - O2.
This lists a number of straightforward theorems of PA.
For a defined symbol, with its associated axiom and conversion procedure, 7' - 7/ < F.

For a T and &£, given a defined symbol with its associated axiom, and for any formula
in the original £, T/ = F iff T - F .

For some defined symbols, with their associated axioms and conversion procedures, T’ -
FfTHF.

If PA defines some h(X, w, Z) and g(3), then PA defines (X, y,Z) = h(X, g(y),Z).
If PA F 3v@Q (X, v), then PA F AW [@(X,v) A (Vz < v)~Q(X,v)].

Where m(X) = pv@(x,v), (a) PA F Q(X, m(X)) A (Yz < m(¥))~Q(X,z); (b) PA
Q(X,m(X)); ©)PAF (Vz < m(X))~Q(X,z); (d) PAF Q(X,v) - m(X) < v.

(@) PAF (uy < 0)Q(X,0,y) = 9; (b) if PAF (Fv < £(u))Q(X,u, v) then (i) PA defines
uwu@(X,u,v) and (ii) PA F (uv < t(u)Q(X,u,v) = pv@(X,u, v).
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For the zero case you need to show YmVn[(F (X,d,m) A F(X,0,n)) — m = n].
This is simple enough and left as an exercise. Given the zero case, here is the main

argument by IN.
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. ;v’mVn[(.?f“()'c', B,m)AF(X,0,n) > m=n]

| YmVn[(F (X, j,m) A F (X, j,n)) > m = n]
| F (X, 8),u) A F(X,8),v)

ApAq[B(p,q,?) = 2(X) A (Vi < SjHW(X,i,B(p,q,i)) = B(p,q,Si) AB(p,q,Sj) = ul
ApAq[B(p.q.?) = g(X) A (Vi < SjHW(X,i,B(p,q,i)) = B(p,q,Si) AB(p,q,Sj) = v]
| Ba,b,0) = g(X) A (Vi < S)h(X,i,B(a,b,i)) = B(a,b,Si) AB(a,b,Sj) =u

B(a,b,?) = g(%)

Vi < Sj)h(x,i,B(a,b,i)) = B(a,b, Si)

B(a,b,Sj)=u

B(c,d,0) = g(X) A (Vi < Sj)h(x,i,B(c,d,i)) = B(c,d,Si)AB(c,d,Sj)=v

B(c,d, D) = g(X)
Vi < Sj)h(x,i,B(c,d,i)) = B(c,d,Si)
Bc,d,Sj)=v
Jj<S8j
W3, j,B(a,b, j)) = B(a,b,S))
X, j,B(c.d,j)) =B(c,d,S))
k<j
k<Sj
h(X,k,B(a,b,k)) = B(a,b,Sk)
Vi < (3, i, B(a,b,i)) = B(a,b,Si)
B(a,b, j) = B(a,b,j)
B(a,b,0) = g(X) A (Vi < j)h(%,i,B(a,b,i)) = B(a,b,Si) AB(a,b, j) = B(a,b, j)
3p3q[B(p.q.9) = g(X) A (Vi < j)IWEZ, i, B(p,q,i)) = B(p,q,Si) AB(p,q,)) = B(a,b, j)]
F(x,j,B(a,b,)))
k<j
k<Sj
Wi, k,B(c,d, k) = B(c,d, Sk)
i < jh(x,i,B(c,d,i)) = B(c,d, Si)
B(c,d,j)=B(c,d,))
B(c,d, D) = g(X) A (Vi < WX, i,B(c,d,i)) = B(c,d,Si) AB(c,d, j) = B(c.d, j)
3p3q[B(p,q,9) = g(X) A (Vi < jWX,i,B(p,q,0) = B(p,q,Si) AB(p,q,j) = Blc,d, j)]
‘?(‘i""jﬁﬂ(C’d’j))
B(a,b,j) = B(c,d, )
3, j,B(c.d,J)) = B(a,b,S))
B(a,b,Sj) = B(c,d,Sj)

Uu=v

u=v
u=v

F &, Sj,u) AF(&,Sj,v) >u=v
VYmVu[(F (%, Sj,m) AF(X,Sj,n) - m=n]

AVYmVn[(F (%, j,m) AF (X, j,n)) > m=n] - VYmVu[(F (X, Sj,m)AF(X,Sj,n)) = m=n]
AVy{YmVn[(FX,y,m) AF (X,y,n)) > m=n] - VmVn[(F (X,Sy,m) A F(X,Sy,n)) - m = n]}

VYyVmVu[(F (X, y,m) AF (X,y,n)) = m = n]
VYmV¥nu[(F (X, y,m) AF(X,y,n)) —> m =n]

Zero case
A (g =)
A(g =)

3AE
3AE
A (g 43B)

6 AE
6 AE
6 AE
A (g 53E)

10 AE
10 AE

10 AE
T13.13h
8,14 (VE)
12,14 (VE)
A (g (YD)

17, T13.13n
8,18 (VE)
17-19 (V1)
=I

7,20,21 AT
2241

23 abv

A (g (YD)

25, T13.13n
12,26 (VE)
25-27 (V)
=I
11,28,29 Al
30 31

31 abv
2,2432 VE
1533 =E
34,16 =E
9,13,35 =E
5,10-36 3E
4,6-37 3E
3-38 >I
39 VI

2-40 -1

41 VI

1,42 IN

43 VE
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As before, the key to this argument is attaining ¥ (X, j, B8(a, b, j)) and F (X, J, B(c,
d, j)) onlines (24) and (32). From these the assumption on (2) comes into play, and
the result follows with other equalities.

*E13.13. Complete the demonstration for T13.22 by completing the demonstration
of the zero case.

Existence. Considerably more difficult is the existential condition. To show this,
we must show the Chinese remainder theorem in PA. Though we have resources to
state the B-function, we do not yet have all that is required to duplicate reasoning
from the beta function reference (for example, factorial). Thus we shall have to
proceed in a different way. In particular, we specially depend on the least common
multiple of a sequence of values. Again, we build by a series of results.

First, subtraction with cutoff. The definition is not recursive as before. However
the effect is the same: x = y works like subtraction when x > y, and otherwise goes
to @.

*Def[~] PAFv=x~y<x=y+vV(x<yAv=0)
OPAFFIvx=y+vVv(x<yarv=0)]

() PAF VmVn[([x = y+mV(x < yrm = O)|Alx = y+nV(x < yAn = 0)]) > m = n]

The proof of (i) and (ii) is left as an exercise. So PA defines (=). And it proves a
series of intuitive results.

*T13.23. The following result in PA:
(@A PAFa=b—a=b+(a=b)
b)) PAFb>a—>a=-b=90
(c) PAFa=b<a
dPAF@<rAr<s)—-r=-a<s-=a
) PAF(a<raAr<s)y—-r=-a<s-=a
*f) PAFa>b—a=b>0
(g PAFa~0=a

(h) PAFSa~a=1
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) PAFa>0 —>a-1<a

() PAFa>Sh—-a=~b==S(=~Sh)

k) PAFa=Sa=1

*(I) PAFa>c—(a~c)+b=(a+b)~c

(m) PAF(@>bAb>c)—>a=Mb=c)=(a=b)+c
*n) PAF(@~b)~c=a=(b+c)

() PAF(@+c)=(b+c)=a=b

*p) PAFax(b>c)=axb=>axc

Hints. (f): with the assumption you can getbotha = Sj+banda = b+(a -
b); then you have what you need with T6.68. (1): with the assumption a > ¢
you have also a + b > ¢; sothatbotha = ¢+ (@ ~ ¢c)anda + b =
¢ + [(@ + b) = c]; then =E and T6.68 do the work. (m): You can get this
with a couple applications of (1). (n): First,a > b + ¢ Va < b + c; in the
second case, a > b Vv a < b; in each of these cases, both sides equal @; for
the first main option, you will be able to show that (b +¢) +[(a = b) = ¢] =
(b+c)+[a = (b+c)] and apply T6.68. (p): Firsta = @ v a > @; in the
first case, both sides equal @; then in the second case, b > ¢ vV b < ¢; again
in the first of these cases, both sides equal @; in the last case, you will be able
to show ac + a(b = c¢) = ac + (ab = ac) and apply T6.68.

Many of these state standard results for subtraction — except where the inequalities
are required to protect against cases when @ = b goes to @. (a) and (b) extract
basic information from the definition upon which rest depend. (c) - (k) are simple
subtraction facts. And (1) - (p) are some results for association and distribution.

Next factor. Again, consistent with remainder and quotient, we say m|n when
m + 1 divides n.

Def[|] PAFm|n <> 3g(Sm x g = n)

Since factor is a relation, no condition is required over and above the axiom so that
the definition is good as it stands. And, again, PA proves a series of results. These
are reasonably intuitive. Observe, however that our choice to divide by m 4 1 means
that, as in T13.24a below, @|a.
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*T13.24. The following result in PA:
(a) PA I 0a
(b) PAFalSa
() PAF a|0
(d) PAFalb — al|(bxc)
() PAF(a>0Ab>0)—[(@a=1)|cAb=1)d— (ab=1)|cd]
(f) PAF (alSb Ab|c) — alc
*(g) PAFalb — [a|(b+ c) < alc]
(h) PAF (b =c Aalb) — [a](b <) < alc]
i) PAFb>a— bt Sa
(G) PAFalb < rm(b,a) =0
*(k) PAFrmla + (y x Sd),d] = rm(a,d)
*1) PAFSd xz<a—z <gqt(a,d)

*m) PAFa>yxSd — rmla =~ (y x Sd),d] = rm(a,d)

Hints. (g): The assumption a|b gives Sa x j = b; then a|(b + ¢) gives
Sa xk = b+ c; you will have to show j < k sothat!/ + j = k; a|c follows
with these; then a|c gives Sa x k = ¢ and you will be able to substitute for
both b and ¢ to get (Sa x j) + (Sa x k) = b + c; the result follows with
this. (k): From the assumption you have @ = (Sd x j) +r Ar < Sd; and if
you assert a + (y x Sd) = a + (y x Sd) by =I you should be able to show
a+(yxSd) = Sdx(j+y)+rar < Sd;thenwith j+y < a+(yxSd) you
can apply (3I) and the definition. (1): With r = rm(a,d) and g = gt(a,d)
by Def|gt] youhavea = Sd xq +r Ar < Sd; assume Sd X z < a for —1
and z > ¢ for ~I; then you should be able to show a < Sd x z to contradict
the assumption for —I. (m): Again let r = rm(a,d) and ¢ = gt(a, d); then
by Def[gt] youhavea = Sd xqg +r Ar < Sd; assume a > y x Sd for
—I; you should be able to show a ~ (y x Sd) = Sd(g ~y)+rArr <Sd
toward (Gw <a = (y x Sd))[a =~ (y x Sd) = Sd xw +r Ar < Sd] by
3I), to apply Def[rm].
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So (a) (the successor of) @ divides any number; (b) (the successor of) a divides Sa;
and (c) any number divides into @ zero times. (d) if @ divides b then it divides b X c;
(e) where subtraction compensates for successor, if a divides ¢ and b divides d, ab
divides cd; and (f) if a divides Sb and (the successor of) b divides ¢, then a divides
c. (g)islike (b + ¢)/a = b/a + c/a so that dividing the sum breaks into dividing
the members; (h) is the comparable principle for subtraction. From (i) if b > a, then
(the successor of) b does not divide Sa. (j) makes the obvious connection between
reminder and factor. In (k) the remainder of the second part (y x Sd) is @ so that
the remainder of the sum is just whatever there is from the first rm(a, d); (m) is the
comparable principle for subtraction. The intervening (1) is required for (m) and tells
us that if z multiples of (the successor of) d come to < a, then z < gt(a, d) — since
the quotient maximizes the multiples of (the successor of) d that are < a.

And now PA defines relations prime and relatively prime. Prime has its usual
sense. And numbers are relatively prime when they have no common divisor other
than one — though they may not therefore individually be prime. Though division is
by successor, these notions are given their usual sense by adjusting the numbers that
are said to “divide.”

Def[Pr] PAF Pr(n) < 1 <nAVx[xln - (x =0V Sx = n)]

Def[Rp] PAF Rp(a,b) < Vx[(x|a A x|b) — x = 0]

Since these are relations, no condition is required over and above the axioms. For any
b we get Rp(1, b) since the only number that divides both 1 and b is (the successor
of) @. And Rp(9,1): anything divides @, so (the successor of) @ divides @; and the
only number that divides S is (the successor of) @. But for a # @ (and so Sa # 1),
~Rp(@, Sa), for when a # @, both @ and Sa are divided by (the successor of) a and
so by a number other than (the successor of) @.

It will be helpful to introduce a couple of subsidiary notions. When G(a, b, i)
we say that i is good, and d(a, b) is (zero or) the least such good when a and b are
greater than zero.

Def[G] PAF G(a,b,i) < IxIy(ax +i = by)

Defld] PAF d(a,b) = pv[(a > B Ab > 0) — G(a,b, Sv)]
O PAFFv[(a>0Ab>0)— G(a,b, Sv)]
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Begin with b = 0 v b > @ and go for the existentially quantified goal. In
the second case, there is some / such that b = S/ and it is easy to show
a x @+ b = b x 1 and generalize.

If a or b is not greater than @ then d(a, b) is just §. Otherwise, the notion is more
significant.

Again, PA proves a series of results. Observe again that if we are interested in
whether a prime divides some b we are interested in whether Pr(Sa) A alb since it
is the successor that is divided into b.

*T13.25. The following result in PA:
(a) PA F ~Pr(9)
(b) PA = ~Pr(1)
(c) PA - Pr(2)
*(d) PAF Vx[x > 1 — 3z(Pr(Sz) A z|x)]
*(e) PAF Rp(a,b) <> ~Ax[Pr(Sx) A x|a A x|b]
(f) PAFVxVy[G(a,b,x) = G(a,b,x x y)]

*g) PAF (a>0Ab > 0) > VxVy[(Ga,b,x) AG(a,b,y) Ax > y) —
G(a,b,x ~y)]

*(h) PA - [Rp(a,b) na > @ Ab > @] — G(a,b,1)

*(1) PAF [Pr(Sa) Aal(b x c)] = (a|b Vv alc)

Hints. (c¢): This is straightforward with T13.24i. (d): You can do this by the
second form of strong induction T13.13ag; the zero case is trivial; to reach
Vx{(Vy < x)[y > 1 — 3z(Pr(Sz) A z|y)] — [Sx > 1 — 3z(Pr(Sz) A
z|Sx)]} assume (Vy < k)[y > 1 — 3z(Pr(Sz) A z|y)] and Sk > T;
then Sk is prime or not; if it is prime, the result is immediate; if it is not,
you will be able to show Sj < k and apply the assumption. (e): From
left to right, under the assumption for <>I assume Ix[Pr(Sx) A x|a A x|b]
and Pr(Sj) A jla A j|b for ~1 and JE; then you should be able to show
that 1 < Sj and 1 #£ Sj; in the other direction, under the assumption for
<l and then jla A j|b for =1, j = @ v j > @ by T13.13f; the latter is
impossible, which gives the result you want. (g): Under the assumptions
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a >0 Ab > @ andthen G(a,b,i) A G(a,b,j) Ai > j for —I and then
ap +i = bqg and ar 4+ j = bs for 3E, starting with (bq + bar) + (bsa -
bs) = (bg + bar) + (bsa = bs) by =I, with some effort, you will be able
to show a[(p + bs) + (br = r)]+ (@ = j) = b[(q + ar) + (sa = s)] and
generalize. (i): Under the assumption Pr(Sa) A a|(b X ¢) assume a + b with
the idea of obtaining a + b — a|c for Impl; set out to show Rp(b, Sa) for an
application of T13.25h to get 3x3y[bx + 1 = Sa x y]; with this, you will
have bp + 1 = Sa x ¢ by 3E; and you should be able to show a|chp and
a|(cbp + ¢) for an application of T13.24¢.

T13.25h is important. But the argument is relatively complex; it has the fol-
lowing main stages.

1.{[(a>@Ab>0)— G(a,b,Sd(a,b))] A (Vy < d(a,b))~[(a > G ANAb>0)— G(a,b,Sy)] def d
2.1(a>@Ab>0)— G(a,b,Sd(a,b)) 1 AE

3.| |Rp(a,b) Aa>BAb>0 A (g =D
4.| | Rp(a,b) 3 AE

5.1 | Yx[(x]a A x|b) — x = 0] 4 def

6.l la>0Ab>0 3 AE

7.1 | G(a,b,Sd(a,b)) 2,6 >E
8 G(a,b,a) [a]

9.| | Ga,b,b) [b]

10.| | Vx[G(a,b,x) — d(a,b)|x] [c]

11.] |d(a,b)|a 8,10 VE
12.| |d(a,b)|b 9,10 VE
13.| |d(a,b)|la And(a,b)|b 11,12 AT
14.| |d(a,b) =@ 5,13 VE
15.| | G(a,b, 1) 7,14 =E
16. | [Rp(a,b) Aa > @ Ab > @] — G(a,b, 1) 3-15 -1

Hint. For (c) let ¢ = ¢t(i, d(a, b)) and r = rm(i, d(a, b)) then from the def-
initions you have i = (Sd(a,b) x q) + r andr < Sd(a, b) and from (1) of
the main argument (Vy < d(a,b))~[(a > O Ab > 0) — G(a,b,Sy)];
then under the assumption G(a,b,i) for —I you should be able to show
G(a,b,i = (Sd(a,b) x q)) using (6) from the main argument with (f) and
(g); butalsoi = (Sd(a,b) x g) = r so that G(a, b, r). Now the assumption
that  is a successor leads to contradiction; so r = @ and d(a, b)|i.

T13.25(a) - (c) are simple particular facts. From (d) every number greater than one
is divided by some prime (which may or may not be itself). From (e), a and b are



CHAPTER 13. GODEL’S THEOREMS 659

relatively prime iff there is no prime that divides them both; in one direction this is
obvious — if a prime divides them both, then they are not relatively prime; in the
other direction, if some number other than (the successor of) zero divides them both,
then some prime of it divides them both. (f) and (g) let you manipulate G; they are
required for (h) which is in turn required for (i). (h) is an instance of Bézout’s lemma
according to which there are x and y such that ax + d = by when d is the greatest
common divisor of a and b; if a and b are relatively prime, their greatest common
divisor is one. (i) is sometimes known as Euclid’s lemma: if Sa is prime and Sa
divides b x ¢ then Sa divides b or c; if Sa is prime and divides b x ¢ then it must
appear in the factorization of b or the factorization of ¢ — so that it divides one or
the other.

Now least common multiple. Given a function m(i), lem{m(i) | i < k} is the
least y > @ such that for any i < k, Sm(i) divides y. We avoid worries about the
case when m (i) = @ by our usual account of factor. And since y > @ it is possible to
define a predecessor to the least common multiple, helpful when switching between
the numerator and denominator of fractions.

*Defllem] lem{m(i) |i <k} = pv[v > @A (Vi < k)m(i)|v]

() PAF 3x[x > O A (Vi < k)m(i)|x]

Hint: This is an argument by IN on k. For the basis, you may assert that 1 >
@; then the argument is trivial. For the main argument, under the assumptions
Ax[x > OA (Vi < j)m(i)|x] for >Tanda > OA (Vi < j)m(i)|a for IE, set
out to show a x Sm(j) > 0 A (Vi < Sj)m(i)|(a x Sm(j)) and generalize.

Because lcm is defined by minimization, only the existence condition is required. As
a matter of notation, let [[m], = lem{m(i) | i < k} and, where m is understood, let
Iy =lem{m(i) : i < k}.

Defplm] v = plm{m (@) |i <k} < Sv=Iem{m(@)|i <k}
(1) PAF Ju(Sv =1)
(i) PAFEVXVY[(Sx = ASy =) > x = Y]

Again, let p[m]; = pim{m(i)|i < k} and, where m is understood, py = plm{m(i) |
i <k}

*T13.26. The following result in PA:
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(@) PAFIp=1
(b) PAFj <k - m(j)|lk
*c) PAF (Vi <k)m(@)|x — prlx

*(d) PAF Vu[(Pr(Sn) Anl|ly) — (3i < k)n|Sm(i))]

Hints. (c): Let ¢ = gt(x, pr) and r = rm(x, py); assume (Vi < k)m(i)|x
for —1I; you have (Vy < lp)~[y > 0 A (Vi < k)m(i)|y] from def [} with
T13.19c¢; you should be able to apply this to show that » = @ and so that pg |x.
(d): This is an induction on k. The basis is straightforward given /g = 1 from
T13.26a; for the main argument, you have (Vi < j)m(i)|l; from def [;;
under assumptions Yn[(Pr(Sn) An|l;) — (3i < j)n|Sm(i)] and Pr(Sa) A
alls; for —I, you should be able to use T13.26¢ to show pg;|(l; x Sm(j));
and from this a|/; v a|Sm(j); in either case, you have your result.

(a) for any function m(i), the least common multiple for i < 0 defaults to 1. (b)
applies the definition for the result that when j < k, m(j) divides lem{m(i)|i < k}.
(c) is perhaps best conceived by prime factorization: the least common multiple of
some collection has all the primes of its members and no more; but any number into
which all the members of the collection divide must include all those primes; so the
least common multiple divides it as well. (d) is the related result that if a prime
divides the least common multiple of some collection, then it divides some member
of the collection.

Finally we arrive at the Chinese Remainder Theorem. Let m (i) be a function
such that (successors of) its values are relatively prime; A(i) is a function whose
values are to be matched by remainders. Then the theorem tells us that if for all
i <k,m@)>@andm() > h(i), and if foralli < j < k, Rp(Sm(i), Sm(j)),
then Ap(Vi < k)rm(p,m(i)) = h(i). So the remainder of p and m (i) matches the
value of h(i).

#T13.27. PAF [(Vi < k)(m(i) > GAm(i) > h(i))AViVj(i < jAj <k — Rp(Sm(i), Sm(j)))]
— Ap(Vi < k)rm(p,m(i)) = h(i). Let,
Ak) =g (Vi <k)(m(@) > OAm(@i) = h(i))AViVji < jAj <k — Rp(Sm(i), Sm(j)))
B(k) =4r Ap(Vi < k)yrm(p,m(i)) = h(i).
So we want PA - A(k) — B(k). By induction on n we show Vu[n < k —

(A(m) — B(n))]. The result follows immediately with k < k. Here is the
overall structure of the argument:



CHAPTER 13. GODEL’S THEOREMS

9.
10.
11.
12.
13.

14.
15.
16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

26.
217.
28.
29.

30.
31.
32.
33.
34.

© NowvAE woN o~

661

12 <k > (A®) > 8®)

|a <k = (Aa) > B(a))
ja <k

a<k
a<k
Aa) > B(a)
A(Sa)
[((Vi <a)m@() >0 Am@E) > h() AViIVj((@ <jAJj<a)—> Rp(Sm(@),Sm(j)))] -
Ap(Vi < a)rm(p,m(i)) = h(i)
Vi <Sa)m(@) >0 Am@)=>=h(@) AViVj(i<jAj<Sa)— Rp(Sm@i),Sm())))
Vi < Sa)(m(@i) > 0 Am() = h(i))
VivVj((i <jAj<Sa)— Rp(Sm(i),Sm())))
Ap(Vi < a)rm(p,m(i)) = h(i)
Vi <a)rm(r,m(i)) = h(i)
Rp(I[m]a, Sm(a))
Sm(a) >0
lo>0
G(ly,Sm(a),1)
G(lg,Sm(a),r + (I = 1) x h(a))
AxAy Iy xx + [r + (g = 1) x h(a)] = Sm(a) x y)
lyxb+[r+ (s =1)xh(a)]=Sma)xc

s=lgxb+h@)+r
s = Sm(a) x ¢ + h(a)
Vi < Sa)yrm(s,m(i)) = h(i)
Ap(Vi < Sa)rm(p,m(i)) = h(i)
B(Sa)
B(Sa)
B(Sa)
A(Sa) - B(Sa)
Sa <k — (A(Sa) = B(Sa))
[a <k — (A@) = B(@)] = [Sa < k — (A(Sa) > B(Sa))]
Va(n <k > (An) > B(1)] — [Sn <k - (A(Sn) —> B(Sn))])
(Vn < k)(A@) - B(n))
k<k
A(k) = Bk)

Hints. (c): Suppose otherwise; with T13.25e there is a u such that Pr(Su) A
ully Au|Sm(a); then with T13.26d there is a v < a such that u|Sm(v) so that
with (11) Rp(Sm(v), Sm(a)). But this is impossible with u|Sm(a), u| Sm(v)
and T13.25e. (d): By Def|lcm], I, > @ so that h(a)l, > h(a). Then with
T13.23aand T13.23p you can show s = (Iuxb+[r+ (I, = 1)xh(a)])+h(a)
and apply (20). (e): Suppose for (V) u < Sa;thenu < avu = a. In the first
case, with T13.26b and T13.24d m(u)|l4 (b + h(a)); so that there is a v such
that Sm(u)v = l,(b + h(a)); then using (21) and T13.24k, rm(d, m(u)) =

[a]
A (g =)
A (g =]

3T13.131
4T13.13m
2,5 —>E
A(g =D

6 abv

7 abv

9 AE

9 AE

[b]

A (g 123E)

[c]

T13.13e

def I,

14,15,16 T13.25h
17 T13.25f

18 def G
A (g 193E)

def

[d]

[e]

2341

24 abv
19,20-25 3E
12,13-26 dE
7-27 —1
3-28 =1
2-29 —1

30 VI

1,31 IN
T13.13m
32,33 (VE)
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rm(s,m(u)); so that you can apply (13). In the second case, with (22) and
T13.24k rm(d, m(u)) = rm(h(u), m(u)); but from (10), m(u) > h(u) and
you will be able to show that rm(h(u), m(u)) = h(u).

The core of this derivation is to obtain (21) and (22) and from them (23). For a claim
about all i < Sa, s appears in the forms from both (21) and (22). For any i < a and
x, m(i) divides [, x evenly; so m(i) divides the first term from (21) evenly; so the
remainder of (i) and s is the same as the remainder of m (i) with r — and with (13)
this is just (7). But the multiplier » + h(a) is chosen so that from (20) and (21), we
get (22); so when i = a, m(i) divides the first term evenly, and since m(i) > h(a)
again the remainder of m (i) and s is /(7). Putting these together, for any i < Sa, the
remainder of m(i) and s is & (7). The “trick” to this is in the construction of s so that
remainders for i < a stay the same, but the remainder at a is h(a)."”

For our final result in this section, we require a couple notions for maximum
value. First maxp for the greatest of a pair of values, and then maxs for the maximum
from a set.

Def[maxp] PAF maxp(x,y) = uvlv > x Av > y]

1) PAFJv[v=xAv>y]

Hint: x > y v y > X; in either case the result is easy.

Def[maxs] PA F maxs{m(i) |i <k} = pv[(Vi < k)m(i) < v]

1) PAF [(Vi <k)m(i) < v]

Hint: First obtain maxp and T13.28a. Then the argument is by IN on k.
For the show you will have assumptions of the sort (Vi < j)m(i) < [ and
a < Sj;thena < j vVa = j;in either case you will be able to show that
m(a) < maxp(l,m(j)).

So maxp(x, y) is the maximum of x and y, and maxs{m (i) | i < k} is the maximum
from m(i) with i < k. As a matter of notation, let maxs[m]; = maxs{m(i) |i < k}
and where m is understood, maxs; = maxs{m(i) |i < k}. A couple of results are
immediate with T13.19b.

T13.28. The following result in PA.

12Eor this construction see Boolos, The Logic of Provability, 30-31.
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(@) PAF maxp(x,y) > x Amaxp(x,y) >y
(b) PAF (Vi < k)ym(i) < maxsy

These simply state the obvious: that the maximum is greater than or equal to the
rest. From (a) the maximum is the greater of the the two in the pair; from (b) the
maximum is the greatest of the values of the function.

Now we are in a position to generate some results for the 8 function. With values
of ¢ and m(i) as below, we may demonstrate the antecedent to the CRT (T13.27),
and so obtain its consequent — where this is a result for the f-function.

*T13.29. PAF 3paq(Vi < k)B(p,q,i) = h(i).
Let r =y maxp(k, maxs[h]i);
S =gt ST
q = lemfi | i < s}
m(i) =g g X Si.
Recall from Def[beta] that PA = B(p,q,i) = rm(p,q x Si). And we may

reason,

1| (Vi <k)m(i) > @ Am(@i) > h(i)) [i]

2.\ ViVj[(i < jAj <k)— Rp(Sm(),Sm(j))] [l

3. 3p(Vi < k)yrm(p,m(i)) = h(i) 1,2 T13.27
4.\m(@)=¢qxSi def
5.|3p(Yi < k)yrm(p, q x Si) = h(i) 34 =E

6.1 B(p,q.i) =rm(p,q x Si) def
7.13p(Vi < k)B(p,q,i) = h(i) 5,6 =E

8.| | (Vi <k)B(p,q,i) =h(i) A (g 73E)
9.1 [Fq(Vi <k)B(p,q.i) = h(i) 8 3l
10.| | 3p3q(Vi < k)B(p.q.i) = h(i) 931
11.|3p3q(Vi < k)B(p,q,i) = h(i) 7,8-10 3E

So the demonstration reduces to that of (i) and (ii), the two conjuncts to the
antecedent of CRT (T13.27). (i): Under the assumption j < k for (VI) it
will be easy to show m(j) > @; then you will be able to use T13.28 to show
h(j) < s; but also with T13.26b that r|g and from this that s < g which
gives s < g x S and the result you want. (ii): Here is the main outline of the
argument.
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27.

28.
29.

li<Jjnj< k

i<j

j<k

| ~Rp(Sm(i), Sm(})
Ax[Pr(Sx) A x|S(g x Si) Ax|S(g x S))]
Pr(Sa) nal|S(g x Si) AalS(g x S))

Pr(Sa)
alS(g x Si)
alS(g x Sj)
alg(j =1i)
algval(j =1i)
alq
alq
Fw <)
alq
alq
al(g x Si)

S(gx8Si)>qxSi
S(gxSi)y>qgxSi
al(S(g x Si) = (g x Si))
all

SO < Sa

d<a

atl

L

L

Rp(Sm(i), Sm(j))
(i <JjnJj<k)=>Rp(Sm(@), Sm(;j))]
ViVl < j A j <k)— Rp(Sm(i), Sm(j))]

664

Ag—I1

1 AE
1 AE
A (c ~I)

4T13.25¢
A (c 53E)

6 AE

6 AE

6 AE

[a]

7,10 T13.251
A (g 11VE)

12R
A (g 11VE)

[b]
11,12-13,14-15 VE
16 T13.24d
T13.13h

18 T13.13m
19,8,17 T13.24h
20 T13.23h

def Pr

22 T13.13k

23 T13.24i
21,24 11

5,625 3E
426 ~E
1-27 >1
28 VI

Hints. (a): Withi < j you will be able to show a|(S(g x Sj) = S(g x Si));
and with some work that S(g x Sj) = S(g x Si) = q(j = i). (b): With
i < j,youhave j =i > @J; so there is an / such that S/ + @ = j = i; you
will be able to show a|S! and with T13.26b, /|g so with T13.24f, a|q.

Now a theorem that uses this result to show that a S-function for values < k can
always be extended to another like it but with an arbitrary k" value. We show that
given f(a, b, i) there are sure to be p and g such that (p, g, i) is like B(a, b, i) for
i < k and for arbitrary n, 8(p, g, k) = n. This is because we may define a function h
whichis like B(a, b,i) fori < k and otherwise n — and find p, ¢ such that 8(p, q,i)
matches it. As a preliminary,

Def[h(i)] PAF v =h(i) < [(i <krv=RBabi)Vv(Qi>kav=n)
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G PAF[(i <kArv=8ab,i)Vv(i=kArv=n)

(i) PAF VaVy[([i <k Ax = B(a,b,i))V(i=kAx=m)|A[i <kAy=
Bla,b,i)) v(i=knAy=n)])—>x=y]

Then,

*T13.30. PAF 3pIq[(Vi < k)B(p,q,i) = B(a,b,i) A B(p,q,k) = n].
Hints: From Def[h(i)] you have (k < k A h(k) = B(a,b,k)) Vv (k = k A
hk) =n)and (I <k Ah(l) = B(a,b,l)) v (I =k Ah(l) = n); and from
T13.29 applied to Sk, Ipq(Vi < Sk)B(p,q,i) = h(i); then with (Vi <
Sk)B(c,d,i) = h(i) for IE, you will be able to show that B(c,d, k) = n
and under [/ < k for (V1) that 8(c,d,!) = B(a,b,l).

For application of this theorem, it is important that free variables are universally
quantified. So the theorem is effectively VkVnVaVb3ap3aq[(Vi < k)B(p.q.i) =

Bla,b,i) A B(p.q.k) = n]

And finally the result we have been after in this section: As before, let ¥ (X, y, v)
be our formula,

Apq[B(p.q.0) = g(X) A (Vi < y)WX.i,B(p.q.i)) = B(p.q.Si) A B(p.q.y) = V]
Then we want, PA - Jv ¥ (X, y, v).

*T13.31. For ¥ as above, PA - JvF (X, y, v).

Let ¥ (X, y,v) be as above; the argument is by IN on y. The zero case is left
as an exercise. Here is the main argument.
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1. jv?(f,@,v)

2 EIU?’(J‘E,], v)

3.| |Fw3ApIq[B(p,q,0) = &) A (Vi < j)AEX,i,B(p,q,i)) = B(p,q,Si) A B(p.q,)) = v]
4 f(a,b, ?) = g(x¥) A (Vi < j)WZX,i,B(a,b,i)) = B(a,b,Si) AB(a,b,j) =z
5.1 |B(a,b,0) = g(X)

6 (Vi < j)M3Z,i,B(a,b,i)) = B(a,b,Si)

7 ApAq[(Vi < Sj)B(p.q,i) = B(a,b,i) A B(p,q,8)) = kX, j, B(a,b, j))]

8 | (Vi <Sj)B(c,d,i) = B(a,b,i) AB(c,d,Sj) =h{Z,j,Ba,b,)))

9. (Vi < S))B(c,d,i) = B(a,b,i)

10. B(c,d,Sj) = hX, j,B(a,b,j))

11. 3<Sj

12. B(c,d,d) = B(a,b,0)

13. B(c,d, D) = g(xX)

14. |l <Sj

15. B(c,d,l) = B(a,b,l)

16. Il<jvi=j

17. <

18. &, 1, B(a,b, 1)) = B(a,b, SI)

19. Sl <Sj

20. B(c,d,SI) = B(a,b,SI)

21. hXx,1,B(a,b,l)) = B(c,d,SI)

22. (1=

23. n3x,1,B(a,b,1)) = B(c,d,SI)

24. h(x,1,B(c,d, 1)) = B(c,d,SI)

25. h(x,1,B(c,d, 1)) = B(c,d,SI)

26. (Vi < SjHh(x,i,B(c,d,i)) = B(c,d,Si)

27. B(c,d,Sj) = B(c,d,S))

28. Blc,d, D) = g(X) A (Vi < S)HI(X,i,B(c,d,i)) = B(c,d,Si) A B(c,d,Sj) = B(c,d,S))
29. Jv3ApIq[B(p,q,0) = 2(X) A (Vi < Sj)MX,i, B(p,q,i) = B(p,q,Si) AB(p,q,Sj) =v]
30. F (X, S)j,v)

31. F (%, S)j,v)

32.0 |WF R, S),v)

33. | wF (X, j,v) > F (X, S),v)

34. | Vy[FvF (X, y,v) - wF (X, Sy, v)]

35. | wF (X, y,v)

From the assumption, there are a, b such that the S-function has the right features
for every i < j. With T13.30 there are ¢, d such that the B-function has the right
features for i < Sj. The derivation establishes that this is so and generalizes.

This completes the demonstration of T13.21! So for any friendly recursive func-
tion r(X) and original formula R (¥, v) by which it is expressed and captured, PA
defines a function #(X) such that PA - v = r(X) < R(X, v). In particular, then, PA

Zero case
A (g =)

2 abv
A (g 33JE)

4 AE
4 AE
T13.30 VE
A (g 73E)

8 AE

8 AE
T13.13¢
9,11 (VE)
512 =E

A (g (VD)
9,14 (VE)
14 T13.13n
A (g 16VE)

6,17 (VE)
17 T13.13k
9,19 VE
18,20 =E
A (g 16VE)
10,22 =E
1523 =E
16,17-21,22-24 VE
14-25 (V1)
=I

13,26,27 A

28 A1
29 abv

7,8-30 3E
34-313JE
2-32 =1
33 VI
1,34 IN
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defines functions corresponding to all the primitive recursive functions from chap-

ter 12.

In addition, say a recursive relation is friendly iff it has a friendly characteristic
function. Then as a simple corollary, PA defines relations corresponding to each
friendly recursive relation, equivalent to the original formulas used to express them.

T13.32. For any friendly recursive relation R(X) with characteristic function chg(X),

()

(b)

PA defines a relation R(X) such that PA = R(X) < chr(X) = @. As a
simple corollary, where R(X) is originally captured by R (X, @), PA F R(X) <>
R(X, D).

Suppose a friendly recursive relation R has recursive characteristic function

cha(X). Since R is friendly, it has a friendly characteristic function that is
defined in PA. Set,

PA - R(X) < chg(X) = @

Then PA defines R(X). In fact, however, for relations defined in chapter 12 we
will want to define relations whose structure matches the structure of func-
tions there defined. For this, it will be helpful to obtain the same result by an
(informal) induction.

Say an atomic recursive relation is one like EQ, LEQ or LESS whose characteris-
tic function does not depend on the characteristic functions of other recursive
relations. Then let,

PAF R(X) <> cha(X) = 0

Now suppose PA F Pi(X) < chp,(X) = @ and ...and PA F P,(X) <
che,(X) = @. And consider a recursive operator oP(P1(X) ...Pn(X)) with
characteristic function f(che,(X) .. .chs (X)). Since f(chp,(X)...chs, (X)) is
friendly, PA defines f(X). Let ¢(X) = uv[(P(X) Av = 0) vV (~P(X) Av =
1)] and set,

PAF Op(Pi(R) ... Pa(R) © f(e(F) ... 60, () = @

From this axiom, Op is defined by an expression including ¢, .. . ¢, of which
Py ... Py are parts. So it works like the axiom from 13.3.1. But by T13.38
(which we shall see shortly), PA F che(X) = 0 V chp(X) = 1; and it is
easy to see, PA F ¢(X) = chp(X); so that PA = Op(P1(X)... Py(X)) <
Sf(che, (%) ... chp, (X)) = @. Now for any R(X) = 0P(P1(X) ...Pn(X)) set,
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PAF RF) < Op(Pi(3)... Pa(3))

Then PA F+ R(X) < f(che,(X)...che, (X)) = @; which is to say, PA
RE) < chy(F) = 0.

(d) So for any primitive recursive relation defined in chapter 12, PA - R(X) <
chg(X) = @. Further, with T13.21, PA - v = chr(X) < R(X,v); so PA
0 = cha(X) < R(X,0); so PAF R(X) < R(X,0).

So for example, from part (a) we have, say, PA - Eq(X) <> cheo(X) = @. For part
(b), psJ(P(X), a(X)) has characteristic function times(chs(X), cha(X)); so we set PA -
Dsj(P(X), Q(X)) < times(chs(X), cho(X)) = @; then where R(X) = DsJ(P(X), Q(X)),
PA - R(X) <> Dsj(P(x), O(x)). Thus PA defines both functions and relations corre-
sponding to the friendly recursive functions and relations, equivalent to the original
formulas used to express and capture them.

*E13.14. Show (i) and (ii) for Def[~]. Then show T13.23 (a) and (o). Hard core:
show all of the results in T13.23.

*E13.15. Show T13.24d and T13.241. Hard core: show all of the results in T13.24.

*E13.16. Provide a complete demonstration of T13.25h including the justification
for d . Hard core: Show all of the results from T13.25.

*E13.17. Show the condition for Def[lcm] and provide a demonstration for T13.26d.
Hard core: show all of the results for Def[lcm], Def|[plm] and T13.26.

*E13.18. Provide derivations to show each of [a] - [e] to complete the derivation for
T13.27.

E13.19. Provide a derivation to show the condition of Def[maxs]|. Hard core: Pro-
vide justifications for Def[maxs] and Def[maxp]; and show the results in
T13.28.

*E13.20. Complete the demonstration for T13.29.
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Font conventions

At different stages, we employ different fonts for items of different sorts. For the
most part, this is straightforward. Here we collect our conventions together.

1.

Expressions of symbolic object languages are given in italics; these include
the function (lowercase) and relation (first letter uppercase) symbols abbre-
viated or defined in Q and PA.

Jfunction, Relation

. Objects from the semantic account are indicated by a sans-serif font; these in-

clude recursive functions (lowercase) and relations (small-caps) — and bold
when special symbols are used.

function, RELATION,

. The language for description of expressions in the formal object language

uses script variables,

P, p

. The language for description of metalinguistic expressions uses Fraktur vari-

ables,
A a

. Function and relation symbols introduced into PA from recursive functions

and relations by T13.21 and T13.32 have their first character in a “hollow”
blackboard bold font — these are not automatically equivalent to ones that
may be described in (1), though we may set out to demonstrate equivalence.

Sunction, Relation

. Object expressions for computer languages are given in a typewriter font,

Expression

. In addition, for informal inductions italic i, j generally index objects ar-

ranged in series, but i, j when the objects are specifically the members of V.
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*E13.21. Show T13.30. Hard core: show the conditions for Def[/(i)].

*E13.22. Complete the demonstration of T13.31 by showing the zero case.

E13.23. Give the demonstration to show PA = Op(Py(X) ... P,(X)) < f(che, (X)
... Chp, (X)) = @ from (b) of T13.32.

13.4 The Second Condition: o(# — Q) — (0P — 0Q)

We turn now to demonstration of the second derivability condition. Again there is
some background — after which demonstration of the condition itself is straightfor-
ward. The overall idea is simple: Suppose both O($ — @) and O5. Then there are j
and k such that PRFT(j, " — @) and PreT(k, " 7). Intuitively, then, | = jxkx2 €'
numbers a proof of @ — for we prove » — @ and £, so that @ follows immediately
as the last line by MP. So prrT(l," @), and OQ follows from the assumptions. The
task is to prove all of this in PA.

13.4.1 Some Applications

Having shown that PA defines recursive functions, we require some results about
them. To start, observe that plus(x, y), say, is defined by a complex expression
through recursion, and so is not the same expression as our old friend x + y. Thus
it is not obvious that our standard means for manipulation of + apply to plus. We
could recover our ordinary results if we could show PA - x + y = plus(x, y). And
similar comments apply to other ordinary functions and relations. Thus initially we
seek to show that defined relations functions are equivalent to ones with which we
are familiar. Again many details are shifted to exercises and/or answers to exercises.

Equivalencies. We begin with equivalences between functions and relations al-
ready defined in PA, and ones that result by T13.21 and T13.32. So we begin with
functions and relations from £y including S, +, X, =, <, <, truth functional opera-
tors, bounded quantifiers and bounded minimization.

As a preliminary, we require a result that is fundamental to every case where a
function is defined by recursion. As above let ¥ (X, y, v) be,

Apq[B(p.q.0) = g(X) A (Vi < y)WX.i,B(p.q.i)) = B(p.q.Si) A B(p.q.y) = V]
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and suppose PA - v = f(X,y) < F(X,y,v) so that f(X, y) is defined by recur-
sion. Then the standard recursive conditions apply. That is,

T13.33. Suppose f(¥,y) is defined by g(¥) and A(X.y.u) so that PA + v =
f(X,y) < F(X,y,v). Then,

(@) PAF f(X.0) = g(x)

(b) PAE f(X,.S(»)) = h(x.y, f(X,))
Hint: (a) follows easily in 6 lines with 3p3q[B(p,q,d) = g(xX) A (Vi <
O)h(X.i.B(p.q.1)) = B(p.q.S1) A B(p.q.9) = f(x.0)]. For (b),

1.|3p3q[B(p.q,0) = g() A (Vi < SY)W(X,i,B(p,q,1)) = B(p,q,Si) AB(p,q,Sy) = f(Z,Sy)]  def

2. | B(a,b,0) = g(X) A (Vi < Sy)h(X,i,B(a,b,i)) = B(a,b,Si)AB(a,b,Sy) = F(%,Sy) A (g 13E)
3. | (Vi < Sy)h(Z,i,B(a,b,i)) = Bla,b, Si) 2 AE
4lly<sy T13.13h
5.| | r(x,y,B(a,b,y)) = B(a,b,Sy) 3,4 (VE)
6. | B(a,b,Sy) = f(X,Sy) 2 AE

7| | fR,Sy) =h3Z,y,B(a,b,y)) 5,6 =E

8.| | B(a,b,d) = g(x) 2 AE

9. Jj<y A (g (YD)
10.| | |j<Sy 9 and T13.13h
11| | | (X, j,B(a,b, j)) = B(a,b,S)) 3,10 (VE)
12.| | (Vi < »h(X,i,B(a,b,i)) = B(a,b,Si) 9-11 (V)
13.| | B(a,b,y) = B(a,b,y) =I

14.| | B(a,b,0) = g(X) A (Vi < y)W(Z,i,B(a,b,i)) = B(a,b,Si) AB(a,b,y) = B(a,b,y) 8,12,13 Al
15.| |3p3q[B(p,q,0) = g(X) A (Vi < )W, i, B(p,q,1)) = B(p,q,Si) A B(p,q,y) = B(a,b, y)] 14 31

16.| | f(%,y) = B(a,b,y) 15 def

17.1 | f(X,Sy) = WX, y, F(X,¥)) 7,16 =E
18.| £(%,S(») = h(X,y, f(X,¥)) 1,2-173E

The key stages of this argument are at (7) which has the result with 8(a, b, y)
where we want f(X, y) and then (16) which shows they are one and the same.

From this theorem, our defined functions behave like ones we have seen before, with
clauses for the basis and then for successor. This lets us manipulate the functions
very much as before. The importance of this point will emerge shortly, in application
to recursive cases.

With this theorem we are in a position to show that definitions of functions and
relations from chapter 12 are “coordinate” with definitions in PA.

CF The definition of a recursive function is coordinate with its definition in PA iff,
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(i) f(X) is an initial function init(x) and f(X) is init(X)
(c) f(X,y,Z2) is defined from g(y) and h(X, w, Z) by composition so that f(X, ¥, Z)
= h(X,g(y), 2), and for coordinate g(x) and h(X,w,Z), PA + f(X,¥,Z2)
< h(x, g(y). 2).
(r) f(X,y) is defined from g(X) and h(X,y, u) by recursion so that f(X,0) =
g(x) and f(X, Sy) = h(X,y.f(X,y)) and for coordinate g(X) and h(xX, y, u),
PA - f(X,0) = g(¥) and PA = f(X, Sy) = h(X, y, f(X, ).
(m) f(X,y) is defined from g(X,y) by friendly regular minimization so that
f(X) = wy[g(x, y)] and for coordinate g(¥, ), PA = f(¥) = py[g(X, y)].

CR The definition of a recursive relation is coordinate with its definition in PA iff,

(a) R(X) is an atomic ATom(X) and R(X) is Atom(¥).

(0) R(X) is defined from an operator op and relations P{(X)... Pn(X) so that
R(X) is 0P(P1(X) . .. Pn(X)) and for coordinate P;(X) ... P,(X), PA - R(X)
< Op(P1(X) ... Py(X)).

T13.34. (a) For any friendly recursive function r(X) and original formula R (¥, v) by
which it is expressed and captured, PA defines a coordinate function r(X) such
that PA - v = r(X) < R(X,v). And (b) for any friendly recursive relation
R(X) with characteristic function chg(X), PA defines a coordinate relation R(X)
such that PA = R(X) <> chg(X) = 0.

The argument is by simple review of arguments for T13.21 and T13.32 to-
gether with T13.33.

From this theorem we simply “write down” claims for defined functions and re-
leations directly from the recursive definitions. So, for example from the definition
for plus(x,y) on p. 554, PA F plus(x,0) = idntf(x) and PA F plus(x, Sy) =
suc(zidnt; (x,y, plus(x, y))). Again, the defined symbol plus is not the same as the
primitive symbol 4. But now we are in a position to show that the functions are
equivalent.

T13.35. The following result in PA.

(a) PAF suc(x) = Sx

I.|v=suc(x) < Sx=v def suc
2. | suc(x) = suc(x) <> Sx = suc(x) 1 VE
3. | suc(x) = suc(x) =I

4. | suc(x) = Sx 2,3 =E
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(b) PAF zero(x) =@

(c) PA+ idnti(xl S Xj) = Xg

(d) PAF plus(x,y)=x+y

(e) PAF times(x,y) =x Xy

673

The first line of (a) is from T13.21. Arguments for (a) - (c) are very much the
same and nearly trivial. Arguments for (d) and (e) are by IN. Here is the case
for (d) as an example.

©

10.
11.
12.
13.
14.
15.
16.
17.
18.

® Nk w =

aplus(x) = idnt% (x)

aplus(x) = x

Plus(x, D) = gplus(x)
Plus(x,d) = x
x+0=x

Plus(x,8) =x+0
leus(x, J)=x+J

Plus(x, Sj) = hplus(x, j, plus(x, j))
Bplus(x, j,u) = suc(idnts (x, j,u))
hplus(x, j,u) = Su

hplus(x, j, plus(x, j)) = S plus(x, j)
Plus(x, Sj) = S plus(x, j)
Plus(x,Sj) = S(x + Jj)
Sx+j)=x+S8j

Plus(x,Sj) =x+Sj

[plus(x, j) = x + j1 — [plus(x, Sj) = x + Sj]
Vy([plus(x,y) = x + y] = [plus(x, Sy) = x + Sy])

plus(x,y) =x+y

def from plus, T13.34
1 with T13.35¢
T13.34

32 =E

T6.41

45 =E

A(g =D

T13.34

def from plus, T13.34
9 with T13.35a,c
10 VE

8,11 =E

12,7 =E

T6.42

13,14 =E

7-15 =1

16 VI

6,17 IN

Again, we simply write down the expressions on (1) and (9) with T13.34; and
on (3) and (8) T13.34 makes the conditions for plus(x, y) work like the ones
for x + y — so that with zero and inductive cases, the equivalence results by

IN.

So this theorem establishes the equivalences we expect for the defined symbols suc,
zero, idnt, plus and times. Again, 4+, x and the like are primitive symbols of Lyr
where plus and times are defined according to our induction from the corresponding
recursive functions. Having shown that the functions are equivalent, however, we
may manipulate the one with all the results we have achieved for the other.

Some additional results will be facilitated by a couple of auxiliary definitions.
pred(y), sg(y) and csg(y) are defined directly, without appeal to recursive functions
— but still behave as we expect.
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Defpred] PA & pred(y) =y =1

Since this is a composition of functions, immediate by T13.17.

Deflsgl PAFv=sg(y) <> (y=0Av=0)Vv(y>0Arv=S50)
QD PAFI[( =0Av=0)V(y>0Av=1)]

() PAF VYuVu{[(y =0 Au=0)v(y>0Au=1))A(y=0Av =
Hv(y>0Arv=1)]—u=uv}

Deflcsgl PAFv=csg(y) < (y =0Arv=1)V(y>0Av=0)
() PAFI[(y=0Av=1)V(y>0Arv=0)]

() PAF VuVu{[(y =0 Au=1) vy >0Aru=0)A(y=0Av =
NV >0Av=0)]—>u=nuv}

And some basic results on these notions,

T13.36. The following result in PA.
(@) PAF pred(®) =0
(b) PA F pred(1) = @
(c) PAFy >0 — Spred(y) =y
(d) PAF pred(Sy) =y
(€) PAFy =0 < sg(y) =0
) PAFy >0 < sg(y)=1
(@ PAFy =0 < csg(y) =1
(h) PAFy >0 < csg(y)=0

(a) - (d) recover from the definition some basic results for pred. (e) and (f) extract
basic information for the behavior of sg; and then (g) and (h) for csg.

And given these notions in PA, we can build on them for another set of equiva-
lents.
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*T13.37. The following result in PA.

(a) PA+ pred(y) = pred(y)

#(b) PA b subc(x,y) =x =y
(c) PAFabsval(x -y) = (x = y) + (y ~ x)
(d) PAF sg(y) = s8(y)
() PAF esg(y) = esg(y)

() PAFE Eq(x,y) <> x =y

(g) PAF Leg(x,y) & x <y

(h) PAF Less(x,y) <> x <y

*(i) PA F Neg(P(¥)) <> ~P(%)

() PAF Dsj(P(x), Q(y)) < P(x) v O())

Hints. (b): This works in the usual way up to the point in the show stage
where you get subc(x, Sj) = pred(x = j); then it will take some work to
show x = Sj = pred(x = j); for this begin with x < jvx > j by T13.13q;
the first case is straightforward; for the second, you will be able to show
S(x = Sj) = Spred(x = j) and apply T6.40. (f): For this relation, you have
Eq(x,y) < sg(absval(x - y)) = @ from the def eq and T13.34; this gives
Eq(x,y) < [(x = y) + (y = x)] = @; now for <>1, the case from x = y is
easy; from Eq(x, y), you have x > y v x < y from T13.13q; the cases are
not hard and similar (since x < y gives y > x). (i): This is straightforward
with P(X) <> chp(X) = 0 and Neg(P(X)) < csg(che(X)) = @ from NEG with
T13.34.

So this theorem delivers the equivalences we expect for pred, subc, absval, sg, csg,
Eq, Leq, Less, Neg, and Dsj. Given this, we will typically move without comment
from some PA F Dsj(A, B) given from T13.34 to PA - AV B. And similarly in
other cases.

We pause to remark on a on a simple consequence for characteristic functions.
Recall from (CF) that a characteristic function is (officially) of the sort sg(p(X)) so
that,
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T13.38. For any recursive characteristic function chr(X), PA + chr(X) = 0 Vv
chg ()_é) = T

From (CF), chr(X) is of the sort sg(p(X)); so with T13.34, PA  chgr(X) =
sg(p(X)). The result is nearly immediate with PA = p(X) = @ v p(X) > @
and results for sg.

It is worth observing that this theorem, which depends on results for functions through
T13.37d, is independent of any applications of T13.32 or T13.34b for relations.
There is therefore no problem about appeal to T13.38 in the demonstration of T13.32.

Now reasoning for the bounded quantifiers, bounded minimization and a couple
relations built on them.

*T13.39. The following result in PA.

*(a) PAF @y =2)P(x.z.y) & @y =2)P(x.z.y)
(b) PAF @y <2)P(X,z,y) < 3y <z)P(X,z,y)
(©) PAF(Vy <2)P(X,z,y) < (Yy < 2)P(X,z,y)
(d) PAF(Vy <2)P(xX,z,y) < (Vy <2)P(X,z,y)

*(e) PAF (pmy < 2)P(X,2,y) < (uy < 2)P(X,2,y)
(f) PAF Fetr(m,n) < m|n

*(g) PAF Prime(n) <> Pr(n)

Hints. (a): Recall from chapter 12 that s(X, z) = (3y < z)P(X, z,y) is defined
by means of a R(X, z, n) corresponding to (Iy < n)p(X, z,y); the main argu-
ment is to show by IN that PA - chg(X,z,n) = 0 < (Jy < n)P(X,z,y).
You have P(X,z,y) <> chp(X,z,y) = @ from T13.32. For the zero case,
you have chg(X,z,0) = gcha(X, z), and gchg(X,z) = chp(X, z, @) from the
definitions with T13.34; for the main reasoning, you have chs(X,z,Sj) =
hche(X, z, j, cha(x, z, j)), and hche(X, z, j,u) = times[u, cho(X, z, suc(j))]
from the definitions with T13.34; once you have finished the induction, it
is a simple matter of applying chs(X,z) = chq(X, z, z) from the definition,
and where where S(X,z) just abbreviates (Iy < z)P(X,z,y), applying
S(X,z) < chs(X,z) = Qtoget @Ay < z)P(X,z,y) < Ay < z)P(X,z,y).
(f) and (g): Given previous results, the left and right sides have nearly match-
ing definitions except that the recursive side includes a bounded quantifier —
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so that you have to work to show the bound obtains for one direction of the
biconditional.

The argument for T13.39¢ is particularly involved. Recall from chapter 12
that m(X,z) = (py < 2z)P(X,z,y) is defined by means of R(X,z,n) corre-
sponding to (3y < n)pr(X, z,y) and q(X, z, n) corresponding to (y < n)P(X, 2, y).
The main reasoning is by IN to show ¢(X,z,n) = (uy < n)P(X,z, y); here
are the main outlines of that part.

24.

25.

26.
27.
28.
29.
30.
31.
32.

PN R W

q(%,2z,0) = (uy < W) P(X,z,y)
cha(X,2,)) =0V cha(¥,z,j) =1
chp(X,2,j) =0 < @y < j)P(x,z,y)
q(%,z,8)) = hg(%,z, j,q(X, z, )
jizq()_c',z,j, u) = plus(u, cha(X, z, j))

hq()_éazajau) =u +ChR(5éazaj)

A hg(X,z, j,q(X, 2, ) = @(X, 2, j) + cha(X, z, )
Jax,z,8)) =qX,z,j)+ cha(X, 2, )

|9(%,2, /) = (ny < HP(R,2,y)
a =q(i’z7j)

b=gq(x,z,5j)
b=a+chx(X,z,j)

a=(uy < j)PR,z,y)
a=puyly=jVv PQE,z,y)]
Vw <a)[w # j A~P(X,z,w)]
a=jV PX,z,a)

a=j

~P(X,z,j)V P(X,z, ))

~P(£,Z,j)
[b=SjVv PX,z,b)] A(YVw < b)(w # Sj A~P(X,z,w))

P(X,z,j)
[b=Sjv P& z,b)]ANw<b)(w#SjA~PF,z,w))

[b=SjVv P&, z,b)]AVw <b)(w # Sj A~P(F,z,w))
*P(fc,z,a)

[b=Sjv P&, z,b)]ANw<b)(w#SjA~PE,z,w))
[b=SjVv P&, z,b)]ANVw <b)(w#SjA~P(,z,w))
b=uyly=8jv PQZ,z,j)]
b= (uy <Sj)PQE,z,y)
qg(%,2,8)) = (ny < S))P(X,z,y)

[9(%,2,)) = (uy < JI)PEF,z,y)] = [9(X,2,S)) = (uy < Sj)PZ,z, )]
Va([g(X,z,n) = (uy <n)P(%,z,y)] = [9(X,z,Sn) = (uy < Sn)P(X, z,y)])
q(x,z,n) = (uy <n)P(X,z,y)

[a]

T13.38

from T13.39a
T13.33b

def from least, T13.34

5T13.35d
6 VE

4,7 =E
A(g —D

abv

abv

8,10,11 =E
9,10 =E

13 def

14 T13.19¢
14 T13.19b
A (g 16VE)

T3.1

A (g 18VE)

[b]

A (g18VE)

[c]

18,19-20,21-22 VE

A (g 16VE)

[d]

16,17-23,24-25 VE
26 def

27 def

28 abv

9-29 —1

30 VI

1,31 IN

Hints: The zero case (a) is straightforward with T13.20a; for (b) you will be
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able to show that b = Sj; for (¢) and (d) you will be able to show b = a.
And the final result is nearly automatic from this.

T13.39 delivers the equivalences we expect for the bounded quantifiers, bounded
minimization, factor and prime.

At this stage, we have defined in PA functions, relations and operators corre-
sponding to all the recursive functions, relations and operators. And in simple cases
we have established equivalences to functions, relations and operators already de-
fined. Thus supposing 7T is a theory including PA, we are in a position simply to
write down the following.

T13.40. The following are theorems of PA:

(@) PAF Axiomadl(n) <> @p < n)(3q < n)[Wff(p) A Wif(q) An = end(p, end(q, p)]
and similarly for the other axioms

(b) PA - Axiompa(n) <> Axiomadl(n) Vv ...V Axiomql(n) V ...V Axiompa7(n)

(¢) PAF Mp(m,n,0) < end(n,o0) = m

(d) PAF Gen(m,n) < Qv < n)[Var(v) An = wv(v, m)]

(e) PAF Icon(m,n,o) < Mp(m,n,o)V (m =n A Gen(n, 0))

() PA & Prfi(m.,n) < exp(m, len(m) = 1) = nAm > 1A (Yk < len(m))[Axiomt(exp(m, k)) v
@i < k)@j < k)Icon(exp(m, i), exp(m, j), exp(m, k))]

These follow directly from our results with recursive definitions. So for ex-
ample, the definition mP, with T13.34 gives us, say, PA = Mp(m,n,o0) <
Eq(end(n, 0), m); then with T13.37f, we arrive at (c). And similarly in other
cases.

Where Mp, cnd and the like are defined relative to corresponding recursive functions,
it is important that the operators in expressions above are the ordinary operators of
&ur. Thus we shall be able to manipulate the expressions in the usual ways. We shall
find these results useful for the following!

E13.24. Produce derivations to show T13.33a and T13.35e. Hard core: show the
remaining cases from T13.35.

E13.25. Show (i) of the condition for Def[pred] and then T13.36¢. Hard core: Show
each of the conditions for Def[pred], Def[sg] and Def[csg] and all of the
results in T13.36.
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*E13.26. Show a, g and j from T13.37. Hard core: Demonstrate each of the results
in T13.37.

*E13.27. Show T13.39a. Hard core: show T13.38 along with each of the results in
T13.39.

Further results. T13.40 gives us functions in PA corresponding to all the ones
from chapter 12. Now we require the ability to manipulate them. Thus we begin
with some results for exponentiation, factorial and the like, and continue through to
complex notions including Wff and formsub. At this stage, we are acquiring results,
not by demonstrating equivalence to expressions already defined (since there are no
such expressions already defined), but by showing them directly for symbols defined
for the recursive functions.

*T13.41. The following are theorems of PA.

(@ OPAFm? =1

(i) PA F mS" = m" x m
®b) PAFm' =m
(c) PAF2’ =3
d PAFa>0—>0=90
(e) PAF m? x mb = matb
& PAFm>n— m®* >nt
(g) PA F pred(m?)|me+b
(h) PAF (a > @ Am > 1) — predm®t?) } mb
G PAFm>0—->m?*>10
G) PAF(m >0 Aa>b)—m*>mP
&) PAF(m>1Aa>b) > m*>mb
D) PAFa>0—->m*>m

*m) PAFm>1—a <m?
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m PAFm>1— m*=mPl - a=0b)

Hints: (a) is from the the definition of power and prior results. For (c) take
a look at E6.35¢. (e) uses IN on the value of b and (f) uses IN on a. (g) is
straightforward with cases for mb = @ and mb > 0. 1), (), (k) and (m) are
by IN. For (n),a < b Vv a = b Vv b < a; but the first and last are impossible.

(a) gives the recursive conditions from which the rest follow. Then (b) - (n) are basic
results that should be accessible from ordinary arithmetic.

*T13.42. The following are theorems of PA.
(@) ) PAF fact(9) =1
(i) PA & fact(Sn) = fact(n) x Sn
(b) PAF fact(1) =1
(c) PAF fact(n) > @
(d) PAF (Yy < n)y| fact(n)

*e) 3y = fact(n) +Dln <y APr(y)]

Hints: (a) is from the definition of fact and prior results. (c) and (d) are
straightforward by IN. Reasoning for (e) is like (G2) in the arithmetic for
Godel numbering reference once you realize that all the primes less than n
are included in fact(n).

These are some basic results for factorial. Again (a) gives the recursive conditions
from which the rest follow. (b) is a simple particular fact; and the result from (c) is
obvious. (d) is a consequence of the way the factorial includes successors of all the
numbers less than it. We will be able to take advantage of (e) immediately below.

*T13.43. The following are theorems of PA.
(a) () PAF pi(9) =2
(i) PA = pi(Sn) = (uy < fact(pi(n)) + D)[pi(n) < y A Pr(y)]
(b) 3y < fact(pi(n)) + N)[pi(n) <y A Pr(y)]
(¢) PAF pi(Sn) = py[pi(n) <y A Pr(y)]

(d) PAF pi(n) < pi(Sn) A Pr(pi(Sn))
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() PAE (Yw < pi(Sn))~[pi(n) < w A Pr(w)]
(f) PA = Pr(pi(n))
(2) PAF pi(n) >1
(h) PA b pi(n)® > @
(i) PAFa>0— pin)*>1
(i) PA & Spred(pi(n)*) = pi(n)*
&) PAF (Ym <n)pi(m) < pi(n)
(1) PAF (Vm < n)Sm < pi(n)
*(m) PAE Vy[Pr(y) — 3/ pi(j) = ]
*(n) PAFm # n — pred(pi(m)) t pi(n)*

(0) PA+m # n — pred(pi(m)S?) } pi(n)®

“(p) PA &= [m # n A pred(pi(m)?)|(s x pi(n)*)] — pred(pi(m)®)|s
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Hints: (a) is from definition pi and prior results. (b) is from T13.42e; (c) ap-
plies T13.20.b; and then (d) and (e) are by T13.19(b) and (c). (f), (k) and (1)
are simple inductions. (m) is by using IN on i to show (Vy < pi(i))[Pr(y) —
3/ pi(j) = y]; the result then follows easily with (I). Under the assump-
tion for —I, (n) is by IN on a. For (o) you will be able to show that if
pred(pi(m)S?)| pi(n)® then pred(pi(m))|pi(n)® and use (n). For (p) under
the assumption for —I you will be able to show i < b — pred(pi(m)’)|s by

induction on 7; the result then follows easily with b < b.

These are some basic results from prime sequences. (a) gives the basic recursive
conditions. (b) is an existential result; then (c) extracts the successor condition from
bounded to unbounded minimization; this allows application of the definition in (d)
and (e). (f) - (j) are some simple consequences of the fact that pi(n) is prime. Then
the primes are ordered (k). And (I) each prime is greater than the successor of its
index. (m) every prime appears as some pi(j). And (n) - (p) echo results for factor

except combined with primes and exponentiation.

(b) and then (c) - (e) are a first instance of a pattern we shall see repeatedly: Given
a bounded condition @ = (ux < t)%(x) of the sort that arises from a recursive def-
inition, we show there exists some & (x) less than or equal to the bound; this allows
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application of T13.20.b to “extract” the bounded to an unbounded minimization, and
then T13.19 to obtain & (a); this forms the basis for further results.

In order to manipulate exp, it will be convenient to introduce a function ex, that
finds the least exponent x such that pi(i)* does not divide Sn.

Deflex] ex(n,i) = ux[pred(pi(i)*) + Sn]

(1) PA F Ax[pred(pi(i)*) + Sn]

1| piG)>7 T13.43g
2. Sn < pi(i)S” 1 T13.41m
3. | Spred(pi(i)S™) = pi(i)S"  T13.43j
4.| Sn < Spred(pi(i)S™) 2,3 =E

5.1 n < pred(pi(i)S™) 4 T13.13k
6. | pred(pi(i)S™) + Sn 5T13.24i
7. | Ix[pred(pi(i)*) + Sn] 6 31

*T13.44. The following are theorems of PA.

(2) PA - exp(n.i) = (ux < n)[pred(pi(i)*)|n A pred(pi(i)**7) 4 n]
(b) PA - exp(@,i) =0

#(c) PAF exp(Sn,i) = ux[pred(pi(i)*)|Sn A pred(pii)* 1) } Sn]
(d) PA + pred(pi(i)*?S™)|Sn A pred(pi(i)*?S"DFT) | Sn
(e) PAF (Yw < exp(Sn.i))~[pred(pi(i)®)|Sn A pred(pi(i)**7) t Sn]
() PA + [pred(pi(i)®|Sn A pred(pi(i )t } Sn] — exp(Sn.,i) = a
(&) PA-exp(m,j)<m
(h) PAFj>n—exp(Sn,j)=10
(i) PA & exp(pi(i)P.i) = p
() PAFi # j — exp(pi(i)?. j) = 0
(k) PA & pred(pi(i))|Sm < exp(Sm,i) > 1

*(1) PA F 3g[pi())*PS™D x g = Sn Apred(pi(i)) } g AVy(y #i — exp(q,y)
= exp(Sn, y))]
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*(m) PAF exp(Sm x Sn,i) = exp(Sm,i) + exp(Sn,i)

Hints: (a) is from definition exp and prior results. (c) is by PA = (3x <
Sn)[pred(pi(i)*)|Sn A pred(pi(i)**1) + Sn] and then T13.20b; ex(n,i) =
@V ex(n,i) > @; in the latter case, the trick is to generalize on the num-
ber prior to ex(n,i). (f) is by showing that @ = ux[pred(pi(i)*)|Sn A
pred(pi(i)**t1) } Sn]. (1): from pred(pi(i)#?S"-1))|Sn there is a j such
that pi(i)®P(S1) x j = Sp; the hard part is to show k # i — exp(j, k) =
exp(Sn, k) — for this, it will be helpful to establish that j is a succes-
sor. (m): toward an application of T13.44f it will be easy to establish that
pred(pi(i)erSmD+ew(Sni)y| (§m x Sn); for the other conjunct, it will be
helpful to begin with a couple applications of T13.441.

(a) is from the definition. (b) is the standard result with bound @. (c) extracts the suc-
cessor case from the bounded to an unbounded minimization; this allows application
of the definition in (d) and (e). From (f) the reasoning goes the other way around: not
only does the condition apply to the exponent, but if the condition applies to some a,
then a is the exponent. Then (g) the exponent of some prime in the factorization of
m cannot be greater than m; and (h) a prime whose index is greater than or equal to
n does not divide into Sx. (i) and (j) make an obvious connection for the exponent
of a prime, and (k) between exponent and factor. According (1) once you divide Sn
by pi(i) exp(Sn, i) times you are left with a ¢ such that pi(i) does not divide into it
any more, and such that the exponents of all the other primes remain the same as in
Sn. From (m) the i*" exponent of a product sums the i’ h exponents of its factors.

*T13.45. The following are theorems of PA.
(a) PAF len(n) = (uy < n)(¥z <n)z = y — exp(n, z) = 0]
(b) PAF len(9) =@
(¢c) PAF len(Sn) = pny(Vz < Sn)[z = y — exp(Sn, z) = 0]
(d) PAF (Vz < Sn)[z > len(Sn) — exp(Sn, z) = 0]
(e) PAF (Yw < len(Sn))~(Vz < Sn)[z > w — exp(Sn, z) = ]
(f) PAF len(1) = @
() PAllen(m) >0 —m>1

*(h) PAF exp(m,l) > @ — len(m) > |
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(i) PA k- (Yk > Dexp(Sm, k) = @ — len(Sm) < SI
(G) PAFm > 1 — len(m) > 0

*(k) PAl p > @ — len(pi(i)P) = Si
() PAF (Vz > len(n))exp(n,z) = @

*(m) PA & len(n) = SI — exp(n,1) > 1

Hints: (a) is from definition length and prior results. (c) follows with T13.44h
and existentially generalizing on S itself. (f) is by application of (c). Under
the assumption for —1I, (h) divides into cases for m = @ and m > @; for the
latter, suppose len(m) # i; then you will be able to make use of (d). (j) is
straightforward with T13.25d and ultimately (h) above. For (k), begin with
len(pi(i)?) < Sivien(pi(i)?) = SiVvien(pi(i)?) > Si by T13.13p; the first
is easily eliminated with T13.45h; then, supposing len(pi(i)?) > Si, you will
be able to obtain a contradiction using T13.45e. (1): under the assumption
a > len(n) for (VI), either n = @ or n > @; the first case is easy; for the
second, there is some m such that » = Sm; your main reasoning will be to
show exp(Sm,a) = @. (m): under the assumption for —I, the case when
n = @ is impossible; so there is some m such that n = Sm; with this,
suppose exp(Sm, ) # 1; then you you will be able to show, contrary to your
assumption that len(Sm) = [.

Again (a) is from the definition and (b) gives the standard result for bound @. (c)
extracts the successor case from bounded to unbounded minimization; (d) and (e)
then apply the definition. (f) is a simple particular result; and then (g) is an immediate
consequence of (b) and (f). From (h) if an exponent of some prime in the factorization
of m is greater than zero, that prime is involved in the factorization of m; (j) gives
the biconditional from (g); (k) gives the length for a prime to any power; and from (1)
primes > the length of #» must all have exponent @. Length is set up so that it finds
the first prime such that it and all the ones after have exponent zero; so (m) the prime
prior to the length has exponent > 1.

For the rest of this section including results for concatenation to follow, it will
be helpful to introduce a couple of auxiliary notions. First, exc(m, n, i) which (indi-
rectly) takes the value of the i’ h exponent in the concatenation of m and n.

PAF exc(m,n,i) = (uy < exp(m,i) + exp(n,i = len(m)))
(i <len(m) Ay =exp(m,i)] Vv [i = len(m) Ay = exp(n,i = len(m))])
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Since the definition is by bounded minimization, no condition is required. The idea
is simply to set y to one or the other of exp(m,i) or exp(n,i = len(m)) so that y
takes the value of the i*” exponent in the concatenation of m and n. Then val(n, i)
returns the product of the first i primes in the factorization of 7.

PA Fval(n,?) =1
PA + val(n, Sy) = Val(n’ y) X pi(y)exﬁ(ﬂsY)

Similarly val* (m, n, i) is defined by recursion as follows.

PA Fval*(m,n,0) =1
PA Fval*(m,n, Sy) = val*(m,n, y) x pi(y)ectmn.)

So val*(m,n,i) returns the product of the first i primes in the factorization of the
concatenation of m and n. Here are some results for these notions. Let | = len(m) +
len(n).

*T13.46. The following are theorems of PA.

(@) PAFexc(m,n,i) = py([i <len(m)ny = exp(m,i)]V[i > len(m)Ay =
exp(n,i = len(m))])

(b) PA b i < len(m) — exc(m,n,i) = exp(m, i)
(©) PAF i > len(m) — exc(m.n.i) = exp(n.i = len(m))
() PA b val*(m.n.i) > @

*(c) PA F (Vi > a)pred(pi(i)) } val*(m.n,a)

() PAF (V) < i)exp(val*(m.n.i), j) = exc(m.n. j)

*(g) PAF (Vi <len(m))lexp(val*(m,n,l),i) = exp(m,i)] A
(Vi < len(n))[exp(val*(m,n,l),i + len(m)) = exp(n,i)]

“(h) PA & [pi()y"+"]! > val*(m,n, 1)
(i) PAFval(m,i) > @
() PA & len(val(a, j)) < j
(k) PA & len(val(a, j)) < len(a)
() PAF (Vi < k)exp(m,i) = exp(val(m, k), i)

(m) PAF (Vi < k)exp(a,i) = exp(b,i) — val(a, k) = val(b, k)
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*(n) x > len(Sn) — val(Sn,x) = Sn

corollary: PA F val(Sn,len(Sn)) = Sn

*(0) PAF [len(n) < gAYk < len(n))exp(n, k) <r] — [pi(q)"]? = val(n, len(n))

Hints: (e) is by IN on a. (f) is by IN on i; in the show under (V] <
Dexp(val*(m,n,i), j) = exc(m,n, j) and a < Si you will have separate
cases fora < i and a = i. (g) is straightforward with applications of (f),
(b) and (c). For (h) you may obtaini < [ — [pi(1)" ")} > val*(m,n,i) by
induction on 7; in the show, the main task is to obtain exc(m,n,i) < m + n;
the result then follows with previously established inequalities. (j) is easy
with a result like (e). For (n) you will be able to show VxVn[len(Sn) <
x — val(Sn,x) = Sn] by induction on x: the @-case is straightforward;
then under the inductive assumption with len(Sa) < Sx for —I you have
len(Sa) < x Vv len(Sa) = Sx; the first case is straightforward; the sec-
ond is an extended argument — you will be able to apply T13.441 to ob-
tain an Sr whose prime factorization is like that of Sa but without pi(x);
show that len(Sr) < x so that from the assumption, val(Sr, x) = Sr; then
val(Sa, Sx) = Sa is straightforward. For (o) under the assumption for —1,
you will be able to geti < g — [pi(¢)"]' = val(n,i) by IN.

(a) extracts exc from the bounded to unbounded minimization; (b) and (c) apply the
definition. (d) is obvious. (e) results because val*(m,n,a) is a product of primes
prior to pi(a) so that greater primes do not divide it. Then (f) the exponents in in val*
are like the exponents in exc. This gives us (g) that the exponents in val* are like
the exponents in m and n. But (h) val* is constructed so that an induction enables a
natural comparison of exponents. Then (m) - (0) are related results for val.

In cases to follow, the comparison of exponents from (h) and the closely related
(o) will be crucial for finding bounds and so extracting results from bounded mini-
mization.

We are now ready for some results about concatenation. Say m * n is the defined

correlate to m % n and as above [ = len(m) + len(n).

*T13.47. The following are theorems of PA.

(@ Q) PAFmxn = (ux < Bpu)lx = 1A (Vi < len(m)){exp(x,i) =
exp(m,i)} A (Vi < len(n)){exp(x,i + len(m)) = exp(n,i)}]

(ii) PA - By = [pi(1)™+7)!
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(b) PAFm*n = px[x > 1A Vi < len(m)){exp(x,i) = exp(m,i)} A (Vi <
len(n)){exp(x,i + len(m)) = exp(n,i)}]

() PAFmxn > 1A i < len(m)){exp(m *n,i) = exp(m,i)} A (Vi <
len(n)){exp(m % n,i + len(m)) = exp(n,i)}

(d) PAF (Yw < m *n)~[w > 1A (Vi < len(m)){exp(w,i) = exp(m,i)} A
(Vi < len(n)){exp(w,i + len(m)) = exp(n,i)}]

*(e) PAF len(m *n) > 1
*f) PAF len(m xn) =1
(g) PAFexp(m xn,i + len(m)) = exp(n,i)
(h) PAF(@*xb)xc=ax*x(bx*xc)
() PAFn<1—Smxn=Sm
() PAbn <1 —>nxSm=Sm
(k) PAF (len(c) =len(d) A Sa*xc =Sbxd) — Sa=Sb
corollary: PAF Sa xc = Sbhxc — Sa = Sb
1) PAF (len(c) =len(d) Ac * Sa =d * Sb) - Sa = Sb
corolary: PAFc x Sa =c « Sb — Sa = Sh
*m) PAFval(Sm % Sn,a) =val(Sm,a) xval(Sn,a = len(Sm))
(n) PAF (Vy <len(n))[val(m x n,y + len(m)) > val(m, len(m))]
corollary: PAFm xn > m

(0) PAF (Vy <len(n))[valim = n,y + len(m)) > val(n, y)]
corollary: PAFm*n >n

Hints: (a) is from the definition concatenation with prior results. (b) uses
T13.46h. (e) divides into cases for len(n) = @ and len(n) > @; and within
the first, again, cases for len(m) = @ and len(m) > @. For (f) show len(m
n) < [ and apply (e); for the main argument (which will be long!) assume
len(m *x n) £ [; then you will be able to apply T13.441 and show that the g so
obtained contradicts T13.47d. (h) where [ = len(a) + len(b) + len(c), you
will be able to show (Vi < l)exp((a * b) *c),i) = exp(a * (b x ¢),i). (k)
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and (1) are straightforward with T13.47c. For (m) you will be able to show
(Vi <a)exp(Sm* Sn,i) = exp(val(Sm, a) xval(Sn,a = len(Sm)),i) and
soval(Sm % Sn,a) = val(val(Sm, a) x val(Sn,a = len(Sm)), a); and from
this the result you want. (n) and (o) are by induction on y (with the bounded
quantifier unabbreviated to the associated conditional).

(a) is from the definition. T13.46h enables us to extract m * n from bounded to un-
bounded minimization to get (b) and then (c) and (d). (e) and (f) establish that the
length of m * n sums the lengths of m and n. (h) is an association result — and
with this, we typically ignore parentheses in concatenations much as we have done
for association with addition. (k) and (1) enable a sort of cancellation law for con-
catenation. (n) and (o) apply results from T13.46m and T13.46n for relative values
of m x n.

The idea for application of T13.46h to get (b) is the same as behind the intu-
itive account of the bound from chapter 12: pi(/)™ " is greater than every term in
the factorization of m * n; so [pi(/)™ "]’ remains greater than val*(m,n,i); and
val*(m,n,l) is therefore both under the bound and satisfies the condition for m * n
— so that the existential condition is satisfied, and we may extract the bounded to an
unbounded minimization. Once this is accomplished, we are most of the way home.

To manipulate Termseq it will be convenient to let,

A(s,x) = exp(s,x) ="0"V Var(exp(s, x))

B(s,x) = Gj <x)exp(s,x) ="S"xexp(s,J)

C(s,x) = (3 <x)3j <x)exp(s,x) ="+ xexp(s,i) = exp(s, j)
D(s,x) = (@i <x)3j <x)exp(s,x) ="x"xexp(s,i)*exp(s, j)

*T13.48. The following are theorems of PA.

(@) PA + Termseq(m,t) < exp(m,len(m) =~ 1) =t Am > 1 A (Vk <
len(m))[A(m,k) v B(m,k)v C(m,k) Vv D(m, k)]

(b) (i) PA F Term(t) <> (3x < B;)Termseq(x.1)
(ii) PA - B, = [pi(len(t))!]"®
(©) PAF Var(t) < (3x < 1)t = 322)
(d) PAF Var(t) — len(t) =1
(e) PA F Termseq(m,t) — (Vk < len(m))exp(m, k) > 1

(f) PAF Term(t) —t > 1
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(g PAFt=T0"—> Termseq(?, t)

(h) PA+ Var(t) — Termseq(?, t)

*

_rqn
*(1) PA F Termseq(m,t) — Termseq(m * 2 $ t, TS xt)

(G) PA & [Termseq(m,t) A Termseq(n, q)] — Termseq(mxn *E'——i-—'*t*q’ S
t*q)

(k) PA - [Termseq(m,t) A Termseq(n,q)] — Termseq(m *n *Erx—l*t*q,ﬁ*

t*q)

*(1) PAF Termseq(m,t) — Vx(Vk < len(m)){len(exp(m, k)) < x — In[Termseq(n,
exp(m, k)AYi < len(n))exp(n,i) < exp(m, k) Nlen(n) < len(exp(m, k))]}

(m) PA - Termseq(m,t) — Term(t)
*(n) PAF Termseq(m,t) — (Vi < len(m))Term(exp(m,i))
(0) PAF Term("07)

(p) PA F Var(v) — [Term(v) A Term("S7 % v)]

Hints: (e) is straightforward by an extended VE. (g) - (k) are disjunctive but
straightforward. (1) is by induction on x: under the assumption Termseq(m,t)
the basis is straightforward; then, under the inductive assumption along with
a < len(m) for (V)1 and len(exp(m,a)) < Sx for —1I, apply (a); the deriva-
tion is then a (long!) argument by cases where you will be able to apply
(g)-(k). (m) follows easily with T13.460. For (n) under the assumption for
—1, you will be able to show Vk[k < len(m) — Ix(Termseq(x, exp(m, k))]
by strong induction; the result follows easily.

(a), (b) and (c) are from the definitions term sequence and term and variable with
prior results. (d), (e) and (f) are simple results. (g) - (k) generate term sequences. (1)
yields (m), that anything with a term sequence is a term; the rest follow from that.
From its definition, Term(z) does not immediately follow from Termseq(m,1t)
insofar as the sequence might build in extraneous terms not required for # — with the
result that m is not less than B,. The general idea for these theorems is that given
a term sequence, there is a standard term sequence containing just the elements you
would have included in a chapter 4 tree, adequate to yield Term(z). Thus we move
from the existence of a term sequence through (1) to a term sequence of the right sort,
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and so to (m). Something new happens in (1) insofar as the induction is not on the
length of m but on the length of its exponents.

We continue with some results for Formseq and W/f that are closely related to
T13.48. Let,

E(s, x) = Atomic(exp(s, x))

F(s,x) = @j < x)[exp(s, x) = neg(exp(s, j))]

G(s,x) = (i <x)3j < x)|[exp(s,x) = end(exp(s, i), exp(s, j))]
H(p,s,x) = @i <x)3j < p)Var(j) Aexp(s,x) = wmv(j,exp(s,i))]

*T13.49. The following are theorems of PA.

(@) PA = Formseq(m, p) < exp(m,len(m) ~ 1) = pAm > 1A (Vk <
len(m))[E(m,k)Vv F(m,k)Vv G(m,k)v H(p,m, k)]

(b) ) PAF Wff(p) <> (3x < Bp)Formseq(x, p)
(i) PA - B, = [pi(len(p)?}"(”

(c) PA = Atomic(p) <> (Ax < p)(Ay < p)[Term(x) A Term(y) A p ="="x%
X*®Yy

(d) PA - Formseq(m, p) — (Yk < len(m))exp(m, k) > 1
(e) PAFWff(p) — p>1

(f) PA - Atomic(p) — /Formseq(ﬁp, p)

Seg(p)

(g) PA Formseq(m, p) — Formseq(m % 2 ,meg(p))

(h) PA = [Formseq(m, p) A Formseq(n,q)| — Formseq(m * n x Em‘i(p’q))

sw(v,p)

(i) PA F [Formseq(m, p) A var(v)] — Formseq(m * 2 ,uwv(v, p))

(G) PA F Formseq(m, p) — Vx(Vk < len(m)){len(exp(m,k)) < x — In[Formseq(n,
exp(m, k)A(Vi < len(n))exp(n,i) < exp(m, k)Alen(n) < len(exp(m, k))]}

(k) PA - Formseq(m, p) — Wff(p)
() PA F Formseq(m, p) — (Vi < len(m))Wff(exp(m,i))
(m) PA F Aromic(p) — Wif(p)

(n) PAE Wff(p) — Wif (neg(p))
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(0) PA = [Wif(p) A Wif(@)] — Wif (end(p. q))

(p) PA I [Wff(p) A Var(v)] — Wif (wv(v, p))

Hints: For each of (a) - (1), see the parallel theorems for T13.48. The others
are nearly trivial.

Again, from its definition, Wff(p) does not immediately follow from Formseq(m, p)
insofar as the sequence might build in extraneous elements not required for p —
with the result that m is not less than B,. And again the general idea is that given a
formula sequence, there is a standard formula sequence containing just the elements
you would have included in a chapter 4 tree, adequate to yield Wff(n). Thus we
move from the existence of a formula sequence through (j) to a formula sequence of
the required sort.

Continuing roughly in the order of chapter 12 we move on to some substitution
results for terms and atomics. Let,

I(m,n, k) = expm,k)=T0"Aexp(n, k) ="g"

J(v,m,n, k) = Var(exp(m,k)) A exp(m, k) # v A exp(n, k) = exp(m, k)

K(,s,m,n, k) = Var(exp(m,k)) ANexp(m,k) =v Aexp(n,k) =s

L(m,n, k) = (Ji <k)exp(m, k) =T8T xexp(m,i) ANexp(n, k) =787 % exp(n,i)]

M(m,n, k) = (Fi <k)3j <k)exp(m, k) =T+ xexp(m,i) x exp(m, j) A
exp(n, k) =T+ xexp(n,i) * exp(n, j)]

N(m,n,k) = (@i <k)3j <k)|exp(m, k) ="xTxexp(m,i) * exp(m, j) A

exp(n, k) =" xexp(n,i) * exp(n, j)]
*T13.50. The following are theorems of PA.

(a) PA + Tsubseq(m,n,t,v,s,u) < Termseq(m,t) A len(m) = len(n) A
exp(n,len(n) =~ 1) = u A (Vk < len(m))(I(m,n.k) v Jv,m,n, k) v
KWw,s,m,n,k)v L(m,n,k)v M(m,n,k)Vv N(m,n,k))

(b) (1) PA F Termsub(t,v,s,u) <> (Ax < X;)(Ay < Yy u)Tsubseq(x,y,t,v,s,u)
(i) PA F X, = [pi(len(r))"]""®
(iii) PA = Yz, = [pi(len(z))*]%"®

(c) PA = Atomsub(p,v,s,q) <> Qa < p)(3b < p)(Fa’ < q)@3Eb’ < g)[Term(a)A

Term(b)yAp = "="xaxbATermsub(a,v,s,a’)\Termsub(b,v,s,b'Y)Aqg =
F=T%a’ xb]

(d) PA - [Term(s)ATsubseq(m,n,t,v,s,u)] = (Vj < len(n))Term(exp(n, j))
corollary: PA - [Term(s) A Termsub(t,v,s,u)] — Term(u)
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(e) PA - [Term(s) A Atomsub(p,v,s,q)] — Atomic(q)

(f) PAFt =70 — Tsubseq(@',2',t,v,s,1)

(g) PAF (Var(t) At #v) — Tsubseq(ét,?,t, v,s8,1)

(h) PAF- (Var(t) At =v) — Tsubseq(étjs, t,v,s,s)

t r

. PV S u o5
*(1) PA & Tsubseq(m,n,t,v,s,u) — Tsubseq(m *x 2 Nk 2 ST

t,v,8," ST xu)

(j) PA & [Tsubseq(m,n,t,v,s,u)ATsubseq(m’,n’,t',v,s,u’)] — Tsubseq(mx

%t/ T Vuxu’ =——= ==
2 nxn %2 ST x e xt v, T+ T xuxu)

m’ x

(k) PA &= [Tsubseq(m.n.t,v,s, u)ATsubseq(m’.n’,t",v,s,u")] — Tsubseq(mx

T Txgxt! S x Txuxu’
9’

m' x 2 Jnxn’ *2 Px Vst *xt', 0,8, "% xu*u')

*(1) PA & Tsubseq(m,n,t,v,s,u) — Termsub(t,v,s,u)

*(m) PA & [Term(t) A Term(s)] — Fu[Termsub(t,v,s,u) A len(u) < len(t) x

len(s) A (Vk < len(u))exp(u, k) <t +s]

*(n) PA - [Atomic(p) A Term(s)] — q[Atomsub(p, v, s, q) ANlen(q) < len(p) x

Let,

len(s) A (Vk < len(q))exp(q,k) < p + 5]

Hints: For (1) let #(m,n,v,s,k) = 3a3b[Tsubseq(a, b, exp(m, k), v, s, exp(n, k)) Alen(a) < len(exp(m, k)) A
(Vi < len(@))(exp(a, i) < exp(m, k) A exp(b,i) < exp(n,k))]; then under the assumption for

—1, show Vx(Vk < len(m))[len(exp(m,k) < x — ] by IN; the re-

sult follows from this. Similarly, for (m) let £n,i,v,s) = 3x3yu[Tsubseq(x, y,
exp(m, i), v, s,u) Aen(u) < len(exp(m, i)) x len(s) A(Vk < len(u))exp(u, k) < exp(m,i)+s]; under the
assumption Term(t) A Term(s) given Termseq(m,t) you will be able to show

Vi[i < len(m) — &] by strong induction on i (with extended disjunctions in
both the basis and show); the result follows easily from this.

Some substitution results for formulas are closely related to the previous theorem.
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O(v,s,m,n, k) = Atomic(exp(m,k)) A Atomsub(exp(m,k),v,s,exp(n,k))
P(m,n, k) = (3 <k)expim,k) = neg(exp(m,i)) A exp(n, k) = neg(exp(n,i))]
QO(m,n, k) = Fi <k)3j <k)exp(m, k) = ecnd(exp(m, i), exp(m, j)) A
exp(n. k) = ad(exp(n. i), exp(n, j))]
Rw,p,m,n,k) = Qi <k)3j < p)Var(j) A j #vAexp(m, k)= wv(j, exp(m,i)) A

exp(n, k) = ww(j, exp(n,i)]
S, p,m,n,k)y = Qi <k)3j < p)Var(j) A j=vAexp(m, k)= wwv(j, exp(m,i)) A
exp(n, k) = exp(m, k)]

*T13.51. The following are theorems of PA.

(a) PA &+ Fsubseq(m,n, p,v,s,q) <> [Formseq(m, p) A len(m) = len(n) A
exp(n,len(n) ~ 1) = g A (Vk < len(m))(O(v,s,m,n, k) v P(m,n,k) v
Q(m,n.k)V R(p,m,n,k) v S(p,m,n,k))]

(b) (i) PA = Formsub(p,v,s,q) <> (3x < Xp)3y < Yp4)Fsubseq(x,y, p,v,s,q)
(i) PA F X, = [pi(len(p))?]"®
(iii) PA - Yp 4 = [pi(len(p))?])’"»)

(© () PAF formusb(p.v.s) = (g < Zp.s)Formsub(p.v.s.q)

(ii) PA = Z 5 = [pi(len(p) x len(s))PTs]len(p)xlents)

(d) PA - [Term(s)AFsubseq(m,n, p,v,s,q)] = (Vj < len(n))Wff(exp(n, j))
corollary: PA  [Term(s) A Formsub(p,v,s,q)] — Wif(q)

(e) PA + [Atomic(p) A Atomsub(p,v.s,q)] — Fsubseq(2”,2%, p.v.s,q)
(f) PA & Fsubseg(m,n, p,v,s,q) — Fsubseq(m*img(p),n*émg(q),neg(p), v,s,neg(q))

(g) PA & [Fsubseq(m,n, p,v,s,q)AFsubseq(m’,n’, p',v,s,q’)] — Fsubseq(mx

m’ % 274P:P ),n wn % 214@4 ),cnd(p, p).v,s,end(q,q"))

(h) PA - [Fsubseg(m,n, p,v,s,q)AVar(u)Au # v] — Fsubseq(m*?mv(u’p),n*

27D i, p), v, s, (e, q)

(1) PA - [Fsubseq(m,n, p,v,s,q)AVar(u)ru = v] — Fsubseq(m*§mv(u’p),n

2P, p), v, s wv(u, p))

*

(G) PA - Fsubseq(m,n, p,v,s,q) — Formsub(p,v,s,q)

(k) PA = [Wff(p) A Term(s)] — Jq[Formsub(p,v,s,q) A len(q) < len(p) X
len(s) A (Vk < len(q))exp(q, k) < p + 5]
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1) PAF [Wff(p) A Term(s)] — Formsub(p,v,s, formsub(p,v,s))

(m) PAF [Wff(p) A Term(s)] = WIf( formsub(p,v,s))
Hints: For (a) - (k) see the parallel results from T13.50. (1) follows easily
with (k).

Finally we extend our results by means of a pair of matched theorems whose
results are related to unique readability for terms and then formulas (see chapter 11,

p. 522).

*T13.52. The following result in PA.

First, as a preliminary to T13.52f and then T13.53g it will be helpful to show
the following. We are thinking of ¢ * a * ¢ * b * ¢ as for example, " (" * a *
FTs%b*T)7. Let,

11 = len(c)

I = len(c) + len(a)

I3 = len(c) + len(a) + len(cy)

14 = len(c) + len(a) + len(cy) + len(b)

I = len(c) + len(a) + len(cy) + len(b) + len(c2)

*@)  a|Yul(P @) Alen(u) < x) - (Vk < len(u)~P (vai(u, k)]
val(c, j) * val(a, j —11) *val(cy, j — o) *val(b, j = 13) xval(ca, j —14) =c*xd *xc| xe *c3
P@)APb)AP)AP(e)

Yu(P @) = v>1)

len(c) =1Ac1 >BAca2 >0 Alen(c1) <1 Alen(cy) <1

| <IASx>1

-0 a0 o
ja=ia-Ria-Ria-Riaciiac)

gL
So these premises are inconsistent. As a corollary, when ¢; = ¢, = 1 their
lengths go to zero and by T13.46n for any x, val(cy, x) = val(ca, x) = 1 s0
that these terms drop out of the concatenations and the theorem reduces to a
version where (b) is val(c, j) * val(a, j = 11) xval(b,j = 13) =c xd *e,
and the only substantive conjunct of (e) is the first.

(b) PA [Term(a) A Term(b)] > ["S7'xa="S"xb — a =b]

(¢c) PAF Term(TSTVxa) — Ir["S xa =TS % r A Term(r)]
(d) PAF Term("+"xa) — Jrds["+"xa = "+ xr x5 A Term(r) A Term(s)]
(e) PAF Term("x7Vxa) — IrIs["xxa = "xxr x5 A Term(r) A Term(s)]

*(f) PAF Term(t) — (Vk < len(t))~Term(val(t, k))
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(g) PA = [Term(a) N Term(b) A Term(c) A Term(d)] — [+ %xaxb =
"+7%xcxd >(@=cAb=d)]

(h) PA F [Term(a) A Term(b) A Term(c) A Term(d)] — [[x s a xb =
"™V cxd > (a=cAb=4d)]

(i) PA & [Term(a) A Term(b) A Term(c) A Term(d)] — [[= xaxb =
T=T%cxd > (@@a=cnAb=4d)

Hints: For (a) suppose j < /1, this leads to contradiction so that j > /; and
you can “pick off” the first conjunct from premise (b) to get val(a, j = [1) *
val(ci, j = b)*xval(b, j = I3)*xval(ca, j = l4) = d*c1*e*cy; suppose j <
[, again this leads to contradiction so that j > [5; either len(d) < len(a) v
len(d) = len(a) Vv len(d) > len(a); the first and last lead to contradiction and
with the other you will be able to pick off another conjunct; continue to j > [,
which contradicts the last premise. For (f) show Vi[(Term(t) A len(t) <
x) = (Vk < len(t))~Term(val(t, k))] by induction on x; the zero case is
easy; then under the inductive assumption with Term(a) A len(a) < Sx for
—I and j < len(a) for (VI) you will be able to show j > @; then with
Termseq(m, a) the argument is an extended disjunction from A (m, len(m) =
1) v B(m, len(m) ~ 1) v C(m, len(m) ~ 1) v D(m, len(m) = 1); you can
assume Term(val(a, j)) and reach contradiction in each case.

Returning to our original results for unique readability, reasoning for (c) - (e) is like
that for T11.3 - T11.5. Then (f) is like T11.6. And there are the parallel results for
formulas.

*T13.53. The following are theorems of PA.

(@) PAE [Wff(p) A Wif(q)] — [meg(p) = meg(q) — p = 4|

(b) PA F [Wff(p)) A Var(u) A Wff(q) A Var(v)] — [wwv(u, p) = wv(v,q) —
(u=vAp=q)

() PAF W (T=T%a) — Iras[[="%a = "= "xrxs A Term(r) A Term(s)]
(d) PAF- WHFT~T % p) = Ir[~ % p = neg(r) A WF(r)]
(e) PAFWHFT( % p) — Iras[C(C « p = ecnd(r,s) A W) A W (s)]

) PAFWHFTYT % p) = JwIr[ V7 % p = ww(w, r) A Var(w) A WiF(r)]
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(2) PAFEWf(p) = (Vk < len(p))~Wif (val(p. k))
*(h) PA = [Wff(p)) A Wif(q) A Wif(a) A WIF(D)] — [emd(p. q) = end(a.b) —

(p=anqg=D>)]
() PAF [Wff(end(p,q)) N WiF(p)] — Wi (q)
*(j) PA F Axiompa(p) — Wif(p)

(k) PA = Prvpa(p) — Wif(p)

Hint: Reasoning for (g) is like T13.52f. Reasoning for (i) is like the final
uniqueness part of T11.3; the result is straightforward, starting with (e) —
though with "—7 % ¢ = T—7 x s, for an application of T13.471, you will
need to worry about the case ¢ = @. Beginning with T13.40, (j) and (k) are

not hard.

In the following we shall assume results like (j) - (k) for theories extending PA —
though, of course, our prime example just is PA. Insofar as theories are recursively

defined, some such results should be in the offing.

*E13.28. Show (e) and (j) from T13.41. Hard core:

T13.41.

*E13.29. Show (d) and (e) from T13.42. Hard core:

T13.42.

*E13.30. Show (k) and (1) from T13.43. Hard core:

T13.43.

*E13.31. Show (c) and (f) from T13.44. Hard core:

T13.44.

*E13.32. Show (f) and (1) from T13.45. Hard core:

T13.45.

*E13.33. Show (a) and (b) from T13.46. Hard core:

T13.46.

show each of the results from

show each of the results from

show each of the results from

show each of the results from

show each of the results from

show each of the results from
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*E13.34. Show (b) and (e) from T13.47. Hard core: show each of the results from
T13.47.

*E13.35. Show (j) and the unfinished cases for the C disjunct in (1) and (n). Hard
core: show each of the results from T13.48.

E13.36. Work (g) from T13.49 including at least the A and B cases. Hard core:
show each of the results from T13.49.

*E13.37. Work the K and M cases from T13.501. Hard core: show each of the
results from T13.50.

E13.38. Work j from T13.51 including at least the O case. Hard core: show each of
the results from T13.51.

*E13.39. Work the case marked “similarly” on line 115 of T13.52a and the D case
from T13.52f. Hard core: show each of the results from T13.52.

*E13.40. Show (g) including at least the A case, and (k) from T13.53. Hard core:
show each of the results from T13.53.

13.4.2 The result

After all our preparation, we are ready to turn to the second condition, that PA +
a(P - Q) —» (0P — 0@Q). Again, given both O(P — @) and OF the idea is that
there are j and k such that PRFT(j, " — @7) and PRFT(k, " P ) so that | = jxkx2 @'
numbers a proof of @. As it turns out, it will be convenient to have the result in a
form with free variables, PA = Prvt(end(p, q)) — (Prvt(p) — Prvt(q)); the second
condition then follows as an immediate corollary.

Observe that we have on the table expressions of the sort, +, Plus and plus —
where the first is a primitive symbol of £y, the second the original relation to cap-
ture the recursive function plus, and the last a function symbol defined from the
recursive function. In view of demonstrated equivalences, we will tend to slide be-
tween them without notice. So, for example, given that ((2,2),4) € plus, by cap-
ture PA Plus(z, 2, Z); and by demonstrated equivalences, PA 242 =4and
PA - plus(2,2) = 4.
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*T13.54. PA - Prvt(end(p, q)) — (Prvt(p) — Prvi(q)). Corollary: PA - O(P —
Q) - (OPf — 0Q).
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36.
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| Prvt(end(p, q))

Wi (end(p, q))
kPrvt(p)

Wi (p)

Wir(q)

Icon(cnd(p, q), p,q)
v Prft(v, cnd(p, q))
Jv Prft(v, p)

| Prfi(j, end(p, q))

699

Pifi(k, p)
1= jxkx2?
exp(j, len(j) = 1) = end(p, q)
exp(k,len(k) =1) =p
exp(l,len(j) + len(k)) = q
Iconlexp(j, len(j) = 1), exp(k, len(k) = 1), exp(l, len(j) + len(k))]
(Vi < len(j)lexp(l,i) = exp(j,i)]
(Vi < len(k))[exp(l,len(j) + i) = exp(k,i)]
exp(l, len(j) = 1) = exp(j, len(j) = 1)
exp(l, len(j) + len(k) = 1) = exp(k, len(k) = 1)
Icon[exp(l, len(j) = 1), exp(l, len(j) + len(k) = 1), exp(l, len(j) + len(k))]
(Vi < len(j))[Axiom(exp(l,i)) v (Am < i)(@An < i)Icon(exp(l,m), exp(l,n), exp(l,i))]
(Vi < len(k))[Axiom(exp(l,len(j) + 1)) Vv
(Am < i)@n < i)Icon(exp(l, len(j) + m), exp(l, len(j) + n), exp(l, len(j) + i))]
(Vi :len(j) < i < len(j) + len(k))[Axiom(exp(l,i)) v
Am <i)@n < i)Icon(exp(l,m), exp(l, n), exp(l,i))]
x < len(l)
x <len(j) Vien(j) < x <len(j) + len(k) v x = len(j) + len(k)
x < len(j)

Axiom(exp(l, x)) vV @m < x)(@n < x)Icon(exp(l, m), exp(l, n), exp(l, x))
len(j) < x < len(j) + len(k)

j‘ﬂxiom(exp(l,x)) v (@m < x)@n < x)Icon(exp(l,m), exp(I,n), exp(l, x))
| x = len(j) + len(k)

(Am < x)(3n < x)Icon(exp(l,m), exp(l, n), exp(l, x))
Axiom(exp(l, x)) v @m < x)(An < x)Icon(exp(l,m), exp(l, n), exp(l, x))
Axiom(exp(l, x)) v @m < x)@@n < x)Icon(exp(l,m), exp(l,n), exp(l, x))

qg=>0

len@") =1

len(l) > 1

1>1

exp(l,len(l) =1) =¢q
exp(l,len(l) = 1) =g Al >1A

Prful,q)
Prvt(q)

Prvi(q)

Prvi(q)
Prvt(p) = Prvit(q)
Prvt(end(p, q)) — [Prvi(p) — Prvi(q)]

(Vx < len(l))[Axiom(exp(l, x)) vV (Am < x)(An < x)Icon(exp(l, m), exp(l,n), exp(l, x))]

(Vx < len(l))[Axiom(exp(l, x)) Vv (Am < x)(3n < x)Icon(exp(l,m), exp(l,n), exp(l, x))]

A (g =)

1 T13.53k
A (g =)

3 T13.53k
2,4 T13.53i
T13.40c,e
1 abv

3 abv

A (g 7JE)

A (g $3E)

def

9 T13.40f

10 T13.40f

11 T13.47¢,f
6,12,13,14 =E
11 T13.47¢

11 T13.47¢c

16 T13.45h (VE)
17 T13.45h (VE)
15,18,19 =E
9,16 T13.40f

10,17 T13.40f

from 22

A (g (V)
11,24 T13.47f
A (g 25VE)
21,26 (VE)

A (g 25VE)
23,28 (VE)

A (g 25VE)
20,30

31 VvI
25,26-31 VE
24-33 (V1)
5T13.49

35 T13.45k
11,36 T13.47f

37 T13.45¢
14 T13.47f

39,38,34 Al
40 T13.40f
4131

8,10-42 3E
7,9-43 3E
3-44 —>1
1-45 —1
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This derivation is long, and skips steps; but it should be enough for you to see how
the argument works — and to fill in the details if you choose. First, at (a), under
assumptions for —1I, there are derivations numbered j, k and a longer sequence
numbered /. And the the last member of this longer sequence is an immediate con-
sequence of last members from the derivations numbered j and k. At (b) the results
from (12) are all applied to the sequence numbered /; so the last sentence in the
longer sequence is an immediate consequence of its earlier members. At (c), the
different fragments of the longer sequence have the character of a proof. And at
(d), the whole sequence numbered / has the character of a proof. Finally, at (e)
we observe that this longer sequence yields Prvt(q) and discharge the assumptions
for the result that Prvt(end(p,q)) — [Prvt(p) — Prvt(q)] so that with T13.34
PA F Prt(end(p, q)) — (Prvt(p) — Prvi(q)).

But then we have Prvt(end("P7,7Q7)) — [Prvt("PT) — Prve("Q7)] as an
instance, and by capture, Prvt(TP — Q7) — [Prvt(TPT) — Prve(T@Q7T)] so that
PA F O — @) - (0P — OQ). Thus the second derivability condition is
established.

*E13.41. As a start to a complete demonstration of T13.54, provide a demonstration
through part (c) that does not skip any steps. You may find it helpful to divide
your demonstration into separate parts for (a), (b) and then for lines (21), (22)
and (23). Hard core: complete the entire derivation.

13.5 The Third Condition: o — oof

To show the third condition, that PA - Of — OO, it is sufficient to show PA
@ — O@. For when @ is O, the result is immediate. Further, O is Prvt("P )
and Prvt(TP7) is ;. So it is sufficient to show that for any ¥; sentence @, PA +
@ — oaQ.

We begin with some additional applications. Then we focus what needs to be
shown by an alternate characterization of ¥; formulas, along with some results about
substitutions. Finally we will be in a position to show the third condition.

13.5.1 More applications

Recall that wherep = "7, v = "o, and s = "4, formsub(p, v, s) returns the
Godel number of £ . In addition, num(n) returns the Godel number of the standard
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Second theorems of chapter 13

T13.21. For any friendly recursive function r(X) and original formula R(X, v) by which it is ex-
pressed and captured, PA defines a function #(X) such that PA - v = r(X) < R(X,v).
This theorem depends on conditions for the recursion clause and so on T13.22 and T13.31.

T13.22. Where ¥ (X, y,v) is the formula for recursion, PA = VmVn[(F (X, y,m) A F (X, y,n))
—m =n].

T13.23 - T13.26. T13.23 Results for a = b. T13.24 results for a|b. T13.25 results for Pr(a) and
Rp(a). T13.26 results for lem(a).

T13.27. PA & [(Vi < k)(m(@i) > @ Am(i) > h(i)) AViVji < j Aj < k — Rp(Sm(i),
Sm(j))] — Ap(Vi < k)rm(p,m(i)) = h(i) (CRT).

T13.28 - T13.30. T13.28 results for maxp and maxs. T13.29 PA + 3p3q(Vi < k)B(p.q,i) =
h(i). T13.30 PA = 3p3q[(Vi < k)B(p,q,i) = B(r,s,i) A B(p,q,k) = n].

T13.31. PAF Fv3p3q[B(p.q.0) = g(X) A (Vi < y)h(X,i,B(p.q.i) = B(p.q.Si)AB(p.q, )
= ).

T13.32. For any friendly recursive relation R(X) with characteristic function chr(X), PA - R(X) <
chg(¥) = 0. And for a recursive operator oP(P1(X) . ..Pn(X)) with characteristic function
f(chp, (X) ... chp, (X)), PA = Op(P1(X) ... Pa(X)) < f(chp,(X)...chp, (X)) = 0. Corol-
lary: where R(X) is originally captured by R(X, @), PA - R(X) < R(X, 9).

T13.33. Suppose f(X,y) is defined by g(X) and h(X, y,u) so that PA F v = f(¥,y) <
F (X, y,v); then, (i) f(X,0) = g(¥) and (i) f(X. S(y)) = k(X y, f(X.)).

T13.34. (a) For any friendly recursive function r(X) and original formula &R (X,v) by which it
is expressed and captured, PA defines a coordinate function r(X) such that PA - v =
r(X) < R(X,v). And (b) for any friendly recursive relation R(xX) with characteristic func-
tion chg(X), PA defines a coordinate relation R(X) such that PA - R(X) < chg(X) = 0.

T13.35-T13.37. T13.35 equivalences for suc, zero, idnt,i, plus and times. T13.36 results for pred,
sg and c¢sg. T13.37 Equivalences for pred, subc, absval, sg, csg, Eq, Leq, Less, Neg, and
Dsj.

T13.38. PA proves a characteristic function takes the value @ or 1.
T13.39. Equivalences for (Ay < z), @Ay < 2), (Vy <z), (Vy < z2), (my < z), Fctr, and Prime.

T13.40 - T13.44. T13.40 first applications to recursive functions. T13.41 Results for m¢. T13.42
results for fact. T13.43 results for pi. T13.44 results for exp.

T13.45 - T13.51. T13.45 results for len. T13.46 results for val. T13.47 results for m x n. T13.48
results for Termseq. T13.49 results for Formseq. T13.50 results for Tsubseq. T13.51
results for Fsubseq.

T13.52 - T13.53. T13.52 on unique readability. T13.53 results for Wff and Prvpa.

TI13.54. PAF O(® — Q) —» @P — 0Q). —D2
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numeral for n, and gvar(n) is the Gddel number of variable x,. So formsub(p, gvar(n),
num(y)) is a function which returns the number of the formula that substitutes a nu-
meral for the value (number) assigned to y into the place of x;. So, for example, if y
is assigned the value of 2, then formsub(p, gvar(n), num(y)) returns '—{Pg" 7. And PA
defines formsub(p, gvar(n), mm(y)). We require some results for these notions.

First, a pair of theorems with some results for substitutions into terms and then
formulas.

T13.55. The following are theorems of PA.
(a) PA | Free,(t,v) <> ~Termsub(t,v,v x 4,1)
(b) PA - Var(v) — Term(v x 4) Av x4 #v

(¢) PAFexp(m, k) =707 — ~[J(v.m,n,k)v K(v,s,m,n,k)v L(m,n,k)V
M@m,n,kyv Nm,n, k)]

(d) PA - [Var(exp(m, k))nexp(m, k) # v] = ~[I(m,n,k)vK(v,s,m,n, k)V
Lm,n,kyv M(m,n,k)v N(m,n, k)]

(e) PA - [Var(exp(m,k)) A exp(m, k) = v] > ~[I(m,n, k) Vv J(v,m,n, k) Vv
Lm,n,k)yv M(m,n,k)v N(m,n, k)]

) PAF exp(m, k) =T8S wa — ~[I[(m,n,k)VJ(v,m,n, k)VK(,s,m,n, k)v
M(@m,n,k)v N(m,n, k)]

(g) PAF exp(m. k) ="+ %a — ~[I[(m,n,k)VJ(v,m,n, k)VK(@u,s,m,n, k)v
L(m,n,k)v N(m,n, k)]

(h) PA F exp(m. k) = "xxa — ~[I(m,n,k)vJ(v,m,n,k)VK(®,s,m,n,k)v
L(m,n,k)yv M(m,n, k)]

*(1) PA & [Termsub(t,v,s,q) A Termsub(t,v,s,r)] —>q=r

(G) PA - [Atomsub(p,v,s,q) N Atomsub(p,v,s,r)] >q=r

(k) PA - [Term(t) A Term(s)] — [~Free:(t,v) — Termsub(t,v,s,t)]
() PA  Term(s) — [Atomsub(p,v,v x 4, p) — Atomsub(p,v,s, p)]

(m) PAF [Term(t) A Var(v)] — [(Free:(t,v) A Termsub(t,v,s,u)) — s < u]
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*(n) PA F Var(v) — [(~Atomsub(p,v,vx4, p)AAtomsub(p,v,s,q)) — s < q]

Hints: (i) Under assumptions for —I and (3E) you have Tsubseq(m,n,t, v,
s,q) and Tsubseq(m’,n’,t,v, s, r); with this show Yk [k < len(m) — (Vx <
len(m’))(exp(m, k) = exp(m’,x) — exp(n,k) = exp(n’, x))] by strong in-
duction; the result follows easily from this. (k) Under assumptions for —I and
then JE, you have both Tsubseq(m,n,t,v,v x 4,t) and Tsubseq(m’,n’,t, v,
s,u) with goal t = u; by strong induction show Vk[k < len(m) — (Vx <
len(m”))(exp(m, k) = exp(m’, k) — (exp(m, k) = exp(n, k) — exp(m’, x) =
exp(n’, x)))]; then the result follows easily. (m) Under assumptions for —I
and 3E you have Termsub(m,n,t,v,v x 4,r) and Termsub(m’,n’ t,v,s,u)
where r # t with goal s < u; by strong induction show Vk(k < len(m) —
(Vx < len(m))[exp(m, k) = exp(m’, x) — (exp(m, k) # exp(n,k) - s <
exp(n’x))]; the result follows.

T13.56. The following are theorems of PA.
(a) PA & Frees(p,v) <> ~Formsub(p,v,v x 4, p)

(b) PA - Aromic(exp(m, k) — ~[P(m,n, k) Q(m,n,k)V R(v, p,m,n, k) Vv
S, p,m,n, k)]

(c) PAF exp(m, k) = "~Txa — ~[0O(v,s,m,n,k)vVQ(m,n, k)VR(, p,m,n,k)v
S, p,m,n, k)|

(d) PAF exp(m. k) =" (Txa — ~[O(v,s,m,n,k)VP(m,n,k)VR®, p,m,n, k)
S, p,m,n, k)]

(e) PAF [Var(j) Aexp(m, k) ="V % jsxanj #v] — ~[0OW,s,m,n k)v
P(m,n,k)yv Q(m,n,k)v S(v, p,m,n, k)|

) PAF [Var(j) Aexp(m, k) ="V % jxaAj =v] > ~[0W,s,m,n k)v
Pm,n,kyv Qm,n, k) v R(v, p,m,n, k)]

(g) PA & [Formsub(p,v,s,q) A Formsub(p,v,s,r)] —q =r

(h) PA F [Wff(p) A Term(s)] — [Formsub(p,v,s,q) — formusb(p,v,s) =
q]

(i) PA F[Wff(p) A Term(s)] — [~Frees(p,v) — formsub(p,v,s) = p]

corollary: If x is not free in &, then PA - formsub("P7,Tx7, y) = TP
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(G) PA E[Wff(p)ATerm(s)AVar(v)] — [Frees(p,v) — s < formsub(p,v,s)]

Hint: See the corresponding members of T13.55.

We are now positioned for some results related to Gen and A4. Let gvar(n)
=r 223121 be the Godel number of variable x,, and numseq(n) be as follows.

PA F numseq(9) = pi(@)mm(@)
PA F numseq(Sy) = numseq(y) x pi(Sy)MMm(Sy)

We shall be able to show that numseq(n) numbers a term sequence for mum(n). In
addition let,

T(m, k) = Atomic(exp(m,k))

Ulm, k) = () <k)lexp(m. k) = neg(exp(m, j))]

Vim, k) = (3 <k)3j <k)lexp(m,k) = end(exp(m,i),exp(m, j))|

Wu,v,m k) = @p=uw)[Wff(p) Aexp(m, k)= ww(v, p)]

X(w,v,s,m,k) = @i <k)3j =wVar(j)Aj # v A(~Freels, j) Vv ~Free(exp(m,i),v)) A

exp(m, k) = mv(j, exp(m,i))]

T13.57. The following are theorems of PA.

(@) PA F Ffseq(m,s,v,u) < [exp(m, len(m) ~ 1) = urm > 1A (Vk <
len(m))(T(m,k) v U@m,k)v V(im,k)v Wu,v,m, k) Vv X(u,v,s,m,k))|

(b) (1) PA & Freefor(s,v,u) <> (3x < By) Ffseq(x,s,v,u)
(11) PA Bu = [M(len(u))u]kn(“)

(c) PA = Axiomad4(n) < (Ap < n)(3v < n){WH(p) A Var(v) A
(~Frees(v, p) An = ecnd(mv(v, p), p)) v
(3s < n)(Frees(v, p)ATerm(s)AFreefor(s, v, p)An = end(uv(v, p), formsub(p,v,s))]}
(d) (i) PA F mm(9) =37
(i) PA = mum(Sy) = 7S * mum(y)
() PA F gvar(n) = 322"
(f) PA & Var(gvar(n))
(2) PAF gvar(m) = gvar(n) > m =n
*(h) PAF [Prvi(p) A Var(v)] > Prvt(uw(v, p))

(i) PA F Axiom(n) — Prvt(n)



CHAPTER 13. GODEL’S THEOREMS 705

() PA F [Wff(p) A Var(v)] — Freefor(v, v, p)
*(k) PA b Axiomad4(n) < 3s(3p < n)(Fv < n)[WfF(p) A Var(v) A
Term(s) A Freefor(s,v, p) An = end(uw (v, p), formsub(p,v,s))]
() PA F muim(x) > 0
(m) PA b numseq(x) > 1
(n) PA F len(mum(x)) = Sx
#(0) PA F len(numseq(x)) = Sx
(p) PAEVy[y <x — exp(numseq(x), y) = mm(y)]
(@ PAF Var(v) — v # mm(y)

(r) PA & Termseq(numseq(x), num(x))
corollary: PA F Term(mm(x))

(s) PA F Termsub(mm(n), v, s, mm(n))
corollary: PA F ~ Free,(um(n), v)

*t) PAF [Wff(p) A Var(v)] — Freefor(mum(x), v, p)

(u) PA - Wff(p) — Prvt(end(uv(gvar(n), p), formsub(p, gvar(n), mm(x))))

Hint: (p) is by induction on the value of x. For (q) it may help to think about
the length of v and rum(y). For (r) to show the bounded quantification for
Termseq(numseq(x), num(x)) you assume j < len(numseq(x)); then j =
@ v j > @ and the cases are easy. (s) again, in the argument for the bounded
quantifier, j =0 Vv j > @.

Effectively, (h) is like Gen. (k) is like the intuitive version of A4 from p. 605. And (u)
results with A4 when the substituted term is a numeral (so that associated restrictions
are automatically met).

Finally, a theorem with results first for substitution into a conditional, and then for
substitution into other substitutions. The latter include matched results for Termsub,
Atomsub and then Formsub. Suppose x = x; and y = Xx;.

T13.58. The following are theorems of PA.
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(a) PAF [Wff(p) A Wif(q) A Term(s)] — formsub(end(p,q),v,s) =

end(formsub(p,v,s), formsub(q,v,s))
*(b) PA & [Term(p) A v # w] — g3t [Termsub(p, v, mm(y), 1) A

Termsub(p, w, mm(z),t" ) ATermsub(t, w, mm(z), g) ANTermsub(t’, v, mm(y), q)]

(¢) PA  [Atomic(p)Av # w] — g3’ [Atomsub(p, v, mum(y), t) A Atomsub(p, w, mm(z),t") A
Atomsub(t, w, mum(z), q) A Atomsub(t’, v, mum(y), q)]

*d) PAF [Wif(p)Av # w] — formsub( formsub(p, v, mm(y)), w, mm(z)) =

Sformsub( formsub(p, w, mm(z)), v, mum(y))

(e) PAF [Term(p)AVar(w)] — 3¢3t3t’[Termsub(p, v, w, t)ATermsub(p, v, mm(y),t") A
Termsub(t, w, mm(y),q) A Termsub(t’, w, mm(y), q)]

() PA & [Atomic(p)AVar(w)] — 3q3t3t’ [ Atomsub(p, v, w, t) AAtomsub(p, v, mm(y),t") A
Atomsub(t, w, mm(y), q) A Atomsub(t’, w, mm(y), q)]

(g) PAF [Wff(p) A Var(w)] — formsub( formsub(p,v,w), w, mm(y)) =
Sformsub( formsub(p, v, mm(y)), w, mm(y))

(h) PA & [Term(p) A Var(w)] — ¢33’ [Termsub(p,v,mS "« w,t) A
Termsub(p, v, mm(Sy),t")ATermsub(t, w, mm(y), q) ATermsub(t', w, mm(y), q)]

(i) PA & [Atomic(p) A Var(w)] — ¢33’ [Atomsub(p,v,” S % w, 1)
A Atomsub(p, v, mm(Sy),t")AAtomsub(t, w, mm(y), g) ANAtomsub(t’, w, mm(y), q)]

() PA & [WH(p)AVar(w)] — formsub( formsub(p, v, SV s w), w, mm(y))
= formsub( formsub(p, v, mm(Sy)), w, mm(y)).

Hints: (b) Let #» = 3g3aIbIc3d[Tsubseq(a, b, exp(n, k), w,mum(z), q) A Tsubseq(c, d, exp(n’, k'), v,
mm(y), q)]; SNOW Vx(Vk < len(m))(Vk' < len(m’))[len(exp(m, k)) < x — (exp(m, k) = exp(m’, k') —
)1 by IN; the result follows. (c) Under the assumption for —I, apply T13.49¢
and then (b). For (e) let ® = 343a3b3c3d[Tsubseq(a, b, exp(n, k), w, mm(y), q) A Tsubseq(c, d,
exp(n’ k'), w, mum(y),q)]; show Vx(Vk < len(m))(Vk’ < len(m”))[len(exp(m, k)) < x — (exp(m, k) =
exp(m’, k') - #)] by IN.
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Speaking loosely: From (a), ( — @)} = #¢ — @Y. From theorems leading up to (d),
if v # w then (Do) () = o)) () From ones leading to (g), (P2 m(y) =
(:P,,Zlm(y))%m(y). And from ones leading to (j), (P¢,, ;;;m(y) = (:/’I}Zlm(sy))%m(y). For
these is important that rmm(y) is a numeral and so has no variables to be replaced.
Arguments combine methods we have seen before; reasoning is straightforward but

long.

*E13.42. Set up the argument for T13.55k including assertion of the main proposi-
tion to be shown by induction; then set up the show part working just the L
case. Hard core: finish T13.55k and the rest of the results in T13.55.

*E13.43. Set up the argument for T13.56i including assertion of the main proposi-
tion to be shown by induction; then set up the show part working just the P
case. Hard core: finish T13.56¢ and the rest of the results in T13.56.

*E13.44. Show (s) and (u) from T13.57. Hard core: show the rest of the results from
T13.57.

*E13.45. Show T13.58a; then set up the argument for T13.58g including assertion
of the main proposition to be shown by induction; then set up the show part
working just the P case. Hard core: finish T13.58g and the rest of the results
in T13.58.

13.5.2 Sigma star.

Our aim is to show PA - @ — 0@ for any X; sentence @. Given our minimal
resources, the task is simplified if we can give a minimal specification of the ¥
formulas themselves. Toward this end, we introduce a special class of formulas, the
¥* formulas; and show that every X formula is a ¥* formula. ¥* formulas are as
follows.

(X*) For any variables x, % and z,

@P=z,y=2z,Sy=2z,x+y =zandx xy = z are strictly X*.
(s) If # and @ are strictly £*, then so are (£ Vv @), and (P A @).

(V) If P is strictly £*, then so is (Vx < %)J where ¥ does not occur in P.
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(3) If P is strictly *, then so is IxP.

(¢) Nothing else is strictly X*.

A formula is X* iff it is equivalent to a strictly £* formula.

Given that the existential quantifier comes to the front (as for T12.10), it is perhaps
obvious that every X* formula is 3. At any rate, we aim to show the other direction:
that every X formula is provably equivalent a ¥* formula. Then results which apply
to all the ¥* formulas immediately transfer to the ¥, formulas. We begin showing
that there are X* formulas equivalent to atomic equalities of the sort # = x. Then
(depending on an extended notion of normal form and a result result according to
which A¢ formulas always have equivalent normal forms) we show that there are ¥*
formulas equivalent to Ay formulas. From this it is a short step to the result that there
are X* formulas equivalent to all the ¥; formulas. First, then, the result for atomic
equalities,

T13.59. For any & of the form ¢ = «x, there is a X* formula $* such that PA +
P < P*.

By induction on the function symbols in #.

Basis: If t has no function symbols, then it is the constant ¢ or a variable
Y, so P is of the form § = x or ¥ = «x; but these are already X*
formulas. So let £* be the same as #. Then PA - £ < P*.

Assp: Forany i, 0 <i < k, if ¢ has i function symbols, there is a * such
that PA - P < P*.

Show: 1If ¢ has k function symbols, there is a * such that PA - P < P*.
If ¢ has k function symbols, then it is of the form S, * 4+ s or » x 4
for » and s with < k function symbols.

(S) tis S»,sothat P is S» = x. Set P* = Jz[(»r = 2)* A Sz = x];
then by assumption, PA - » = z <> (» = z)*. So reason as follows,
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1. jzze(%:z)* assp

2. ;S'% =X A (g <))

3l |r=rASr=x from 2

4.1 |Fz[r =z A Sz =x] 331

5.0 [3z[(r =2)* A Sz =x] 1,4 with T9.9
6.| | 3z[(r = 2)* NSz =Xx] A (g <D

7. (r=2)*ASz=x A (g 63E)

8. r=1z 1,7 <E

9. Sr=x from 7,8
10.] | Sr=x 6,7-9 3E
11.|Sr=x < 3z[(r = 2)* A Sz = x] 2-5,6-10 <1

SoPAF P < P*.

(+) t = s+»,sothat P is s +r = x. Set P* = uIv[(s = u)*A(r =
vV)* Au+v=x]. ThenPAF P < P*.

(x) Similarly.

Indct: For any & of the form ¢+ = «x, there is a $* such that PA - £ < £*.

Now generalize some operations from T8.1. There we said a formula is in normal
form iff its only operators are Vv, A, and ~, and the only instances of ~ are imme-
diately prefixed to atomics. Now a formula is in (extended) normal form iff its only
operators are V, A, ~, or a bounded quantifier, and the only instances of ~ are im-
mediately prefixed to atomics (which may include inequalities). Again, generalizing
from before, where # is a normal form, let #’ be like & except that v and A, uni-
versal and existential quantifiers and, for an atomic #, # and ~ are interchanged.
So, for example, (Ax < p)(x = pVvx ¥ p) = (Vx < p)(x # p A x > p). Still
generalizing, for any Ao formula whose operators are ~, — and the bounded quan-
tifiers, for atomic +, let A* = A; and [~P]* = [P*]; (P — Q)* = ([P*] v @¥);
[Ax < )P]* = Ax < t)P* and [(Vx < )P]* = (Vx < t)P™* (and similarly for
(3x < #) and (Vx < t)). Then as a simple extension to the result from ES8.10,

T13.60. For any Ao formula #, there is a normal formula #* such that- P < £*.

The demonstration is straightforward extension of the reasoning from E8.9
and ES8.10.

We show our result as applied to these normal forms. Thus,
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*T13.61. Forany Ag formula P there is a X* formula * such that PA - £ < £*.

From T13.60, for any A formula £, there is a normal $* such that - » <
P *. Now by induction on the number of operators in £ *, we show there is a
P* such that PA - P* < P*.

Basis: If £* has no operators, then it is an atomic of the sort s = #, 4 <
or ¢ < £.
(=) P*¥is s = t. Set P* = 3z[(s = z)* A (+ = z)*]. By T13.59,
PAFs =z« (s =2)andPAF 1t =2z« (+t = 2); s0
PAF P* < P*.
(<) P*is s < t,whichistosay 3z(z + ¢ = ¢). By the case immediately
above, PAF (z4+3 =1) < (z4+4 = )*. Set P* = Jz(z+4s = 1)*.
Then PA F+ £* < £*. And similarly for <.
Assp: Forany i, 0 < i < k, if a normal $* has i operator symbols, then
there is a X* formula $* such that PA - P* < £*.

Show: If anormal #* has k operator symbols, then there is a £* formula P*
such that PA = P* < P*.

If * has k operator symbols, then it is of the form ~#A, 8 A €,
BVvE Ax <)B,(Ax < 1)B, (Vx < 1)B or (Vx < 1)B, where
s is atomic and B and € are normal with < k operator symbols.

(~) P*is~A. (1) P*is s # t.Set P* = (s < t)* vV (¢ < 3)*; then by
assumption, PAF 3 < < (s <#)*andPAF & < 3 < (1 < 3)%;
and with T13.13p, PA F £* < P*.

(i) P*is s £ 1; set P* = (& < 4)*; then by assumption, PA - 1 <
s <> (t < 3)*; and with T13.13r, PA F £* < £*. And similarly
for P* =45 £ 1.

(N) P*¥is B AE. Set P* = B* A €*; since B and € are normal, by
assumption PAF B <> B8* andPAF € < €*;s0 PAF P* < P*.
And similarly for V.

V) P*¥is (Vx < 1)B. Set P* = Fz[(t = 2)* A (Vx < 2)B*]; by
T13.59 PAF t = z < (+ = z)* and by assumption, PA - 8 < 8*
so PA F P* < £*. And, by a related construction, similarly for
(Vx < 1)8B.

@) P*is (Ax < £)B. Set P* = Ax[(x < £)* A B*]; then by assumption
PAFx<t< (x<t)*andPAF B < B*;s0PA+ P* & P*.
And similarly for (3x < ¢)B.
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Indct: For any normal $* there is a £* such that PA - £* < P*.

So from T13.60 for any Ag formula &, there is a $* such that = P < P*
and by the above reasoning, PA - £* <> #*. SOPAF P < P*.

Now it is immediate that for any X; formula # there is a X* formula $* such that
PAF P < P*.

T13.62. For any ¥; formula & there is a ¥* formula #* such that PA - P « P*.

Consider any X7 formula J2. This formula is of the form Jx; ...3x, A for
Ao formula +. But by T13.61, there is an A* such that PA - A <> A*. Let
P*bedxq...dx, A*. ThenPA F P < P*.

E13.46. Povide a demonstration to show T13.60.

*E13.47. Fill in the parts of T13.59 and T13.61 that are left as “similarly” to to show
that PA+ P < P*.

E13.48. Show that for any X* formula #* there is a X; formula & such that PA F
P < P* and so that the =* formulas are the same as the X; formulas.

13.5.3 Substitutions

We now define a sub("P7, ) which substitutes numerals for all the variables free in
P. Where y is a (possibly empty) sequence of distinct variables, including at least all
variables free in &, consider an enumeration enum(i) of variable subscripts in y so
that enum(i) = y; is the subscript of the i# variable and y; the numeral corresponding
to that subscript; so the variables of y are xy, ...xy, (perhaps the enumeration is by
list where enum(i) = enum(n) when i > n). Then,

PA b subo("P 7, ¥) =P

PA & subsi("P7,y) = formsub(sub; (" P, y), gvar(yg;), mm(xyg))
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And PA F sub(TP7,y) = sub,("P7, 7). Observe that enum does not appear in
the £yr expression; rather we use the function to make the specification in which
there appears a certain variable xyg and numeral yg;. Also, sub(TP7, ) still has
as free variables each xg free in & but returns the Godel number of a sentence —
the sentence which substitutes into places for free variables numerals for the values
assigned to those variables.

From a few quick theorems, so long as y and Z include all the free variables of
P, sub(CP7, ) = sub("P7, 7).

T13.63. PA - Wi (sub; ("9, 7)). Corollary: PA - W (sub( P, 7)).

By an easy induction.

T13.64. For arbitrary u, v, sub; ("P 7, Xy, ... Xy, U) = subj (TP, xy, ... Xy, V)

By an easy induction.

*T13.65. For any i, PA + subj (TP, Xa, Xy, .. Xy,) = sub; 11 (TP, Xyy o Xy
Xa; Xy(yq) - - Xyn)
The argument is an induction on the value of i. For the show, you need PA -
sub; 1 (TPT, Xa, Xy, ... Xy,) = subj 42 (TP7, Xy; -+ Xyipys Xas Xyp - - - Xy, ). The
key to this is that sub; 12 (" P, Xy, ... Xy, Xa, Xy, p, - - - Xy, ) 8,

Sormsub| formsub(sub;("P7, xy, ... Xy qs Xas Xy pee s Xyo), gvar(Yiyq), 1}111,4m(xyiJr1 ), gvar(y,), mum(xy,)]

You will be able to use T13.64 and T13.58d. As a preliminary it will be
useful to show that if PA + Wff(p), then PA + formsub( formsub(p,
gvar(a), mm(x,)), gvar(b), mm(xy)) = formsub( formsub(p, gvar(b), mm(xp)),
gvar(a), mm(xy)).

T13.65 effectively gives the ability to sort variables from one order into another.
Suppose the variables of X are the same as the variables of y. To convert y to X, a
straightforward approach is to switch members into the first position in the reverse of
their order in X — so for n members, at stage i, the result is Xxg,_, . ..Xx,, ¥ Where
¥’ is like y less the members that precede it. So for a vector with 6 members, at stage
0 we begin with some sub(" P, 7); then at stage three PA proves this is equivalent
to sub(TP 7, Xy, . Xxg. Xxg» ¥'); and at stage 6 that it is equivalent to sub(" 7, ). This
is an induction, but simple enough, so left as an exercise.
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T13.66. If x, is not free in &, then PA b sub; +1(TP 7, Xy, ... Xy, Xa, Xygpy - - - Xy,)
= sub; (" P, Xy, ... Xy, Xa, Xygqqy - - - Xy,)
In light of T13.64 and T13.65 it is sufficient to show PA - sub; 41 ('—JT, Xa,
Xy, ... Xy,) = sub; ('_J?, Xy, ... Xy, Xa). The argument is by induction on i,
where the basis uses Wff(" ) A ~Freef('_JT, gvar(a)) A Term(mm(xy))
by capture and T13.57r, and then T13.56i to establish that PA - sub; (TP,
Xa, Xy, - .. Xy,) = subog (TP, Xy, ... Xy, Xa).

*T13.67. If the variables of y and Z are ordered by their subscripts and y and Z are
the same except that Z includes some variables not in y (and so not free in
P), then PA b sub("P7, y) = sub("P7, 2).

Hint: Where the variables of y are xy, ...xy, and of Z are xz, ...xz,, let
S(@i.j) = Si.Sj whenys; = zgjand S(i.j) = i.Sj whenys; # zsj. Theni.j
“counts” in the natural way from 0.0 to m.n; and you will be able to show that
for any member of this i.j sequence, PA I sub; (TP, y) = sub,; (TP, 7).

And with T13.65 and T13.67, details of the vectors do not matter: Let X’ and y’ be
like X and y except that variables are in standard order, and Z be just the free variables
of # in standard order. Then by T13.65, sub("? 7, %) = sub("P7,¥’); by T13.67,
sub(CP7, %) = sub(TP7,Z); by T13.67 again, sub("P7,Z) = sub("P7,y'); and
with T13.65, sub(" 7, 5') = sub(TP7, 7). So PA F sub("P7, %) = sub("P7, ¥)
and we shall not usually worry about details of the vectors.

Then, introducing double brackets as a special notation,

Prvt[P(¥)] =ws Prvt(sub(TP 7, X))

Where P has free variables X, Prvt("P7) asserts the provability of the open for-
mula P (X). But Prvt[P(X)] itself has all the free variables of $# and asserts the
provability of whatever sentences have numerals for the variables free in #: so, for
example, YxPrvt[P (x)] asserts the provability of Py, P3,, and so forth. When
& is a sentence, there are no substitutions to be made, and Prvt[#] is the same as
Prvt("P 7). Thus we set out to show PA - P — Prvt[P] for =* formulas. When
& is a sentence, this gives PA - £ — Prvt(TP7), which is to be shown.

Finally we shall require also some short theorems in order to manipulate this new
notion. There are analogs to D1 and D2, and results for substitution. Each is by a
short induction. First, for D1.
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T13.68. If PA P, then PA F Prvt[P]

Suppose PA F £. By induction on the value of n, PA - Prvt(sub, (" P 7, X));
the case when i = n gives the desired result.

Basis: subg(TP7,X) = TP 7. Since PA F 2, by D1, PA F Prvt("P7T); so
PA  Prvt(subo("P7, X)).

Assp: PA F Prot(sub; (TP, X)).

Show: PA F Prvt(subgi(TP7, %)).

1. Prvt(sub; ("P7, X)) assp
2. Var(gvar(Xsi)) T13.57f
3. W (sub; (97, %)) T13.63
4. Prvtluv(gvar(Xsi), sub; (TP 7, )] 1,2 T13.57h
5. Prvt[end(wv(gvar(Xsi), sub; (TP 7, X)),
Sormsub(sub;(" P, X), gvar(Xs;i), mum(xxg)))] 3T13.57u

6. Prvtluv(gvar(Xsi), sub; ("9 7, X))] —

Prvt[ formsub(subi(" P, X), gvar(Xsi), mim(xxg;))] 5D2
7. Prvt[ formsub(sub;(" P, X), gvar(Xsi), mum(xxg))] 4,6 >E
8. Prvt(subsi("P7, X)) 7 def

Indct: For any n, PA & Prvt(sub,("P7, X))
And an analog to D2,

T13.69. PA - Prt[P — Q] — (Prvi[P] — Prvt[@Q])
We must show PA + Prvt(sub("P — @7, X)) — (Prvt(sub("P7, X)) —
Prvt(sub("@7, X))). First, by induction, PA F sub;(ecnd("P7,7Q7), X)) =
end(sub;i("P 7, X), sub;("@7, X)). This leads immediately to the desired re-

sult.

Basis: subg(ecnd("P7,7Q7), X)) = end(subg(" P, X), subg("Q7, X))

1. subg(end("P7,7QM),X) = ecnd("P7,7Q") def
2. subp("P,X)="P" def
3. subp(C@1, %) =T@" def

4. suby(end(TP7,7Q7), %) = end(subg("PT, %), subp("Q7, %)) 12,3 =E
Assp: PAF subi(end("P7,7Q7), X)) = end(sub;("P 7, X), sub;("Q7, X))
Show: PA & subsi(ecnd("P7,"Q7), X)) = end(subs;(" P, X), subs;("Q7, X))
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1. Wff(subi("P7, %)) A Wi (subi(C@Q7, X)) T13.63
2. Term(mm(xyxg;)) T13.57r
3. subsi("P 7, X) = formsub(sub;(" P, X), gvar(Xsi), mm(xxg)) def
4. subsi("Q7,X) = formsub(subi("Q7, X), gvar(Xsi), mum(xxg)) def
5. subsi(end("P7,TQ7), X)
6. = formsub(subi(cnd(P7,TQ7T), X), gvar(Xsi), mum(xxg;)) def
7. = formsub(end(sub;("P7, X), subi("Q7, X)), gvar(Xsi), mm(xxg)) assp
8. = ond( formsub(sub;(" P, X), gvar(Xsi), mum(xxg)),
Sormsub(sub;i("Q7, X), gvar(Xsi), mm(xxg))) 1,2 T13.58a
9. = md(subS[('—J’—',E),subg,-('—(,‘l—',)_c')) 8,3,4 =E

Indct: Foranyi,PA & subj(end("P7,"Q7), X)) = end(sub;(" P, X), sub;("@Q7, X))

So PA F sub(end("P7,"Q™), X)) = end(sub(" P, X), sub("@Q7, X)). Now,

1.| | Prvt(sub("P — @7, X)) A(g—D
2| | Prot(sub(end TP, @), 7)) 1 cap

3.| | Prvt(end(sub("P7, %), sub("@7, X))) 2 above
4. | Prvt(sub("P7, X)) — Prvt(sub("@Q7, X)) 3D2

5. Prvt(sub("P — @7, X)) — [Prvt(sub(" P, X)) — Prvt(sub("@Q7, X))] 2-5 —>1

Finally a result for substitutions into these expressions. Again, let x = x; and y =
Xj.

T13.70. If ¢ is one of @, y or Sy and # is free for x in P, then PA = Prvt[P}] <
Prt[P]7.
Consider the case ¢ = Sy and take the variables in the order x, y,Z where
x and y do not appear in Z. Prvtl[fo 1 = Prvt(sub("PE T ogfy—',x, y.Z)). And
Pt PT5, = = Prvt[sub("P7, x, y, Z)] = Prvt[sub("P7, x, y, Z)x ]. Thus
it suffices to show PA sub('_J’ X, v.2) = sub("P7, x, y, Z)x By in-
duction, PA subn(r!P X, Y, Z) = sub,("P7, x, y, Z)

Basis: PA subz('_ Psy X,V Z) = sub,("P7, x, y,E)i{.y.
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1. WFTPT
2. Var(gvar(j))
3. suby (’_!Px X, ,7)
4. = formsub('—fgfyj,gvar(T),mzum(x))
5. l_fx A
Sy
6. subz('_{/’xy" X, 9,%)
7. = formsub(subl('—ﬂ)gyj, x,,2), gvar(j), mm(y))
8. = formsub('_?gfy—',gvar(j),mm(y))
9. = formsub( formsub(" P, gvar(i),” S x gvar(j)), gvar(j), mm(y))
10. = formsub| formsub("P7, gvar(7), mm(Sy)), gvar(j), mm(y)]
11. sub1("P 7, x,y,2)
12. = formsub("P7, gvar(7), mum(x))
13. subz('—?j,x,y,f)gy
14. = formsub(sub;("P7, x, y,Z),gvar(j),mum(y))f;y
15. = formsub( formsub(" P, gvar(i), mm(x)), gvar(j), mtm(y))gy
16. = formsub(formsub(" P, gvar(i), mm(Sy)), gvar(j), mm(y))
17. subz('_fgf 0x,y,Z2) = suby("PT, x, y,E)i{.y
Assp: For2 <i,PAF subl ('_ X, v.2) = subi("P7, x, y, Z)
Show: PA F subg; ('_ L X, y,z) = subs; (TP, x, y, Z)Sy
1. mbsl('—?x 1 x,y,z)
2 = formsub(subi ('—!ngy_‘, X,y,Z), gvar(Zsi—2), mm(xzg_,)) def
3. = formsub(sub;("P7,x,y, Z)fgvy, gvar(Zsi—z), mum(xzg_,)) assp
4 = formsub(sub; (" P, x, y,Z), gvar(Zsi—2), mtm(xZSi_Z))gy abv
5 =subg;i (TP, x,y, E)gy def
Indct: PAF subn('_ X, .2) = sub,("P7, x, y, Z)

Line (4) of the show is justified insofar as x does not appear in Z.

Other cases are similar and left for homework.

*E13.49. (i) Provide a demonstration for T13.65. (ii) Then provide a demonstration

for the sorting result that is “simple enough” and so left as an exercise.

*E13.50. Provide a demonstration for T13.67

E13.51. Complete the demonstration of T13.70 by completing the remaining cases.

716

cap
T13.57f

def
T13.561

def
3-5=E
cap

1,2 T13.58j

def

def

11-12 =E

abv

6-10,13-16 =E
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13.5.4 The result.

We are finally (!) ready to show that for any ¥* P, PA - # — Prvt[#]. And this is
the result we need for D3. The argument is by induction on the number of operators
ina X* formula.

Before we launch into the main argument, a word about substitution. From their
original statement, the rules VI and =E result in formulas of the sort P} or £%/;.
So from, say, VE applied to VxPrvt[$] we get something of the sort Prvt[P]}. But
we need to be careful about what the substitution comes to. In the simplest case,
Prvt[P(x)] is of the sort Prvt(formsub(" P (x)7, gvar(i), mm(x))), where there is
a free x to be replaced by ¢; but this does not automatically convert to Prvt[P (¢)]
insofar as " P (x) ' is a numeral and so lacks any free x. But we do have a theorem,
T13.70 which tells us that in certain cases PA = Prvt[P}'] <> Prvt[P]7, so that the
replacements can be moved across the bracket in the natural way. With this said, we
turn to our theorem.

T13.71. For any ¥* formula &, PA - # — Prvt[P].
By induction on the number of operators in 5.

Basis: If a ¥* P has no operator symbols, then it is an atomic of the sort § = z,
y=z,Sy=z,x+y=zorxxy==z.

(S) Suppose & is Sy = z. Reason as follows,

1.| Sy =Sy =I

2.| Prvi[Sy = Sy] 1 T13.68
3./ | Sy=z A (g =D
4.1 | Prt[(Sy = z)gy]] 2 abv

5.| | ProrlSy = 2]%, 4T13.70
6. | Prvt[Sy = 7] 35=E
7.1 Sy =z — PriSy = 7] 3-6 -1

Observe that T13.68 applies to theorems, and so not to formulas under the
assumption for —I. Thus we take care to restrict its application to formulas
against the main scope line. Also, at (5) we use T13.70 to move the substitu-
tion across the bracket. With this done, the substitution on line (4) applies only
to the free z of Prvt[Sy = z] — thatis, to the free z of Prvt(sub("Sy = z7, y,
z); so that =E applies in a straightforward way to substitute a z back into that
place. The argument is similar for§ = z and ¥y = z.

(+) Suppose & is x+y = z. The proof in PA requires appeal to IN, with induction
on the value of x in VyVz(x + y = z — Prvt[x + y = z])). For the basis,
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1.|0+y=y T6.51

2. | Prt]@ + y = y] 1 T13.68
3. ix +y =2) A (g =D
4.1 10+y=z 3 abv

5./ |y=z 1.4 =E
6. | Prvi[(@ +y =z2)3] 2 abv

7| | Prvtl@ + y = zI} 6 T13.70
8.| [Prvt]@ +y =Z] 6,5 =E
9. | Prvitl(x +y = 2)z] 8 abv
10. | | Prvf[x +y = z]j 9 T13.70
1L | (x +y =2)5 = Pri]x +y = z]j 3-10 =1
12.|(x +y =z —Prifx +y = z])j 11 abv

13.|VyVz(x +y =z — Prt[x + y = z])y 12 VI

And the inductive stage,

“|x+Sy=zSx+y=z T6.42,T6.53
15. | Prvt[x + Sy =z - Sx +y =] 14 T13.68
16.| |VyVz(x+y =z — Prt[x +y =z]) A (g =D
17.] | [ +y =25, A(g—D
18. Sx+y=z 17 abv
19. x+Sy=z 14,18 <E
20. x4+ Sy =z— Prifx +y =z]]§y 16 VE

—_ 7Y
21. Prt]x +y = Z]]Sy 20,19 -E
22. Prvt[x + Sy = z] 21 T13.70
23. Prt]x + Sy = z] - Prvi[Sx + y = Z] 15 T13.69
24. Prvt[Sx + y = Z] 23,22 -E
25. Prvtlx +y = z]5, 24 T13.70
26.| | (x+y =2)%, = Prilx +y = z]%, 17-25 -1
27.| | (x+y =z — Prvtx + y = z])%, 26 abv
28.| |VyVz(x +y =z — Prvi[x +y = z])%, 27 VI
29.|VyVz(x +y =z —>Prt[x +y =z]) > VyVz(x + y = z — Pmtx + y = z])5,, 16-28 —I
30. | VyVz(x+y =z — Prvix +y =z]) 13,29 IN

We are able to apply the assumption at (16) to get Prvi[x + y = z]]ﬁy and
convert this into the desired result. SOPAFx +y =z — Prt[x + y = z].

(%) Suppose & is x x y = z. The proof in PA requires appeal to IN, on the
value of x in VyVz(x x y = z — Prvt[x x y = z]). The zero case is
straightforward. Then,
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Assp:

Show:

W N

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

S

9.
10.
11.

| YyVz(x xy =z — Prtx x y = z])j
ASxxy=zexxy+y=z
Jxxy=v—>@W+y=z—>xxy+y=1z)

APrtlxxy+y=z—>Sxxy=Z]
APilxxy=v—>@Wv+y=z—=>xxy+y=72)]

VyVz(x Xy =z — Prvtx X y = z])
| (xxy =2)%,

Sxxy=z

XXy+y=z

Jv(x xy =v)

XXYy=v

v+y=z

Prvtfv + y = 7]

Prvt[x x y = z]%

Prtx x y = v]

Prmt[x xy =v] > Prtflv+y=z—>xxy+y=1]
Prtlv+y=z—>xxy+y="7]
Prvtflv+y =z] > Prtx x y +y = z]
Prtx xy +y =z]

Prit[x xy +y =z] > Pri[Sx x y = 2]
Prvt[Sx x y = z]

Prvtx x y = z]%,

Prot[x x y = z]J%,
(xxy =2)%, = Prtlx xy = z]%,
(xxy=z—Prxxy=z])5,

VyVz(x xy =z — Prvtx x y = z])%,
VyVz(x xy =z — Prvtx x y = z]) > VyVz(x x y = z — Pmtx x y = z])5

VyVz(x xy =z — Prvt[x x y = z])

The (+) case does not directly apply to x x y + y = z. However, having
identified x x y with variable v we get Prvt[v+y = z], and with the inductive
assumption Prvt[x x y = v]. These then unpack into Prvt[Sx x y = z]. So
PAFxxy=z— Prifx xy =z].

Forany i, 0 < i < k if a ¥* & has i operator symbols, then PA -+ £ —
Prvt[P].

If a ¥* & has k operator symbols, then PA = P — Prvt[P].

If ¥* & has k operator symbols, then it is of the form, A4 vV 8B, A A B,

(Vx < y) (¥ not in A), or AxA for * A and B with < k operator
symbols.

Zero case
T6.60
simple ND

2 T13.68
3T13.68
A (g =)

A (g =)

7 abv

2,8 <E
=L3l

A (g 103E)

9,11 =E

12 (+) case
6,11 VE,—-E
14 T13.70

5 T13.69
15,16 -E
17 T13.69
18,13 -E
4 T13.69
19,20 —-E
21 T13.70
10,11-22 JdE
7-23 -1

24 abv

25 VI

6-26 —1
1,27 IN
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(A) P is A A B. Reason as follows.

1. | A — Prvt[A] by assp

2.| 8B — Prvi[B] by assp

3./ A —> (B = (AAB)) T9.4

4.| Prvt[A — (B — (A A B))] 3T13.68

5| |AAB A (g =D

6.| | Prvt[A] 1,5

7.0 | Prvt[B] 2,5

8. | | ProtA] = Pri[B — (AAB)]  4T13.69

9.1 | Prvt[B — (A A B)] 6,8 >E
10. | | Prvt[B] — Prvt[A A B] 9TI13.69
11| | Prt[4 A 8] 7,10 >E
12.| (A A B) = Prvt[h A B] 5-11 =1

And similarly for V.

(3) & is xA. Reason as follows.

1.

e

10.

B W

O 0N

A — Prvt[A] by assp
A= AxA T3.29
.| Prvt[A — TxA] 2 T13.68
dx A A (g —0)
A A (g 43E)
Prt[A] 1,5 >E
Prvt[A] — Prvi[Ix A] 3T13.69
Prvt[Ix A] 7,6 —E
Prot[3x A] 45-83E
AxA — Prvt[IxA] 5-9 =1

s has x free. But 3x-A does not, and Prvt[dx 4] has the same free variables
as dxs. So the restriction is met for 3E at (9).

(V) P is (Vx < y)sA. The argument in PA requires appeal to IN, for induction on
the value of y. For the zero case,
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1. ;A’é — Prot[Aj]

2.| (Yx < 0)A < Ay

3. | Prt[Ay — (Yx < 0)A]

4.1 [ (Vx < y)A)

5.0 | (Vx < 0)4

6. | | AF

7.1 | Prvt[A]

8. | | Prt[AG] — Prvt[(Vx < 0)A]

9.1 | Prvt[(Vx < @)A]
10.| | Prt[(Vx < y)Aj]

11| | Prot[(Yx < y) Al
12| (Vx < y)A) — Prot[(Vx < y) Al
13.| ((Yx < y)A — Prt[(Vx < y)AD,

721

by assp

thrm (with T8.21)
2T13.68
A(g—D

4 abv

2,5 «<E
1,6 -E
3T13.69
8,7 —E

9 abv

10 T13.70
5-11 =1
12 abv

For (5) and (10) it is important that y in a bound quantifier of the ¥* formula
does not appear in #. Now the inductive stage.

14. ;A@y — Prvtl[cAgy]l by assp

15.| (Vx < Sy)A < (Vx < p)A A Agy with T13.130
16. | Pri((Yx < y)A A A%,) = (Vx < Sy)A] 15 T13.68
17.] | (Vx < y)oh — Prot[(Vx < y)A] A (g =D

18.] [ ((Vx < y)A A Agy) — Prvt[(Vx < y)A A A’é‘«y]] 14,17 as for A
19.] | [(Vx = Sy)A Ag—D
20. (VX < ) AN AT, 15,19 <»E
21. Prt[(Vx < y)A A Agy]] 18,20 -E
22| | [Pril(Vx < y)oA A A% ] — Prot(Vx < Sy)A] 16 T13.69
23. Prvt[(Vx < Sy)A] 2221 -E
24.| | | Prof[(vx < y)ADY, 23, T13.70
25.| [ (Vx < Sy)oA — Protf(Vx < )AL, 19-24 1
26.| | (Vx < y)A — Prot(Vx < y).A,]])gy 25 aby

27.| (Yx < y)A — Prt(Vx < y)A]) = ((Vx < y)oh — Pror[(Yx < p)ADY , 17261
28.| (Vx < y)A — Prvt[(Vx < y)A] 13,27 IN

SoPAF (Vx < y)A — Prvt[(Vx < y)oA].

Indct: For any ¥* formula #, PA = P — Prvt[P].

Now it is a simple matter to pull together our results into the third derivability

condition.

T13.72. For any formula #, PA - O — ooOf
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Consider any formula & and the ¥; sentence O5. By T13.62, there is a
(OP)* such that PA + 0P <« (@P)*. By T13.71, PA + (OP)* —
Prvt[(O#)*]. Reason as follows.

1.| @P)* — Prvi[(OP)*] T13.71
2. 0P < (OP)* T13.62
3. | Pt (CP)* — O] 2 T13.68
4.| Pi[@P)*] — Prt[OP] 3 T13.69
5.|0P — Pri[02] 2,1,4 HS

So PA F of — Prvt[0P]; and since O is a sentence, this is to say,
PA F Of — Prvt("OP"); which is to say, PA - 0P — ooOL.

So, at long last, we have a demonstration of D3 and so, given demonstration of the
other conditions, of Godel’s second incompleteness theorem.

It is worth reflecting a bit on what we have accomplished. Beginning in sec-
tion 13.2 we saw how the second theorem follows from the derivability conditions.
The first is easy, the others not. In section 13.3 we introduced the idea of definition
in PA and demonstrated that PA defines (friendly) recursive functions. 13.4 moves to
demonstration of the second condition. The basic idea is straightforward: To show
a(P — Q) - (0P — O@), suppose O(P — @) and OP; then there are j and k
such that PRFT(j, " — @7) and PRFT(K, TP 7); so | = j x k 22" numbers a proof
of @. But considerable effort is expended to show that PA has the resources for the
relevant results. And we have just completed discussion of the third condition. If
you have gotten this far you have seen the theorem proved — or at least how it is
proved. Thus you have progressed considerably beyond the initial argument from
the derivability conditions. One reason why it is typical to bypass the details is that
there are so many details — not all themselves mathematically significant. Still, it
is interesting to see how reasoning from chapter 12 is reflected in PA for the second
theorem.

E13.52. Complete the demonstration of T13.71 by completing the remaining cases.

13.6 Reflections on the theorem

We conclude this chapter with a couple final reflections and consequences on our
results.
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13.6.1 Consistency sentences

As is typical for demonstrations of Godel’s second theorem, we have let Cont be
~Prvt("@ = S@"). But other sentences would do as well. So, where 7 is any the-
orem of T, we might let Cont, be ~Prvt(" ~7 ). In particular, we might simply
consider the case where ~7 is (equivalent to) L and set Cont, = ~Prvt("L").
Then it is easy to see that PA = Cont <> Cont,.

PAF 0 = S0 < L; sowith D1, PA - Prvt("@ = SO < L"); so with D2,
PAF Prvt("@ = S@T") < Prvt(" L™); and contraposing, PA = Cont <> Cont,.

Again, one might let Cont, = ~3x(Prvt(x) A Prvt(x)), where Prvt(x)) just in
case there is a proof of the negation of the formula with Gédel number x. Then
T is consistent just in case there is no proof of a formula and its negation. Again,
PA = Cont <> Conty. This time the result requires a bit more work.

We show Prvt("0 = S@7) <> 3x(Prvt(x) A Prvt(x)) and contrapose. First from
left to right: Since a contradiction implies anything, PA - @ = S0 — A and
PAF @ = S0 — ~A. Reason as follows.

1.10=8S0— A thrm
2.0 =80—>~A thrm
3.| Prt(T0 = SO — A7) 1D1
4.\ Prvi(0 = SG — ~AD) 2Dl
5.0 [ Prvr(C@ = S@7) A(g—D
6.| | Prvt(C0 = SO — Prvr(TAT) 3D2
7.0 | Prot(TO = S07) — Prvs(T~AT) 4D2
8. | | Prvt(TAT) A Prot(T~AT) 5,6,7
9.1 | Ix(Prvt(x) A Prvt(x)) 8 3l
10. | Prve(T0 = S@7) — Ix(Prvt(x) A Prvi(x)) 79 —I

SoPA - Prt(T@ = SO7) — Ix(Prvt(x) A Prvt(x)).

The other direction is not much more difficult. Insofar as the right-hand side
is existentially quantified we shall not be able to depend on capture for any partic-
ular sentence. However we can reason with free variables. Working up from the
bottom of a tree for & say its (sententially) basic subformulas are the first subfor-
mulas without a truth functional main operator. Then where where & has basic
subformulas #Aj ...y, let AT ... Ay be some variables ay ...a,; ~P* is neg(p);
and (P — @)* is end(p, q). Then where |-, &, we shall be able to show PA
Wif(ay) A ... A Wff(an) — Prvt(P*). Though we shall not go through all the
details here, it is simple enough to see how the argument goes: The argument is an
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induction (of a sort we have seen before). Given an ADs derivation of 4, under the
assumption Wff(a) A ... A W[f(b), corresponding to any axiom <+, we may use the
definition to get Axiom(A*) and then T13.57i for Prvt(A™*). Corresponding to an ap-
plication of MP to some & and  — @, use T13.54 to convert Prvi(ecnd(P*, Q%))
to Prvt(P*) — Prvi(Q*) and apply MP. As an example, compare the following
lines of the sort we might have obtained in chapter 3,

1. A— (B — A) Al
2. [A—> (B — A)]—[(A— B) > (A — A)] A2
3. A= B)—>(A— A) 1,2 MP

and the derived version,

0. | Wff(a) A Wf(b) A
1.1. | Axiom(end(a, end(b, a))) 0 def
1. | Prvt(end(a, cnd(b, a))) 1.1 T13.57i
2.1. | Axiom(end(end[a, cnd(b, a)], end|end(a, b), end(a, a)])) 0 def
2. | Prvt(end(end|a, end(b, a))], end[end(a, b), ecnd(a, a)])) 2.1 T13.57i
3.1. | Prvt(end|a, ecnd(b, a)]) — Prvt(end[end(a, b), end(a, a))) 2 T13.54
3. | Prvt(end[end(a, b), end(a, a)]) 1,3.1 MP
4. Wff(a) A Wif(b) — Prvt(end[end(a, b), end(a, a)]) 0-3DT

And similarly we might show the correlate to T3.9, - ~A — (A — 8), which we
record as a theorem.

T13.73. PA+ Wff(a) A Wff(b) — Prvi(end|meg(a), cnd(a, b)]).

But then we may reason as follows.

1| WFTo =807 cap

2.| | 3x[Prvt(x) A Prvt(x)] A(g—D

3. Prt(j) A Prvi(j) A (g 23E)

4. W () 3T13.53

5. Prvt(endmeg(j), end(j, ™8 = SO 1,4 T13.73

6. Prvt(neg(j)) — Prvt(end(j," 0 = S@7)) 5T13.54

7. Prot(end(j,70 = S@7)) 3,6 AE,—~E

8. Prt(j) — Prot(C0 = S@7) 7 T13.54

9. Prt(T@ = SO7) 3,8 AE,—>E
10.| | Prvt(T0 = S@7) 2,3-9 3E
11. | 3x[Prvt(x) A Prvi(x)] — Prvi(C0 = SO7) 2-10 >1

So PA = 3x[Prvt(x) A Prvt(x)] — Prvt("@ = S@T). Again note that we reason with
free variables under the assumption for JE.
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Putting