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1 Abstract 

Cybergenetics is a new area of research aimed at developing digital and biological 
controllers for living systems. Synthetic biologists have begun exploiting 
cybergenetic tools and platforms to both accelerate the development of 
mathematical models and develop control strategies for complex biological 
phenomena. Here we review the state of the art in cybergenetic identification 
and control.  Our aim is to lower the entry barrier to this field and foster the 
adoption of methods and technologies that will accelerate the pace at which 
Synthetic Biology progresses towards applications. 

 
2 Introduction 

In the past two decades research in Synthetic Biology has witnessed tremendous 
progress towards the development of a robust engineering framework to 
reprogram living systems. Modelling and control of biomolecular networks has 
played a key role in this development. The advent of cybergenetics, the field 
concerned with the design and development of digital/biological feedback 
control systems, substantially accelerated the pace at which the Engineering 
Biology community was able to develop automated methods for efficient model 
extraction and in vivo control of biodynamics. 

mailto:filippo.menolascina@ed.ac.uk
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In this article we review the latest developments in the cybergenetic 
identification and control of biological systems. We examine the two topics 
separately following the same structure. After reviewing the state of the art in 
each field we discuss significant open challenges and then share our perspective 
on the most exciting opportunities in the respective areas. With this 
contribution we seek to offer interested readers a guide to navigate the status 
quo in cybergenetics. 

 

3 Cybergenetic identification 

The ability to mathematically formalise and predict the behaviour of 
biomolecular networks is crucial to the rational engineering of biological 
systems. Over the 20 years since the conception of Synthetic Biology, 
mathematical models have transitioned from post-hoc descriptors of data to key 
tools in the design and prototyping of biological parts and genetic circuits. 
Thermodynamic models have aided the design of promoters with user-defined 
transcriptional profile in E. coli [1], and de novo protein switches both in vitro 
and in vivo [2]. Following the commercial availability of low-cost DNA synthesis 
and standardised assembly services, computational tools have been proposed to 
expedite the physical implementation of synthetic devices, accelerating the 
design-build-test-learn cycle of gene circuits. For example, Halper and 
colleagues trained a machine learning model to quantify the risk of synthesis 
failure of a candidate DNA fragment and to identify which sequence 
determinants should be removed to reduce this risk [3]. 

 
Mathematical models of biological systems in literature can be broadly grouped 
into two categories: Differential Equation-based or Rule-based. Differential 
equations capture the dynamics of biological processes through relationship 
between functions, often associated to physical quantities, and their derivatives. 
The dimensionality of the domain of such functions, or the inclusion of random 
perturbations, determines the class of equations. Ordinary differential equations 
(ODEs) are used to describe single-variable, usually time-dependent, processes. 
These have constituted the bulk of published models. Currently, over 80% of the 
labelled entries on BioModels, the largest public repository of biological models 
[4], are formulated as ODE. The formalisation of multi-variable problems, such 
as those concerning transport phenomena, requires the inclusion of geometric 
considerations via Partial Differential Equations (PDEs). When random 
perturbations cannot be neglected, as is the case for Brownian motion of 
molecules within the cellular environment, Stochastic Differential Equations 
(SDEs) are commonly adopted. 

 
Technological advances in our ability to decode cell dynamics, via single cell 
RNA-Seq or microscopy/microfluidics, have contributed to the recent surge in 
the use  of  statistical  models  in  Systems  and  Synthetic  Biology  [5].  Chemical 
Master Equation (CME)-based models, where the time evolution of the 
probability of a cell state is calculated using the underlying chemical reaction 
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rates, have attracted considerable interest. Despite the high entry barrier for a 
non-technical audience and the computational effort of simulating such 
dynamical systems, recent contributions reported substantial progress towards 
making CME-based modelling a more accessible option.  A Python package, Flips 
[6], now allows researchers to quickly set up CME models to study population-
level stochasticity on top of intracellular noise. Gupta et al. [7] describe a new 
approach to CME simulation that combines Reinforcement Learning and Deep 
Neural Networks to effectively approximate infinite dimensional solutions and 
accelerate CME computations. Another algorithm, exploiting system 
decomposition and filtering to rapidly obtain more accurate solution 
approximations, has been reported in Fang et al. [8]. 

 
While ODE and statistical models have mostly been used to study the evolution 
over time of biosystems, open problems in developmental biology (e.g. 
segmentation) concern processes that vary over time, and crucially, space. 
These have traditionally been modelled via PDEs [9]. Recent developments in 
synthetic morphogenesis [10], the discipline studying how genetically 
engineered cells can generate desired shapes and structures, highlighted the 
potential of rule-based models to study emergent behaviours of cell populations 
[11]. Agent Based Models (ABM), where automata (cells) populate a 2- or 3D 
environment and execute internal “programs” in the form of algorithms or 
rules, are rapidly gaining traction in Synthetic Biology [12].  For example, the 
ABM simulation tool BSim [13] enabled the first in silico demonstration of real-
time control of the relative abundance of cell phenotypes in microbial consortia. 
While the analytical toolbox available for ABM remains limited when compared 
to Differential Equations-based models, breakthroughs in scientific computing 
could overcome challenges in ABM identification where gradient-based 
methods cannot be used. Recent advances in differentiable programming [14], a 
computational technique to seamlessly evaluate the exact derivative of a 
function with respect to its arguments, could be used to differentiate programs 
with discrete randomness like ABM and speed up the process of parameterising 
them from data. 

 

Having established a model formalism researchers must decide: (i) whether 
to cast model identification in a frequentist or Bayesian framework, (ii) how to 
define the structure and parameters of the model, and (iii) how to acquire the 
necessary experimental data. The approach taken to solving these problems has 
so far been opportunistic. Computationally cheaper frequentist problem 
formulations have been favoured over Bayesian ones, despite necessitating 
sometimes unrealistic assumptions such as the normality of measurement data. 
As for (ii), model discrimination and calibration techniques (i.e. systematic 
approaches to select a model and tune its parameters based on its objective 
distance from experimental data) are well established in Control Engineering, 
yet models of biomolecular networks often appeared as “given” in the literature 
and “manual search” of parameters is not uncommon. Crucially, and partly due 
to technical limitations, proper experimental design exercises have seldom been 
reported as a precursor to data acquisition campaigns. 



4  

 
 
 
 
 

Cybergenetic control and Optimal Experimental Design (OED), combined with 
the ability to dynamically modulate the microenvironments [15], have changed 
the status quo. Following the in vitro demonstration of how OED could 
inform the identification and control of a light-inducible gene circuit in E. 
coli [16], Bandiera et al. [17] showed through simulations that using optimally 
designed experiments, instead of intuition-driven schemes, could reduce by 80% 
the error of parameter estimates when modelling an inducible promoter in S. 
cerevisiae. Bandiera and colleagues went on to compare OED in the Bayesian 
and Frequentist frameworks for the discrimination of 3 candidate models of a 
genetic toggle switch in E. coli [18]: besides being able to select the model with 
the stronger support from data, the authors quantified benefits (accuracy) and 
cost (computational complexity) of Bayesian OED. The same group recently 
released a package that leverages the speed of Julia, a relatively new 
programming language, to enable experimentalists to reduce their experimental 
efforts using OED (see BOMBS; URL: 
https://juliahub.com/ui/Packages/BOMBs/ MvNlh/0.2.3). Available python 
packages for OED  include  NLOed  [19]  and RED [20]; the latter exploiting a 
novel Reinforcement Learning-based approach to optimise experimental 
designs. 

 
The surge in interest for OED methods catalysed the emergence of a field at the 
nexus of experimental biology, control engineering and optimisation which aims 
at the automated, experimentally efficient identification of mathematical 
models of biosystems. Inspired by the cybergenetics control literature [21], we 
refer to this nascent field as cybergenetic identification. Key to the success of 
this research area is the integration of microfluidics and microscopy in a 
cyberphysical system in which a computer periodically acquires and analyses 
microscopy images, estimates cellular states and determines which changes in 
the cellular microenvironment maximise the information obtained from the 
resulting experiment [22]. These cyberphysical platforms could unlock the 
potential of on-line optimal experimental design: the real-time identification of 
mathematical models of biomolecular networks using data acquired as the 
dynamically designed, optimal experiment progresses. This conceptually 
straightforward  algorithm has hidden challenges (e.g. how to automatically 
segment cells) that have limited the adoption of cybergenetic identification. 
However, novel open source softwares are simplifying the establishment and 
widespread adoption of cybergenetic platforms, facilitating execution of 
reactive microscopy experiments [23] and deep learning-based image 
segmentation [24]. 

 
 

 

3.1 Open challenges 

A number of outstanding challenges remain at the boundary of system 
identification and the life sciences. First, as multi-scale models encompassing 

https://juliahub.com/ui/Packages/BOMBs/MvNlh/0.2.3
https://juliahub.com/ui/Packages/BOMBs/MvNlh/0.2.3
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gene expression, protein/signalling networks and metabolism increase in 
size, the fraction of state variables we can directly measure decreases. This 
hampers accurate calibration of models, as structural and practical parameter 
identifiability are two key concerns for modellers. A number of methods, 
reviewed in Chis et al. [25], have been proposed to mitigate such issues. An 
additional challenge related to parameter identifiability is the general difficulty 
in mapping “arbitrary units” of fluorescence to actual biomolecule copies. While 
recent contributions have proposed experimental protocols and algorithms to 
convert fluorescence levels into protein mass [26], their scalability to models 
with hundreds of observables remains to be established. An additional 
challenge, again connected to the growth of model dimensionality, is 
computational cost. Mathematical models of multiscale biological systems often 
need to describe processes that operate at time scales of different orders of 
magnitude. “Stiffness” arises naturally in such models and forces researchers to 
use “stiff solvers” generally characterised by a higher computational complexity 
than their “non-stiff” counterparts. Depending on the research question, model 
reduction techniques can be used to project the original dynamics onto a 
smaller subspace. 

3.2 Future opportunities 

Scientific Machine Learning offers exciting opportunities for cybergenetic 
identification. As the availability of high-quality data acquired from fully 
automated, microfluidics [27] and macrofluidics [28] setups increase, we can 
expect our ability to leverage Machine Learning algorithms to expand. As a 
consequence the modelling of complex biophysical phenomena will benefit from 
Physics Informed Neural Networks (PINN) [29] and from Universal 
Differential Equations [30]. PINN are neural networks trained to learn the 
“dynamical behaviour” of a system under physical constraints, while systems of 
differential equations are called universal if the right-hand side is replaced by a 
universal approximator (e.g. Fourier expansion). Together with Dynamic Mode 
Decomposition [31], a dimensionality reduction algorithm that extracts the 
dominant dynamics from experimental data, and the application of Koopman 
Operator Theory [32] these methods will enable data-driven scientists and 
engineers to effectively capture the behaviour of complex biological systems. 
The interpretability of the models returned by these methods could be 
enhanced by searching for the closest functional to the inferred universal 
approximator (e.g. Neural Network). Akin to genetic programming, another 
class of Machine Learning algorithms, methods to solve this problem include the 
sparse identification of non linear systems using function dictionaries [33, 34]. 

 
4 Cybergenetic Control 

We now turn to the state of the art in control strategies available for biological 
systems. We first illustrate the existing classes of control approaches, comparing 
their benefits and drawbacks. We then present the latest developments in 
cybergenetic control: the in vivo regulation of biomolecular networks (i.e. the 
plant) via feedback with engineered control systems [35]. This emerging 
research field is rapidly expanding the toolbox available to synthetic biologists 
for predictable cell reprogramming. 

 
Cybergenetic controllers, like man-made feedback control systems, leverage the 
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difference between a reference signal and a real-time measure of the output of 
the biomolecular network (“the controlled variable”) to compute and impose a 
steering action on the controlled system. All control strategies reported in 
literature can be classified into two categories: embedded and external 
controllers. 

 

Embedded controllers are synthetic gene networks that implement a 
canonical controller. They are designed to “compare” a controlled biological 
quantity (e.g. protein abundance) and modulate the concentration of a 
biological species (e.g. transcription factor) to achieve a control objective. 
Embedded controllers can be further divided into two classes: “concentrated” 
designs, where the controller and controlled network reside in the same cell, 
and “distributed”, where a microbial consortium of two cell types is formed 
in which one strain hosts the controller network and the other the controlled 
one. While embedded controllers do not require expensive 
measurements/computers, their design remains a complex task. Recent 
technological advances in gene editing tools, coupled with the ability to encode 
known control motifs in biomolecular networks, have proven successful at 
establishing high-performing genetic controllers. For example, Briat et al. [36] 
were the first to theorise the antithetic integral control motif: a 4 reaction 
network ensuring Robust Perfect Adaptation (RPA - return to pre-disturbance 
dynamics following response to an abrupt change in the input) and disturbance 
rejection in noisy networks.  The motif owes its name to the molecular 
antagonism between a sensing and an actuating species, which engage in an 
irreversible hybridisation reaction leading to zero tracking error at steady-
state. The same research group went on to physically implement the controller 
both in bacteria [37] and mammalian cells [38]. Notably, in Frei et al. 
[39] the motif was augmented with a proportional feedback action thereby 
improving control performance during the transient and reducing the steady-
state variance of the response of the controlled network. 

 

In external controllers the biological plant is interfaced with digital platform 
built on algorithms that measure a (fluorescent) readout of the controlled 
network, compute the control action, and manage actuators delivering 
chemical/physical inputs to the cellular environment. Following the seminal 
demonstration of the suitability of such strategy to control the dynamics of 
expression of a gene in yeast cells [15], the support offered by control theory 
notions and the relative ease of implementation of the control policies delivered 
numerous applications in synthetic biology, medicine and biotechnology [40–
42]. These span from the rapid prototyping of synthetic networks [43, 44] to the 
design of therapies [45] and optimisation of bioproduction [46]. 
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While control inputs have  traditionally  been  chemical  (e.g.  sugars) the  use of 
light to regulate biological processes has recently attracted considerable 
interest. Indeed, its highly desirable spatio-temporal modulation, reversible 
induction, and low cost spurred a substantial interest in optogenetic control [47, 
48]. A prime success story in this space is the optogenetic differentiation system 
in yeast proposed in [48]. Applying a model predictive control strategy, the 
platform allowed researchers to establish and regulate, in space and time, the 
composition of a microbial consortium.   Similarly, a light-mediated control of 
the growth, and hence relative composition, of a two-strains microbial 
community was established in E. coli [21]. Informing the parameters of the 
optimal control strategy with a host-aware model, this work paves the way to 
dynamic compositional control —and hence optimal division-of-labour - in 
consortia for bioproduction. 

 

 

4.1 Open challenges 

The cybergenetics control community currently faces a number of open issues. 
First, the use of “concentrated controllers” comes at the cost of increased 
cellular burden and inevitable degradation of performance [49]. This limits the 
complexity of the policy that the controller can implement, which is a function 
of its topology. Strategies for the mitigation of cellular burden, largely based 
on establishing feedforward/feedback loops between a burden sensor and the 
network of interest [50], could be used in this context. However, computational 
studies —yet to be validated in vitro— indicate that a tightly regulated division 
of labour between cell populations of a multicellular controller would be a more 
promising solution [51, 52]. Another weakness of embedded controllers lies in 
their genetic instability i.e. the long-term loss of function due to random mutations 
and epigenetic silencing [49]. Novel strategies to preserve genetic stability remain to 
be developed to bridge the gap to medical applications. For external controller, the 
variety of techniques for real-time measurement of the biomolecular network status 
and actuation of the control policy remains limited and are generally unsuitable to 
industrial scale-up. For example, the use of optogenetic controllers in bioproduction 
remains constrained by the shallow penetration of light in large reaction vessels. 
Enhanced modelling of the light distribution, coupled with the development of 
optogenetics orthogonal tools, has been proposed to facilitate the industrial 
scale up and simplify the control of complex cultures  [43]. 

 

 

4.2 Future opportunities 

Cybergenetic controllers can be expected to provide transformative 
opportunities in biotechnology. As burden mitigation strategies for mammalian 
cell engineering become widespread [53], we expect that the synergistic 
application of control approaches will substantially change the medical 
therapies landscape. 
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In particular the rational design of smart biopharmaceutical, engineered cells 
locally delivering therapies tailored to the disease state they sense, and optimal 
treatment schedules, algorithm-based definition of drugs and dosages informed 
by the real-time characterisation of the disease phenotype [45], will disrupt the 
prevailing “one-size-fits-all” approach to therapies [54]. This can be expected to 
lead to more efficient, low-toxicity solutions. Encouraging proof-of-concepts for 
the treatment of diabetes and cancer in animal models [55, 56] seem to provide 
support for these predictions. Tissue engineering, with novel stem-cell derived 
constructs, will also benefit from cybergenetic controllers. These could provide 
means to identify the optimal sequence of differentiation stimuli [57] or ensure 
robustness to the detrimental action of undesired extracellular signals during 
the differentiation process [49]. Finally, cybergenetic controllers could provide a 
sustainable, yet competitive, edge to the industrial-scale production of food (e.g. 
vertical farming), bio-based products and bioenergy. Indeed, controllers could 
define operating conditions to optimally maximise yields at a reduced footprint. 
Initial successes in constraining cellular stress in favour of higher bioproduct 
yields [58, 59] indicate that this is a space ripe for disruption. 

 
5 Conclusions 

In this paper we reviewed the state of the art, opportunities and open 
challenges in the nascent field of cybergenetics from both the points of view of 
in vivo modelling and control. 
Future progress in cybergenetics will likely rely on the integration of theories, 
specifically developed for living systems, and technological advances in our 
ability to investigate cell dynamics. Specifically, we envision that cyberphysical 
systems — balancing the trade-off between experimental costs and information 
content of the acquired data - will dominate an increasingly automated 
identification of mathematical models. At the frontiers of cybergenetic control 
we foresee the real-time, parallel operation of smart bioreactors and their 
digital counterpart (e.g. digital twins) as a game changer in the optimised 
production of pharmaceutical and medical commodities. 
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