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Abstract 
 
Background: The pathophysiology of Parkinson’s disease (PD) negatively affects brain 

network connectivity, and in the presence of brain white matter hyperintensities (WMH) 

cognitive and motor impairments seem to be aggravated. However, the role of WMH in 

predicting accelerating symptom worsening remains controversial.  

Objective: To investigate whether location and segmental brain WMH burden at baseline 

predicts cognitive and motor declines in PD after 2 years. 

Methods: 98 older adults followed longitudinally from Ontario Neurodegenerat ive 

Diseases Research Initiative (ONDRI) with PD of 3-8 years in duration were included. 

Percentages of WMH volumes at baseline were calculated by location (deep and 

periventricular) and by brain regions (frontal, temporal, parietal, occipital lobes, and basal 

ganglia+thalamus). Cognitive and motor changes were assessed from baseline to 2-year 

follow-up. Specifically, global cognition, attention, executive function, memory, 

visuospatial abilities, and language were assessed as were motor symptoms evaluated using 

MDS-UPDRS Part III, spatial-temporal gait variables, Freezing of Gait questionnaire and 

Activities-Specific Balance Confidence Scale.  

Results: Regression analysis adjusted for potential confounders showed that total and 

periventricular WMH at baseline predicted decline in global cognition (p<0.05). Also, total 

WMH burden predicted the decline of executive function (p<0.05). Occipital WMH 

volumes also predicted decline in global cognition, visuomotor-attention and visuospatia l-

memory declines (p<0.05). WMH volumes at baseline did not predict motor decline.  

Conclusion: WMH burden at baseline predicted only cognitive decline in PD. The motor 

decline observed after 2-years in these participants with early to mid-stage PD is probably 

related to the primary neurodegenerative process more than comorbid WM pathology.  

 

Keywords: MDS-UPDRS-III; deep white matter hyperintensities; periventricular white 

matter hyperintensities, brain regions; balance confidence 
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Introduction 

Parkinson’s disease (PD) is the second most common neurodegenerative disease, 

worldwide. The pathological hallmark of PD involves accumulation of aggregated α-

synuclein protein, identified as Lewy bodies and Lewy neurites, and associated 

neurodegeneration in the dopaminergic substantia nigra compacta as well as several other 

central and peripheral nervous system regions 1,2. These structural brain changes explain 

the presence of motor and non-motor symptoms. Clinical symptom heterogeneity is 

extremely common in patients with PD, and this may be related to pathological spreading 

of the multisystem neurodegeneration to different brain regions and its severity in each 

individual.  

Symptom heterogeneity among patients with PD may also be associated with 

copathologies including the presence of white matter hyperintensities (WMH). WMH are 

strongly linked with cerebral small vessel disease that can be quantified through Magnetic 

Resonance Imaging (MRI) 3,4. White matter has an important role in establishing 

connectivity through brain neural networks that modulate motor and cognitive performance 

5. Therefore, presence of white matter lesions has been associated with worsened cognit ive 

and motor performance in PD 3,6,7,8,9. This association has been explained by the fact that 

WMH may disrupt many neurotransmission pathways, thus worsening the connectivity 

between subcortical-cortical tracts 10.  

Although the combination of PD and WMH burden may aggravate typical cognitive 

and motor impairments in patients with PD, longitudinal studies investigating WMH 

burden as a predictor of cognitive and motor performance declines over time in PD have 

presented contradictory results 11,12,13, 14,15, which may be explained by differences related 

to methodological approaches used for WMH quantification, small sample sizes and PD 

sample characteristics (i.e., drug-naïve patients or not; differences in disease duration and 
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motor and cognitive severity) included in the studies. Additionally, there is scarce and 

conflicting literature on whether the location of WMH (i.e., deep or periventricular) and 

regional brain WMH burden predicts symptoms decline, specifically regarding motor 

features. 

The current study aimed to investigate whether the location and the segmental brain 

WMH burden at baseline predict cognitive and motor declines in early to mid-stage PD 

within 2-years of follow-up. Based on previous cross-sectional and longitudinal studies 

that have shown an association between WMH burden and impaired performance in non-

motor and motor symptoms due to disrupting neuronal networks 3, also based on that some 

cognitive domain performances are related to specific brain regions and others are 

dependent on multiple brain regions 16,17, and considering that motor performance requires 

the interaction of cortical and subcortical brain areas, we hypothesized that white matter 

burden, specifically the total and periventricular WMH volumes, at baseline would predict 

different aspects of cognitive (i.e., attention, memory, executive function, language, and 

visuospatial abilities) and motor (i.e., motor symptoms and global functional motor 

performance) declines, in PD after 2 years of follow-up. We also hypothesized that 

increased WMH volumes from different brain regions at baseline would predict cognit ive 

and motor declines during the follow-up. 

Method 

This was a longitudinal multi-site study using a convenience sample of 98 participants with 

2 years of complete follow-up, between 56 - 85 years of age, with idiopathic Parkinson’s 

disease from the Ontario Neurodegenerative Disease Research Initiative (ONDRI) cohort 

(https://ondri.ca/). Data representing clinical, cognition, motor, and neuroimaging accessed 

in the ONDRI PD cohort adhered to rigorous standards for data collection, data processing, 

and curation 18. All research procedures were approved previously by multiple Human 
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Research Ethics Committees since ONDRI is a multi-site research. All participants 

provided written informed consent.  

Inclusion criteria for the Parkinson’s disease cohort were idiopathic Parkinson’s disease 

based on the United Kingdom Parkinson’s Disease Society Brain Bank (UKBB), includ ing 

acceptable and sustained response to the dopaminergic drug therapy, time since diagnos is 

of PD of 3-8 years, Hoehn & Yahr (H&Y) stage 1 to 3, years of education greater than or 

equal to 8, Montreal Cognitive Assessment (MoCA) score ≥18/30, ability to walk with or 

without assistive aids 19. The ineligibility criteria were a neurological disease other than 

PD (i.e., another cause of parkinsonism), unstable health condition, decompensated 

diabetes mellitus, history of alcohol or drug abuse, untreated major depression within 90 

days of the screening visit 19,20.  

Clinical assessments 

Clinical assessments included gathering data on socio-demographic (age, sex, years of 

education), clinical history (disease duration, levodopa equivalent daily dose - LEDD, 

vascular risk factors, weight, height), disease stage using H&Y scale and disease severity 

using the MDS-UPDRS – Part III (the revised version of the Unified Parkinson’s Disease 

Rating Scale). Clinical vascular risk factors for small-vessel disease included obtaining the 

presence of 5 factors: obesity, diabetes mellitus, hyperlipidemia, smoking, and high blood 

pressure 21. The individual’s vascular risk index (VRI) was obtained by the sum of each 

positive vascular risk 19. All procedures were performed in the “on” phase of PD 

medications. 

Motor assessment (gait, FOG and balance confidence) 

Gait was assessed while participants walked a 6-meter path at their usual pace, using 

accelerometers (Gulf Coast Inc., Shimmer Inc) attached bilaterally to hips and ankles. 

Participants started walking one meter before the path and finished one meter after the end 
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of the path 20. The variables gait speed (m/s), step number, and cadence (steps per minute ) 

were obtained.  

Freezing of Gait Questionnaire (FOG-Q) was used to assess the participant’s severity of 

freezing. The FOG-Q score ranges from 0 to 24 points with a higher score indicating worse 

FOG 22. 

The Activities-Specific Balance Confidence Scale (ABC Scale), a 16-item daily tasks 

questionnaire, was administered to evaluate the individuals’ self-reported balance 

confidence 23. Items are rated from 0% (no confidence) to 100% (complete confidence ). 

The scale has been used to evaluate the risk of falling 24.   

Cognitive assessment 

Cognitive evaluation included a global cognitive performance using the Montreal 

Cognitive Assessment Test (MoCA), and two tests for each of the five specific cognit ive 

domain tests as follows: attention/working memory (Trail Making Test part A and digit 

span forward), executive function (Trail Making Test part B and digit span backwards), 

memory (Brief Visuospatial Memory – Delayed Recall and Rey Auditory Verbal Learning 

Test – long delay), visuospatial abilities (Judgment of Line Orientation and  Brief 

Visuospatial Memory Test-Revised – copy), and language (Boston Naming Test and 

category fluency – naming animals ) as previously reported 20,25. Besides MoCA total score, 

we also calculated MoCA index score for memory, executive function, visuospatia l, 

language, attention, and orientation 26,27. 

White matter hyperintensity volume 

Multi-site 3T-MRI systems were used to acquire images in all participants using a 

previously published standardized, comprehensive neuroimaging protocol (i.e., Canadian 

Dementia Imaging Protocol) 28 and processing pipeline 29. The WMH volumes were 
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generated using a multi- feature (T1, PD/T2, FLAIR) segmentation approach and manually 

quality controlled for potential false positives/negatives. Each lesion type was further 

subdivided into a region-based class (periventricular or deep) based on their 3-dimensiona l 

location by an automated algorithm as previously reported 29. Percentages of WMH 

volumes per location (deep and periventricular) then were calculated in each brain region 

(frontal, temporal, parietal, occipital lobes, and basal ganglia+thalamus). The percentage 

of WMH volumes was used to correct for differences in head-size. The percentage of total 

WMH in each brain region was calculated using the total volume across all aforementioned 

brain regions.  

Before image processing for volumetric extraction, all MRI scans were evaluated by a 

neuroradiologist (S.S.) for clinical incidental findings, and by a medical biophysicist (R.B.) 

and team (C.S., C.B., M.H., M.O.) to ensure high imaging quality. These assessors were 

blinded to the participants’ clinical information. 

Statistical Analysis 

Measures of central tendency (i.e., means, standard deviation, and frequency) were 

calculated for sample characterization. Cognitive and motor performances were evaluated 

at baseline (T0) and after 2 years (T2) and the change in performance was calculated, by 

subtracting the values (∆= T2 – T0). Differences between motor and cognitive symptoms 

and WMH volumes at baseline and after 2-years were analysed using two-way repeated-

measures Analysis of variance (ANOVA). Partial eta-squared (ɳp2) for the between-within 

repeated-measures ANOVA was used to estimate effect size.  

Due to the non-normal distribution, WMH volumes were transformed following the two-

step method proposed by Templeton (2011)30. After data were transformed, Kolmogorov-

Smirnov confirmed the normality of the distribution.  
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Multiple linear regression analysis was performed to investigate associations between 

WMH volumes at baseline (independent variables) and changes in cognitive and motor 

function (MDS-UPDRS-III, FOGQ, gait, balance confidence) performance (dependent 

variables).  

Regression analyses were adjusted for age, sex, years of education, disease duration, 

LEDD, VRI, and H&Y. False discovery rate (FDR) post hocs were applied to correct p-

values in each adjusted linear regression model 31. After FDR, the alpha level for statistica l 

significance was set at p ≤ .05. Data analysis was carried out using the IBM SPSS 25.0 

software (SPSS Inc.).  

Results 

From the total of 140 participants enrolled in the ONDRI-PD cohort, 42 were excluded. 

Therefore, 98 participants with PD were included. The main drop out reasons in the entire  

ONDRI PD cohort (n=140) were: withdrew consent (n=10), disease progression (n=12), 

adverse effect (n=1), non-informed reason (n=9), and death (n=4). Also, 6 participants were 

excluded because they did not complete all assessments used as dependent or independent 

variables in the analysis. Participants were predominantly men (80.6%; mean age 67 years), 

H&Y stage 2, completed 15 years of education, and had 4.6 years of disease duration. Table 

1 summarizes participants’ characteristics at baseline. 

Table 1 
 
 
WMH, cognitive, and motor changes after 2-years  

The adjusted two-way repeated-measures ANOVA showed a significant main effect 

of time for total WMH [F(1.00, 90.00)=27.12; p < 0.001, ɳp2 =0.232], and periventricula r 

WMH [F(1.00, 90.00)=27.51; p < 0.001, ɳp2 =0.234] (Table 2) with a significant increase 

in the total WMH volume and in the periventricular WMH volume after two years.   
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Related to brain regions, adjusted two-way repeated-measures ANOVA showed a 

significant main effect of time for total frontal WMH [F(1.00, 90.00)=18.60; p < 0.001, ɳp2 

=0.171]; periventricular frontal WMH [F(1.00, 90.00)=20.33; p < 0.001, ɳp2 =0.184]; total 

parietal WMH [F(1.00, 90.00)=22.05; p < 0.001, ɳp2 =0.197]; periventricular parietal 

WMH [F(1.00, 97.00)=21.69; p < 0.001, ɳp2 =0.194]; total temporal WMH [F(1.00, 

90.00)=8.21; p= 0.005, ɳp2 =0.084]; periventricular temporal WMH [F(1.00, 90.00)=8.35; 

p= 0.005, ɳp2 =0.085]; total occipital WMH [F(1.00, 90.00)=10.01; p= 0.002, ɳp2 =0.100] 

and periventricular occipital WMH [F(1.00, 90.00)=7.49; p= 0.007, ɳp2 =0.077] (Table 2). 

Overall, WMH volumes increased in the aforementioned brain regions during the follow-

up period.  

Related to cognitive symptoms, adjusted two-way repeated-measures ANOVA 

showed a significant main effect of time for attention/working memory [F(1.00, 

89.00)=6.45; p=0.01, ɳp2=0.068); executive function [F(1.00, 90.00)=43.74; p=0.05, ɳp2 

=0.04] and language [F(1.00, 87.00)=8.92; p= 0.004, ɳp2 =0.093]. Participants on average 

had statistically significantly worse performance on the TMT Parts A and B, and the Boston 

Naming test at follow-up compared to baseline as shown in Table 2. Related to the MoCA 

index score, participants had a performance decline for memory index (MoCA-MIS) 

[F(1.00, 89.00)=6.42; p=0.01, ɳp2=0.067) and visuospatial index (MoCA-VIS) [F(1.00, 

89.00)=4.37; p=0.04, ɳp2=0.047) within 2 years of follow-up. 

Related to motor symptoms, adjusted two-way repeated-measures ANOVA showed 

a significant main effect of time only for MDS-UPDRS-III [F(1.00, 97.00)=4.78; p=0.03, 

ɳp2 =0.047] (Table 2). MDS-UPDRS-III was on average higher at follow-up compared 

with baseline. 

Table 2 
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Association between WMH and cognition overtime 

A multiple linear regression adjusted for potential confounders showed that 

transformed percentage of total and periventricular WMH volumes at baseline predicted 

the decline of global cognition after 2-years in participants with PD (p-value < 0.05). Also, 

transformed percentage of total WMH volume predicted the decline of executive funct ion 

after p-value FDR corrections (p-value < 0.05). On the other hand, multiple regression 

analysis showed that WMH volumes at baseline did not predict motor declines (Table 3). 

Table 3 

Regarding brain regions, our results showed an association between transformed 

percentage of total WMH in the occipital lobe at baseline and the decline in global 

cognition, attention/working memory, and memory after p-value FDR corrections. No 

associations were observed with motor symptom changes after a 2-years follow-up (Table 

4). 

Table 4 

Discussion 

 In the current study, we investigated whether the WMH burden at baseline 

predicted cognitive and motor decline over a 2-year follow-up period in participants with 

PD who were classified at baseline as having mild to moderate disease severity based on 

MDS-UPDRS-III and with an early to mid-stage of PD based on H&Y Scale. Besides the 

total WMH volumes, we investigated whether WMH location (i.e. deep and 

periventricular) and brain regions (frontal, parietal, temporal, occipital, and basal 

ganglia+thalamus) differently predict the symptom decline in PD. We confirmed our 

hypotheses that total and periventricular WMH burden at baseline predicted the global 

cognitive decline, independent of age, sex, years of education, LEDD, disease duration, 

VRI, and disease stage. Also, total WMH burden predicted the decline of executive 
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function. Regarding brain regions, WMH volumes in the occipital lobe at baseline also 

predicted the decline of global cognition. Our hypothesis confirmed associations between 

WMH regions and cognitive domains, but only for occipital WMH burden and 

attention/working memory, and visuospatial memory. Our hypothesis related to motor 

symptoms was not confirmed, since the WMH volume at baseline did not significant ly 

predict motor decline after 2 years. Cognitive impairment observed in PD has been 

associated with frontal-striatal circuit dysfunction and cholinergic pathways disruption 32. 

In our cohort study, neuropsychological assessments showed that attention/work ing 

memory, executive function, and language were the cognitive domains that declined within 

a 2-year follow-up.  

In the presence of white matter burden, cognitive impairment seems to be 

aggravated in PD due to the disruption of many neurotransmission pathways that affect the 

connectivity between subcortical-cortical tracts 10,33. This aligns with our results that also 

showed that total WMH volume at baseline predicts the decline in global cognition in PD, 

independent of potential confounding variables (i.e. age, sex, years of education, disease 

duration, LEDD, VRI, and H&Y). Specifically, Dadar et al (2018, n=365)12 found that 

MoCA decline is associated with a high WMH burden at baseline in PD. Other longitudina l 

studies showed that the white matter burden predicts the progression to mild cognit ive 

impairment (MCI) and dementia in PD which also is characterized by a significant 

reduction in global cognitive performance 15,34,35. In contrast, other longitudinal studies 

have not observed an association between WMH and cognitive decline 13,14. Discrepancies 

between previous studies and ours may be explained on the basis of sample size 

differences13 or the patients’ characteristics (i.e., drug-naïve patients)14.  

Our results also are in agreement with those found by de Shipper et al (2019, 

n=163)36 and Mak et al (2015, n=90)37 who observed in their cross-sectional studies in PD 
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that WMH volumes were larger in periventricular compared to deep brain location. Also, 

our results showed that deep and periventricular WMH volumes predicted worsening of 

global cognition, however, after FDR adjusted p-value, only periventricular WMH burden 

predicted cognitive decline, which is aligned with previous studies that showed 

periventricular WMHs are more associated with cognitive impairment than are deep WMH 

37,38,39. On the other hand, Rane et al (2020, n=41)40 observed that deep WMH burden is 

more associated with worsened global, executive function, and language performance than 

periventricular WMH in PD. Possible explanations for such discrepancies include small 

sample sizes, different population characteristics, unbalanced numbers of men and women 

(more women than men), few confounding variables used in the statistical adjustments, and 

the lack of p-value corrections. These issues should be further investigated in future studies. 

Fang et al (2021, n=19)9, in a cross-sectional study, observed that total and 

periventricular WMH, and WMH in frontal, pre-frontal, and parietal regions were 

associated with MoCA scores in PD. Our results showed that the percentage of WMH 

volume at baseline in the occipital lobe is associated with the change in MoCA (i.e., larger 

WMH volume at baseline is associated with the decline in MoCA performance). 

Considering our results, WMH burden is more associated with global cognition decline 

than specific cognitive domains, which was suggested previously by Mak et al (2015)37 in 

their cross-sectional study.  

A possible explanation for the WMH burden total and periventricular to specifica lly 

predict global cognition and executive function (set-shifting) declines, is the fact that 

MoCA total score includes several different cognitive domains (memory, 

attention/working memory, executive function, language, and visuospatial) in its total 

score; while white matter lesions may disrupt brain connectivity consequently slowing 

down processing speed 41 used for executive functions. Therefore, the WMH burden may 

 14681331, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ene.15692 by E

dinburgh U
niversity, W

iley O
nline L

ibrary on [31/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



 
 

be a marker of global cognitive performance and executive function decline, despite limited 

longitudinal associations with all cognitive domains. We cannot discard, however, that a 

longer longitudinal design would significantly predict decline in other cognitive domains, 

which is supported by the fact that before FDR p-value corrections WMH burden predicted 

some other cognitive domain declines. Therefore, a longer follow up and/or a larger sample 

would have increased the power of the associations consequently making association 

statistically significant with more cognitive domains. Noteworthy, we also found a very 

specific association between larger WMH burden in the occipital lobe at baseline and 

decline in visuospatial function overtime. This suggests that WMH in visual regions should 

be taken as an important limitation factor since vision is a sensory feedback highly used by 

PD patients to compensate for their sensorimotor impairments)42 including balance and gait 

difficulties and activities of daily living43 relying on visual function including driving, 

cocking, negotiating obstacles, etc…. Clinical applicability of these findings should be put 

into perspective for targeted rehabilitation strategies when assessing the burden and 

location of WMH.Similar to our findings, in a 4-year longitudinal study Scamarcia et al 

(2022, n=154)15 observed that the increase in WMH volumes was associated with worse 

global cognition in PD. Our study, however, was able to demonstrate that WMH can predict 

global cognitive decline in a much shorter period of time (2-years follow-up) which can 

function as an efficient guide for longitudinal designs of future interventional studies.  

Similar to Scamarcia et al (2022)15, we also observed an association between WMH 

volumes at baseline and language decline. However, after FDR corrections, the 

associations between WMH location (i.e., total and deep WMH) and regional brain 

segmentation (i.e. frontal, parietal, temporal) and language were not maintained. 

Communication impairment is a common manifestation in patients with PD and it is 

influenced by both motor (i.e. speech and muscle control) and cognitive dysfunctions 44. A 
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larger sample could have increased the statistical power of the study making p-values 

lower, and therefore resistant to FDR corrections or a longer follow-up as conducted by 

Scamarcia et al (2022)15, i.e., 4 years, would be necessary. Additionally, the brain 

segmentation used in our study might not have been sensitive to identify the language 

decline within 2 years of disease progression.   

Although the multiple regression analysis revealed associations between total and 

periventricular WMH and WMH in frontal, parietal and temporal lobes at baseline and 

executive function decline, after p-value FDR corrections, the significant values were no 

longer observed, except for the total WMH. After p-value FDR corrections, only occipital 

WMH burden maintained the prediction of attention/working memory, and memory 

declines after 2 years. Occipital cortex is involved with visuospatial function and shape 

recognition45, which may explain the association observed between WMH lesions and 

worse performance of BVMT delayed recall test and Trail Making test part A after 2 years 

of follow-up. This is the first time a study showing an association between larger WMH 

burden in the occipital cortex and decline in cognitive tests requiring strong visuospat ia l 

capabilities in idiopathic PD.  

In cross-sectional studies, white matter burden has been associated with greater 

motor impairments in PD 7,8,9,46,47. WMHs have been proposed to impair the neuronal 

networks involved in motor activities48. Although de Shipper et al (2019)36 in a cross-

sectional study found that periventricular WMH volumes were associated with gait 

impairment and postural instability using MDS-UPDRS-III, we did not find associations 

between WMH volumes and change in gait variables and ABC scale score motors after 2-

years of follow-up.   

Regarding longitudinal studies, Pozorski et al (2019)13, in an 18-month follow-up, 

showed an association between the increase of WMH accumulation and worsened UPDRS 
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motor score in PD, without association with cognitive decline (sample size=29). Dadar et 

al (2020)33, in 36 months of follow-up, observed that WMH was associated with an increase 

of cognitive and motor deficits (UPDRS-III and gait impairment) in PD (sample size=39 

at 36 months). However, our results did not show any association between WMH at 

baseline and motor decline after 2 years. Aligned with our results, Song et al (2013, n=56)49 

followed participants with early stage of PD (H&Y stage 1) for 2 years and did not observe 

an association between WMH scores and motor decline. Also, this association remained 

non-significant in a longer follow-up of 4 years conducted by Scamarcia et al (2022)15.  

Also contrary to our results, Chung et al (2019, n=268)50, in a retrospective 

longitudinal study, observed that patients with PD and moderate-severe WMH evaluated 

using visual rating scale scores had worse motor deficits and had a higher risk of developing 

FOG over time. Our study, however, shows that WMH at baseline did not predict worsened 

FOG after 2-years of follow-up. Our failure to show a clear relationship between WMH 

and motor decline in early to mid-stage PD suggests that the change in motor performance 

over 2 years in this patient population may depend more heavily on the underlying 

neurodegenerative process than the presence of vascular copathology or because motor 

symptoms in the participants with PD from the ONDRI cohort have remained more stable. 

Our study has several strengths including the use of a 3.0 T MRI system to evaluate 

WMH, and the evaluation of WMH location (i.e., periventricular and deep) and brain 

regions involvement (frontal, parietal, temporal, occipital, and basal ganglia + thalamus), 

as well as total brain WMH volumes. Additionally, potential confounding factors were 

included in our statistical model as covariates, such as the sum of risk factors for brain 

vascular lesions to prevent comorbidity bias in our results.  One study limitation was the 

short follow-up which prevents us from verifying the ability of WMH burden to predict 

changes over the entirety of patients’ disease progression. Additionally, the lack of more 
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refined brain segmentation may have prevented us to observe significant associations 

between WMH burden with language or other cognitive functions. Therefore, further 

studies should include more participants and a more refined brain segmentation of the 

temporal lobe into anterior/posterior, and/or superior, middle, and inferior temporal gyrus 

if aiming to further investigate the interplay between PD and white matter burden with 

respect to language. 

Conclusions 

High white matter burden at baseline predicts the global cognitive decline in 

participants with PD after 2-years of follow-up. Increased WMH volume in occipital lobe 

specifically predicts attention/working memory and visuospatial memory declines. WMH 

burden can be used as an index of cognitive prognosis in PD. Further studies are still needed 

to understand the effect of reducing WMH burden, through risk factor management, as a 

potential strategy to slow down the cognitive decline in Parkinson’s disease 
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Table 1. Participant’s characteristics (mean ± standard deviation and frequencies). 

Baseline characteristics PD (N=98) 
 

Age (years)  67.55±5.60 
Sex (men, %) 79 (80.6%)  
Years of education 15.66±2.65 
Height (m) 1.73±0.09 
Weight (kg) 82.33±15.82 
Body mass index (kg/m2) 27.29±4.82 
Disease duration (years) 4.64±1.59 
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Table 2. Baseline and 2-years follow-up of white matter hyperintensity (WMH) volumes, 
cognitive and motor variables (mean ± SD). 
 

PD (N=98) Baseline 2-years follow-up p-value 
White Matter Hyperintensities    
total WMH mm3 4901.34±6411.61 6832.33±7934.57 <0.001* 
total periventricular WMH mm3 4419.43±5938.79 6189.85±7491.98 <0.001* 
total deep WMH mm3 481.91±682.43 642.48±831.67 0.56 
Regional brain White Matter Hyperintensities    
Total WMH - Frontal mm3 1944.76±2703.41 2455.07±3151.97 <0.001* 
Periventricular WMH - Frontal mm3 1725.97±2460.11 2178.03±2888.33 <0.001* 
Deep WMH – Frontal mm3 218.79±438.35 277.04±505.973 0.35 
Total WMH – Parietal mm3 1607.95±2789.72 2284.91±3661.35 <0.001* 
Periventricular WMH – Parietal mm3 1393.47±2677.66 2083.44±3565.75 <0.001* 
Deep WMH – Parietal mm3 214.48±372.65 201.47±311.21 0.21 
Total WMH – Temporal mm3 595.51±792.45 878.15±891.01 0.005* 
Periventricular WMH - Temporal mm3 548.98±764.89 822.09±870.12 0.005* 
Deep WMH – Temporal mm3 46.53±89.58 56.06±84.27 0.52 
Total WMH – Occipital mm3 711.00±965.02 1047.24±1241.19 0.002* 
Periventricular WMH - Occipital mm3 662.45±980.59 958.67±1270.16 0.007* 
Deep WMH – Occipital mm3 48.55±93.53 88.57±205.98 0.88 
Total WMH - Basal ganglia mm3 165.62±216.76 166.94±249.58 0.97 
Periventricular WMH - Basal ganglia mm3 145.00±195.96 147.61±233.88 0.21 
Deep WMH – Basal ganglia mm3 20.62±51.07 19.33±36.52 0.14 
Cognitive function    
MoCA (0-30) 26.33±2.43  25.60±3.02 0.06 
   MoCA-MIS (0-15) 12.10±3.15 11.76±2.99 0.01* 
   MoCA-EIS (0-13) 11.69±1.42 11.49±1.49 0.56 
   MoCA-VIS (0-7) 6.33±0.86 6.04±1.05 0.04* 
   MoCA-LIS (0-6) 5.32±0.88 5.24±0.93 0.53 
   MoCA-AIS (0-18) 16.86±1.47 16.61±1.47 0.18 
   MoCA-OIS (0-6) 5.88±0.33 5.79±0.54 0.67 
TMT A (sec) 44.10±17.44 49.55±27.04 0.01* 
Digit-span forward (0-16), Mean±SD 10.58±2.25 10.53±2.19 0.46 
TMT B (sec) 111.07± 62.51 125.95±75.14 0.05* 
Digit span backward (0-14), Mean±SD 7.14±2.10 6.99±2.19 0.96 
BVMT-delayed recall, Percent retained (0-100%) 89.28±13.05 86.94±21.35 0.12 
RAVLT long-delay (0-15), Mean±SD 7.42 ±3.50 7.24±3.71 0.32 
Judgment of Line Orientation (0-30) 25.54±4.55 24.88±4.62 0.14 
BVMT-R copy (0-12) 11.49±0.84 10.67±1.48 0.83 
Boston Naming Test (0-100%) 93.86±7.98 89.02±10.66 0.004* 
Category fluency – naming animals 19.27±5.95 19.06±6.5 0.47 
Motor function    
MDS-UPDRS – Part III (0-132) 21.86±10.73 24.17±13.64 0.03* 
FOGQ (0-24) 2.87±3.67 3.49±3.62 0.40 
Gait speed (m/s)  1.02±0.24 1.08±0.27 0.19 
Cadence (step/min) 104.68±22.22 106.75±7.96 0.58 
Step number 11.55±2.28 10.71±2.57 0.16 
ABC scale (0-100%) 87.06±14.88 80.72±19.41 0.49 

  
PD= Parkinson’s disease, WMH = white matter hyperintensity, MoCA = Montreal Cognitive Assessment; 
MoCA-MIS= MoCA-Memory Index score; MoCA-EIS = MoCA-Executive Index score; MoCA-VIS = MoCA-
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Visuospatial Index score; MoCA-LIS = MoCA-Language Index score; MoCA-AIS = MoCA-Attention Index 
score; MoCA-OIS = MoCA-Orientation Index score; TMT A = Trail Making test part A, TMT B = Trail Making 
test part B, BVMT- delayed recall = Brief Visuospatial Memory – delayed recall, RAVLT = Rey Auditory Verbal 
Learning Test-long delay; BVMT-R copy = Brief Visuospatial Memory Test-Revised – copy;  MDS-UPDRS – 
III= revision version of the Unified Parkinson’s Disease Rating Scale - motor part, FOGQ = Freezing of Gait  
Questionnaire, ABC scale = Activities-Specific Balance Confidence Scale; SD= standard deviation *p< 0.05 in 
the comparison between baseline and 2-year follow-up according to two-way repeated-measures ANOVA, 
adjusted for age, years of education, sex, disease duration, levodopa equivalent daily dose, Hoehn & Yahr, and 
vascular risk index. 
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Table 3. Association between the percentage of total, deep and periventricular WMH 
volumes at baseline and changes (∆) in cognition and motor symptoms after 2-years in PD. 

Independent 
variable 

Dependent variable  
 
 
Beta, eta2, 95% CI, p-value 

FDR 
adjusted 
P-values  Predictors Variables 

 
% total WMH 

 
Cognition 

Multiple regression 
∆ global cognition (MoCA) -2.62, 0.12, -4.01 - -1.15, 0.001 0.01 
∆ attention and working 
memory (TMT A) 

12.15, 0.17, -1.22 – 25.52, 0.07  0.20 

∆ attention and working 
memory (Digit-span forward) 

-0.09, <0.001, -1.01 – 0.83, 0.85 0.93 

∆ executive function (TMT B) 34.48, 0.07, 8.85 – 60.13, 0.009 0.05 
∆ executive function (Digit 
span backward) 

-0.497, 0.01, -1.54 – 0.55, 0.35 0.64 

∆ memory (BVMT-delayed 
recall) 

-3.72, 0.003; -17.00 – 9.57, 0.58 0.71 

∆ memory (RAVLT long-
delay) 

-0.45, 0.004, -1.97 – 1.07, 0.56 0.77 

∆ language (Boston) -4.93, 0.04, -9.66 - -0.19, 0.04 0.15 
∆ language (category fluence) -1.81, 0.02, -4.59 – 0.98, 0.20 0.44 
∆ visuospatial abilities (JLO) 0.12, <0.001, -2.25 – 2.49, 0.92 0.92 
∆ visuospatial abilities (BVMT-R 
copy) 

-0.43, 0.01, -1.34 – 0.47, 0.35 0.55 

 
Motor 
function 

Motor symptoms Beta, eta2, 95% CI, p-value -- 
∆ MDS-UPDRS-III 4.29, 0.03, -0.99 – 9.58, 0.11  0.66 
∆ FOGQ -0.33, 0.001, -2.43 – 1.75, 0.75 0.75 
Global motor performance Beta, eta2, 95% CI, p-value -- 
∆ gait speed -0.10, 0.03, -0.24 – 0.04, 0.15  0.45 
∆ step number 0.83, 0.02, -0.56 – 2.23, 0.24 0.36 
∆ cadence 2.30, 0.001, -11.55 – 16.16, 0.74 0.88 
∆ ABC scale -5.34, 0.02, -13.60 – 2.92, 0.20 0.40 

% deep WMH Cognition ∆ global cognition (MoCA) -11.17, 0.05, -21.72 - -1.70, 0.02 0.22 
∆attention and working 
memory (TMT A) 

15.12, 0.001, -72.08 – 102.32, 
0.73 

1 

∆ attention and working 
memory (Digit-span forward) 

1.004, 0.001, -4.89 – 6.89, 0.74 0.90 

∆ executive function (TMT B) 133.73, 0.03, -34.21 – 301.66, 
0.12 

0.33 

∆ executive function (Digit 
span backward) 

-2.49, 0.006, -9.19 – 4.19, 0.46 0.84 

∆ memory (BVMT-delayed 
recall) 

1.19, <0.001, -85.34 – 87.72, 0.98 0.98 

∆ memory (RAVLT long-
delay) 

-11.79, 0.06, -21.39 - -2.18, 0.02 0.11 

∆ language (Boston) -33.77, 0.05, -63.97 - -3.56, 0.03 0.10 
∆ language (category fluence) -7.77, 0.008, -25.71 – 10.16, 0.39 0.85 
∆ visuospatial abilities (JLO) -2.58, 0.001, -17.4 – 12.26, 0.73 1 
∆ visuospatial abilities (BVMT-R 
copy) 

-0.14, <0.001, -5.91 – 5.64, 0.96 1 

Motor 
function 

Motor symptoms Beta, eta2, 95% CI, p-value -- 
∆ MDS-UPDRS-III 22.53, 0.02, -12.17 – 57.23, 0.20 0.60 
∆ FOGQ 2.45, 0.002, -10.90 – 15.82, 0.72  0.86 
Global motor performance  Beta, eta2, 95% CI, p-value -- 
∆ gait speed -0.74, 0.03, -1.61 – 0.13, 0.09 0.54 
∆ step number 3.68, 0.009, -5.32 – 12.69, 0.42 0.63 
∆ cadence -13.35, 0.001, -103.49 – 76.79, 

0.77 
0.77 
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∆ ABC scale -23.36, 0.009, -75.70 – 28.98, 
0.37 

0.74 

% 
periventricular 
WMH 

Cognition ∆ global cognition (MoCA) -2.89, 0.12, -4.51 - -1.29, 0.001 0.01 
∆attention and working 
memory (TMT A) 

14.20, 0.04, -0.45 - 28.85, 0.06 0.22 

∆ attention and working 
memory (Digit-span forward) 

-0.11, 0.001, -1.13 – 0.91, 0.83 0.91 

∆ executive function (TMT B) 33.93, 0.06, 6.23 – 61.62, 0.02 0.11 
∆ executive function (Digit 
span backward) 

-0.56, 0.01, -1.71 – 0.59, 0.33 0.52 

∆ memory (BVMT-delayed 
recall) 

-2.30, 0.001, -16.93 – 12.32, 0.75 1 

∆ memory (RAVLT long-
delay) 

-0.23, 0.001, -1.91 – 1.45, 0.78 0.95 

∆ language (Boston) -4.40, 0.03, -9.64 – 0.84, 0.09 0.24 
∆ language (category fluence) -1.78, 0.01, -4.86 – 1.29, 0.25 0.45 
∆ visuospatial abilities (JLO) -0.05, <0.001, -2.65 – 2.56, 0.97 0.97 
∆ visuospatial abilities (BVMT-R 
copy) 

-0.61, 0.02, -1.61 – 0.38, 0.22 0.48 

Motor 
function 

Motor symptoms Beta, eta2, 95% CI, p-value -- 
∆ MDS-UPDRS-III 5.09, 0.03, -0.73 – 10.91, 0.08  0.48 
∆ FOGQ -0.30, 0.001, -2.61 – 2.00, 0.79 0.79 
Global motor performance Beta, eta2, 95% CI, p-value -- 
∆ gait speed -0.11, 0.02, -0.26 – 0.04, 0.15  0.45 
∆ step number 1.04, 0.02, -0.50 – 2.58, 0.18 0.36 
∆ cadence 3.84, 0.003, -11.50 – 19.18, 0.62 0.74 
∆ ABC scale -6.12, 0.02, -15.23 – 2.98, 0.18 0.27 

% total WMH = percentage of total white matter hyperintensity; % deep WMH = percentage of deep white 
matter hyperintensity; % periventricular WMH = percentage of periventricular white matter hyperintensity, 
MoCA = Montreal Cognitive Assessment ; TMT A = Trail Making test part A, TMT B = Trail Making test 
part B, BVMT- delayed recall = Brief Visuospatial Memory – delayed recall, RAVLT = Rey Auditory Verbal 
Learning Test-long delay; JLO= Judgment of Line Orientation; BVMT-R copy = Brief Visuospatial Memory 
Test-Revised – copy; MDS-UPDRS – III= revision version of the Unified Parkinson’s Disease Rating Scale 
- motor part, FOGQ = Freezing of Gait Questionnaire, ABC scale = Activities-Specific Balance Confidence 
Scale, FDR= false discovery rate. Statistical model adjusted for age, sex, years of education, disease duration, 
levodopa equivalent daily dose, Hoehn & Yahr, and vascular risk index. Significant associations at p<.05 in 
bold. 
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Table 4. Association between brain regional WMH volumes at baseline and changes (∆) in 
cognition and motor symptoms after 2-years of follow-up in PD. 

Independent 
variable 

 
Predictors 

Dependent variable  FDR 
adjusted 
P-values  

Brain region 
WMH 

Variables 

 
% Frontal WMH 

 
Cognition  

Multiple regression Beta, eta2, 95% CI, p-value  
∆ global cognition (MoCA) -1.69, 0.07, -2.90 - -0.47, 0.007 0.07 
∆attention and working memory  
(TMT A) 

9.75, 0.03, -1.15 – 20.65, 0.08 0.22 

∆ attention and working memory  
(Digit-span forward) 

-0.15, 0.002, -0.88 – 0.57, 0.67 0.73 

∆ executive function (TMT B) 23.19, 0.05, 2.71 – 43.67, 0.03 0.16 
∆ executive function (Digit span 
backward) 

-0.43, 0.01, -1.25 – 0.39, 0.30 0.47 

∆ memory (BVMT-delayed  
recall) 

-4.83, 0.08, -15.85 – 6.19, 0.38 0.52 

∆ memory (RAVLT long-delay) -0.67, 0.01, -1.88 – 0.54, 0.27 0.59 
∆ language (Boston) -4.01, 0.05, -7.82 - -0.20, 0.04 0.14 
∆ language (category fluence) -1.18, 0.01, -3.39 – 1.02, 0.28 0.51 
∆ visuospatial abilities (JLO) 0.13, <0.001, -1.76 – 2.03, 0.89 0.89 
∆ visuospatial abilities (BVMT-R 
copy) 

-0.28, 0.007, -1.00 – 0.43, 0.43 0.52 

 
Motor 
function 

Motor symptoms Beta, eta2, 95% CI, p-value -- 
∆ MDS-UPDRS-III 4.34, 0.04, 0.11 – 8.58, 0.04  0.24 
∆ FOGQ -0.25, 0.001, -1.90 – 1.39, 0.76 0.76 
Global motor performance p-value; Beta; eta2 -- 
∆ gait speed -0.09, 0.03, -0.22 – 0.02, 0.11 0.33 
∆ step number 0.67, 0.02, -0.45 – 1.79, 0.23 0.46 
∆ cadence 4.41, 0.008, -6.70 – 15.53, 0.43  0.51 
∆ ABC scale -3.99, 0.02; -10.58 – 2.58, 0.23  0.34 

% Parietal 
WMH 

Cognition  Multiple regression Beta, eta2, 95% CI, p-value -- 
∆ global cognition (MoCA) -1.37, 0.07, -2.37 - -0.37, 0.008 0.08 
∆attention and working memory  
(TMT A) 

6.05, 0.02, -2.97 – 15.06, 0.18 0.33 

∆ attention and working memory  
(Digit-span forward) 

-0.004, <0.001, -0.61 – 0.59, 0.98 0.98 

∆ executive function (TMT B) 16.71, 0.04, -0.25 – 33.68, 0.05 0.18 
∆ executive function (Digit span 
backward) 

-0.20, 0.004, -0.89 - 0.48, 0.55  0.75 

∆ memory (BVMT-delayed  
recall) 

-2.11, 0.002, -10.94 – 6.72, 0.64 0.70 

∆ memory (RAVLT long-delay) -0.45, 0.009, -1.44 – 0.54, 0.37 0.58 
∆ language (Boston) -3.48, 0.05, -6.60 - -0.37, 0.03 0.16 
∆ language (category fluence) -1.69, 0.04, -3.51 – 0.12, 0.06 0.16 
∆ visuospatial abilities (JLO) 0.46, 0.004, -1.09 – 2.01, 0.56 0.68 
∆ visuospatial abilities (BVMT-R 
copy) 

-0.49, 0.03, -1.08 – 0.09, 0.10 0.22 

Motor 
function 

Motor symptoms Beta, eta2, 95% CI, p-value -- 
∆ MDS-UPDRS-III 1.81, 0.01, -1.67 – 5.31, 0.30  0.60 
∆ FOGQ -0.43, 0.004, -1.79 – 0.94, 0.53 0.63 
Global motor performance Beta, eta2, 95% CI, p-value -- 
∆ gait speed -0.05, 0.02, -0.14 – 0.03, 0.24  0.72 
∆ step number 0.59, 0.02, -0.33 – 1.52, 0.21  1 
∆ cadence -0.03, <0.001, -9.22 – 9.15, 0.99  0.99 
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∆ ABC scale -2.80, 0.01, -8.18 – 2.58, 0.30 0.45 
% Temporal 
WMH 

Cognition Multiple regression Beta, eta2, 95% CI, p-value -- 
∆ global cognition (MoCA) -2.90, 0.05, -5.43 - -0.37, 0.02 0.22 
∆attention and working memory  
(TMT A) 

7.68, 0.005, -15.05 – 30.41, 0.50 0.55 

∆ attention and working memory  
(Digit-span forward) 

0.60, 0.007, -0.90 – 2.11, 0.43 0.52 

∆ executive function (TMT B) 46.17, 0.05, 3.83 – 88.52, 0.03 0.16 
∆ executive function (Digit span 
backward) 

-1.35, 0.03, -3.04 – 0.35, 0.12 0.26 

∆ memory (BVMT-delayed  
recall) 

-10.94, 0.01, -32.79 – 10.92, 0.32 0.44 

∆ memory (RAVLT long-delay) -1.51, 0.02, -3.99 – 0.97, 0.23 0.42 
∆ language (Boston) -8.18, 0.04, -15.88 - -0.49, 0.04 0.14 
∆ language (category fluence) -4.15, 0.04, -8.69 – 0.38, 0.07 0.19 
∆ visuospatial abilities (JLO) 1.23, 0.004, -2.62 – 5.09, 0.53 0.53 
∆ visuospatial abilities (BVMT-R 
copy) 

-0.81, 0.01, -2.29– 0.67, 0.28 0.44 

Motor 
function 

Motor symptoms Beta, eta2, 95% CI, p-value -- 
∆ MDS-UPDRS-III 9.20, 0.05, 0.61 – 17.79, 0.04 0.24 
∆ FOGQ -1.53, 0.009, -4.95 – 1.89, 0.37  0.55 
Global motor performance Beta, eta2, 95% CI, p-value -- 
∆ gait speed -0.11, 0.01, -0.35 – 0.12, 0.33 0.66 
∆ step number 1.61, 0.02, -0.71 – 3.95, 0.17  0.51 
∆ cadence 9.83, 0.01, -13.04 – 32.70, 0.39  0.46 
∆ ABC scale -2.57, 0.002, -16.01 – 10.86, 0.70 0.70 

% Occipital 
WMH 

Cognition Multiple regression Beta, eta2, 95% CI, p-value -- 
∆ global cognition (MoCA) -1.41, 0.09, -2.33 - -0.49, 0.003 0.03 
∆attention and working memory  
(TMT A) 

9.96, 0.06, 2.11 – 17.82, 0.01 0.04 

∆ attention and working memory  
(Digit-span forward) 

-0.28, 0.01, -0.84 – 0.27, 0.31 0.34 

∆ executive function (TMT B) 11.14, 0.02, -4.89 – 27.17, 0.17 0.26 
∆ executive function (Digit span 
backward) 

-0.46, 0.02, -1.09 – 0.17, 0.15 0.27 

∆ memory (BVMT-delayed  
recall) 

-11.23, 0.08, -19.18 - -3.29, 0.006 0.03 

∆ memory (RAVLT long-delay) -0.47, 0.01, -1.41 – 0.46, 0.31 0.37 
∆ language (Boston) -2.36, 0.03, -5.23 – 0.51, 0.10 0.22 
∆ language (category fluence) -1.47, 0.03, -3.16 – 0.21, 0.08 0.22 
∆ visuospatial abilities (JLO) -0.42, 0.004, -1.84 – 1.00, 0.56 0.56 
∆ visuospatial abilities (BVMT-R 
copy) 

0.29, 0.01, -0.26 – 0.84, 0.30 0.41 

Motor 
function 

Motor symptoms Beta, eta2, 95% CI, p-value -- 
∆ MDS-UPDRS-III 1.89, 0.01, -1.41 – 5.20, 0.26  0.78 
∆ FOGQ 0.10, <0.001, -1.16 – 1.38, 0.87 1 
Global motor performance Beta, eta2, 95% CI, p-value -- 
∆ gait speed -0.06, 0.02, -0.15 – 0.03, 0.16  0.96 
∆ step number 0.52, 0.02, -0.39 – 1.44, 0.26  0.52 
∆ cadence -0.73, <0.001, -9.82 – 8.36, 0.87  0.87 
∆ ABC scale 0.83, 0.001, -4.19 – 5.85, 0.74 1 

% Basal Ganglia 
+ Thalamus 

Cognition Multiple regression Beta, eta2, 95% CI, p-value -- 
∆ global cognition (MoCA) -0.62, 0.006, -2.25 – 1.02, 0.45 0.99 
∆attention and working memory  
(TMT A) 

0.44, <0.001, -13.34 – 14.23, 0.95 0.95 

∆ attention and working memory  
(Digit-span forward) 

0.23, 0.003, -0.72 – 1.19, 0.62 0.97 

∆ executive function (TMT B) 11.97, 0.08, -15.29 – 39.22, 0.38 1 
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∆ executive function (Digit span 
backward) 

0.25, 0.002, -0.83 – 1.35, 0.64 0.88 

∆ memory (BVMT-delayed  
recall) 

4.38, 0.004, -10.03 – 18.79, 0.55 1 

∆ memory (RAVLT long-delay) 1.49, 0.04, -0.08 – 3.08, 0.06 0.33 
∆ language (Boston) 3.49, 0.02, -1.42 – 8.42, 0.16 0.58 
∆ language (category fluence) -0.36, 0.001, -3.28 – 2.56, 0.81 0.99 
∆ visuospatial abilities (JLO) -0.14, <0.001, -2.56 – 2.28, 0.90 0.99 
∆ visuospatial abilities (BVMT-R 
copy) 

-1.35, 0.08, -2.27 - -0.42, 0.005 0.06 

Motor 
function 

Motor symptoms Beta, eta2, 95% CI, p-value -- 
∆ MDS-UPDRS-III -1.13, 0.002, -6.83 – 4.57, 0.68  1 
∆ FOGQ -0.20, <0.001, -2.38 – 1.97, 0.85 1 
Global motor performance Beta, eta2, 95% CI, p-value -- 
∆ gait speed 0.11, 0.02, -0.04 – 0.25, 0.16 0.32 
∆ step number -1.30, 0.04, -2.84 – 0.23, 0.09  0.54 
∆ cadence 0.31, <0.001, -15.09 – 15.71, 0.96  0.96 
∆ ABC scale -7.13, 0.03, -15.92 – 1.66, 0.11 0.33 

% total WMH = percentage of total white matter hyperintensity, MoCA = Montreal Cognitive Assessment, TMT 
A = Trail Making test part A, TMT B = Trail Making test part B, BVMT- delayed recall = Brief Visuospatial 
Memory – delayed recall, RAVLT = Rey Auditory Verbal Learning Test-long delay, JLO= Judgment of Line 
Orientation; BVMT-R copy = Brief Visuospatial Memory Test-Revised – copy; MDS-UPDRS – III= revision 
version of the Unified Parkinson’s Disease Rating Scale - motor part, FOGQ = Freezing of Gait Questionnaire, 
ABC scale = Activities-Specific Balance Confidence Scale, FDR= false discovery rate. Statistical model adjusted 
for age, sex, years of education, disease duration, levodopa equivalent daily dose, Hoehn & Yahr, and vascular 
risk index. Significant associations at p<.05 in bold. 
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