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Every small monoidal category with universal finite joins of 
central idempotents is monoidally equivalent to the category 
of global sections of a sheaf of local monoidal categories 
on a topological space. Every small stiff monoidal category 
monoidally embeds into such a category of global sections. 
An infinitary version of these theorems also holds in the 
spatial case. These representation results are functorial and 
subsume the Lambek–Moerdijk–Awodey sheaf representation 
for toposes, the Stone representation of Boolean algebras, 
and the Takahashi representation of Hilbert modules as 
continuous fields of Hilbert spaces. Many properties of a 
monoidal category carry over to the stalks of its sheaf, 
including having a trace, having exponential objects, having 
dual objects, having limits of some shape, and the central 
idempotents forming a Boolean algebra.
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1. Introduction

Representation theorems make abstract structures easier to work with by showing 
that they always have a more concrete form. For example, the category Vect of vector 
spaces is easy in the sense that it is not a product of other categories, whereas the 
category Vect×Vect is also monoidal, but in a more complicated way. The goal of this 
article is to prove that any monoidal category embeds into a product of easier ones. In 
fact we prove something stronger: nice enough monoidal categories are always equivalent 
to a dependent product of easy ones.

To explain what we mean by “easy” categories, “dependent” products, and “nice 
enough” monoidal categories, consider again 

∏
i∈{0,1} Vect. Its decomposable nature 

can be detected by its central idempotents, which correspond to the open sets of the 
discrete topological space {0, 1}. We consider a monoidal category “nice” when its central 
idempotents are respected by tensor products, and have the structure of a distributive 
lattice that is respected by tensor products; in the former case we call the category 
stiff and in the latter we say that the category has universal finite joins of central 
idempotents. We consider a category “easy” when its central idempotents are ∨-local
in that any finite cover already contains the covered element; topologically this means 
there is a single focal point that every net converges to; logically this is the disjunction 
property that if a finite disjunction holds then one of the disjoints holds.

In addition to the above finitary readings of “nice” and “easy”, we also prove an 
infinitary version. Here, the original category is “nicer” in that central idempotents form 
a frame whose structure is respected by tensor products, called having universal joins, 
and that frame is spatial. At the same time the constituent categories are “easier” in that 
its central idempotents are 

∨
-local,1 meaning that every infinite cover already contains 

the covered element.
Finally, by a “dependent” product we mean that the fibre Vect does not have to be 

constant but can vary continuously with the index i, that is, the category consists of 
global sections of a sheaf. With this terminology, made more precise below, here are our 
main results.

Theorem. Any small monoidal category with universal finite joins of central idempotents 
is monoidally equivalent to the category of global sections of a sheaf of ∨-local categories.

Any small monoidal category with universal joins of central idempotents forming a 
spatial frame is monoidally equivalent to the category of global sections of a sheaf of ∨

-local categories.

Corollary. Any small stiff monoidal category monoidally embeds into a category of global 
sections of a sheaf of ∨-local categories, and into a product of ∨-local monoidal categories.

1 What we call ∨-local here is sometimes called “local” [2,45,47] or “sublocal” [3] in the literature. What 
we call ∨-local here remains unnamed in the literature, but see also footnote 2.
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This subsumes sheaf representation theorems for toposes [3,45,47,50],2 where the lat-
tice of central idempotents corresponds to that of elements of the subobject classifier. 
In fact, the simple main insight underlying this work is that in cartesian categories, 
subterminal objects can be characterised entirely algebraically as central idempotents. 
This improves on earlier work [25], which focused on the special case of central idempo-
tents called subunits. From a logical point of view, it extends the sheaf representation 
of (topos) categorical models of higher-order intuitionistic logic [1,43,49] to (symmetric 
monoidal closed) categorical models of multiplicative linear logic. An additional improve-
ment over results from the literature is that our proof is entirely concrete and avoids 
stacks. Furthermore, by virtue of being monoidal, our results are not just analogous 
to, but directly capture, sheaf representation theorems for frames and modules [35,21]. 
The representation theorem may also be regarded as a structure theorem for higher-
dimensional algebra [4,38], because 2-vector spaces may be seen as sheaves of vector 
spaces [31, Appendix A]. Finally, our results find applications in physics and concurrent 
(probabilistic) computing [20], where a monoidal category models a process theory [32]
and its central idempotents may be interpreted as an underlying causal structure [24].

We proceed as follows. Section 2 defines central idempotents and gives examples. 
Basic properties of central idempotents that make the category “nice” are discussed 
in Section 3. In Section 4 we construct the topological space on which the structure 
sheaf will be based. Section 5 details the presheaf structure, and Section 6 establishes 
the sheaf condition. Next, Section 7 investigates the stalks, Section 8 shows that they 
are local, and Section 9 extends to case of infinitary joins, finishing the proof of the 
Theorem above. The sheaf representation is deepened further in Section 10, by showing 
that it preserves being Boolean, having limits, being closed, being compact, having a 
trace, and satisfying the external axiom of choice. Section 11 works out several examples 
to which sheaf representations for toposes do not apply directly, including recovering 
the Stone representation of Boolean algebras regarded as posetal categories and the 
Takahashi representation of Hilbert modules. Section 12 settles functoriality of the main 
construction, after which Section 13 proves the Corollary above. Finally, in Section 14 we 
discuss several open questions that may be attacked using the representation theorem. 
Appendix A compares central idempotents with the special case of subunits [25].

2. Central idempotents

This section introduces central idempotents, gives examples, and discusses basic prop-
erties. If C is a monoidal category, I its tensor unit, and we write λU : I ⊗ U → U and 
ρU : U ⊗ I → U for the unitors, then the slice category C/I is again monoidal: the (ter-
minal) tensor unit is the identity I → I, the tensor product of objects u : U → I and 

2 Our representation does not directly subsume [2], where the terminal object in each stalk is additionally 
projective. This property, sometimes called “hyperlocal” [3] or “local” [2,44], logically corresponds to the 
existence property. Such an extension is less clear in our monoidal case, and is left to future work.
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v : V → I is ρI ◦ (u ⊗ v) : U ⊗ V → I, and the tensor product of morphisms is as in C. 
An object u : U → I in C/I may be idempotent in the sense that u � u ⊗ u. We are 
interested in objects in C/I that are idempotent in a canonical way.

Definition 2.1. A morphism u : U → I in a monoidal category is a left idempotent when 
λU◦(u ⊗U) : U⊗U → U is invertible, and a right idempotent when ρU◦(U⊗u) : U⊗U → U

is invertible.

We will freely use the graphical calculus for monoidal categories [32], and draw a left 
idempotent u : U → I as:

U

For a left idempotent we draw the inverse of λU ◦ (u ⊗ U) : U ⊗ U → U as:

U

UU

Recall that the centre of a monoidal category C has as objects U ∈ C equipped with 
a half-braiding (see [39, XIII.4] and [36]): a natural transformation σA : U ⊗A → A ⊗U

such that σA⊗B = (A ⊗ σB) ◦ (σA ⊗ B). A morphism (U, σ) → (V, τ) in the centre is a 
morphism f : U → V in C satisfying (A ⊗ f) ◦ σA = τA ◦ (f ⊗A). The tensor unit I of a 
monoidal category always carries a half-braiding ρ−1

A ◦ λA : I ⊗A → A ⊗ I. We draw σA

as:

A

A

U

U

Definition 2.2. A central idempotent in a monoidal category is a morphism u : U → I in 
its centre that is a left idempotent such that:

λU ◦ (u⊗ U) = ρU ◦ (U ⊗ u) : U ⊗ U → U (2.1)

Explicitly, it is a morphism u : U → I such that (2.1) holds and is invertible, equipped 
with a half-braiding satisfying:
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A

A

U

=
U A

A

(2.2)

We will identify two central idempotents u : U → I and v : V → I when u = v ◦ m

for an isomorphism m : U → V that respects the half-braidings, and write ZI(C) for the 
set3 of central idempotents of C.

The central equation (2.1) graphically becomes:

UU

=
UU

If u : U → I and v : V → I are central idempotents, we draw a morphism m : U → V

satisfying u = v ◦m as:

U

V

All in all, the following graphical identities will be useful:

U

U

U =

U

U

=

U

U

U

U

V
=

U U

V

V V

=

U

U U

V V

The following proposition ensures that these graphical notations are well-defined.

Proposition 2.3. For central idempotents u : U → I and v : V → I in a monoidal category 
C, the following are equivalent:

• u = v ◦m for a necessarily unique m : U → V that respects half-braidings;
• U ⊗ v : U ⊗ V → U ⊗ I is invertible;
• v ⊗ U : V ⊗ U → I ⊗ U is invertible.

We say u ≤ v when these conditions hold. This partially orders ZI(C).

3 Throughout this article we only consider central idempotents of small categories to prevent size sub-
tleties.
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Proof. First we prove that the morphism m is unique. If u = v ◦m = v ◦ n, then:

m

V

U

=
m

V

U

=
m n

V V

U

=
m n

VV

U

=
n

V

U

=
n

V

U

To see that the first point implies the second:

U

U

U

V

=

U

U

=

U

U

U V

U V

=

U V

U V

=

U V

VU
V

=

U V

VU

=

U

U

V

V

Hence the dashed morphism inverts U ⊗ v.
To see that the second point implies the first, suppose f inverts U ⊗ v. Then:

U

= f

U

U
V

= f

U

U
V

Hence the dashed morphism m satisfies u = v ◦m.
The first and third points are similarly equivalent. These conditions clearly satisfy 

transitivity, reflexivity, and anti-symmetry. �
The previous proposition justifies drawing the mediating morphism m : U → V as an 

unlabelled dot. It also follows from the previous proposition that a central idempotent is 
completely determined by its domain: if u, u′ : U → I both represent central idempotents, 
then u = u′ ◦ m for a unique isomorphism m : U → U . This justifies drawing u as an 
unlabelled dot on a wire labelled U .

Lemma 2.4. If C is any monoidal category, ZI(C) is a (meet-)semilattice, with

u ∧ v =
UV

and largest element 1: I → I.
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Proof. Clearly u ≥ u ∧ v ≤ v. If u ≥ w ≤ v, then:

W

U V

=

W

=

W

So w ≤ u ∧ v, and u ∧ v is the greatest lower bound of u and v. That 1 is the greatest 
element is clear. �

We have taken some pains to define central idempotents for monoidal categories. 
The next two lemmas show that for braided monoidal categories, the half-braiding is 
superfluous, and hence the definition of central idempotents simplifies.

Lemma 2.5. A half-braiding σ makes a left idempotent u in a monoidal category into a 
central idempotent if and only if σU,U = U ⊗ U :

U U

U

=
U

U

U

⇐⇒
U

U

U

U

=
U

U

U

U

Proof. If u is a left idempotent satisfying (2.1), then:

U

U

U

U

=

UU

U U

=

U U

U U

=

U U

UU

=

U

U

U

U

Conversely, if σU,U = U ⊗U , then λU ◦ (u ⊗U) = λU ◦ (u ⊗U) ◦σU,U = ρU ◦ (U ⊗u). �

Lemma 2.6. If u is a central idempotent in a braided monoidal category, then the half-
braiding σu equals the braiding U ⊗B → B ⊗ U .

Proof. For this proof only, to distinguish them we will draw the half-braiding of U as 
, the braiding as , and the inverse braiding as . Then, graphically:
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B

B

U

U

=

U B

B U

=

U B

B U

=

U B

B U

=

U B

B U

=

U B

B U

=

U B

B U

=

U B

B U

=

B

B

U

U

These equalities used, respectively: invertibility of u ⊗ U , invertibility of the braiding, 
Lemma 2.5, naturality of the braiding in the first argument, Lemma 2.5, naturality of the 
braiding in the second argument, equation (2.2), and finally invertibility of u ⊗U . Notice 
that (the proof of) Lemma 2.5 indeed holds for the braiding rather than the half-braiding, 
and really only depends on invertibility of u ⊗ U and the central equation (2.1). �

The rest of this section elaborates some examples.

Lemma 2.7. In a cartesian category, an object is (the domain of) a central idempotent if 
and only if it is subterminal.

Proof. Suppose the unique morphism u : U → 1 is a central idempotent. Let f, g : A → U . 
Write a for the unique morphism A → 1. Then A × a : A ⊗ A → A has an inverse 
Δ: A → A ⊗A, and:

f

U

A

=
Δ

f a

A

U

A

A

=
Δ

f g

A

U

U

A

A

=
Δ

f g

A

U

U

A

A

=
Δ

a g

A

U

A

A

=
g

U

A

So u is monic. �
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In particular, if X is a topological space, then central idempotents in its category of 
sheaves Sh(X) correspond to open subsets of X [11, Corollary 2.2.16].

Example 2.8. Any (meet-)semilattice may be regarded as a (strict) monoidal category: 
objects are elements of the semilattice, there is a unique morphism u → v if and only 
if u ≤ v, tensor products are given by greatest lower bounds, and the tensor unit is the 
greatest element. In this special case of Lemma 2.7, any object is a central idempotent. 
Write SLat≤ for the category of semilattices and monotone functions that preserve the 
greatest element. Write MonCat for the category of monoidal categories and functors 
F that are (lax) monoidal and whose coherence morphism I → F (I) is invertible (see 
also Definition 3.5 below). The former is a coreflective subcategory of the latter:

SLat≤ MonCat
ZI
⊥

Example 2.9. A quantale [53] is a complete lattice Q with an element e ∈ Q and an 
associative multiplication Q ×Q → Q such that:

u(
∨

vi) =
∨

uvi (
∨

ui)v =
∨

uiv eu = u = ue

Any quantale may be regarded as a monoidal category: objects are elements of the 
quantale, (composition of) morphisms is induced by the partial order, and the tensor 
product is induced by the multiplication. The central idempotents of this category are 
the central elements q2 = q ≤ e. Taking as morphisms between quantales functions that 
preserve 

∨
, ·, and e, this gives a functor Quantale → MonCat.

For an important special case, recall that a frame is a complete lattice in which finite 
joins distribute over suprema [35]: a frame is a commutative quantale in which the multi-
plication is idempotent and whose unit is the largest element. Frames form a coreflective 
subcategory of commutative quantales [25, Proposition 3.5], where a morphism of frames 
is a function that preserves 

∨
, ∧, and 1:

Frame cQuantale
ZI
⊥

Example 2.10. Consider the monoidal category ModR of modules over a commutative 
ring R. Centrality of a : A → R means that:

a(x) · y = a(y) · x (2.3)

for every x, y ∈ A. Idempotency means that:

∀x ∃xi, yi : x =
n∑

a(xi) · yi (2.4)

i=1
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a(x) · y = 0 ⇐⇒ x⊗ y = 0 (2.5)

If e ∈ R is a (central) idempotent element of R, then the (inclusion a into R of the) ideal 
A = eR is a central idempotent in ModR. Conversely, (2.4) implies that a(A) ⊆ R is 
an idempotent ideal. In general we cannot say much more, but if A is faithfully flat [42, 
Section 4I], then A ⊗ a being injective implies that a : A → R is injective, and hence 
central idempotents correspond to idempotent ideals. This includes free modules A, and 
hence vector spaces A.

Example 2.11. Consider the category HilbC0(X) of Hilbert C*-modules [48] for a locally 
compact Hausdorff space X. This is not an abelian category [28, Appendix A], nor 
a topos. It is monoidally equivalent to the category of fields of Hilbert spaces over 
X [31, Corollary 4.9]. Under this equivalence the monoidal structure is fibrewise, so a 
central idempotent a : A → C0(X) in HilbC0(X) becomes a continuous function that 
is fibrewise a central idempotent ax : Ax → C in the category of Hilbert spaces and 
bounded linear maps. It follows from Example 2.10 that each ax is injective. Finally, 
because composition of maps between fields of Hilbert spaces is fibrewise too, we conclude 
that the central idempotent a in HilbC0(X) is monic. It follows [25, Proposition 3.16]
that ZI(HilbC0(X)) � {U ⊆ X open}.

Example 2.12. If C is any category, the functor category [C, C] is monoidal with compo-
sition as tensor product. If ε : T ⇒ C is a left idempotent satisfying (2.1), then the inverse 
εT = Tε : T 2 ⇒ T is a comultiplication that makes T into an idempotent comonad on 
C. Conversely, if T is an idempotent comonad on C, then its counit is a left idempotent 
in [C, C] satisfying (2.1) by [10, Proposition 4.2.3]. (In fact, the counit is central if and 
only if the comonad is idempotent [18, Proposition 2.11, e⇔f].) Thus idempotents in 
[C, C] satisfying (2.1) correspond (up to natural isomorphism) to idempotent comonads. 
Notice that the counit of an idempotent comonad need not be monic [46, Lemma 3.4]. 
See also [40].

An idempotent comonad ε : T ⇒ C is in the centre of the monoidal category [C, C]
when FT � TF for all endofunctors F : C → C, and ε respects these natural isomor-
phisms. As in Lemma 2.5, it follows that:

FT T

=
T F T

Hence εFT (A) = FT (εA) ◦ σF
T (A) is a composition of invertible maps and so an iso-

morphism for every A ∈ C and F : C → C. Taking F to be the functor that maps 
every object to A and every morphism to the identity on A shows that ε is a natural 
isomorphism. Hence ZI([C, C]) = 1.
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For more examples, see [25, 3.7–3.8, 3.12–3.14].

3. Universal joins

This section defines properties of central idempotents that make them more well-
behaved, starting with the weakest one.

Definition 3.1. A monoidal category is stiff if

A⊗ U ⊗ V A⊗ V

A⊗ U A U VA

A

=

U VA

A

is a pullback for all objects A and central idempotents u and v.
A monoidal category C has finite universal joins, or universal ∨-joins, of central 

idempotents when it has an initial object 0 satisfying A ⊗ 0 � 0 for all objects A, and 
ZI(C) has binary joins such that

A⊗ U ⊗ V A⊗ V

A⊗ U A⊗ (U ∨ V ) VU

U ∨ V

A

A

=

U V

U ∨ V

A

A

(3.1)

is both a pullback and pushout for all objects A and central idempotents u and v.
A monoidal category has universal joins, or universal 

∨
-joins, of central idempotents 

when ZI(C) has all joins such that the cocone

Ui

∨
Ui

A

A

is a colimit of the diagram with morphisms

Ui

Uj

A

A

if ui ≤ uj for any set {ui} of central idempotents satisfying {ui} = {ui ∧ uj}.
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If C has universal finite joins of central idempotents, then ZI(C) is a distributive 
lattice with least element 0. If C has universal joins of central idempotents, then ZI(C)
is even a frame.

Any coherent category has universal finite joins of central idempotents [25, Proposi-
tion 7.4]. Any cocomplete Heyting category has universal joins of central idempotents [25, 
Proposition 7.12]; this includes all cocomplete toposes, such as Grothendieck toposes. 
Any quantale, regarded as a monoidal category as in Example 2.9, has universal joins of 
central idempotents. The category of Hilbert C*-modules of Example 2.11 has universal 
joins of central idempotents.

Next, we show that the properties of being equal, being monic, being epic, and being 
invertible, may be verified ‘central idempotent-wise’.

Lemma 3.2. If (finitely many) central idempotents ui in a monoidal category with uni-
versal (finite) joins of central idempotents satisfy 

∨
ui = 1, then:

• morphisms f, g : A → B are equal if and only if f ⊗ ui = g ⊗ ui for each i;
• a morphism f is epic if f ⊗ ui or f ⊗ Ui is epic for each i;
• a morphism f is monic if f ⊗ ui is monic for each i;
• a morphism f is invertible if and only if f ⊗ Ui is invertible for each i.

Proof. The point about equality of morphisms follows directly from Definition 3.1.
Next, let f : A → B and suppose that g ◦ f = h ◦ f for g, h : B → C. Then also 

(g ⊗ ui) ◦ (f ⊗ Ui) = (h ⊗ ui) ◦ (f ⊗ Ui). Therefore g ⊗ ui = h ⊗ ui because f ⊗ Ui is 
epic. But then g = h as before because 

∨
ui = 1. If instead each f ⊗ ui is epic, then 

immediately g = h. In either case f is epic.
We turn to monomorphisms. Let f : B → C. Suppose that f◦g = f◦h for g, h : A → B. 

Because f ⊗ ui is epic, then:

f

g
B

C

A U i

=
f

h

B

C

A U i

=⇒ g

B

A Ui

U i

= h

B

A Ui

U i

=⇒ g

B

A Ui

= h

B

A Ui

So g = h because 
∨
ui = 1. Thus f is monic.

Finally, suppose f : A → B makes each f ⊗ Ui : A ⊗ Ui → B ⊗ Ui invertible. Write 
gi : B ⊗ Ui → A ⊗ Ui for the inverses. Now the morphisms gi ⊗ ui : B ⊗ Ui → A form a 
cocone for the diagram B⊗ui : B⊗Ui → B, giving a mediating morphism g : B → A. It 
follows from uniqueness that g ◦ f = B and f ◦ g = A, making f invertible. Conversely, 
if f has inverse g, then f ⊗ Ui has inverse g ⊗ Ui. �
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In Section 13 below we will see that any stiff monoidal category can be freely completed 
with universal (finite) joins of central idempotents. We end this section by considering 
which functors between monoidal categories preserve central idempotents.

Definition 3.3. A lax monoidal functor F : C → D with coherence morphisms 
θA,B : F (A) ⊗F (B) → F (A ⊗B) and θI : I → F (I) preserves a half-braiding σU

A : U⊗A →
A ⊗U in C when there is a chosen half-braiding F (σU )D : F (U) ⊗D → D⊗F (U) in D
satisfying θA,U ◦ F (σU )F (A) = F (σU

A) ◦ θU,A.

Any braided lax monoidal functor preserves all half-braidings by Lemma 2.6. Con-
versely, if a lax monoidal functor F : C → D preserves all half-braidings, then it induces 
a functor from the centre of C to the centre of D (but this functor need not be lax 
monoidal without further assumptions).

Lemma 3.4. Let F : C → D be an lax monoidal functor with coherence morphisms 
θA,B : F (A) ⊗ F (B) → F (A ⊗ B) and θI : I → F (I). Suppose that F preserves half-
braidings of central idempotents, and that θI and θA,U are invertible for all objects A
and u ∈ ZI(C). If u : U → I is a central idempotent in C, then

F (U) F (u)−→ F (I)
θ−1
I−→ I

is a central idempotent in D. This induces a semilattice morphism ZI(C) → ZI(D) if 
additionally:

F (σI)D = (D ⊗ θI) ◦ ρ−1
D ◦ λD ◦ (θ−1

I ⊗D)

F (σU⊗V )D = (D ⊗ θU,V ) ◦
(
F (σU )D ⊗ F (V )

)
◦
(
F (U) ⊗ F (σV )D

)
◦ (θ−1

U,V ⊗D)

Proof. The central equation (2.1) holds:

F (U) ⊗ F (U) F (I) ⊗ F (U) I ⊗ F (U)

F (U ⊗ U) F (I ⊗ U) F (U)

F (U ⊗ U) F (U ⊗ I) F (U)

F (U) ⊗ F (U) F (U) ⊗ F (I) F (U) ⊗ I

F (u)⊗F (U) θ−1
I ⊗F (U)

λF (U)

F (U)⊗F (u) F (U)⊗θ−1
I

ρF (U)θU,U

θU,U

F (σU ) F (σI)

F (U⊗u)

F (u⊗U)

θI,U

θU,I

F (ρ)

F (λ)

To see that (2.1) is invertible:
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F (U ⊗ U) F (U) ⊗ F (U)

F (U) F (U ⊗ I) F (U) ⊗ F (I)

F (U) F (U) ⊗ I

F (ρU )

ρF (U)

F (U)⊗θ−1
I

θ−1
U,I

θ−1
U,U

F (U)⊗F (u)F (U⊗u)
F

(
(U⊗u)−1)

By assumption F (σ) extends to a half-braiding.
That F (u ∧v) = F (u) ∧F (v) follows because θU,V is invertible and from the condition 

on F (σU⊗V ). Finally, top element of the semilattice is preserved by the condition on 
F (σI). �

We say that a lax monoidal functor preserves central idempotents when it satisfies the 
conditions of the previous lemma. Braided strong monoidal functors between braided 
monoidal categories do so automatically.

Definition 3.5. Write MonCat for the category of (small) monoidal categories and lax 
monoidal functors F whose coherence morphism I → F (I) is invertible. Write MonCats
for the subcategory of stiff monoidal categories and lax monoidal functors F that preserve 
central idempotents. Write MonCatfj for the further subcategory of monoidal categories 
with universal finite joins of central idempotents and functors that preserve finite joins 
of central idempotents, and MonCatj for the subcategory of monoidal categories whose 
central idempotents have universal joins and form a spatial frame and functors that 
preserve joins of central idempotents.

Example 2.8 above also gives a coreflection between MonCats and SLat, the category 
of semilattices and semilattice morphisms, that is, functions that preserve meets and the 
greatest element.

4. Base space

We will build the representation for the case of universal finite joins first, starting with 
the base space in this section, followed by the presheaf, sheaf, and stalks in following 
sections. In Section 8 below this will be upgraded to universal joins. Therefore we first 
consider distributive lattices. As base space, we will take the prime spectrum of the 
distributive lattice of central idempotents [22,35]. Recall that a prime filter of a lattice 
L is a nonempty upward-closed and downward-directed proper subset P where u ∨v ∈ P

implies u ∈ P or v ∈ P ; equivalently, P is the inverse image of 1 under a lattice 
homomorphism L → {0, 1}.
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Definition 4.1. Let L be a distributive lattice with a least element. Its prime spectrum is 
a topological space Spec(L), whose points are prime filters P ⊆ L, and whose topology 
is generated by a basis consisting of the sets

Bu = {P ∈ Spec(L) | u ∈ P}

where u ranges over L.

Lemma 4.2. The basic opens Bu of the prime spectrum of a lattice L are compact.

Proof. The frame O(Spec(L)) of opens of Spec(L) is in bijection with the frame Idl(L)
of ideals of L. The map that sends an element v ∈ L to its principal ideal ↓v = {u ∈
L | u ≤ v} embeds L in Idl(L) as a lattice. On the topological side, it sends u ∈ L to 
Bu, establishing an isomorphism between L and the basis {Bu | u ∈ L} ⊆ O(Spec(L)). 
Because the principal ideals are compact in Idl(L), so are Bu in O(Spec(L)). �

The following lemma holds more generally for sheaves valued in any category V, but 
we spell it out for MonCat-valued sheaves.

Lemma 4.3. To specify a sheaf F : O(Spec(L))op → MonCat for a distributive lattice 
L, it suffices to give a presheaf F : {Bu | u ∈ L}op → MonCat, such that F (B0) is 
terminal in MonCat and the following is an equaliser in MonCat:

F (Bu∨v) F (Bu) × F (Bv) F (Bu∧v)
〈F (Bu⊆Bu∨v), F (Bv⊆Bu∨v)〉

F (Bu∧v⊆Bv) ◦ π2

F (Bu∧v⊆Bu) ◦ π1

Proof. A sheaf on a basis uniquely determines a sheaf on the whole topological space [50, 
Theorem II.1.3]. The presheaf F : {Bu | u ∈ L}op → MonCat provides this data. It 
furthermore needs to satisfy the sheaf condition on the covers of basic opens by basic 
opens, Bv =

⋃
u∈J Bu with J ⊆ L. Since the basic open Bv is compact by Lemma 4.2, it 

suffices to consider finitary and hence binary covers, Bu∨v = Bu ∪ Bv for u, v ∈ L, and 
nullary covers, B0 =

∨
∅. The sheaf condition for covers of this form says exactly that 

the functor in the statement is an equaliser, and F (B0) is isomorphic to the terminal 
monoidal category 1. �
5. Structure presheaf

In this section we define the structure presheaf of a monoidal category. For a mere 
monoidal category C this is a presheaf on the semilattice ZI(C) of central idempotents, 
which in the presence of universal finite joins extends to a presheaf on the topological 
space Spec(ZI(C)) of the previous section. So we define a presheaf of monoidal categories 
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on the central idempotents by describing its behaviour over basic open sets. We will 
generalise the filter-quotient construction from topos theory to monoidal categories [50, 
V.9].

Any central idempotent U in a monoidal category C is a (commutative) comonoid 
with comultiplication and counit . Hence − ⊗U is a comonad on C. We are interested 
in its co-Kleisli category.

Definition 5.1. Let C be a monoidal category, and u : U → I a chosen representative of 
a central idempotent. Define a category C‖u as follows:

• objects are those of C;
• morphisms A → B in C‖u are morphisms A ⊗ U → B in C;
• composition of f : A → B and g : B → C is:

f

g

B

UA

C

• identity on A is .

Lemma 5.2. If C is a monoidal category, then so is C‖u.

Proof. The monoidal structure of C‖u is defined as follows. The tensor product of mor-
phisms f : A → B and g : C → D is:

f g

B D

UA C

f

The associator and left and right unitors are given by:

A B C U A U A U
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Easy graphical manipulation establishes naturality, the interchange law, as well as the 
triangle and pentagon equations. �
Lemma 5.3. If C is cartesian, there is a monoidal equivalence C‖u � C/U .

Proof. First, notice that A ⊗U : A → A ⊗U is an isomorphism A � A ⊗U in C‖u with 
inverse A ⊗ u ⊗ u : A ⊗ U → A. Therefore, C‖u is equivalent to its full subcategory C|u
of objects of the form A ⊗ U . Moreover, this equivalence preserves tensor products on 
the nose.

There is a functor C|u → C/U that sends an object A ⊗ U to π2 : A ⊗ U → U , and 
that sends a morphism f : A ⊗ U ⊗ U → B ⊗ U to f ◦ (A ⊗ U ⊗ u)−1. It is monoidal. 
There is also a functor C/U → C‖u that sends an object ! : A → U to A ⊗ U , and that 
sends a morphism f : A → B to f ⊗ U ⊗ u. This functor is monoidal too. These two 
functors form an equivalence, because A ⊗ U ⊗ U � A ⊗ U in C‖u. �
Lemma 5.4. If u ≤ v are central idempotents in a monoidal category C, there is a strict 
monoidal functor C‖u≤v : C‖v → C‖u that acts as identity on objects and on morphisms 
as:

f

B

A V

�−→
f

B

A

V

U

Proof. We first show functoriality. To verify that C‖u≤v preserves identity morphisms:

idA

A

V

UA

= V

UA

A

=

A

A

U

The fact that

C‖u≤v(g ◦v f) = C‖u≤v(g) ◦u C‖u≤v(f)

is proven by:
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g ◦v f

V

UA

C

=

g

f

C

B

V

UA

=

g

f

C

B

V
V

UA

=

C‖u≤v(g)

C‖u≤v(f)

C

B

UA

As for monoidality, for f : A ⊗ V → B and g : C ⊗ V → D in C:

C‖u≤v

(
f ⊗ g

)
=

f ⊗ g

B D

A C

V

U

=
f g

B D

A C

V

U

f

=
f g

B D

V V

A C

g

U

= C‖u≤v(f) ⊗ C‖u≤v(g)

This functor preserves the tensor unit, and hence is strict monoidal. �
The special case v = 1 gives a functor C → C‖u that acts as the identity on objects 

and acts on morphisms as:

f

B

A

�−→ f

B

A U

Lemma 5.5. If u ≤ v are central idempotents in a monoidal category C, there is an oplax 
monoidal functor C‖u≤v : C‖u → C‖v, that acts on objects as A �→ A ⊗ U , and on 
morphisms as:

f

B

A U

�−→
f

B

A U

U

V

This functor is left adjoint to C‖u≤v, and the unit of this adjunction is invertible.

Proof. It is straightforward to verify that C‖u≤v indeed preserves identities and compo-
sition. It is oplax monoidal with θI = I ⊗ u ⊗ v : C‖u≤v(I) → I and:
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θA,B =

VB

B

A

A

U

UU

: C‖u≤v(A⊗B) → C‖u≤v(A) ⊗ C‖u≤v(B)

It is routine to verify that θA,B and θI are natural and respect the coherence isomor-
phisms of C‖u and C‖v. Notice that in fact θA,B is invertible, with inverse θ−1

A,B =
A ⊗ u ⊗B ⊗U ⊗ v : C‖u≤v(A) ⊗C‖u≤v(B) → C‖u≤v(A ⊗B), but that θI is not invert-
ible.

The fact that C‖u≤v is left adjoint to C‖u≤v simply means:

C‖v(A⊗ U,B) = C(A⊗ U ⊗ V,B) � C(A⊗ U,B) = C‖v(A⊗ U,B)

This holds because u ∧ v = u as u ≤ v, and is easily seen to be natural in A and 
B. The unit of the adjunction is ηA = A ⊗ U : A → A ⊗ U in C‖u. It is inverted by 
η−1
A = A ⊗ u ⊗ u : A ⊗ U → A in C‖u. �

To finish this section on the structure presheaf, we determine the central idempotents 
of the categories C‖u.

Lemma 5.6. If u is a central idempotent in a monoidal category C, then there is an 
isomorphism ZI(C‖u) � ZI(C) ∩ ↓u of semilattices.

Proof. Let q : Q → I be a morphism in C‖u. That is, q is a morphism Q ⊗U → I in C. 
By definition q satisfies (2.1) in C‖u if and only if the following holds in C:

q

Q Q

Q

U

q
=

q

Q UQ

Q

But by Lemma 2.5, this means precisely that q : Q ⊗ U → I satisfies (2.1) in C.
Now, q is idempotent in C‖u if and only if there is a morphism f : Q ⊗ U → Q ⊗ Q

in C satisfying:

q

f

Q UQ

Q Q

=

Q

Q

Q

Q

U

f

q

UQ

Q

=

Q

Q

U
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Similarly, q is idempotent in C if and only if there is g : Q ⊗ U → Q ⊗ U ⊗Q ⊗ U in C
satisfying:

g

q

Q U

Q U

=

Q

Q

U

U

g

q

Q U

Q U Q U

Q U

=

Q

Q

U

U

Q

Q

U

U

But these two properties are equivalent via:

f

Q Q

Q U

= g

Q Q

Q U

g

Q U Q U

Q U

=
f

U

Q

Q

UQU

Finally, if τA : Q ⊗A → A ⊗Q is a half-braiding in C‖u, and σA : U ⊗A → A ⊗ U is 
the given half-braiding in C, then

Q⊗ U ⊗A
Q⊗σA−→ Q⊗A⊗ U � Q⊗A⊗ U ⊗ U

τA⊗U−→ A⊗Q⊗ U

is a half-braiding in C‖u. Thus any central idempotent V in C induces a central idem-
potent V in C‖u, and any central idempotent q in C‖u is represented by a central 
idempotent coming from C in this way. �
Corollary 5.7. Let C be a monoidal category and u ∈ ZI(C).

• If C is stiff, then so is C‖u.
• If C has finite joins of central idempotents, then so does C‖u.
• If C has joins of central idempotents, then so does C‖u.

The functor C → C‖u preserves joins of central idempotents.

Proof. Follows from Definition 3.1 and Lemma 5.6. �
6. Structure sheaf

This section establishes that the structure presheaf is in fact a sheaf. We start with 
checking the sheaf condition for binary joins.
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Proposition 6.1. If C is a monoidal category with universal finite joins of central idem-
potents, then the following is an equaliser in MonCat:

C‖u∨v C‖u × C‖v C‖u∧v

〈C‖u≤u∨v,C‖v≤u∨v〉

C‖u∧v≤v ◦ π2

C‖u∧v≤u ◦ π1

Proof. We will prove that the following diagram is a pullback in MonCat:

C‖u∨v C‖u

C‖v C‖u∧v

C‖u≤u∨v

C‖v≤u∧v C‖u∧v≤u

C‖u∧v≤v

Let A be a (monoidal) category and F : A → C‖u and G : A → C‖v (lax monoidal) 
functors satisfying:

C‖u∧v≤u ◦ F = C‖u∧v≤v ◦G (6.1)

We will show that there is a unique functor H : A → C‖u∨v satisfying:

C‖u≤u∨v ◦H = F C‖v≤u∨v ◦H = G (6.2)

by first showing that (6.2) forces a unique choice for how H must act on objects and 
morphisms, and then verifying that this indeed defines a (lax monoidal) functor.

For an object A of A, condition (6.1) implies that F (A) = G(A) since the restriction 
functors act as the identity on objects, and (6.2) forces H(A) to be the same object. For a 
morphism m : A → B in A, equation (6.1) says that the maps F (m) : F (A) ⊗U → F (B)
and G(m) : G(A) ⊗ V → G(B) in C satisfy:

F (m)

H(B)

H(A) U V

= G(m)

H(B)

H(A) VU

whereas (6.2) says that H(m) : H(A) ⊗ (U ∨ V ) → H(B) must satisfy:
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H(m)

H(B)

H(A)

U ∨ V

V

=
F (m)

H(B)

H(A) U

H(m)

H(B)

H(A)

U ∨ V

V

=
G(m)

H(B)

H(A) V

(6.3)

Both conditions are summarised by commutativity of the following diagram in C:

H(A) ⊗ U ⊗ V H(A) ⊗ U

H(A) ⊗ V H(A) ⊗ (U ∨ V )

H(B)

F (m)

G(m)

H(m)

Universal finite joins of central idempotents make this square a pushout. Thus there is 
only one possible choice for the morphism H(m).

It remains to show that this indeed defines a (lax monoidal) functor. Let m1 : A → B

and m2 : B → C in A. We will show that H(m2) ◦u∨v H(m1) satisfies the defining 
conditions of H(m2 ◦m1). Observe that

C‖u≤u∨v(H(m2) ◦u∨v H(m1)) = C‖u≤u∨v(H(m2)) ◦u C‖u≤u∨v(H(m1))

= F (m2) ◦u F (m1)

= F (m2 ◦m1)

by functoriality of restriction, (6.3) instantiated for both m1 and m2, and functoriality 
of F . The condition holds analogously for G. Since H(m2 ◦m1) is the unique map in C
satisfying these conditions, H(m2) ◦u∨v H(m1) = H(m2 ◦m1).

Identities are preserved similarly: if A is an object of A, then

C‖u≤u∨v(idH(A)) = idC‖u≤u∨v(H(A)) = idF (A) = F (idA)

and analogously C‖v≤u∨v(idH(A)) = G(idA), so idH(A) = H(idA).
Finally we show that H is lax monoidal. For objects A and B of A, write θFA,B for 

the structure morphism F (A) ⊗ F (B) → F (A ⊗A B) in C‖u witnessing that F is lax 
monoidal. This is a morphism θFA,B : F (A) ⊗ F (B) ⊗ U → F (A ⊗ B) in C. Similarly, 
write θGA,B : G(A) ⊗G(B) ⊗ V → G(A ⊗B) in C. It follows from (6.1) that:
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θFA,B

H(A⊗B)

HA HB U V

= θGA,B

H(A⊗B)

HA HB VU

That is, the outer square in the following diagram commutes:

H(A) ⊗H(B) ⊗ U ⊗ V H(A) ⊗H(B) ⊗ U

H(A) ⊗H(B) ⊗ V H(A) ⊗H(B) ⊗ (U ∨ V )

H(A⊗B)

θFA,B

θGA,B

θHA,B

This uniquely determines the dashed morphism θHA,B satisfying:

θFA,B

H(A⊗B)

HA HB U

=
θHA,B

H(A⊗B)

HA HB

U ∨ V

S

θFA,B

H(A⊗B)

HA HB V

=
θHA,B

H(A⊗B)

HA HB

U ∨ V

V

The structure morphism I → H(I) is defined similarly. Naturality of θH and the laws 
of unitality and associativity follow from those for the structure morphisms of F and 
G. �

We have to pay careful attention to the nullary case of the sheaf condition.

Lemma 6.2. If C be a monoidal category with universal finite joins of central idempotents, 
then C‖0 is monoidally equivalent to the terminal category 1.

Proof. It suffices to show that every object A is isomorphic to 0 in C‖0. Because A ⊗0 � 0
by universal finite joins of central idempotents, there is a unique morphism f : A ⊗0 → 0
in C. Similarly, there is a unique morphism g : 0 ⊗ 0 → A. The composition g ◦ f in C‖0
is a morphism A ⊗ 0 → A in C, and therefore unique, so has to equal the identity in 
C‖0. Similarly, the composition f ◦ g in C‖0 is a morphism 0 ⊗0 → 0 in C and so equals 
the identity in C‖0 by uniqueness. �

We can now define the desired sheaf of categories. For clarity we have avoided stacks 
and worked everything out concretely so far, but at this point we have to make a small 
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change because of the previous lemma, as C‖0 is not isomorphic to the terminal category 
but only equivalent to it. In logical terms, C‖0 models the theory in which 0 = 1.

Proposition 6.3. Let C be a monoidal category with universal finite joins of central idem-
potents. The functor O(Spec(ZI(C)))op → MonCat given by s �→ C‖s is naturally 
monoidally equivalent to its sheafification, which is the following sheaf of monoidal cat-
egories:

F : O(Spec(ZI(C)))op → MonCat

0 �→ 1

0 �= u �→ C‖u

Proof. Because 1 is terminal, F is indeed functorial. There is a natural transformation 
from u �→ C‖u to F , whose component at every u �= 0 is the identity functor, and whose 
component at 0 is the unique functor to 1. This natural transformation is a (monoidal) 
equivalence by Lemma 6.2. Combining Lemma 4.3 with Proposition 6.1 shows that F
defines a sheaf of (monoidal) categories. The fact that F is the sheafification follows from 
the defining universal property, because any sheaf of categories has to assign 0 �→ 1. �

7. Stalks

In this section, we study the stalks of the sheaf of Proposition 6.3. We start by 
generalising the idea of germs to the monoidal setting.

Definition 7.1. Let C be a monoidal category, and x ⊆ ZI(C) a filter. Define a category 
C‖x as follows:

• objects are those of C;
• morphisms A → B are equivalence classes of pairs of v ∈ x and f : A ⊗ V → B, 

where we identify (v, f) and (v′, f ′) when u ≤ v ∧ v′ for some u ∈ x:

f

V

UA

B

=
f ′

V ′

UA

B
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• composition of (u, f) : A → B and (v, g) : B → C is:

[
u ∧ v,

f

g

A U

C

V

]

• identity on A is [1, A ].

Notice that [u, f ] = [u ∧ v, f ⊗ v] for any central idempotent v.

Lemma 7.2. If C is a monoidal category, and x ⊆ ZI(C) a filter, then C‖x is monoidal.

Proof. The tensor product of objects is as in C, the tensor product of morphisms 
[u, f ] : A → B and [v, g] : C → D is [u, f ] ⊗[v, g] = [u ∧v, (f⊗g) ◦(A ⊗σU,V ⊗D)] : A ⊗C →
B ⊗D. The coherence isomorphisms are [1, α], [1, λ], and [1, ρ]. �
Lemma 7.3. If C is a monoidal category, and x ⊆ ZI(C) a filter, then

C‖x = colimu∈x C‖u

in MonCat, where the colimit ranges over the diagram induced by the functors 
C‖u≤v : C‖v → C‖u from Lemma 5.4.

Proof. The functors Fu : C‖u → C‖x that send f : A ⊗U → B to [u, f ] form a cocone. If 
Gu : C‖u → D is another cocone, then there is a unique mediating functor M : C‖x → D
given by M [u, f ] = Gu(f). If C and Gu are monoidal, then M is lax monoidal. �

The next lemma characterises the central idempotents in C‖x. The equivalence rela-
tion of having the same germ specialises to a semilattice congruence of central idempo-
tents as follows for a filter x of central idempotents:

v ∼x w ⇐⇒ ∃u ∈ x : u ∧ v = u ∧ w

Lemma 7.4. If C is a braided monoidal category and x ⊆ ZI(C) a filter, then there is an 
isomorphism ZI(C‖x) � ZI(C)/∼x of semilattices.

Proof. Let [v, q] : Q → I be a morphism in C‖x. That is, choose a representing morphism 
q : Q ⊗ V → I in C. Then by definition [v, q] satisfies (2.1) in C‖x if and only if:



26 R. Soares Barbosa, C. Heunen / Advances in Mathematics 416 (2023) 108900
q

V

UQQ

Q

=
q

Q Q

Q

U

in C for some u ∈ x ∩↓v. If m : U → V satisfies u = v ◦m, then q ◦ (Q ⊗m) : Q ⊗U → I

is central in C if and only if:

q

V

UQ Q

Q

U

U

=
q

V

UQU

U

Q

Q

But these two equations are equivalent by Lemma 2.5.
Similarly, [v, q] is idempotent in C‖x if and only if there exist u ∈ x ∩ ↓v, and a 

morphism p : Q ⊗ U → Q ⊗Q in C such that:

p

q

Q

Q U

=

Q

Q

U

p

q

Q UQ

Q Q

=

Q

Q

Q

Q

U

If u = v ◦m, then q ◦ (Q ⊗m) : Q ⊗U → I is idempotent in C if and only if there exists 
a morphism f : Q ⊗ U → Q ⊗ U ⊗Q ⊗ U in C satisfying:

f

q

Q
U

QU

QUQU

=

Q

Q

U

U

Q

Q

U

U

f

q

QU

Q U

=

Q

Q

U

U

These two properties are equivalent, by choosing:
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f

Q U

QUQU

=
p

Q

Q U

Q UU

p

Q U

Q Q

=
f

Q U

Q Q

Just like in Lemma 5.6, a half-braiding on Q in C‖x induces a half-braiding on Q ⊗U in 
C. Thus every central idempotent in C‖x is induced by a central idempotent in C. But 
by definition two central idempotents u and v in C induce the same central idempotent 
in C‖x exactly when u ∼x v. �
Lemma 7.5. Let C be a monoidal category and x ⊆ ZI(C) a filter.

• If C is stiff, then so is C‖x.
• If C has universal finite joins of central idempotents, then so does C‖x.
• If C has universal joins of central idempotents, then so does C‖x.

The functor C → C‖x preserves joins of central idempotents.

Proof. We start with stiffness. Let v, w be central idempotents in C. It is clear that the 
inner square below commutes in C‖x.

A

A⊗W

A⊗ V

A⊗ V ⊗W

B

[1, A⊗ v ⊗W ]

[1, A⊗ w][1, A⊗ V ⊗ w]

[1, A⊗ v]

[u′, g]

[u, f ]

[u ∧ u′ ∧ q,m]

Suppose the outer square commutes too. This means (A ⊗ v) ◦ (f ⊗ u′ ⊗ q) = (A ⊗w) ◦
g ◦ (B ⊗ u ⊗ U ′ ⊗ q) for some central idempotent q in C. Because C is stiff, there is a 
morphism m : B ⊗ U ⊗ U ′ ⊗Q → A ⊗ V ⊗W satisfying:

f

A V

B U U ′ Q

= m

A V W

B U U ′Q

g

A V

B U ′U Q

= m

A V W

B U U ′Q
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It follows that the dashed morphism [u ∧ u′ ∧ q, m] makes the two triangles commute. 
The uniqueness of m in C also guarantees that the dashed morphism is the unique such 
morphism in C‖x.

Next we turn to joins of central idempotents. The initial object 0 satisfying A ⊗ 0 � 0
in C is still initial and still satisfies A ⊗0 � 0 in C‖x. The proof that (3.1) is a pullback in 
C‖x is virtually the same as in the stiff case. We focus on the pushout property. Suppose 
that [u, f ] ◦ [1, A ⊗ V ⊗ w] = [u′, g] ◦ [1, A ⊗ v ⊗W ] in C‖x. This means:

f ◦ (q ⊗ U ⊗ u′ ⊗A⊗ V ⊗ w) = g ◦ (q ⊗ u⊗ U ′ ⊗A⊗ v ⊗W )

for some central idempotent q in C. If C has finite joins of central idempotents, there is 
a morphism m : ((Q ⊗ U ⊗ V ) ∨ (Q ⊗ U ′ ⊗W )) ⊗A → B satisfying:

f

B

Q⊗ U ⊗ VA

=
m

B

(Q ⊗U⊗V ) ∨
(Q ⊗U ′⊗W )

Q⊗ U ⊗ VA

g

B

Q⊗ U ′ ⊗WA

=
m

B

(Q ⊗U⊗V ) ∨
(Q ⊗U ′⊗W )

Q⊗ U ′ ⊗WA

Observe that (q∧u ∧v) ∨ (q∧u′∧w) = p ∧ (v∨w) for p = q∧ (u ∨u′) ∧ (u ∨w) ∧ (v∨u′). 
Now [p, m] is the unique mediating morphism in C‖x satisfying [p, m] ◦ [1, A ⊗ (v ≤
v ∨ w)] = [u, f ] and [p, m] ◦ [1, A ⊗ (w ≤ v ∨ w)] = [u′, g]. The above holds equally well 
for wide pushouts. �
8. ∨-Locality

This section proves that the stalks are particularly easy, in the sense that the central 
idempotents behave well because there are few of them.

Definition 8.1. Call a partially ordered set ∨-local if it has at least two elements, and 
u ∨ w = 1 can only happen when u = 1 or w = 1. Call a monoidal category C ∨-local
when ZI(C) is ∨-local.

A partially ordered set is ∨-local if and only if it has a unique maximal ideal. We now 
connect this property to primality of filters.

Lemma 8.2. If C is a monoidal category with universal finite joins of central idempotents, 
and x ⊆ ZI(C) is a prime filter, then C‖x is ∨-local.

Proof. Consider two elements of ZI(C‖x). They are represented by u, w ∈ ZI(C) by 
Lemma 7.4. Now, u ∨w ∼x 1 if and only if there is v in the prime filter x and (u ∧ v) ∨
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(v ∧w) = v. Since (u ∧ v) ∨ (v ∧w) is in the prime filter x, either u ∧ v ∈ x or v ∧w ∈ x. 
But this implies u ∼x 1 or w ∼x 1.

Finally, we prove that 0 �= 1 in ZI(C‖x). For a contradiction suppose that 0 � I in 
C‖x. Then 0 � I in ZI(C‖u) for some u ∈ ZI(C) contained in x. Because A � B in C‖u
if and only if A ⊗ U � B ⊗ U in C, it follows that 0 � 0 ⊗ U � I ⊗ U � U in C. But 
that means that x = {0}, contradicting the fact that x is a proper filter. �
Theorem 8.3. Any small monoidal category with universal ∨-joins of central idempotents 
is monoidally equivalent to the category of global sections of a sheaf of ∨-local monoidal 
categories.

Proof. Let C be the monoidal category with universal finite joins of central idempotents. 
Take X = Spec(ZI(C)) as the base space, as in Definition 4.1. Then Bu �→ C‖u is a 
presheaf of monoidal categories by Lemma 5.4. It extends to a sheaf as in Proposition 6.3. 
The stalks C‖x for x ∈ X are ∨-local by Lemma 8.2, so this is a sheaf of ∨-local categories. 
Finally, the global sections of this sheaf form C‖1, which is monoidally equivalent to C
itself. �
Corollary 8.4. Any small monoidal category with universal ∨-joins of central idempotents 
embeds monoidally into a product of ∨-local monoidal categories.

Proof. Consider the tuple C →
∏

x∈Spec(ZI(C)) C‖x of the quotient functors C → C‖x. 
It acts as the identity on objects. Faithfulness means that if [f ]x = [g]x in C‖x for all 
x ∈ Spec(ZI(C)) then f = g : A → B in C. Because a colimiting cocone is jointly monic, 
by Lemma 4.2 it suffices to prove that f = g as soon as f ⊗ u = g ⊗ u in C‖u for all 
u ∈ ZI(C). The result thus follows from (a jointly monic version of) Lemma 3.2. �
9. 

∨
-Locality

Theorem 8.3 is not entirely satisfactory when applying it to categories C whose central 
idempotents already form a frame, because the representation still treats ZI(C) as a mere 
lattice. For example, if X is a topological space, then Theorem 8.3 represents C = Sh(X)
as a sheaf of categories over a different space than X; the same holds for several examples 
in Section 11 below. To remedy this, this section extends the representation from finite 
to arbitrary joins. However, in that case there is no longer an analogue of Lemma 4.2
to guarantee that the spectrum of ZI(C) has enough points. We will take the frame 
ZI(C) itself as a base, which always yields a well-defined sheaf of categories. But we only 
obtain the full force of the representation theorem when we assume that the frame ZI(C)
is spatial.

A completely prime filter of a complete lattice L is a nonempty upward-closed and 
downward-directed proper subset P where 

∨
si ∈ P implies si ∈ P for some i; equiva-

lently, P is the inverse image of 1 under a complete lattice morphism L → {0, 1}.



30 R. Soares Barbosa, C. Heunen / Advances in Mathematics 416 (2023) 108900
Definition 9.1. Let L be a frame. Its completely prime spectrum is a topological space X, 
whose points are completely prime filters P ⊆ L, and whose topology is generated by a 
basis consisting of the sets

Bu = {P ∈ X | u ∈ P}

where u ranges over L. A frame is spatial when it is isomorphic to the frame of opens of 
its completely prime spectrum.

Definition 9.2. Call a partially ordered set 
∨

-local if it has at least two elements, and ∨
ui = 1 can only happen when there is an i with ui = 1. Call a monoidal category C∨
-local when ZI(C) is 

∨
-local.

Lemma 9.3. If C is a monoidal category with universal joins of central idempotents, and 
x ⊆ ZI(C) is a completely prime filter, then C‖x is 

∨
-local.

Proof. Completely analogous to Lemma 8.2. �
By a sheaf of (∨- or 

∨
-)local categories, we mean a sheaf O(X)op → MonCat on a 

topological space X whose stalks are all (∨- or 
∨

)local. Pulling everything together, we 
now arrive at our main result. A global section of a sheaf F : O(X)op → MonCat is an 
object of F (X). For Set-valued sheaves, this corresponds to the more usual definition of 
a global section being a natural transformation 1 ⇒ F . Enriching this as usual, we will 
call F (X) the category of global sections of F .

Theorem 9.4. Let C be a small monoidal category with universal 
∨

-joins of central idem-
potents. Then u �→ C‖u defines a sheaf F : ZI(C)op → MonCat of 

∨
-local monoidal 

categories. If ZI(C) is spatial, then C is monoidally equivalent to the category of global 
sections of F .

Proof. Lemma 5.4 still shows that u �→ C‖u is a presheaf. For the sheaf condition it 
now no longer suffices to verify binary equaliser of Lemma 4.3, and we have to consider 
a wide equaliser instead. But the proof of Proposition 6.1 extends easily to this case. 
The exceptional nullary case is taken care of by Lemma 6.2 as in Proposition 6.3 as 
before. The stalks are now 

∨
-local by Lemma 9.3. Because ZI(C) is assumed spatial, 

it is isomorphic to the frame of opens of its completely prime spectrum X. This makes 
Bu �→ C‖u a well-defined sheaf of 

∨
-local monoidal categories on X. Finally, the global 

sections of this sheaf form C‖1, which is monoidally equivalent to C itself. �
The dependence on spatiality is related to projectivity of the tensor unit in the topos 

case, and removing it is left to future work.
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Corollary 9.5. Any small monoidal category with universal 
∨

-joins of central idempotents 
whose frame of central idempotents is spatial embeds monoidally into a product of 

∨
-local 

monoidal categories.

Proof. Completely analogous to Corollary 8.4, where spatiality is needed to replace 
Lemma 4.2. �
10. Preservation

Theorem 8.3 showed that any small monoidal category with universal joins of central 
idempotents is a category of global sections of a sheaf of (∨− or 

∨
−)local monoidal 

categories. In this section we extend that main result by showing that it preserves various 
properties: if the original category has a certain property, then so do the stalks. We 
consider two kinds of properties: properties associated with monoidal categories and 
linear logic, such as being compact, and having a trace; and properties associated with 
toposes and intuitionistic logic, such as having a Boolean algebra of central idempotents, 
and having limits. We also investigate the property of being closed, which resides in both 
camps. So for example, we show that any small monoidal category with (finite) universal 
joins of central idempotents that is closed, is equivalent to the category of global sections 
of a sheaf of (∨− or 

∨
-)local closed categories.

We start with compactness. Recall that a symmetric monoidal category is compact 
when every object has a dual [32, Chapter 3].

Corollary 10.1. If C is a compact category, u is a central idempotent, and x ⊆ ZI(C) is 
a prime filter, then C‖u and C‖x are compact categories, too.

Proof. Strong monoidal functors preserve dual objects [32, Theorem 3.14], so this follows 
directly from Lemma 5.4 and Proposition 6.1. �

Notice, however, that a central idempotent U has itself as a dual only if it is (repre-
sented by) a split monomorphism.

Lemma 10.2. A central idempotent u is split monic if and only if U � U with counit 
ρ ◦ (u ⊗ u).

Proof. If e ◦ u = U , set η = (U ⊗ u)−1 ◦ (e ⊗ I) ◦ λ−1 and ε = ρ ◦ (u ⊗ u), so:

η

ε

U

U

=
e

U

U

=

U

e

U
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Conversely, if U � U with unit η and counit u ⊗u, then e ◦u = U for e = (U ⊗u) ◦η. �
Another linear property that is preserved is having a trace [37].

Lemma 10.3. If a monoidal category C with universal finite joins of central idempotents 
is traced, u is a central idempotent, and x ⊆ ZI(C) a prime filter, then C‖u and C‖x
are traced too, and the functors C‖u≤v : C‖v → C‖u and C → C‖x preserve the trace.

Proof. If C is braided, then so are C‖u and C‖x. The trace of f ∈ C‖u(A ⊗Z, B⊗Z) =
C(A ⊗Z⊗U, B⊗Z) is defined to be the trace of f ◦ (A ⊗σ) ∈ C(A ⊗U ⊗Z, B⊗Z). It is 
easy to see that this satisfies the axioms for a trace. For example, with the usual graphical 
calculus [54] of the traced monoidal category C, the superposing axiom becomes:

g ⊗ Tr(f) =
g f

B D

A C U

Zg f
=

g f

B D

A C

Z

U

g f
= Tr(g ⊗ f)

Stalks are entirely similar: define the trace of [v, f ] ∈ C‖x(A ⊗ Z, B ⊗ Z) to be [v, g]
where g is the trace of f in C‖v. To verify that this is well-defined, if [v, f ] = [v′, f ′], say 
because f ⊗ u ⊗ v′ = f ′ ⊗ u ⊗ v for a central idempotent u in C, then:

f

B

A

Z

V V ′U

= f

B

A

Z

V ′V U

The functors C‖u≤v : C‖v → C‖u and C → C‖x preserve trace by construction. �
Next we turn to closedness.

Lemma 10.4. If a monoidal category C is closed and u is a central idempotent, then C‖u
is closed. If u ≤ v, then the functor C‖u≤v : C‖v → C‖u is closed.

Proof. Suppose that (−) ⊗ B : C → C has a right adjoint B � (−) : C → C. Write 
εB,C : (B � C) ⊗ B → C for the counit and ηA,B : A → (B � (A ⊗ B)) for the unit. 
Define a functor B �u (−) : C‖u → C‖u by B �u C = B � C on objects, and by 
sending a morphism f ∈ C‖u(C, D) = C(C ⊗ U, D) to B �u f defined as:
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(B � C) ⊗ U B � D

B � (
(B � C) ⊗ U ⊗ B

)
B � (

(B � C) ⊗ B ⊗ U
)

B � (C ⊗ U)

B �u f

η(B�C)⊗U,B

B � (1 ⊗ σU,B) B � (εB,C ⊗ 1)

B � f

It is straightforward to see that B �u (−) is functorial. There is a bijection

C‖u(A,B �u C) � C‖u(A⊗B,C)

that sends g ∈ C‖u(A, B �u C) = C(A ⊗ U, B � C) to the morphism

g

εB,C

B � C

C

A B U

in C‖u(A ⊗ B, C). It is easy to see that this bijection is natural in A and C. Thus 
B �u (−) is right adjoint to (−) ⊗B, and C‖u is closed.

It is clear that the functor C‖u≤v preserves � strictly. �
Lemma 10.5. If C is a closed monoidal category and x ⊆ ZI(C) a prime filter, then C‖x
is closed, and the functor C → C‖x is closed.

Proof. The proof is very close to that of Lemma 10.4. The functor B �x (−) : C‖x →
C‖x is defined as C �→ B � C on objects and as [u, f ] �→ [u, B �u f ] on morphisms. 
This is well-defined and functorial as before. There is a natural bijection C‖x(A ⊗B, C) �
C‖x(A, B � C) that sends [u, f ] to [u, g] where g = (B � f) ◦(B � (1 ⊗σ)) ◦η : A ⊗U →
B � C corresponds to f : A ⊗ B ⊗ U → C under the bijection C‖u(A ⊗ B, C) �
C‖u(A, B � C). To see that it is well-defined: if [u, f ] = [u′, f ′] ∈ C‖x(A ⊗B, C), then 
for some central idempotent v of C,

(B � f) ◦ (B � (1 ⊗ σ)) ◦ η ◦ (1 ⊗ u′ ⊗ v)

= (B � (f ⊗ u′ ⊗ v)) ◦ (B � (1 ⊗ σ)) ◦ η
= (B � (f ′ ⊗ u⊗ v)) ◦ (B � (1 ⊗ σ)) ◦ η
= (B � f ′) ◦ (B � (1 ⊗ σ)) ◦ η ◦ (1 ⊗ u⊗ v ⊗ 1)

by naturality of η, so [u, g] = [u′, g′]. Thus C‖x is closed, and the functor C → C‖x
preserves � strictly. �
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Call a monoidal category Boolean when its central idempotent semilattice is a Boolean 
algebra. In this case, the stalks are also Boolean, and in fact two-valued, as follows.

Lemma 10.6. If L is a Boolean algebra and x a prime filter, then L/∼x is again a Boolean 
algebra.

Proof. It suffices to prove that ∼x is a congruence of lattices, because complements 
are uniquely defined in terms of joins and meets. Suppose a ∼x a′ and b ∼x b′. Say 
a ∧ s = a′∧ s and b ∧ t = b′∧ t for s, t ∈ x. For r = s ∧ t, then clearly a ∧ b ∧ r = a′∧ b′∧ r

so a ∧b ∼x a′∧b′. Similarly, (a ∨b) ∧r = (a ∧r) ∨ (b ∧r) = (a′∧r) ∨ (b′∧r) = (a′∨b′) ∧r, 
so a ∨ b ∼x a′ ∨ b′. �
Corollary 10.7. If a monoidal category C with universal finite joins of central idempotents 
is Boolean, and x ⊆ ZI(C) is a prime filter, then ZI(C‖x) = {0, 1}.

Proof. By Lemmas 7.4 and 10.6, ZI(C‖x) is again a Boolean algebra. Hence if u ∈
ZI(C‖x), then u ∨ ¬u = 1. By Lemma 8.2 ZI(C‖x) is also ∨-local. Hence u = 1 or 
¬u = 1, that is, u ∈ {0, 1}. �

For toposes C, it is known that various logical properties are preserved by passing to 
stalks C‖x, such the internal axiom of choice. Next we show that the external axiom of 
choice is preserved for monoidal categories C.

Lemma 10.8. If all epimorphism in a small monoidal category C split, u is a central 
idempotent, and x ⊆ ZI(C) is a prime filter, then all epimorphisms in C‖u and C‖x
also split.

Proof. Let f : A → B be an epimorphism in C‖u. That means that f ⊗U : A ⊗U ⊗U →
B ⊗U is an epimorphism in C. It is split by some g : B ⊗U → A ⊗U ⊗U in C. Taking 
h = (A ⊗u ⊗u) ◦g : B⊗U → A, it follows that f◦(g⊗U) = (B⊗u ⊗u) ◦(f⊗U⊗U) ◦(g⊗U) =
B⊗ u ⊗u in C, that is, f ◦ g = B in C‖u, so f is a split epimorphism in C‖u. The same 
reasoning holds for C‖x. �

Next, we turn to limits. In the cartesian case, as in Lemma 5.3, it is well known that 
limits in the slice category are computed as in the base category. In the monoidal setting 
we need to be more careful.

Lemma 10.9. Let J be a small category, and C a monoidal category with J-shaped limits.

• If C has universal finite joins of central idempotents, and u is a central idempotent, 
then C‖u has J-shaped limits, and the functors C‖u≤v : C‖v → C‖u preserve them.
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• If C has universal finite joins of central idempotents, x ⊆ ZI(C) is a prime filter, 
and J is finite, then C‖x has J-shaped limits, and the functor C → C‖x preserves 
them.

• If C has universal joins of central idempotents, and x ⊆ ZI(C) is a prime filter, then 
C‖x has J-shaped limits, and the functor C → C‖x preserves them.

Proof. For the sake of clarity we will consider equalisers, but the proof works for arbitrary 
(finite) shapes J. Let f, g ∈ C‖u(X, Y ). Let l : E → X⊗U be their equaliser in C. Then 
e = (X ⊗ u ⊗ u) ◦ (l⊗U) defines a morphism E → X in C‖u. Now f ◦ e = g ◦ e in C‖u, 
by the central equation (2.1):

f

l

Y

X

E U

U =

f

l

Y

X U

E U

=

g

l

Y

X U

E U

=

g

l

Y

X

E U

U

Suppose that f ◦e′ = g◦e′ for some e′ : E′ → X in C‖u, so e′ : E′⊗U → X in C. Setting 
l′ = (e′ ⊗ U) ◦ (E′ ⊗ U ⊗ u)−1 : E′ ⊗ U → X ⊗ U in C, then f ◦ l′ = g ◦ l′ in C. Hence 
there is a mediating map m : E′ ⊗ U → E with l′ = l ◦m in C.

f

e′
X

Y

E′ U

=

g

e′
X

Y

E′ U

l′ = e′

X

E′ U

U

=
l

m
E

X U

E′ U

But then e′ = e ◦m in C‖u:

l

m
E

X

U

E′ U

U

= e′

X

E′ U
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Conversely, if e′ = e ◦m in C‖u, then (e′ ⊗ U) ◦ (E′ ⊗ U ⊗ u)−1 = l ◦m in C, so m is 
the unique such morphism. The functors C‖u≤v : C‖v → C‖u preserve these limits by 
construction.

The same idea works for C‖x, except that we may need the diagram J to be finite, 
depending on the amount of universal joins of central idempotents available in C. This 
is best illustrated for products. Suppose that C has universal finite joins of central 
idempotents and has finite products, then 

∏n
i=1 Xi is also a product in C‖x. Define the 

projections to be [1, πi] :
∏

i Xi → Xi, and given finitely many [ui, fi] : A ⊗ Ui → Xi, 
define their tuple to be [u1 ∧ . . . ∧ un, 〈fi〉] : A →

∏
i Xi in C‖x. It is easily checked 

that this is well-defined and satisfies the universal property. If C had universal joins 
of central idempotents, we could have defined the tuple [

∧
ui, 〈fi〉] : A →

∏
Xi for an 

arbitrary number of morphisms A → Xi. In either case, the functor C → C‖x preserves 
these limits by construction. �

Finally, let us mention two properties that are preserved only in certain cases.
If C has colimits of a certain shape J, and U ⊗ (−) : C → C preserves these colimits 

for a central idempotent u, then C‖u inherits these J-shaped colimits, and the functor 
C → C‖u preserves them. If J is finite or C has universal joins of central idempotents, 
then the same holds for C‖x.

If C has a dagger [32, Section 2.3] then C‖u inherits it if and only if the central 
idempotent u is (represented by) an isometry, and C‖x inherits it if and only if for every 
central idempotent v there is a central idempotent u ≤ v that is (represented by) an 
isometry.

11. Examples

This brief section illustrates the sheaf representation theorem in several example cases 
that are genuinely monoidal and could not have been handled using sheaf representation 
theorems for toposes. We start by considering three posetal examples.

Example 11.1. A topological space X has a frame of open sets L = O(X) that may be 
regarded as a stiff monoidal category with universal joins of central idempotents (but that 
is not a topos unless X is empty). Because ZI(L) � L, the completely prime spectrum 
Spec(ZI(L)) is (homeomorphic to) X itself. Theorem 8.3 says that L is isomorphic to 
the global sections of a sheaf of 

∨
-local monoidal categories on X. If x is a point of X, 

then the stalk L‖x is the quotient of L by the filter x, that is, the quotient L/∼ by the 
equivalence relation ∼ where U ∼ V when U ∩ W = V ∩ W for some W ∈ L. This is 
sometimes called the frame of germs of open subsets of X with respect to x [13, I.6.10]. 
Concretely, the stalk L‖x has the same objects as L, that is, open subsets U of X. There 
is a unique morphism U → V in L‖x when there is an open neighbourhood W of x with 
U ∩W ⊆ V .
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• If x ∈ V , then there is a morphism U → V : take W = V ;
• If x ∈ U and x /∈ V , then there is no morphism U → V : for any open neighbourhood 

W of x, there is a point x in U ∩W that is not in V ;
• If x /∈ U , then there is a morphism U → V : there is a open neighbourhood W of x

disjoint from U ;

Hence all open neighbourhoods of x are isomorphic as objects in L‖x, and they are 
all terminal. Similarly, all open sets whose closure does not contain x are isomorphic 
as objects in L‖x, and they are all initial. Therefore, if x is an isolated point, L‖x is 
equivalent to the partially ordered set 0 ≤ 1 regarded as a 2-object category. But in 
general more subtle behaviour can occur:

• If x ∈ U and x /∈ V , then there is no morphism U → V : because x /∈ V there is an 
open neighbourhood W of x disjoint from V , but because x ∈ U this neighbourhood 
is not disjoint from U .

• If x ∈ ∂U = U \ U and x ∈ ∂V = V \ V , there may be a morphism U → V or there 
may not be. For example, take X = R, x = 0, and U = (−1, 0). If V = (0, 1), then 
any open neighbourhood W of x contains points of U that are not in V , so there is 
no morphism U → V . But if V = (−2, 0), then U ⊆ V , so W = X shows that there 
is a morphism U → V .

Nevertheless, the global sections of the sheaf U �→ L‖U correspond to continuous func-
tions X → {0, 1}.

Example 11.2. A Boolean algebra B may be regarded as a stiff monoidal category with 
finite universal joins of central idempotents. Because ZI(B) � B, in this case Spec(ZI(B))
is the Stone space of B. Theorem 8.3 hence says that any Boolean algebra is isomorphic 
to the global sections of a sheaf of ∨-local rings on a Stone space. By Corollary 10.7 the 
stalks are two-valued, so this becomes Stone’s representation theorem [35]: any Boolean 
algebra is isomorphic to the algebra of clopen subsets of its Stone space. Going from 
∨-local to 

∨
-local, this extends to complete Boolean algebras and Stonean spaces.

In fact, this holds more generally for a distributive lattice L and its prime spectrum 
X. As the quotient of L by a prime filter x is always {0, 1}, we obtain a sheaf whose stalks 
are all isomorphic to the two-element lattice. Global sections are functions X → {0, 1}
that are continuous with respect to the discrete topology on {0, 1}, that is, the clopen 
subsets of X, and so correspond to elements of L.

Similarly, starting with a locale L regarded as a monoidal category with universal joins 
of central idempotents, Theorem 9.4 gives the Stone representation on a sober space, and 
recovers the locale L if it is spatial.

Example 11.3. A quantale Q may be regarded as a monoidal category with universal 
joins of central idempotents. Theorem 8.3 shows that any quantale is equivalent to the 
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category of global sections of a sheaf of monoidal categories. This gives a different view 
on works combining sheaves and quantales [12,52,33]. The central idempotents in Q are 
the central elements u satisfying u · u = u ≤ e. The category Q‖u:

• has objects q ∈ Q;
• there is a unique morphism p → q when p · u ≤ q;
• composition is uniquely determined: p · u ≤ q and q · u ≤ v imply p · u ≤ v;
• the identity morphism is the equality q · e = q.

If x ⊆ ZI(Q) is a completely prime filter, Q‖x has:

• objects q ∈ Q;
• a unique morphism p → q if there exists u ∈ x satisfying p · u ≤ q.

The partially ordered sets Q‖x still have finite meets and joins, bottom and top elements, 
and a multiplication that distributes over joins. To see that Q‖x inherits meets: pi · 1 =
pi ≤ p1 ∧ p2 and 1 ∈ x so pi ≤x p1 ∧ p2, and if q ≤x pi, say because q · ui ≤ pi, then 
q · (u1 ∧ u2) ≤ q · u1 ∧ q · u2 ≤ p1 ∧ p2 with u1 ∧ u2 ∈ x, and so q ≤x p1 ∧ p2; a similar 
reasoning holds for joins.

Next we discuss three examples that are not posetal.

Example 11.4. If X is a locally compact Hausdorff space, the category HilbC0(X) of 
Hilbert C0(X)-modules is a stiff monoidal category with universal joins of central idem-
potents. Here ZI(HilbC0(X)) � O(X) [25, 3.16], so as in Example 11.1, the representation 
theorem says that HilbC0(X) is isomorphic to the global sections of a sheaf of 

∨
-local 

monoidal categories over X. In this case, every stalk HilbC0(X)‖x is the category Hilb
of Hilbert spaces (see also [31, 2.5,2.8]). Thus we recover Takahashi’s representation 
theorem of Hilbert modules as continuous fields of Hilbert spaces [56].

Example 11.5. Any commutative ring R has a category ModR of modules that is a stiff 
monoidal category with finite universal joins of central idempotents. As in Example 2.10, 
the central idempotents of ModR are linear maps A → R whose image is an idempotent 
ideal of R. If R is semisimple, any idempotent ideal is generated by an idempotent 
element, and hence ZI(ModR) includes the set E(R) = {e ∈ R | e2 = e}. Therefore 
Spec(ZI(ModR)) is a quotient of the Pierce spectrum of R [35, V.2]. Theorem 8.3 now 
says that an R-module corresponds to a global section of a sheaf of ∨-local modules over 
a quotient of the Pierce spectrum of R. Indeed, any semisimple commutative ring is a 
finite product of fields.
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Example 11.6. Consider a linear-non-linear model of linear logic [8], that is, a symmetric 
monoidal adjunction between a symmetric monoidal closed category L and a cartesian 
closed category C.

C L
F

G

⊥

Because F is automatically strong monoidal [8, Proposition 1], there is a semilattice 
morphism ZI(C) → ZI(L), and a functor C‖s → L‖F (s) for each s ∈ ZI(C). If C and L
both have universal joins of (finite) central idempotents, then ZI(C) → ZI(L) preserves 
(finite) joins, because F is a left adjoint and so preserves colimits. If G preserves central 
idempotents, we obtain a Galois connection between ZI(C) and ZI(L), and a functor 
L‖u → C‖G(u) for each u ∈ ZI(L).

12. Functoriality

This section shows that the main construction of Theorem 8.3 is functorial. We start 
by defining the appropriate category of sheaves of monoidal categories, and prove that 
it is dual to the category of monoidal categories. Lemma 5.5 shows that the sheaves of 
monoidal categories that arise from the representation theorem are (a categorification 
of) flabby sheaves [26].

Definition 12.1. A sheaf P : O(X)op → MonCat of monoidal categories is flabby when 
the functors Pu≤v : Pv → Pu all act the same on objects, and each has a left adjoint 
Pu≤v : Pv → Pu and the unit of the adjunction is invertible.

Recall that a topological space is spectral (or coherent) when it is T0, compact, sober, 
and its compact open subsets form a base and are closed under finite intersections. A 
continuous function between spectral spaces is a morphism of spectral spaces when the 
preimage of a compact open subset is again compact. The category of spectral spaces is 
dually equivalent to the category of distributive lattices [34,35].

Definition 12.2. Write MonScheme for the following category. Objects are pairs of a 
topological space X and a flabby sheaf P : O(X)op → MonCat of monoidal categories 
where all Pu have the same objects and X = ZI(P1). A morphism (X, P ) → (Y, Q)
consists of a continuous function ϕ : X → Y and a natural transformation Fv : Q(v) →
P (ϕ−1(v)) such that

F1(u) = θI,U (12.1)

or in other words ϕ−1(u) = θI ◦ F1(u). Write MonSchemel for the full subcategory 
of sheaves of 

∨
-local categories. Write MonSchemesl for the subcategory of sheaves of 
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∨-local categories where X is a spectral space, and morphisms where ϕ is a morphism 
of spectral spaces.

Recall from Definition 3.5 that MonCatfj has as objects small monoidal categories 
with universal finite joins of central idempotents, and as morphisms lax monoidal functors 
F whose coherence morphism I → F (I) is invertible that preserve finite joins of central 
idempotents. Similarly, MonCatj is the subcategory of small monoidal categories whose 
central idempotents have universal joins and form a spatial frame, and morphisms F that 
preserve joins of central idempotents.

Theorem 12.3. The representation of Proposition 6.3 extends to equivalences of categories 
MonCatfj → MonSchemeop

sl and MonCatj → MonSchemeop
l .

Proof. If F : C → D is a morphism in MonCatfj then it induces a semilattice morphism 
ZI(C) → ZI(D), and hence a continuous function ϕ : Spec(ZI(D)) → Spec(ZI(C)), by 
Lemma 3.4. Furthermore, if u ∈ ZI(C), then F induces a morphism C‖u → D‖F (u)
in MonCat that acts as F on objects and that sends a morphism f : A ⊗ U → B to 
F (f) ◦ θA,U : F (A) ⊗ F (U) → F (B). This is natural with respect C‖u≤v, and satisfies 
the condition F1(u) = θI,U , and so gives a well-defined morphism D‖(−) → C‖(−) in 
MonSchemesl. This assignment and its counterpart MonCatj → MonSchemeop

l are 
clearly functorial, faithful, and injective on objects.

To see that these functors are full, suppose (ϕ, {Fu}u) is a map in MonScheme
from P− = D‖− to Q− = C‖−. Then F = F1 is a morphism C → D in MonCat. It 
follows from naturality of that all Fu act the same on objects. Regarding a morphism 
f : A ⊗ U → B in C as a morphism in C‖u, we find:

Fu

(
A⊗ U

f→ B
)

= Fu

(
A⊗ U ⊗ U

f⊗u−→ B
)
◦Fu Fu

(
A⊗ U

(A⊗U⊗u)−1

−→ A⊗ U ⊗ U
)

= Fu

(
C‖u≤1

(
A⊗ U

f→ B
))

◦Fu Fu

(
A⊗ U

(A⊗U⊗u)−1

−→ A⊗ U ⊗ U
)

= D‖F (u)≤1
(
F1

(
A⊗ U

f→ B
))

◦Fu Fu

(
A⊗ U

(A⊗U⊗u)−1

−→ A⊗ U ⊗ U
)

= F1(f) ◦ Fu

(
A⊗ U

A⊗U−→ A⊗ U
)

Now, observe that A ⊗U : A ⊗U → A ⊗U , regarded as a morphism A → A ⊗U in C‖u, is 
an isomorphism in C‖u, with inverse A ⊗u ⊗u : A ⊗U⊗U → A, regarded as a morphism 
A →u A ⊗U in C‖u. Hence Fu(A ⊗U) is inverse to Fu(A ⊗u ⊗u) in D‖F (u). But now it 
follows from F1(A ⊗u) ◦ θA,U = F (A) ⊗F (U) that Fu(A ⊗u ⊗u) = F1(A ⊗u) ⊗F (U) is 
inverted by θA,U : F (A) ⊗F (U) → F (A ⊗U), regarded as a morphism F (A) → F (A ⊗U)
in D‖F (u). Thus Fu(A ⊗U) = θA,U , and so Fu(f) = F1

(
f : A ⊗UB

)
◦θA,U . Therefore the 

morphism (ϕ, {Fu}) in MonScheme is indeed induced by the morphism F in MonCat.
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Similarly, any object P in MonScheme is (monoidally naturally isomorphic to) C‖−
for C = P1, because there is a bijection between morphism f : A → B in Pu and 
morphisms g : A ⊗ U → B in P (1) by flabbiness. Thus the functors MonCatfj →
MonSchemeop

sl and MonCatj → MonSchemeop
l are essentially surjective, and so 

equivalences. �
Apart from the issue surrounding projectivity of the tensor unit discussed in foot-

note 2, the previous theorem generalises from the topos case the functoriality result that 
there is a dual equivalence between the following two categories [3]: Boolean pretoposes 
and pretopos morphisms; and so-called affine logical schemes, consisting of a stack Ã on 
a topological groupoid A, with as morphisms a continuous functor F : A → B together 
with a pretopos morphism F̃ : B̃ → F∗(Ã).

Next we adapt the equivalence between étale bundles and sheaves (see [50, II.6.5]
and [17]) to the current setting.

Lemma 12.4. Morphisms (X, P ) → (Y, Q) in MonScheme that do not necessarily sat-
isfy (12.1) are equivalently given by continuous functions ϕ : X → Y together with a 
family Fx : Qϕ(x) → Px of morphisms in MonCat between stalks indexed by x ∈ X

satisfying:

• all Fx act the same on objects;
• for all f : A → B in Q(v), the functions X ⊇ ϕ−1(v) → ΛP given by

x �→ Fx

(
[f ]ϕ(x)

)
are continuous, where [−]x : Pu → Px = colimx∈u Pu are the stalk maps, and ΛP =∐

A,B∈Px,x∈X Px(A, B) has a base of open sets {[g]x | x ∈ u} for g : A → B in P (u);
• the coherence morphisms θxI : I → Fx(I) in Qx form a continuous function X →∐

x∈X Qx

(
I, Fx(I)

)
, where the latter has a base of open sets {[θuI ]x | x ∈ u} for 

θuI : I → Fx(I) in Qu;
• the coherence morphisms θxA,B : Fx(A) ⊗Fx(B) → Fx(A ⊗B) in Qx form a continuous 

function X →
∐

A,B∈P (x),x∈X Qx

(
Fx(A) ⊗ Fx(B), Fx(A ⊗ B)

)
, where the latter has 

a base of open sets {[θuA,B]x | x ∈ u} for θuA,B : Fx(A) ⊗ Fx(B) → Fx(A ⊗B) in Qu.

Proof. Fix a continuous function ϕ : X → Y . Given {Fv}v∈O(Y ), take Fx to be the 
morphism Qϕ(x) → Px in MonCat induced by the fact that the stalk Px is the colimit 
of Pϕ−1(v) over x ∈ ϕ−1(x), and the stalk Qϕ(x) is the colimit of Qv over ϕ(x) ∈ v. This 
satisfies the conditions by construction.

Conversely, suppose given {Fx}x∈X , and fix v ∈ O(Y ). On objects, set Fv(A) = Fx(A)
for any x ∈ X. Given f : A → B in Qv, the continuity condition lets us pick opens vx
around each point x ∈ u = ϕ−1(v) and gx : A → B in P (ϕ−1(vx)) with Fx

(
[f ]ϕ(x)

)
=

[gx]x. By universality of joins in Pu, we can paste these into Fv(f) :=
∨

x∈u gx : A → B
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in Pu. In the ∨-local case, X is a spectral space and hence compact, so finitely many vx
already cover X, and universal finite joins of central idempotents in Pu suffice to define 
F (f). Lemma 3.2 makes F functorial.

Similarly, there are opens vx around each point x ∈ u and θvxI : I → F (I) and 
θvxA,B : F (A) ⊗F (B) → F (A ⊗B) in Pϕ−1(vx) with [θvxI ]x = θxI and [θvxA,B ]x = θxA,B . These 
paste into θI :=

∨
x θ

vx
I : I → F (I) and θA,B :=

∨
x θ

vx
A,B : F (A) ⊗ F (B) → F (A ⊗ B) in 

D. These make the functor Fv into a morphism in MonCat by Lemma 3.2 because θxI
and θxA,B make Fx into a morphism in MonCat for each point x. Thus we have defined 
a natural transformation Fv : Qv → Pϕ−1(v).

It is straightforward to verify that these two constructions are inverses. �
We can now recognise (12.1) as a condition on the morphisms Fx between (∨- or ∨

-)local categories, to make the previous lemma into an equivalence.

Definition 12.5. A morphism of (∨- or 
∨

-)local monoidal categories F : C → D is a 
morphism in MonCat(f)j that is conservative on central idempotents: if F (u) = 1, then 
the central idempotent u itself must be 1.

If C and D are toposes, the previous definition means that F reflects all isomor-
phisms [16, Definition 3.3.2]. If C and D are the frames of opens of topological spaces, 
it is equivalent to the continuous function preserving focal points.

Proposition 12.6. Let P : O(X)op → MonCat and Q : O(Y )op → MonCat be sheaves of 
(∨- or 

∨
-)local categories, let ϕ : X → Y be a continuous function, and let F : Q ⇒ ϕ∗P

be a natural transformation. Condition (12.1) holds if and only if the induced functors 
Fx on stalks are morphisms of (∨- or 

∨
-)local monoidal categories.

Proof. It suffices to see that if F : C → D is a morphism in MonCat(f)j such that each 
Fx is a morphism of (∨- or 

∨
-)local monoidal categories, F1(u) ∈ x ⇐⇒ u ∈ ϕ(x).

For a central idempotent u in C, observe that F1(u) ∈ x if and only if F1(u) ∼x 1, 
if and only if Fx

(
[u]ϕ(x)

)
= 1. Definition 12.5 makes this equivalent to [u]ϕ(x) = 1. But 

that holds exactly when u ∈ ϕ(x). �
13. Embedding

The goal of this section is to prove that any small stiff monoidal category can be freely 
completed with universal (finite) joins of central idempotents. The guiding idea will be 
that objects of the completion of C with universal (finite) joins can be thought of as 
formal colimits of the appropriate kind.

Definition 13.1. A morphism f : A → B in a monoidal category restricts to a central 
idempotent u if it factors through B ⊗ u via some g : A → U .
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A B

B ⊗ U

f

g ρB◦(B⊗u) f

B

A

= g

B

U

A

It is clear that if u ≤ v are central idempotents, then any morphism f : A ⊗ U → B

restricts to v.

Proposition 13.2. For a small stiff monoidal category C, there is a category D[C]:

• objects are pairs 〈D,A〉 of a down-closed D ⊆ ZI(C) and an object A ∈ C;
• morphisms 〈D,A〉 → 〈E,B〉 in D[C] are families {ηu : A ⊗U → B}u∈D of morphisms 

in C such that each ηu restricts to some v ∈ E, and if u ≤ u′4:

ηu

B

A U

=
ηu′

B

U ′

UA

• the identity on 〈D,A〉 has components A ⊗ u : A ⊗ U → D;
• Composition of η : 〈D,A〉 → 〈E,B〉 and ζ : 〈E,B〉 → 〈F,C〉 is given by (ζ◦̂η)u =

ζv ◦ η̃u,v for (any) v ∈ E and η̃u,v : U ⊗A → V ⊗B satisfying ηu = (B ⊗ v) ◦ η̃u,v.

A⊗ U B

C B ⊗ V

ηu

ζv

B⊗v
η̃u,v

(ζ◦̂η)u

Proof. We prove that the composition is independent of the choice of v and η̃u,v. Suppose 
that v, v′ ∈ E satisfy v ≤ v′, and that ηu restricts to v via η̃ : A ⊗U → B⊗V , and hence 
also to v′ via a morphism η̃′ = (B ⊗mv,v′) ◦ η̃. Then:

A⊗ U B ⊗ V ′

B B ⊗ V C

η̃′

ζv

ηu ζv′η̃

B⊗v′

(∗)

4 That is, η is a compatible family for the presheaf C‖(−) : Dop → MonCat.
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Now suppose ηu restricts to v1 and v2 in E via η̃i : A ⊗U → B⊗Vi. By stiffness, it then 
restricts to v1 ∧ v2 via η̃ : A ⊗ U → B ⊗ V1 ⊗ V2:

B ⊗ V1 ⊗ V2 B ⊗ V1

A⊗ U

B ⊗ V2 Y

η̃

B⊗V1⊗v2

B⊗v2

B⊗v1B⊗v1⊗V2

η̃2

η̃1

Applying (∗) twice, we conclude that ζv1◦η̃1 = ζv1∧v2◦η̃ = ζv2◦η̃1, so ζ◦̂η is well defined. It 
is routine to verify that the composition is associative and satisfies the identity laws. �
Proposition 13.3. If C is a small stiff monoidal category, then D[C] is monoidal:

• the tensor product of objects is 〈D1, A1〉 ⊗̂ 〈D2, A2〉 = 〈D1 ∩D2, A1 ⊗A2〉;
• the tensor unit is Î = 〈ZI(C, I〉;
• the tensor product of morphisms is:

(η1⊗̂η2)u =
η1,u η2,u

U

Proof. To see that the tensor product of morphisms is well-defined, two conditions must 
be verified. The first holds because C‖u≤u′ is strict monoidal by Lemma 5.4. For the 
second, if ηi restricts to vi ∈ Ei, then (η1⊗̂η2)u restricts to v1 ∧ v2, which is in E1 ∩
E2 because these sets are down-closed. The associator and unitors, and the coherence 
conditions these satisfy, now follow routinely from those in C. �

Notice that if A � B in C, then 〈D,A〉 � 〈D,B〉 in D[C] for any D.

Lemma 13.4. There is a strictly monoidal full embedding C → D[C] that sends an object 
A to Â = 〈ZI(C, A〉 and a morphism f to {f ⊗ u}u∈ZI(C).

Proof. This is clearly a functor that is injective on objects. If E ⊆ ZI(C) is down-closed 
and u ∈ E, then D[C]

(
〈↓u,A〉 , 〈(〉E, B)

)
� C(A ⊗ U, Y ) � C‖u(A, B). It follows that 

D[C](Â, B̂) � C(A, B), so the functor is full. Finally, observe that Î is the monoidal 
unit in D[C], and that ̂A⊗B = Â⊗ B̂. �
Proposition 13.5. If C is a small stiff monoidal category, there is an isomorphism of 
partially ordered sets ZI(D[C]) � {D ⊆ ZI(C) | D = ↓D} that sends a down-closed 
D ⊆ ZI(C) to the morphism 〈D, I〉 → Î with component u ◦ λI at u ∈ D.
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Proof. For down-closed D ⊆ ZI(C), define D̂ = 〈D, I〉, and write d : D̂ → Î for the 
morphism in D[C] given by du = u ◦ λI for each u ∈ D.

We first prove that d is a central idempotent in D[C]. Note that D̂⊗̂D̂ = 〈D, I ⊗ I〉. 
Now du = u ◦ λI = λI ◦ (I ⊗ u) = ρI ◦ (I ⊗ u) = D̂u, so the components of d and the 
identity on D̂ are the same morphisms in C. Hence d⊗̂D̂ = D̂⊗̂d, and this has an inverse 
with components I ⊗ u : I ⊗ U → I ⊗ I.

The assignment D �→ d is a semilattice morphism, because D̂⊗̂Ê � ̂D ∩ E via an 
isomorphism with components ρU ◦ (u ⊗ λI) = ρu ◦ (u ⊗ ρI) : U ⊗ I ⊗ I → I.

Moreover, if d ≤ e in D[C] then d factors through e via a map D̂ → Ê. Its component 
at u ∈ D must be u : U → I factoring via v : V → I for some v ∈ E. So any u ∈ D is 
below some v ∈ E, so D ⊆ E. Thus the map D �→ d is injective. It remains to show that 
it is surjective.

Let η : 〈D,A〉 → Î be a central idempotent in D[C]. It suffices to prove that each 
ηu : A ⊗U → I is a central idempotent in C, for then the maps ηu themselves evidently 
restrict to ηu and form an isomorphism 〈D,A〉 → ̂{ηu}u∈D.

From (〈D,A〉 ⊗̂η)u = (η⊗̂ 〈D,A〉)u, it follows that

ηu

UAA

=

ηu

A UA

and upon simplification and tensoring with U , we find η ⊗A ⊗ U = A ⊗ U ⊗ η.
Invertibility of 〈D,A〉 ⊗̂η gives a map ζ : 〈D,A〉 → 〈D,A⊗A〉 such that:

ζu

A A

ηu

UA A

=

A

A

A

A

U

ζu

ηu

A

UA

=

A

A

U

Precomposing with (U⊗u)−1 (twice on the left, once on the right) and simplifying shows 
that

ζu

A A

A U

U U

inverts A ⊗ U ⊗ ηu, and so ηu is a central idempotent in C. �
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Lemma 13.6. If C is a small stiff monoidal category, then D[C] has universal joins of 
central idempotents.

Proof. It follows from Proposition 13.5 that ZI(D[C]) is the free frame on the semilattice 
ZI(C), so it certainly has arbitrary suprema.

Let {Di} be a family of down-closed subsets of ZI(C) closed under intersection, so {D̂i}
is a family of central idempotents of D[C] closed under meets. Let 〈E,B〉 be an object in 
D[C]. Consider the diagram in D[C] consisting of the objects 〈E,B〉 ⊗̂D̂i � 〈Di ∩ E,B〉
and morphisms 〈E,B〉 ⊗̂μDi,Dj

: 〈E,B〉 ⊗̂D̂i → 〈E,B〉 ⊗̂D̂j whenever Di ⊂ Dj . The 
components of these maps are just B⊗u : B⊗U → B for each u ∈ Di∩E, and evidently 
restrict to u ∈ Di ∩ E ⊂ Dj ∩E itself.

We show that 〈E,B〉 ⊗̂
∨

D̂i = 〈E,B〉 ⊗̂
⋃̂
Di � 〈Di ∩ E,B〉 with cocone maps

〈E,B〉 ⊗̂μDi,
⋃

Di
: 〈E,B〉 ⊗̂D̂i → 〈E,B〉 ⊗̂

⋃̂
Di

is the colimit of this diagram. Suppose that there were another cocone with vertex 〈F,C〉
and morphisms ζi : 〈E ∩Di, B〉 → 〈F,C〉. A mediating morphism η : 〈E ∩

⋃
Di, B〉 →

〈F,C〉 must satisfy ζi = η ◦̂ (〈E,B〉 ⊗̂μDi,
⋃

Di
). Componentwise, by the definition of 

composition in D[C], this yields for any u ∈ E ∩Di:

Y ⊗ U U

Z Y ⊗ U

μDi,
⋃

Di

ηu

Y⊗uζi,u

Hence, u ∈ E ∩
⋃

Di forces ηu = ζi,u for any i with u ∈ E ∩ Di. Hence mediating 
morphisms is unique. It remains to show that this mediating morphism is well defined.

First, we show that the definition of νu does not depend on i. Suppose that u ∈ E∩Di

and u ∈ E ∩ Dj . Then u ∈ E ∩ (Di ∩ Dj), and we write i ∧ j for the index such that 
Di∧j = Di ∩Dj . By the fact that {ζi} is a cocone, ζi∧j = ζi◦̂(〈E,B〉 ⊗̂μi∧j,i). Since the 
component of μi∧j,i at u is Y ⊗u = (B⊗u) ◦(B⊗U), we get ζi∧j,u = ζi,u◦(B⊗U) = ζi,u. 
Consequently, ζi,u = ζi∧j,u = ζj,u as required.

Next, we check that η is indeed a morphism in D[C]. Given u ≤ u′ ∈ E ∩
⋃
Di, the 

restriction condition ηu = ηu′ ◦ mu,u′ follows from the corresponding condition for ζi
for any i such that u′ ∈ E ∩Di (and thus also u ∈ E ∩Di). Finally, each ηu evidently 
restricts to a central idempotent in F since all ζi,u do. �

An analogous construction can be carried out for finite joins of central idempotents, 
by considering only finitely generated downsets, which form free distributive lattice on 
a meet-semilattice. This proves the Corollary from the introduction.
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Corollary 13.7. Any small stiff monoidal category allows a central idempotent-preserving 
monoidal embedding into a category of global sections of a sheaf of (∨- or 

∨
-)local 

monoidal categories.

Proof. Combine Theorem 8.3 with Lemmas 13.4 and 13.6. �

The previous corollary is analogous to similar results for (pre)toposes [16,2,3] up to 
the issue discussed in Footnote 2.

Finally, we show that D[C] is in fact the free such completion of C.

Theorem 13.8. If C is a small stiff monoidal category, D is a monoidal category with 
universal joins of central idempotents, and F : C → D a morphism in MonCats, then 
there is a unique morphism F̂ : D[C] → D in MonCatj with:

C D[C]

D

(̂−)

F F̂

Proof. Let 〈D,A〉 be an object in D[C]. Consider the diagram in D with objects F (U) ⊗
F (A) for u ∈ D and morphisms whenever u ≤ u′ ∈ D. Note that F (U) → F (U ′) is 
the morphism in D witnessing F (u) ≤ F (u′) as central idempotents in D. Because D
is closed under meets, and F induces a semilattice homomorphism ZI(C) → ZI(D), 
also {F (u) | u ∈ D} is closed under meets. Because D has universal joins of central 
idempotents, the diagram under consideration has a colimit, given by the image of 〈D,A〉
under F̂ :

F̂ (〈D,A〉) = colimu∈D F (A) ⊗ F (U)

Now, let η : 〈D,A〉 → 〈E,B〉 be a morphism in D[C]. Writing θ for the coherence 
morphism witnessing that F is monoidal, the morphisms

F (A) ⊗ F (U) θA,U−→ F (A⊗ U) F (ηu)−→ Y

form a cocone for the diagram in D with objects {F (A) ⊗ F (U)}u∈D and morphisms 
induced by u ≤ u′, since the following diagram commutes:
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F (A) ⊗ F (U ′) F (A⊗ U ′) F (B)

F (A) ⊗ F (U) F (A⊗ U)

θA,U′ F (ηu′ )

θA,U

F (ηu)

This gives a mediating morphism h : F̂ (〈D,A〉) → F (B) in D.
Finally, each ηu restricts to some v ∈ E:

A⊗ U B

B ⊗ V

ηu

η̃ B⊗v

Hence the morphisms F (ηu) ◦ θA,U in the cocone restrict to F (v):

F (A) ⊗ F (U) F (A⊗ U) F (B ⊗ V ) F (Y )

F (B) ⊗ F (V ) F (B) ⊗ F (I)

θA,U

F (ηu)

F (η̃) F (B⊗v)

θB,V

F (B)⊗F (v)

�F (B)⊗θ−1
I

Consequently, the mediating morphism h factors through the colimit of the diagram in 
D of objects {F (B) ⊗F (V )}v∈E and morphisms induced by v ≤ v′ ∈ E, that is, through 
F̂ (〈E,B〉). We define F̂ (η) to be this factor F̂ (〈D,A〉) → F̃ (〈E,B〉).

It is routine to verify that this is functorial. Because

F̂

(∨
i

Di

)
= F̂

(⋃
i

Di

)
= colimu∈

⋃
i Di

F (U) =
∨
i

colimu∈Di
F (U) =

∨
F̂ (Di) .

it preserves joins of central idempotents. �
In other words, C �→ D[C] is functorial and left adjoint to the forgetful functor 

MonCatj → MonCats. Similarly, the forgetful functor MonCatfj → MonCats has a 
left adjoint.

This generalises and improves [25, Theorem 10.4] in two ways. First, that result is 
based on subunits (see Appendix A). Second, it encodes objects of D[C] as presheaves 
on C. Both lead to somewhat ad-hoc steps in the proof that do not generalise to central 



R. Soares Barbosa, C. Heunen / Advances in Mathematics 416 (2023) 108900 49
idempotents easily (namely Lemma 8.3 and Proposition 9.6 of [25]). The results of this 
section are more general and conceptually cleaner.

14. Further work

Theorem 8.3 and Lemma 10.5 do for multiplicative linear logic what earlier results [2]
do for higher-order intuitionistic logic. This raises several questions.

• Does our construction preserve additive connectives too, so that our main result can 
be extended from the multiplicative fragment to full linear logic? We expect that 
weakly distributive categories [19] are global sections of sheaves of (∨- or 

∨
-)local 

weakly distributive categories.
• The representation result for toposes is often used to obtain logical completeness 

theorems [47,2]. Can we derive a similar completeness result for (multiplicative) 
linear logic? Concrete questions towards this aim include: if a morphism is stalkwise 
epi/mono/iso, must it be epi/mono/iso? Similarly, one could study converses to the 
results in Section 10, for example: if all stalks C‖x are closed, must C itself be closed?

• Completeness theorems for linear logic give rise to coherence proofs for symmetric 
monoidal closed categories [55]. Does a coherence theorem follow from our construc-
tion?

• What does a central idempotent signify in a model of linear logic, and when is 
the model (∨- or 

∨
-)local? Example 11.6 gives one first step. For another, consider 

the model of linear logic given by a Petri net [23]. Every Petri net generates a 
monoidal category [5] whose objects are markings and whose morphisms are firing 
sequences. Central idempotents then correspond to full subnets with one place and 
two transitions, where both transitions have no other incoming or outgoing edges, 
and the place is marked by either none or a nonzero number of tokens.

Additionally, the structure of the sheaf representation raises several questions.

• In the case of toposes, the sheaf representation has the additional property that 
the tensor unit becomes projective in the stalks [2,3]. That requires taking Henkin 
models (coherent functors to Set) instead of the completely prime spectrum as the 
base space. Is there an analogue for monoidal categories that removes the dependence 
on spatiality in Theorem 9.4?

• The stalks C‖x are closely related to certain restriction categories called tensor-
restriction categories [30]. Is there a general representation theorem for restriction 
categories as categories of global sections?

• Corollary 13.7 first embedded a semilattice of central idempotents into a distributive 
lattice (or frame) to obtain a sheaf representation. But a spectrum can be defined 
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directly for a semilattice [9]. Does the representation Theorem 8.3 extend to a sheaf 
on the spectrum of the semilattice of central idempotents of a stiff monoidal category 
without universal joins directly?

• The prime ideal (Zariski) spectrum of the central idempotents of a monoidal category 
is analogous to the Pierce spectrum, which is the prime ideal spectrum of the central 
idempotents, of a ring [35]. Is there an analogon for monoidal categories of the prime 
spectrum of a ring?

• The sheaf representation theorem trivialises when applied to the topos of actions of 
a monoid: there are only two central idempotents. However, that topos carries other 
interesting topologies involving idempotent ideals of the monoid [27,51]. This seems 
related to Example 2.10. Is there a refinement of the sheaf representation theorem 
that takes this into account?

Finally, there are many applications of localisation of rings in algebra, algebraic geometry, 
and tensor-triangular geometry [6,7,15,14]. We have not yet explored such applications 
of the representation theorem. For example, Theorem 8.3 may carry generalisations of 
simplicity assumptions in linear categories [41], and Corollary 13.7 may let us drop 
simplicity assumptions from embedding and characterisation theorems [28,29].

Appendix A. Subunits

In this appendix we compare central idempotents with subunits, which are central 
idempotents u : U → I that are monic. There is an inclusion ISub(C) ⊆ ZI(C); see [30, 
Lemma 2.2]. In a so-called firm braided monoidal category, the subunits form a semilat-
tice, and this inclusion is an embedding of semilattices. However, ZI(C) does not need 
C to be braided, allowing more examples such as Example 2.9 and Example 2.12 above. 
Additionally, several conditions simplify; for example, central idempotents do not require 
firmness. The next definition exhibits a condition that holds very often, under which the 
subunits and central idempotents coincide.

Definition A.1. Call a monoidal category bilinear when morphisms f, g : A → B ⊗ U for 
a central idempotent u are equal if (and only if) f ⊗ U = g ⊗ U .

Lemma A.2. If a braided monoidal category C is bilinear, then ISub(C) = ZI(C).

Proof. Let u : U → I be a central idempotent. Suppose that u ◦f = u ◦g for f, g : A → U . 
Then (u ⊗ U) ◦ (f ⊗ U) = (u ⊗ U) ◦ (g ⊗ U), and hence f ⊗ U = g ⊗ U . But bilinearity 
now implies f = g. �

Any posetal category is bilinear, including semilattices, frames, and quantales. Any 
sheaf category is bilinear, because there is only one function into the empty set (namely 
the empty function, which has the empty set as domain). More generally, the following 
lemma shows that any cartesian category is bilinear.
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Lemma A.3. Any cartesian category is bilinear.

Proof. Observe that a cartesian category satisfies the following property:

A B ⊗ U

A⊗ U

f

f ⊗ uA⊗ u
e

A ⊗ U

Namely, given f , take e = 〈A, f ◦ π2〉. In fact, notice that e is independent of f , because 
f ◦π2 is the unique morphism from A into the subterminal object U by Lemma 5.6. Now 
if f, g : A → B ⊗ U satisfy f ⊗ U = g ⊗ U , then f = (f ⊗ u) ◦ e = (g ⊗ u) ◦ e = g. �

The next two lemmas show that categories of (Hilbert) modules (over nonunital rings) 
are bilinear too.

Lemma A.4. If R is a nondegenerate firm commutative ring, then the category ModR of 
nondegenerate firm R-modules and linear maps is bilinear.

Proof. By Example 2.10, a central idempotent in ModR is a morphism u : U → S for 
an ideal S ⊆ R that is nondegenerate, firm, and idempotent [25, Proposition 3.11]. If 
B is an R-module, then B ⊗ U is the submodule {ϕ · b | ϕ ∈ S, b ∈ B}. Suppose that 
f, g : A → B ⊗ U are linear maps, such that f ⊗ U = g ⊗ U . The latter means that 
f(u(ϕ) · a) = g(u(ϕ) · a) for any a ∈ A and ϕ ∈ U . Let a ∈ A. Because U ⊗ U � U , 
then f(a) ∈ B ⊗ U corresponds to u(ϕ) · f(a) ∈ B ⊗ U ⊗ U for some ϕ ∈ U . But 
u(ϕ) · f(a) = f(u(ϕ) · a) = g(u(ϕ) · a) = u(ϕ) · g(a), so f(a) = g(a). Thus f = g. �
Lemma A.5. If X is a locally compact Hausdorff space, HilbC0(X) is bilinear.

Proof. As in Example 2.11, a central idempotent U in C = HilbC0(X) is of the form 
U = {ϕ ∈ C0(X) | ϕ(X \ U) = 0} for an open set U ⊆ X [25, Proposition 3.16]. If B
is a Hilbert C0(X)-module, then B ⊗ U is the submodule {b ∈ B | 〈b | b〉(X \ U) = 0}. 
Suppose that f, g : A → B⊗U are bounded C0(X)-linear maps, and that f ⊗U = g⊗U . 
The latter means that f(a) = g(a) for a ∈ A with 〈a | a〉(X \ U) = 0. Now pick a 
net ϕn ∈ C(X) such that ϕn(X \ U) = 0 but limn ϕn(x) = 1 for every x ∈ U . Then 
ϕn · f(a) = f(ϕn · a) = g(ϕn · a) = ϕn · g(a) for every a ∈ A. Moreover, limn〈(ϕn −
1)f(a) | (ϕn − 1)g(a)〉(x) vanishes for every x ∈ X: for if x /∈ U then the limit equals 
lim〈f(a) | f(a)〉(x) = 0; but if x ∈ U then ϕn − 1 tends to zero and so the limit vanishes 
too. Thus f(a) = limn ϕn · f(a) = limn ϕn · g(a) = g(a) for every a, that is, f = g. �
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