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Abstract  19 

The idea of colour opponency maintains that colour vision arises through the comparison of two 20 

chromatic mechanisms, red versus green and yellow versus blue. The four unique hues, red, green, blue, 21 

and yellow, are assumed to appear at the null points of these the two chromatic systems. Here we 22 

hypothesise that, if unique hues represent a tractable cortical state, they should elicit more robust activity 23 

compared to other, non-unique hues. We use a spatiotemporal decoding approach to report that 24 

electroencephalographic (EEG) responses carry robust information about the tested isoluminant unique 25 

hues within a 100-350 ms window from stimulus onset. Decoding is possible in both passive and active 26 

viewing tasks, but is compromised when concurrent high luminance contrast is added to the colour 27 

signals. For large hue-differences, the efficiency of hue decoding can be predicted by mutual distance 28 

in a nominally uniform perceptual colour space. However, for small perceptual neighbourhoods around 29 

unique hues, the encoding space shows pivotal non-uniformities which suggest that anisotropies in 30 

neurometric hue-spaces may reflect perceptual unique hues.   31 

 32 
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Introduction 36 

 The idea of colour opponency maintains that colour vision arises through the comparison of 37 

two chromatic mechanisms, red versus green (RG) and blue versus yellow (BY). The four unique hues,  38 

red, green, blue, and yellow, are assumed to appear at the null points of these the two chromatic systems 39 

(De Valois and De Valois, 1993; Hering, 1920; Jameson and Hurvich, 1964).  Colour vision starts in 40 

the retina, where light is absorbed in receptors (long-, medium, and short-wavelength sensitive cone 41 

receptors – L, M, S) and small bistratified ganglion cells that receive S-(M+L) cone input have been 42 

postulated to be the retinal origin of the BY channel, while midget ganglion cells that take the 43 

differences between the L and M cone output were believed to be the retinal origin of the RG channel 44 

(Lee et al., 2010). However, it has now been confirmed that the chromatic tuning of behaviourally 45 

characterised opponent channels differs from these early cone-opponent mechanisms, hence another 46 

transformation of chromatic signals must  take place between the Lateral Geniculate Nucleus (LGN) 47 

and the primary or extrastriate visual cortex (De Valois and De Valois, 1993; Wuerger et al., 2005).  48 

 49 

While some neuroimaging studies have attempted to identify a neural basis for unique hues, their results 50 

remain controversial. Stoughton and Conway (2008) reported neuronal clusters which were 51 

preferentially tuned to unique hues in the posterior inferior temporal (PIT) cortex of macaques. 52 

However, their findings have been challenged on the grounds that the study was not fully controlled for 53 

low-level differences in neuronal tuning, which could provide a more parsimonious explanation for 54 

their results (Bohon et al., 2016; Conway and Stoughton, 2009; Mollon, 2009). Similarly, Forder et al. 55 

(Forder et al., 2017a) reported that event-related potentials (ERPs) for unique hues show decreased 56 

latencies compared to non-unique hues. But the reported difference in peak latencies could, once again, 57 

have stemmed from differential activation of low-level, cone-opponent processes, to which ERPs are 58 

particularly sensitive (Knoblauch et al., 1998; Rabin et al., 1994). Thus, the neural basis of these cortical 59 

hue-opponent chromatic systems, and consequently, the unique hues, still remains an open problem. 60 

 61 



One of the major reasons for the failure to address this issue has been the fact that neural activity is rich 62 

in coding possibilities which complicate our understanding of the relationship between external stimuli 63 

and the evoked response (Jazayeri and Afraz, 2017; Johnson, 2000). This is particularly true if potential 64 

low-level confounds can lead to a stronger, overlapping signal. This seems to be the case for unique 65 

hues, whose encoding is bound to overlap with, and be influenced by, the encoding of luminance 66 

contrast (for human fMRI see Goddard and Mullen, 2020; for macaque neurophysiology see Namima 67 

et al., 2014; for human EEG see Nunez et al., 2017). Ritchie et al. (2019) suggest that an ideal way to 68 

utilise neural decoding is to reconstruct an activation space from multivariate neural data and make 69 

psychological inferences by assessing whether such activation spaces correspond to psychological 70 

constructs. Recent studies have begun to apply this approach to challenges in colour neuroscience such 71 

as identifying the neural representations that underlie colour geometries (Rosenthal et al., 2021). 72 

 73 

We hypothesise that, if there is indeed a distinct and discernible neural signature for unique hues, it 74 

should be reflected in the structure of the neurometric hue-representational space described by EEG 75 

signals. We used a decoding paradigm to test this hypothesis in two stages. First, we demonstrate that 76 

under isoluminant conditions, hue information can indeed be extracted from EEG signals, and that 77 

crucially, the encoding for unique hues is more robust than non-unique hues. To establish that our 78 

predictions generalise beyond a single decoding context (stimulus or task-wise), we test our decoding 79 

prediction using both active and passive viewing tasks. Second, we show that the structure of the 80 

neurometric space which encodes hue is distorted in the local neighbourhood of unique hue 81 

representations – suggesting an anisotropic mapping between perceptual colour and its cortical 82 

representation. Taken together, our findings suggest that the neural basis of perceptual unique hues may 83 

reside in a set of stable fixed-points of a spatiotemporal population code for colour representations in 84 

the cortex. 85 

 86 

 87 



Methods 88 

Participants  89 

In Experiment 1, twenty participants (16 females, 4 males) completed the study, ranging in age from 90 

18-38 y.o. a. (mean age 21 y.o.a). In Experiment 2, 16 participants (all female) completed the study, 91 

ranging in age 19 – 32 years old (mean age 22 years). All participants reported normal or corrected-to-92 

normal visual acuity, In Experiment 1, their colour vision was verified using the Trivector Cambridge 93 

Colour Test (Regan et al., 1994). In Experiment 2, we relied on the City University Colour Vision Test 94 

(Fletcher, 1975). Participants gave written informed consent and were reimbursed for their effort and 95 

time. The study was approved by the ethics committee of the School of Psychology, University of 96 

Aberdeen, and was in accordance with the Declaration of Helsinki. 97 

 98 

Stimuli 99 

The experiments were programmed using the CRS Toolbox and Color Toolbox (CRS, UK) for 100 

MATLAB (Mathworks, USA). In Experiment 1, stimuli were rendered on a 21-inch Viewsonic P227F 101 

CRT Monitor which was placed 70 cm away from the participant. The monitor was controlled through 102 

a Visage system (CRS, UK) and calibrated using ColorCAL2 (CRS, UK). Colours were generated on 103 

the basis of measurements taken with a SpectroCAL (CRS, UK). Participants gave their responses using 104 

a Cedrus R530 response box (San Pedro, USA). In Experiment 2, colours were presented on a 105 

Display++ (CRS, UK) device, and responses were recorded using a CT-6 button box (CRS, UK). 106 

 107 

Different sets of colours were used in the two experiments. In Experiment 1, stimulus colours were 108 

selected from a large, normative dataset of unique hues (Wuerger and Xiao, 2015). Figure 1B shows 109 

the coordinates of the stimuli in CIE 1976 Uniform Colour Space (CIE 1976 UCS; see Schanda, 2016), 110 

while Supplementary Table S1 lists the coordinates in cone-activation space. The hue angles for unique 111 

red (UR) and unique green (UG) stimuli corresponded to mean values in the dataset – in CIE 1976 UCS, 112 



the angles were 14.4º and 133.4º for UR and UG respectively. Orange and turquoise stimuli were chosen 113 

such that they bisected the hue angles between the two adjacent unique hues. Orange (hue angle 41.5º) 114 

was the intermediate hue between UR and unique yellow, and turquoise (hue angle 185.1º) was the 115 

intermediate hue between UG and unique blue. While there is indeed variation in individual unique hue 116 

settings, the choice of stimuli in this experiment was motivated by the fact that intra-observer variability 117 

in unique hues is consistently reported to be much lower than inter-observer variability. For instance, 118 

Xiao et al. (2011) report intra-observer variability to be about half the inter-observer variability, while 119 

Hinks et al (2007) report this ratio (intra: inter) to be about 0.15. Meanwhile, the intermediate hues were 120 

chosen to fall as far away as possible from normative unique hue values (i.e., intermediate to them). 121 

Thus, the chosen stimulus colours were suitable for investigating asymmetries in the neural processing 122 

of hue for large colour distances. The perceptual uniformity of the CIE 1976 UCS colour space allows 123 

us to quantify the distances between pairs of stimulus colours. Here, they are: 27.1° between red and 124 

orange, 51.7° between green and turquoise, 91.9° between orange and green, 119° between red and 125 

green, 170.7° between red and turquoise and 143.6° between orange and turquoise. Thus, average 126 

distance from the two neighbouring colours is: 98.9° for red, 59.5° for orange, 71.8° for green and 127 

111.2° for turquoise. Three stimulus luminance levels were used: nominal iso-luminance (24 cd/m2), 128 

45% Weber contrast (34.8 cd/m2), and 90% Weber contrast (45.6 cd/m2).  We used the same CIE 1976 129 

UCS coordinates for a given colour at all luminance values, ensuring that the colours at each luminance 130 

level were equally saturated in the CIE 1976 UCS plane. The background had the following CIE 1931 131 

xyY coordinates (Smith and Guild, 1931): 0.3127, 0.3290, 24 𝑐𝑑/𝑚!.  132 



 133 

Figure 1: Experimental design. A. Trial design. Each trial started with the appearance of a fixation cross, which 134 

was followed by the presentation of a circular uniformly-coloured stimulus at a random offset of 700±200 ms. At 135 

a random time-point 800-1500 ms after stimulus onset, the shape of the stimulus changed from circular to either 136 

square or diamond. Participants were instructed to discriminate the final shape via a button press as quickly and 137 

as accurately as they could. Each trial ended 2 seconds after stimulus onset.  Two events were defined during each 138 

trial: a passive viewing event defined by the appearance of the stimulus, and a shape change event defined by the 139 

change in stimulus shape.  B. Stimulus hues for Experiment 1. The stimuli were one of four hues: red (R), orange 140 

(O), green (G) or Turquoise (T), shown as coloured discs of the corresponding hue. The abscissa (𝒖′) and the 141 

ordinate (𝒗′) in the plot denote coordinates in the CIE 1976 uniform chromaticity space. The orientations of mean 142 

unique hues from  Wuerger & Self, 2022 are also shown using translucent lines of the corresponding colour 143 

(unique red: red line, unique yellow: yellow line, etc.) passing through the grey background (grey disc). The R 144 



and G stimuli were unique hues, while the O and T stimuli were chosen such that their hue angle bisected the 145 

nearest unique hues (O bisects unique red and unique yellow; T bisects unique green and unique blue). C. Stimuli 146 

for Experiment 2.  In a psychophysical experiment before the EEG recordings, the observer settings for four hues 147 

(orange: O, yellow: Y, green: G, and turquoise: T) were measured using the method of adjustment (see Methods). 148 

Each observer was then presented with the mean of their respective settings as well as hues 10 degrees clockwise 149 

and anti-clockwise from their settings. Each observer’s settings (=) are shown as coloured discs of the 150 

corresponding hue (orange disc for O, yellow disc for Y, etc.). The clockwise rotations (-) are shown as darker 151 

discs of the corresponding hue, while the anticlockwise rotations (+) are shown as lighter discs. The average 152 

settings for each stimulus condition are shown as large diamond symbols of the corresponding colour. The 153 

background is shown as a grey disc. Like B, the CIE 1976 uniform chromaticity space is used. 154 

 155 

In Experiment 2, stimuli were based on each participant’s individual settings for two unique hues 156 

(yellow and green) and two intermediate hues (orange and turquoise). For a given observer, the final 157 

set of 12 stimulus colours consisted of the average individual setting for each hue as well as hues 158 

situated 10° to the left and right of these individual settings in CIELCh colour space (Figure 1C; see 159 

Supplementary Figure S1 for the coordinates in cone-activation space). In the EEG experiment, these 160 

hues were presented at a Lightness value of 45 and a Chroma value of 25. The just noticeable difference 161 

(JND) in this region of the CIELAB space is ~2.3	Δ𝐸"#$ (CIE, 2004; Fairchild, 2013). At this level of 162 

chroma, a difference of 10° in hue is equivalent to ~4.36	Δ𝐸"#$, i.e., ~1.89 JNDs. Thus, within each 163 

triplet of neighbouring colours, the hues were discriminable but remained highly similar to each other. 164 

With these colour values, we effectively had four clusters of colours corresponding to the hues orange, 165 

yellow, green, and turquoise for each participant, with each cluster consisting of the individual setting 166 

for that hue, along with two flanking colours ±10° from the setting (e.g., unique yellow, a yellow 10° 167 

counter-clockwise and a yellow 10° clockwise). All colours were nominally isoluminant with the 168 

background (CIE 1931 xyY coordinates: 0.3127, 0.3290, 22.93 𝑐𝑑/𝑚!).  169 

 170 



Procedure 171 

EEG data was recorded during a shape discrimination task. The purpose of the task was to engage 172 

participants’ attention in a stimulus dimension orthogonal to colour - i.e., shape. The stimuli consisted 173 

of uniformly coloured shapes shown against a grey background. Each trial began with the appearance 174 

of a fixation cross, followed by a 2-degree circular stimulus (passive viewing event) which changed 175 

shape (shape change event) into either a diamond or a square (Figure 1). The passive viewing event 176 

occurred 700±200 ms after the appearance of the fixation cross, and the shape change event occurred 177 

800-1500 ms after the passive viewing event. 178 

 179 

Participants identified the final shape of the stimulus using the left or the right button on a button box. 180 

The assignment of button to the target shape was counterbalanced between participants. The conditions 181 

were randomly intermixed, with a different order for each participant. The entire experiment was 182 

conducted in a sound-attenuated, electrically shielded chamber, with the screen being the only source 183 

of light. In addition to EEG recordings (described below), two other task-related variables were 184 

measured – task accuracy and reaction time. For each colour and shape combination, we had 30 trials. 185 

As diamond and square shape-change trials were subsequently collapsed together, this resulted in 60 186 

trials per colour and 720 trials in total, presented in random order and divided into 10 blocks. This was 187 

the same for both experiments. In addition, Experiment 1 was preceded by a practice of 24 trials, while 188 

Experiment 2 was preceded by a practice of 16 trials. The EEG task took approximately 50 minutes to 189 

complete. 190 

 191 

After the completion of the EEG experiment, participants rated each colour on a 9-point Likert scale 192 

for the representativeness of its category. Participants were asked to imagine the perfect representative 193 

for a colour category and rate how representative a sample was of that category, with 1 being the least 194 

representative and 9 being the most representative. All colours were displayed simultaneously on the 195 

screen during this procedure and remained on the screen until the participants completed the task. 196 



Colours were presented on the computer screen as a set of 4 rows of squares that showed the three 197 

luminance (Experiment 1) or hue (Experiment 2) values for that colour. Participants completed the task 198 

in approximately 5 minutes. Note that these ratings were included to provide data on the proximity of 199 

each stimulus colour to its focal colour, i.e., the best example of its category and thus did not relate to 200 

its unique hue status. We used the ratings to conduct a control analysis to understand if the neural 201 

representations identified through information decoding related in any way to colour categories (for 202 

previous work on colour categories and EEG, see Clifford et al., 2010; Fonteneau and Davidoff, 2007; 203 

Forder et al., 2017b; Holmes et al., 2009; Thierry et al., 2009). 204 

 205 

There were also two additional measures, specific to each experiment. In Experiment 1, for each 206 

participant, heterochromatic flicker photometry (HCFP) at 20 Hz (Walsh, 1958) was used to establish 207 

the departure from isoluminance for all colours. The task required the participant to adjust the luminance 208 

of the colour until perceived flicker was minimised. Participants performed 8 trials per colour – the step 209 

size was 0.5 cd/m2 and the flicker started from a randomly determined point that could be five steps 210 

above or below nominal isoluminance. These measurements were conducted to evaluate any individual 211 

differences in the amount of luminance contrast effectively present in nominally isoluminant stimuli. 212 

Rabin et al. (1994) demonstrate that departures from isoluminance need to be substantial to influence 213 

chromatic visual evoked potentials. Collecting HCFP data enabled us to verify that small departures 214 

from effective luminance did not significantly influence the efficiency of colour decoding.  215 

 216 

Experiment 2 began with a hue adjustment task, in which participants made their individual hue settings 217 

for two unique hues (yellow and green) and two intermediate, non-unique hues (orange and turquoise). 218 

Participants performed one block of eight trials for each hue. The order of blocks (yellow, green, orange, 219 

turquoise) was randomized for each participant. Colours were defined in CIE LCh colour space to have 220 

the same chroma (C=25) and lightness (L=55). Initial hue angles were randomised to the following 221 

values: 90°+/- 12° for yellow, 180°+/- 12° for green, 45°+/- 12° for orange and 225°+/- 12° for 222 



turquoise. A coloured 2° circle was shown in the middle of the computer screen. Participants used the 223 

right and left buttons to change the hue along the CIE LCh hue circle in steps of 2° clockwise and 224 

counter-clockwise, respectively. Once the participants were happy with their setting, they completed 225 

the adjustment by pressing the top button. The task took approximately 10 minutes to complete. The 226 

first 6 participants performed the task without context. For the following 13 participants, we also 227 

presented a colour palette consisting of 19 squares 1° in size that ranged +/- 45° around the initial hue 228 

value, in steps of 5° of hue angle, positioned at 8.22° above the central stimulus. The colour palette 229 

provided context for the hue setting task. A between-subject ANOVA showed no difference in unique 230 

hue settings with and without context (F(1,14) = 0.23; p = .64, ηp2 = .02).  231 

 232 

In total, the experiments lasted between two and a half and three hours, including the time to set up and 233 

remove the EEG electrodes.  234 

 235 

EEG recording and pre-processing 236 

Continuous brain activity was recorded from 64 scalp locations using active Ag-AgCl electrodes and 4 237 

ocular channels (providing VEOG and HEOG) connected to a BioSemi Active-Two amplifier system 238 

(BioSemi, Amsterdam, The Netherlands) at a sampling rate of 256 Hz. Data processing was performed 239 

using EEGLAB (Delorme and Makeig, 2004) for Matlab (Mathworks, UK). Epochs lasting 900 ms 240 

were extracted: 200 ms before the relevant event (stimulus onset or shape change) and 700 ms 241 

afterwards.  Data was low pass filtered at 40 Hz using a sinc FIR filter with a Kaiser window whose 242 

beta parameter was set to 5.653 (this is similar to a Henning window; Widmann et al., 2015). All trials 243 

with incorrect answers were excluded prior to the analysis. Artifact removal was then performed by 244 

using the FASTER toolbox (Nolan et al., 2010), the ADJUST toolbox (Mognon et al., 2011), and self-245 

written procedures in MATLAB. FASTER is an automated procedure that detects contaminated trials 246 

and noisy channels that need interpolation (either in the entire EEG recording or on any single trials) 247 

by calculating statistical parameters of the data and using a z-score of ±3 as the metric that defined 248 



contaminated data. ADJUST is an automated procedure that operates on maps resulting from 249 

independent component analysis of EEG data, using properties of these components to label them as 250 

eye blinks, vertical or horizontal eye movements, or channel discontinuities so that they can be 251 

subtracted from the recording. We first rejected trials with global artifacts using FASTER, then ran an 252 

independent component analysis and applied ADJUST to the obtained decompositions, and finally, 253 

conducted channel interpolation with FASTER. In addition, any trials with eye movements were 254 

rejected based on ±25μV deviations from the horizontal electrooculogram in the uncorrected data. 255 

Blinks were rejected using a thresholding procedure similar to FASTER (Junghöfer et al., 2000).  256 

Incorrect and rejected trials amounted to a very small proportion of the data – in Experiment 1, between 257 

1% and 13% of total trials, and in Experiment 2, between 3% and 17% of total trials. 258 

 259 

EEG classification 260 

The classification of EEG signals was set up as a set of time-windowed error-correcting output codes 261 

models (tECOC) operating on 20ms snippets of the signals (other reasonable time-windows yielded 262 

similar results, see Supplementary Figure S2A) from the occipital electrodes (the entire set of 64 263 

electrodes yielded similar results, see Supplementary Figure S2B). Linear discriminant analysis (LDA) 264 

classifiers were employed as learning units due to their relative simplicity and computational efficiency. 265 

Denoting the EEG activity as a random multivariate variable 𝑿, and the stimulus label (colour and/or 266 

luminance) by the random variable 𝑌 (where realisations of 𝑌 are drawn from the set of all possible 267 

labels denoted 𝐿), the probability that the observed activity 𝒙 is elicited by the stimulus described by 268 

label 𝑦 is given by the Bayes rule: 269 

𝑃(𝑌 = 𝑦|𝑿 = 𝒙) =
𝑃(𝑿 = 𝒙|𝑌 = 𝑦)𝑃(𝑌 = 𝑦)

∑ 𝑃(𝑿 = 𝒙|𝑌 = 𝑙)𝑃(𝑌 = 𝑙)%∈"
 270 

In LDA, the likelihood term is estimated by a multivariate Gaussian density function: 271 



𝑃(𝑿 = 𝒙|𝑌 = 𝑦) =
1

@(2𝜋)'!|Σ|
𝑒(

)
!*𝒙(𝝁"-

#.$%*𝒙(𝝁"- 272 

Here, 𝑁/ is the number of electrodes, 𝝁0 is the mean EEG activity for the label 𝑦, and Σ is the covariance 273 

matrix of the activity. The log-posterior objective function 𝛿0(𝒙) for the label 𝑦 can thus be written as: 274 

𝛿0(𝒙) = log𝑃(𝑌 = 𝑦) −
1
2
𝝁01Σ()𝝁0 + 𝒙1Σ()𝝁0 275 

Data for each observer was modelled separately, and the whole process was repeated 10 times. In each 276 

repetition for any given observer, the data were split into 5 folds containing roughly equal number of 277 

samples for each label. Each of the five folds was then tested by training the model on the remaining 4 278 

folds. The entire pipeline was repeated 10 times for each observer. 279 

 280 

tECOC analysis gave us a time-series of confusion matrices (CMs) which characterise the model 281 

performance over the duration of the trial (see Supplementary Video V1). At each time-point, while the 282 

diagonal of the CM gives a measure of model accuracy (true positive rate), the off-diagonal elements 283 

represent misclassifications, which are crucial towards understanding the topography and information 284 

content of the representational space (see Representational Similarity Analysis below). 95% confidence 285 

intervals, reported as shaded regions around the mean, were calculated using a two-tailed non-286 

parametric permutation test (1000 samples were drawn). In addition to reporting the intrinsic variability 287 

in model performance, a comparison with a randomised model was also made (shown as horizontal 288 

lines under the relevant graphs). In each case, the randomised model was trained using a shuffled set of 289 

labels to estimate empirical chance performance, and the performance of the randomised model was 290 

compared with the actual model using a two-tailed randomisation test with 1000 permutations. 291 

Furthermore, when considered on its own, the performance of the randomised models was found to be 292 

close to theoretical chance level under the assumption of equilikelihood (see Supplementary Figure 293 

S2C).   294 

 295 



Representational Similarity Analysis 296 

The time-series of confusion matrices estimated by tECOC models were used to calculate pairwise 297 

dissimilarities between stimulus classes. Given a confusion matrix 𝐶, where each element 𝑐23 denotes 298 

the probability of the stimulus type 𝑖 being labelled as 𝑗 by the model, first, a label-normalised matrix 299 

𝑆 was constructed such that 𝑠23 = 𝑐23/𝑐22. This asymmetric measure was then used to calculate a 300 

symmetric dissimilarity tensor Δ45676 given by 301 

 Δ45676 = 1 −max T0,1 − @𝑆𝑆1V ( 1 ) 

 302 

Here, the geometric mean across stimulus pairs is used to generalise distances in representational space 303 

(Kaneshiro et al., 2015; Shepard, 1958). A similar estimation was also made for perceptual data by 304 

considering pairwise absolute differences in CIELAB hue angles of the stimuli. These differences were 305 

used to estimate a perceptual dissimilarity matrix by first normalising across the rows to get a local 306 

distance measure which summed to one (similar to the normalisation over rows of the confusion matrix, 307 

e.g., in Kaneshiro et al., 2015), and then calculating the symmetrical dissimilarity matrix using equation 308 

( 1 ). The perceptual dissimilarity was compared to Δ89:;:  using rank-correlation estimates (Kendall’s 309 

coefficient).   310 

 311 

Data and Code Availability 312 

The decoding scripts have been packaged as the tECOC toolbox, which has been made available as a 313 

public git repository here. The EEG and behavioural data from both experiments have been shared on 314 

the Open Science Framework website here.  315 

  316 



Results 317 

Experiment 1: Decoding unique and intermediate hues with and without luminance contrast  318 

We measured EEG signals in a cohort of 20 participants while they viewed coloured stimuli (coloured 319 

shapes on a grey background) consisting of two unique hues – unique green and unique red, and two 320 

non-unique hues – orange and turquoise. In each trial, a coloured disc changed shape to a diamond or a 321 

square at a random time-point 800-1500ms after stimulus onset (Figure 1). The participant’s task was 322 

to identify the target shape. The stimuli were either isoluminant with the background (0% luminance 323 

contrast), or presented at 45% or 90% luminance-contrast. This gave us a dataset of EEG signals 324 

labelled both in hue and luminance-contrast. 325 

 326 

The task was easy, resulting in high overall accuracy (95% ± 1% SE, see Supplementary Figure S3A) 327 

and very fast responses (mean response time (RT) of 462 ± 15 ms, see Supplementary Figure S3B). 328 

Response-time data were analysed with a 3x4 repeated measures ANOVA (3 levels of luminance 329 

contrast vs. 4 hues), which yielded a significant main effect of luminance contrast (𝐹(1.49, 28.28) =330 

67.56, 𝑝 < 0.001, 𝜇𝑝! = 0.78) and interaction with hue (𝐹(6, 114) = 3.56, 𝑝 = 0.003, 𝜇𝑝! = 0.16) 331 

– hue itself did not have an effect (𝐹(1.88, 35.79) = 2.93, 𝑝 = 0.07). We deconstructed the interaction 332 

by performing separate repeated measures ANOVAs at each luminance contrast: while at isoluminance 333 

there was a significant effect (𝐹(3, 57) = 6.19, 𝑝 = 0.001, 𝜇𝑝! = 0.25) driven by slower RTs for 334 

green (vs. red 𝑃 = 0.019; vs orange 𝑃 = 0.008, vs. turquoise 𝑃 = 0.003), there were no differences at 335 

45% luminance contrast (𝑝 = 0.16) or at 90% luminance contrast (𝑝 = 0.11). 336 

 337 

After the completion of the EEG experiment, participants rated each colour on a 9-point Likert scale 338 

for its representativeness of its category (red, orange, green or turquoise). The average ratings and their 339 

SEs were as follows (see Supplementary Figure S3C): isoluminant red 4.35 ± 0.48; red at 45% 340 

luminance 2.85 ± 0.32; red at 90% luminance 1.90 ± 0.23; isoluminant green 7.70 ± 0.23; green at 45% 341 



luminance 6.10 ± 0.35; green at 90% luminance 5.55 ± 0.43; isoluminant orange 3.75 ± 0.48; orange at 342 

45% luminance 4.15 ± 0.43; orange at 90% luminance 3.60 ± 0.32; isoluminant turquoise 6.00 ± 0.47; 343 

turquoise at 45% luminance 6.75 ± 0.38; turquoise at 90% luminance 6.40 ± 0.5.  344 

 345 

Unique hues can be robustly decoded from EEG signals 346 

First, we asked whether the measured EEG waveforms contain consistent, discernible information about 347 

the hue of the stimulus. To do this, we trained tECOC models for each observer using only EEG 348 

responses to isoluminant stimuli, as this ensured minimal interference from luminance-contrast signals. 349 

In the first instance, we performed this analysis for epochs defined by the passive viewing event. We 350 

found that within a 100-300 ms window after stimulus onset, both unique hues could be decoded with 351 

above-chance accuracy (Figure 2A). The non-unique hues, on the other hand, showed a much lower 352 

score (Figure 2B). This pattern is stable over a range of tECOC time-windows (Supplementary Figure 353 

S2A) and also holds when the entire set of 64 electrodes is used (Supplementary Figure S2B). 354 

Furthermore, a bootstrapped power analysis shows high statistical power in the time-window of 355 

maximal discrimination (Supplementary Figure S4). The presence of signal on all electrodes is not 356 

surprising – unlike functional magnetic resonance imaging (fMRI), EEG does not detect localised 357 

physiological activity in a volume, but instead picks up a linear superposition of signals from a range 358 

of physiological sources. Thus, the signal is present in some degree at all sensors, with its amplitude 359 

(and thus also its signal to noise ratio) dependent on the position of the sensor relative to the source(s) 360 

(see, e.g., Maris, 2012 for a discussion of the so-called common pick-up problem).  361 



 362 

Figure 2: Decoding isoluminant Unique and Non-unique hues from EEG responses. tECOC classification models 363 

were trained on EEG responses recorded in 𝑁 = 20 participants as they viewed isoluminant stimuli (Unique Hues: 364 

red and green; Non-unique hues: orange and turquoise). Note that all panels represent the results from a single set 365 

of models trained on isoluminant stimuli. A. Model accuracy for Unique hues. This corresponds to presenting the 366 

trained model with EEG responses to Unique Hue stimuli and estimating the probability with which the model is 367 

able to determine the correct stimulus hue (diagonal of the confusion matrix). The two solid lines show the mean 368 

accuracy of the model at each time-point. The hues are colour-coded, with the red and green lines representing 369 

model accuracy for unique red and unique green stimuli respectively. The shaded regions around the lines show 370 

bootstrapped 95% confidence intervals. A dashed line indicates the theoretical chance performance of the model 371 

(the empirical chance performance closely followed the theoretical chance level, and is shown in Supplementary 372 

Figure S2C). The two inlays show the classification accuracy (top-left: unique red, top-right: unique green) of 373 

models trained for each of the 20 observers. Only 100-300 ms after stimulus onset are shown in the inlays. The 374 

solid lines at the bottom show the period when the classification performance was significantly different (𝑝 <375 

0.05 in a 2-tailed permutation test) from the performance of a model trained on randomly shuffled labels. B. 376 

Model accuracy for non-unique hues. The accuracy of the model for non-unique hues is shown in a manner 377 

analogous to A, with the orange and blue colours representing the orange and turquoise stimuli respectively. C. 378 

Misclassification probabilities. Given the EEG response (at a given time-point) to one of the four hues, the model 379 

can either make an accurate prediction of the label (panels A and B), or misclassify the input. Each of the four 380 



subpanels here shows the prediction probabilities for one particular input label (shown on the top-left, above each 381 

subpanel), thus corresponding to one row of the confusion matrix. For instance, the first subpanel shows the 382 

probabilities (at each time-point) that the model classifies EEG responses to unique red stimuli as being elicited 383 

by unique red (accuracy), unique green, orange or turquoise stimuli. The colour coding for the four stimulus hues 384 

in each subpanel is the same as panels A and B. Also see Supplementary Video V1, which shows how the 385 

confusion matrix changes as a function of time elapsed from stimulus onset. 386 

 387 

For each participant, we also measured subjective isoluminance for each stimulus colour (see Methods 388 

for details). While one participant did not understand the task, the means, SEs and ranges of the settings 389 

from the remaining 19 participants were as follows: red 0.14 ± 0.57 𝑐𝑑/𝑚!	 (-6 to 5.25 𝑐𝑑/𝑚!); green 390 

-1.09 ± 0.49 𝑐𝑑/𝑚! (-6.58 to 1 𝑐𝑑/𝑚!); orange 0.08 ± 0.56 (-4.34 to 6.50 𝑐𝑑/𝑚!); turquoise (-0.05 ± 391 

0.65 𝑐𝑑/𝑚! (-7.08 to 7.83 𝑐𝑑/𝑚!).   392 

 393 

Model accuracy quantifies the ability of the model to correctly identify the hue of a stimulus when 394 

presented with the corresponding EEG response. Theoretically, it is the sum of hit rates (true positive 395 

rates) for all labels, and corresponds to the diagonal of the confusion matrix. However, a deeper insight 396 

into model performance can be obtained when, in addition to the detection accuracy for a given input 397 

class, one also considers the probability of misclassification of inputs from this class. To investigate 398 

this, we estimated the off-diagonal elements of the confusion matrix. This allowed us to infer which 399 

classes are most likely to be confused by the model – thus providing a means of understanding how 400 

similar the information contained in EEG signals corresponding to different hues is. The subpanels of 401 

Figure 2C (see also Supplementary Video V1) show the probability (over time) with which the model 402 

assigns each of the four hue labels to EEG responses elicited by a given input hue (the input hue is 403 

labelled above each subpanel). Thus, each subpanel in Figure 2C shows one row of the confusion 404 

matrix. Within a 100-300 ms window, each input hue is only confused with its proximal pair (red and 405 

orange, and green and turquoise), while the prediction probabilities for non-proximal hues are below 406 



chance. This is also reflected in the checkerboard-like pattern observed in Supplementary Video V1. 407 

Furthermore, the model is likely to label EEG responses to non-unique hues (orange and turquoise) as 408 

being elicited by their proximal unique hues (red and green respectively) with almost equal probability, 409 

but not vice-versa. Once again, this suggests that EEG signals between 100-300 ms carry more robust 410 

representations of unique hues compared to non-unique hues. 411 

 412 

The passive viewing at trial outset was followed by a change in the shape of the stimulus from a circle 413 

to either a square or a diamond at a random time-point 800-1500 ms from stimulus onset (see Figure 414 

1). The colour of the stimulus was task-irrelevant, and the hypothesis here was that since the observer 415 

will be attending to the stimulus shape, the EEG signal would be qualitatively different between the 416 

passive and shape-change segments. This would, in-turn, allow us to test if this difference is reflected 417 

in the ability of the model to classify hue information in the signal. It has been argued that colour-related 418 

activations should still be observed as long as the hue remains unattended and task-irrelevant (Forder 419 

et al., 2017b). To test this hypothesis, we trained tECOC models on the epochs defined by the shape-420 

change event. As expected, the two segments were found to elicit activity which differed significantly 421 

both in the sequence of ERP peaks as well as topography (Figure 3A). However, despite this difference, 422 

we were able to perform hue detection during the shape-change segment with an accuracy very similar 423 

to the passive viewing segment – both in terms of peak decoding score and its time-course (Figure 3B). 424 

This suggests that the temporal structure of the hue-related information in EEG signals is indeed robust 425 

to changes in the task (as long as the hue itself remains task-irrelevant), and can be extracted even when 426 

the observer is engaged in a concurrent shape discrimination task. 427 



 428 

Figure 3: Decoding performance for active and passive tasks is very similar, despite large differences in stimulus-429 

evoked activity. A. Global field power. The left side of the panel shows the topographies and the Global Field 430 

Power (GFP) for stimulus onset. The hues are colour-coded (unique green is shown in green, red in red, etc.), and 431 

each panel shows the GFP for one luminance-contrast condition. The stimulus onset is marked by a dashed line 432 

at 0 abscissa. The right side of the panel shows the same for the shape-change event. B. Robustness to task. 433 

Separate models were trained using passive viewing and shape-change segments. Each subpanel shows the 434 

accuracy of the two models for on a particular input hue (e.g., the leftmost panel shows the model accuracy when 435 

EEG responses to red stimuli were used as inputs). The performance of the passive-segment model is shown using 436 

the same colours and symbols as Figure 2A, while the shape-change model is shown using a dashed line for 437 

observer mean and darker shading for the bootstrapped 95% confidence intervals. Horizontal lines underneath 438 

show time-points where a randomised model trained on shuffled labels was significantly different from the model 439 

trained on correct labels.  440 

  441 

Luminance signals interfere with chromatic information in occipital ERPs 442 

Next, we investigated whether hue identity could still be decoded when both chromatic and luminance 443 

information was present in the EEG signal. A chromatic-driven ERP is characterised by a robust 444 

negative deflection at about 120-220 ms after stimulus onset (Berninger et al., 1989; Murray et al., 445 

1987; Tobimatsu et al., 1996), but this response is significantly altered by the addition of luminance 446 



contrast (Rabin et al., 1994). Furthermore, while observer isoluminance drives ERPs in a manner closely 447 

resembling nominal isoluminance, any substantial changes in luminance contrast have been found to 448 

result in highly dissimilar waveforms (Rabin et al., 1994). Xing et al. (2015) demonstrate that this is 449 

due to non-linear interactions between colour and luminance signals, which is likely to result from the 450 

involvement of colour-luminance neurons. To assess the impact of potential colour-luminance 451 

interactions on classifier performance, we constructed a model that evaluated how decoding 452 

performance was affected when the model was trained on inputs which differ not only in hue but also 453 

luminance-contrast. We trained tECOC classifiers for each observer using 12 labels, corresponding to 454 

three different luminance-contrast levels for each of the four hues. In Figure 4, we present the 455 

performance of our model in a manner similar to Figure 2C. Each panel is one row of the confusion 456 

matrix, i.e., given the EEG signals for an input stimulus, it shows the prediction probabilities for all 12 457 

labels. The hue of the input is denoted by the row (labelled in the right margin) and its luminance-458 

contrast by the column (labelled on top). The same colours as Figure 2C are used to denote the four 459 

hues. In addition, for each hue, we also use two additional brightness levels to represent the two 460 

luminance contrast ratios (thus, for a given hue, isoluminant stimulus is the least bright, 45% luminance 461 

contrast is brighter, and 90% luminance contrast is the brightest). We find that while isoluminant signals 462 

can indeed be classified 100-300 ms after stimulus onset (left column), addition of luminance 463 

information disrupts the model performance for all hues (middle and right columns). Furthermore, we 464 

find that the classifier does not confuse isoluminant and non-isoluminant stimuli. This suggests that in 465 

contrast to a change in stimulus-shape where the temporal structure of hue-related information was 466 

preserved (Figure 3), addition of luminance-contrast to the stimulus disrupts the temporal patterns 467 

which encode hue-information. The above observations also hold when separate models are trained for 468 

each luminance contrast condition (Supplementary Figure S5). 469 

 470 



 471 

Figure 4: Luminance information disrupts hue decoding. EEG responses to unique (green and red) and non-472 

unique (orange and turquoise) hues at three luminance-contrasts (isoluminant, 45% and 90%) were used to train 473 

a tECOC model. Each of the 12 subpanels in this figure represents one row of the confusion matrix (similar to 474 

Figure 2C). This corresponds to presenting the trained model with EEG responses to a given stimulus class, and 475 

observing the classification probabilities for all classes, including the input class. The hue and luminance contrast 476 

of the input labels are denoted by the row and column respectively. For each predicted label, the hue is represented 477 

by the corresponding colour (green, red, orange and turquoise), and the luminance-contrast by the brightness 478 

(isoluminant: lowest brightness, 45% contrast: intermediate brightness, 90% contrast: highest brightness). Shaded 479 

region around the curves shows bootstrapped 95% confidence intervals. Horizontal lines underneath show time-480 

points where the accuracy (the correct classification of the input, i.e., only diagonal elements of the confusion 481 

matrix time-series) of a randomised model trained on shuffled labels was significantly different from the model 482 

trained on correct labels. 483 



To characterise the effect of luminance, we trained a model using only the luminance labels of EEG 484 

signals (i.e., we used three labels corresponding to the three contrast levels). We found that all 485 

luminance conditions (Figure 5A) can be decoded to above-chance levels, with the isoluminant and 486 

90% contrast conditions being the most decodable. This is likely to reflect the fact that while both 487 

isoluminant and high-contrast stimuli are relatively easy to discriminate, the 45%-contrast stimuli are 488 

likely to contain characteristics resembling both these classes. An examination of the misclassification 489 

patterns of the model (Figure 5B) further revealed that while isoluminant stimuli are robustly classified, 490 

the non-isoluminant conditions are more likely to be confounded with one another.  491 



 492 

Figure 5: Luminance decoding from EEG signals. A. Mean classification accuracy. This panel shows the 493 

performance of the model in correctly identifying the luminance contrast of the stimuli (model accuracy). Each 494 

line shows the accuracy for one condition, with dark grey coding for the isoluminant condition, medium grey 495 

coding for 45% luminance contrast, and light grey coding for 90% luminance contrast (coding of luminance 496 

contrast using lightness is used throughout the article). B. Misclassification probabilities. Each subpanel shows 497 

one row of the confusion matrix analogous to Figure 2C. The left panel shows classification probabilities for the 498 

three luminance conditions when isoluminant stimulus is presented to the classifier. Similarly, the middle and 499 

right panels show prediction probabilities when 45% and 90% luminance contrast inputs are presented to the 500 

classifier. In all panels, the shaded area around the lines shows bootstrapped 95% confidence intervals. Chance 501 



performance is shown by the dashed line. Horizontal lines underneath show time-points where a randomised 502 

model trained on shuffled labels was significantly different from the model trained on correct labels. 503 

 504 

Stimuli with 45% luminance contrast have an above-chance probability of being misclassified as 90% 505 

luminance contrast. However, this effect is not symmetric, with 90% luminance contrast being easier 506 

to detect compared to the 45% contrast. Thus, under non-isoluminant conditions, not only are the hue-507 

driven patterns difficult to detect, but they seem to be progressively overridden by luminance-contrast-508 

driven patterns. To ensure that this effect was driven by luminance, and not by the chromatic content of 509 

the stimuli, we set up separate models for each hue, and were able to confirm that the effect was indeed 510 

independent of the stimulus hue. For each hue, the isoluminant stimuli were robustly classified 511 

(Supplementary Figure S6, leftmost column), while the non-isoluminant conditions produced similar 512 

but asymmetric prediction scores (Supplementary Figure S6, middle and right columns).  513 

 514 

Interim Discussion 515 

Our findings are in line with Sutterer et al (2021) who recently reported that both colour and luminance 516 

content can be successfully decoded from EEG signals. Hermann et al. (2022) investigated decoding of 517 

hue or luminance polarity from MEG signals and found that generalising luminance polarity across hue 518 

works better than generalising hue across polarity. This is consistent with our own findings that 519 

decoding of hue is strongly affected by the addition of luminance contrast. Unlike these studies, where 520 

only stimuli that combine colour and luminance contrast were used, we also included stimuli that were 521 

isoluminant with the background. We found that decoding of hue from such nominally isoluminant 522 

stimuli is much more efficient. We also find an asymmetry in decoding unique and intermediate hues, 523 

with superior performance for unique hues. 524 

Hermann and colleagues (2022) speculate that alignment with the daylight locus might represent an 525 

important determinant of colour decoding. They find that low-level, cone-opponent chromatic content 526 



impacts hue decoding, with differential cone-opponent inputs along the L-M and S-(L+M) mechanisms 527 

providing separable input into EEG signals that are being decoded. This is not surprising, as L-M and 528 

S-(L+M) cone-opponent signals combine differently with luminance information (e.g., Martinovic and 529 

Andersen, 2018). In our data, red and turquoise are closest to a cone opponent axis (i.e., L-M) and were 530 

also more distant to their neighbouring colours. Yet we find superior decoding for red and green. 531 

Despite being able to discard fully reductive cone-opponent input or colour-distance accounts of hue-532 

decoding asymmetries, our experiment remains inconclusive as to the potential source of the observed 533 

effects.  534 

The stimulus set in Experiment 1 was designed to investigate whether unique hues have more robust 535 

EEG representations. To achieve this, we chose unique and non-unique hues that were maximally 536 

distant in a perceptual space – red and green, orange and turquoise (see details of the stimulus set in 537 

Methods). As already reported by Rosenthal et al. (2021) and Hermann et al. (2022), inter-hue 538 

differences in decoding efficiency manifest even between such evenly spaced colours. Indeed, our 539 

findings confirm that the neurometric colour space is non-uniform, even when stimuli are made 540 

isoluminant; but they also suggest that unique hues may have a more distinct neural representation, 541 

indexed through superior information decoding when compared to intermediate hues. In our next 542 

experiment we aimed to further investigate the  origin of the more robust decoding for unique as 543 

opposed to intermediate hues by introducing proximal neighbours, clockwise and counter clockwise to 544 

each hue. Decoding colours in such small neighbourhoods allows us to understand how perceptual 545 

notions of hue-difference map to the EEG-derived neurometric space. If the decoding manifold contains 546 

three highly-proximal stimuli, which are only about 2 perceptual JNDs apart, this may result in a failure 547 

to decode if their EEG signatures are too similar. If, however, unique hues have a more robust EEG 548 

signature, they may be more decodable from their neighbours.  549 

We also changed the four hues, replacing red with yellow. To disambiguate if unique or intermediate 550 

hue status drives a more robust neural signal irrespective of daylight locus alignment, which has been 551 

suggested as the source of asymmetries in the neurometric space by Hermann et al. (2022), it would be 552 

necessary to use a unique hue that is also more aligned with the daylight locus, such as yellow or blue.  553 



Experiment 2: Decoding over small and large perceptual hue differences  554 

In Experiment 1 we showed superior decoding performance for unique hues compared to intermediate 555 

hues, suggesting a robust neural representation for the former. In Experiment 2, this hypothesis was 556 

further critically tested by using both small and large hue differences. Our aim was to re-examine 557 

decoding of nominally isoluminant unique and intermediate hues with a slightly modified hue set (see 558 

Interim Discussion above) and to extend it by decoding local clusters of stimuli around each of these 559 

hues. First, we measured individual settings for unique (yellow and green) and non-unique (orange and 560 

turquoise) hues for each observer. Next, we made EEG measurements in a task analogous to Experiment 561 

1. For each observer, we used a stimulus set consisting of their individual settings for the four hues 562 

(denoted as the = configuration), and two sets of stimuli generated by rotating the individual settings 563 

by ±10° in CIELAB colour space (denoted as the + and – configurations respectively) – leading to a 564 

total of 12 stimuli (4 hue-clusters and 3 rotational-configurations, see Figure 1C). The individual hue 565 

settings were distributed as follows (means and SEs): yellow 101° ± 2°, orange 61° ± 3°, green 153° ± 566 

3° and turquoise 198° ± 3°.  567 

In the shape discrimination task, grand mean accuracy was 96% ± 1 % SE (see Supplementary Figure 568 

S7A) and reaction times were 706 ± 61 ms (See Supplementary Figure S7B). Response-time data were 569 

analysed with a 4x3 repeated measures ANOVA (4 hues vs. 3 rotational configurations, i.e., -, + and = 570 

sets), which yielded a significant main effect of hue (F (1.77, 26.5) = 5.25, p=.01, ηp2 = 0.26) and an 571 

interaction with the rotational configuration (F (2.16, 32.49) = 5.08, p =.01, ηp2 = 0.25) while the effect 572 

of the rotation itself was not significant (F (1.79, 26.99) = 0.72, p = 0.48, ηp2 = 0.05). The interaction 573 

was deconstructed by separate repeated measures ANOVAs at each hue: for yellow, there was a 574 

significant effect of rotation (F(1.36,20.48) = 6.23, p =.01, ηp2 = 0.29) driven by slower RTs for the 575 

individual hue setting vs. 10° clockwise setting ( p = 0.006). For green, there was also a significant 576 

effect (F(1.58,23.74) = 6.76, p =.007, ηp2 = 0.31) driven by faster RTs for the individual hue setting 577 

vs. 10° clockwise setting (p = .04) as well as vs. 10° counterclockwise  setting (p = .005); no differences 578 

were found for orange (p=.22) and for turquoise (p=.11). Taken together, we can see that only for unique 579 

hues (yellow and green) the responses to individual hue settings (= configuration) seem to be different 580 



from responses to ±10° rotated hues (i.e., – and + configurations). However, the direction of the effect 581 

was opposite for the two hues – while participant responded slower to their individual yellow setting, 582 

they responded faster to their individual green setting.  583 

For the categorical rating task, the average ratings and their SEs were as follows: individual yellow 5.62 584 

± 0.6; -10° yellow 5.75 ± 0.57; +10° yellow 2.56 ± 0.35; individual green 6.93 ± 0.26; -10° green 7.93 585 

± 0.17; +10° green 3.87 ± 0.35; individual orange 6.37 ± 0.36; -10° orange 3.93 ± 0.48; +10° orange 586 

7.25 ± 0.48; individual turquoise 5.68 ± 0.53; -10° turquoise 7.43 ± 0.53; +10° turquoise 3.18 ± 0.5. We 587 

used these categorical ratings as a control measure, evaluating if the decoding performance can be 588 

reduced to proximity to focal colours. Again, no such relations were found (See Supplementary Figure 589 

S7C). 590 

 591 

Decoding over large hue differences is predicted by hue angles 592 

For each observer, we trained tECOC models over all stimuli: the four hue settings (= group), and the 593 

eight stimuli generated by ±10° rotations of each of these settings (+ and - groups respectively). Using 594 

the classification results, we generated a time-series of dissimilarity matrices (see Methods for details) 595 

and found that the stimulus representations were dissimilar in a 100-350 ms window after stimulus 596 

onset (Figure 6A), with a stable mean dissimilarity (Figure 6B). Similarly, we also calculated a 597 

perceptual dissimilarity measure by using differences in hue angles of the stimuli in CIELAB space. As 598 

expected, perceptual dissimilarity increases as one moves away from a given reference stimulus (Figure 599 

6C).  Using rank-correlation analysis, we found the Kendall’s tau statistic to be significant (𝑝 < 0.05) 600 

in a 100-350 ms range post-stimulus (Figure 6D), suggesting that perceptual distances are correlated 601 

with decoding output.  602 



 603 

Figure 6: Representational similarity between perceived hue and decoder performance. A. Dissimilarity in 604 

classifier outputs. tECOC models were trained to classify twelve colours from their EEG responses. The colours 605 

sampled four clusters along the hue circle corresponding to orange (O), yellow (Y), green (G), and turquoise (T), 606 

with each cluster consisting of settings made by the observer in a psychophysical experiment (=), and colours 607 

sampled 10° clockwise (-) and anti-clockwise (+) with respect to each setting. Each panel shows a dissimilarity 608 

matrix derived from classifier output. The panels show the dissimilarity 50, 150, 250, and 450 ms after stimulus 609 

onset. B. Mean classifier dissimilarity. The average dissimilarity over the period where the correlation is 610 

statistically significant. C. Dissimilarity in perceptual space. Hue angles of the 12 stimuli (same as panel A) were 611 

used to estimate dissimilarity in the perceptual CIELAB space. D. Representational similarity. Rank-correlation 612 

between perceptual and classification dissimilarities using Kendall’s tau statistic. The solid curve shows the mean 613 

statistic, while the shaded envelope shows bootstrapped 95% confidence intervals over the observers. The 614 

horizontal line underneath shows time-points where the correlation was statistically significant (𝑝 < 0.05). 615 

 616 

Local distortions in hue decoding 617 

Next, we posed the question: is the perceptual robustness of unique hues reflected in the structure of 618 

the decoding space around their respective representations? To answer this question, we trained 4 619 

tECOC models – one on each of the four hue-clusters (orange, yellow, green, and turquoise). A hue 620 



cluster consisted of the observer’s individual settings (=), and stimuli 10° clockwise (+) and counter-621 

clockwise (-) from the individual settings. Each model was trained to classify EEG signals (responses 622 

to stimuli drawn from the respective cluster) into one of the three labels =, +, or –. In Figure 7A we 623 

show the results for the four models, one model per row. Each subpanel is a row in the corresponding 624 

confusion matrix, with the test stimulus indicated on top. For instance, the first row corresponds to the 625 

model trained on the yellow cluster. The first panel of this row shows the predictions of the model when 626 

stimuli 10° counter-clockwise from individual yellow settings were presented to it (i.e., the first row of 627 

the confusion matrix for the ‘yellow’ model). 628 



 629 

Figure 7: Local distortions in representational space and Visually Evoked Potentials. A. Decoding within colour 630 

clusters. tECOC models were trained on clusters around the individual settings for unique (yellow: Y, green: G) 631 



and non-unique (Orange: O, Turquoise: T) hues. Each cluster consisted of three groups: individual observer 632 

settings (=), and two groups derived from 10° clockwise (+) and counter-clockwise (-) rotations of the individual 633 

settings in CIELAB space. Each row shows a model trained on a different hue (top row: orange, second row: 634 

yellow, etc.), with subpanels showing rows of the corresponding confusion matrices. E.g., the first row shows the 635 

classifier trained on the yellow cluster, and the first panel of this row shows the row of the confusion matrix that 636 

corresponds to the Y- input. The input stimulus for each row of the confusion matrix is labelled on top. B. Global 637 

Field Power. Each panel shows the mean Global Field Power (GFP) within a colour cluster (the name of the 638 

cluster is above each panel). The GFP for the central colour (=) in each cluster is shown in medium grey, while a 639 

darker and lighter grey are used to denote GFP for colours −10° (-) and +10° (+) to the central colour respectively. 640 

C. Event Related Potential. Mean Event Related Potentials calculated across observers. Only the occipital 641 

electrodes used for the decoding analysis are considered. The same colour scheme as B is used. 642 

 643 

We found that the three groups (individual settings, and the ±10° rotations) cannot be decoded in non-644 

unique hues (Figure 7A, first and fourth rows). However, for unique hues (Figure 7A, second and third 645 

row), the rotated groups (first and third columns) can be decoded, while the individual settings (second 646 

column) cannot. This could reflect relative differences in visually evoked potential (Global Field Power: 647 

Figure 7B, Event-related Potentials: Figure 7C), and suggests that the representational space around 648 

unique hues is anisotropic (Figure 8). Note that in the perceptually uniform CIELAB space the three 649 

groups, by design, had equivalent relative distributions (- and + were simply mean-shifted copies of =).  650 

 651 

Discussion 652 

Our first finding is that - under isoluminant conditions - EEG responses to the three tested unique hues 653 

show more distinct patterns compared to non-unique hues, and these patterns are stable during both 654 

passive viewing (Figure 2) and active task-engagement (Figure 3). We can also reach certain 655 

conclusions about the underlying neural processes from the time-course of decoding performance. 656 

While additional analysis (see Supplementary Figure S8) shows that the classification performance is 657 

unlikely to be driven by stimulus cone-contrast, a 100-300 ms decoding window is consistent with the 658 



idea that the performance of the model could be driven by both perceptual and post-perceptual 659 

contributions (Forder et al., 2017b). This is supported by the fact that the decoding performance steadily 660 

rises before peaking between 150-200 ms after stimulus onset, a time-window where EEG signals begin 661 

reflecting post-visual evaluative processing (VanRullen and Thorpe, 2001), including colour 662 

categorisation (Fonteneau and Davidoff, 2007). The chromatic visual evoked potential (cVEP), which 663 

reflects the activation of colour sensitive neurons in visual cortices, also remains maximal in the same 664 

time window (Nunez et al., 2018). Due to the manner in which decoding from EEG signals is commonly 665 

implemented, the decoding performance is also reflective of the visual evoked potential patterns 666 

(Figure 3A, and Figure 7B and C). Since single trials are binned and averaged prior to decoding to 667 

increase signal-to-noise ratio (e.g., see Al-shargie et al., 2018; Bae and Luck, 2018 for similar ECOC-668 

based approaches), the decoding necessarily reflects differences between dominant VEP components 669 

during the window of above-chance classification. In this study, these largely correspond to the P1/N1 670 

window. The P1 component (peaking ~80-120 ms) is driven by luminance contrast and saturates once 671 

this contrast exceeds ~16% Weber contrast (Ellemberg et al., 2001; see also, Zemon and Gordon, 2006). 672 

Meanwhile, the N1 component (peaking ~150-200 ms) reflects both luminance and chromatic contrast 673 

and does not saturate (for normative data, see Porciatti and Sartucci, 1999). When luminance contrast 674 

is absent or low (i.e., at isoluminance as well as near it; see Rabin et al., 1994) it is the chromatic signals 675 

that drive the VEPs, influencing both their peak latency and amplitude in ways that would create more 676 

distinctive response representations across hues. Pitzalis et al. (2018) performed fMRI-guided source 677 

analysis of the cVEP and found that between 100 and 300 ms it was mainly driven by V1 and V8/VO 678 

activity, including feedforward and recurrent connections between them and other colour-sensitive 679 

areas. However, a high-level interpretation of the decoding on the basis of the categorical status of the 680 

stimulus colours is unlikely. Categorical representativeness ratings do not follow the pattern observed 681 

in the classifier performance (see Supplementary Figure S3C). The most parsimonious explanation for 682 

the pivots in colour space that drive asymmetries in decoding around unique hue locations would be 683 

that they correspond to hue locations that are associated with a more robust neural representation, thus 684 

making it more easily decodable from less robustly represented hues. 685 



 686 

 687 

Figure 8: Effect of representational anisotropies on decoding. The left panel shows a configuration of the 688 
distributions for the three groups (-, = and +) which can lead to poor decoding scores such as those observed 689 
within clusters of non-unique hues. The distributions overlap, and the distances between the distribution means 690 
(𝐫!, 𝐫", 𝐫#) are too narrow to allow for proper discrimination using a linear boundary. The two other panels show 691 
possible representational anisotropies around the central hue which can lead to better discrimination in the 692 
neighbourhood. A. Scenario 1: Reduced variability. This panel shows how a relative decrease in the variability of 693 
unique hue representations (=) can lead to better decoding for the neighbouring hues (- and +). B. Scenario 2: 694 
Expansive anisotropy. This panel shows how a dilation of representational distances in the neighbourhood of 695 
unique hues (=) can also lead to increased decoding scores for the surrounding hues. 696 

 697 

Secondly, classification performance for the decoding of hues diminished when luminance contrast was 698 

added (Figure 4 and Supplementary Figure S5). This was not entirely unexpected since luminance 699 

contrast is known to have a strong effect on EEG responses, once luminance contrast is sufficiently 700 

strong (Rabin et al., 1994). At the same time, we found that hues could be decoded at all luminance 701 

levels at above-chance levels within the same 100-300 ms window (Figure 5 and Supplementary 702 

Figure S6). Thus, under non-isoluminant conditions, not only are the hue-driven patterns more difficult 703 

to detect, but they may also be at least partly overridden or replaced by luminance-contrast or joint-704 

colour-and-luminance-contrast-driven activity. Our findings are consistent with the idea that in the 705 

visual cortex, hue is most likely to be encoded by neural populations which also encode luminance (see 706 

also Conway et al., 2007 for work in the extrastriate cortex). The fact that purely chromatic-tuned cells 707 

in the visual cortex are known to be in a minority compared to luminance-tuned or luminance-708 

chromaticity tuned cells (Johnson et al., 2001; Lennie et al., 1990) may partly explain why luminance 709 

signals tend to override chromatic information in EEG recordings from the occipital cluster. In V1-V3, 710 



the neurons are tuned to many intermediate directions, both in terms of hue and luminance contrast (for 711 

a review, see Gegenfurtner and Kiper, 2003). In higher-level areas of the extrastriate cortex, colour 712 

representations become organised in ways that resemble perceptual colour spaces (for macaque 713 

neurophysiology, see Bohon et al., 2016; Conway et al., 2007; and for fMRI in humans, see Brouwer 714 

and Heeger, 2013, 2009). Thus, the decoding in our study is likely to reflect cumulative effects that 715 

build up across these areas. Even though we find more robust responses for the two unique hues (red 716 

and green) compared to the two non-unique hues (orange and turquoise), decoding is still possible for 717 

non-unique hues, implying that there are indeed multiple hue representations that are being encoded by 718 

the brain (see, e.g., Brouwer and Heeger, 2009; Parkes et al., 2009; Zaidi and Conway, 2019).  719 

Thirdly, we show in Experiment 2, that the geometric structure of this representational space can be 720 

explored by carefully designed experiments. Our results demonstrate that while large distances in the 721 

neural representational space are indeed correlated with perceptual hue differences (Figure 6), there are 722 

local anisotropies associated with unique hues (Figure 7) which are likely to represent local changes in 723 

representational geometry and variability. Figure 8 illustrates two such scenarios which may be 724 

particularly relevant to unique hues. One possibility is the narrowing of representational probabilities 725 

around unique hues (middle panel, Figure 8). This would correlate with the reduced variabilities 726 

reported in large datasets of unique hue measurements (Xiao et al., 2013), and suggest that the reduced 727 

perceptual variability is also reflected in reduced variability in cortical representations. A second 728 

possibility is the dilation of the representational space in the neighbourhood of unique hues (right pane, 729 

Figure 8). This scenario would imply that there is an increase in the number of possible hue 730 

representations in the neighbourhood of unique hues compared to non-unique hues – reflecting an 731 

increase in cortical resources used for encoding. Note that these two scenarios are not exclusive, and by 732 

no means unique. Such tunings could reflect properties of our environment such as the statistical 733 

regularities in the reflectance spectra of naturally occurring surfaces (Philipona and O’Regan, 2006) or 734 

the degree of alignment with the daylight locus (Hermann et al., 2022). Alternatively, they may also be, 735 

at least in part, driven by a broader categorical distinction between warm and cool colours (Rosenthal 736 

et al., 2021). Perhaps this is the reason why the neural reality of perceptual red-green and blue-yellow 737 



hue-opponent mechanisms has proven to be so elusive – it is not a fundamental mechanism hard-wired 738 

into the neural circuitry, but a statistical peak in the tuning of neural populations, many of which 739 

multiplex both colour and luminance information. Such complex influences on the neural encoding 740 

would make hue-specific signals much harder to detect.  741 

 742 

A growing number of studies investigating population activity analyse EEG and MEG topographical 743 

data by interrogating timepoint-by-timepoint trajectories in activation manifolds. Our results suggest 744 

that the structure of such manifolds can be highly anisotropic, and that these anisotropies can reflect 745 

perceptual measurables. In the case of hue perception, it is possible that the local structure of this space 746 

is reflected in quasi-invariants such as the so-called unique hue percepts. Several reports have already 747 

established that a neurometric mapping of hue spaces using EEG information decoding is viable 748 

(Hajonides et al., 2021; Hermann et al., 2022; Rosenthal et al., 2021). This study marks a first 749 

hypothesis-based exploration of these maps and shows that unique hues may represent local 750 

anisotropies in cortical hue-representations.  751 
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