
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Optimisation strategies for multi-layered armour plates

Citation for published version:
Reis, I, Teixeira-Dias, F & Oliveira, JA 2023, 'Optimisation strategies for multi-layered armour plates',
International Journal of Modelling and Simulation. https://doi.org/10.1080/02286203.2023.2167505

Digital Object Identifier (DOI):
10.1080/02286203.2023.2167505

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
International Journal of Modelling and Simulation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 10. Feb. 2023

https://doi.org/10.1080/02286203.2023.2167505
https://doi.org/10.1080/02286203.2023.2167505
https://www.research.ed.ac.uk/en/publications/8feeacbc-b16b-4776-af34-e9d177175e5d


ARTICLE TEMPLATE

Optimisation strategies for multi-layered armour plates

I. Reisa, F. Teixeira-Diasb and J. Dias-de-Oliveiraaa

aTEMA, Department of Mechanical Engineering, Universidade de Aveiro, Portugal; bSchool of
Engineering, The University of Edinburgh, United Kingdom

ARTICLE HISTORY
Compiled January 30, 2023

ABSTRACT
A set of non-linear optimisation algorithms are combined with a finite element simulation
code to analyse an energy absorption and elastic stress wave propagation problem in multi-
layer/multimaterial armour systems under ballistic impacts. An Abaqus Python script is used
to simulate the ballistic event and to generate the variables and post-processing outputs neces-
sary for the integration with the optimisation algorithms. A number of modelling strategies are
considered and three optimisation algorithms are used: Particle Swarm Optimisation (PSO),
Genetic Algorithm (GA) and Simulated Annealing (SA). The performance and efficiency of
each algorithm are assessed through four benchmark tests with different levels of complexity.
A multi-objective optimisation procedure is proposed that uses the most efficient algorithm
based on every single-objective formulation, variables and constraints from the benchmark
tests, resulting in a highly non-linear problem. The proposed optimisation methods success-
fully achieve the study purposes both in the simulation of generic ballistic impacts and in
the quality of the optimised solutions, demonstrating the potential for this type of optimisa-
tion method on terminal ballistic applications, serving as a standpoint for further studies into
higher energy impacts and material non-linearities.

KEYWORDS
Design optimisation; Armour systems; Terminal ballistics; Genetic algorithm; Particle swarm
optimisation; Simulated annealing; Multi-objective optimisation

1. Introduction and Background

There has been a prevalent need for continuous research on lightweight Armour and Protec-
tion Systems (APS) since centuries ago. The use of metals (and some natural materials such
as leather) prevailed on most armour systems until the 1960s and the Vietnam war, where for
example ceramics started being used in helicopter APS.

1.1. Armour Materials and Structures

There are four main metallic materials (steel, aluminium, magnesium and titanium, and their
alloys) that are practical and functional in armour applications. Only steel and aluminium,
however, are currently widely used, mostly due to raw material costs and their workability and
weldability. These two metals and their alloys have been widely used as they offer reasonable
hardness with good ductility and toughness [1]. Their usage in protective structures might,
however, become obsolete as there are light-weight non-metallic alternatives available such
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as ceramics and high-strength fibres and their composites. Nonetheless, it is still likely that
metals will be used in APS for some time, also because of current developments in porous
or micro- and nano-architecture structures, resulting in promising designs such as cermets
(hybrid armour systems made of a ceramic-metal combinations) and auxetic structures.

Trials were done in 1992 to prove that a two-layer design combining a ceramic with alu-
minium presents reasonable mechanic properties with lower areal density than a single layer
metallic plate [2]. Since then, two-layer and multiple layer design configurations have been
widely used in modern armour structures. The underlying physical and design principle is
to have a hard ceramic front plate, which can break the projectile, and a rear ductile plate
(e.g. metallic or polymeric) to help contain the bullet and fragments, and absorb the remain-
ing kinetic energy of the impactor. The hard front plate will also attenuate the concentrated
pressure on the rear plate by distributing it on the plate plane [3]. A multi-layer configuration
additionally alters the wave propagation velocity, with potential for reducing it and attenuat-
ing damage.

Hybrid structures are combinations of two or more materials assembled in such ways as to
have attributes not offered by either one of the components alone [4]. These are often obtained
by filling gaps in a structure with a second material. They can, however, also be sandwich
structures, foams, etc. The properties of hybrid structures are becoming better understood and
controlled, and one example is the use of ceramic inclusions to enhance projectile deflection,
cause self-sealing of the hole and force shear localisation [5]. Ths use of high-performance
fibres (e.g. woven fabrics) is also a common approach, making use of the typically high tensile
strength of the fibres (2−3 GPa) and their relatively low densities (1000−1500 kg/m3), while
simultaneously showing reasonable strain to failure (3− 6%) and excellent energy absorbing
capability [1].

1.2. Optimisation of Multi-layered Armour Plates

In 2005 Park et al. [6] tested multi-layered plates under ballistic impact in one of the first
experimental campaigns targeting the design optimisation of multi-layered plates. The main
aim of this study was to minimise the weight of the target by adjusting layer thicknesses with-
out compromising the APS integrity on a high velocity impact, that is, ensuring there is no
projectile perforation. A Lagrangian explicit time integration finite element code (NET2D)
developed by two of the authors was used for the simulations. The Johnson-Cook constitu-
tive model was implemented due to the high strain-rate plastic deformations involved and
temperature-dependent material behaviour. The authors observed that the objective of min-
imising strain energy to maximise the strength of the target can also be expressed by min-
imising the average temperature or average equivalent plastic strain (EQPS). Two interesting
case studies were looked at: (i) one where the objective was to minimise the average tempera-
ture, and (ii) another where the objective was to minimise the EQPS. The restrictions for both
cases were identical, and related to layer thicknesses and to limiting the maximum EQPS at
critical locations. The optimisation algorithm used was a Response Surface Method (RSM)
and, in the end, both objective-functions presented similar results. The optimal results from
the optimisation algorithms agreed with the results from NET2D. Although this was one of
the first studies on structure optimisation in transient events, the need and the potential for
further work is clear.

Yong et al. [7] presented a study on the application of genetic algorithms for optimising
the response of composite material structures from impact loads. Two optimisation scenarios
were presented and discussed: (i) the low velocity impact on a slender laminated strip and (ii)
the high velocity impact on a rectangular plate, using a spherical impactor. The goal was to
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minimise the peak deflection of the impacted plate and to minimise the penetration velocity
or maximise the rebound velocity, respectively. The variables in both cases were the ply angle
stacking sequences. It is worth noting, however, that in the former scenario the ideal stacking
sequence was already known to be 0° for all plies. The low velocity case-study was used as
benchmark for the algorithm techniques. A genetic algorithm coupled to the commercial hy-
drocode LS-DYNA was adopted to simulate the impact cases. A comparison with a commer-
cial optimisation package (LS-OPT), that included optimisation methods such as the Monte
Carlo and Neural Network techniques, was also made. For the low velocity benchmark, the
results from both the Monte Carlo and the neural network techniques were particularly good.
It was observed that the Monte Carlo method performed better for smaller test sets while the
neural network had better results for larger sets. The adopted genetic algorithm performed
better for the high velocity scenario, where the search space is larger and non-linear.

A study by the same authors [8] focused on applying the same genetic algorithm coupled
to LS-DYNA to optimise hybrid multilayered plates subjected to ballistic impacts. In this
study, low cost but sufficiently accurate models were generated to be used by the optimi-
sation algorithm to generate new hybrid off-springs. The goal was to minimise weight and
design costs from a selection of isotropic metals, polymers and orthotropic fibre-reinforced
laminates. Both the number of plies and the mechanical properties of the materials were prob-
lem variables, while the overall thickness was kept constant. Experimental validation of the
optimal designs was successful using a single stage gas gun. Nevertheless, the authors are
clear that further work needs to be done with sufficient computational power and using finer
meshes, equations of state and sophisticated material models so that hybrid systems can be
identified from a wider range of materials, designs and threats.

This work intends to further understand the potential of optimisation strategies for the
design of hybrid multilayered plates. It focuses on the way these structures and materials
influence the propagation of elastic waves during impact, namely on the influence of material
combination of material layers and on the interlayer as an energy absorbing layer. This is
done while studying the behaviour of optimisation procedures using different algorithms and
problem formulations (i.e. variables, objective functions and constraints).

2. Model design and specifications

This work is based on a ballistic impact model with a target and an impactor. Both are
naturally affected by the elastic and/or plastic waves generated by the impact. The one-
dimensional elastic wave speed in the projectile and the elastic wave speed in the semi-infinite
plate are

c =
√

E/ρ and (1)

cp =

√
Ep(1− νp)

ρp(1 + νp)(1− 2νp)
,

respectively, where E is the Young’s modulus, ν is the Poisson’s ratio and ρ is the material
density [1]. In more complex media, such as multi-layer armour plates, the transmission of
elastic waves depends not only on material properties but also on the nature of the interfaces
and contacts between layers. Assuming perfectly bonded layers, a pressure pulse with inten-
sity σi arriving at the interface will be partly transmitted into the connected layer and partly
reflected back into the layer where it originated. The intensity of the transmitted pulse is σt
and the intensity of the reflected pulse is σr. The proportions of the incident wave that are
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reflected and transmitted depend on the relative mechanical impedance of the system. The
mechanical impedance is Z =

√
Eρ = ρc. Assuming the interface between two layers A and

B is in equilibrium, the intensities of the stress pulses can be related as

σi = σt + σr. (2)

Additionally, continuity at the interface is defined as a function of particle velocities as

ui = ut + ur. (3)

The transmitted and reflected wave fractions can be found by combining Equations 2 and 3,
leading to

σt
σi

=
2
√
EBρB√

EAρA +
√
EBρB

=
2ZB

ZA + ZB
, (4)

σr
σi

= 2

(√
EBρB −

√
EAρA√

EAρA +
√
EBρB

)
(5)

=
2(ZB − ZA)

ZA + ZB
.

From these wave relations it can be seen that the transmitted wave is always positive (com-
pressive) whilst the reflected wave can be either positive or negative (compressive or tensile,
respectively) depending on the ratio of the mechanical impedance of both materials. If layer
B has lower impedance the reflected wave will be tensile, and compressive if the mechanical
impedance of layer A is the lowest. In the absence of a backing plate (e.g. if material B is air),
the incident stress wave is all reflected back.

The multi-layer target system in this work consists of a three-layer plate with a wave-
facing area 500 × 300 [mm2]. The front and rear plates are 25 mm thick, and the inter-layer
is 10 mm thick. The stress pulse is generated by the impact of a blunt cylinder with diameter
20 mm and length 60 mm. Figure 1 shows an example of the observed pressure (stress) pulse
as recorded on the rear face of the target. Abaqus was used in this work for the simulation
procedures. The element type used for the plates was the eight-node hexaedron with reduced
integration (C3D8R), with hourglass control. For the projectile, as a rigid body, a four-node
bi-linear rigid quadrilateral (R3D4) was used. Besides using symmetry boundary conditions
in the 1/4 simplified model, a boundary condition set was also established regarding how the
plate is supported. Three different scenarios were studied: (i) clamping of the side surfaces,
(ii) pinning of the side edges of the rear surface and (iii) clamping of the rear surface. The
third boundary condition set (shown in figure 2) presents a more stable behaviour throughout
the entire impact duration, both in the analysis of through-thickness and in-plane phenomena.
This is related to the fact that this configuration reduces interference between the different
wave propagation directions, providing a more controlled setup for the studies in this work.
Python scripts were used to automate the model generation and update for each ballistic event.
This is essential for the optimisation procedures, namely to generate the variables and post-
processing outputs necessary for the integration with the optimisation algorithms.

4



0 20 40 60 80 100

−40

−20

0

20

Time, t [µs]
St

re
ss

,σ̄
[M

Pa
]

Figure 1.: First 100 µs of the stress pulse at the rear face of the target.

symmetry

symmetry

clamped

Figure 2.: Ballystic model with impactor and three target layers, including partitions for struc-
tured mesh generation, and boundary conditions.

2.1. Mesh Convergence

Pressure pulses can propagate in solids as different types of waves (e.g. transverse, longitu-
dinal) [9]. In numerical simulation, an optimal discretisation is critical to ensure wave propa-
gation is captured accurately. To this end, two separate mesh convergence analyses are done,
to ensure the in-plane and through-thickness wave propagation phenomena are captured ac-
curately: (i) a convergence study on the plate’s plane and (ii) a convergence study along the
plate’s thickness. The peak stress at the rear face of the plate is used as convergence parame-
ter. A single plate Finite Element (FE) model is used for this analysis, with eight-node brick
elements with reduced integration and hourglass control. The projectile is modelled as a rigid
body with four-node bi-linear rigid quadrilateral elements.

For the in-plane analysis, the mesh size is varied while keeping the through-thickness di-
rection size constant and equal to 3 mm. A parametric study is done for 11 different finite
element sizes in the range 1 − 50 mm. Figure 3a shows the evolution of the average peak
stress at the plate’s rear face and the CPU time for each simulation as a function of the num-
ber of elements. It can be seen that the CPU time increases more than ten fold when refining
the in-plane mesh from 80, 304 to 564, 604 elements, with an associated increase of 15% in
the rear face peak stress. The coarser finite element mesh with 80, 304 is chosen as an optimal
compromise (see dashed line in Figure 3a).

The results in Figure 3b show the results for the through-thickness mesh analysis. A similar
procedure was used here, where 11 different discretisations were done for mesh sizes in the
range 0.1− 10 mm. The CPU time increases significantly (> 37%) when refining the trough
thickness mesh from 26, 880 to 77, 500 elements, with an increase of the rear face peak stress
of only 2.4%. The finite element mesh with 26, 880 is thus chosen as optimal (see dashed line
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Figure 3.: Mesh convergence analysis: peak stress at the rear face of the plate and CPU time
for the (a) in-plane and (b) through-thickness mess size analyses. Dashed line indicates opti-
mised mesh discretisation in each case.

in Figure 3b). The final optimised structured mesh is shown in Figure 4. Element density is
not constant on the plate to minimise CPU time without compromising the ability to capture
the propagation of stress waves. Figure 5 presents stress isovalues for two example stages
during the event, showing stress propagation both through-thickness and in plane.

Figure 4.: Optimised finite element mesh showing detail (right) of the impact area and
through-thickness discretisation.

Figure 5.: Illustration of stress propagation in-plane (left) and through-thickness (right).

3. Dynamic response of the system

The transient nature of the dynamics response of the system is analysed and discussed in the
following paragraphs. To achieve this it is important to first validate the numerical model,
which can be done by comparing measured (numerical) to calculated (analytical) dynamic
forces in the system.
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3.1. Contact force and resultant stress

A comparison is made between the force calculated due to the acceleration induced in the
projectile and the average contact force during the contact period. The force due to the average
deceleration of the projectile while in contact with the target can be estimated as

F = m

∣∣∣∣v1 − v0
t1 − t0

∣∣∣∣ = 13.08 kN, (6)

where m is the mass of the projectile, v is the velocity, t is the time and the subscripts 0
and 1 designate the initial and final instants, respectively. The average contact force while the
projectile is in contact obtained numerically is 13.07 kN, which corresponds to a difference
lower than 0.1%.

Combining the resultant force in Equation 6 and the contact area between the projectile
and the plate, the resultant contact stress can be calculated as σc = Fc/Ac = 41.7 MPa. The
average stress while the projectile and plate are in contact is 37.1 MPa, which corresponds to
a 11.6% difference to the calculated value.

3.2. Wave dynamics

The elastic wave needs to be captured with sufficient resolution to allow for accurate results.
To achieve this, it is necessary to ensure: (i) the size of the time increment is low enough to
capture the smallest natural period of interest, and (ii) element size is small enough to capture
wave length [10].

The target is an aluminium plate with Young’s modulus E = 70 GPa, Poisson’s ratio
ν = 0.33 and density ρ = 2700 kg/m3, which gives a theoretical elastic wave speed c =
6197.8 m/s (see Equation 2). The corresponding impulse wavelength is Iw = 2cdt = 0.025 m
[10] and, therefore, a mesh size of h = 1×10−3 m was used in the simulations. Recalling that
h < Iw, this would be sufficient to capture the propagation of the elastic wave. The critical
time increment can be calculated as

∆t =
h

c
= 1.61× 10−7 s. (7)

It should be noted that the Courant-Friedrichs-Lewy condition (CFL condition) is met [11,12]
by using a maximum time increment of 1.0× 10−7 s and a mesh size h = 1× 10−3 m.

The numerical elastic wave velocity was calculated by tracking displacements on three
nodes, as shown in Figure 6. The displacement along the Ox direction for each one of these
nodes is shown in Figure 7, from which the instant when the wave reaches the node — the time
of arrival of the wave — can be clearly determined. The numerical elastic wave speed was
found to be c̄ = 6134.6 m/s, which is very close to the theoretical wave speed c = 6197.8 m/s
(see equation 2), with a relative difference of approximately 1%.

Figure 8 shows the propagation of the initial and reflected elastic waves on the surface of
the plate at different instants. The first snapshot, taken at t = 54 µs clearly shows the circular
nature of the in-plane initial wave. The first reflections start to be visible at around t = 92 µs,
from the interaction with the longer edge of the rectangular plate. The first reflection at the
shorter edge of the plate is visible at approximately t = 98 µs, and complex wave interactions
and interference are visible from there onward, as can be seen in the snapshot at t = 128 µs
in Figure 8d.
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Figure 6.: Location of control nodes P1, P2 and P3 on the symmetry plane of the plate, at 82,
132 and 203 mm from the impact location, respectively.
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Figure 7.: Displacement history of the control nodes P1, P2 and P3. The time of arrival of the
wave to each control node is used to calculate the elastic wave speed.

3.3. The interlayer

This section addresses the mechanical response of the energy absorbing interlayer and how
this depends on its material and geometrical parameters. Three different parameters are anal-
ysed: (i) the interlayer thickness, (ii) the interlayer elastic material parameters and (iii) the
projectile impact velocity. The mechanical properties of the tested interlayer materials are
listed in Table 1 and the bar chart in Figure 9 compares their mechanical impedance.

The results in Figure 10a show the correlation between the peak stress at the rear face of
the plate for an impact velocity vp = 20 m/s, for the four interlayer materials. The interlayer
thickness is a dominant factor that dictates the propagation of stress. The thickness of the
layer in which the stress wave propagates is directly proportional to the time of arrival of
the wave at its rear face [14]. This is supported by the results in Figure 10a, where it can
be observed that the stress decreases with the increase of the interlayer thickness, regardless
of the material. This relation is, however, not strictly linear. From all the tested materials, it
can be seen that the material that led to a lower peak stress at the rear face, regardless of the
thicknesses, was the aluminium foam, which presented a significantly lower stress compared
to the other materials. This is counter-intuitive because EPDM has lower impedance, which
should result in a higher impedance mismatch at the interface, noting that a higher impedance
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(a) (b)

(c) (d)

Figure 8.: Impact and reflected wave propagation on the surface of the plate at (a) t = 54 µs,
(b) t = 92 µs, (c) t = 98 µs and (d) t = 128 µs.

Table 1.: Mechanical properties of the interlayer materials [13]

Material Young’s Density Yield stress Poisson’s Impedance
modulus [MPa] [kg/m3] [MPa] ratio [–] [kg/(m2s)] ×104

EPDM 2.5 960 16.8 0.499 4.9
Aluminium foam 103.08 410 1.24 0.05 20.6
Cork 9000 293 1.0 0.30 162.4
Nylon-6 3000 1140 82 0.35 184.9

Aluminium (plate) 70× 103 2700 276 0.33 1374.8
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Figure 9.: Mechanical impedance of the interlayer materials.

mismatch leads to a more effective stress attenuation [1]. However, the cellular structure of
the aluminium foam (and its consequent low density) play an important role in the wave
propagation. It can thus be concluded that the impedance mismatch between layers is not
sufficient to ensure effective stress attenuation. Different variables, such as the material’s
internal structure (which might also affect its density) and Poisson’s ratio are also important
parameters to consider.

The results in Figure 10b show the effect of the projectile velocity on the peak stress at the
rear face of the plate. These results suggest that the increase in the projectile’s velocity leads to
an almost linear increase on the stress, regardless on the interlayer material. It should be noted,
however, that plastic strains at the interlayer are visible for velocities above vp = 10 m/s for
Nylon-6 and above vp = 5 m/s for cork. This leads to energy dissipation which is a possible
explanation for the deviation from a linear relation between the impact velocity and the stress.
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Figure 10.: Peak stress at the rear face of the target as a function of (a) the thickness of the
interlayer and (b) the projectile impact velocity.

4. Optimisation framework

Optimisation is an increasingly important field on the development of engineering systems,
going beyond trial and error approaches when seeking either to minimise resources or to max-
imise the desired benefit [15]. The general formal mathematical statement of an optimisation
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problem can be expressed as

minimise f(x) (8)
subjected to gj(x) ≤ 0, j = 1, 2, . . . ,m

hk(x) = 0, k = 1, 2, . . . , l

xmin
i ≤ xi ≤ xmax

i , i = 1, 2, . . . , n,

where f(x) is the objective function, g(x) are m inequality constraints, h(x) are l equality
constraints and x are the n project variables within the lower and upper boundaries.

In this work, the Exterior Penalty Function Method (EPFM) is used to replace the originally
constrained optimisation problems with a series of unconstrained problems. This updates the
general formulation in Equation 8 by adding a penalty function P to the objective function
as [16]

minimise F (x, rh, rg) = f(x) + P (x, rh, rg) (9)

xmin
i ≤ xi ≤ xmax

i , i = 1, 2, . . . , n,

where rh and rg are constant penalty parameters and F is the augmented objective function.
The penalty function is used for both equality and inequality constraints, and is equal to zero
within the feasible region.

4.1. Optimisation algorithms

This section describes the three non-linear optimisation algorithms used in this work: (i) Par-
ticle Swarm Optimisation (PSO), (ii) Genetic Algorithm (GA) and (iii) Simulated Annealing
(SA). All these are evolutionary algorithms [17] within meta-heuristics, which rely on prob-
abilistic techniques.

4.1.1. Particle swarm optimisation

Particle Swarm Optimisation (PSO) was originally introduced by Kennedy and Eberhart [18],
and Shi and Eberhart [19], and it was initially intended to simulate social behaviour. It was
only when this algorithm was simplified that its optimisation performance and abilities be-
came evident [19]. PSO aims to mimic the movement and behaviour of organisms (e.g. birds,
fish or insects) by what is described as swarm intelligence [20].

PSO generates a swarm of n individual particles and, as suggested by [19], each particle
i ∈ {1, . . . , n} is given a random position vector within the search domain S (xki ∈ S) and a
random velocity vector vki . The initial position (k = 0) for each particle is

xk=0
i = bmin + r (bmax − bmin) , (10)

where r ∈ [0, 1] is a constant, and bmin and bmax are the lower and upper bounds of the design
variable search domain, respectively. Similarly, the initial velocity is

vk=0
i = U

(
− |bmax − bmin| , |bmax − bmin|

)
, (11)

where U is a random value within the uniformly distributed range(
− |bmax − bmin| , |bmax − bmin|

)
. Each particle i is then evaluated by the objective func-
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tion and their velocity vki updated according to

vki ← ωvk−1
i + ϕprp

(
pk−1
i − xk−1

i

)
(12)

+ϕgrg

(
gk−1 − xk−1

i

)
.

ω is the inertia weight, a specific PSO parameter, and ϕp and ϕg are the cognitive and social
parameters, respectively. The cognitive parameter (p) represents the best current position of
the particle, and the social parameter (g) is the global best current position. rp ∈ [0, 1] and
rg ∈ [0, 1] are constants. Subsequently, for each new iteration the position xki is updated
according to the previous position xk−1

i and the updated velocity vki , as

xki = xk−1
i + vki . (13)

4.1.2. Genetic algorithm

Genetic Algorithms (GA) are based on natural selection. These are based on the concept of
Darwin’s theory of evolution and were originally introduced by John Holland in 1960 and
later further developed by his student David E. Goldberg [21]. As an evolutionary algorithms,
a genetic algorithms imply the definition of an initial population of individual solutions. GA
then relies on operators such as mutation, crossover and selection to improve the individual’s
solution at each generation. Due to their powerful and efficient operators, GA can be used to
solve a broad range of optimisation problems, including highly nonlinear, stochastic and non-
differentiable functions. This versatility led to their frequent implementation in design and
engineering optimisation problems. GA are based on an iterative process where a given pop-
ulation of candidate solutions — the individuals — is evolved toward better solutions. Each
individual has a specific set of properties — the chromosomes —, which are usually encoded
in a binary array. This unique characteristic makes each individual vulnerable to changes in
their chromosome, either through crossover with another individual or through other opera-
tors. Each individual’s chromosome is then decoded and tested by a fitness function [22]. The
fittest individuals, which represent the best solutions to the optimisation problem, ensure their
legacy in further generations and have a higher probability of being selected for crossover.

4.1.3. Simulated annealing

Simulated Annealing (SA) mimics the procedure of annealing with the purpose of finding an
approximation for a global minimum for a function with a large number of variables [23,24].
The inspiration for this algorithm comes from the annealing heat treatment in metallurgy. The
concept of slow cooling implemented in the SA algorithm corresponds to a gradual decrease
of the probability of keeping worse solutions as the search domain is explored. This notion
of accepting worse solutions is part of the intrinsic nature of the SA algorithm and is a fun-
damental property of meta-heuristics as a whole as it allows a broader search of the global
optimum solution and, ultimately, avoids local minima.

The optimisation process starts by initialising a random position xcurr for the variable
within the upper and lower boundaries U(blow, bup). Tthe main iterative loop is then initiated
and a neighbour position xprop is defined based of the current position xcurr and a constant k
that defines the maximum distance the neighbour can be from the current position. The quality
of these two positions is evaluated and, if the neighbour corresponds to a better solution, the
algorithm moves towards it by replacing the current with the neighbour position and solution.
If the neighbour solution is worse than the current one, it may still be accepted depending on
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the acceptance probability

P =

{
exp

[
C(xprop)− C(xbest)

Tcurr

]}−1

, (14)

where T and C are the temperature and the objective function solutions, respectively. Sub-
scripts prop and best designate the current proposed solution and the best solution, respec-
tively. If the acceptance probability P is lower than random[0, 1], the neighbour solution is
accepted, even if worse. The last step of each iteration is to update the current temperature
Tcurr, which decreases depending on the cooling parameter α, updated for each iteration as
T ∗

curr = αTcurr. As the temperature decreases, so does the probability of acceptance P . This
results in a gradually lower probability of accepting worse solutions as the iterative process
and convergence evolves.

5. Optimisation studies

The optimisation algorithms are divided into four main benchmarks, labelled B#, with in-
creasing complexity, studying their behaviour for different design variables, objective func-
tions and constraints, strategies and algorithm parameters, listed in Table 2. Optimisation
algorithms are tested and compared according to different objective functions (weight and
stress minimisation) and constraints (stress and weight upper limits), using both continuous
(thickness) and discrete (material index) variables. BD5 is an extension of BD3, where the
addition of a displacement constraint is tested as a way to control the solution and verifica-
tion of the robustness of the implemented tools. This is expanded in Section 5.6), where the
best algorithm is selected to perform a multi-objective optimisation as a combination of the
previous analyses.

Table 2.: Characteristics of the optimisation studies, including variables, constraints and al-
gorithms.

B# Minimisation of Variables Constraints Algorithms

BC1 (Sec.
5.1)

Weight (W ) thickness (tint, continuous) σz, max PSO, GA, SA

BC2 (Sec.
5.2)

Rear stress (S) thickness (tint, continuous) wmax PSO, GA, SA

BD3 (Sec.
5.3)

Weight (W ) material (x, discrete) σz, max PSO, GA, SA

BD4 (Sec.
5.4)

Rear stress (S) material (x, discrete) wmax PSO, GA, SA

BD5 (Sec.
5.5)

Weight (W ) material (x, discrete) σz, max, uz,max PSO

5.1. BC1 (continuous variable — Weight minimisation with stress constraint)

Benchmark BC1 aim to minimise F (tint, rg, β), which is the the plate’s weight function
W (tint) augmented with the penalty function P (tint, rg, β). The design variable is the inter-
layer thickness, tint, with the search domain [1, 50]× 10−3 m. The constraint is the maximum
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stress σz, max at the rear surface. The formulation of this benchmark is then to

minimise F (tint, rg, β) = W (tint) (15)
+P (tint, rg, β)

subjected to tint, min ≤ tint ≤ tint, max

g(x) = σz − σz, max ≤ 0

with

W (tint) = L×B [tfrontρfront + tintρint + trearρrear] , (16)

where L and B are the length and breadth of each layer, respectively, and ρ is the density of
the material. The penalty function, with rg = 2 and β = 2 penalises the objective function if
the measured peak stress σz, max at the rear face of the target (see Section 2) is above σz, max =
50 MPa. For this benchmark, the front and rear plates, as well as the interlayer are made of
aluminium, steel and Nylon-6, respectively, with the material properties listed in Table 3 [13].
The projectile impact velocity is 5 m/s.

Table 3.: Material properties.

ID Material Density Young’s modulus Poisson’s ratio Yield stress
[kg/m3] [MPa] [−] [MPa]

0 Aluminium 2700 70× 103 0.33 276
1 Nylon-6 1140 3× 103 0.35 82
2 Steel 7850 200× 103 0.25 350
3 EPDM 960 2.5 0.499 16.8
4 Cork 293 9× 103 0.3 1
5 Aluminium Foam 410 103.08 0.05 1.24
6 Polycarbonate 1300 1.8× 103 0.3182 63
7 Epoxy 1540 3.5× 103 0.33 15
8 Titanium Ti-6Al-4V 4430 113.8× 103 0.342 880

The optimisation variable tint is continuous and limited to the search domain [1, 50] ×
10−3 m, which is normalised to [0, 1] to increase implementation flexibility. While not strictly
necessary in this case, this is a useful approach when dealing with multiple problems, as is
the case of the multi-objective optimisation procedures. This is generally applied to objective
functions, which are normalised using a feature scaling approach [25] taking the first feasible
solution, f0, as reference, i.e.

fnorm =
fi
f0

, (17)

where fnorm is the normalised solution.
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5.1.1. BC1 — PSO

PSO parameters are sensitive to each particular optimisation problem [26] and require cali-
bration. The parameters used for BC1 are listed in Table 4 [27–29].

Table 4.: Particle Swarm Optimisation (PSO) operational parameters [27–29].

Particles Iter. ω ϕp ϕg v0i

15 30 0.5 1 2 ran(−1,1)×0.2

The behaviour of the PSO algorithm for benchmark BC1 is represented in Figure 11. Im-
mediately after the first iteration, the PSO converges to a solution which is only ∼ 0.0011%
different from the final and optimal solution of 40.186907 kg. It should be noted, however,
that strictly meta-heuristic methods can not ensure a global optimum solution [30] and, thus,
this solution might simply be a local optimum. The average and worst solution of each popu-
lation at every iteration is also taken into consideration, as shown in Figure 11a. From these
normalised results, it is clear that this is a stochastic but also evolutionary algorithm. In the
first few iterations, a decent discrepancy between the best, average and worst solutions of a
population becomes noticeable. This is due to the random positions and velocities attributed to
the initial individuals, highlighting the stochastic nature. However, due to social and cognitive
parameters, the position of each particle tends to evolve. This is illustrated by the monotonous
convergence of both the average and worst solutions to the best global solution for increasing
number of iterations.

The evolution of particle positions, culminating in solutions that converge to the overall
best solution is shown in Figure 11b. The initial solutions are intentionally dispersed to cover
the search space. This strategy reduces the possibility of converging to a local optimum.
Nevertheless, if parameters such as the number of particles are not high enough, the objective
function is likely to converge to a local optimum. Besides, due its stochastic nature, the results
of several attempts using the same PSO parameters may differ even if only slightly, as will be
discussed later.

5.1.2. BC1 — GA

The genetic operators adopted in the first benchmark, listed in Table 5, were adjusted empiri-
cally [7,8,31,32].

Table 5.: Genetic Algorithm (GA) operational parameters for benchmark BC1 [7,8,31,32].

Population 20
Individuals 30
Crossover 80%
Mutation 20%
Chromosome Length 32

The evolution of the objective function is shown in Figure 12a, by comparing the average,
worst and best solution for each evaluation. This emphasises the influence of the penalty func-
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Figure 11.: (a) Evolution of the best, worst and mean values of the objective function with the
number of iterations, for the PSO in BC1. (b) Comparison of the solution at each evaluation
without penalisation with the overall best solution at each iteration, for the PSO in BC1.

tion as is noticeable that some evaluations surpass the constraint threshold and are penalised.
Both the worst and average curves show sporadic evaluations that correspond to abnormal
high results, indicating that they were penalised. Nevertheless, the evolution of the average
and worst solution curves towards the overall best solution is considered adequate. Comparing
with the results from the PSO algorithm in the previous section, however, the GA algorithm
shows a slower rate of convergence to the overall best solution. This method also shows a
wider dispersion of solutions over its population, with varying levels of performance of each
individual.

The underlying structure of the GA and its evolution are evident in the results in Figure 12b.
The final solution and the rate at which the objective function converges are heavily dependent
on the first individual’s genome. Thus, the number of generations required to converge to the
optimum solution and the optimum solution itself may diverge every time the GA algorithm
is tested.
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Figure 12.: (a) Evolution of the best, worst and mean values of the objective function with the
number of iterations, for the GA in BC1. (b) Comparison of the solution at each evaluation
without penalisation with the overall best solution at each iteration, for the GA in BC1.
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5.1.3. BC1 — SA

Although belonging to the same field of evolutionary algorithms as the GA and PSO, the
SA has a peculiar search strategy (vd. Sec. 4.1.3). The main operational parameter, the tem-
perature, controls the progression of the objective function. This parameter depends on the
cooling factor, which directly influences how quickly the objective function converges. If this
parameter is low, it may lead to a premature convergence that results in stagnation on a lo-
cal optimum. If instead the cooling parameter is high, the algorithm will need more time to
converge to the optimum solution and, thus becoming computationally more expensive. The
parameters used in this benchmark for the SA algorithm are listed in Table 6 [33–35].

Table 6.: Simulated Annealing (SA) operational parameters [33–35].

Iterations 40
Evaluations per iteration 10
T 1000
α 0.65
kstep 0.1

A distinct evolution strategy is visible from the evolution of the objective function shown
in Figure 13, when comparing to the more linear results from the PSO and GA. The objective
function suggests to be evolving to continuously worst solutions until iteration 13, after which
it starts to converge to the optimal solution at iteration 19. This peculiar search strategy is
intrinsic to SA. As the temperature is still high, there is a correlated probability (vd. Sec.
4.1.3) for the current evaluated solution to be accepted, even if that solution is worse than the
previous one. As the temperature decreases (due to the cooling parameter (α) the acceptance
probability also decreases resulting in the acceptance of new better solutions.

The evolution of best, average and worst solution for each iteration, as well as the curve
of the temperature evolution are shown in Figure 13a. The average and worst curves increase
drastically after iteration 17. This happens simultaneously with the temperature curve reach-
ing a sufficiently low threshold (set at T < 1), allowing the SA formulation to reduce the
probability of accepting worse solutions. After this, the SA algorithm will only accept better
solutions and the position of each evaluation will steadily approach the optimum position.
Because the optimum position leads to a solution that is at the limit of being penalised, the
chance of the algorithm generating a position beyond this limit is high. The result is then an
immediate increase of the worst and average curves.

The comparison of the evaluations to the best solution in each iteration is plotted in Fig-
ure 13b, showing that evaluations have a reduced spread over each iteration. This is caused by
the kstep parameter controlling the maximum and minimum ranges by which the new position
can exceed the previous. Consequently, results obtained from the SA algorithm do not intrin-
sically evolve towards a better solution based on previous solutions, as is the case with the
GA and PSO. This also supports the fact that, although the SA is an evolutionary algorithm,
it is more stochastic in nature than the PSO and GA.

5.1.4. BC1 — Summary

The output of each algorithm is listed in Table 7 showing that the algorithm with the best per-
formance in this benchmark is the PSO as it was the one that reached the lowest weight and
interlayer thickness of 40.18691 kg and 0.00365 m, respectively. Although the SA reached
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Figure 13.: (a) Evolution of the best, worst and mean values of the objective function with the
number of iterations, for the SA in BC1. (b) Comparison of the solution at each evaluation
without penalisation with the overall best solution at each iteration, for the SA in BC1.

a local optimum in 188 evaluations the PSO reached a better solution than the SA at itera-
tion 2 (15 evaluations), corresponding to 40.187359 kg. The GA produced the second best
solution, and the best average and standard deviation. These results are, however, relative
because the PSO had a considerably bad first iteration (41.194223 kg). Not considering this
first iteration, the average and standard deviation drops to values lower than those of the GA,
at 40.187257 kg and 0.000135652, respectively. In order to investigate how the stochastic
nature the algorithms affects the results, this benchmark was executed five times, with the
corresponding results listed in Table 8. It can be seen that for every execution the results from
the PSO algorithm are the lowest, rendering this algorithm the most efficient.

Table 7.: BC1 final results for the different algorithms.

BC1 PSO BC1 GA BC1 SA

Best Solution [kg] 40.18691 40.19316 40.19709
Average [kg] 40.22198 40.20398 44.49111
Standard Deviation 0.183737 0.005402 2.464782
Best Variable [m] 0.00365 0.003688 0.00371
Evaluations until best solution 428 807 188

5.2. BC2 (Continuous variable — Rear stress minimisation with weight constraint)

The objective function, F (tint, rg, β), for this second benchmark is used to minimise the stress
on the rear face of the plate, S(tint). The design variable is again the interlayer thickness tint

18



Table 8.: BC1 final results after running five times for each algorithm.

Run BC1 PSO BC1 GA BC1 SA

1 40.186896 40.193157 40.19709
2 40.186907 40.201195 40.19290
3 40.186896 40.266657 40.18923
4 40.186932 40.265890 40.20305
5 40.186897 40.260264 40.18873

Average [kg] 40.1869 40.2374 40.1942

with the same limit constraints [1, 50]× 10−3 m. The compact formulation is

minimise F (tint, rg, β) = S(t) + P (t, rg, β),

subjected to tmin ≤ t ≤ tmax, (18)
g(x) = w − wmax ≤ 0 .

The maximum allowed weight of the plate is wmax = 40 kg. Accordingly, rg = 1 × 106

and β = 2 were used in the penalty function. Results for S(tint) are obtained with a black box
approach (provided by Abaqus).

This benchmark uses the same methodologies, strategies and operational parameters as the
previous benchmark. The behaviour and evolution of each algorithm throughout the iterations
are similar to the previous benchmark. The performance of each algorithm is illustrated in
Table 9. The best final solution, average, standard deviation and final position we all produced
by the PSO. The SA algorithm found a local minimum, although higher than that of the PSO,
at evaluation 243. However, the performance of the SA demonstrated a low level of accuracy
as the nature of this algorithm relies on an explicitly random parameter.

Table 9.: BC2 final results for the different algorithms.

BC2 PSO BC2 GA BC2 SA

Best Solution [MPa] 63.392584 63.486055 64.433575
Average [MPa] 67.489943 85.609726 72.319194
Standard Deviation [MPa] 18.564183 32.971243 41.626055
Best Variable [m] 0.0025 0.002497 0.00247
Evaluations until best solution 434 526 243

5.3. BD3 (Discrete variable — Weight minimisation with stress constraint)

Benchmark BD3 tests how the algorithms perform when the variable of study has a discrete
nature. Hence, the objective is to minimise the total weight of the plate, similarly to the first
benchmark, while varying the material properties of each layer. As such, the variables of study
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correspond to the indexes of a matrix (database) that contains the mechanical properties of 9
materials (see Table 3), This optimisation benchmark takes the form

minimise F (x, rg, β) = W (x) (19)
+P (x, rg, β),

subjected to xi ∈ {0, 1, . . . , a},
i = {front, interlayer, rear},
g(x) = σz − σz,max ≤ 0.

where

W (x) = L×B [tfrontρfront + tintρint + trearρrear]

= 0.072
[
0.025(ρfront + ρrear) (20)

+0.002× ρint] .

A penalty function with rg = 2 and β = 2 is implemented to penalise the objective function
every time the measured peak stress σz,max at the rear face of the plate (Section 2) surpasses
σz,max = 5 MPa. The variables in this benchmark, xi, are discrete ({0, 1, . . . , 8}). The code
implementation used in this work uses a continuous search domain within [0, 1] and converts
the solutions back into discrete values for the evaluations.

5.3.1. BD3 — PSO

As the study variables are discrete, the PSO operational parameters are adapted as shown in
Table 10. The range for the initial velocity of each particle, v0i , was increased as well as its
weight ω to ensure enough inertia to escape from a potential local minimum.

Table 10.: PSO operational parameters for BD3.

Particles Iter. ω ϕp ϕg v0i

15 20 0.7 1 2 ran(−1,1)×0.8

A fast convergence rate from the objective function is visible from the results in Figure
14a as it converged to the final optimum solution at the second iteration. A similar trend is
followed by the average and worst curves. The material properties of the three layers converge
at the second iteration as shown in Figure 14b. The result is the index 4 for the three layers,
which corresponds to cork. Although in an optimisation paradigm the PSO performed well,
within an engineering view this result is not satisfactory and demonstrates a premature choice
and implementation of constraints. As such, the same problem is addressed later in Section 5.5
with an additional constraint associated with the projectile displacement.

5.3.2. BD3 — GA

As the number of variables increases from 1 to 3, so does the chromosome length (from 32 to
64). This ensures a good performance of the GA. The objective function and both the average
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Figure 14.: (a) Evolution of the best, worst and mean values of the objective function with the
number of iterations, for the PSO in BD3. (b) Combination of material indexes for the PSO
in BD3.

and worst solutions converge at a good rate towards the optimum solution (vd. Fig. 15). The
final position is the same as the PSO’s, which is a cork plate.
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Figure 15.: (a) Evolution of the best, worst and mean values of the objective function against
the number of iterations, for the GA in BD3. (b) Combination of material indexes for the GA
in BD3.

5.3.3. BD3 — SA

The operation parameters used in this case are the same as in the previous benchmarks, with
the exception of the cooling parameter, which is now α = 0.55. This parameter was decreased
due to the excessive number of evaluations it needed to converge.

Similarly to how SA behaved in the previous benchmarks, a high rate of randomness in
each evaluation is noticeable (see Figure 16a). Nevertheless, the objective function shows a
consistent evolution towards the final optimal solution, stopping to improve when the tem-
perature reaches values close to zero. This behaviour is similar to that discussed in previous

21



benchmarks. The material’s indexes for each layer appear to have a random evolution until
they simultaneously converge, as shown in Figure 16b. The final solution is the same as that
of the previous algorithms.
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Figure 16.: (a) Comparison of the solution at each evaluation without penalisation with the
overall best solution at each iteration, for the SA in BD3. (b) Combination of material indexes
for the GA in BD3.

5.3.4. BD3 — Summary

All three algorithms reached the same combination of design variables, as can be seen in
Table 11. Consequently, the efficiency of the algorithms has to be assessed by comparing how
quickly they reach the optimum solution. The PSO algorithm has the lowest average, standard
deviation and, by far, number of evaluations needed to find the best solution and is thus the
most efficient of the three algorithms.

Table 11.: BD3 final results for the different algorithms.

BD3 PSO BD3 GA BD3 SA

Best solution [kg] 2.2854 2.2854 2.2854
Average [kg] 2.3465 2.5311 7.7129
Standard deviation 0.2592 0.3036 6.3928
Final indexes [4,4,4] [4,4,4] [4,4,4]
Evaluations until best solution 21 291 135

5.4. BD4 (Discrete variable — Rear stress minimisation with weight constraint)

The aim of benchmark BD4 is to compare the efficiency of the algorithms when required to
minimise the stress at the rear face of the plate, similarly to benchmark BD2, but using the
same discrete variables, material mechanical properties and strategies as in benchmark BD3.
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The formulation for this benchmark is

minimise F (x, rg, β) = S(x) + P (x, rg, β),

subjected to xi ∈ {0, 1, . . . , a}, (21)
i = {front, interlayer, rear},
g(x) = w − wmax ≤ 0.

The algorithm that resulted in the optimal layer combination (i.e. the one with the lowest
stress at the rear) is once again PSO, as shown in Table 12. PSO also has the lowest average
and the second lowest number of evaluations required to find the optimal solution. The resul-
tant combination of materials were aluminium foam as the top and rear layer and titanium as
the interlayer. The GA, besides having the worst solution and average of the three algorithms,
could not avoid a local minimum. Its final configuration was a front, interlayer and rear layer
made of, respectively, nylon, cork and aluminium foam. The SA has had the second best so-
lution and average, with a final configuration of aluminium foam as the front and rear layer
and aluminium as the interlayer.

Table 12.: BD4 final results for the different algorithms.

BD4 PSO BD4 GA BD4 SA

Best evaluation [Pa] 640657.5691 986006.602 716679.511
Average [Pa] 734298.7146 986006.602 842247.4266
Standard deviation 168602.5592 0 165028.5726
Final indexes [5,8,5] [1,4,5] [5,0,5]
Evaluations until best solution 84 8 120

5.5. BD5 — Alternative approach (Discrete variable — Weight minimisation with stress
constraint)

The previous benchmarks were proposed to analyse the three tested algorithms and select the
most efficient and robust one, aiming to do so in both a strict optimisation approach and with
an engineering application in mind. The focus was also to test and train different algorithm
programming strategies and different problem formulations to perform the multi-objective
optimisation in Section 5.6. The results from each benchmark were analysed by emphasis-
ing optimisation performance rather than engineering integrity. The most evident example is
benchmark BD3 where all three algorithms pointed to the same optimal solution: a plate en-
tirely made of cork. According to the initial formulation and constraints, the three algorithms
reached the global minimum of the problem. From an engineering standpoint, however, a
plate entirely made of cork might not be an efficient protection against ballistic impacts, even
if for impacts generating elastic stresses only. This solution was selected, however, because
cork has a low yield strength and density (see Table 3). The low yield strength resulted in a
premature material plastification and, as a consequence, a significant fraction of the impact
energy is absorbed in this processes, resulting in a lower average stress at the rear face of the
plate. Consequently, the rear stress was never penalised during the optimisation process. Cork
also has the lowest density of all materials tested, which resulted in being the best solution
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for minimising the weight of the plate. To avoid such premature solutions (i.e. from an en-
gineering standpoint) a new constraint was added to penalise solutions where the maximum
displacement of the projectile surpassed a predefined threshold. By limiting the projectile’s
maximum displacement, the algorithm gained indirect control over solutions that point to-
wards materials that endured excessive deformation.

In order to perform a proper validation, the PSO algorithm was used in a new version of
benchmark BD3, now formulated as

minimise F (x, rg, β, rh, γ) = W (x) (22)
+P (x, rg, β, rh, γ),

subjected to xi ∈ {0, 1, . . . , a},
i = {front, interlayer, rear},
g(x) = σz − σz,max ≤ 0,

hk(x) = uz − uz,max ≤ 0,

where

W (x) = L×B [tfrontρfront (23)
+tintρint + trearρrear]

= 0.072
[
0.025(ρfront + ρrear)

+0.002× ρint]

and u and σ are the projectile displacement and stress at the rear surface, respectively. The
penalty function parameters are rg = 2, β = 2, rh = 1 × 106, γ = 2, σz,max = 10 MPa and
uz,max = 1.5×10−4 m. The PSO operational parameters used in the scope of this optimisation
process are the same as in benchmark BD3, also listed in Table 10.

The particles evolve towards the best solution starting from solutions at the upper and lower
extremes, as shown in Figure 17a. Comparing with the evolutions from benchmark BD3 (vd.
Figs. 17, 15 and 16), where solutions start converging only from inside the admissible do-
main, it is possible to see the influence of the new displacement constraint (Equation 23). The
penalty function is now active and the PSO need to manage also have particles in violation of
this constraint, rendering the previous solution invalid. The final solution is a front layer of ti-
tanium, with interlayer and rear layer made of cork, as shown in Figure 17b. This solution has
a projectile displacement of 0.78 × 10−4 m, which is significantly lower than the predefined
limit.

5.6. Multi-objective optimisation

The procedures developed in previous sections are now incorporated in one multi-objective
optimisation problem. PSO is used as it was demonstrated to be the most efficient algorithm.
The multi-objective optimisation problem in this section is a combination of the previous
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Figure 17.: (a) Comparison of the solution at each evaluation without penalisation with the
overall best solution at each iteration, for the alternative approach to benchmark BD3. (b)
Combination of material indexes for the alternative approach to benchmark BD3.

individual single-objective optimisation problems. Its compact formulation can be defined as

minimise F (x) = (y)f1(x) + (1− y)f2(x),
subjected to xi ∈ {0, 1, . . . , a}, (24)

i = {front, interlayer, rear},
tmin ≤ t ≤ tmax,

g(x) = σz − σz,max ≤ 0,

h(x) = W −Wmax ≤ 0,

d(x) = uz − uz,max ≤ 0,

where t is the interlayer thickness in [1, 25] × 10−3 and xi is the layer’s material index from
Table 3. x is a vector containing the four design variables, x = [xi, t]. g(x) is the constraint
function related to the maximum stress at the rear face of the plate, h(x) is the plate’s weight
constraint function and d(x) is the projectile’s displacement constraint. Five weights were
used in the scope of this multi-objective-optimisation, y ∈ {0, 0.25, 0.5, 0.75, 1}, correspond-
ing to five different and individual runs of the multi-objective function. The single-objective
function f1 aims to minimise the weight of the plate and f2 its rear stress, as

F1(x) = W (x) + P1(x, rg, β, rh, γ), (25)
F2(x) = S(x) + P2(x, rg, β, rh, γ). (26)

25



Both f1 and f2 have a penalty function assigned, P1 and P2, respectively, i.e.

P1(x, rg, β, rf, γ) = rg

[
max

{
0, g(x)

}]β
(27)

+rd

[
max

{
0, d(x)

}]γ
,

P2(x, rh, β, rf, γ) = rh

[
max

{
0, h(x)

}]β
(28)

+rd

[
max

{
0, d(x)

}]γ
.

The maximum weight (mass) is Wmax = 30 kg, the maximum admissible rear stress is
σz,max = 40 MPa and the maximum admissible projectile displacement is uz,max = 1.5 ×
10−4 m. For the penalty functions described in Equations 28 and 29, the following parame-
ters were used: rg = rh = rd = 10, β = γ = 3.

The multi-objective function in Equation 24 combines two different single-objective func-
tions: f1 (Equation 25), which evaluates the weight of the plate and f2 (Equation 26), which
evaluates the stress at the rear face. Both f1 and f2 have different units and significantly
different orders of magnitude, leading to common but robust approach regarding multiple
objectives [36], using normalised objective functions as

f norm
q =

fq(x)− f◦
q

fmax
q − f◦

q

, q = {1, 2}, (29)

where f◦
q is the utopia point and fmax

q is the maximum or worst point for function q. For
both functions f1 and f2, neither the utopia nor the maximum points are known or, at least,
not immediate to obtain. Thus, one approach to determine these points is to minimise each
function individually. Depending on the accuracy of fmax

q and f◦
q , f norm

q typically has values
between 0 and 1. By following this approach, the normalisation parameters to be used for the
scope of the multi-objective optimisation are listed in Table 13.

Table 13.: Normalisation parameters used in the multi-objective optimisation problem.

f1 [kg] f2 [MPa]

f◦
1 fmax

1 f◦
2 fmax

2
11 22 1.2 8

The PSO algorithm used in the current multi-objective problem was adapted in such way
that it differentiates the nature of each variable and assigns different parameters accordingly.
By doing this, the PSO performance verified in Section 5 is ensured and is independent of
the number and nature of the variables of study. The operational parameters used for the
current multi-objective problem are listed in Table 14, where the subscripts ωc and ωd are the
PSO weight parameters used in the case of a continuous or discrete variable, respectively.
Parameters v0i,c and v0i,d are the assigned particle initial velocity for a continuous and discrete
variable, respectively.

The results obtained from a multi-objective optimisation (vd. 15) are intrinsically more
complex and require a more meticulous approach than the results from a typical single-
objective optimisation. In order to obtain results, the multi-objective optimisation process
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Table 14.: PSO operational parameters used in the multi-objective optimisation problem.

Particles Iterations ωc ωd ϕp ϕg v0i,c v0i,d

15 30 0.5 0.7 1 2 random(-1,1)×0.2 random(-1,1)×0.8

consisted in five consecutive runs, in which the weight y from Equation 24 assume different
values (y ∈ {0, 0.25, 0.5, 0.75, 1}).

The two-dimensional Pareto curve obtained by plotting the optimum results of f1 and
f2 for every weight y is shown in Figure 18. From Equation 24, when y = 0, the global
objective function neglects the contribution of f1 and only considers the results from f2. This
point corresponds to the highest possible value for f1, which is 1.5705, and the lowest value
for f2, 0.0073. As y increases and gets closer to 1, the opposite is observed: f2 is expected to
gradually increase as f1 decreases. Finally, when y = 1, the global objective function neglects
the effect of f2, which rises to its maximum value in the Pareto curve whilst f1 is minimised.
The results obtained from the multi-objective optimisation procedure for each of the weights
are shown in Figure 18. As expected, the global objective function optimum, f , is lower at
the extremes (y = 0 and y = 1). A multi-objective optimisation has an infinite number of
solutions. Therefore, the Pareto’s curve illustrated in Figure 18 is the ultimate solution for
such a problem as it indicates a region that contains all the optimal solutions. This region is
known as the Pareto optimal region, which corresponds to the region within the utopia line
and the Pareto’s curve itself [16].

Table 15.: Final results obtained from the multi-objective optimisation for each weight y.

Weight of f1 (y) Design variables Results

y = 0.00
f 0.0027 Material Index [xfront, xinterlayer, xrear] [0, 8, 5] W = 20.57 kg
f1 0.8700 σz = 1.22 MPa
f2 0.0027 Thickness, t [m] 0.0134 uz = 0.057 mm

y = 0.25
f 0.1856 Material Index [xfront, xinterlayer, xrear] [8, 4, 5] W = 18.194 kg
f1 0.6540 σz = 1.40 MPa
f2 0.0294 Thickness, t [m] 0.0100 uz = 0.096 mm

y = 0.50
f 0.0564 Material Index [xfront, xinterlayer, xrear] [0, 4, 5] W = 11.71 kg
f1 0.0642 σz = 1.53 MPa
f2 0.0486 Thickness, t [m] 0.0010 uz = 0.143 mm

y = 0.75
f 0.0849 Material Index [xfront, xinterlayer, xrear] [0, 0, 5] W = 12.07 kg
f1 0.0970 σz = 1.53 MPa
f2 0.0485 Thickness, t [m] 0.0010 uz = 0.135 mm

y = 1.00
f 0.0243 Material Index [xfront, xinterlayer, xrear] [0, 4, 4] W = 11.27 kg
f1 0.0243 σz = 7.91 MPa
f2 0.9877 Thickness, t [m] 0.0010 uz = 0.113 mm
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Figure 18.: Pareto curve of the multi-objective optimisation.

6. Final remarks

This work analyses the behaviour of three metaheuristic optimisation algorithms over four
benchmarks and a multi-objective approach, applied to a generic protective armour plate de-
sign problem. This is not a common application for this type of methodology, namely due
to of the high computational cost of each evaluation. Abaqus Python scripting and design
parametrisation techniques are used to provide the necessary automation and efficiency for
the iterative process.

The paper includes a set of model validation studies, focuses on the mechanical response
of the interlayer in an energy absorption and elastic stress wave propagation problem in mul-
tilayer/multimaterial armour systems. The proposed optimisation procedures and approaches,
including algorithms, methods and strategies, define a platform in which to access both the
performance and the behaviour of each metaheuristic on this type of application. All algo-
rithms reach comparable optimal solutions, but the provided detailed analyses of each bench-
mark led to the choice of Particle Swarm Optimisation (PSO) over the Genetic Algorithm
(GA) or the Simulated Annealing (SA) methods as the best of the proposed implementations.

The final multi-objective optimisation problem combined several features from the bench-
mark, namely continuous and discrete variables, and two conflicting weight minimisation and
stress minimisation objectives. Taking as a reference a balanced weight objective of y = 0.5,
the optimal solution pointed to an interlayer thickness of 1 mm and a system where the front,
interlayer and rear layers are made of aluminium, cork and aluminium foam, respectively. The
developed models successfully achieved the study purposes both in the simulation of generic
ballistic impacts and in the quality of the optimised solutions. This demonstrated the high
potential for this type of optimisation method on terminal ballistic applications, serving as a
standpoint for further studies into higher energy impacts and material non-linearities.
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