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 23 

Abstract  24 

Underground hydrogen storage (UHS) is a key strategy in the implementation of 25 

a large-scale hydrogen (H2) economy and promotion of renewable energy 26 

development/utilization. For UHS in water-wet saline aquifers, H2 displaces in-situ 27 

brine during injection; during well shut-in and H2 withdrawal, brine imbibes back into 28 

the flow paths where it displaces some H2. These processes are influenced by H2-brine 29 

transport physics, H2-brine-rock interactions and injection/withdrawal schemes, which, 30 

in turn, determine H2 storage capacities and injection/withdrawal efficiency. However, 31 

these effects are poorly understood. Therefore, this work focuses on the impact of 32 

relative permeability hysteresis (RPH), wettability, and H2 withdrawal rate on UHS 33 

performance in a saline aquifer. Furthermore, differences between UHS and CO2 geo-34 

storage (CGS) are examined. 35 

The primary findings include: 1) RPH results in a smaller H2 withdrawal factor 36 

(𝐻2−𝑊𝐹), but a larger H2 withdrawal purity (𝐻2−𝑊𝑃); 2) 𝐻2−𝑊𝐹 increases with rock 37 

hydrophobicity, while 𝐻2−𝑊𝑃  is mostly insensitive to rock wettability; 3) under 38 

similar storage conditions, 𝐻2−𝑊𝐹  and 𝐻2−𝑊𝑃  are approximately 10% less than 39 

𝐶𝑂2−𝑊𝐹 and 𝐶𝑂2−𝑊𝑃. 40 

These insights demonstrate the significance of RPH and rock wettability on UHS 41 

performance and provides guidance on H2 injection/withdrawal scheme optimization. 42 

This study aids in the implementation of an industry-scale hydrogen economy. 43 

 44 
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 47 

1. Introduction 48 

Commercial development of renewable and sustainable energy resources are 49 

required to accelerate energy transition, mitigate global warming, and accomplish 50 

carbon neutrality [1–3]. However, these energy resources (e.g., wind, solar, and tide) 51 

are time-, season-, weather- and/or region- dependent, which limits their stability, 52 

reliability and large-scale economic implementation [4–6]. To overcome these 53 

drawbacks, underground hydrogen storage (UHS) is considered as a promising solution 54 

[7–11]. When energy supply is larger than energy demand, excess renewable and 55 

sustainable energy can be converted to hydrogen (H2) through water electrolysis as a 56 

green energy carrier, and the H2 can be injected into the subsurface for storage; when 57 

energy demand is high, H2 can be withdrawn again from the subsurface for usage [12–58 

17]. Potential subsurface storage sites include deep coal seams [18,19], depleted 59 

hydrocarbon reservoirs [20,21], aquifers [22,23] and salt caverns [15,24]. Salt caverns 60 

are suitable for frequent cyclic H2 injection and withdrawal, but salt cavern storage 61 

capacities are usually small (around 50 ×  104  Sm3 [15,24,25]). Depleted 62 

hydrocarbon reservoirs are often well characterized with the necessary geological 63 

information, and substantial surface/subsurface infrastructure are in place [20,21]. 64 

However, microbial activity may be high, which  causes both serious H2 loss and H2 65 

purity reduction (e.g. via the reactions C2H6 + H2 → 2 CH4  or H2 + S → H2S 66 
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[8,16,26]). In contrast, saline aquifers have the largest storage capacity and relatively 67 

weak microbial reactions, and thus attract significant attention [7,27]. Heinemann et al. 68 

[7] discussed the scientific challenges to enabling large-scale hydrogen storage in saline 69 

reservoirs while Pan et al. [27] reviewed all available experimental data related to UHS 70 

in saline aquifers. 71 

Numerical simulation is a cost-effective and rapid method for large-scale UHS 72 

evaluation, which should be conducted prior to field-scale pilot tests. Pfeiffer et al. 73 

[28,29] used numerical simulations to predict UHS performance in the Rhaetian deposit, 74 

Germany, and the results demonstrated that up to 7700 × 104 Sm3 (equal to 245 MW 75 

electricity) could be stored. Feldmann et al. [30] simulated 5 years of continuous H2 76 

injection and subsequent 5 years of seasonal cyclic H2 injection/withdrawal into a 77 

depleted gas reservoir; the authors found that the H2 withdrawal purity (𝐻2−𝑊𝑃) and 78 

withdrawal factor (𝐻2−𝑊𝐹) reached 82% - 85% and 39%, respectively. Sainz-Garcia et 79 

al. [22] conducted a three-dimensional multiphase numerical simulation for three 80 

annual H2 injection/withdrawal cycles in Castilla-Leon, Spain. The stored H2 (67400 81 

× 104 Sm3) was able to supply 15% of the electric consumption for a population of 82 

175,000 over 3 months. Additionally, Lubon and Tarkowski [23] utilized numerical 83 

simulations to predict seasonal H2 cyclic injection/withdrawal scenarios in a deep 84 

aquifer at Suliszewo, Poland - it was discovered that water coning was the main obstacle 85 

for UHS performance. Recently, Heinemann et al. [11] investigated the role of cushion 86 

gas for H2 injection and withdrawal in saline aquifers, demonstrating that the produced 87 
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H2 was equal to 1.625 TWH from a three dimensional anticline reservoir model with 88 

the ratio of cushion gas to working gas at 1.27 [11]. 89 

In the above-mentioned UHS simulations, either CO2-brine relative permeability 90 

curves were used as input parameters [11,28,29], or H2-brine relative permeability 91 

hysteresis (RPH) was not considered [22,23,30] (though CO2 RPH strongly influences  92 

capillary CO2 trapping in saline reservoirs in CGS schemes [31]). To mitigate this 93 

uncertainty, and to address the fact that H2 is a very different molecule than CH4 or CO2 94 

[27,32], UHS reservoir simulations with real H2 input parameters and H2 transport 95 

physics are required.   96 

Therefore herein, the impact of RPH, rock-H2 wettability, and 97 

injection/withdrawal schemes on UHS performance in saline aquifers is systematically 98 

evaluated. Further, the acquired UHS results are compared with CGS data. This work 99 

will provide important information supporting large-scale UHS implementation and the 100 

decarbonization of energy supply chains. 101 

 102 

2. Methodology 103 

2.1 Geological model 104 

The commercial reservoir simulator IMEX from Computer Modelling Group 105 

(CMG) was used to simulate UHS in a synthetic PUNQ-S3 geological model. This 106 

simulation is based on the classic black-oil model following the mass conservation 107 

principles [33]. PUNQ-S3 is a three-dimensional, geometrically complicated and 108 

heterogeneous geological model (a central dome + 5 layers of sand/shale) [34]. This 109 
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model was previously used for oil production forecasting [34] and CO2 geo-storage 110 

simulation [31]. The average aquifer thickness is 15 m, and the entire domain is 111 

discretized into 19 × 28 × 5 grid blocks (1761 of them active). Each cell has a length 112 

of 180 m in the horizontal direction. The average horizontal permeability and porosity 113 

are 100 mD and 0.2, respectively, with their spatial distributions shown in Figure 1.  114 

 115 

Figure 1. (a) Horizontal permeability and (b) porosity distributions in the PUNQ-S3 116 

geological model (Modified after [31]). For simplicity, only one well was used for gas 117 

injection and withdrawal.  118 

 119 

A single well was drilled at the structurally highest location for gas injection and 120 

withdrawal. Similar to [31], the pore volume around the geological boundaries is set 121 

1000 times larger than the area of interest so that in-situ brine could be displaced 122 

during the gas injection; the displaced brine is imbibed back again during well shut-in 123 

(in case of water-wet rock) and simultaneously pumped out of the subsurface with gas 124 

during gas withdrawal. 125 

 126 

2.2 Input parameters 127 

Information about H2 density, H2 viscosity and H2 expansion factor at UHS 128 

conditions are tabulated in Table 1. Currently, only one H2-brine relative permeability 129 
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curve was measured for the process of H2 injection into a brine saturated water-wet 130 

sandstone [35] (Figure 2). Using pore network modelling, H2-brine relative 131 

permeability curves (for drainage and imbibition) were also predicted for additional 132 

rock wettabilities [i.e., brine contact angles (𝜃 ) of 51° and 83°] [36] (Figure 2). 133 

Information about CO2 properties and relative permeability curves (which were 134 

collected from previous literature [31]) are not shown here for simplicity. 135 

 136 

Table 1. H2 properties at 40 °C and various pressures (compiled from [7,27]). 137 

Pressure 

[MPa] 

Density 

[kg/m3] 

Expansion factor 

[-] 

Viscosity 

[mPa·s] 

0.1 0.089 1 0.0092 

10 8 89.9 0.0094 

20 14 157.3 0.0096 

30 20 224.7 0.0098 

40 24 269.7 0.01 

50 29 325.8 0.0104 

 138 

 139 
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Figure 2. H2-brine relative permeability curves (modified after [35,36]; curve fitting 140 

was conducted to smooth the raw experimental and simulation data based on the least 141 

squares method). Experimental data is from [30]; simulated curves using pore network 142 

modeling are from [31]. 143 

 144 

2.3 Simulation scenarios 145 

Four separate scenarios were simulated to explore the impact of RPH, rock 146 

wettability, and injection/withdrawal scheme on UHS performance, Table 2. In addition, 147 

two scenarios were simulated for CGS to provide a comparison. 148 

 149 

Table 2. Scenarios simulated in this work (NA means that CO2 wettability was 150 

unknown in the simulations).  151 

Gas Case 

Relative 

permeability 

 hysteresis 

Wettability 
Injection/withdrawal  

scheme 

H2 

1 

(base case) 
No 35º 

a. Injection at 50 ×  104 

Sm3/day for 9 months; well 

shut-in for 3 months 

b. Withdrawal at 100 ×  104 

Sm3/day for 3 months; 

injection at 50 ×  104 

Sm3/day for 6 months; well 

shut-in for 3 months 

c. Repeat b for 4 cycles 

2 Yes 51° Same as case 1 

3 Yes 83° Same as above 

4 Yes 51° 

a. Injection at 50 ×  104 

Sm3/day for 9 months; well 

shut-in for 3 months 

b. Withdrawal at 200 ×  104 

Sm3/day for 3 months; 

injection at 50 ×  104 

Sm3/day for 6 months; well 

shut-in for 3 months 

c. Repeat b for 4 cycles 

CO2 

5 

(base case) 
No NA 

a. Injection at 50 ×  104 

Sm3/day for 9 months; well 

shut-in for 3 months 

b. Withdrawal at 100 ×  104 

Sm3/day for 3 months; 

injection at 50 ×  104 

Sm3/day for 6 months; well 

shut-in for 3 months 

c. Repeat b for 4 cycles 

6 Yes NA Same as case 5 
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 152 

3 Results and discussion 153 

3.1 Impact of relative permeability hysteresis and wettability 154 

For UHS, H2 injection into a water-wet aquifer is dominated by the forced 155 

drainage (of the resident formation water), while H2 withdrawal is dominated by the 156 

spontaneous and forced imbibition [37,38]. Therefore, it is necessary to assess the 157 

impact of RPH and rock wettability on UHS performance. 158 

  159 

  160 

  161 

Figure 3. Effect of relative permeability hysteresis and rock wettability on the (a) actual 162 

H2 withdrawal rate during the 1st withdrawal cycle, (b) H2 withdrawal factor (the ratio 163 

of the accumulated H2 withdrawal volume during a specific H2 withdrawal cycle to the 164 

total H2 in-place volume prior to this withdrawal cycle) and (c) H2 withdrawal purity 165 

(the ratio of H2 withdrawal mass to water production mass) at the prescribed withdrawal 166 

rate of 100 × 104 Sm3/day). 167 

 168 
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RPH and a strongly water-wet state cause the actual H2 withdrawal rate (𝐻2−𝑊𝑅) 169 

to deviate from the prescribed 𝐻2−𝑊𝑅 value and to reach zero earlier, Figure 3(a). 170 

During the 1st H2 withdrawal cycle, the actual 𝐻2−𝑊𝑅  started to deviate from the 171 

prescribed 100 × 104 Sm3/day on the 54th, 36th and 45th day, while it reached zero on 172 

the 81st, 49th and 62nd day, for the case of no RPH, case with RPH at 𝜃 = 51°, and the 173 

case with RPH at 𝜃 = 83°, respectively. Further, by the end of each withdrawal cycle, 174 

the H2 withdrawal factor (𝐻2−𝑊𝐹, the ratio of the accumulated H2 withdrawal volume 175 

during a specific H2 withdrawal cycle to the total H2 in-place volume prior to this 176 

withdrawal cycle) follows the order: case with no RPH > case with RPH at 𝜃 = 83° > 177 

case with RPH at 𝜃 = 51° . 𝐻2−𝑊𝐹  was 38%, 33% and 30%, respectively for the 178 

above-mentioned three scenarios at the end of the 2nd withdrawal cycle, Figure 3(b). 179 

Moreover, at the beginning of each H2 withdrawal cycle, RPH causes a larger H2 180 

withdrawal purity (𝐻2−𝑊𝑃, the ratio of H2 withdrawal mass to water production mass) 181 

than without RPH (e.g., 86% - 88% versus 55% - 65%), though the wettability impact 182 

is insignificant, Figure 3(c). In addition, with the H2 withdrawal cycle increase, 𝐻2−𝑊𝐹 183 

decreased at the end of each cycle of withdrawal, while 𝐻2−𝑊𝑃  increased at the 184 

beginning of each cycle of withdrawal, Figure 3(b) and (c), consistent with the previous 185 

literature study [28].  186 

Note that RPH and rock wettability influence pore-scale gas-brine two phase flow 187 

characteristics and therefore determine reservoir-scale gas injection/withdrawal 188 

efficiency [38–43]. In the absence of RPH, the injected gas exists as a continuous gas 189 

plume, and capillary trapping is relatively weak [31]. If RPH is present, the trailing 190 
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edges of the gas plumes tend to convert into discontinuous phases, and capillary 191 

trapping are relatively strong (which is favorable for CGS because of reduced leakage 192 

risk) – however, it is unfavorable for UHS because of the more difficult gas re-193 

mobilization [27]. Therefore, 𝐻2−𝑊𝐹  was higher in the absence of RPH. Further, a 194 

more water-wet state leads to more snap off events [44,45], and therefore a more serious 195 

H2 loss and a smaller 𝐻2−𝑊𝐹. Moreover, during well shut-in, discontinuous H2 bubbles 196 

can exert strong resistance for the spontaneous imbibition of in-situ formation brine 197 

[46,47] – therefore, if RPH is present, the initial H2 concentration is higher around the 198 

wellbore region (which again results in a larger 𝐻2−𝑊𝑃 at the beginning of each H2 199 

withdrawal cycle). The observed 𝐻2−𝑊𝐹  and 𝐻2−𝑊𝑃  response to the withdrawal 200 

cycle is because 1) at the end of each H2 injection cycle, more H2 will be in place than 201 

the earlier injection cycle; and 2) at the end of each H2 withdrawal cycle, more H2 will 202 

be lost to the subsurface than the earlier withdrawal cycle [28]. 203 

 204 

3.2 Impact of H2 withdrawal rate 205 

To operate a field-scale UHS project efficiently, the H2 injection/withdrawal 206 

scheme [7] should be optimized, especially 𝐻2−𝑊𝑅. Therefore, the impact of 𝐻2−𝑊𝑅 207 

on UHS performance was investigated in this section.  208 

 209 
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  210 

 211 

Figure 4. Effect of the prescribed H2 withdrawal rate on (a) actual H2 withdrawal rate 212 

during the 1st withdrawal cycle, (b) H2 withdrawal factor and (c) H2 withdrawal purity 213 

for the case of relative permeability hysteresis and brine contact angle of 51º. 214 

 215 

Clearly, a larger prescribed 𝐻2−𝑊𝑅 causes the actual 𝐻2−𝑊𝑅 to deviate from the 216 

pre-set value and reach zero earlier in the simulated cases, Figure 4(a) and (b). For 217 

example, during the 1st H2 withdrawal cycle (for the prescribed 𝐻2−𝑊𝑅 = 100 × 104 218 

Sm3/day and 𝐻2−𝑊𝑅 =  200 ×  104  Sm3/day), the actual 𝐻2−𝑊𝑅  started to deviate 219 

from the prescribed value on the 38th and 18th day, respectively, while it reached zero 220 

on the 50th and 36th day, respectively. This is due to the faster pressure depletion caused 221 

by the larger 𝐻2−𝑊𝑅 [48]. Therefore, it is suggested that sufficient H2 is stored and 222 

sufficiently high reservoir pressure is maintained for continuous H2 withdrawal at an 223 

expected withdrawal rate. Furthermore, a larger 𝐻2−𝑊𝑅 caused a larger 𝐻2−𝑊𝐹 and a 224 

more serious water production problem. For example, for the prescribed 𝐻2−𝑊𝑅 = 225 

100 × 104 Sm3/day and 𝐻2−𝑊𝑅 = 200 × 104 Sm3/day, by the end of the 5th H2 226 
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withdrawal cycle, 𝐻2−𝑊𝐹  was 25% and 29% respectively, and cumulative water 227 

production reached 7.5 × 104 Sm3 and 13.1 × 104 Sm3, respectively.  228 

In principle, larger H2 injection rates result in higher viscous forces, which can 229 

override capillary forces (analogue to CO2 flooding [49]), and suppress lateral H2 230 

migration beneath the caprock, resulting in a larger 𝐻2−𝑊𝐹 [31]. However, to avoid 231 

water production problems, an optimized H2 withdrawal rate is required; to determine 232 

this optimum H2 withdrawal scheme, it is suggested that a balance between initial gas 233 

in place, transient H2 demand, and gas purification/separation ability should all be 234 

considered [23].  235 

 236 

3.3 Impact of gas type 237 

During the past decades, CGS has been investigated comprehensively (e.g., 238 

[31,40,42,43,50–54]). In contrast, UHS is a relatively new technology which is still in 239 

its infancy [27,55–57]. Whether previous learnings from CGS can be directly used in 240 

UHS is still uncertain. Therefore, in this section, UHS and CGS are compared (under 241 

the prescribed gas withdrawal rate of 100 × 104 Sm3/day and RPH conditions, Table 242 

3 and Figure 5. 243 

 244 

Table 3. Comparisons between underground hydrogen storage (UHS) and CO2 geo-245 

storage (CGS) during the first cycle of withdrawal, under the prescribed gas withdrawal 246 

rate of 100 × 104 Sm3/day and relative permeability hysteresis conditions. 247 
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Gas 
Plume areal 

coverage 

Deviation from  

the prescribed 

withdrawal rate 

Withdrawal  

factor by 

the end 

Withdrawal  

purity at the 

beginning 

UHS 

Large: 

35.22 km2; 

30.5% 

Early: 38 days Low: 31% Low: 84% 

CGS 

Small: 

14.58 km2; 

12.6% 

Late: 50 days High: 44% High: 96% 

 248 

 249 

             250 
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          251 

 252 

Figure 5. (a-f) Gas saturation distribution during the 1st H2 storage cycle; (g) the actual 253 

gas withdrawal rate during the 1st withdrawal cycle; (h) gas withdrawal factor during 254 

the continuous 5 withdrawal cycles and (i) gas withdrawal purity during the continuous 255 

5 withdrawal cycles under the prescribed withdrawal rate of 100 × 104 Sm3/day and 256 

relative permeability hysteresis conditions. 257 

 258 

Clearly, UHS and CGS exhibit significant differences in gas saturation distribution, 259 

actual gas withdrawal rate, gas withdrawal factor and gas purity, Table 3 and Figure 5. 260 

After the initial gas injection for 9 months, the H2 plume was  2 - 5 times larger than 261 

CO2, Figure 5(a) and (b) - this difference is caused by different gas viscosity and 262 

diffusivity [27]; after a well shut-in for 3 months, H2 migrated significantly upward and 263 

accumulated beneath the caprock, while CO2 only migrated slightly upward, Figure 264 

5(c) and (d) - this was mainly caused by the difference in gas-brine density [27,58]. 265 

Furthermore, as shown in Table 3, Figure 5(h) and (i), in the same timeframe, 𝐻2−𝑊𝐹 266 

and 𝐻2−𝑊𝑃 were smaller than 𝐶𝑂2−𝑊𝐹 and 𝐶𝑂2−𝑊𝑃.  267 

Note that sandstone rocks are more water-wet in a H2 environment than in a CO2 268 

environment [55,57,59,60], therefore gas bubble snap-off is more favored for H2 than 269 
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for CO2, which has led lower 𝐻2−𝑊𝐹 than 𝐶𝑂2−𝑊𝐹 [61,62]). Meanwhile, especially 270 

during the gas injection stage, viscous fingering was predicted to be more pronounced 271 

for H2 than for CO2 [27], and that H2 moves farther away from the wellbore region than 272 

CO2 [57]. 273 

 274 

4 Conclusions and Recommendations 275 

Underground hydrogen storage (UHS) is a promising technology which could aid 276 

the development of a large-scale hydrogen economy [12–17]. For UHS in saline 277 

aquifers, H2-multi-cycle injection/withdrawal schemes are influenced by the energy 278 

supply and demand [23,63]. H2-brine two phase flow physics, and H2-brine-rock 279 

interactions determine UHS performance [7,27]. Therefore, in this work, the impact of 280 

relative permeability hysteresis, rock wettability, and injection/withdrawal schemes are 281 

systematically studied, and the results for UHS are then compared with those for CO2 282 

geo-storage (CGS). The following conclusions are reached: 283 

 284 

1) H2-brine relative permeability hysteresis results in a lower H2 withdrawal 285 

factor, but a higher purity of withdrawn gas. 286 

2) More water-wet rocks have lower H2 withdrawal efficiencies. 287 

3) Larger H2 withdrawal rates increase H2 withdrawal efficiency, but also 288 

increase water production. 289 

4) UHS and CGS demonstrate significant differences and direct correlations 290 

should be avoided. 291 

 292 
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This study provides important information to aid in the implementation of a large-293 

scale hydrogen economy, and therefore also supports the decarbonization of energy 294 

supply chains. For future work, it is suggested to further analyze the pore-scale H2-295 

brine two phase flow physics, and to establish a better understanding of meso-scale 296 

parameters (such as the H2-brine relative permeabilities for cyclic drainage and 297 

imbibition processes and how they vary with wettability). Such improved input data 298 

leads directly to improved prediction of UHS performance [64,65].  299 
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