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ABSTRACT 

The neural mechanisms mediating one-trial and multi-trial behavioral 

sensitization during early ontogeny are poorly understood. The purpose of this 

thesis was to assess the importance of D2-like receptors for the induction of 

cocaine- and methamphetamine-induced one-trial and multi-trial behavioral 

sensitization during the middle and late preweanling period. In a series of four 

experiments, rats were injected with saline or the selective dopamine D2-like 

receptor antagonist raclopride 15 min prior to treatment with the indirect 

dopamine agonists cocaine or methamphetamine. Acute control groups 

received two injections of saline. The pretreatment regimens occurred on 

either PND 16 or PND 20 (one-trial behavioral sensitization) or PND 13-16 or 

PND 17-20 (multi-trial behavioral sensitization). On PND 17 or PND 21, rats 

were challenged with either cocaine or methamphetamine and sensitized 

responding was assessed. With only a single exception, both one-trial and 

multi-trial cocaine- and methamphetamine-induced sensitization was evident 

on PND 17 and PND 21. Importantly, the D2-like receptor antagonist 

raclopride did not prevent the induction of cocaine- or 

methamphetamine-induced one-trial behavioral sensitization. In regards to 

multi-trial behavioral sensitization, raclopride failed to inhibit cocaine-induced 

sensitized responding on PND 17 and PND 21. Interestingly, higher doses of 

raclopride (0.5 and 1 mg/kg) were able to prevent the induction of multi-trial 

methamphetamine-induced sensitization on PND 17. Therefore, D2-like 
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receptor antagonism differentially affected methamphetamine-induced 

behavioral sensitization depending on whether a one-trial or multi-trial 

paradigm was employed. When considered together, these results suggest 

that the neural mechanisms underlying the methamphetamine-induced 

behavioral sensitization of preweanling rats differs depending on the type of 

experimental paradigm (one- vs multi-trial) being used. Other potential 

explanations (i.e., nonspecific antagonist effects, impact of contextual 

conditioning, etc.) for this interesting effect are presented in the Discussion. 
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 CHAPTER ONE: 

HUMAN MODELS OF ADDICTION 

Psychostimulants have addictive properties that can induce complex 

effects on human behavior. Taking into account the increasing rate of 

psychostimulant use, psychostimulant addiction has become a profound 

public health concern (Sax & Strakowski, 2001). One of the most frequently 

used models to study the underlying mechanisms of drug addiction is 

behavioral sensitization. Behavioral sensitization is characterized by a 

progressive increase in behavioral responsiveness as a result of repeated 

exposures to a psychostimulant drug (Kalivas & Stewart, 1991; Robinson & 

Becker 1986; Sax & Strakowski, 2001; Strakowski & Sax, 1998). Figure 1 

compares the typical pattern of drug-taking in human addicts with a model of 

behavioral sensitization in animals. 
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Figure 1. Comparison between Human Psychostimulant-induced Psychosis 

and an Experimental Model of Behavioral Sensitization in Rats. The Addiction 

Phase can Progressively Lead to Sensitization in Psychostimulant-induced 

Psychosis. In Rats, Repeated Exposure to Psychostimulants can Lead to 

Heightened Motor Activity. Adapted from Pierce and Kalivas (1997). 

Although most behavioral sensitization studies are based on animal 

models, recent evidence in the clinical literature has shown a role for 

sensitization in human drug-seeking (Strakowski & Sax, 1998). For instance, 

Strakowski, Sax, Setters, and Keck (1996) reported that volunteers with no 

prior substance abuse history showed a progressive increase in energy, 

mood, speech, and eye-blink rates when repeatedly treated with 

amphetamine (0.25 mg/kg) twice daily over a span of four days. In another 

study, participants showed a progressive increase in eye-blink rates and 
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motor activity after receiving a single oral dose of amphetamine (0.25 mg/kg) 

for six days (Strakowski & Sax, 1998). These data indicate that behavioral 

sensitization occurs in humans and that the phenomenon may play a role in 

drug addiction. 

While numerous studies have examined the sensitizing effects of 

psychostimulants in animal and human models, less focus has been paid to 

the underlying neurobiological processes responsible for behavioral 

sensitization. Dopamine plays a key role in mediating the stimulatory 

properties of psychostimulants. Therefore, it is not surprising that dopamine 

receptor systems have been linked to the induction (i.e., development) and 

expression of psychostimulant-induced behavioral sensitization (Kuribara & 

Uchihashi, 1993; Vezina & Stewart, 1989). The induction of behavioral 

sensitization appears to be due to transient changes in neural functioning, 

while the expression of sensitization is associated with enduring changes in 

cellular function during withdrawal (Kalivas & Stewart, 1991). 
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 CHAPTER TWO: 

DOPAMINE PHARMACOLOGY 

Introduction 

Catecholamine neurotransmitters are notable for their core chemical 

structure referred to as the catehol (McTavish, Cowen, & Sharp, 1999). 

Dopamine is one of the predominant catecholamine neurotransmitters in the 

central nervous system (Ho & Loh, 1972). It is involved in a variety of 

functions, such as motor activity, cognition, and hormone secretion (Jaber, 

Robinson, Missale, & Caron, 1996). 

In 1910, George Barger and James Ewens were the first to synthesize 

dopamine. With the progression of research, dopamine was discovered to be 

a neurotransmitter in the late 1950s. This was achieved when 

spectrophoto-fluorometric techniques revealed significantly higher 

concentrations of dopamine in the caudate nucleus than norepinephrine 

(Carlsson, Lindqvist, Magnusson, & Waldeck, 1958). The dopaminergic 

system was further explored by Dahlstrom and Fuxe (1965), who discovered 

dopamine-containing pathways and their associated projections to various 

areas of the forebrain. 

Dopamine Projection Pathways 

Dopaminergic neurons mediate gross and fine motor movements, as 

well as reinforcement and planning (Ando, Johanson, Seiden, & Schuster, 
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1985). Areas of the brain that have particularly high dopamine concentrations 

include the substantia nigra pars compacta, hypothalamus, and ventral 

tegmental area (Geffen, Jessell, Cuello & Iversen, 1976; Palkovits, 

Brownstein, Saavedra, & Axelrod, 1974). These specific brain regions give 

origin to three major dopamine projection pathways. The nigrostriatal pathway, 

which modulates motor activity, begins at the substantia nigra and projects to 

the basal ganglia (Geffen et al., 1976; Huang, Zhou, Chase, Gusella, Aronin, 

& DiFiglia, 1992). Interestingly, degeneration of nigral neurons, which make up 

the nigrostriatal pathway, contributes to the progression of Parkinson’s 

disease (Damier, Hirsch, Agid, & Graybiel, 1999). The mesolimbic pathway 

originates in the ventral tegmental area and projects to the nucleus 

accumbens (i.e., ventral striatum). These brain areas mediate reward and play 

a key role in addictive behaviors (Chang & Kitai, 1985). Lastly, the 

mesocortical pathway originates in the ventral tegmental area and projects to 

the prefrontal cortex (Carr & Sesack, 2000; Lewis & O’Donell, 2000). This 

pathway contributes to higher-level cognitive functions and planning 

(Seamans, Floresco, & Phillips, 1998). 

Synthesis of Dopamine 

Synthesis of dopamine occurs in several biochemical steps (Nagatsu, 

Levitt, & Udenfriend, 1964). The process is initiated when tyrosine is catalyzed 

by tyrosine hydroxylase (TH) and produces dihydroxyphenylalanine (L-DOPA) 

(Nagatsu, Levitt, & Udenfriend, 1964; Smidt, Smits, & Burbach, 2003). 
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Dopamine is made when L-DOPA is further catalyzed by the enzyme aromatic 

amino acid decarboxylase (AADC) (Roth, 1979; Sourkes, 1979). The rate of 

dopamine synthesis is determined by the activity of tyrosine hyrdroxylase (i.e. 

the rate-limiting step). Production of dopamine occurs in the presynaptic 

terminals of dopaminergic neurons, after which the neurotransmitter is 

packaged into synaptic vesicles. Dopamine is then released via 

calcium-dependent exocytosis (Binder, Kinkead, Owens, & Nemeroff, 2001). 

Dopamine Receptors: D1-Like and D2-Like 

The classification of dopamine receptors is based on their interaction 

with G-coupled protein complexes. There are a total of five dopamine receptor 

subtypes that can be categorized into two populations of dopamine receptors, 

namely D1-like and D2-like receptors. Based on similarities in 

pharmacological actions and structure, the D1-like family is made up of D1 

and D5 receptors; whereas, the D2-like family consists of the D2, D3, and D4 

receptors (Jaber et al., 1996). 

In regards to pharmacological actions, D1-like receptors are coupled 

with Gs complexes. When activated, these Gs complexes stimulate the activity 

of adenylyl cyclase and increase the production of cyclic AMP. In contrast, 

D2-like receptors are coupled with Gi complexes and inhibit the activation of 

adenylyl cyclase (Kebabian, Beaulieu, & Itoh, 1984). The disparate actions of 

D1-like and D2-like receptors are described in pharmacological studies using 

agonists and antagonists. For example, Roberts-Lewis et al. (1986) provided 
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evidence that D1-like receptors are positively coupled with adenylyl cyclase 

activity by measuring dopamine release after SKF38393 or amphetamine 

treatment. The inhibitory relationship between adenylyl cyclase activity and 

D2-like receptors was discovered by applying vasoactive intestinal peptide in 

the anterior pituitary gland (Onali, Schwartz, & Costa, 1981). 

Dopamine Receptor Distribution in the Brain 

D1-Like Receptors 

The D1 receptor subtype is the most widespread and highly 

concentrated dopamine receptor in the brain (Boyson, McGonigle, & Molinoff, 

1986). A technique called in-situ hybridization is commonly used to examine 

gene expression in individual cells (Langdale, 1994). In regards to distribution 

of dopamine receptors in the brain, in-situ hybridization studies have shown 

that dopamine D1 receptors are primarily localized in the striatum, nucleus 

accumbens, and olfactory tuburcle, whereas cells expressing D1 receptor 

mRNA are located in the thalamus, hypothalamus, and limbic system 

(Fremeau, Duncan, Fornaretto, Dearry, Gingrich, Breese, & Caron, 1991). 

Other techniques, such as autoradiography, have also been used to localize 

dopamine receptor sites. For example, Boyson et al. (1986) examined the 

distribution of dopamine receptors by using the D1-like radioligand SCH 

23390. Results showed that D1 receptors were present throughout the 

forebrain, with the highest densities occurring in the substantia nigra, nucleus 

accumbens, olfactory tubercle, and striatum (Boyson et al., 1986). 
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 Although difficult to examine due to the lack of selective ligands, D5 

receptor mRNA is expressed in striatum, cerebral cortex, lateral thalamus, 

medial thalamus, and hippocampus (Choi, Machida, & Ronnekleiv, 1995; 

Meador-Woodruff, Mansour, Grandy, Damask, Civelli, & Watson, 1992). 

D2-Like Receptors 

D2 receptors are found in lower quantities than D1 receptors (Boyson et 

al., 1986). In-situ hybridization revealed that D2 receptor mRNA was found in 

the ventral tegmental area, nucleus accumbens, olfactory tubercle, and 

substantia nigra as well as in other dopamine projection fields 

(Meador-Woodruff, Mansour, Bunzow, Van Tol, Watson, & Civelli, 1989). 

Autoradiography studies also show that D2 receptors are found in high 

densities in the olfactory bulb and lateral septum (Charuchinda, Supavilai, 

Karobath, & Palacios, 1987). 

The D3 receptor is expressed preferentially in the mesolimbic system, 

but in lower quantities than D1 and D2 receptors (Richtand et al., 1995). While 

D3 mRNA is found in the olfactory tubercle and nucleus accumbens, 

especially high densities of D3 mRNA are expressed in the islands of Calleja 

(Diaz, Levesque, Lammers, Griffon, Martres, Schwartz, & Sokoloff, 1995). 

Distribution of the D4 receptor is unique, because D4 mRNA expression 

is minuscule in striatal areas; whereas, D1, D2, D3, and D5 receptor mRNA is 

abundant in the striatum. The D4 receptor subtype is mainly concentrated in 

the hippocampus, lateral septal nucleus, entorhinal cortex, and medial 
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preoptic area of the hypothalamus (Primus, Thurkauf, Xu, Yevich, McInerney, 

Shaw, Tallman, & Gallager, 1997). 
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 CHAPTER THREE: 

ONTOGENY OF THE DOPAMINE SYSTEM 

Previous studies examining the dopamine system during postnatal 

development have focused on age-dependent changes in dopamine levels 

and the distribution of dopamine receptors across brain. Techniques such as 

in-situ hybridization, autoradiography, as well as receptor binding are 

commonly used to visualize and quantify ontogenetic changes in the 

dopamine system. 

As is true of adult rats, dopamine neurons in neonatal and preweanling 

rats are predominantly found in the substantia nigra, ventral tegmental area, 

and hypothalamus. These brain regions give rise to three main pathways (i.e. 

the nigrostriatal, mesolimbic, and mesocortical pathways) that are present at 

birth (Antonopoulos, Dori, Dinopoulos, Chiotelli, Parnavelas, 2002; Chang & 

Kitai, 1985; Geffen, Jessell, Cuello, & Iversen, 1976; Lewis & O’Donell, 2000; 

Olson & Seiger, 1972). Dopamine synthesis can be detected at birth, with 

dopamine levels increasing linearly until approximately puberty, when adult 

levels are reached (Olson & Seiger, 1972; Park, Kitahama, Geffard, & Maeda, 

2000). 

Postnatal Development: D1-Like and D2-Like Receptors 

During the first three postnatal weeks, profound changes in the profile 

of dopamine receptors take place. As mentioned previously, dopamine 
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receptors are classified based on their interaction with G-coupled protein 

complexes that either stimulate or inhibit adenylyl cyclase activity. 

Autoradiography studies examining the development of dopamine receptors 

indicate that D1-like receptors steadily increase in density from postnatal day 

1 (PND 1) to around PND 28, when dopamine receptors have reached adult 

levels (Murrin & Zeng, 1990; Rao, Molinoff, & Joyce, 1991; Zeng, Hyttel, & 

Murrin, 1988). Other studies demonstrate a gradual increase in D1-like 

receptors until approximately the onset of puberty (PND 40) when dopamine 

receptors are over-expressed. The number of dopamine receptors then 

decline (pruning), to levels that are maintained throughout adulthood 

(Andersen, Thompson, Rutstein, Hostetter, & Teicher, 2000; Giorgi, DeMontis, 

Porceddu, Mele, Calderini, Toffano, & Biggio, 1987). 

D2-like receptors also progressively increase with age, and reach adult 

levels around PND 21 (Hartley & Seeman 1983; Murrin & Zeng, 1986; 

Schrambra, Duncan, Breese, Fornaretto, Caron, & Fremeau, 1994). Other 

studies report a linear increase in D2-like receptors up to adolescence when 

dopamine receptors are over-expressed, followed by a decline in receptors 

that are maintained throughout adulthood (Andersen et al., 2000). 

Dopamine Receptor Distribution During Postnatal Development 

D1-Like Receptors 

The D1 receptor subtype can be detected in the striatum and nucleus 

accumbens at birth (Leslie, Robertson, Cutler, & Bennett, 1991; Zeng, Hyttel, 
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& Murrin, 1988). In addition, D1 receptors are highly concentrated in the frontal 

cortex as well as the entorhinal cortex during early postnatal development 

(Tarazi & Baldessarini, 2000). Normal development of dopamine D1 receptors 

can be disrupted when neonatal pups are injected with the neurotoxin 

6-hydroxydopamine, resulting in a decrease in D1 binding sites (Neal & Joyce, 

1992). 

Postnatal development of the D5 receptor can be detected in the 

striatum, globus pallidus, frontal cortex, and cingulate cortex (Araki, Sims, & 

Bhide, 2007). The developmental profile of D5 mRNA expression shows a 

linear increase from PND 0 until PND 21, when they reach maximal levels 

(Araki et al., 2007). 

D2-Like Receptors 

 During early stages of development, the D2 receptor subtype is 

generally found in higher quantities than the D1 receptor (Tarazi & 

Baldessarini, 2000). More specifically, autoradiographic results show that D2 

receptor densities in the striatum and nucleus accumbens are greater than 

other dopamine receptor subtypes (Tarazi & Baldessarini, 2000). 

The ontogenetic profile of the D3 receptor is characterized by an 

increase in the number of binding sites across early postnatal development. 

For example, Gurevich, Himes, and Joyce (1998) showed that D3 mRNA 

expression and D3 binding sites were detectable in low quantities at PND 7 in 

both the nucleus accumbens and islands of Caleja. In these brain regions, D3 
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receptors reached maximal levels at PND 14 and PND 90, respectively. As 

with adults, the D3 receptor subtype show that they are preferentially localized 

in the islands of Calleja (Diaz et al., 1995; Levesque, Diaz, Pilon, Martres, 

Giros, Souil, Schott, Morgat, Schwartz, & Sokoloff, 1992). 

During early postnatal development, the D4 receptor subtype is present 

in lower quantities than D1 and D2 receptors in the nucleus accumbens, 

striatum, frontal cortex, and entorhinal cortex (Tarazi & Baldessarini, 2000). 

Interestingly, D4 mRNA expression reaches maximal levels by PND 3. This 

contrasts with the D2 receptor subtype, which does not reach maximal levels 

until PND 28 or later (Andersen et al., 2000; Nair & Mishra, 1995). 
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 CHAPTER FOUR: 

MECHANISM OF ACTION: INDIRECT DOPAMINE AGONISTS 

Indirect dopamine agonists, such as cocaine and amphetamine, 

increase extracellular monoamine concentrations. More specifically, cocaine 

preferentially increases dopamine, norepinephrine, and serotonin levels, 

whereas amphetamine increases dopamine and norepinephrine (Ritz, Lamb, 

Goldberg, & Kuhar, 1987; Seiden, Sabol, & Ricaurte, 1993). In terms of 

cocaine, monoamine concentrations are enhanced by blocking the reuptake of 

newly released neurotransmitter from the synaptic cleft (Meyer & Quenzer, 

2005). For example, using an in-vivo microdialysis technique, Reith, Li, and 

Yan (1997) discovered that dialysate levels of all three amines were increased 

in the ventral tegmental area following administration of cocaine (20 mg/kg). 

Excitatory amino acids, such as glutamate, also play a role in the behavioral 

effects of cocaine. Cocaine indirectly enhances glutamatergic 

neurotransmission by activating these excitatory neurons, particularly in the 

nucleus accumbens and ventral tegmental area (Kalivas & Duffy, 1998; Smith, 

Mo, Guo, Kunko, & Robinson, 1995). 

Amphetamine- and methamphetamine-like stimulants increase 

monoamine concentrations by blocking reuptake transporters; however, unlike 

cocaine, they also bind to monoamine transporters by acting as a false 

substrate. The end result is that amphetamine and methamphetamine 

promote reverse transport of cytosolic transmitter, thereby releasing 
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monoamines from non-vesicular stores (Reith, Li, & Yan, 1997). Fumagalli, 

Gainetdinov, Valenzano, and Caron (1998) reported an 18-fold increase in 

extracellular dopamine levels in wild type mice that were subcutaneously 

injected with methamphetamine (30 mg/kg). In the same study, DOPAC levels 

were decreased by roughly 60% in both wild type and DAT knockout mice. 

The latter finding shows that methamphetamine also increases dopamine 

levels by inhibiting monoamine oxidase (MAO), which is an enzyme that 

catabolizes dopamine (Fumagalli et al., 1998). 
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 CHAPTER FIVE: 

ADULT SENSITIZATION: INDIRECT DOPAMINE AGONISTS 

Indirect Dopamine Agonists: Adult Multi-Trial Sensitization 

Behavioral sensitization occurs when an animal is repeatedly exposed 

to various indirect dopamine agonists (e.g. cocaine, amphetamine, or 

methamphetamine), and is then challenged with the same drug at a later time 

point. This procedure results in an augmented locomotor response that can be 

observed when the animal is tested one day to several months after 

discontinuation of the drug (Kalivas & Stewart, 1991; Leith & Kuczenski, 1982; 

McDougall et al., 2007; Robinson & Becker, 1986). Using this paradigm, adult 

rats usually exhibit an enhanced locomotor response when challenged later 

with an indirect dopamine agonist (Leith & Kuczenski, 1982). 

Indirect dopamine agonists are able to produce short- and long-term 

behavioral sensitization in adult rats. For example, sensitization occurs when 

a short withdrawal interval is employed. In one case, rats receiving repeated 

treatments of methamphetamine, followed by a five-day withdrawal period, 

showed an enhanced behavioral response after a challenge injection of 

methamphetamine (Laviola, Pascucci, & Pieretti, 2001). Sensitization is also 

robust when a longer duration withdrawal period is used. Kolta, Shreve, De 

Souza, and Uretsky (1985) showed enhanced locomotor activity after rats 

were chronically treated with amphetamine and challenged 15 or 30 days 
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later. This enhanced locomotion occurs in parallel with increased levels of 

endogenous dopamine, which is evident after longer withdrawal periods. 

Drug dose is a contributing factor to the sensitizing effects of 

psychostimulants. More specifically, repetitive treatment with large doses of a 

psychostimulant typically produces strong behavioral sensitization (Frantz, 

O’Dell, & Parsons, 2007; Post & Rose, 1976). For example, repetitive 

injections of a low dose of cocaine (10 mg/kg) across a five-day interval 

produces increased locomotion with minute stereotypic movements (Frantz et 

al., 2007). Davidson and colleagues (2002), however, observed a more robust 

sensitized response, as well as intense stereotypy, when rats were repeatedly 

given 40 mg/kg cocaine across a six-day interval (Davidson, Lazarus, Lee, & 

Ellinwood, 2002). 

Repeated administration of various doses of amphetamine can also 

lead to sensitization. For instance, a low pretreatment dose of either 0.5 or 

1 mg/kg amphetamine is enough to produce sensitization (Hall, Stanis, Avila, 

& Gulley, 2008; Hooks, Jones, Neil, & Justice Jr., 1992). Higher doses of 

amphetamine lead to focused stereotypy, such as sniffing and licking (Eichler, 

Antelman, & Black, 1980). In regards to locomotion, Leith and Kuczenski 

(1982) observed a multi-phasic response after repeated administration of 

moderate to high doses of amphetamine (2 or 3 mg/kg) for six days. This 

multi-phasic response is best represented by a U-shape curve, in which there 

is a rapid onset of locomotor activity, a decrease in locomotion due to intense 
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focused stereotypy, followed by a post increase in locomotor activity (Leith & 

Kuczenski, 1982). 

Repeated administration of methamphetamine also causes a 

progressive increase in locomotor activity. For example, mice treated with 

10 doses of 1, 2, or 4 mg/kg methamphetamine showed a progressive 

enhancement in locomotor activity. In general, mice receiving 1 mg/kg 

methamphetamine showed a slight increase in locomotor sensitization; 

whereas, 4 mg/kg methamphetamine produced robust stereotypic behavior 

(Hirabayashi & Alam, 1981). 

During the conditioning phase, the nature of the drug-environment 

pairings can affect the magnitude of the sensitized response. More 

specifically, behavioral sensitization is more pronounced when the adult rat or 

mouse is pretreated and tested in the same environment (i.e. 

context-dependent sensitization) (Anagnostaras & Robinson, 1996; Battisti, 

Chang, Uretsky, & Wallace, 1999; Drew & Glick, 1989; McDougall et al., 

2007). In contrast, behavioral sensitization is weaker in adult animals when 

drug pretreatment and drug challenge occur in separate environments (i.e. 

context-independent sensitization). (Laviola, Wood, Kuhn, Francis & Spear, 

1995; McDougall, Cortez, Palmer, Herbert, Martinez, Charntikov, & Amodeo, 

2009). For example, adult rats failed to express a sensitized response when 

drug challenge occurred in a context that was never paired with the 

pretreatment drug (Anagnostaras, Schallert, & Robinson, 2002). 



 

19 

Indirect Dopamine Agonists: Adult One-Trial Sensitization 

Although most studies examine behavioral sensitization using multi-trial 

procedures, sensitization has also been observed in adult rats and mice after 

a single pretreatment injection of a psychostimulant (McDougall, Reichel, Cyr, 

Karper, Nazarian, & Crawford, 2005; Weiss, Post, Pert, Woodward, & 

Murman, 1989). When a one trial procedure is used, sensitization is typically 

measured soon after the pretreatment injection and within the same 

environmental context (i.e., pretreatment and test injections occur in the test 

chamber). For example, adult rats conditioned with 30 mg/kg cocaine showed 

robust locomotor sensitization when challenged a day later with 10 mg/kg 

cocaine (McDougall et al., 2007). Amphetamine-induced sensitization was 

also observed in wild type and D1-defiecient mice after a one-day 

pre-exposure phase (McDougall et al., 2005). 

Environmental context is especially critical when adult rats and mice 

are provided only a single exposure to a psychostimulant. For example, adult 

mice displayed robust behavioral sensitization when conditioned with a high 

dose of cocaine (40 mg/kg) and challenged one day later with a lower dose of 

cocaine (10 mg/kg) in the same previously novel environment (Jackson & 

Nutt, 1993). In contrast, adult rats and mice do not exhibit behavioral 

sensitization when pretreatment and testing occur in different environments. 

For example, adult male and female rats pretreated with cocaine in the home 
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cage showed a lack of sensitized responding when injected with cocaine in 

the testing chamber 24 hours later (McDougall et al., 2009). 

The ability of psychostimulants to enhance locomotion and stereotopy 

are dose-dependent. Increased locomotor activity is observed when the 

animal is pretreated with a high dose of psychostimulant and is then 

challenged with a lower dose (Battisti et al., 1999; Jackson et al., 1993; 

McDougall et al., 2007; 2009). Stereotypy is preferentially observed when high 

doses of psychostimulant are used. For example, Battisti and colleagues 

showed that mice pretreated with 10 mg/kg amphetamine and challenged 

48 hours later with 7 mg/kg amphetamine displayed robust stereotypic 

behaviors (Battisti et al., 2009). 
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 CHAPTER SIX: 

PREWEANLING SENSITIZATION: INDIRECT DOPAMINE AGONISTS 

Indirect Dopamine Agonists in Preweanling Rats: 
Multi-Trial Behavioral Sensitization 

As is true with adult animals, young rats exhibit behavioral sensitization 

when repeatedly exposed to psychostimulants (e.g. cocaine, amphetamine, or 

methamphetamine) (Duke, O’Neil, & McDougall, 1997; McDougall, Duke, 

Bolanos, & Crawford, 1994; Wood, Tirelli, Syder, Heyser, LaRocca, & Spear, 

1998). Although qualitatively similar, behavioral sensitization differs between 

young and adult animals. Some of the factors that differentially affect 

behavioral sensitization in young and adult rats include duration of the 

withdrawal period, the number of drug exposures, as well as the importance of 

drug-environment pairings. 

Indirect dopamine agonists produce long-term behavioral sensitization 

in adult rats that can be detected for months after the last drug exposure 

(Leith & Kuczenski, 1982; Robinson et al., 1982). In contrast, the longevity of 

multi-trial behavioral sensitization in preweanling rats is much shorter. For 

example, McDougall and colleagues (1994) examined the effects of 

amphetamine-induced behavioral sensitization in the early preweanling period 

and found that amphetamine produced short-term sensitization when using a 

2-day interval, but long-term sensitization was not evident when an 8-day 

treatment-to-test interval was employed (McDougall et al., 1994). In another 
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case, however, long-term cocaine sensitization was evident during the late 

preweanling period when testing occurred after 21 days of drug abstinence 

(Snyder, Katovic, & Spear, 1998). Taken together, age-related neural changes 

appear to affect the magnitude of the sensitized response after short or long 

drug abstinence (Snyder et al., 1998). 

In adult rats, the dose of psychostimulant used is a constraining 

influence on the robustness of the sensitized response (Jackson & Nutt, 1993; 

Weiss, Post, Pert, Woodward, & Muran, 1989). Similarly, drug dose impacts 

pharmacological responsiveness during early ontogeny. For example, 

cocaine-induced behavioral sensitization was more robust when medium 

(15 mg/kg) to large doses (30 mg/kg) of cocaine were administered at 

PND 21, with an adult-like pattern of locomotor activity being evident (Ujike, 

Tsuchida, Akiyama, Fujiwara, & Kuroda, 1995). In addition, repeated 

treatment with a moderate dose (2 mg/kg) of methamphetamine produces 

robust behavioral sensitization in late preweanling age groups (Fujiwara, 

Kazahaya, Nakashima, Sato, & Otsuki, 1987). 

Environmental cues influence the sensitized responding of preweanling 

rats when a multi-trial procedure is used. Specifically, the sensitized response 

is more robust when pretreatment and testing occur in the same environment 

(i.e. context-dependent sensitization); however, the sensitized response is 

weaker or absent when pretreatment and testing occur in distinct 

environments (i.e. context-independent sensitization). For example, 



 

23 

preweanling rats repeatedly treated with cocaine (5, 15, or 30 mg/kg) in a 

novel context showed strong behavioral sensitization when tested in the same 

previously novel environment (Wood et al., 1998). In contrast, preweanling 

rats would only exhibit short-term behavioral sensitization, but not long-term 

sensitization, when cocaine was repeatedly administered in the home cage 

during the pretreatment phase (McDougall, Cortez, Palmer, Herbert, Martinez, 

Charntikov, & Amodeo, 2009; Zavala, Nazarian, Crawford, & McDougall, 

2000). 

Indirect Dopamine Agonists in Preweanling Rats: 
One-Trial Behavioral Sensitization 

Like adults, preweanling rats exhibit a strong sensitized response after 

being given a single exposure to a variety of indirect agonists (e.g. cocaine, 

methamphetamine, and amphetamine) (Herbert, Der-Ghazarian, Palmer, & 

McDougall, 2010; Kozanian, Gutierrez, Mohd-Yusof, & McDougall, 2012). 

Adult rats only show one-trial behavioral sensitization when a 

context-dependent procedure is used (Battisti, Uretsky, & Wallace, 2000; 

McDougall, Baella, Stuebner, Halladay, & Crawford, 2007); whereas, young 

rats show strong sensitized responding when pretreatment and testing occur 

in distinct environments. For example, preweanling rats pretreated with 

30 mg/kg cocaine showed robust context-independent sensitization when 

challenged with 20 mg/kg cocaine on the test day (McDougall, Kozanian, 

Greenfield, Horn, Gutierrez, & Mohd-Yusof, 2011). In another case, Kozanian 
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et al. (2012) showed that young rats conditioned with 4 mg/kg 

methamphetamine in the home cage exhibited strong context-independent 

behavioral sensitization when challenged 24 hours later with 2 mg/kg 

methamphetamine in the test chamber. 

Previous research has also characterized the ontogenetic profile of 

psychostimulant-induced one-trial behavioral sensitization. More specifically, 

psychostimulants preferentially induce one-trial behavioral sensitization 

depending on the age of the animal. For example, McDougall et al. (2011) 

showed that cocaine produced robust one-trial behavioral sensitization when 

young rats were pretreated on PND 19 and tested on PND 21, while various 

dose combinations of methamphetamine and amphetamine did not produce 

one-trial behavioral sensitization in this age group. In contrast, one-trial 

cocaine-induced behavioral sensitization was not evident when younger 

(PND 16-17) and older (PND 24-25) rats were tested. Methamphetamine, on 

the other hand, was able to produce one-trial sensitization in younger age 

groups (PND 12-13 or PND 16-17) (Kozanian et al., 2012). These 

age-dependent differences in psychostimulant-induced effects could be due to 

ontogenetic changes in the dopamine system (see “Ontogeny of the 

Dopamine System” chapter). 
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 CHAPTER SEVEN: 

NEURAL MECHANISMS UNDERLYING THE DEVELOPMENT 

AND EXPRESSION OF BEHAVIORAL SENSITIZATION 

Previous studies have employed selective D1-like and D2-like receptor 

antagonists to assess the neural mechanisms responsible for the induction 

(i.e. development) and expression of behavioral sensitization. Current theory 

suggests that the induction of behavioral sensitization is due to transient 

changes in neural function caused by repeated injections of the drug, while 

expression of the sensitized response is associated with enduring changes in 

cellular function during withdrawal (Kalivas & Stewart, 1991). D1-like and 

D2-like receptors are thought to play an important role in these processes, 

however, the relationship of these receptors to sensitization is complex. 

Induction of Behavioral Sensitization 

Role of Dopamine D1-Like Receptors 

Researchers have suggested that stimulation of D1-like receptors, 

particularly in the ventral tegmental area, is necessary for the induction of 

amphetamine-induced behavioral sensitization (Vezina, 1996). Curiously, the 

importance of D1-like receptors appears to vary depending on the 

psychostimulant used. Specifically, D1-like receptor antagonists block the 

induction of amphetamine-induced behavioral sensitization (Vezina & Stewart 

1989). For example, rats repeatedly treated with SCH 23390 prior to 
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methamphetamine administration for 14 days did not show locomotor 

sensitization when tested after 3 months of drug abstinence (Hamamura, 

Akiyama, Akimoto, Kashihara, Okumura, Ujike, & Otsuki, 1991). Likewise, 

Ujike, Onoue, Akiyama, Hamamura, and Otsuki (1989) showed that rats 

receiving daily administrations of SCH 23390 (0.5 mg/kg) in combination with 

methamphetamine (4 mg/kg) for 14 days did not show elevated locomotor or 

stereotypic behavior on the test day, thus indicating that SCH 23390 blocked 

the induction of methamphetamine-induced sensitization. 

In contrast, many studies have shown that SCH 23390 does not affect 

the induction of cocaine-induced behavioral sensitization when using a 

multi-trial paradigm (Kuribara & Uchihashi, 1993; Vezina & Stewart, 1989; 

White, Joshi, Koeltzow, & Hu, 1998). However, Fontana and colleagues 

(1993) reported that SCH 23390 was able to prevent the conditioned effects 

of one-trial cocaine-induced sensitization. Thus, it appears that D1-like 

receptor blockade differentially affects behavioral sensitization depending on 

the psychosimulant being used. It is possible that cocaine and amphetamine 

differentially affect compensatory mechanisms or redundant pathways 

(Karper, De La Rosa, Newman, Krall, Nazarian, McDougall, & Crawford, 2002; 

White et al., 1998). The discrepant findings reported by Fontana et al. (1993) 

suggest that D1-like receptors are associated with conditioning effects rather 

than reward; whether this factor may underlie the differences between cocaine 

and amphetamine is uncertain. 
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Role of Dopamine D2-Like Receptors 

D2-like receptors also play a role in mediating behavioral sensitization. 

For example, mice repeatedly treated with the D2-like antagonist haloperidol 

(0.025, 0.1, 0.4 mg/kg), followed by methamphetamine, showed a 

dose-dependent decrease in the strength of the sensitized response 

(Kuribara, 1994). In the same manner, other studies found that haloperidol 

was able to block the induction of cocaine-induced behavioral sensitization 

(Mattingly, Rowlett, Ellison, & Rase, 1996; Weiss et al., 1989). Interestingly, 

the D2-like receptor antagonist sulpiride was unable to block the induction of 

cocaine sensitization (Mattingly, Hart, Lim, & Perkins, 1994). The disparate 

actions of haloperidol and sulpiride could be due to their respective 

mechanisms of action. For example, haloperidol not only binds to dopamine 

receptor sites but, at high doses, binds to serotonin receptor sites (O’Dell, La 

Hoste, Wildmark, Shapiro, Potkin, & Marshall, 1990). Hence, the ability of 

haloperidol to block cocaine-induced sensitization may be related to its 

combined actions on dopaminergic and non-dopaminergic systems (Mattingly 

et al., 1995). Sulpiride also has great difficulty in crossing the blood-brain 

barrier, so sulpiride’s lack of efficacy could be due to pharmacokinetic factors. 

Although it is generally accepted that D2-like receptors are important 

for the induction of behavioral sensitization, the brain areas where these 

receptors are located is largely unknown. In 2002, Beyer and Steketee 

reported that D2-like receptors in the medial prefrontal cortex are responsible 
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for mediating the induction of behavioral sensitization; whereas, Jung and 

colleagues (2013) showed that stimulation of D2-like receptors in the nucleus 

accumbens is not involved the inductive process. 

In summary, the role of D1-like and D2-like receptors in mediating the 

induction of psychostimulant-induced behavioral sensitization is complex. For 

example, while D1-like receptors play a prominent role in the induction of 

amphetamine-induced sensitization, their importance for cocaine-induced 

sensitization is much less critical. Likewise, D2-like receptor functioning 

appears to be necessary for the induction of methamphetamine- and 

cocaine-induced multi-trial sensitization, although studies involving sulpiride 

provide inconsistent findings. Considering these disparate results, more 

research is needed to determine the importance of dopamine receptors for the 

induction of psychostimulant-induced behavioral sensitization. 

Expression of Behavioral Sensitization 

Role of D1-Like Receptors 

Stimulation of D1-like receptors in the nucleus accumbens is required 

for the expression of behavioral sensitization (Pierce & Kalivas, 1997). For 

example, rats and mice treated with SCH 23390 on the test day displayed an 

absence of cocaine or methamphetamine sensitization (Kuribara & Uchihashi, 

1994; White et al., 1981). In another case, administering SCH 23390 prior to 

cocaine at various intervals (Day 1, 17, 14, and 21) blocked the expression of 

cocaine-induced behavioral sensitization (McCreary & Marsden, 1993). 
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Role of D2-Like Receptors 

While dopamine D2-like receptors are involved in the induction of 

behavioral sensitization, these receptors are not necessary for the expression 

of sensitization. For example, the D2-like antagonist pimozide is unable to 

block the expression of amphetamine-induced sensitization (Beninger & 

Hahn, 1983). Similarly, Beninger and Herz (1986) found that pimozide 

(0.4 mg/kg) pretreatment failed to prevent the expression of cocaine-induced 

behavioral sensitization in a context-specific environment. 

In summary, repeated treatment with a psychostimulant can lead to 

neurochemical alterations that are associated with the long-term expression of 

behavioral sensitization. Although D1-like and D2-like receptors are intimately 

involved in the induction of amphetamine-induced sensitization, only D1-like 

receptors are necessary for expression. 

Development of Sensitization in Young Rats 

While numerous studies have focused on the role of dopamine 

receptors for the induction and expression of behavioral sensitization in adult 

rats and mice (Hamamura et al., 1991; Kuribara, 1994; Kuribara & Uchihashi, 

1994; Vezina & Stewart, 1989), the role of dopamine receptors for the 

ontogeny of behavioral sensitization has not been studied in detail. Recently, 

however, one study did examine the importance of D1-like receptors for the 

induction of psychostimulant-induced behavioral sensitization in preweanling 

rats. Using a one-trial procedure, rat pups were pretreated with SCH 23390 at 
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0, 15, 30, or 60 min before methamphetamine (2 mg/kg) or cocaine 

(20 mg/kg) administration. At none of these time points did D1-like receptor 

blockade disrupt sensitized responding. Thus, the inability of SCH 23390 to 

impact methamphetamine- or cocaine-induced behavioral sensitization 

suggests that D1-like receptor stimulation is unnecessary for behavioral 

sensitization during the preweanling period (Mohd-Yusof, Gonzalez, Veliz, & 

McDougall, 2014). 
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 CHAPTER EIGHT: 

SUMMARY 

Thesis Statement 

Behavioral sensitization occurs when rats are repeatedly exposed to 

various indirect dopamine agonists (e.g. cocaine, methamphetamine, or 

amphetamine). In multi-trial behavioral sensitization paradigms, adult rats and 

mice typically show robust “context-dependent” sensitization when drug 

pretreatment and testing occur in the same novel environment. 

“Context-independent” behavioral sensitization can also be observed in adults 

when pretreatment and testing occurs in two separate and distinct 

environments. Different patterns of results are observed in adult rats and mice 

when using a one-trial procedure; adults only exhibit one-trial behavioral 

sensitization if drug pretreatment and testing occur in the same previously 

novel environment. 

Preweanling rats also exhibit behavioral sensitization after repeated 

exposures to an indirect dopamine agonist; however, the sensitized 

responding appears to be weaker and less persistent than in adult rats (Kolta 

et al., 1990; Smith & Morell, 2008). Similar to adults, the multi-trial sensitized 

responding of preweanling rats is more robust when pretreatment and testing 

occur in the same environmental context (Zavala et al., 2000). Unlike adults 

however, preweanling rats exhibit robust context-independent behavioral 

sensitization when using a one-trial paradigm (Kozanian et al., 2012). When 
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these results are considered together, it appears that the characteristics of 

behavioral sensitization (e.g. the strength and longevity of the sensitized 

response, the role of associative processes, etc.) differ dramatically across 

ontogeny. 

In adult rats, the neural mechanisms underlying behavioral sensitization 

differ depending on the psychostimulant being used. Previous studies have 

shown that the selective D1-like receptor antagonist SCH 23390 blocks the 

induction of amphetamine- and methamphetamine-, but not cocaine-induced 

sensitization (Hamamura et al., 1991; Ujike et al., 1989). The only exception 

was reported by Fontana et al. (1993), who demonstrated that SCH 23390 

prevented the conditioned effects of cocaine-induced sensitization when using 

a one-trial procedure. In terms of D2-like receptors, haloperidol blocks the 

induction of methamphetamine- and cocaine-induced behavioral sensitization 

in adult rats, while sulpiride is ineffective. Considering the inconsistent 

findings, more research is needed to assess the importance of dopamine 

receptors for the induction of behavioral sensitization. 

In contrast to the large number of studies examining the induction of 

psychostimulant-induced behavioral sensitization in adult rats and mice, the 

role dopamine receptors play in the ontogeny of behavioral sensitization has 

been largely ignored. In the only study to examine the importance of D1-like 

receptors during early ontogeny, Mohd-Yusof et al. (2014) showed that SCH 

23390 was unable to block methamphetamine- and cocaine-induced 
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behavioral sensitization of young rats. These results indicate that the 

mechanism mediating behavioral sensitization differ across ontogeny. 

The purpose of this thesis was to assess the importance of D2-like 

receptors for the induction of psychostimulant-induced behavioral sensitization 

during early ontogeny. Rats were assessed during both the middle 

(PND 13-17) and late (PND 17-21) preweanling periods because rats of these 

ages often show different patterns of psychostimulant-induced behavioral 

sensitization (Kozanian et al., 2012; McDougall et al., 2013). Likewise, both 

methamphetamine and cocaine were tested, since adult rat sensitization 

studies indicate that these two psychostimulants are differentially affected by 

D2-like receptor blockade (Mattingly et al., 1994; Weiss et al., 1989). 

The specific goals of this thesis were two-fold. First, to investigate the 

importance of the D2-like receptor for cocaine- and 

methamphetamine-induced one-trial behavioral sensitization during early 

ontogeny. It was predicted that the D2-like antagonist raclopride would 

prevent the induction of methamphetamine- and cocaine-induced behavioral 

sensitization at PND 17 and PND 21. The basis for this prediction is that 

raclopride prevents the induction of one-trial cocaine-induced sensitization in 

adult rats (Fontana et al., 1993). The second goal of this thesis was to assess 

the importance of the D2-like receptor for cocaine- and 

methamphetamine-induced multi-trial behavioral sensitization during the 

middle and late preweanling periods. It was predicted that raclopride would 
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block both methamphetamine- and cocaine-induced multi-trial behavioral 

sensitization at PND 17 and PND 21. Again, the basis for these predictions 

are adult rat studies showing that raclopride and pimozide attenuate 

sensitized responding when using multi-trial procedures (Beninger & Hahn, 

1983; Beninger & Herz, 1986; Ushijima, Carino, & Horita, 1995). 
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 CHAPTER NINE: 

MATERIALS AND METHODS 

Subjects were young male and female rats of Sprague-Dawley descent 

(Charles River, Hollister, CA) that were born and raised at California State 

University, San Bernardino (CSUSB). Litters were culled to ten pups on 

PND 3. All rats were housed on racks in large polycarbonate maternity cages 

(56 × 34 × 22 cm) with wire lids and Tek-Fresh® bedding (Harlan, 

Indianapolis, IN). Food and water was freely available. The colony room was 

maintained at 22-23˚C, and kept under a 12L:12D cycle, with behavioral 

testing occurring during the light phase of the cycle. Except during testing, rats 

were kept with the dam and littermates. Testing was done in a separate 

experimental room, maintained at 24-25˚C. Subjects were cared for according 

to the “Guide for the Care and Use of Laboratory Animals” (National Research 

Council, 2010) under a research protocol approved by the Institutional Animal 

Care and Use Committee of CSUSB. 

Apparatus 

Behavioral testing was performed in commercially available (Coulbourn 

Instruments, Allentown, PA, USA) activity monitoring chambers 

(25 × 25 × 41 cm) housed in a testing room separate from the animal colony. 

The activity chambers had acrylic walls, a gray plastic floor, and an open top. 

Each chamber included an X-Y photobeam array, with 16 photocells and 
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detectors, that was used to measure horizontal locomotor activity (distance 

traveled). Photobeam resolution is 0.76 cm. The position of each rat was 

determined every 100 ms (i.e., the sampling interval). 

Drugs 

(+)-Methamphetamine hydrochloride, ()-cocaine hydrochloride, and 

S(-)-raclopride (+)-tartrate were dissolved in saline. Drugs were purchased 

from Sigma-Aldrich (St. Louis, MO) and injected intraperitoneally (IP) at a 

volume of 5 ml/kg. 

Procedure 

Experiment 1: Effects of D2 Receptor Blockade on 
Cocaine-Induced One-Trial Behavioral Sensitization 

One-trial cocaine-induced behavioral sensitization was assessed on 

PND 20–21. On the pretreatment day, PND 20 rats were injected with 

raclopride (0, 0.1, 0.5, 1, or 5 mg/kg) followed, 15 min later, by an injection of 

30 mg/kg cocaine (see Figure 2). Rats in the acute control group were given 

two injections of saline. After the second injection, rats were placed in activity 

chambers and distance traveled was measured for 30 min. On the test day, all 

rats were injected with 20 mg/kg cocaine and placed in activity chambers for 

120 min. 
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 PND 20 PND 21 

Group Pretreatment Drugs Test Day Drug 

Control Group Saline Saline Cocaine (20 mg/kg) 

Sensitization Group Saline Cocaine (30 mg/kg) Cocaine (20 mg/kg) 

Antagonist Group 0.1 mg/kg Raclopride Cocaine (30 mg/kg) Cocaine (20 mg/kg) 

Antagonist Group 0.5 mg/kg Raclopride Cocaine (30 mg/kg) Cocaine (20 mg/kg) 

Antagonist Group 1 mg/kg Raclopride Cocaine (30 mg/kg) Cocaine (20 mg/kg) 

Antagonist Group 5 mg/kg Raclopride Cocaine (30 mg/kg) Cocaine (20 mg/kg) 

Figure 2. Schematic Showing Drug Treatments for the Various Groups in 

Experiment 1 

Experiment 2: Effects of D2 Receptor Blockade on 
Methamphetamine-Induced One-Trial Behavioral Sensitization 

Since indirect dopamine agonists preferentially induce one-trial 

sensitization at different ages (Kozanian et al., 2012), one-trial 

methamphetamine-induced sensitization was assessed on PND 16-17. On the 

pretreatment day, PND 16 rats were injected with raclopride (0, 0.1, 0.5, 1, or 

5 mg/kg) followed, 15 min later, by an injection of 4 mg/kg methamphetamine 

(see Figure 3). The acute control group was given two injections of saline. 

After the second injection, locomotor activity was assessed for 30 min. On the 

test day, all rats were injected with 2 mg/kg methamphetamine and locomotor 

activity was assessed for 120 min. Doses of cocaine and methamphetamine 

were based on previous studies using preweanling rats (Herbert et al., 2010; 

McDougall et al., 2007, 2011; Kozanian et al., 2012). 
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 PND 16 PND 17 

Group Pretreatment Drugs Test Day Drug 

Control Group Saline Saline METH (2 mg/kg) 

Sensitization Group Saline METH (4 mg/kg) METH (2 mg/kg) 

Antagonist Group 0.1 mg/kg Raclopride METH (4 mg/kg) METH (2 mg/kg) 

Antagonist Group 0.5 mg/kg Raclopride METH (4 mg/kg) METH (2 mg/kg) 

Antagonist Group 1 mg/kg Raclopride METH (4 mg/kg) METH (2 mg/kg) 

Antagonist Group 5 mg/kg Raclopride METH (4 mg/kg) METH (2 mg/kg) 

Figure 3. Schematic Showing Drug Treatments for the Various Groups in 

Experiment 2 

Experiment 3a: Effects of D2 Receptor Blockade on Cocaine- 
Induced Multi-Trial Behavioral Sensitization During the Late 
Preweanling Period 

On PND 17-20, rats were injected with raclopride (0, 0.5, or 1 mg/kg) 

followed, 15 min later, by an injection of 30 mg/kg cocaine (see Figure 4). 

Rats in the acute control group were given two injections of saline. After the 

second injection, rats were placed in activity chambers and distance traveled 

was measured for 30 min. On PND 21, all rats were injected with 20 mg/kg 

cocaine and placed in activity chambers for 120 min. 
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 PND 17-20 PND 21 

Group Pretreatment Drugs Test Day Drug 

Control Group Saline Saline Cocaine (20 mg/kg) 

Sensitization Group Saline Cocaine (30 mg/kg) Cocaine (20 mg/kg) 

Antagonist Group 0.1 mg/kg Raclopride Cocaine (30 mg/kg) Cocaine (20 mg/kg) 

Antagonist Group 0.5 mg/kg Raclopride Cocaine (30 mg/kg) Cocaine (20 mg/kg) 

Antagonist Group 1 mg/kg Raclopride Cocaine (30 mg/kg) Cocaine (20 mg/kg) 

Figure 4. Schematic Showing Drug Treatments for the Various Groups in 

Experiment 3a 

Experiment 3b: Effects of D2 Receptor Blockade on 
Methamphetamine-Induced Multi-Trial Behavioral Sensitization 
During the Late Preweanling Period 

To examine the effects of D2 receptor antagonism on 

methamphetamine, separate groups of rats were treated as in Experiment 3a, 

except that rats were pretreated with 4 mg/kg methamphetamine and tested 

with 2 mg/kg methamphetamine (see Figure 5). 

 

 PND 17-20 PND 21 

Group Pretreatment Drugs Test Day Drug 

Control Group Saline Saline METH (2 mg/kg) 

Sensitization Group Saline METH (4 mg/kg) METH (2 mg/kg) 

Antagonist Group 0.1 mg/kg Raclopride METH (4 mg/kg) METH (2 mg/kg) 

Antagonist Group 0.5 mg/kg Raclopride METH (4 mg/kg) METH (2 mg/kg) 

Antagonist Group 1 mg/kg Raclopride METH (4 mg/kg) METH (2 mg/kg) 

Figure 5. Schematic Showing Drug Treatments for the Various Groups in 

Experiment 3b 
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Experiment 4a: Effects of D2 Receptor Blockade on Cocaine- 
Induced Multi-Trial Behavioral Sensitization During the Middle 
Preweanling Period 

On PND 13-16, rats were injected with raclopride (0,0.5, or 1 mg/kg) 

followed, 15 min later, by an injection of 30 mg/kg cocaine (see Figure 6). 

Rats in the acute control group were given two injections of saline. After the 

second injection, rats were placed in activity chambers and distance traveled 

was measured for 30 min. On PND 17, all rats were injected with 20 mg/kg 

cocaine and placed in activity chambers for 120 min. 

 

 PND 13-16 PND 17 

Group Pretreatment Drugs Test Day Drug 

Control Group Saline Saline Cocaine (20 mg/kg) 

Sensitization Group Saline Cocaine (30 mg/kg) Cocaine (20 mg/kg) 

Antagonist Group 0.1 mg/kg Raclopride Cocaine (30 mg/kg) Cocaine (20 mg/kg) 

Antagonist Group 0.5 mg/kg Raclopride Cocaine (30 mg/kg) Cocaine (20 mg/kg) 

Antagonist Group 1 mg/kg Raclopride Cocaine (30 mg/kg) Cocaine (20 mg/kg) 

Figure 6. Schematic Showing Drug Treatments for the Various Groups in 

Experiment 4a 

Experiment 4b: Effects of D2 Receptor Blockade on 
Methamphetamine-Induced Multi-Trial Behavioral Sensitization 
During the Middle Preweanling Period 

To examine the effects of D2-like receptor antagonism on 

methamphetamine during the middle preweanling period, separate groups of 

rats were treated as in Experiment 4a, except that rats were pretreated with 
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4 mg/kg methamphetamine and tested with 2 mg/kg methamphetamine (see 

Figure 7). 

 

 PND 13-16 PND 17 

Group Pretreatment Drugs Test Day Drug 

Control Group Saline Saline METH (2 mg/kg) 

Sensitization Group Saline METH (4 mg/kg) METH (2 mg/kg) 

Antagonist Group 0.1 mg/kg Raclopride METH (4 mg/kg) METH (2 mg/kg) 

Antagonist Group 0.5 mg/kg Raclopride METH (4 mg/kg) METH (2 mg/kg) 

Antagonist Group 1 mg/kg Raclopride METH (4 mg/kg) METH (2 mg/kg) 

Figure 7. Schematic Showing Drug Treatments for the Various Groups in 

Experiment 4b 

Data Analysis 

For all experiments, omnibus repeated-measures analyses of variance 

(ANOVAs) were used for statistical analysis of distance traveled data. More 

specifically, pretreatment data for Experiments 1 and 2 were analyzed using 

6 × 6 (Group × 5-min time block) mixed repeated measures ANOVAs, while 

Experiments 3a, 3b, 4a, and 4b were analyzed using 5 × 4 × 6 

(Group × Day × 5-min time block) mixed repeated measures ANOVAs. Test 

day data for Experiments 1 and 2 were analyzed using 6 × 12 

(condition × 10-min time block) repeated measures ANOVAs, whereas 

Experiments 3a, 3b, 4a, and 4b were analyzed using 5 × 12 

(condition × 10-min time block) mixed repeated measures ANOVAs. Post hoc 

analysis of distance traveled data was done using Tukey tests (P < 0.05). The 
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Huynh-Feldt epsilon statistic was used to adjust degrees of freedom (Huynh & 

Feldt, 1976) when the assumption of sphericity was violated, as determined by 

Mauchly’s test of sphericity. Corrected degrees of freedom was represented 

by a superscripted “a” and rounded to the nearest whole number. 

Litter effects were controlled through both experimental design and 

statistical procedures. In most experiments, no more than one subject per 

litter was assigned to a particular group. In cases where this procedure is not 

possible (e.g., analysis of the pretreatment day), a single litter mean was 

calculated from multiple littermates assigned to the same group (Holson & 

Pearce 1992; Zorrilla, 1997). When possible, litter was used as the unit of 

analysis for statistical purposes (Zorrilla, 1997). With this statistical model 

each litter, rather than each rat, was treated as an independent observation 

(i.e., a within analysis using one value/condition/litter). 



 

43 

 CHAPTER TEN: 

RESULTS 

Synopsis 

In general, both cocaine and methamphetamine were able to induce 

one-trial and multi-trial behavioral sensitization on PND 17 and PND 21 (see 

Table 1). The only exception was that repeated methamphetamine treatment 

did not cause multi-trial behavioral sensitization when testing occurred on 

PND 21. The dopamine D2-like receptor antagonist raclopride had no effect 

on cocaine- or methamphetamine-induced one-trial behavioral sensitization. 

Furthermore, raclopride did not block the induction of cocaine-induced 

multi-trial sensitization on PND 17 or PND 21. Interestingly, the D2-like 

receptor antagonist was able to prevent the induction of multi-trial 

methamphetamine sensitization when testing occurred on PND 17. Detailed 

coverage of the various experimental results now follows. 

Table 1. Summary of the Test Day Results for the Various Experiments 

Experiment 
Pretreatment 

Age 
Test 
Age Design Agonist Sensitization 

Raclopride’s 
Actions Figure 

1 PD 20 PD 21 One-Trial Cocaine Yes No Effect 9 

2 PD 16 PD 17 One-Trial Methamphetamine Yes No Effect 11 

3a PD 17-PD 20 PD 21 Multi-Trial Cocaine Yes No Effect 13 

3b PD 17-PD 20 PD 21 Multi-Trial Methamphetamine No No Effect 15 

4a PD 13-PD 16 PD 17 Multi-Trial Cocaine Yes No Effect 17 

4b PD 13-PD 16 PD 17 Multi-Trial Methamphetamine Yes Blockade 19 
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Experiment 1: Effects of D2 Receptor Blockade 
on Cocaine-Induced One-Trial Behavioral 

Sensitization 

Pretreatment Day 

When collapsed across the pretreatment day, rats pretreated with 

cocaine alone or cocaine plus raclopride (0.1 or 0.5 mg/kg) had greater 

distance traveled scores than saline controls [group main effect, 

F(3, 18) = 7.99, p < 0.01] (see Figure 8A). The effect was not evident with the 

two higher doses of raclopride (1 or 5 mg/kg) as locomotor activity was 

reduced to the level of the saline controls. The effects of the D2 receptor 

antagonist varied across the session, because rats treated with cocaine plus 

raclopride (0.5, 1, or 5 mg/kg) had smaller distance traveled scores than the 

cocaine-alone group on time blocks 1 and 2 [group × time block interaction, 

F(13,88) = 3.41, p < 0.001; Tukey tests, p < 0.05] (see Figure 8B). 
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Figure 8. Mean Distance Traveled Scores (±SEM) of Rats (n = 8 per group) on 

the Pretreatment Day (PND 20). A. Mean Distance Traveled Scores Collapsed 

Across Time Blocks 1-6. B. Mean Distance Traveled Scores on Time Blocks 

1-6. Rats were Injected with Saline or 30 mg/kg Cocaine Immediately before a 

30-min Placement in activity Chambers (Left Panel). In Addition, Separate 

Group of Rats were Injected with Raclopride (0.1, 0.5, 1, or 5 mg/kg) 15 min 

before Cocaine Treatment (Right Panel). a Significantly Different from the 

Saline Control. b Significantly Different from the Cocaine Alone Group. 
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Test Day 

Cocaine-induced behavioral sensitization was evident in 

nonraclopride-treated rats, because rats pretreated and tested with cocaine 

had greater distance traveled scores than rats treated with only cocaine on the 

test day (i.e., the acute control group; Figure 9) [group main effect, 

F(5,35) = 3.83, p < 0.01, and Tukey tests, p < 0.05]. Interestingly, raclopride 

(0.1, 0.5, 1, or 5 mg/kg) pretreatment did not reduce locomotor activity when 

compared to rats treated with cocaine alone (i.e., raclopride did not block the 

development of behavioral sensitization; see right panel Figure 9). Overall, 

distance traveled scores showed a progressive decline across the testing 

session, with the effect beginning on time block 3 [time main effect, 

F(11,31) = 30.97, P < 0.001] (see Figure 9). 
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Figure 9. Mean Distance Traveled Scores (±SEM) of Rats (n = 8 per Group) on the 

Test Day (PND 21). A. Mean Distance Traveled Scores Collapsed across Time 

Blocks 1-12. B. Mean Distance Traveled Scores on Time Blocks 1-12. Rats were 

Challenged with Cocaine (20 mg/kg) Immediately before Behavioral Testing. On the 

Pretreatment Day, Rats were Injected with Raclopride (0.1, 0.5, 1, or 5 mg/kg) 

15 min before Cocaine Treatment (Right Panel). The Acute Control Group was 

Injected with Saline on the Pretreatment Day and Injected with Cocaine on the Test 

Day (Left Panel). Locomotor Activity was Assessed for 120 min. a Significantly 

different from the Acute Control Group. 
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Experiment 2: Effects of D2 Receptor Blockade on 
Methamphetamine-Induced One-Trial 

Behavioral Sensitization 

Pretreatment Day 

Rats injected with methamphetamine alone or methamphetamine plus 

raclopride (0.1 or 0.5 mg/kg) had greater distance traveled scores than 

saline-treated rats [group main effect, F(5,35) = 7.67, p < 0.001] (see Figure 

10A). These effects varied across the testing session, because rats treated 

with methamphetamine alone had significantly more locomotor activity on time 

blocks 1 and 2 than saline controls [group × time block, F(25,175) = 6.22, 

p < 0.001] (see Figure 10B; left panel). The three higher doses of raclopride 

(0.5, 1, and 5 mg/kg) attenuated locomotor activity on time blocks 1, 2 and 4 

when compared to the methamphetamine alone group (Tukey tests, p < 0.05) 

(see Figure 10B; right panel). 
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Figure 10. Mean Distance Traveled Scores (±SEM) of Rats (n = 8 per Group) on 

the Pretreatment Day (PND 16). A. Mean Distance Traveled Scores Collapsed 

across Time Blocks 1-6. B. Mean Distance Traveled Scores on Time Blocks 1-6. 

Rats were Injected with Saline or 4 mg/kg Methamphetamine Immediately before a 

30-min Placement in Activity Chambers (Left Panel). In addition, Separate Group of 

Rats were Injected with Raclopride (0.1, 0.5, 1, or 5 mg/kg) 15 min before 

Methamphetamine Treatment (Right Panel). a Significantly Different from the Saline 

Control Group. b Significantly Different from the Methamphetamine Alone Group. 
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Test Day 

Overall, rats pretreated and tested with methamphetamine and rats 

pretreated with 1 mg/kg raclopride had greater distance traveled scores than 

the acute control group [group main effect, F(5,35) = 5.54, P < 0.001] (see left 

panel, Figure 11). Rats pretreated and tested with methamphetamine had 

greater distance travel scores than the acute control group on time blocks 

3-11 [group × time block, F(55,385) = 2.68, p < 0.001]. Raclopride 

pretreatment, regardless of dose, did not attenuate locomotor activity on the 

test day (see Figure 11). 
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Figure 11. Mean Distance Traveled Scores (±SEM) of Rats (n = 8 per Group) on 

the Test Day (PND 17). A. Mean distance Traveled Scores Collapsed across Time 

Blocks 1-12. B. Mean Distance Traveled Scores on Time Blocks 1-12. Rats were 

Challenged with Methamphetamine (2 mg/kg) Immediately before Behavioral 

Testing. On the Pretreatment Day, Rats were Injected with Raclopride (0.1, 0.5, 1, 

or 5 mg/kg) 15 min before Methamphetamine Treatment (Right Panel). The Acute 

Control Group was Injected with Saline on the Pretreatment Days and Injected with 
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Methamphetamine on the Test Day (Left Panel). Locomotor was Assessed for 

120 min. a Significantly different from the Acute Control Group 

Experiment 3a: Effects of D2 Receptor Blockade on Cocaine- 
Induced Multi-Trial Behavioral Sensitization During the 

Late Preweanling Period 

Pretreatment Day 

PND 17. Rats injected with cocaine alone or cocaine plus raclopride 

(0.1 mg/kg) had greater distance traveled scores than rats treated with saline 

or moderate to high doses of raclopride (0.5 and 1 mg/kg) [group main effect, 

F(4,28) = 12.17, P < 0.001](see left top panel; Figure 12). Rats treated with 

cocaine alone had greater distance traveled scores on time blocks 1-4 and 6 

when compared to the saline group [group × time block interaction, 

F(20,140) = 3.89, P < 0.001; Tukey tests, P < 0.05]. The effects of the D2 

antagonist varied across the session, because rats treated with cocaine plus 

raclopride (0.5 and 1 mg/kg) had smaller distance traveled scores than the 

cocaine-alone group on time blocks 1 and 2 (Tukey tests, P < 0.05) (see left 

top panel; Figure 12). 

PND 18. Rats injected with cocaine alone or cocaine plus 0.1 mg/kg 

raclopride had greater distance traveled scores than saline-treated rats [group 

main effect, F(4,28) = 9.61, P < 0.001] (see right top panel; Figure 12). More 

specifically, rats treated with cocaine alone had greater locomotor activity on 

time blocks 1 and 2 than saline controls [group × time block interaction, 
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F(20,140) = 5.11, P < 0.001; Tukey tests, P < 0.05]. Rats treated with 0.5 or 

1 mg/kg raclopride had smaller distance traveled scores on time blocks 1 and 

2 than the cocaine alone group (see right top panel; Figure 12). 

PND 19. Rats injected with cocaine alone or cocaine plus a low dose of 

raclopride (0.1 mg/kg) had greater distance traveled scores than 

saline-treated rats [group main effect, F(4,28) = 12.21, P < 0.001] (see left 

bottom panel; Figure 12). Moreover, rats treated with cocaine alone had 

significantly greater locomotor activity on time blocks 1-4 than the saline 

control group. Rats pretreated with raclopride (0.5 or 1 mg/kg) had smaller 

distance traveled scores on time blocks 1-5 than the cocaine alone group 

[group × time block interaction, F(20,140) = 7.17, P < 0.001; Tukey tests, 

P < 0.05] (see left bottom panel; Figure 12). 

PND 20. Rats injected with cocaine alone or cocaine plus 0.1 mg/kg 

raclopride had greater distance traveled scores than saline-treated rats [group 

main effect, F(4,28) = 7.16, P < 0.001] (see right bottom panel; Figure 12). 

More specifically, rats treated with cocaine alone had greater locomotion on 

time blocks 1 and 2 than saline controls, while rats treated with 1 mg/kg 

raclopride had smaller distance traveled scores on time blocks 1 and 2 when 

compared to the cocaine alone group [group × time block interaction, 

F(20,140) = 3.76, P < 0.001; Tukey tests, P < 0.05] (see right bottom panel; 

Figure 12). Starting on time block 3, locomotor activity decreased across time 

[time main effect, F(5,35) = 41.74, P < 0.001]. 
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Figure 12. Mean Distance Traveled Scores (±SEM) of Rats (n = 8 per Group) on 

the Four Pretreatment Days (PD 17, PD 18, PD 19, and PD 20). The Insets Show 

Mean Distance Traveled Collapsed across the Conditioning Session. Rats were 

Injected with Saline or 30 mg/kg Cocaine Immediately before a 30-min Placement 

in Activity Chambers. In Addition, Separate Group of Rats were Injected with 

Raclopride (0.1, 0.5, 1, or 5 mg/kg) 15 min before Cocaine Treatment. a 

Significantly Different from the Saline Control Group. b Significantly different from 

the Cocaine Alone Group. 

Test Day 

PND 21. Rats treated with cocaine alone had greater distance traveled 

scores than the acute control group on the test day [group main effect, 

F(4,28) = 6.37, P < 0.001] (see Figure 13). Raclopride pretreatment, 
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regardless of dose, did not attenuate locomotor activity on the test day (see 

Figure 13). 
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Figure 13. Mean Distance Traveled Scores (±SEM) of Rats (n = 8 per group) on the 

Test Day (PND 21). Rats were Challenged with Cocaine (20 mg/kg) Immediately 

before Behavioral Testing. On the Pretreatment Day, Rats were Injected with 

Raclopride (0.1, 0.5, 1, or 5 mg/kg) 15 min before Cocaine Treatment. The Acute 

Control Group was Injected with Saline on the Pretreatment Days and Injected with 

Cocaine on the Test Day. Locomotor Activity was Assessed for 120 min. The Right 

Panel Shows Mean Distance Traveled Collapsed across the Testing Session. 

a Significantly Different from the Acute Control Group. 

Experiment 3b: Effects of D2 Receptor Blockade on 
Methamphetamine-Induced Multi-Trial Behavioral 
Sensitization During the Late Preweanling Period 

Pretreatment Day 

PND 17. Rats injected with methamphetamine-alone or 

methamphetamine plus raclopride (0.1, 0.5, or 1 mg/kg) had greater distance 
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traveled scores than the saline controls [group main effect, F(4,28) = 7.57, 

P < 0.001](see top left panel; Figure 14). The effects of the D2 antagonist 

varied across the session, because rats treated with methamphetamine alone 

had greater distance traveled scores on time blocks 1-3 than saline controls 

[group × time block interaction, F(20,140) = 3.89, P < 0.001; Tukey tests, 

P < 0.05](see top left panel; Figure 14). Groups receiving methamphetamine 

plus a moderate or high dose of raclopride (0.5 and 1 mg/kg) had smaller 

distance traveled scores than the methamphetamine-alone group on time 

blocks 1 and 2 (Tukey tests, P < 0.05). 

PND 18. Rats injected with methamphetamine-alone or 

methamphetamine plus raclopride (0.1 or 0.5 mg/kg) had greater distance 

traveled scores than saline controls [group main effect, F(4,28) = 21.93, 

P < 0.001] (see top right panel; Figure 14). More specifically, rats treated with 

methamphetamine-alone had greater distance traveled scores on time blocks 

1-6 when compared to saline controls [group × time block interaction, 

F(20, 140) = 11.07, P < 0.001; Tukey tests, P < 0.05]. The three doses of 

raclopride (0.1, 0.5, or 1 mg/kg) caused smaller distance traveled scores on 

time blocks 1, 2, and 3 when compared to the methamphetamine-alone group 

(Tukey tests, P < 0.05). In general, rats treated with raclopride (0.1, 0.5, or 

1 mg/kg) exhibited increased locomotor activity as the session progressed 

[time main effect, F(2,11) = 22.99, P < 0.001; Tukey tests, P < 0.05) (see top 

right panel; Figure 14). 
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PND 19. Rats injected with methamphetamine alone or 

methamphetamine plus raclopride (0.1 or 0.5 mg/kg) had greater distance 

traveled scores than the saline controls [group main effect, F(4,28) = 20.01, 

P < 0.001] (see bottom left panel; Figure 14). More specifically, rats treated 

with methamphetamine alone had greater distance traveled scores than saline 

controls on time blocks 1-6 [group × time block interaction, F(20, 140) = 11.07, 

P < 0.001; Tukey tests, P < 0.05]. The three doses of raclopride (0.1, 0.5, or 

1 mg/kg) caused smaller distance traveled scores on time blocks 1 and 2 

when compared to the methamphetamine-alone group, while 0.5 or 1 mg/kg 

attenuated locomotor activity on time block 3 when compared to the 

methamphetamine-alone group (Tukey tests, P < 0.05) (see bottom left panel; 

Figure 14). 

PND 20. Rats treated with methamphetamine alone or 

methamphetamine plus raclopride (0.1 or 0.5 mg/kg) had greater distance 

traveled scores were compared to saline controls, F(4,28) = 19.99, P < 0.001] 

(see bottom right panel; Figure 14). Rats treated with methamphetamine 

alone had greater distance traveled scores than saline controls on time blocks 

1-6, while raclopride (0.1, 0.5, and 1 mg/kg) attenuated locomotor activity on 

time blocks 1 and 2 when compared to the methamphetamine alone group. 

Raclopride (0.5 and 1 mg/kg) reduced locomotor activity on time block 3 

relative to the methamphetamine-alone group [group × time block interaction, 
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F(20, 140) = 9.04, P < 0.001; Tukey tests, P < 0.05](see bottom right panel; 

Figure 14). 
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Figure 14. Mean Distance Traveled Scores (±SEM) of Rats (n = 8 per Group) on 

the Four Pretreatment Days (PND 17, PND 18, PND 19, and PND 20). The Insets 

Show Mean Distance Traveled Collapsed across the Conditioning Session. Rats 

were Injected with Saline or 4 mg/kg Methamphetamine Immediately before a 

30-min Placement in Activity Chambers. In Addition, Separate Group of Rats were 

Injected with Raclopride (0.1, 0.5, 1, or 5 mg/kg) 15 min before Cocaine Treatment. 

a Significantly Different from the Saline Control Group. b Significantly Different from 

the Methamphetamine Alone Group. 
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Test Day 

PND 21. Rats pretreated with methamphetamine did not differ from the 

acute control group on the test day. Raclopride pretreatment, regardless of 

dose, did not attenuate locomotor activity on the test day (see right panel; 

Figure 15). 
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Figure 15. Mean Distance Traveled Scores (±SEM) of Rats (n = 8 per Group) on 

the Test Day (PND 21). Rats were Challenged with Methamphetamine (2 mg/kg) 

Immediately before Behavioral Testing. On the Pretreatment Days, Rats were 

Injected with Raclopride (0.1, 0.5, 1, or 5 mg/kg) 15 min before Methamphetamine 

Treatment. The Acute Control Group was Injected with Saline on the Pretreatment 

Days and Injected with Methamphetamine on the Test Day. Locomotor Activity was 

Assessed for 120 min. The Right Panel Shows Mean Distance Traveled Collapsed 

across the Testing Session. 
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Experiment 4a: Effects of D2 Receptor Blockade on Cocaine- 
Induced Multi-Trial Behavioral Sensitization During the 

Middle Preweanling Period. 

Pretreatment Day 

PND 13. Rats injected with cocaine alone or cocaine plus 0.5 mg/kg 

raclopride had greater distance traveled scores than saline-treated rats [group 

main effect, F(1,10) = 6.54, P < 0.05] (see top left panel; Figure 16). Overall, 

rats treated with cocaine-alone had greater distance traveled scores on time 

blocks 1-3 and 5-6 than saline controls [group × time block interaction, 

F(20, 140) = 2.62, P < 0.001; Tukey tests, P < 0.05]. Rats treated with 

raclopride (0.1, 0.5, or 1 mg/kg) exhibited less locomotor activity on time 

blocks 1 and 6 than the cocaine alone group (Tukey tests, P < 0.05) (see top 

left panel; Figure 16). 

PND 14. When collapsed across the pretreatment day, rats pretreated 

with cocaine alone or cocaine plus raclopride (0.1 or 0.5 mg/kg) had greater 

distance traveled scores than saline treated rats [group main effect, 

F(2,14) = 12.30, P < 0.001] (see top right panel inset; Figure 16). Rats treated 

with cocaine alone had greater locomotor activity than saline controls on time 

blocks 1, 2, 4, 5, and 6, while raclopride (0.5 or 1 mg/kg) treated rats exhibited 

less locomotor activity than the cocaine-alone group on time blocks 1 and 2 

[group × time block interaction, F(20, 140) = 2.36, P < 0.001; Tukey tests, 

P < 0.05] (see top right panel; Figure 16). 
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PND 15. Overall, rats injected with cocaine alone had greater distance 

traveled scores than rats treated with saline [group main effect, 

F(4,28) = 4.69, P < 0.05] (see bottom left panel inset; Figure 16). This effect 

varied across the testing session, because rats treated with cocaine alone had 

greater distance traveled scores on time blocks 1 and 2 than saline controls; 

the group given cocaine plus 1 mg/kg raclopride exhibited significantly less 

locomotor activity on time blocks 1 and 2 than the cocaine alone group [group 

× time block interaction, F(20, 140) = 3.30, P < 0.001; Tukey tests, P < 0.05] 

(see bottom left panel; Figure 16). 

PND 16. Rats injected with cocaine alone or cocaine plus 0.1 mg/kg 

raclopride had greater distance traveled scores than rats treated with higher 

doses of raclopride (0.5 and 1 mg/kg) [group main effect, F(2,17) = 9.72, 

P < 0.001]. Rats treated with cocaine alone exhibited greater locomotor 

activity on time blocks 1 and 2 than saline controls, while rats treated with 

1 mg/kg raclopride had significantly less locomotion than the cocaine alone 

group on time blocks 1 and 2 [group × time block interaction, 

F(20, 140) = 5.98, P < 0.001; Tukey tests, P < 0.05] (see bottom right panel 

inset; Figure 16). Overall, locomotor activity decreased across the first three 

time blocks for all groups [time main effect, F(2,16) = 12.94, P < 0.001] (see 

bottom right panel; Figure 16). 
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Figure 16. Mean Distance Traveled Scores (±SEM) of Rats (n = 8 per Group) on 

the Four Pretreatment Days (PND 13, PND 14, PND 15, and PND 16). The Insets 

Show Mean Distance Traveled Collapsed across the Conditioning Session. Rats 

were Injected with Saline or 30 mg/kg Cocaine Immediately before a 30-min 

Placement in Activity Chambers. In Addition, Separate Group of Rats were Injected 

with Raclopride (0.1, 0.5, 1, or 5 mg/kg) 15 min before Cocaine Treatment. 

a Significantly Different from the Saline Control Group. b Significantly Different from 

the Cocaine Alone Group. 

Test Day 

PND 17. Rats pretreated and tested with cocaine had greater distance 

traveled scores than the acute control group [group main effect, 

F(4,28) = 8.30, P < 0.001] (see right panel; Figure 17). Moreover, rats 



 

63 

challenged with cocaine had greater locomotor activity than the acute control 

group on time blocks 1, 10, 11, and 12 [group × time block interaction, 

F(44, 308) = 5.43, P < 0.001; Tukey tests, P < 0.05]. Raclopride pretreatment, 

regardless of dose, did not attenuate locomotor activity on the test day. 
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Figure 17. Mean Distance Traveled Scores (±SEM) of Rats (n = 8 per Group) on 

the Test Day (PND 17). Rats were Challenged with Cocaine (20 mg/kg) 

Immediately before Behavioral Testing. On the Pretreatment Days, Rats were 

Injected with Raclopride (0.1, 0.5, 1, or 5 mg/kg) 15 min before Cocaine Treatment. 

The Acute Control Group was Injected with Saline on the Pretreatment Days and 

Injected with Cocaine on the Test Day. Locomotor Activity was Assessed for 

120 min. The Right Panel Shows Mean Distance Traveled Collapsed across the 

Testing Session. a Significantly Different from the Acute Control Group. 
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Experiment 4b: Effects of D2 Receptor Blockade on 
Methamphetamine-Induced Multi-Trial Behavioral 

Sensitization During the Middle 
Preweanling Period 

Pretreatment Day 

PND 13. Rats injected with methamphetamine alone or 

methamphetamine plus raclopride (0.1, 0.5, or 1 mg/kg) had greater distance 

traveled scores than saline controls [group main effect, F(4,28) = 9.47, 

P < 0.001](see top left panel inset; Figure 18). Moreover, rats treated with 

cocaine alone exhibited greater locomotor activity on time blocks 1-3 than 

saline controls, while rats pretreated with raclopride (0.1, 0.5, or 1 mg/kg) had 

smaller distance traveled scores on time block 1 than the 

methamphetamine-alone group [group × time block interaction, 

F(20, 140) = 6.60, P < 0.001; Tukey tests, p < 0.001] (see top left panel; 

Figure 18). 

PND 14. Rats injected with methamphetamine-alone or 

methamphetamine plus raclopride (0.1, 0.5, or 1 mg/kg) had greater distance 

traveled scores when compared to the saline controls [group main effect, 

F(4,28) = 19.66, P < 0.001] (see top right panel inset; Figure 18). Moreover, 

rats treated with cocaine alone showed greater locomotion on time blocks 2-5 

than saline controls [group × time block interaction, F(20, 140) = 17.33, 

P < 0.05; Tukey tests, p < 0.001] (see top right panel; Figure 18). Rats 

pretreated with 1 mg/kg raclopride had smaller distance traveled scores on 

time block 1, 2, and 3 (Tukey tests, P < 0.05). 
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PND 15. Rats injected with methamphetamine alone or 

methamphetamine plus raclopride (0.1, 0.5, or 1 mg/kg) had greater distance 

traveled scores than saline controls [group main effect, F(4,28) = 26.13, 

P < 0.001] (see bottom left panel inset; Figure 18). More specifically, rats 

treated with methamphetamine alone had greater locomotor activity on time 

blocks 1 and 2 than saline controls [group × time block interaction, 

F(20, 140) = 41.54, P < 0.001; Tukey tests, P < 0.05]. Rats pretreated with 

raclopride (1 mg/kg) had smaller distance traveled scores on time block 1 and 

2 when compared to the methamphetamine alone group (see bottom left 

panel; Figure 18). 

PND 16. Rats injected with methamphetamine alone or 

methamphetamine plus raclopride (0.1, 0.5, or 1 mg/kg) had greater distance 

traveled scores than the saline controls [group main effect, F(4,28) = 26.82, 

P < 0.001] (see bottom right panel inset; Figure 18). Moreover, rats treated 

with methamphetamine alone exhibited greater locomotion than saline 

controls on time blocks 1 and 2 [group × time block interaction, 

F(20, 140) = 17.33, P < 0.001; Tukey tests, p < 0.05]. Rats pretreated with 

raclopride (1 mg/kg) had smaller distance traveled scores on time blocks 1 

and 2 when compared to the methamphetamine-alone group, but they had 

greater distance traveled scores than the saline group later in the testing 

session (Tukey tests, P < 0.05) (see bottom right panel; Figure 18). 
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Figure 18. Mean Distance Traveled Scores (±SEM) of Rats (n = 8 per Group) on 

the Four Pretreatment Days (PND 13, PND 14, PND 15, and PND 16). The Insets 

Show Mean Distance Traveled Collapsed across the Conditioning Session. Rats 

were Injected with Saline or 4 mg/kg Methamphetamine Immediately before a 

30-min Placement in Activity Chambers. In Addition, Separate Group of Rats were 

Injected with Raclopride (0.1, 0.5, 1, or 5 mg/kg) 15 min before Methamphetamine 

Treatment. a Significantly Different from the Saline Control Group. b Significantly 

Different from the Methamphetamine Alone Group. 

Test Day 

PND 17. Overall, rats pretreated and tested with methamphetamine 

had greater distance traveled scores than the acute control group, while 

pretreatment with (0.5 or 1 mg/kg) raclopride attenuated locomotor activity on 
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the test day [group main effect, F(4,28) = 18.24, P < 0.001] (see right panel, 

Figure 19). Furthermore, rats pretreated and tested with methamphetamine 

exhibited greater locomotion on time blocks 2-12 than the acute control group 

(see left panel Figure 19). Raclopride pretreated rats had smaller locomotor 

activity scores than the methamphetamine alone group (i.e. the sensitized 

group) on time blocks 6-9 [group × time block interaction, F(44, 308) = 5.43, 

P < 0.001; Tukey tests, p < 0.05]. 
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Figure 19. Mean Distance Traveled Scores (±SEM) of Rats (n = 8 per Group) on 

the Test Day (PND 17). Rats were Challenged with Methamphetamine (2 mg/kg) 

Immediately before Behavioral Testing. On the Pretreatment Days, Rats were 

Injected with Raclopride (0.1, 0.5, 1, or 5 mg/kg) 15 min before Methamphetamine 

Treatment. The Acute Control Group was Injected with Saline on the Pretreatment 

Days and Injected with Methamphetamine on the Test Day. Locomotor Activity was 

Assessed for 120 min. Right Panel Show Mean Distance Traveled Collapsed 

Across the Testing Session. a Significantly Different from the Acute Control Group. 

b Significantly Different from the Methamphetamine Alone Group. 
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 CHAPTER ELEVEN: 

DISCUSSION 

Summary of Results and Hypotheses 

The purpose of this thesis was to investigate the importance of D2-like 

receptors for the induction of psychostimulant-induced behavioral sensitization 

during early ontogeny. More specifically, the goals of this thesis were to 

determine the role of D2-like receptors for cocaine- and 

methamphetamine-induced one-trial and multi-trial behavioral sensitization 

during the preweanling period. It was predicted that the D2-like receptor 

antagonist raclopride would prevent the induction of one-trial 

methamphetamine- and cocaine-induced behavioral sensitization at PND 17 

and PND 21, respectively. Furthermore, it was predicted that raclopride would 

block both methamphetamine- and cocaine-induced multi-trial behavioral 

sensitization at PND 17 and PND 21. 

Contrary to predictions, the D2-like receptor antagonist raclopride did 

not attenuate cocaine-induced sensitized responding on PND 21 when a 

one-trial procedure was employed. Furthermore, raclopride did not prevent the 

induction of methamphetamine-induced one-trial behavioral sensitization on 

PND 17. In regards to cocaine-induced multi-trial behavioral sensitization, 

sensitized responding was evident on both PND 17 and PND 21. However, 

the D2-like antagonist raclopride, regardless of dose, was unable to block the 

induction of cocaine-induced behavioral sensitization when assessed on the 
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test day. In contrast to all of the previously mentioned results, higher doses of 

raclopride (0.5 and 1 mg/kg) blocked the induction of 

methamphetamine-induced sensitization on PND 17. Methamphetamine did 

not produce behavioral sensitization during the late preweanling period (i.e. on 

PND 21), nor did raclopride inhibit methamphetamine-induced locomotor 

activity on PND 21. 

Comparing the Present Results to Adult Studies 

Multi-trial Behavioral Sensitization 

Dopamine D2-like receptor antagonists attenuate multi-trial 

methamphetamine-induced behavioral sensitization in adult rats (Kuribara, 

1994). A similar effect was observed in the present study since raclopride (0.5 

and 1 mg/kg) attenuated the multi-trial sensitized responding of preweanling 

rats. The ability of raclopride to block behavioral sensitization is consistent 

with results using other reward-related paradigms, such as sucrose intake and 

conditioned place preference (Mizoguchi, Yamada, Mizuno, Mizuno Nitta, 

Noda, & Nabeshima, 2004; Tyrka, Gayle, & Smith, 1992). The ability of 

raclopride to block the induction of one-trial methamphetamine-induced 

behavioral sensitization in adult rats has not been assessed, so ontogenetic 

comparisons cannot be made. 

According to some earlier studies using adult rodents, dopamine 

D2-like receptor antagonists prevent the induction of multi-trial 

cocaine-induced behavioral sensitization (Mattingly et al., 1996). Based on 
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these studies, it was predicted that raclopride would also attenuate the 

multi-trial cocaine-induced sensitized responding of preweanling rats; 

however, these results were not obtained. Despite using a broad dose range 

of raclopride (0.1-5 mg/kg), the dopamine D2-like receptor antagonist did not 

attenuate the cocaine-induced sensitized responding of preweanling rats. This 

finding implies that dopamine receptors are not involved in the induction of 

multi-trial cocaine-induced behavioral sensitization during the preweanling 

period. Whether these results represent a true ontogenetic difference is 

uncertain, since White et al. (1998) reported that the D2 receptor antagonist 

eticlopride failed to prevent the induction of multi-trial cocaine-induced 

sensitization in adult rats. These authors suggest that earlier studies showing 

D2 receptor involvement in the multi-trial behavioral sensitization of adult rats 

were confounded due to the use of an excessive dose of haloperidol causing 

nonspecific behavioral effects (Mattingly et al., 1996; White et al., 1998). 

One-trial Behavioral Sensitization 

Despite these contradictory findings involving multi-trial behavioral 

sensitization, it does appear that D2 receptor antagonists prevent the 

induction of one-trial behavioral sensitization in adult rats (Fontana et al., 

1993; Weiss et al., 1989). In contrast, dopamine antagonists do not block the 

one-trial behavioral sensitization of preweanling rats (present study; 

Mohd-Yusof et al., 2014). This age-dependent difference may be due to 

environmental conditioning factors. In adult rats and mice, one-trial behavioral 



 

71 

sensitization is exclusively context-dependent, while multi-trial sensitization is 

not (Anagnostaras et al., 2002; Battisti et al., 1999; Drew & Glick, 1989). If the 

role of dopamine receptors is to mediate the contextual conditioning aspects 

of behavioral sensitization, then only the one-trial behavioral sensitization of 

adult rats should be sensitive to dopamine receptor blockade. Consistent with 

this suggestion, D1-like and D2-like receptor antagonists only prevent the 

induction of one-trial and not multi-trial cocaine sensitization in adult rats 

(White et al., 1998). Since the one-trial behavioral sensitization of preweanling 

rats is context-independent (Kozanian et al., 2012), then dopamine 

antagonists should not be effective at blocking induction. Consistent with this 

idea, raclopride did not block the cocaine-induced one-trial behavioral 

sensitization of preweanling rats. 

Role of Non-Dopaminergic Receptor Systems 

When considered together, results from adult and preweanling rat 

studies suggest that dopamine receptors either play no role or only a minor 

role in the induction of psychostimulant-induced behavioral sensitization. This 

begs the question as to which neurotransmitter systems are responsible for 

mediating the induction of behavioral sensitization. Cocaine and 

methamphetamine do not exclusively affect dopamine neurons. For example, 

cocaine increases serotonin and norepinephrine levels (Seiden et al., 1993), 

while amphetamine- and methamphetamine-like compounds increase 

norepinephrine levels as well as dopamine (Ritz et al., 1987; Seiden et al., 
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1993). This lack of specificity leaves open the possibility that cocaine and 

methamphetamine may also affect behavioral sensitization by modulating 

serotonergic and/or noradrenergic processes. 

Consistent with this idea, previous studies have shown that serotonin 

5-HT2 antagonists, such as ritanserin, partially block the induction of 

methamphetamine sensitization (Tanaka, Ishigooka, Watanabe, Nagata, & 

Miura, 1998). Cocaine sensitization is also inhibited by the serotonin 5-HT3 

antagonist ondansetron (King, Xiong, & Ellinwood, 1997). The adrenergic 

system may also mediate the induction of behavioral sensitization. In fact, 

Auclair et al. (2004) states that the induction of psychostimulant-induced 

behavioral sensitization is exclusively mediated by 5-HT2A and α-1B adrenergic 

receptors. Thus, the inability of raclopride to block the one-trial behavioral 

sensitization of young rats may indicate that non-dopaminergic systems 

mediate the induction process during the preweanling period. 

Comparing One-Trial and Multi-Trial Behavioral 
Sensitization in Preweanling Rats 

According to Valjent and colleagues (2010), a single exposure protocol 

provides a simple paradigm that can measure the induction of behavioral 

sensitization, while avoiding the problems of tolerance and dependence. 

These authors also suggest that the neural mechanisms mediating one-trial 

and multi-trial methamphetamine-induced behavioral sensitization differ 

(Valjent et al., 2010). In the present study, a dopamine D2-like antagonist was 
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unable to block one-trial methamphetamine-induced behavioral sensitization 

on PND 17. In contrast, repeated treatment with high doses of raclopride (0.5 

and 1 mg/kg) attenuated the induction of multi-trial 

methamphetamine-induced behavioral sensitization on PND 17. 

Several explanations may account for the different pattern of results 

provided by the one- and multi-trial procedures. One possibility is that the 

underlying neural mechanisms mediating one-trial and multi-trial sensitization 

differ. Alternatively, it is possible that repeatedly exposing rats to dopamine 

antagonists may cause nonspecific neural changes (i.e., changes unrelated to 

modifying the acute effects of psychostimulant drugs) that weaken the 

sensitized response. Thus, the impaired sensitized responding that is evident 

when using a multi-trial procedure may be an artifact of repeated antagonist 

administration (Mohd-Yusof et al., 2014). Finally, the multi-trial behavioral 

sensitization of preweanling rats is context-dependent (Wood et al., 1998; 

Zavala et al., 2000), while one-trial behavioral sensitization is 

context-independent (Kozanian et al., 2012). This dichotomy leaves open the 

possibility that D2-like receptor antagonism was interfering with contextual 

conditioning and, thus, only multi-trial behavioral sensitization should be 

disrupted by D2 receptor antagonism. 

Ontogeny of Dopamine Receptors 

Past studies have shown that the dopamine system exhibits 

age-dependent changes across postnatal development. For example, firing 
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rates of neurons in the nigrostriatal pathway increase gradually with age (Pitts 

& Chiodo, 1990). Furthermore, the number of D1-like receptors gradually 

increases until approximately the onset of puberty (PND 40), when dopamine 

receptors are over-expressed. The number of D1-like and D2-like receptors 

then declines (i.e. pruning) to levels that are maintained throughout adulthood 

(Andersen et al., 2000). These changes in synaptic plasticity during 

development, when coupled with early drug exposure, could possibly explain 

the age-dependent differences in pharmacological sensitivity to 

psychostimulants. 

Effects of Raclopride During the Pretreatment Phase 

Data collected on the pretreatment days are also informative. When 

rats were given raclopride (0.1-1 mg/kg) during the pretreatment phase (one- 

or multi-trial), the D2-like antagonist was unable to block the acute locomotor 

activating effects of methamphetamine and cocaine. Importantly, the ability or 

inability of raclopride to block agonist-induced effects on the pretreatment day 

did not determine whether a sensitized response was expressed on the test 

day. For example, raclopride attenuated the acute effects of cocaine during 

the pretreatment phase; however, raclopride did not prevent sensitization from 

being expressed on the test day (see Fig. 16). In contrast, raclopride (0.1 and 

0.5 mg/kg) actually potentiated methamphetamine-induced locomotion by the 

end of the pretreatment phase. Even so, the sensitized response was reduced 

on the test day (see Fig. 18). 
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Other lines of research also suggest that the occurrence or 

non-occurrence of agonist-induced locomotor activity on the pretreatment day 

does not determine whether a sensitized response will be evident on the test 

day. For example, preweanling and adult rats anesthetized during the 

pretreatment phase (i.e., no locomotor activity was possible) exhibited 

behavioral sensitization on the test day (Herbert et al., 2010; Wang & Hsiao, 

2003), while adult mice injected with a D2-like antagonist up to 5 hours after 

methamphetamine pretreatment (i.e., A full locomotor response was evident 

on the pretreatment day) did not exhibit behavioral sensitization (Kuribara, 

1995). Therefore, the induction of behavioral sensitization is independent of 

the overt manifestation of drug-induced locomotor activity during the 

pretreatment phase. 

Summary 

In summary, both cocaine and methamphetamine were able to produce 

behavioral sensitization when a one-trial or a multi-trial procedure was used. 

The dopamine D2-like antagonist raclopride failed to prevent the induction of 

one-trial cocaine- and methamphetamine-induced behavioral sensitization, 

thus D2-like receptor stimulation is unnecessary when a one-trial procedure is 

used. The ability of raclopride to prevent the induction of multi-trial 

methamphetamine-induced sensitization suggests that the neural 

mechanisms underlying behavioral sensitization in young rats differs 

depending on the type of paradigm being employed. Lastly, age-dependent 
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differences in the importance of contextual conditioning may explain why 

D1-like and D2-like receptor antagonists prevent the induction of one-trial 

behavioral sensitization in adult rats, but not rat pups (see also Mohd-Yusof et 

al., 2014). 
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