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ABSTRACT 

Conventional medical treatments fail to address the underlying problems 

associated with the damage inflicted by a coronary event. Thus, the long-term 

prognosis of patients admitted for heart failure is disheartening, with reported 

survival rates of 25 percent. Recent advances in stem cell research highlight the 

potential benefits of autologous stem cell transplantation for stimulating repair in 

heart tissue. However, a majority of those suffering from cardiovascular diseases 

are older adults whose autologous cells no longer possess optimum functional 

capacity. Additional work is needed to identify the optimal cell types or conditions 

that will promote cardiovascular regeneration across all age groups. A 

pretreatment, such as short-term hypoxia, and concurrent implementation of a 

novel progenitor, such as those that co-express Isl-1 and c-Kit, may enhance the 

results reported in clinical trials completed to date. However, the effects of short-

term hypoxia in this novel cell type are unknown and warrant investigation in 

vitro. 

Cloned adult and neonatal Isl-1+ c-Kit+ human cardiovascular progenitor 

cells were characterized and expanded for study. Populations from both age 

groups were preconditioned using short-term hypoxia (1% O2 for six hours) and, 

to identify shifts in gene expression, compared to their respective control (21% 

O2 at 37 °C) via qRT-PCR. Flow cytometry and western blot analysis was utilized 

to measure phosphorylation of Akt. Progression through the cell cycle was also 
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analyzed by flow cytometry. Cellular function was evaluated by the use of a 

TUNEL assay and Transwell® invasion assay.  

Hypoxia-mediated alterations of a genetic or functional nature in Isl-1+ c-

Kit+ human cardiac progenitors are clearly age-dependent. Although both age 

groups accrued benefit, the neonatal progenitors procured significantly greater 

improvements. Short-term hypoxia significantly elevated Akt phosphorylation in 

neonatal Isl-1+ c-Kit+ human cardiac progenitors. Benefits afforded to both age 

groups by hypoxic pretreatment included significant upregulation of pro-survival 

transcripts, and enhanced invasion capabilities in vitro.  

Therefore, prior to transplantation, hypoxic preconditioning may improve 

the ability of transplanted stem cells to home towards damaged areas of the 

heart and support cardiac regeneration in vivo.  
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CHAPTER ONE 

INTRODUCTION 

 

  

Background 

Etiology and Global Impact of Cardiovascular Diseases 

Cardiovascular diseases (CVDs) encompass a suite of diseases that 

affect the heart and its vessels, the most common disease being coronary artery 

disease (CAD). CAD is typified by atherogenesis (plaque accretion) and 

subsequent lesion formation, both stenotic and non-stenotic, within the coronary 

artery. Stenotic lesions innately restrict blood flow by growing towards the lumen, 

but tend to have smaller lipid cores and thick fibrous caps that are not very 

susceptible to rupture (Libby & Theroux, 2005). On the other hand, a non-

stenotic lesion develops abluminally and, therefore, does not inherently affect 

coronary circulation until the constitutive lipid-rich core and thin fibrous cap are 

disturbed, initiating coronary thrombosis and occlusion (Libby & Theroux, 2005).

 Despite our comprehensive understanding regarding the etiology of CVDs, 

they remain the number one cause of death across the globe – accounting for 

approximately one out of every three deaths worldwide (Deaton et al., 2011; 

Mozaffarian et al., 2015). Additionally, patients hospitalized for heart failure 

typically develop permanent scarring of the heart and significant loss of 

cardiovascular function. Traditional treatments fail to address this issue and, as a 
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result, the long-term outlook of these patients is abysmal, with five-year survival 

rates lower than that of most cancer patients (Stewart, MacIntyre, Hole, 

Capewell, & McMurray, 2001). Public health efforts to curb the prevalence of 

CVDs have been largely focused on raising awareness of the many risk factors 

that are strongly correlated to the development of CVDs. Indeed, CVDs are 

highly preventable. Eliminating major CVD risk factors, which are mainly a result 

of poor lifestyle behaviors, results in up to a 90 percent lower lifetime CVD risk 

(McGill, McMahan, & Gidding, 2008). Unsurprisingly, as public awareness and 

use of evidence-based medical therapies for secondary prevention increased, 

the number of deaths in the United States attributed to CVDs (from 2001 to 2011) 

decreased by 30.8 percent, yet remained alarmingly high at approximately 

600,000 deaths per year (Mozaffarian et al., 2015). Therefore, while much 

progress has been made through raising of public awareness, the extreme 

burden of CVDs on worldwide human health will likely continue to persist lest 

novel treatments are developed that can repair the damaged caused by infarction 

and significantly lessen the associated mortality.  

Cardiovascular Stem Cell-based Therapy for the Injured Heart 

Although cardiac stem cells were known to be prevalent within the 

neonate heart, the notion that these cells steadily diminish and senesce into 

adulthood was widely accepted and, thus, the adult human heart was designated 

a terminally differentiated organ with no regenerative capabilities. With little 

evidence to suggest otherwise, early clinical trials for the treatment of myocardial 
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injuries primarily focused on bone marrow-derived cells for stimulating 

cardiovascular repair. However, the discovery that the adult human heart indeed 

houses populations of stem cells that support its regeneration (Beltrami et al., 

2003), prompted investigators to shift their focus onto transplantation of cardiac 

progenitor cells (CPCs) for the treatment of myocardial infarction.  

The potential benefits of endogenous CPC transplantation as a means of 

stimulating repair in heart tissue are currently under investigation with 

encouraging results in clinical trials (Bolli et al., 2011; Gerbin & Murry, 2015; 

Makkar et al., 2012). Phase I clinical research studies completed to date, 

examining the safety and feasibility of CPC transplantation, have noted little to no 

adverse effects resulting from cardiovascular infusion of stem cells, and, thus, 

the procedure is considered safe by clinicians. Most notably, investigators have 

reported significant reductions in total scar tissue and significant improvements in 

left ventricular ejection fraction –  progressing even after 12 months post-op (Bolli 

et al., 2011; Makkar et al., 2012). However, it has been demonstrated that, 

although transplanted CPCs alleviate some cardiovascular dysfunction, they fail 

to engraft and differentiate into new myocardium (Hong et al., 2014). Therefore, it 

is believed that the observed reductions in scar size and improvements in cardiac 

function – typically measured using left ventricular ejection fraction – are a result 

of paracrine signaling stemming from growth factors secreted by newly 

transplanted cells (Barile et al., 2014). Furthermore, autologous stem cells 
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derived from adult patients are known to lack the functional potency of their 

neonatal counterparts (T. I. Fuentes et al., 2013). 

 Due to the correlation between incidence of CVDs and age, older adults, 

by way of sheer numbers, are the group most in need of cell-based cardiac 

therapy. If adult autologous stem cells are unable to impart significant functional 

benefits after transplantation, then the overall application of autologous stem cell-

based therapies for treatment of cardiovascular injury may be drastically limited 

to treating neonatal heart diseases. Even so, stem cell-based therapies for the 

treatment of congenital heart diseases (CHDs) are of significant interest to 

clinicians. While the number of afflicted patients is relatively small in comparison 

to those suffering from adult CVD, CHDs occur in roughly one percent of live 

births worldwide and CHD incidence has increased in recent decades (Marelli, 

Mackie, Ionescu-Ittu, Rahme, & Pilote, 2007). Indeed, the mortality rate for CHDs 

is declining and more of those born with CHD are surviving into adulthood. 

However, data gathered between 2007 and 2010 reveals that CHD-related 

mortality for neonates is still a cause for concern at 10.1%. In the year 2011 

alone, mortality related to CHD in the U.S. was 4900 (Mozaffarian et al., 2015). 

Thus, CHDs remain responsible for more deaths than any other congenital birth 

defect. All too often, neonates suffering from a particularly severe heart 

malformation are in need of a heart transplant. Complete organ transplants are 

costly, invasive, and, most importantly, limited by the availability of donor organs. 

Hence, there has been a growing interest in stem cell-based therapies for 
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treating CHDs. Clinical trials completed to date have established the safety of 

stem cell transplantation for the treatment of hypoplastic left heart syndrome and 

other CHDs (Ishigami et al., 2015). However, much like the clinical trials that 

established the safety of stem cell therapy for CVDs in adults, further work is 

needed to improve post-operative outcomes.  

The effectiveness of cell-based treatments for the heart may be 

significantly improved by use of a novel cell type or pretreatment method, such 

as hypoxic exposure, that alters the function of adult-derived CPCs to mirror that 

of the more capable neonatal stem cells. Any benefits afforded to adult CPCs 

would also likely be procured by neonatal CPCs. However, additional work is 

needed to identify these optimal cell types or conditions that will promote 

autologous stem cell-mediated cardiovascular regeneration in the injured adult 

and neonatal human heart. To date, several potential preconditioning methods 

have been evaluated for their ability to augment cellular function. For instance, it 

has been demonstrated that pretreatment with growth factors enhances the 

therapeutic efficacy of mesenchymal stem cells for myocardial infarction (Hahn et 

al., 2008). Additionally, cobalt protoporphyrin pretreatment protects human 

embryonic stem cell-derived cardiomyocytes from oxidative stress (Luo et al., 

2014). However, the benefits afforded by any one preconditioning method may 

vary depending upon the characteristics of the cell type chosen for therapy. 

Interestingly, there is a growing body of evidence in support of a master heart 

progenitor that gives rise to all the cells in the developed adult heart (Kattman, 
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Huber, & Keller, 2006; Laugwitz, Moretti, Caron, Nakano, & Chien, 2007; Wu et 

al., 2006). The discovery, characterization, and subsequent implementation of 

this primordial heart cell would undoubtedly lead to improved patient outcomes 

following cell therapy. To date, several populations of resident CPCs have been 

identified within the human heart and are promising candidates for use in future 

studies (T. Fuentes & Kearns-Jonker, 2013).  

Optimizing Cell Type 

CPCs are capable of self-renewal, expansion, and differentiation into all 

three major cell types of the heart (Bu et al., 2009; Moretti et al., 2006). The Isl-

1+ c-Kit+ population represents one type of CPC that was initially found 

exclusively within fetal progenitor populations (Simpson et al., 2012). However, 

Isl-1+ c-Kit+ hCPCs were subsequently identified within endogenous progenitor 

populations isolated from human neonatal and adult cardiac tissue, as well as 

from sheep cardiac tissue, as reported by the Kearns-Jonker laboratory at Loma 

Linda (T. I. Fuentes et al., 2013; Hou et al., 2012). Isl-1 is a transcription factor 

that is required early in development for the survival, proliferation, and migration 

of CPCs into the primordial heart and, as a result, the developed heart is largely 

a product of Isl-1+ cells (Cai et al., 2003). Specifically, Isl-1+ CPCs play a critical 

role in early heart formation by contributing to the outflow tract, right atrium, right 

ventricle, and septum (Cai et al., 2003; Dodou, Verzi, Anderson, Xu, & Black, 

2004; Yang et al., 2013). One of the most widely studied progenitor cell types, 

however, is the c-Kit+ CPC. While current clinical trials using c-Kit+ cells show 
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promise, the role of c-Kit+ cells in the development and regeneration of the heart 

remains controversial (Cheng et al., 2014; Ferreira-Martins et al., 2012; Kubo et 

al., 2008; van Berlo et al., 2014; Zaruba, Soonpaa, Reuter, & Field, 2010). Isl-1+ 

c-Kit+ CPC populations, by virtue of their distinct protein fingerprint, may be 

inherently superior to those CPC populations expressing only Isl-1 or only c-Kit, 

and may be better suited for transplantation into the hypoxic heart. Moreover, this 

double-positive CPC population may react more strongly to preconditioning 

methods (aimed at enhancing cell function) when compared to single-positive 

CPCs. Thus, in order to surpass the results attributed to paracrine effects, and 

reach the desired levels of cardiovascular repair by direct engraftment, further 

investigation of Isl-1+ c-Kit+ CPCs is warranted. 

Hypoxic Preconditioning  

Using other models, previous studies have established that hypoxia 

treatment can boost cellular function through intracellular signaling pathways 

(Filippi et al., 2014; Hu et al., 2014; Studer et al., 2000; van Oorschot, Smits, 

Pardali, Doevendans, & Goumans, 2011; Yan et al., 2012). However, the effects 

of low oxygen tension on Isl-1+ c-Kit+ hCPC function have yet to be elucidated. 

Nonetheless, it is well understood that the partial pressure of oxygen in the 

tissues where CPCs reside, is much lower than in atmospheric air. Theoretically, 

the maximum amount of oxygen that can be bound by hemoglobin in the alveolar 

capillaries is approximately 21 percent by volume (mL O2/100 mL blood) or 159 

torr. However, because the rate at which hemoglobin binds and releases oxygen 
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is limiting, the maximum amount that can be bound per milliliter of blood is much 

lower, approximately 105 torr. Additionally, Fick’s law of diffusion applies at every 

point of gas exchange, thus further limiting the amount of oxygen that makes its 

way to the deep tissues of the heart per unit of time. Because of these limitations, 

by the time oxygen reaches the heart, its partial pressure can be as low as 30 

torr (Ivanovic, 2009). Furthermore, the heart houses small microenvironments, or 

niches, that support cardiac stem cells and play vital roles in the regulation of 

stem cell function (Li & Xie, 2005). While the tissues of the heart may experience 

a gradient of partial pressures, the innermost stem cell niches of the heart and 

their constituent CPCs are consistently hypoxic – with oxygen levels as low as 

1.0 percent, approximately 7.6 torr (Kimura & Sadek, 2012; Sanada et al., 2014; 

Tan et al., 2016).  

Accordingly, the impact of short-term hypoxia (six hours at 1.0 percent O2) 

on the in vitro biology of clonal Isl-1+ c-Kit+ hCPCs must be evaluated for 

pertinent information that will help optimize future transplant studies within animal 

models. Historically, in other cell types, Protein kinase B (Akt) expression 

increases in response to short-term hypoxia (Beitner-Johnson, Rust, Hsieh, & 

Millhorn, 2001) and is well-known to play vital roles in numerous cell functions 

including cell survival, proliferation, and chemotaxis (Manning & Cantley, 2007). 

An improvement in just one of these cellular processes may have a substantial 

effect on the overall efficacy of stem cell transplantation for cardiovascular 

therapy. Therefore, the hypothesis that short-term hypoxia upregulates Akt 
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phosphorylation in Isl-1+ c-Kit+ hCPCs and is correlated with enhanced cell 

function in vitro was tested. The combined benefits of using other progenitor cell 

types, such as those characterized by Isl-1, and pretreatment to prepare these 

transplanted cells for the hypoxic environment of the damaged heart, may allow 

for improved cardiac regeneration in vivo. 

Definition of Terms 

CVD: cardiovascular disease; CAD: coronary artery disease; CPC: cardiac 

progenitor cell; CHD: congenital heart disease; MEM NEAA: Minimum essential 

medium non-essential amino acids; DPBS: Dulbecco’s phosphate-buffered 

saline; qRT-PCR: Quantitative reverse transcription polymerase chain reaction; 

SDF-1α: Stromal cell-derived factor-1 α; SDS-PAGE: Sodium dodecyl sulfate 

polyacrylamide gel electrophoresis; TUNEL: Terminal deoxynucleotidyl 

transferase deoxyuridine triphosphate nick-end labeling; PIK3CA: 

Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α; HSP: Heat 

shock protein; MW: Molecular weight marker; ROS: Reactive oxygen species. 
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CHAPTER TWO 

MATERIALS AND METHODS 

 

 

In Vivo Components and Experiments 

Isolation and Culture of Isl-1+ c-Kit+ hCPCs 

The Institutional Review Board of Loma Linda University approved the 

protocol for use of tissue that was discarded during cardiovascular surgery, 

without identifiable private information, for this study with a waiver of informed 

consent. Isl-1+ c-Kit+ hCPCs were isolated from cardiac tissue as previously 

described (T. I. Fuentes et al., 2013). Briefly, atrial tissue was cut into small 

clumps (approximately 1.0 mm3) then enzymatically digested using collagenase 

(Roche, Indianapolis, IN) at a working concentration of 1.0 mg/mL. The resulting 

solution was then passed through a 40-µm cell strainer. Cells were then cloned in 

a 96-well plate by limiting dilution to a final concentration of 0.8 cells per well to 

create populations for expansion. Twelve hCPC clones, derived from six distinct 

donor samples, were used in this study. Clonal hCPC cultures were 

supplemented with growth media comprised of 10% fetal bovine serum (Thermo 

Scientific, Waltham, MA), 100 µg/mL Penicillin-Streptomycin (Life Technologies, 

Carlsbad, CA), 1.0% minimum essential medium non-essential amino acids 

solution (MEM NEAA, Cat no. 11120052, Life Technologies, Carlsbad, CA), and 
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20% endothelial cell growth media (Lonza, Basel, Switzerland) in Medium 199 

(Life Technologies, Carlsbad, CA).  

Hypoxic Preconditioning 

The day before hypoxic pretreatment, Isl-1+ c-Kit+ hCPCs received fresh 

culture media and, if necessary, were passaged to achieve 80% confluency 

within 24 hours. Experimental hCPCs were then placed in a Heracell™ 150 tri-

gas incubator (Thermo Scientific, Waltham, MA) set to 1.0% O2, 5.0% CO2, and 

94% N2 for six hours at 37 °C. Control hCPC conditions were 21% O2, 5.0% CO2, 

and 74% N2 at 37 °C. Cells were then immediately processed for analysis to 

avoid prolonged exposure to normoxic conditions.  

Transwell® Invasion Assay 

Cultrex® basement membrane extract (Trevigen, Gaithersburg, MD) was 

applied to the upper chamber of a Corning HTS Transwell® plate (8.0-µm pore 

size, Venlo, Limburg). Isl-1+ c-Kit+ hCPCs were suspended in starvation media 

composed of 98.5% Iscove's Modified Dulbecco's Medium with GlutaMAX™ (Life 

Technologies, Carlsbad, CA), 1.0% insulin-transferrin-selenium (Life 

Technologies, Carlsbad, CA), and 0.5% fetal bovine serum (Thermo Scientific, 

Waltham, MA) then plated onto the coated wells at a density of 50,000 cells per 

well. Stromal cell-derived factor-1α (SDF-1α, Life Technologies, Carlsbad, CA), a 

chemoattractant, was diluted with growth media to a final concentration of 100 

ng/mL and administered to the lower chamber. After 48 hours of incubation at 37 

°C, the cells in the lower chamber were dissociated, stained with calcein AM (BD 
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Biosciences, San Jose, CA), and analyzed using an FLx800™ microplate 

fluorescence reader (BioTek Instruments, Winooski, VT). 

 

In Vitro Assays 

Quantitative Reverse Transcription PCR 

Isl-1+ c-Kit+ hCPCs were washed with Dulbecco’s Phosphate-Buffered 

Saline (DPBS), then lysed using TRIzol® reagent (Life Technologies, Carlsbad, 

CA). Total RNA was isolated using the RNeasy® Mini Kit (Qiagen, Venlo, 

Limburg) and cDNA was prepared with superscript III (Life Technologies, 

Carlsbad, CA). Quantitative reverse transcription polymerase chain reaction 

(qRT-PCR) was performed in triplicate using Go-Taq® qPCR Mastermix 

(Promega, Madison, WI). Measurements were recorded using the iCycler iQ™5 

PCR Thermal Cycler (Bio-Rad, Hercules, CA). Cycler settings were set to 94 °C 

for 10 minutes, 94 °C for 15 seconds, 52 - 56 °C (depending on the primer) for 60 

seconds, and 72 °C for 30 seconds for a total of 45 cycles. Human primers were 

created using the National Center for Biotechnology Information Primer-BLAST 

program as listed in Table 1. Relative gene expression data was analyzed using 

the comparative CT method (Schmittgen & Livak, 2008).  
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Table 1. Primer Sequences Used for qRT-PCR. 

PRIMER SEQUENCE 
ACTNB FWD TTT GAA TGA GCC TTC GTC CCC 
ACTNB REV GGT CTC AAG TCA GTG TAC AGG TAA GC 
BCL2 FWD TGC ACC TGA CGC CCT TCA C 
BCL2 REV AGA CAG CCA GGA GAA ATC AAA CAG 
T (Brachyury) FWD ACT GGA TGA AGG CTC CCG TCT CCT T 

T (Brachyury) REV CCA AGG CTG GAC CAA TTG TCA TGG G 
HMOX1 FWD CTC TCG AGC GTC CTC A 
HMOX1 REV TTG AGC ACC TGG CCC CCA GA 
HSP40 FWD TTT TCG GAG GGT CCA ACC CCT 
HSP40 REV TCT TGT TTG AGG CGG GAT GGC C 
HSP70 FWD TGA CCA AGA TGA AGG AGA TCG 
HSP70 REV GTC AAA GAT GAG CAC GTT GC 
HSP90 FWD GGA TTT GAG GGG AAG A 
HSP90 REV TGA GCT TTC ATG ATT C 
POU5F1 (Oct-4) FWD AAC CTG GAG TTT GTG CCA GGG TTT 
POU5F1 (Oct-4) REV TGA ACT TCA CCT TCC CTC CAA CCA 
PDGFRA FWD GCG CAA TCT GGA CAC TGG GA 
PDGFRA REV ATG GGG TAC TGC CAG CTC AC 
PIK3CA FWD AAC AAT GCC TCC ACG ACC AT 

PIK3CA REV TCA CGG TTG CCT ACT GGT TC 
RELA FWD GCG AGA GGA GCA CAG ATA CC 
RELA REV GGG GTT GTT GTT GGT CTG GA 

 

 

Western Blotting 

Protein immunoblots for Akt and phosphorylated Akt were prepared using 

protein from normoxic hCPCs and hCPCs exposed to 6 hours of hypoxia (1.0% 

O2). Additionally, blots for β-Actin and p-Akt were prepared using samples 

obtained from untreated normoxic controls, normoxic hCPCs treated with stromal 

cell-derived factor-1 α (SDF-1α), and hCPCs treated with both SDF-1α and 

hypoxia. Following 18 hours of serum deprivation, hCPCs were stimulated using 
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10 µg/mL of SDF-1α (Biolegend, San Diego, CA). Hypoxic groups were exposed 

to low oxygen conditions during the final six hours of the 18-hour starvation 

period. All protein lysates were loaded into a 12% Tris-glycine pre-cast gel 

(Thermo Scientific, Waltham, MA), separated by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE), and transferred onto a 

nitrocellulose membrane (Bio-Rad, Hercules, CA). After blocking with 5% bovine 

serum albumin (BSA) in Tris-buffered saline with Tween-20 (TBST), membranes 

were labeled with mouse anti-human β-Actin antibody (2F1-1) (1:500 dilution, 

Biolegend, San Diego, CA), rabbit anti-human Akt monoclonal antibody (pan) 

(C67E7) (1:500 dilution Cell Signaling Technology, Danvers, MA), or rabbit anti-

human Phospho-Akt monoclonal antibody (S473) (D9E) (1:300 dilution, Cell 

Signaling Technology, Danvers, MA) overnight at 4 °C with agitation. The 

following day, membranes were washed and labeled using either an IRDye® 

680RD-conjugated goat anti-mouse antibody (1:5000 dilution, LI-COR, Lincoln, 

NE) or an IRDye® 800CW-conjugated goat anti-rabbit antibody (1:5000 dilution, 

LI-COR, Lincoln, NE) in 5.0% BSA in TBST for 60 minutes at room temperature. 

Final protein levels were visualized using an Odyssey® infrared imaging system 

(LI-COR, Lincoln, NE) model 9120. Resulting protein bands were analyzed using 

ImageJ software. 
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Flow Cytometry 

Progenitor cell populations were fluorescently labeled with antibodies as 

recommended by their respective manufacturers then analyzed using a 

MACSQuant® analyzer (Miltenyi Biotec, Auburn, CA). Quantification of data was 

performed using FlowJo software (Ashland, OR). Small particulate matter, dead 

cells, and gas-bubbles were excluded from final analysis using forward-scatter 

and side-scatter data.  

Antibodies Used in Cytometry Experiments 

Antibodies used for cytometric analysis include: Anti-Isl-1 (1H9) mouse 

monoclonal antibody, (1:50 dilution, Abcam, Cambridge, MA), Anti-c-Kit Rat 

IgG2b Kappa monoclonal antibody (2B8) conjugated to Dylight 650 (0.5 mg/mL, 

Novus Biologicals, Littleton, CO), Anti-Akt phospho (Serine 473) rabbit Ig 

polyclonal antibody (0.23 mg/mL, Biolegend, San Diego, CA), Fluorescein-anti-

BrdU (PRB-1) monoclonal antibody (1:20 dilution, Phoenix Flow Systems, San 

Diego, CA), FITC goat anti-mouse IgG polyclonal antibody (1:25 dilution, 

Southern Biotech, Birmingham, AL), PE goat anti-mouse IgG polyclonal antibody 

(1:100 dilution, Southern Biotech, Birmingham, AL), and FITC goat anti-rabbit 

IgG polyclonal antibody (1:50 dilution, BD Biosciences, San Jose, CA).  

Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling 

Isl-1+ c-Kit+ hCPCs were rinsed with DPBS and treated with a solution of 

0.5 mM H2O2 in culture media for 21 hours to induce cell death (Clément, 

Ponton, & Pervaiz, 1998). Terminal deoxynucleotidyl transferase deoxyuridine 
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triphosphate nick-end labeling (TUNEL) assay was performed following the 

manufacturer’s recommendations. Briefly, cells were counted using trypan blue 

and concentrated to 106 cells/mL. The concentrated progenitor cell solution was 

then re-suspended in 1.0 mL of 1% paraformaldehyde in DPBS, placed on ice for 

30 minutes, then reconstituted into 1.0 mL of 70% ethanol for overnight 

incubation at -20 °C. The next day, the cells were labeled with Br-dUTP (Phoenix 

Flow Systems, San Diego, CA) and re-suspended in antibody solution containing 

the Fluorescein anti-BrdU antibody (Phoenix Flow Systems, San Diego, CA). 

Population analysis was performed using flow cytometry.  

Cell Cycle Analysis 

Isl-1+ c-Kit+ hCPCs at 80% confluency were trypsinized, counted, and 

concentrated to 2.5 X 105 cells per 0.3 mL DPBS. Ice-cold 70% ethanol (0.7 mL) 

was added drop-wise to fix the cells then stored at -20 °C overnight. The 

following day, cells were incubated at 37 °C for 1 hour with RNase A (0.5 mg/mL, 

Life Technologies, Carlsbad, CA). Propidium Iodide solution (0.5 mg/mL) was 

added, and the resulting cell solution was analyzed using a MACSQuant® 

analyzer (Miltenyi Biotec, Auburn, CA). Cytometer data was quantified using 

FlowJo software (Ashland, OR). 

 



17 

Statistical Analysis 

Data was reported as mean +/- standard error. Error bars were designed 

using propagation of error and the Cousineau method (Morey, 2008). P values < 

0.05 were deemed significant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 

CHAPTER THREE 

RESULTS 

 

 

Akt Activation in Isl-1+ c-Kit+ hCPCs 

Hypoxic Preconditioning Stimulates the Akt Pathway  
in Isl-1+ c-Kit+ hCPCs 

Akt, a master regulator of numerous genes their corresponding proteins, 

oversees various critical cell processes such as apoptosis, proliferation, and 

chemotaxis (Manning & Cantley, 2007). To determine the effect of short-term 

hypoxia on the Akt pathway within Isl-1+ c-Kit+ hCPCs, clonal populations 

previously characterized by my laboratory colleagues (T. I. Fuentes et al., 2013), 

expressing Isl-1, c-Kit, Brachyury, Oct-4, and Platelet-derived growth factor 

receptor-α (PDGFRA, Fig.1A, B), were selected for experimentation. Enhanced 

Akt phosphorylation is of main interest for its potential benefit in autologous 

hCPC-based therapy for myocardial infarction in older adults. To determine 

whether the hypoxia-mediated activation of Akt is significantly influenced by the 

age of the cell donor, expression of phosphatidylinositol-4,5-bisphosphate 3-

kinase catalytic subunit α (PIK3CA), which is known to directly activate Akt (Baba 

et al., 2011), was measured via qRT-PCR in both control and experimental cells. 

Data analysis revealed that pretreated cells, regardless of age group, expressed 

significantly higher levels of PIK3CA mRNA when compared to non-treated, 

normoxic, Isl-1+ c-Kit+ hCPCs. Moreover, the data also shows that neonatal 
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hCPCs more strongly upregulate PIK3CA mRNA than do adult hCPCs and may 

lead to superior Akt activation in neonatal populations (Fig. 2A). Additionally, 

antibody labeling of activated Akt was measured by flow cytometry in adult and 

neonatal hCPC clones (Fig. 2B). Comparative analysis of the flow cytometry data 

gathered against phosphorylated Akt further highlights the distinction between 

the hypoxia-mediated activation of Akt in adult and neonatal Isl-1+ c-Kit+ hCPCs. 

While p-Akt expression indeed trends upwards in preconditioned adult clones, 

only the neonatal clones procured statistically significant elevations in Akt 

activation after preconditioning (Fig. 2C). However, the promise of short-term 

hypoxia preconditioning in adult Isl-1+ c-Kit+ hCPCs is illustrated via protein 

immunoblots (Fig. 3A). Quantification of the imaged protein from a single 

representative adult clone shows that phosphorylation of Akt can be promoted by 

exposure to short-term hypoxia (Fig. 3B). Moreover, serum starved adult Isl-1+ c-

Kit+ hCPCs show a significant decrease in phosphorylated Akt after stimulation 

with SDF-1α (Fig. 3C, D). However, when serum deprivation is conducted in 

tandem with short-term hypoxia and followed up with SDF-1α treatment, adult Isl-

1+ c-Kit+ hCPC p-Akt protein levels are rescued to levels at or above normoxic 

control, but not to a statistically significant degree (Fig. 3D).  
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Isl-1+ c-Kit+ hCPC Function After Exposure to Short-Term Hypoxia 

Isl-1+ c-Kit+ hCPCs Invade More Readily After Exposure  
to Short-term Hypoxia  

Hypoxia has also been shown to influence cellular motility (Filippi et al., 

2014; van Oorschot et al., 2011; Yan et al., 2012). To determine if short-term 

hypoxia has any effect on Isl-1+ c-Kit+ hCPC motility, and to validate the 

selection of the six-hour exposure time, the chemotactic response to SDF-1α 

amongst non-treated and pretreated hCPCs was compared using a Transwell® 

invasion assay. A time course experiment was performed in which a 

representative clone was pretreated with hypoxia for 3 hours, 6 hours, and 18 

hours for comparison of invasion capacities with normoxic control. Over the same 

48-hour incubation period, the six-hour hypoxia-pretreated group most efficiently 

invaded through the basement membrane layer and into the receiver well (Fig. 

4A). Using the six-hour time point across 10 different biological replicates, a 

statistically significant difference was noted between non-treated hCPCs and 

pretreated hCPCs. The hCPCs preconditioned with six hours of hypoxia invaded 

through the basement membrane extract and transwell pores in significantly 

greater numbers than the non-treated hCPCs (Fig. 4B). However, when the data 

is analyzed by age group, it is clear the adult hCPCs do not respond as 

vigorously to the hypoxia pretreatment. A trend towards enhanced invasion is 

present, but this trend is not significant. Only in the neonatal hCPCs did we 

observe a statistically significant hypoxia-mediated improvement in chemotactic 

response to SDF-1α (Fig. 4C). 
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Short-term Hypoxia Triggers a Pro-survival Response 
in Isl-1+ c-Kit+ hCPCs 

In other cell types, hypoxic pretreatment has been shown to improve 

survival (Hu et al., 2014; Yan et al., 2012). To determine the effect of short-term 

hypoxia on Isl-1+ c-Kit+ hCPCs, the expression profiles of several heat-shock 

proteins in control and experimental populations were examined using qRT-PCR. 

Data analysis confirmed that pretreated hCPCs indeed express higher levels of 

select heat-shock protein (HSP) mRNAs (Fig. 5A, B). However, only HSP70 is 

significantly upregulated by hypoxic preconditioning and only in neonatal clones 

(Fig. 5B). Subsequent electrophoresis of PCR products confirmed the 

upregulation of HSP70 in neonatal Isl-1+ c-Kit+ hCPCs via hypoxia 

preconditioning (Fig. 5C). Further gene expression analysis indicated that short-

term hypoxia not only induces a stress response but also significantly 

upregulates the transcription of genes associated with cell survival (Fig. 6A, B). 

However, only the neonatal group exhibited a significant change – an 

approximate twofold increase in the RELA gene transcript, known for its role in 

the regulation of apoptosis (Beg & Baltimore, 1996). If the data for both age 

groups is pooled, a threefold increase of Hemoxygenase 1 (HMOX1) is also 

noted (p = 0.04, n = 6). HMOX1 plays a role in protecting the cells from oxidative 

damage (Poss & Tonegawa, 1997). Within a six-hour timeframe, we found that 

the hypoxia-induced modifications to the pro-survival gene program resulted in 

fewer apoptotic cells in response to oxidative stress (Fig. 7A) However, 

quantification of results obtained from three independent adult clones revealed 
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little change in apoptotic response (Fig. 7B). TUNEL assay results from three 

individual neonatal hCPC populations reveal a downward trend in the number of 

apoptotic cells in response to H2O2 (Fig. 7C).  

Hypoxia-pretreated Isl-1+ c-Kit+ hCPCs Remain Undifferentiated 

To evaluate the effects of short-term hypoxia on differentiation in Isl-1+ c-

Kit+ hCPCs, the expression of several differentiation markers in control and 

experimental hCPCs was evaluated using qRT-PCR. Quantification of data 

revealed no significant difference between pretreated and non-treated adult 

hCPCs in two out of three markers examined (Fig. 8A). Only PDGFRA, present 

in sub-populations of progenitors with superior regenerative capacity (Hidaka et 

al., 2010; J. Kim et al., 2010) was significantly altered, upregulated 1.4-fold (p = 

0.004). In neonatal clones, a significant downregulation of Brachyury and 

upregulation of PDGFRA was noted (Fig. 8B). The Brachyury gene transcript is 

directly linked to the regulation of MESP1 (Robert David et al., 2011) a protein 

coding gene that promotes cardiovascular differentiation (R. David et al., 2008). 

Additionally, it is important to note that expression of the Oct-4 transcription 

factor remains unchanged in both age groups. Altogether, these findings suggest 

that short-term hypoxia stimulates neither differentiation nor de-differentiation in 

Isl-1+ c-Kit+ hCPCs.  

Hypoxia Pretreatment Does Not Alter Normal Cell Cycle Progression 

Hypoxia is also known to influence the cell cycle (Gardner et al., 2001; 

Grayson, Zhao, Bunnell, & Ma, 2007; Kook et al., 2008; Koshiji et al., 2004; 
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Studer et al., 2000; van Oorschot et al., 2011). A more proliferative stem cell 

population would undoubtedly be beneficial for the repair of damaged 

myocardium. To determine the effect of short-term hypoxia in regards to Isl-1+ c-

Kit+ hCPC proliferation, cell cycle analysis was performed on non-treated and 

pretreated hCPC populations of both adult and neonatal origin. No significant 

difference was identified between control and experimental groups (Fig. 9A). 

Moreover, there was no apparent difference between normoxic and hypoxic 

groups, whether adult and neonatal, in their progression through the cell cycle 

(Fig. 9B, C). These results support the conclusion that short-term hypoxia does 

not alter normal cell cycle progression in Isl-1+ c-Kit+ hCPCs.  
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CHAPTER FOUR 

DISCUSSION 

 

 

In this study, Isl-1+ c-Kit+ hCPCs were expanded as clonal populations 

and used as a model to test the hypothesis that short-term hypoxia exposure 

enhances Isl-1+ c-Kit+ hCPC function in vitro. The results presented here show 

that short-term hypoxia is a feasible and practical pretreatment that benefits 

neonatal hCPC invasive capabilities in vitro. 

Recent studies lend credence to the efficacy of cardiac stem cell 

transplants for the amelioration of cardiac dysfunction in mouse models (Hong et 

al., 2014; Matsuura et al., 2009). Furthermore, human trials have not only 

established the safety of autologous cardiac stem cell transplantation but also 

produced some very encouraging results (Bolli et al., 2011; Makkar et al., 2012). 

However, in both mice and human studies, improvements in cardiac function – 

typically measured using left ventricular ejection fraction – are thought to be a 

result of paracrine signaling stemming from the growth factors secreted by newly 

transplanted cells (Barile et al., 2014; Hong et al., 2014). Additionally, the 

functional capabilities of hCPCs are known to vary greatly between age groups 

with neonatal hCPCs consistently outperforming their adult counterparts (T. I. 

Fuentes et al., 2013). However, the incidence of cardiovascular disease is most 

prevalent within older adult hearts that are populated by functionally inferior 
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hCPC populations. Hence, administration of autologous hCPCs for treatment of 

the majority of cardiac injuries is limited, stimulates repair primarily by means 

other than direct engraftment, and leaves much to be desired. Cell-based 

therapies for the human heart – of all ages – may be augmented via the use of a 

novel cell type or pretreatment method, such as hypoxic exposure. If 

preconditioning indeed improves hCPC function, behavior of adult-derived clones 

could be selectively improved to reflect that of their functionally superior neonatal 

counterparts. However, CPC populations express distinct protein signatures that 

play an important role in overall cellular function and merit serious consideration 

when selecting cell populations for therapy. While the c-Kit+ CPC remains the 

most widely studied and implemented, the application of a novel Isl-1+ c-Kit+ 

hCPC population may aid in the effort to optimize autologous cell-based 

therapies for regeneration of the heart.  

The idea that preconditioning cells prior to transplantation may benefit 

donor cell function in vivo, has gained a significant following in recent years 

(Hahn et al., 2008; Hu et al., 2014; Luo et al., 2014; Rosenblum et al., 2014; van 

Oorschot et al., 2011; Yan et al., 2012). However, although this research is 

gaining momentum, the genetic analysis and functional assays presented in this 

study have never been performed on Isl-1+ c-Kit+ hCPCs. Using other models, 

previous studies have established that hypoxia induces a persistent increase in 

phosphorylation of Akt for up to 24 hours with the effect peaking at six hours 

(Beitner-Johnson et al., 2001). Activation of Akt, a versatile kinase that regulates 
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several cellular functions, may result in hCPC functional improvements and 

enhanced cardiac repair. In the present study, enhanced Akt phosphorylation 

was indeed observed after only six hours of hypoxia, thus demonstrating that Isl-

1+ c-Kit+ hCPCs exhibit similar behavior in response to hypoxia when compared 

to other cell types. However, age seems to play a significant role as the 

magnitude of hypoxia-mediated Akt activation was markedly reserved in adult 

clones. While both age groups displayed increased phosphorylation of Akt after 

the six-hour time point, only the neonatal group data was statistically significant. 

However, it is important to note that the adult clones are notoriously difficult to 

stimulate and, in response to SDF-1α after starvation, levels of p-Akt significantly 

decrease. Short-term hypoxic preconditioning, on the other hand, rescued 

previous levels of phosphorylated Akt observed prior to serum deprivation in 

adult Isl-1+ c-Kit+ hCPCs. As hypothesized, this hypoxia-mediated activation of 

Akt in Isl-1+ c-Kit+ hCPCs was indeed correlated with elevated expression of 

PIK3CA, a protein that plays an essential role in the upstream activation of Akt 

(Baba et al., 2011). Experimental neonatal Isl-1+ c-Kit+ hCPCs exhibited a 

remarkable 43-fold significant increase of PIK3CA mRNA when compared to 

their respective controls. Adult Isl-1+ c-Kit+ hCPCs, on the other hand, only 

expressed a 1.8-fold increase in PIK3CA mRNA due to hypoxic preconditioning. 

The data here suggests that neonatal Isl-1+ c-Kit+ hCPCs react more strongly to 

the hypoxic pretreatment and transcribe more of the upstream activator of Akt. 
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Altogether, these findings confirm that six hours of hypoxia exposure significantly 

increases Akt activation in neonatal Isl-1+ c-Kit+ hCPCs. 

Nonetheless, hypoxia is a stressor that, as demonstrated here, triggers a 

physiological response in hCPCs. As oxygen levels decline, the mitochondria 

within a cell increase the production of reactive oxygen species (ROS) (Chandel 

et al., 2000; Guzy et al., 2005). The accumulation of ROS after short periods of 

hypoxia has been shown to confer resistance against future oxygen shortages 

(Hoek, Becker, Shao, Li, & Schumacker, 1998). However, longer periods of 

hypoxia coincide with excessive accumulation of ROS that are known to promote 

cell death via caspase activation and DNA damage (Filomeni, De Zio, & Cecconi, 

2015; Kamata et al., 2005; J.-Y. Kim & Park, 2003; Moungjaroen et al., 2006). 

Altogether, chronic oxidative stress has the potential to impair the functional 

capacity and overall health of a population of cells (van Oorschot et al., 2011). 

The extent of this stress response in Isl-1+ c-Kit+ hCPCs was evaluated by 

measuring the impact of short-term hypoxia on the expression of several HSP 

mRNAs. The induction of the heat-shock pathway during hypoxia has been well 

documented in other cell types (Baird, Turnbull, & Johnson, 2006). Genetic 

analysis of adult and neonatal Isl-1+ c-Kit+ hCPCs revealed a trend towards 

hypoxia-mediated activation of transcripts for several heat shock proteins. 

However, only the upregulation of HSP70 mRNA was statistically significant and 

was found only in the neonatal group. HSP70 is known to play a role in stabilizing 

Akt (Koren et al., 2010) and in the inhibition of apoptosis (Jiang et al., 2009; 
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Powers, Clarke, & Workman, 2008). Under hypoxia, Akt and other proteins are at 

risk of degradation, thus, the survival response likely includes upregulation of 

HSP mRNAs as an attempt to promote stabilization of proteins that are needed 

for cell survival.  

Accordingly, pro-survival gene expression was also found to be 

upregulated in hypoxic Isl-1+ c-Kit+ hCPCs. Preconditioned hCPCs displayed a 

dramatic increase in transcripts encoding HMOX1, a pro-survival gene that 

becomes upregulated in response to hypoxia and affords protection against 

future oxidative damage (Poss & Tonegawa, 1997). Furthermore, the transcript 

encoding the NF-κB p65 subunit (RELA), a known Akt downstream effector that 

inhibits programmed cell death (Beg & Baltimore, 1996; Madrid, Mayo, Reuther, 

& Baldwin, 2001), was significantly upregulated, but only in the pretreated 

neonatal group. Although a significant difference in apoptosis was not observed, 

hypoxia-preconditioned hCPCs indeed exhibited significantly enhanced invasion 

capabilities when compared to their normoxic counterparts. Moreover, when 

additional time points were tested, the six-hour time point yielded the greatest 

number of cells that successfully invaded through the transwell membrane. 

Applied to multiple biological replicates, the six-hour pretreatment of hCPCs 

resulted in significantly improved chemotaxis in response to SDF-1α, which is in 

parallel to what has been observed in other models (Filippi et al., 2014; van 

Oorschot et al., 2011; Yan et al., 2012). Not surprisingly, however, these results 

were significant only in neonatal hCPCs. According to the PCR data, the 
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pretreated adult hCPCs did not upregulate PIK3CA mRNA transcripts to the 

same extent as the pretreated neonatal hCPCs. This suggests that the Akt 

pathway is not sufficiently activated by short-term hypoxia in adult hCPCs and 

may explain why only the neonatal clones displayed significantly elevated p-Akt 

and enhanced invasion capacity. 

Furthermore, depending on the cell type, hypoxic exposure may either 

enhance proliferation (Grayson et al., 2007; Kook et al., 2008; Studer et al., 

2000; van Oorschot et al., 2011), lead to G1 arrest (Gardner et al., 2001; Koshiji 

et al., 2004; Utting et al., 2006), or influence the differentiation process (Lin, Lee, 

& Yun, 2006; Studer et al., 2000; Utting et al., 2006). After treatment with 

hypoxia, human mesenchymal stem cells acquire enhanced proliferative abilities 

(Grayson et al., 2007) while, on the other hand, murine embryonic fibroblasts 

encounter G1 arrest (Gardner et al., 2001). Ideally, in the early stages after 

transplantation, donor cells must survive, continue to divide, migrate to the 

damaged myocardium, and remain multipotent as they engraft. Isl-1+ c-Kit+ 

hCPCs indeed migrate more readily, progress normally through the cell cycle, 

and retain expression of pluripotency markers after short-term hypoxic treatment. 

The results reported here using Isl-1+ c-Kit+ hCPC clones are in line with those 

of other cardiovascular progenitors (Hu et al., 2014; van Oorschot et al., 2011), 

suggesting that pretreatment with short-term hypoxia will enhance functional 

efficacy. Short-term hypoxia yielded mild improvements in adult CPCs, procured 

significant benefit to neonatal CPCs, and therefore, is a promising method for 
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improving cellular function. However, it is important to acknowledge that the most 

significant results were obtained in the neonatal group – enhanced Akt activation, 

upregulated pro-survival transcripts (RELA, HSP70), and improved invasion 

capabilities. Additional work is required to maximize the stimulation of adult 

hCPCs to mirror the function of neonatal CPCs and, in the process, optimize 

autologous adult CPCs for superior transplantation.  Nevertheless, the results 

presented here demonstrate that outcomes of surgical procedures involving 

neonatal CPCs – for the treatment of CHDs or for transplant in HLA-matched 

adult patients – may be improved by preconditioning donor cells using short-term 

hypoxia. 

 

Conclusions 

Short-term hypoxia, as a pretreatment, is a viable approach for supporting 

cell survival and enhancing migratory capabilities in neonatal Isl-1+ c-Kit+ 

hCPCs. While the benefits accrued by adult Isl-1+ c-Kit+ hCPCs via 

preconditioning were reserved in comparison to neonatal clones, the applicability 

of neonatal CPCs in the clinical setting is significant and, therefore, hypoxia-

preconditioned Isl-1+ c-Kit+ hCPCs warrant further investigation in animal 

models. The positive effects of short-term hypoxia include: 1) enhanced 

chemotaxis, which would render the cells more likely to reach damaged tissues 

and successfully engraft, and 2) elevated levels of PIK3CA, HSP70, RELA, and 

HMOX1 mRNA transcripts, which are important for cellular signaling and survival. 
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These findings, if implemented in vivo, may improve cardiac repair after 

infarction. Thus, in order to validate the efficacy of short-term hypoxia as an 

effective pretreatment strategy to optimize cell-based repair, future in vivo 

experiments comparing the performance of hypoxia-preconditioned CPCs to non-

treated CPCs are currently in the design phase.  

 

 

 

 

 

 
 
 
 

 

 

 
 

 

 

 

 

 

 



32 

APPENDIX A 

FIGURES 
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Figure 1. Expression of early progenitor markers within a representative clonal hCPC population.  
(A) Isl-1 and c-Kit expression within a representative clonal hCPC population as measured by 
flow cytometry. Dotted lines indicate isotype controls and solid lines indicate Isl-1 or c-Kit 
antibody-labeled hCPC. Double-labeled cells are shown in dot-plot. (B) Expression of stem cell 
markers in a representative Isl-1+ c-Kit+ hCPC clone is shown here by electrophoresis of PCR 
products. MW = molecular weight marker. 
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Figure 2. Short-term hypoxia upregulates phosphorylation of Akt in Isl-1+ c-Kit+ hCPCs. (A) Adult 
and neonatal Isl-1+ c-Kit+ hCPCs exposed to short-term hypoxia were compared to their 
respective normoxic control via qRT-PCR (n = 8). Quantification of results revealed that hypoxia 
preconditioning yields significant upregulation of PIK3CA transcripts within both age groups. 
Additionally, electrophoresis of PIK3CA primer products confirms PCR amplification of the target 
gene segment. Subsequently, phosphorylation of Akt was then measured in preconditioned Isl-1+ 
c-Kit+ hCPCs and their respective controls by flow cytometry. (B) Representative histogram of 
increased p-Akt monoclonal antibody binding after exposure to six hours of hypoxia. (C) 
Quantification of seven independent hCPCs revealed significantly increased (15.4%, p = 0.019) 
Akt phosphorylation in hypoxia-pretreated neonatal groups. Adult clones displayed modest Akt 
activation, but was deemed non-significant after further investigation. 
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Figure 3. Hypoxia-induced Akt activation in adult Isl-1+ c-Kit+ hCPCs. (A) Protein immunoblots 
depicting Akt and p-Akt protein bands from normoxic and hypoxic representative adult hCPC 
samples. (B) Percentage of phosphorylated Akt in total Akt of non-treated and pretreated adult 
hCPC protein – quantified using ImageJ. (C) Western blots illustrating β-Actin and p-Akt protein 
from a representative normoxic adult clone, a SDF-1α-treated normoxic adult clone, and an adult 
clone treated with both SDF-1α and hypoxia. (D) Fold change of phosphorylated Akt, relative to 
β-Actin, was quantified using ImageJ. 
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Figure 4. Invasion capabilities of Isl-1+ c-Kit+ hCPCs in response to SDF-1α. (A) Quantification of 
hCPC performance in Transwell® invasion assay as influenced by duration of hypoxic exposure. 
Cell numbers were measured by calcein AM in quadruplicate using a representative Isl-1+ c-Kit+ 
hCPC. A significant increase in cell number was noted for each time point, with six hours of 
hypoxia yielding the greatest improvement. (B) Pooled data from both adult and neonate Isl-1+ c-
Kit+ hCPCs, after six hours of hypoxia, show that hypoxia-pretreated hCPCs exhibit significantly 
improved invasion (n = 10, p = 0.017). (C) Invasion assay results organized by age group reveals 
that benefits afforded by hypoxia are age dependent. Adult hCPCs exhibited slight enhancements 
of their invasion capabilities, but only neonatal hCPCs procured statistically significant 
improvements. 
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Figure 5. Transcription of heat shock proteins (HSPs) in response to short-term hypoxia. (A) Fold 
change of HSP mRNAs in adult Isl-1+ c-Kit+ hCPCs resulting from pretreatment with short-term 
hypoxia (n = 4). (B) Neonatal Isl-1+ c-Kit+ hCPC HSP mRNA expression reveals a significant 
two-fold elevation of HSP70 in response to short-term hypoxia (p = 0.022, n = 5). (C) PCR 
products of HSP mRNAs upregulated in adult and neonatal hCPCs, as visualized by agarose gel 
electrophoresis, validate the significant increase of HSP70 in neonatal hCPCs after short-term 
hypoxic preconditioning. MW = molecular weight marker, N = normoxic, H = hypoxic.  
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Figure 6. Select genes associated with cell survival are elevated in response to short-term 
hypoxia. (A) Expression of mRNA transcripts associated with cell survival in adult Isl-1+ c-Kit+ 
hCPCs and relative fold changes after hypoxic exposure. BCL2 and HMOX1 are strongly 
upregulated in response to hypoxia, but the changes are not statistically significant (n = 3). (B) 
Neonatal Isl-1+ c-Kit+ hCPC pro-survival gene expression in response to short-term hypoxia. 
RELA and HMOX1 are elevated in response to short-term hypoxia, but only RELA is significant (p 
= 0.02, n = 3). 
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Figure 7. Programmed cell death in response to oxidative damage is not significantly reduced. 
Using 0.5 mM H2O2, apoptosis was induced in non-treated and preconditioned Isl-1+ c-Kit+ 
hCPCs of both adult and neonatal origin. Relative DNA fragmentation was measured using Brd-U 
and anti-BrdU antibody. (A) Cytometric analysis of BrdU-DNA binding within a representative 
clone is shown here, with and without hypoxic pretreatment. The group treated with short-term 
hypoxia exhibited an approximate 50% decrease in apoptotic cells after induction of cellular death 
by 0.5 mM H2O2. (B) Quantification of TUNEL assay results obtained using three independent 
adult clones are pictured here, showing that apoptosis is not significantly reduced (p = 0.89). (C) 
Pooled results of TUNEL assay for three neonatal clones with and without hypoxic pretreatment. 
Apoptosis in response to oxidative stress trends downward in the hypoxia preconditioned group 
but not to a significant degree (p = 0.34). 
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Figure 8. Isl-1+ c-Kit+ hCPCs maintain expression of early differentiation markers after hypoxic 
exposure. Quantitative RT-PCR was used to examine the effects of short-term hypoxia on the 
expression of differentiation markers present in cardiovascular progenitors. (A) Pooled PCR 
results from three individual adult hCPC clones reveals no significant change in differentiation 
markers with the exception of PDGFRA (1.4-fold increase, p = 0.004). (B) Quantification of PCR 
data from four independent neonatal clones reveals a similar upregulation of PDGFRA (1.8-fold, p 
= 0.0003), as well as a decrease in Brachyury transcripts (0.58-fold, p = 0.004).  
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Figure 9. Short-term hypoxia does not alter normal cell cycle progression. Preconditioned Isl-1+ 
c-Kit+ hCPCs, of both neonate and adult origin, were stained using propidium iodide and 
compared to their respective normoxic controls via flow cytometry. (A) Flow cytometry histogram 
of cell cycle analysis in a representative clonal population, both with and without hypoxic 
pretreatment. (B) Quantification of nine individual results from three independent adult clones 
reveals that short-term hypoxia does not significantly affect normal cell cycle progression in adult 
Isl-1+ c-Kit+ hCPCs. (C) Quantification of data from six technical replicates using three 
independent neonatal clones confirms that normal cell cycle progression is also unaffected by 
short-term hypoxia in neonatal Isl-1+ c-Kit+ hCPCs. 
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