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ABSTRACT 

A problematic connection has been reported between those who use 

nicotine related products alone or in combination with ADHD medications, like 

methylphenidate (MPH), in late childhood or early adolescence and the 

increased likelihood of later marijuana abuse in adulthood. Pre-clinical studies 

have found that the use of nicotine during the early adolescence period 

produces enduring changes to the endocannabinoid system in the brain. Since 

CB agonists, like marijuana, exert their effect through the eCB system, it is 

possible that early nicotine use may alter the rewarding nature of CB agonists 

in adulthood. In addition, MPH has also been shown to increase nicotine 

self-administration and abuse related behaviors of nicotine in rats. Thus, the 

current study consisted of two experiments looking at the effects of early 

nicotine and methylphenidate exposure on adult CB-agonist place conditioning 

in rats. In the first experiment, rats were pre-exposed to either saline or 

nicotine (0.16, 0.32, or 0.64 mg/kg) from PD 31 to PD 40. On PD 60, rats 

began a 13-day biased CPP procedure with the CB agonist, CP 55,940 (10, 

20 or 30 μg/kg), or vehicle. No significant group differences were found, 

suggesting that early nicotine exposure does not influence the rewarding 

nature of CB agonists. Additional individual subgroup comparisons were 

conducted to determine if any subgroups significantly differed from 0 or no 

mean change in preference from preconditioning to testing. These analyses 

revealed that rats pre-exposed to the moderate (0.32 mg/kg) dose of nicotine 
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showed a significant aversion to the high (30 μg/kg) dose of CP 55,940, 

suggesting that early nicotine exposure may reduce the rewarding nature of 

CB agonists in adulthood. In the second experiment, rats were pre-exposed to 

either saline or MPH (0.5, 2, 0r 5 mg/kg) from PD 21 to PD 30. Similar to the 

first experiment, rats began a 13-day biased CPP procedure on PD 60 with CP 

55,940 (10, 20 or 30 μg/kg) or vehicle. Rats conditioned with the moderate (20 

μg/kg) dose of CP 55,940 showed a significant preference for the CB agonist 

as compared to rats conditioned with the high (30 μg/kg) dose of CP 55,940. 

CP 55,940 exposed rats did not significantly differ from control rats. There was 

no significant effect of MPH or a MPH x CP 55,940 interaction, suggesting that 

early MPH exposure does not alter the rewarding nature of CB agonists in 

adulthood. Together these findings suggest that early nicotine, but not MPH, 

exposure may influence the rewarding nature of CB agonists in adulthood, 

suggesting an additional risk factor of early nicotine use. However, future 

studies should evaluate the effects of persistent nicotine and MPH exposure 

starting in early adolescence or childhood through adulthood to determine 

whether the effects of nicotine and MPH are altered if use is continued into 

adulthood. 
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 CHAPTER ONE: 

INTRODUCTION 

Adolescence is a transitional period in development between childhood 

and adulthood. There are both biological and social changes occurring during 

this period that make it an especially vulnerable period for substance use and 

abuse. During this period subcortical structures in the brain responsible for the 

experience of emotions are developed, but cortical structures necessary for 

higher order cognition, like the prefrontal cortex, are just beginning to develop 

(Konrad et al., 2013; Casey & Jones, 2010). Thus, adolescents are able to 

experience “adult” emotions, but they do not have the ability to control and 

process these emotions in an effective way. This biological immaturity is 

believed to be a major contributor to the increased impulsivity and risky 

decision-making often associated with this time period (Konrad et al., 2013). 

Adolescence is also a period in development when people begin to 

separate from their parents and put a greater emphasis on their peer group 

(Gorrese & Ruggierri, 2012). This transition away from parental control 

increases the role of peer influence on behavior during adolescence. De 

Looze et al. (2012) revealed that decreased parental involvement and 

increased time spent with friends were associated with an increase in risky 

behaviors, including substance use and sex initiation, in adolescence. The 

combination of the adolescent desire for independence from parental control, 

increased peer influence, and impulsivity and risky decision-making all lead to 
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a greater vulnerability during this period to enter into environments where illicit 

substances are being used (Casey & Jones, 2010). This is important in 

understanding the vulnerability during this period because the exposure to and 

availability of substances are key factors in the initiation of substance use 

(Merikangas & McClair, 2012). 

Adolescence is an especially vulnerable period for the initiation of 

nicotine, the psychoactive component of tobacco, use and the progression to 

nicotine dependence (Moyer, 2013). In fact, around 90 percent of chronic 

smokers begin smoking in adolescence (SAMHSA, 2012). The chronic use of 

tobacco-related products has been implicated in a wide variety of medical 

illnesses, and remains one of the leading causes of preventable deaths 

around the world. Researchers are beginning to discover another dangerous 

role for these products as potential “gateways” to other drugs of abuse. For 

example, early onset of nicotine use has been associated with early marijuana 

and stimulant use (Behrendt et al., 2012; Hayatbakhsh et al., 2009; 

Weinberger & Sofuoglu, 2009; McQuown et al., 2007). This is particularly 

concerning because the early use of these substances is associated with a 

greater risk for the development of substance use disorders (Copeland & 

Swift, 2009). The exact nature of the relationship between early nicotine use 

and marijuana use has not been determined, but preclinical studies have 

shown that nicotine exposure during the adolescent period increases 

cannabinoid (CB) receptor density in the ventral tagmental area, prefrontal 
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cortex, dentate gyrus and hippocampus in rats (Werling et al., 2009). This 

suggests a possible biological mechanism through which the effects of CB 

receptor agonists, like marijuana, may be altered from early exposure to 

nicotine. 

Troubling connections have also been reported between the use of 

nicotine and methylphenidate, one of the most common stimulant treatments 

for attention deficit hyperactivity disorder (ADHD). Methylphenidate use with 

and without an ADHD diagnosis has been shown to increase cigarette 

smoking in humans (Vanisckel et al., 2011; Vansickel et al., 2009) and 

enhance abuse-related behaviors of tobacco in rats (Wooters et al., 2008). 

Associations have also been reported between those diagnosed with ADHD 

and the abuse and dependence of marijuana, nicotine and other drugs of 

abuse (Lee et al., 2011; Aksoy et al., 2012; Lambert, 2005). Interestingly, this 

relationship has been shown to decrease when individuals with ADHD are 

treated with methylphenidate, although the association is still stronger than in 

the general population (Wilens, Biederman & Gunawardene, 2003). However, 

there is little known about the effects of early methylphenidate exposure on 

those without symptoms of ADHD or the combined effect of nicotine and 

methylphenidate. This is largely due to the difficulty in experimentally 

investigating the effects of early methylphenidate exposure in human children. 

Thus, animal models become particularly important in elucidating the potential 
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long term biological effects of substances like nicotine and methylphenidate on 

adult substance misuse. 

In the current study we conducted two independent experiments. The 

first experiment was designed to investigate the role of adolescent nicotine 

exposure on the rewarding properties of cannabinoid agonists in young adult 

rodents. Similarly, the second experiment investigated the effects of late 

childhood exposure to methylphenidate (Ritalin) on the rewarding properties of 

cannabinoid agonists in young adult rodents. The following chapters discuss in 

detail the relevant neurotransmitter systems, nicotine, methylphenidate, 

marijuana, CP 55,940, and the rational for the current study. 
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 CHAPTER TWO: 

CATECHOLAMINE NEUROTRANSMITTERS 

Catecholamine neurotransmitters are distinguished by a chemical 

structure called a catechol, and all are derivatives from the amino acid tyrosine 

(McTavish, Cowen, & Sharp, 1999). This family of neurotransmitters includes 

dopamine (DA), norepinephrine (NE) and epinephrine. However, only DA and 

NE will be discussed in depth due to their relevance to the current study. 

DA is known to be involved in a variety of functions, including 

movement, mood, cognition, sexual behaviors, attention, and, most 

importantly for the purposes of this study, reward mechanisms (Clark et al., 

2012; Adachi et al., 2012; McHenry et al., 2012; Brown et al., 2011; Missale et 

al., 1998). DA is believed to play a major part in neuronal reward mechanisms 

underlying recreational substance use, and is also implicated in various other 

disorders, including attention-deficit hyperactivity disorder (ADHD), 

schizophrenia, Parkinson’s disease, various affective disorders, and Tourette’s 

(Volkow et al., 2011; Miller et al., 2012; Bortolato, Chen & Shih, 2008; Missale 

et al., 1998). 

NE is involved in a variety of functions both in the central and peripheral 

nervous systems. It is known to play a part in attention, arousal, impulse 

control, emotion, memory, stress, motivation as well as reward and reward 

learning (Roychowdhury et al., 2012; Goddard et al., 2010; Robinson, 2012; 

Segal et al., 2012; Thoma et al., 2012; Young & Williams, 2010; Gallagher et 
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al., 2013). The noradrenergic system is also implicated in many psychiatric 

disorders, including ADHD, major depressive disorder, bipolar disorder, 

post-traumatic stress disorder, and anxiety disorders (Park et al., 2012; 

Machado & Einarson, 2010; Wiste et al., 2008; Blanchard et al., 2012; 

Goddard et al., 2010). 

The process of DA and NE synthesis occurs in the axon terminals of 

dopaminergic and noradrenergic neurons, respectively. DA and NE synthesis 

begins with the conversion of tyrosine to L-dyhydroxy-phenylalanine (L-dopa) 

in the presence of tyrosine hydroxylase, the rate-limiting step in the synthesis 

of all the catecholamines (Elsworth & Roth, 1997). L-dopa is then converted 

into DA in the presence of aromatic L-amino acid decarboxylase (Elsworth & 

Roth, 1997; Smidt, Smits & Burbach, 2003; Sourkes 1979). Once DA is 

synthesized it is actively transported into vesicles by vesicular monoamine 

transporters located on the vesicles where they are stored for release in 

dopaminergic neurons (Elsworth & Roth, 1997). In noradrenergic neurons, NE 

is synthesized from DA after DA is stored in vesicles in the presence of 

dopamine beta-hydroxylase (May, Qu & Meredith, 2012). 

Catecholamine vesicles are released through calcium dependent 

exocytosis (Leviel, 2011). Once the vesicles begin to move towards the active 

zone where docking and fusion occur with the help of SNARE (soluble 

n-ethylmaleimide-sensitive-factor attachment protein receptor) complexes and 

complexion and final fusion to the active zone occurs with synaptotagmin 
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(Ramakrishnan, Drescher, & Drescher, 2012). Once fusion occurs 

catecholamine neurotransmitters are released into the synaptic cleft where 

they bind to their respective receptors on the postsynaptic density (Ford et al., 

2010; Elsworth & Roth, 1997). 

There are two classes of DA receptors, D1-like and D2-like, which are 

further divided into five subtypes, D1-D5. All the DA receptors are G-protein 

coupled and operate through second messenger systems. The D1-like 

receptors, D1 and D5, are coupled to either Gs or Golf. When Gs and Golf are 

activated from the binding of DA they stimulate the enzyme adenylyl cyclase, 

which is responsible for converting ATP to cyclic adenosine monophosphate 

(cAMP) (Billington & Hall, 2012). As cAMP levels rise due to the stimulation of 

adenylyl cyclase, the enzyme protein kinase A (PKA) is activated and can lead 

to a slight depolarization of the postsynaptic neuron (Billington & Hall, 2012; 

Binder et al., 2001). The D2-like receptors, D2-D4, are coupled to either Gi or 

Go, which are inhibitory G-proteins. Their activation decreases adenylyl 

cyclase, which in turn decreases cAMP formation and PKA activity leading to a 

slight hyperpolarization of the postsynaptic neuron (Missale et al., 1998). 

NE is unique because it doesn’t have receptors exclusive for it, but 

instead it shares the same receptors with epinephrine, the other member of 

the catecholamine class (Moore & Bloom, 1979). There are two primary 

groups of receptors used by NE: alpha (α) and beta (β) receptors. The α group 

contains subtypes of α1 and α2 and the β group contains subtypes of β1, β2, 
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and β3. All the receptors used by norepinephrine are G-protein coupled 

receptors. The α1 receptor is Gq coupled and activates the diacylglycerol 

(DAG)/inositol-1,4,5-trisphosphate (IP3) second messenger system. IP3 

increases intracellular calcium and DAG activates protein kinase C, which 

phosphorylates other proteins producing changes within noradrenergic 

neurons (Exton, 1985). The α2 receptor is Gi coupled and decreases cAMP (Yi 

et al., 2012; Exton, 1985). β receptors 1-3 are all coupled to Gs and increase 

cAMP levels (Rebois et al., 2012). 

After DA and NE bind to their respective receptors, the remaining 

neurotransmitters in the synapse are removed through active reuptake by 

either DA transporters (DAT) or NE transporters (NETs) (Elsworth & Roth, 

1997; Ford et al., 2010). DATs and NETs are implicated in various disorders, 

including ADHD (Miller et al., 2012), and they also are the site at which many 

drugs like methylphenidate, cocaine and amphetamines produce their 

biochemical effects (Hannestad et al., 2010; Le Foll et al., 2009; Missale et al., 

1998). Once DA and NE are taken back into the presynaptic neuron’s axon 

terminal they are either repackaged into vesicles or enzymatically destroyed 

by monoamine oxidase (Elsworth & Roth, 1997). 

The dopaminergic system is a localized system that primarily exerts its 

effects through three pathways: the mesocortical, nigrostriatal and the 

mesolimbic (Rieckmann et al., 2011). The mesocortical pathway refers to 

dopaminergic neurons from the ventral tagmental area (VTA) connecting to 
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the frontal cortex (Thierry et al., 1976). The nigrostriatal pathway signals from 

the substantia nigra to the striatum (Thierry et al., 1976). The mesolimbic 

pathway, also known as the reward/motivation pathway, consists of 

dopaminergic axonal projections from the VTA to various areas of the limbic 

system (nucleus accumbens, amygdala and hippocampus) as well as the 

medial prefrontal cortex (Koob & Kreek, 2007; Wanat et al., 2009). This is the 

pathway through which many abused drugs are thought to exert their 

reinforcing effects, and it is believed to be an essential aspect of the biological 

mechanisms underlying substance addictions (Leroy et al., 2012; Le Foll et al., 

2009; Missale et al., 1998). 

In contrast to DA, NE pathways in the brain are much more diffuse. The 

locus coeruleus in the pons contains the vast majority of CNS noradrenergic 

cell bodies and is primarily responsible for the synthesis of NE (Ishibashi et al., 

2009). The locus coeruleus noradrenergic cell bodies project axons throughout 

the entire CNS, including both cortical and subcortical structures in the brain 

and the spinal cord (Jodo, Chiang & Aston-Jones, 1998; Lipski, 2013; 

Bruinstroop et al., 2012). NE can also act as a hormone by being released 

directly into the blood stream by the adrenal medulla (Schneider et al., 2011). 
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 CHAPTER THREE: 

ACETYLCHOLINE 

Acetylcholine (Ach), like DA and NE, is a small molecular weight 

neurotransmitter. Much of our knowledge about neurons and chemical 

transmission was first discovered on cholinergic neurons in the peripheral 

nervous system (Holmstedt, 1975). The cholinergic system is essential for the 

functioning of both the autonomic and somatic nervous systems because in its 

absence essential organs like the heart and lungs would no longer function, 

and we would not be able to complete even the simplest of motor tasks 

(Fregoso & Hoover, 2012; Ikeda et al., 2012; Murray et al., 2013). Apart from 

its essential role at all neuromuscular junctions, ACh is implicated in a variety 

of psychological phenomena such as motivation, learning, memory, stress, 

attention, mood, addiction and reward (Serreau et al., 2011; Pepeu & 

Giovanni, 2010; Mora at al., 2012; Williams & Adinoff, 2008; Picciotto et al., 

2008). Dysfunction in the cholinergic system has also been linked to several 

psychiatric disorders including Alzheimer’s, Parkinson’s, schizophrenia, bipolar 

disorder, and substance use disorders (Ni, Marutle & Nordberg, 2013; Aosaki 

et al., 2010; Luckhaus et al., 2012; Thomsen, Weyn & Mikkelsen, 2011; 

Chatterjee & Bartlett, 2010). 

Like DA, ACh is synthesized within the presynaptic neurons axon 

terminal, packaged in vesicles through active transport, and released through 

calcium dependent exocytosis. ACh is synthesized from acetyl coenzyme A 



 

11 

and choline in the presence of choline acetyltransferase (ChaT) (Fujii, 

Takada-Takatorie, & Kawashima, 2012; Fulton & Nachmansohn, 1943). 

Cholinergic neurons are often identified by the presence of ChaT (Bellier & 

Kimura, 2011; Hedrick & Waters, 2010). Choline, which is extracted from the 

extracellular fluid, is the rate-limiting step in ACh synthesis (Birks, 1985). We 

have very little excess ACh in our bodies, so any disturbance in choline levels 

could have dire consequences on the body (Ghoshal & Farber, 1984). Once 

ACh is synthesized it is packaged into vesicles through the action of vesicular 

ACh transporters located on the vesicles in preparation to be released 

(Tayebati, Di Tullio, & Amenta 2008; Siegal, et al., 2004). 

Once ACh is released into the synaptic cleft it either binds to receptors 

(Cooper, Floyd, & Roth, 1991; Israel & Dunant, 1993) or is enzymatically 

degraded by acetylcholinesterase into acetic acid and choline (Massoullie et 

al., 1993). Choline is then pumped into the presynaptic terminal through 

choline transporters and reused for the synthesis of ACh. Interestingly, due to 

the importance and diffuse nature of the cholinergic system in the human body 

many toxins, poisons, bacteria, and other natural threats that exert their effects 

biochemically work on ACh synapses (Utkin et al., 2012; Sudof, 2001). 

ACh receptors fall into two classes: nicotinic (nAChRs) and muscarinic 

(mAChRs) receptors (Kester, Karpa & Vrana, 2011). These receptors gained 

their distinctive names because nicotine was found to bind exclusively to the 

nAChRs, whereas the psychoactive component of mushrooms, muscarine, 
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was found to bind exclusively to the mAChRs (Kester et al., 2011). All the 

nAChRs are ligand-gated ion channels that when bound by ACh allow the flow 

of sodium and calcium (Komal, Evans, & Nashmi, 2011). When ACh binds at 

both of the binding sites on the two alpha subunits of the nAChR 

simultaneously, a conformational change occurs to the nAChR, which opens 

the pore so ions can flow through (Kosower, 1987). Once the pore is opened 

the ionic flow produces changes in the net charge of the cytosol of the 

postsynaptic neuron (Kosower, 1987). Nicotinic receptors are located at 

neuromuscular junctions, where fast transmission is essential, and in various 

places throughout the brain (Williams, et al., 2011; Katzung, 2003). 

The mAChRs are much more complex in their functioning than the 

nAChRs because they operate exclusively through G-proteins and second 

messenger systems (Ehlert et al., 1995; Caufield, 1993; Wess 1996). There 

are five types of mAChRs, labeled M1-M5 (Caulfield & Birdsall, 1998). The 

differences between these receptors rest on the second messenger systems 

they activate. The mAChRs labeled M1, M3 and M5 are grouped together 

because they work on the diacylglycerol (DAG)/inositol-1,4,5-trisphosphate 

(IP3) second messenger system (Alberts et al., 2002; Ehlert et al, 1995). 

These receptors are coupled to the G-protein labeled Gq (Markovic et al., 

2012; Burford & Nahorski, 1996). When Gq is activated the substrate 

phosphatidylinositol-4,5-biphosphate (PIP2), which is part of the plasma 

membrane, is broken down in the presence of the effector enzyme 
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phosopholipase C into the second messengers DAG and IP3. DAG and IP3 

work by activating protein kinase C and increasing intracellular calcium 

signaling (Baylis & Vasquez, 2012; Alberts et al., 2002). The other mAChRs, 

M2 and M4, are grouped together because they work on the cAMP second 

messenger system. These receptors work through Gi and Go. When Gi/o is 

activated a decrease in cAMP occurs, there is an outward flow of potassium 

ions, and an inhibition of calcium channels, which together lead to an inhibitory 

postsynaptic potential (Guo, Mao & Wang, 2010). 

Cholinergic neurons are present throughout the central and peripheral 

nervous systems, and thus their pathways and effects are much more diffuse 

than those seen in the dopaminergic system (Lucas-Meunier et al., 2003; 

Dringenberg et al., 2006; Caulfield, 1993; Wess et al., 1990). The cholinergic 

system has areas of action throughout the brain, spinal cord, and body and is 

actually the most diffuse neurotransmitter system in the human body 

(McCormick, 1989). 
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 CHAPTER FOUR: 

ENDOCANNABINOID SYSTEM 

Compared to other neurotransmitter systems, the endocannabinoid 

(eCB) system is much less understood. This lack of information stems from 

two reasons: (1) the known endogenous cannabinoids were only recently 

discovered in the early 1990s, and (2) the cannabinoid system operates very 

differently from other neurotransmitter systems. Despite the lack of information 

regarding the eCB system, studies have shown that it is involved in a variety of 

psychological phenomena, including mood, pain, appetite, memory and 

reward (Bambico, 2012; Miller et al., 2012; Fulton, 2010; Abush & Akirav, 

2013; Hell et al., 2012). Interestingly, the eCB system has increasingly 

become a promising target for new drug therapies for many psychiatric 

disorders, including Parkingson’s, Huntington’s, various mood disorders, 

substance use disorders, and Tourette’s (Fernandez-Ruiz et al., 2011; Micale 

et al., 2013; Panlilio, Justinova & Goldberg, 2013; Muller-Vahl, 2013). The 

eCB system’s ability to modulate the signaling of other neurotransmitter 

systems seems to be the primary reason it is becoming a target for new drug 

therapies (Piomelli et al., 2000). 

One of the most important distinguishing characteristics of the eCB 

system is that it operates through retrograde signaling. Specifically, eCBs are 

synthesized for release by the postsynaptic neuron and bind to cannabinoid 

(CB) receptors on the presynaptic neuron’s terminal. This retrograde signaling 
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mechanism is believed to be important in mediating the release of 

neurotransmitters at both excitatory and inhibitory synapses, which ultimately 

has important implications for synaptic plasticity for neurons that contain eCBs 

and/or their receptors (Chevaleyre, Takahashi & Castillo, 2006; Jian-Yi et al., 

2010). 

There are two eCBs that have been identified as binding to CB 

receptors, N-arachidonoyl-ethanolamine (anandamide; AEA) and 

2-arachindonoyl-glycerol (2-AG) (Mechoulam & Parker, 2013; Devane & 

Hanus, 1992; Mechoulam et al., 1995). AEA is synthesized from 

N-arachidonoyl-phosphatidylethanolamine (NAPE) and 2-AG from “the 

hydrolytic metabolism of 1,2-diacylglycerol (DAG) mediated by two 

sn-1-selective DAG lipases, DAGL-alpha and DAGL-beta” (Sidhpura & 

Parsons, 2011 p. 1071; Ueda et al., 2011; Piomelli, 2003). Both these eCBs 

are lipids and are able to pass through plasma membranes without protein 

transporters, which is another unique characteristic of the eCB system. 

The synthesis of eCBs is stimulated by elevations in calcium levels in 

both the intra- and extra- cellular environments of certain postsynaptic neurons 

(Placzek et al., 2008). eCBs are synthesized from precursors of membrane 

lipids, and once synthesized they diffuse out of the postsynaptic neuron. 

Unlike the catecholamines and other neurotransmitters, eCBs are not 

packaged into vesicles for release; instead their hydrophobic nature allows 

them to simply pass through the neuron’s membrane (Sidhpura & Parsons, 
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2011). After the eCBs bind to CB receptors, the neurotransmitters are taken 

up through reuptake mechanisms into both neurons and glial cells (Bisogno et 

al., 2006). Once reuptake occurs the transmitters are enzymatically degraded 

by either fatty acid amide hydrolase (FAAH) for AEA or monoacylglycerol 

lipase (MAGL) for 2-AG (Feledziak et al., 2012; Ueda et al., 2011). 

There are two known CB receptors, CB1 and CB2 receptors. CB1 

receptors are much more prevalent in the central than the peripheral nervous 

systems, and the opposite is true of the CB2 receptors. Both of these receptors 

are G-protein coupled receptors that operate through Gi and Go. Activation of 

the CB receptors reduces adenylyl cyclase, slows the flow of calcium into the 

presynaptic terminal, and activates potassium channels. This produces an 

influx of potassium, and suppresses the release of neurotransmitters from the 

presynaptic terminal to which the CB receptors are attached (Gebremedhin & 

Lange, 1999; Reis et al., 2011). This suppression effect produces either a 

slight inhibition or excitation of the postsynaptic neuron depending on the 

properties of the synapse affected (Basavarajapppa, Ninan & Arancio, 2008; 

Best & Regehr, 2008; Pistis et al., 2002). Thus, the eCB system produces 

behavioral effects by working in conjunction with another neurotransmitter 

system. 

The eCB system is thought to modulate many neuronal systems 

producing a wide range of physiological and behavioral effects (Schlicker & 

Kathmann, 2001). The eCB system is known to influence nearly every 
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neurotransmitter system in some way, including glutamate and GABA 

systems, which are the primary excitatory and inhibitory neurotransmitter 

systems in the brain (Pistis et al., 2002; Schnlicker & Kathmann, 2001). In 

many areas of the brain, the majority of CB receptors are found on GABAergic 

and glutamatergic neurons (Kofalvi et al., 2005). 

Many studies have shown that the eCB system plays a part in almost all 

aspects of drug abuse and addiction, including the rewarding effects, usage, 

drug seeking behavior, and relapse and cravings (Hell et al., 2012; 

Gamaleddin et al., 2012; Higuera et al., 2008; Fattore et al., 2011; Solinas, 

Goldberg & Piomelli, 2008; Rodriguez et al., 2011). Due to the ability of CB 

antagonists to decrease the administration and reinstatement of many 

substances in rats, it is not surprising that researchers are optimistic that 

pharmaceutical treatments for individuals struggling with substance addictions 

through the antagonism of CB1 receptors may be possible (Shindler et al., 

2010; Shoaib, 2008). 

The eCB system’s primary role in various aspects of drug abuse and 

addiction seem to be related to its ability to mediate synaptic plasticity in areas 

of the brain that are commonly associated with drugs of abuse, like the VTA, 

nucleus accumbens, certain areas in the limbic system and the prefrontal 

cortex (Zhiqiang et al., 2010; Luchicchi et al., 2010; French, Dillon, & Wu, 

1997; Mato et al., 2004; Chiu et al., 2010). Some investigators believe that the 

eCB system is so important that they often posit it as being among the most 
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crucial factors in the neuronal basis of substance addictions (Onaivi, 2008). 

This is not unexpected as the use of CB1 receptors agonists increase firing 

rates of dopaminergic neurons in the mesolimbic “reward/motivation” pathway 

(Diana, Melis & Gessa, 2003). 
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 CHAPTER FIVE: 

NICOTINE 

Nicotine is a highly addictive substance found in tobacco products, and 

is used by around 56.8 million people 12 or older in the United States 

(SAMHSA, 2012). Around 90 percent of chronic smokers start smoking in 

adolescence (SAMHSA, 2012). Approximately 19.5 percent of high school and 

over five percent of junior high students are smokers (Centers for Disease 

Control and Prevention, 2010). This is especially problematic because 

smoking is the leading cause of preventable deaths, and it also has been 

among the biggest contributors to lung related illnesses, including cancer, for 

decades (Center for Disease Control and Prevention, 2003). To make matters 

worse, smoking is one of the most difficult types of substance addictions to 

treat (Ray et al., 2008; Balfour, 2004). According to Rosenthal, Weitzman, and 

Benowitz (2011), approximately 80 percent of all people who try to quit 

smoking will relapse within a month. With the combination of an increased risk 

of disease, early mortality and chronic relapse associated with nicotine 

addiction, the need for research and effective treatments for nicotine abuse is 

becoming increasingly more of a concern. 

In general, nicotine produces positive effects on mood, alertness, and 

anxiety (Rosenthal et al., 2011). However, the perceived positive effects of 

nicotine are believed to be at least partially due to reductions in withdrawal 

symptoms, which include anxiety, difficulty concentrating, irritability, and 
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restlessness (Benowitz, 2010). Thus, consuming nicotine often becomes a 

form of negative reinforcement (escape from withdrawal symptoms) to chronic 

smokers. In addition, nicotine causes an increase in the release of 

catecholamines from the adrenal medulla into the bloodstream producing 

increases in heart rate, blood pressure, and respiration (Haas & Kuebler, 

1997). 

When nicotine is inhaled, it enters the lungs where it is absorbed and 

carried in the blood stream to the brain (Caldwell, Sumner & Crane, 2012). 

Nicotine exerts it biochemical effects by binding to cholinergic nicotinic 

receptors (nAChRs), in both the CNS and PNS, producing a slight 

depolarization of the postsynaptic neurons through the opening of sodium and 

potassium channels (Barron, 2010). Thus, nicotine increases the activity of 

Ach. This altered transmission of cholinergic neurons in the CNS also 

increases the firing of dopaminergic neurons in the mesolimbic and 

mesocortical pathways (Besson et al., 2012; Novak, Seeman, & Foll, 2010), 

and this interaction with the dopaminergic system is how nicotine is believed to 

produce its reinforcing and abuse-related effects. There is also evidence that 

the cannabinoid system is also involved in mediating the rewarding and 

abuse-related effects of nicotine on the dopaminergic system. Gamaleddin et 

al. (2012) showed that stimulating CB1 receptors increased nicotine 

self-administration, nicotine seeking behaviors and nicotine cue-induced 

reinstatement. Also, nicotine use in adolescence, but not adulthood, is known 
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to increase cannabinoid receptor density in the ventral tagmental area, 

prefrontal cortex and hippocampus in rats (Werling et al., 2009), suggesting 

that adolescence is a particularly sensitive period for the effects of nicotine on 

the CB system. It may be possible that these effects during adolescence could 

alter the effects of psychoactive substances that work through the CB system, 

like marijuana. However, no studies have assessed whether these 

nicotine-induced structural changes to the CB system result in notable 

behavioral or psychological changes when CB agonists, like marijuana, are 

used later in life. 
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 CHAPTER SIX: 

METHYLPHENIDATE 

Methylphenidate was first synthesized in 1944, and marketed to the 

public as Ritalin (Leonard et al., 2004). It is one of the most commonly 

prescribed stimulants for the treatment of attention-deficit hyperactivity 

disorder (ADHD) (Leonard et al., 2004). In general, methylphenidate is 

considered a fairly safe drug with minimal side effects if used appropriately 

(Leonard et al., 2004). However, many researchers and clinicians are growing 

increasingly concerned about the potential long-term effects of prescribing 

stimulant treatments to children and adolescents (Marco et al., 2011). ADHD is 

often diagnosed in late childhood or early adolescence while the brain is still 

developing, especially in prefrontal regions (Casey & Jones, 2010). This is 

concerning because during childhood and adolescence the brain is thought to 

be more open to substance induced neuronal alterations than a fully 

developed adult brain (Casey & Jones, 2010). Casey and Jones (2010) 

hypothesize that the differential development between the early developing 

subcortical structures compared to the slow developing prefrontal, “cognitive 

control,” regions seem to make years 13 to 17 especially vulnerable times to 

the effects of drugs and alcohol. Findings such as this contribute to concerns 

about the lack of research on the long-term neurobehavioral effects of 

methylphenidate exposure during the late childhood and adolescent 

developmental periods. 
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Methylphenidate improves symptoms for many people diagnosed with 

ADHD (Leonard et al., 2004). It generally produces a greater ability to stay 

focused and sustain attention, while reducing restlessness and aiding in 

problems with impulsivity. Conversely, those without a diagnosis of ADHD 

tend to report the opposite effects, including high levels of anxiety and 

restlessness (Leonard et al., 2004). Methylphenidate is also known to increase 

heart rate and blood pressure, which is a commonality between most stimulant 

drugs (Leonard et al., 2004). 

Methylphenidate is considered a fairly safe drug, but it does come with 

some unwanted side effects. The common side effects include sleep 

problems, nervousness, dizziness and changes in appetite and affect 

(Leonard et al., 2004). Borcherding et al. (1990) also found that 

methylphenidate use in humans often produces unusual movements and/or 

compulsive behaviors. Similarly, stereotypy, constant, repetitive movements, is 

often reported in rats given high doses of methylphenidate (Sheel-Kruger, 

1971). More severe side effects, like cardiovascular problems and increased 

stroke risk, are extremely rare, but still are concerning for those on 

methylphenidate for extended periods of time (Leonard et al., 2004). 

Methylphenidate exerts its effects primarily through the noradrenergic 

and dopaminergic systems in the brain by increasing extracellular 

norepinephrine and dopamine (Yano & Steiner, 2007; Pascoli et al., 2005). It 

has a very limited effect on the serotonergic system, which is one of the 
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notable distinctions between methylphenidate and other stimulant ADHD 

medications like amphetamines. Interestingly, in more recent studies it has 

been shown that methylphenidate also indirectly influences glutamate and 

GABA systems, which may mediate its wide-ranging effects on the brain 

(Wanchoo, Swann & Dafny, 2009; Wiguna et al., 2012). 

Methylphenidate binds with the highest affinity to norepinephrine 

transporters (NETs), followed closely by dopamine transporters (DATs) (Yano 

& Steiner, 2007; Pascoli et al., 2005). Methylphenidate binds to between 70 

and 80 percent of NETs in humans (Hannestead et al., 2010). When 

methylphenidate binds to the transporters, it blocks the reuptake of the 

respective neurotransmitters from the synaptic cleft ultimately prolonging the 

effect of the neurotransmitters on the receptors. This is thought to be the 

primary mechanism through which methylphenidate produces improvements 

in ADHD related symptoms (Rosler et al., 2010; Volkow et al., 2012). This is 

important for this study because blocking NETs in frontal and subcortical 

regions is known to affect both the eCB and dopaminergic systems (Richter et 

al, 2012; Carboni & Sivagni, 2004; Borgkvist et al., 2012). 

The striatum, where methylphenidate exerts some of its effects on 

noradrenergic and dopaminergic neurons, is an important forebrain structure 

in reward learning and decision-making processes (Balleine, Delgado & 

Hikosaka, 2007). Methylphenidate’s effect on the striatum is important 

because the dopaminergic neurons that are part of the mesolimbic, 
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reward/motivation, pathway project axons to the striatum (Leroy et al., 2012; 

Le Foll et al., 2009). The use of methylphenidate has also been shown to 

produce changes in the plasticity and functionality of pathways in the striatum 

(Adriana et al., 2006). Since the mesolimbic pathway is an important target for 

most drugs of abuse, methylphenidate-induced changes to this pathway may 

have implications for the effects of other drugs later in life. This includes 

marijuana that is known to work on CB receptors that influence dopaminergic 

neurons in the mesolimbic and mesocortical pathways (Gessa et al., 1998). 
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 CHAPTER SEVEN: 

MARIJUANA AND THE CANNABINOID AGONIST CP 55,940 

Marijuana is the mostly widely used illicit drug in the United States. 

According to the annual survey conducted by the U.S. Department of Health 

and Human Services, about 7 percent (approximately 18 million) of people 12 

or older are current marijuana users, a significant increase from 5.8 percent in 

2007 (SAMHSA, 2012). Approximately 68 percent of new drug users start with 

marijuana, and most of these new users start when they are under 18 years 

old (SAMHSA, 2012). Marijuana users have the second highest rates of 

dependence or abuse, trailing only alcohol users (SAMHSA, 2012), and in 

recent years marijuana use has been reported more frequently by high school 

students than nicotine use (NIDA, 2011). This upward trend in marijuana use 

will likely continue as more states legalize marijuana for medical and 

recreational purposes. 

The psychoactive compound in marijuana, Δ9- tetrahydrocannabinol 

(THC), is generally considered a partial agonist at both CB1 and CB2 receptors 

(Paronis, Nikas, Shukla & Makriyanisa, 2012), and is known to produce 

positive mood states, including euphoria and calmness, at low doses (Nahas, 

2001). As dose increases negative mood states are more likely and can 

include paranoia and high levels of anxiety (Englund et al., 2013; 

Harte-Hargrove & Dow-Edwards, 2012). THC has many short-term side 

effects including impaired short-term and working memory, motor functions, 
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judgment, cognitive performance and considerable increases in heart rate 

(Ranganathan & D’Souza, 2006; Ramaekers et al., 2006; De Melo et al., 2005; 

Panlilio et al., 2012; Metrick et al., 2012; Ramaekers et al., 2009; Nahas, 

2001). In addition to the more immediate effects of THC there is some 

evidence for long-term effects as well. Long-term use of marijuana has been 

found to be associated with poorer education and work related outcomes, 

diminished life satisfaction, respiratory issues, and permanent cognitive 

impairment (Senn et al., 2008; Caldeira et al., 2012; Hall, 2009).   

Marijuana is approved for medicinal use in 18 states as well as 

Washington DC and has actually been legalized for recreational use in several 

states. Marijuana has been shown to be useful for relieving pain, appetite 

stimulation, and controlling nausea (Walker & Huang, 2002; Nelson et al., 

1994; Cotter, 2009). However, its medical uses continually come into question, 

as many believe its negative side effects outweigh the benefits it may bring 

patients. The negative side effects most commonly discussed are related to 

impaired cognitive functions and exposure to carcinogens from smoking 

marijuana (NIDA, 2011). 

In recent years more potent, synthetic CB agonists have been 

developed. The CB receptor agonist CP 55,940 (CP) is considered to be 

between 10 to 100 times more potent than THC (Herkenham et al., 1990). 

However, its behavioral and pharmacological effects are generally thought to 

be similar to those of THC (Fan et al., 1994; Xie, Melvin & Makriyannis, 1996). 
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CP binds to both CB1 and CB2 receptors with approximate equal affinity, 

similarly to THC, but CP has higher affinity at both receptor sites (Wiley et al., 

1995; Gatley et al., 1997; Griffin et al., 1998; Thomas et al., 1998). CP 

increases firing rates of mesolimbic dopaminergic neurons (Gessa et al., 

1998), which may be a possible mechanism through which CB agonists 

produce their rewarding effects. Also, Craft et al. (2012) showed that there are 

sex differences in how CB agonists affect CB receptors. Specifically, 

cannabinoid agonists appear to bind with higher affinity to CB1 receptors in 

females than males. Interestingly, Duan, Liao, Jain, & Nicholson (2008) 

showed that CP is also able to inhibit the function of voltage-gated sodium 

channels independent of its influence on CB receptors. This effect, however, 

only occurs with large doses of CP as binding to CB1 receptors is about 

10,000 times more potent than its effect on sodium channels. CP’s effect on 

sodium channels does raise concerns about very high doses, and may also 

explain why higher doses tend to be aversive. 

Experimental findings with CP seem to show that its effects are highly 

dose-dependent. For example, low doses of CP seem to decrease anxiety-like 

behaviors, while higher doses appear to increase anxiety as measured by the 

elevated plus maze task (Marco et al., 2004). Also, like THC, there are 

conflicting results in place conditioning procedures, which are believed to 

measure the reward/aversive properties of substances. Some studies report 

conditioned place preferences to CB agonists, which is expected considering 
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the wide spread use of substances like marijuana, (Braidi et al., 2001; Valjent 

& Maldonado, 1990) while others report place aversions to the same agonists 

(McGregor, Issakidis & Prior, 1996). However, when focusing on the 

experimental procedures, it seems when care is taken to avoid the dysphoric 

effects commonly associated with the initial use, long half-life, and dosing of 

cannabinoid agonists a conditioned place preference is often reported (Braidi 

et al., 2001; Valjent & Maldonado, 1990). It seems that higher doses of CP are 

more likely to produce an aversion than lower doses. 
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 CHAPTER EIGHT: 

CONDITIONED PLACE PREFERENCE 

One of the most common methods to investigate the 

rewarding/aversive properties of a drug in animal models is the conditioned 

place preference (CPP) paradigm (Bardo & Bevins, 2000). There are notable 

advantages to the use of the CPP paradigm, including its ability to test both 

the rewarding/aversive properties of a drug and locomotor activity 

simultaneously (Bardo & Bevins, 2000). It also can be adjusted in many ways 

to investigate both short-term and long-term behavioral changes produced by 

early exposure to drugs, drug-associated learning and drug induced biological 

alterations (Bardo & Bevins, 2000). 

According to Bardo & Bevins (2000), the CPP paradigm is based on 

classical/Pavlovian conditioning principles. The paradigm is often conducted in 

three stages. The first stage is preconditioning where the animals are allowed 

to roam freely in two connected but distinct chambers for a specific amount of 

time. The basic idea is to get the rats accustomed to the apparatus, and to 

assess whether there is an unconditioned preference for one of the chambers 

(Bardo & Bevins, 2000). The second stage is conditioning. During this stage 

there are a number of drug and vehicle alternating sessions. In half of the 

sessions the animals are administered the drug of interest and then placed 

inside only one of the chambers for a specific amount of time. In the biased 

CPP paradigm the drug is paired with the chamber that the rats did not prefer 
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in the preconditioning stage. For the rest of the sessions the rats are injected 

with saline and then put into the other chamber for the same amount of time 

as the drug-paired session. The purpose of this stage is to condition an 

association between the chamber (conditioned stimulus-CS) that is paired with 

the drug of interest and the effects of the drug (unconditioned stimulus-UCS) 

(Bardo & Bevins, 2000). The last stage is testing. In this stage the animals are 

not exposed to any drugs. They are placed in the CPP apparatus and allowed 

to roam freely in the two main chambers for the same amount of time as the 

preconditioning session. The amount of time spent in each chamber is 

measured. If animals spend significantly more time in the drug-paired 

compartment they are described as having a conditioned place preference 

(CPP), and if the animals spend more time in the non-drug paired 

compartment they are described as having a conditioned place aversion 

(CPA). The general idea is that if the drug is rewarding the animal will be much 

more likely to spend time in the drug-paired compartment that has been 

associated with the positive effects of the drug. However, if the drug is 

aversive to the animal, the drug-paired compartment will be associated with 

negative feelings. This will make the animal less likely to spend time in the 

drug-paired compartment and more likely to spend time in the non-drug 

(saline) paired compartment, which should be “neutral.” 

Despite its many advantages, there are some criticisms levied against 

the CPP paradigm. Bardo and Bevins (2000) assert that some question 
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whether the CPP paradigm actually tests the rewarding/aversive properties of 

drugs at all. Some believe that the results found in studies using this paradigm 

could be the result of novelty seeking behavior rather than anything to do with 

the properties of the drug itself. They believe that the effects of the drug may 

cloud the ability of the rat to familiarize itself with the drug-paired 

compartment, and thus result in the rat spending more time in the drug-paired 

compartment simply because it appears more novel than the neutral 

(saline-paired) compartment during testing. This would mean that findings 

showing that the rats preferred (spent more time in) the drug-paired 

compartment would not be the result of the rewarding properties of the drug, 

but just the novelty of the drug-paired compartment when the drug is not 

present. However, this interpretation makes it difficult to account for findings 

that show that most drugs that are considered pleasurable tend to show CPPs 

while drugs that are viewed as aversive tend to show CPAs (Tzchentke, 

2007). If novelty seeking is what is being assessed the drug-paired 

compartment should be more novel to the rats whether the drug being 

assessed is pleasurable or aversive, but CPPs and CPAs are both reported. 

Thus the evidence tends to support the claim that the CPP paradigm 

measures the rewarding/aversive properties of drugs rather than just novelty 

seeking behaviors. 

Another criticism often directed at the CPP paradigm relates to its 

difficulty in producing a full dose-effect curve (Bardo & Bevins, 2000). This 
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tends to be especially problematic with pharmacological questions that require 

detailed dose-effects. However, one way to help alleviate this problem is to 

assign doses to independent groups in a between subjects manner (Bardo & 

Bevins, 2000). This does not entirely eliminate the problem, but it improves the 

ability of the CPP paradigm to give more detailed dose-effect information. 

The CPP paradigm has been used to evaluate the motivational 

properties of nearly all of the commonly used and abused drugs. Its ability to 

assess reward and aversion has been reliably shown with many drugs, 

including heroin, methamphetamine, cocaine, MDMA and various other drugs 

of abuse (Tzchentke, 2007; Conrad et al., 2013; Ribeiro et al., 2012). Most of 

the drugs that are thought to be highly rewarding show CPPs when 

administered to animals (Tzchentke, T., 2007). However, marijuana (THC) and 

other CB agonists do not consistently produce CPPs when administered to 

animals, and in some cases they actually produce CPAs (Bardo & Bevins, 

2000). This is problematic because marijuana is the most used illicit drug in 

the United States and clearly is perceived as highly rewarding by those that 

use it. Some believe that the inconsistencies seen in the results with 

cannabinoid agonists are due to dysphoric effects produced by the initial use, 

high sensitivity to dose changes, and the long half-life of these substances 

(Murray & Bevins, 2010; Braidi et al., 2001; Bardo & Bevins, 2000; Valjent & 

Maldonado, 2000). Studies using cannabinoid agonists in a CPP paradigm 

should take these factors into account. A possible approach could be to 
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pre-expose the animals to the drug prior to the start of conditioning (i.e to 

avoid dysphoric effects of initial use), use lower doses of the drug (i.e. avoid 

aversive effects of higher doses), and have longer waiting periods between 

conditioning sessions (i.e. avoid possible negative side effects of the long 

half-life). If these factors are accounted for CPPs seem to be more commonly 

reported for many cannabinoid agonists. 
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 CHAPTER NINE: 

PROPOSAL AND HYPOTHESES 

This study explores the problematic connection commonly reported 

between those who use nicotine related products alone or in combination with 

ADHD medications, like methylphenidate, in late childhood or early 

adolescence and the increased likelihood of later marijuana abuse in 

adulthood (Lee et al., 2011; Gray & Upadhyaya, 2009; Jardin, Looby & 

Earleywine, 2011; Faroane et al., 2007). Despite this association, very few 

empirical studies have been conducted to elucidate the reasons for this 

connection. The goal of this study was to first investigate whether nicotine 

alters the rewarding properties of CB agonists in adulthood. Secondly, we 

assessed whether pre-exposure to methylphenidate altered the rewarding 

nature of CB agonists in adulthood. The rewarding nature of the CB agonist 

(CP 55,940) was assessed using the conditioned place preference (CPP) 

paradigm. The CPP paradigm is one of the most common methods used to 

assess the rewarding properties of drugs in animal models (Bardo & Bevins, 

2000). 

Nicotine influences areas in the brain commonly associated with the 

experience of reward (Besson et al., 2012; Novak, Seeman, & Foll, 2010), and 

its effect on nAchRs has been shown to increase dopamine activity in the 

mesolimbic and mesocortical pathways (Cohen et al., 2012; Brandon et al., 

2011; Dani & Harris, 2005). Nolley and Kelley (2007) found that nicotine use in 
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adolescence can halt the development of reward systems potentially 

increasing the probability of substance related problems in adulthood. In 

addition, exposure to nicotine in adolescence has been shown to produce 

long-term increases in CB receptor activity (Mateos, et al., 2011). Since CB 

agonists exert their effects through CB receptors, it is reasonable to suspect 

that early exposure to nicotine may alter the rewarding nature of CB agonists 

in adulthood. It was hypothesized that exposure to nicotine in early 

adolescence would increase the rewarding nature of CB agonists in adulthood. 

If early exposure to nicotine does make CB agonists more rewarding then the 

nicotine-exposed rats will spend significantly more time in the drug (CP)-paired 

compartment compared to controls. 

As stated previously, there are known relationships between nicotine 

and methylphenidate use (Vanisckel et al., 2011; Wooster et al., 2008) and 

nicotine and marijuana use (Gamaleddin et al., 2012; Werling et al., 2009). 

Researchers estimate that more than twice as many people with ADHD use 

nicotine related products compared to the general population (Lambert & 

Hartsough, 1998; Milberger et al., 1997). Since methylphenidate is commonly 

prescribed in adolescence and is the most common pharmaceutical treatment 

for ADHD, it is highly likely that nicotine, which is also frequently used in 

adolescence, is used in combination with methylphenidate (Wheeler et al., 

2013). In addition, methylphenidate has been shown to increase cigarette 

smoking in human studies (Vanisckel et al., 2011), and Wooster et al. (2008) 
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have shown that methylphenidate may actually increase the abuse related 

behaviors associated with nicotine use in rats. With all this known, the 

potential additive effect of early exposure to nicotine and methylphenidate on 

the rewarding properties of CB agonists is also of interest in this study. 

It is hypothesized that the combined effect of early exposure to nicotine 

and methylphenidate will produce changes to the eCB system in a way that 

makes CB agonists more rewarding in adulthood than exposure to either one 

alone. If the combination of nicotine and methylphenidate does produce an 

additive effect on the rewarding nature of CB agonists then the rats treated 

with both drugs will spend more time in the drug (CP)-paired compartment 

then the nicotine and control groups. 

However, if nicotine does not alter the rewarding nature of CP the 

second experiment with nicotine and methylphenidate will not be conducted. 

Instead, we will assess whether exposure to methylphenidate alone will alter 

the rewarding nature of CP. There is a common association reported between 

those who are diagnosed with ADHD and thus likely use stimulant 

medications, like methylphenidate, and an increased risk for marijuana use 

and abuse later in life (Lee et al., 2011; Aksoy et al., 2012; Kousha, Shahrivar 

& Alagnhband-rad, 2012; Galera et al., 2008; Jardin et al., 2011). There are 

very few, if any, studies directly linking the effects of methylphenidate to the 

cannabinoid system, although reduced CB1 receptor density is associated 

with ADHD rat models (spontaneously-hypertensive-rat; SHR) and 
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cannabinoid agonism has been shown to reduce some ADHD related 

behaviors in adolescent SHR rats (Adrianni & Laviola, 2004). There is also 

evidence that shows that the noradrenergic and dopaminergic systems, which 

are the systems through which methylphenidate exerts its effects, interact with 

the CB system in a bidirectional manner (Richter et al., 2012; Daigle, Wetsel & 

Caron, 2011; Giuffrida et al., 1999). Thus, it is possible that the increases in 

NE and DA activity produced by methylphenidate use may alter the 

cannabinoid system in a way that could make cannabinoid agonists more 

rewarding in adulthood. 

It was hypothesized that early exposure to methylphenidate will 

increase the rewarding nature of CB agonists in adulthood. If methylphenidate 

does increase the rewarding nature of CB agonists then the rats treated with 

methylphenidate will spend significantly more time in the drug (CP)-paired 

compartment than the control group. 
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 CHAPTER TEN: 

MATERIALS AND METHODS 

Subjects 

Two-hundred and ninety-four male rats of Spague-Dawley descent 

were used in this study. One hundred and sixty-one rats were used in the 

nicotine experiment and 133 rats were used in the methylphenidate 

experiment. Rats were given unlimited access to both food and water 

throughout the study. Litters were culled to 10 pups and weaned on PD 25. 

The rats were group housed for the duration of the study. They housed in the 

California State University, San Bernardino (CSUSB) colony room under a 

12-hour light/dark cycle. Both the injections and behavioral testing occurred 

during the light portion of the cycle. The rats were randomly assigned into 

groups of approximately equal number. All guidelines for the treatment of 

animals were followed according to the “Guide for the Care and Use of 

Laboratory Animals” (Institute for Laboratory Animal Research, 2011). The 

Institutional Animal Care and Use Committee at CSUSB also approved the 

experimental procedures before the start of the study. 

Apparatus 

The CPP apparatus was a T-shaped wooden chamber consisting of two 

large adjacent compartments measuring 24 x 30 x 45 cm and a smaller side 

compartment measuring 24 x 10 x 45 cm. The main compartments were 
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separated by an adjustable partition that either had an opening allowing free 

movement between the two compartments (preconditioning and testing) or a 

solid divider that restricted movement to a single compartment (conditioning). 

Each compartment contained distinct cues that allowed the rats to easily 

distinguish between the two main compartments. One compartment was 

painted all white (visual) and had mesh flooring (tactile and visual) and pine 

bedding (olfactory). The other compartment was painted all black and had 

straight bar flooring and cedar bedding. The gray side compartment was 

separated from the main compartments by a partition that was easily opened 

and closed. The side compartment was used as a neutral starting point 

between the two main compartments during preconditioning and testing 

sessions. 

Drugs 

(-)- Nicotine hyrdrogen tartrate and methylphenidate hydrochloride were 

obtained from Sigma (St. Louis, MO). Both drugs were dissolved in saline at a 

volume of 1 ml/kg. Nicotine injections were administered subcutaneously (SC) 

and methylphenidate was injected intraperitoneally (IP). 

2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl) 

cyclohexyl]-5-(2-methyloctan-2-yl)phenol (CP-55,940) was also obtained from 

Sigma (St. Louis, MO). CP 55,940 was dissolved in 50% DMSO/distilled water 

and was injected IP at a volume of 1 ml/kg. 
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Experiment 1: Nicotine Pre-Exposure 

In Vivo Drug Treatment 

The rats were weighed and then injected with nicotine (0.16, 0.32, or 

0.64 mg/kg) or saline for ten consecutive days starting at PD 31. In rats, this 

injection period (PD 31-40) is developmentally comparable to early 

adolescence in humans (Anderson, 2003). Once the drug treatment was 

completed the animals were left undisturbed until PD 55 when handling began 

for the CPP procedure. 

CP-55,940-Induced CPP Procedure 

On PD 60 all rats began the CPP procedure. The same conditioning 

procedures were used for all the experiments. A 13-day biased CPP 

procedure was used. This included one preconditioning/priming injection day, 

one rest day, 10 conditioning days, and one testing day. On the 

preconditioning day, rats received no injection and were placed in the gray 

side compartment of the apparatus. Once the rats entered either the black or 

white compartment the partition to the side compartment was closed, and they 

were allowed to move freely between the main compartments for 15 minutes. 

The initial compartment preference was determined, and all injections of CP 

55,940 (CP) were administered in the non-preferred compartment. 

Immediately following the preconditioning session, the rats received a priming 

injection of CP (10, 20, or 30 µg/kg) in their home cages in order to avoid the 

dysphoric effects commonly associated with the first administration of 
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cannabinoid agonists (Valjent & Maldonado, 2000; Parker & Gillies 1995; 

McGregor et al., 1996). The priming doses were the same as those that the 

rats received during the conditioning stage. Due to the long half-life of CB 

agonists, the rats had a day break prior to the first day of conditioning. 

On conditioning days, the rats were injected with either their respective 

doses of CP and placed in their non-preferred compartment or saline and 

placed in their preferred compartment for a 20 min session. There was a 10 

min delay between the injection and placement in the CPP apparatus. Initial 

drug order was counterbalanced within groups. An alternating day schedule 

continued for 10 days until five CP conditioning days and five saline days were 

completed. Locomotor activity was assessed on the first and last exposure to 

the CP drug during the conditioning stage. 

The test day was on the 13th day of the CPP procedure. The rats 

received no injection, and as in the preconditioning stage, the rats started in 

the gray side compartment and were allowed to move freely between the black 

and white compartments for 15 minutes. The amount of time spent in each 

compartment was assessed. The preconditioning, first and last two days of 

conditioning and testing were videotaped, and automatically scored using the 

Noldus EthoVision XT 9 software. 
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Experiment 2: Methylphenidate Pre-Exposure 

In Vivo Drug Treatment 

Rats were weighed and injected with methylphenidate (0.5, 2 or 5 

mg/kg) starting at PD 21 for 10 consecutive days. In rats, the period from 

PD 21 to PD 30 is developmentally comparable to late childhood in humans 

(Anderson, 2003). There were two injections of methylphenidate six hours 

apart per day for the 10-day period. Once injections were completed the rats 

were left undisturbed in their home cages until PD 55 when handling began for 

the CPP procedure. An identical CPP procedure was used for this experiment 

as described in the first experiment. 

Data Analysis 

Data for all sessions were recorded using Noldus EthoVision XT 9 

video and animal tracking software. Time spent in each compartment was 

recorded on both the preconditioning and testing days. Change in 

compartment preference from preconditioning to testing was determined by 

calculating a difference score between the time spent in the non-preferred 

compartment at preconditioning and the time spent in the same compartment 

at testing. Positive scores indicate an increase in the time spent in the drug 

paired compartment at testing, and negative scores indicate an decrease in 

the time spent in the drug paired compartment. Rats showing no preference 

(i.e. preferred compartment <= 455) and rats with extreme preferences (i.e. 

75% or more time spent in one compartment at preconditioning) were 
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excluded from analyses to facilitate data interpretation. This resulted in the 

removal of 15 cases for the nicotine study and 12 cases for the MPH study. 

Also, rats with discrepant overall times spent in the CPP boxes at 

preconditioning and testing due to tracking software errors (preconditioning 

overall time / testing overall time was <= .95) were also excluded from 

analyses. This resulted in the removal of three additional cases for the nicotine 

study and one case for the MPH study. Thus, the data from 143 rats were 

included for the nicotine study and 120 rats for the MPH study were included 

in the final analyses. 

The first and last two days of drug conditioning were also recorded, and 

the change in activity from the first to the last exposure of CP 55,940 was 

assessed. A difference score was calculated between the distance traveled by 

the rats on the first exposure and the last exposure to CP. Positive scores 

represented an decrease in activity (behavioral sensitization) and negative 

scores represented an increase in activity on the last exposure to CP 

(behavioral habituation). 

The data for both experiments was analyzed using separate two-way 

ANOVAs, and Tukey tests were used for any post hoc comparisons. The 

alpha level was set at 0.05 for all analyses. In addition to the ANOVAs 

todetermine group differences, individual t-tests were conducted to determine 

whether or not a significant preference or aversion occurred. To determine 

whether a change in preference occurred from preconditioning to testing, the 
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difference scores for each subgroup were compared to 0 (no difference) using 

t-tests. The comparisons began with the most extreme difference score and 

progressively towards the least extreme difference score. The t-tests 

comparisons were discontinued once a non-significant result was found to limit 

the number of comparisons. Alpha was corrected using the following formula 

α/k. Positive values indicated that more time was spent in the CP-paired side 

after conditioning compared to preconditioning, whereas negative values 

indicated that a significant aversion for the CP-paired side occurred. 

  



 

46 

 CHAPTER ELEVEN: 

RESULTS 

Experiment One: Nicotine Pre-Exposure 

In the first experiment, rats were pre-exposed to nicotine from PD 31 to 

PD 40, and on PD 60 (early adulthood) began a 13-day biased CP 55,940 –

induced CPP procedure. During the conditioning phase, locomotor activity (i.e. 

distance traveled) on the first or last exposure to CP 55,940 was not affected 

by either nicotine pretreatment or CP 55,940 treatment. Moreover, there was 

no interaction of the pretreatment and treatment drugs as activity did not 

change from the first to the last exposure of CP 55,940 suggesting that early 

exposure to nicotine did not influence CB agonist-dependent activity. 

To determine whether early nicotine exposure altered the rewarding 

nature of the CB agonist, two-way (Nicotine × CP) ANOVA was conducted. 

The results indicated that neither nicotine nor CP 55,940 significantly altered 

compartment preference nor was there any interaction between the two drugs 

(Nicotine × CP interaction: F9,145 = 0.699, p = 0.709). Thus, contrary to the 

proposed hypothesis, early nicotine exposure does not seem to affect the 

rewarding nature of CB agonists (see Figure 1). 



 

 

4
7
 

Table 1. Mean Distance Traveled (cm) on the First and Last Exposure to CP 55,940. Rats were Pre-Exposed to 

Nicotine (0, 0.16, 0.32, or 0.64 mg/kg) from PD 31 to 40 and Began the CPP Procedure on PD 60 where they 

Received Alternating Injections of Saline or CP 55,940 (0, 10, 20, or 30 µg/kg) for Ten Days 

 Nicotine Pre-Exposure (PD 31-40) 

 0.0 mg/kg 0.16 mg/kg 0.32 mg/kg 0.64 mg/kg 

CP 55,940 First Last First Last  First  Last First Last 

Vehicle 
M = 7853.90 

SEM = 574.59 

M = 6727.49 

SEM = 409.62 

M = 7680.22 

SEM = 370.01 

M = 6309.58 

SEM = 273.36 

M = 8071.20 

SEM = 465.15 

M = 7215.65 

SEM = 369.94 

M = 7934.37 

SEM = 420.03 

M = 6869.46 

SEM = 382.95 

10 μg/kg 
M = 8195.95 

SEM = 348.59 

M = 6177.76 

SEM = 368.70 

M = 7780.43 

SEM = 491.68 

M = 6371.50 

SEM = 546.85 

M = 7550.36 

SEM = 405.39 

M = 6141.72 

SEM = 344.13 

M = 8144.42 

SEM = 408.09 

M = 6947.67 

SEM = 367.68 

20 μg/kg 
M = 7297.85 

SEM = 418.54 

M = 6631.84 

SEM = 532.73 

M = 8165.44 

SEM = 584.50 

M = 6184.01 

SEM = 313.53 

M = 8206.42 

SEM = 365.36 

M = 6811.42 

SEM = 299.08 

M = 7512.76 

SEM = 287.63 

M = 6981.42 

SEM = 486.45 

30 μg/kg 
M = 7795.27 

SEM = 450.48 

M = 6915.79 

SEM = 440.97 

M = 8175.30 

SEM = 405.16 

M = 6918.31 

SEM = 544.37 

M = 8175.84 

SEM = 428.58 

M = 6866.98 

SEM = 510.08 

M = 7965.41 

SEM = 467.10 

M = 6664.38 

SEM = 555.26 
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Figure 1. Mean Preference Score (±SEM) on the CPP Test Day. Rats were 

Pre-Exposed to Nicotine (0, 0.16, 0.32, or 0.64 mg/kg) from PD 31 to 40 and 

began the CPP Procedure on PD 60 where they Received Alternating 

Injections of Saline or CP 55,940 (0, 10, 20, or 30 µg/kg) for Ten Days. 

Positive Scores Indicate an Increase in the Time Spent in the Drug-Paired 

Compartment and Negative Scores Indicate a Decrease in the Time Spent in 

the Drug Paired Compartment at Testing. 

Individual t-tests were conducted to determine whether each (nicotine x 

CP 55,940) subgroup was significantly different from 0 (no change in 

preference). The rats pre-exposed to 0.32 mg/kg nicotine (moderate dose) 

showed a significant aversion to the 30 μg/kg CP 55,940 (high dose) 
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[t(10) = -3.138, p ≤ 0.01], suggesting that the moderate dose of nicotine 

decreased the rewarding properties of CP 55,940. Rats exposed to 0.16mg/kg 

nicotine (low dose) and conditioned with the high dose of CP 55,940 had the 

second most extreme mean difference score. However, the mean difference 

score for this subgroup was not significantly different from 0 [t(9) = -1.592, 

p = .146]. 

Experiment Two: Methylphenidate Pre-Exposure 

Rats were pre-exposed to methylphenidate at PD 21 to 30, and on PD 

60 they began a CP 55,940 13-day biased CPP procedure. Similar to the first 

experiment, locomotor activity (i.e. distance traveled) was assessed on the 

first and last exposure to CP 55,940 (see Table 2). However contrary to 

nicotine, pretreatment with methylphenidate (0.5 mg/kg) significantly increased 

activity on the first CP exposure day (MPH main effect, F3, 128 = 3.378, 

p = 0.020, Tukey Test, p < 0.05). This effect on activity however was transient 

as methylphenidate did not alter activity on the last CP exposure day. Similar 

to the nicotine pre-exposure experiment, the CP drug had no significant effect 

on activity either drug exposure day. Again, similar to experiment 1, activity 

levels for rats exposed to methylphenidate did not change from the first to the 

last exposure of CP 55,940. Thus, preadolescent methylphenidate 

pre-exposure did not alter CP 55,940-induced activity in adulthood. 
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Table 2. Mean Distance Traveled (cm) for the First and Last Exposure to CP 55,940. Rats were Pre-Exposed to 

MPH (0.0, 0.5, 2.0, or 5.0 mg/kg) from PD 21 to 30 and Began the CPP Procedure on PD 60 where they Received 

Alternating Injections of Saline or CP 55,940 (0, 10, 20, or 30 µg/kg) for Ten Days 

 MPH Pre-Exposure (PD 21-30) 

 0.0 mg/kg 0.5 mg/kg 2.0 mg/kg 5.0 mg/kg 

CP 55,940 First Last First Last First Last First Last 

Vehicle 
M = 7499.06 

SEM = 307.96 

M = 6885.41 

SEM = 1088.89 

M = 9583.49 

SEM = 365.20 

M = 7976.02 

SEM = 381.04 

M = 7356.55 

SEM = 486.43 

M = 6438.81 

SEM = 599.66 

M = 7710.03 

SEM = 572.37 

M = 6685.39 

SEM = 498.94 

10 μg/kg 
M = 7937.92 

SEM = 657.47 

M = 6066.16 

SEM = 588.50 

M = 8323.90 

SEM = 784.76 

M = 6226.19 

SEM = 467.95 

M = 7360.35 

SEM = 464.54 

M = 6363.68 

SEM = 504.38 

M = 7895.09 

SEM = 600.88 

M = 7023.69 

SEM = 405.16 

20 μg/kg 
M = 7579.32 

SEM = 309.93 

M = 6598.96 

SEM = 391.64 

M = 8212.83 

SEM = 446.53 

M = 6558.42 

SEM = 488.28 

M = 7747.41 

SEM = 533.89 

M = 7304.54 

SEM = 409.76 

M = 7711.90 

SEM = 714.04 

M = 6852.74 

SEM = 738.93 

30 μg/kg 
M = 8057.83 

SEM = 177.87 

M = 6960.62 

SEM = 292.87 

M = 8504.38 

SEM = 243.28 

M = 6988.73 

SEM = 218.86 

M = 8647.87 

SEM = 617.77 

M = 6998.28 

SEM = 636.98 

M = 7867.78 

SEM = 499.85 

M = 7578.10 

SEM = 649.88 
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A two-way (MPH x CP) ANOVA revealed a non-significant main effect 

of methylphenidate (F3,117 = 0.230, p = .875). However, there was a significant 

main effect of CP 55,940 (F3,117 = 3.077, p < .05, η2 = .073), and a Tukey HSD 

post hoc analysis revealed that rats treated with the moderate dose of CP 

55,940 (20 µg/kg) showed a significantly greater preference for the 

drug-paired compartment than rats treated with the high dose (30 µg/kg) (see 

Figure 2). CP 55,940 exposed rats did not differ significantly from 

vehicle-treated rats. The hypothesized interaction between methylphenidate 

and CP 55,940 was not significant (F9,117 = 1.555, p = 0.137), suggesting that 

methylphenidate did not alter the rewarding nature of the CB agonist (see 

Figure 3). 
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Figure 2. Mean Preference Score (±SEM) on CPP Test Day. Rats were 

Pre-Exposed to MPH from PD 21 to 30 and began the CPP Procedure on PD 60 

where they Received Alternating Injections of Saline or CP 55,940 (0, 10, 20, or 30 

µg/kg) for Ten Days. Positive Scores Indicate an Increase in the Time Spent in the 

Drug-Paired Compartment and Negative Scores Indicate a Decrease in the Time 

Spent in the Drug-Paired Compartment at Testing. There was a Significant Main 

Effect of CP 55,940 such that Rats Treated with the Moderate Dose (20 μg/kg) 

Showed a Significantly Greater Preference for the CP-Paired Compartment than 

Rats Treated with the High Dose (30 μg/kg) 
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Figure 3. Mean Preference Score (±SEM) on the CPP Test Day. Rats were 

Pre-Exposed to MPH (0.0, 0.5, 2.0, or 5.0 mg/kg) from PD 21 to 30 and Began 

the CPP Procedure on PD 60 where they Received Alternating Injections of 

Saline or CP 55,940 (0, 10, 20, or 30 µg/kg) for Ten Days. Positive Scores 

Indicate an Increase in the Time Spent in the Drug-Paired Compartment and 

Negative Scores Indicate a Decrease in the Time Spent in the Drug Paired 

Compartment at Testing 

Similar to the first experiment, individual t-tests were conducted to 

determine whether each (MPH x CP 55,940) subgroup was significantly 

different from 0 (no change in preference). The rats pre-exposed to 2 mg/kg 

MPH (moderate dose) showed a significant aversion to the 30 μg/kg CP 

55,940 (high dose) [t(7) = -2.588, p = .036], suggesting that the moderate 

dose of MPH decreased the rewarding nature of CP 55,940. However, after 

correcting alpha for multiple comparisons (.05/2 = .25) the result was no 
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longer significant. Rats pre-exposed to 0.05 mg/kg MPH (low dose) and 

conditioned with the 20 μg/kg (moderate) dose of CP 55,940 had the second 

most extreme mean difference score. The mean difference score for this 

subgroup was not significantly different from 0 [t(7) = 1.919, p = .096]. 
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 CHAPTER TWELVE: 

DISCUSSION 

Adolescence is a transitional developmental period that is associated 

with increased impulsivity and risky-decision making (Konrad et al., 2013). 

This is a vulnerable period for the initiation of substance use, particularly 

nicotine/tobacco products (SAMHSA, 2012), and effects of psychoactive 

substance exposure on the brain (Mateos, et al., 2011; Nolley & Kelley, 2007). 

This is problematic because early nicotine use is associated with the early use 

of marijuana (Behrendt et al., 2012; Hayatbakhsh et al., 2009) and early 

marijuana use is considered a risk factor for the development of cannabis use 

disorders (Copeland & Swift, 2009). Similarly, early adolescence is also a 

period when individuals are often first exposed to stimulant medications, like 

methylphenidate, for either prescribed (e.g. ADHD) or recreational purposes 

(Klein-Schwartz & McGrath, 2003, McCabe et al., 2004), and there is 

increasing concern as to whether early stimulant exposure influences later 

substance abuse (Nolley & Kelley, 2007). 

The current study was conducted to assess the effect of early exposure 

to nicotine and methylphenidate on the rewarding nature of cannabinoid (CB) 

agonists, like marijuana, in adulthood utilizing rats as animal models. The 

conditioned place preference (CPP) behavioral paradigm was utilized to 

assess the rewarding nature of the CB agonist CP 55,940. CP 55,940 works 

similarly to marijuana on both CB1 and CB2 receptors in the central and 



 

56 

peripheral nervous systems, but is substantially more potent at each receptor 

site than the psychoactive component in marijuana, Δ9- tetrahydrocannabinol 

(THC) (Fan et al., 1994; Herkenham et al., 1990; Xie, Melvin & Makriyannis, 

1996). 

Adolescent Nicotine Exposure and Adult 
Cannabinoid Preference 

Previous pre-clinical studies have shown a link between early exposure 

to nicotine and enduring changes to the endocannabinoid (eCB) system into 

adulthood, including increased CB receptor density and activity (Mateos, et al., 

2011; Werling et al., 2009). Based on these findings, it was hypothesized that 

nicotine exposure during the adolescent period would result in behavioral and 

potentially perceptual changes to the phenomenological experience of CB 

agonists in adulthood. Specifically, it was hypothesized that early exposure to 

nicotine would enhance the rewarding nature of CB agonists in early 

adulthood. This is particularly important because if early exposure to nicotine 

enhances the rewarding nature of CB agonists this would suggest that the 

relationship between early nicotine use and the risk for adult cannabis use 

disorders could be explained through the enduring biological changes nicotine 

has on the eCB system during adolescence. Thus, identifying another clear 

risk factor for early nicotine initiation and possibly elucidating a potential 

pharmacological target to treat or possible prevent marijuana abuse in 

adulthood. 
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The group based results indicated that early exposure to nicotine did 

not enhance the rewarding nature of CP 55,940. However, individual subgroup 

comparisons revealed that rats pre-exposed to the moderate dose of nicotine 

showed a significant aversion to the high dose of CP when compared to a 

mean difference score of 0 or no change in preference from preconditioning to 

testing. This suggests that the effect early exposure to nicotine has on the 

eCB system may translate into significant changes to CB agonist-induced 

reward learning in adult rats. This is an important finding as this may suggest 

that the enduring changes to the eCB system caused by early nicotine use in 

adolescence may influence CB agonist use and possibly abuse in adulthood. 

The study also revealed that locomotor activity was not changed from the first 

to the last exposure of CP 55,940, suggesting that early exposure to nicotine 

does not alter the behavioral effects of CB agonists in adulthood. 

Although it appears that early exposure to nicotine may alter the 

rewarding nature of CB agonists, there are some factors to consider when 

attempting to interpret and/or generalize the results of this study. First, the 

difficulty in producing conditioned place preferences using CB drugs (Murray & 

Bevins, 2010) may make it extremely difficult to translate study findings to 

humans, when marijuana is the most widely used illicit drug and thus, is 

considered a highly rewarding psychoactive substance for many humans. 

Second, although the effects of CP 55,940 are reasonably comparable to 

THC, it may be inappropriate to conclude that early exposure to nicotine may 
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alter the rewarding nature of THC specifically, as the pharmacodynamics of 

THC are similar but not identical to those of CP 55,940 (Fan et al., 1994; Xie, 

Melvin & Makriyannis, 1996). From this study we can conclude that early 

exposure to nicotine may alter the rewarding nature of CP 55,940 as assessed 

by the CPP paradigm (substance dependent cue-based learning). Although, 

the current study does provide evidence to suggest that the biological effects 

of nicotine exposure on the eCB system in adolescence may translate into 

notable changes in the rewarding nature of CB agonists in adulthood. 

Late Childhood Methylphenidate Exposure 
and Cannabinoid Preference 

Methylphenidate (Ritalin) is frequently prescribed to older children as a 

psychopharmacological treatment for ADHD (Leonard et al., 2004). Over the 

last decade researchers have discovered an association between individuals 

diagnosed with ADHD in late childhood, and thus have likely been exposed to 

stimulate medications like methylphenidate early in life, and an increased 

likelihood of marijuana abuse in adulthood (Lee et al., 2011; Aksoy et al., 

2012; Kousha, Shahrivar & Alagnhband-rad, 2012; Galera et al., 2008; Jardin 

et al., 2011). Although no previous studies have directly linked 

methylphenidate use to biological changes in the eCB system, the 

aforementioned association and pharmacodynamics of methylphenidate could 

suggest that early exposure to stimulate medications, like methylphenidate, 

may alter the eCB or reward/motivation-based systems in such a way to alter 
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the rewarding nature of CB agonists, like marijuana, later in life. Similar to the 

first experiment, it was hypothesized that early exposure to methylphenidate 

would alter the rewarding nature of the CB agonist CP 55,940. If the 

hypothesis was confirmed it would suggest that early methylphenidate use 

influences the abuse potential of drugs like marijuana in adulthood. This is 

particularly concerning because methylphenidate is one of the most frequently 

prescribed drugs to children with ADHD (Leonard et al., 2004). However, the 

current study revealed that early exposure to methylphenidate did not alter the 

rewarding nature of CP 55,940, suggesting that the association reported 

between ADHD and marijuana abuse is not likely attributable to enduring 

biochemical effects of methylphenidate on the eCB system in the brain. This 

finding is consistent with a recent meta-analysis conducted by Humphreys, 

Eng and Lee (2013) suggesting that stimulant medication does not influence 

the risk for adult substance abuse. 

Similar to Experiment 1 (Nicotine pre-exposure), rats treated with CP 

55,940 in Experiment 2 (MPH pre-exposure) did not significantly differ from 

controls in their preference for the drug-paired compartment. However, rats 

conditioned with the moderate dose of CP 55,940 (20 µg/kg) showed a greater 

preference for the drug-paired compartment at testing compared to rats 

exposed to the high dose (30 µg/kg). This is consistent with previous findings 

that show that high doses of CB agonists tend to be aversive (Murray & 

Bevins, 2010; Braidi et al., 2001; Bardo & Bevins, 2000; Valjent & Maldonado, 
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2000). However, the significant effect of CP 55,940 was somewhat surprising 

in this study as the CPP procedure was conducted in exactly the same way as 

in the first experiment, but no significant group based results were found in the 

first experiment. Considering the only differences between the first and second 

experiments were the pre-treatment drugs (nicotine vs. methylphenidate) and 

the developmental timing of the pre-exposure (PD 31-40 vs. PD 21-30), it’s 

possible that early methylphenidate exposure may have had some effect on 

the rewarding nature of CP 55,940. However, no definitive conclusions can be 

drawn, as there was no significant interaction between methylphenidate and 

CP 55,940 (p = .137) in the group based comparisons. As in the first 

experiment, interpretations and generalizations should be made with caution 

as CP 55,940 was used in place of THC in this study. 

Conclusion 

The association commonly reported between individuals who start 

using nicotine products in early adolescence and the greater likelihood for the 

abuse of marijuana in adulthood may be related to the biological effects of 

nicotine on the eCB system in adolescence. However, the group based results 

did not show significant difference from controls. Considering these findings, it 

is still important to consider other ways in which nicotine could influence the 

use of marijuana through potentially non-reward based biological mechanisms. 

In addition, the reported association between early nicotine use and adult 

marijuana abuse could also be explained through biological or social 
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influences distinct from the biological effects of nicotine, including factors 

related to impulsivity, risk taking and peer group influences. Also, the current 

study limited nicotine exposure to a 10-day period in early adolescence. 

Future studies may benefit from maintaining nicotine exposure throughout the 

course of the study to more closely represent the persistent nature of nicotine 

use for those who begin smoking during early adolescence. The findings may 

be altered if nicotine exposure is maintained for an extended period. 

Also, the early use of stimulant medications does not seem to directly 

affect the rewarding nature of marijuana in adulthood. However, future studies 

should consider assessing whether early methylphenidate exposure has an 

enduring biological effect on the eCB system, similar to the aforementioned 

studies conducted on the early effects of nicotine (Mateos, et al., 2011; 

Werling et al., 2009), in order to clarify whether early methylphenidate 

exposure has an enduring effect on the cannabinoid system. In addition, it will 

be important to consider factors specific to ADHD, especially marked 

impulsivity, as potentially more salient explanatory factors in the association of 

early ADHD diagnoses and increased marijuana abuse in adulthood. Similar to 

the first experiment, future studies should also consider the duration of 

methylphenidate exposure when assessing its effects on the rewarding nature 

of CB agonists, like marijuana, in adulthood. 
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