View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by CSUSB ScholarWorks

Journal of International Technology and Information
Management

Volume 14 | Issue 3 Article 4

2005

UML Activity Diagram Semantics and Automated
GUI Prototyping

Nancy Winniford Ashley
Washington State University, WA

Timothy E. Meehan
Nuvotec, Inc., WA

Norman Carr
Nuvotec, Inc., WA

Follow this and additional works at: http://scholarworks.lib.csusb.edu/jitim

b Part of the Business Intelligence Commons, E-Commerce Commons, Management Information

Systems Commons, Management Sciences and Quantitative Methods Commons, Operational

Research Commons, and the Technology and Innovation Commons

Recommended Citation
Ashley, Nancy Winniford; Meehan, Timothy E.; and Carr, Norman (2005) "UML Activity Diagram Semantics and Automated GUI

Prototyping," Journal of International Technology and Information Management: Vol. 14: Iss. 3, Article 4.
Available at: http://scholarworks.lib.csusb.edu/jitim/vol14/iss3/4

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Journal of International
Technology and Information Management by an authorized administrator of CSUSB ScholarWorks. For more information, please contact

scholarworks@csusb.edu.

https://core.ac.uk/display/55336476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.lib.csusb.edu/jitim?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol14%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol14%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim/vol14?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol14%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim/vol14/iss3?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol14%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim/vol14/iss3/4?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol14%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol14%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1326?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol14%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/624?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol14%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol14%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol14%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol14%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol14%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol14%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol14%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim/vol14/iss3/4?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol14%2Fiss3%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

UML Activity Diagram Semantics Journal of International Technology and Information Management

UML Activity Diagram Semantics and Automated GUI Prototyping

Nancy Winniford Ashley
Washington State University, Richland, WA

Timothy E. Meehan
Nuvotec, Inc., Richland, WA

Norman Carr
Nuvotec, Inc., Richland, WA

ABSTRACT

Extended Activity Semantics (XAS) is a notation which can be used with Unified Modeling
Language (UML) activity diagrams to specify user interactions with a system and to automatically
generate a prototype of the graphical user interface (GUI) that would be used in these interactions. XAS
has been incorporated in a CASE tool, Guibot, which has been developed as a plug-in for Rational Rose,
a leading UML tool. The notation and tool address a specific gap in UML — the inability to model user
interaction.

INTRODUCTION

While we are not likely to find a silver bullet to solve all of the problems of the system development
lifecycle (Fedorowicz, 2004), a tool which speeds prototype development and adds precision to design specifications
has promise for addressing problems in the requirements elicitation phase of the lifecycle. Extended Activity
Semantics (XAS) is a notation which can be used with Unified Modeling Language (UML) activity diagrams to
specify interactions with a system in a succinct style. XAS can be included in a modeling tool to automatically
generate a graphical user interface (GUI) prototype. The notation and tool address a specific gap in UML — the
inability to model user interaction.

LITERATURE REVIEW OF CURRENT APPROACHES
USED IN REQUIREMENTS ELICITATION

Most phased, iterative system development methodologies recognize that
involving users as much as possible, preferably continually, throughout the system development process is key to
successful elicitation of requirements (Hoffer, George, & Valacich, 2005). It is the requirements elicitation process
with which this paper is particularly concerned.

Two main approaches are used to represent the elicited requirements and communicate them back to the
users — modeling and prototyping. Prototyping user interfaces has been recognized as particularly effective in
improving communication between the user and developer, and results in an improved final product (Phillips &
Kemp, 2002; Hoffer et al. 2005). Seffah and Andreevskaia (2003) state that creating effective prototypes to model
screen layouts and user interaction is a skill needed by software engineers to effectively conduct user-centered
design, which aims at increasing usability. Effective as prototypes are for communicating, however, they are not a

substitute for precise modeling.

Object-oriented techniques are recognized as powerful, and the Unified Modeling Language (UML) is
emerging as an apparent modeling standard, but thus far it has not solved all modeling problems. Rational Rose is a
UML-based modeling tool which can represent many types of detailed system requirements and behaviors.

Several problems are inherent in software modeling when addressing the end-user concerns. First is the

43

N. Ashley, T. Meehan & N. Carr 2005 Volume 14, Number 3

problem of level of detail. Some diagrams, like sequence diagrams, can capture an enormous amount of detail, but
are difficult for users to understand. If users cannot understand the diagram, they cannot confirm that requirements
have been correctly understood by software developers (Wilcox, 2003). Other simpler diagramming techniques,
such as use case and activity diagrams, may be easier for the user to understand, but do not capture sufficient detail
to actually build a correctly functioning system (Phillips, Kemp, & Keck, 2001). Worse yet, modeling the user
interface, which is the part of the system the user best understands and can best give feedback on, is not directly
supported in UML (Scogings & Phillips, 2001, Meehan & Carr, 2005).

Prototyping is not without problems either. The most obvious problem is the time and expense that is
required to build a functional prototype (Mannio & Nikula, 2001; Phillips & Kemp, 2002). Once the time and
expense has been expended to create a functional prototype, there is a tendency on the part of both the developer and
the user to commit to the technology and interface represented by the prototype, rather than exploring more options
(Phillips & Kemp). Beyond these practical difficulties, which might be overcome with enough time and money, is
the fact that prototypes generally provide fairly static screen shots, and simply do not give an easily understood
dynamic view of the workflow involved in a process (Phillips and Kemp, Meehan & Carr, 2005). Because the
prototypes do not provide clear understanding of the processes being modeled, users can come away from the design
process with inaccurate expectations about how the system will behave in the workflow (Mannio & Nikula, Phillips
& Kemp, Meehan & Carr), and developers can wind up building a system based on incorrect requirements.

Even when developers utilize both prototyping and modeling tools, they can, and frequently do, still have
problems effectively capturing correct system specifications and communicating them to their users. The
problem is that, although designers may build prototypes and create models, there is no built-in way in UML to link
the prototypes to the models in a way that accurately describes the processes and workflow in sufficient detail.
What is needed is a link between user-intuitive prototypes and models capable of capturing adequate detail. Phillips,
Kemp and Kek identified the need to model user tasks “within the context of the visible interface” (2001, p. 49). In
other words, while it is important to model tasks and behaviors and their attendant detail, there needs to be available
a visual prototype of the user interface that users can refer to ensure understanding.

NEEDED: A LINK BETWEEN A STRUCTURED MODEL
AND A GRAPHICAL PROTOTYPE

While sequence diagrams are capable of capturing significant amounts of detail, Wilcox (2003) identified
three structured diagramming techniques — packages, use cases, and activity diagrams — that were better understood
by users and developers than sequence diagrams. Use cases and packages do not address specifically the
requirements elicitation process of the system development lifecycle, which is the concern of this paper. The
purpose of use case diagrams is to identify high level goals for the system — an important task that should occur
before detailed requirements elicitation in the systems development lifecycle. Packages are simply a tool for
visually grouping related system elements (as folders are used in an operating system), and do not specifically
address requirements elicitation. Activity diagrams, however, can represent the tasks that users are describing in
sufficient detail that programmers can work directly from the activity diagram in the subsequent implementation
processes of the system development lifecycle. Therefore, by linking these detail-laden activity diagrams to visual
prototypes we can model tasks with sufficient detail to support later implementation phases while at the same time
having a visual prototype available for communicating with users during the requirements elicitation phase.

There are various methods of prototyping, and different kinds of prototypes. For example, some
methodologies recommend evolutionary prototyping, in which the prototype is refined until it becomes the target
system. Those with concerns about locking in too early on development platforms or interface concepts will avoid
the evolutionary approach in favor of the throwaway prototype. Asur and Hufnagel (1993) suggest that
nonexecutable and visual prototypes are effective, cheap, and fast approaches that can be used effectively to clarify
system behaviors. Non-executable prototypes are, of course, eminently easy to throw away, since they do not
actually work at all.

44

UML Activity Diagram Semantics Journal of International Technology and Information Management

RESEARCH CONTRIBUTION: DEVELOPMENT OF A NOTATION
FOR USER INTERACTION, AND A CASE TOOL

The authors developed Extended Activity Semantics (XAS) for use in activity diagrams, and implemented
it in a CASE tool which makes the link between the activity diagram and the visual prototype. The authors found in
their custom software development practice that using XAS allowed them to capture greater detail about user
interactions as they used it to model business tasks. User interactions include, for example: enter this, read that,
select next, submit all. Each element of XAS notation can be directly mapped to one or more GUI components,
such as list boxes, text boxes, and buttons. The authors created a CASE tool which incorporates XAS and the
mapping of the XAS notation to GUI components. By using the CASE tool, a prototype of the user interface
composed of the mapped GUI components, is constructed simultaneously as detailed information about the interface
is captured with the XAS notation in the activity diagram. Using the CASE tool, designers and users can switch
between screens, or have both screens open at once, watching how, as detailed information about user behavior is
captured in activity diagrams, a visual prototype of the user interface is automatically assembled on another screen.

Relevant User Behaviors and their Representation in XAS

As the authors worked with users in many different development projects, they found that user interactions
with interfaces could always be described with a set of four irreducible actions — input, review, select, and
command. In creating XAS, they represented these four actions as inputters, outputters, selectors, and action
invokers. User actions such as drag-and-drop are composite actions of these irreducible actions, where drag-and-
drop would be select-and-input.

The authors also recognized that to provide adequate detail to support subsequent implementation by
programmers, more information about these four basic interactions needed to be captured and represented in XAS.
Therefore notation was included to describe multiplicity, labels, formatting, and conditions, which are described
below.

Multiplicity can indicate a couple of different things, depending on the user behavior. For any user action,
multiplicity can denote whether the action is required or optional. If the user is making a selection, multiplicity
denotes whether one or many selections can be made.

The Label notation is another feature of XAS which, like multiplicity, provides different functionality
depending on the user behavior. Users can better understand the GUI components on the prototype if they are
identified with their business language. The label notation in XAS creates labels such as “Customer Name.” for a
field where the data will be inputted. Another use of the label notation is to identify a data type, for instance,
identifying the data inputted in the Customer Name field as “text”. A third use of the label notation is to identify the
action that is taken on a command behavior, for instance, that the command is “click to save record.”

The formatting filter allows the specification of the presentation of the information, such as the format of a
date as mm/dd/yyyy.

Sometimes a user action is dependent upon a guard condition, and these conditions can be represented in
XAS. Two examples are “date entry must be earlier than today,” and “password must be longer than some number
of characters.” These examples represent a general principle in XAS, which is to allow actions and constraints to be
described in the business language of the end user, which we have found most effective during requirements
elicitation.

To summarize, we added the following XAS notation to activity diagrams to translate typical business
process behavior into user-system interactions which map to GUI components in the prototype.

e Inputter: >> where the user provides information to the system.
e OQutputter: <<, where the system provides information to users.
e Selector: ¥V or V, where users select from a predetermined choice of output.

e Action Invoker: !, where users signal the system to provide an action or continuance.

45

N. Ashley, T. Meehan & N. Carr 2005 Volume 14, Number 3

e Multiplicity: m..n defines the multiplicity of each user interaction.

o Label: DataType, which specifies the plain-language label of the data and the data type, or the
command for the action invoker.

e Mask/Filter: |, where the data format is represented.

e Condition: [], where any conditions applied to the interaction are specified.

The complete grammars for the four user behaviors are presented below:

Inputters, outputters, and selectors:

>> <<,V m..n label : datatype | mask [conditions]
Action invokers:

I command [conditions]

Examples Showing the Application of XAS

Figure 1, a typical activity diagram presented in the UML 1.5 specification, illustrates customer ordering
services from the sales department and a stockroom filling the order. While this example is a satisfactory description
of the general workflow, these action states require more detail to describe the process for both end users and
software developers when it comes to human/computer interface issues.

Figure 1: Typical activity diagram from UML 1.5 specification.

'Y UML Modeling - order - Guibot Xtreme Workbench

Customer Sales Stockroom

®
}

(Request Service j

e

—
Mﬂ_ﬁx&k
] T
(Pay - ! Take order X
|
—J AR
‘-MM H"“-..
""\\x =, -
™~ ? Fil order y
S |
e b /
P]

/" Deliver order)

A

| et

o<

By adding XAS to each action state that requires user interaction in Figure 1, we can detail the interactions
required and any requirements surrounding these user interactions that are necessary to complete the task. Figure 2
is a more detailed activity diagram employing XAS and more comprehensively describing user activity.

46

UML Activity Diagram Semantics Journal of International Technology and Information Management

Figure 2: Addition of XAS to the action states in Figure 1 for the customer swimlane.

:'}'_ UML Modeling - order - Guibot Xtreme Workbench

Customet

<<GUI Panel == \
Fequest services

guif ¥ 1..n service : Service.name

R

£<GUI Panel=>
Pay

guif =< 1..1 order.amount : Float | $*.## [order.amount = sum of service,amounk]
guif == 1..1 cc.number : integer | #AEF-FERR-RELR-FRRE
quif == 1..1 cc.expiration : Date | mm-vy [cc.expiration > today]
guif ! submit order

<<GUI Panel=>
Collect Order

_\ quif << 1..1 order : Order [order .receivedate <= delivery.duedate]

W

%!
L

In Figure 2, in the first action state the customer selects at least one, or possibly several (1.. n) services. In the next
action state, we see that the system outputs the order amount, formatted in this case as $*.##. The order amount is
specified with the condition that the order amount must equal the sum of the amounts of each individual service. The
credit card number and expiration date are also inputted, with appropriate formatting, followed by the command to
submit the order. In the third action state, the ordered goods are delivered by the system and collected by the
customer. A condition has been included so that the order indicates that the receivable (or collection) date for the
order is not earlier than the delivery due date. This example illustrates how activity diagrams and XAS can be used
to model hardware interfaces and physical processes of the total system in connection with the software user
interfaces.

47

N. Ashley, T. Meehan & N. Carr 2005 Volume 14, Number 3

Figure 3: Addition of XAS to the action state in Figure 1 for the sales swimlane.

N umL Modeling - order - Guibot Xtreme Workbench
Sales

N
hy<GUI Parel>>
Take order

quif ¥ 1..1 arder.number : inteasr \\
quif << 1..1 payment : CreditCard
quif !process payment

a-'_'-'_‘-_'_ﬂ_'_

<<GUI Panel> =
Deliver order

guif << 1..1 order : Order [delivery.data <= delivery.duedate]

In Figure 3, the sales department selects the order, reviews the payment submitted, and processes the
payment. When the order is filled by the stockroom, the sales department delivers the order to the customer with the
specified condition that the delivery date is less than or equal to the delivery due date.

In Figure 4, the stockroom selects an order with the condition it has not been filled, and then processes the
order in order to fill it.

48

UML Activity Diagram Semantics

Journal of International Technology and Information Management

Figure 4: Addition of XAS to the action state in Figure 1 for the stockroom swimlane.

:'}'UML Modeling - order - Guibot Xtreme Workbench

Stockroom

< <GUI Panels>>
Fill order

quif ¥ 1..1 order number : integer [order.status = unfilled]

b
\
qguif | process order)

i’

Mapping XAS to the GUI

As stated earlier, to automatically generate GUI prototypes, we have developed a mapping between the
activity diagram elements and the notation elements of Extended Activity Semantics; see Table 1. Swimlanes
represent the view for the actor (identified in a previously created use-case diagram) and are represented by a GUI
form. The action state groups the user interaction and is represented by GUI groupboxes or panels. Inputters
typically are text boxes, text areas, and grids. Outputters typically are labels, grids, image boxes, and read-only text
areas. Single selectors typically are comboboxes, single selection list boxes, radio buttons, or treeviews.
Multiselectors are typically multiselection list boxes, grids, checkboxes, and list views. Action invokers are typically
command buttons, hyperlinks, menu items, and image buttons.

Table 1: XAS to GUI component mapping.

Activity Diagram Element/Notation GUI Component

Swimlane
Action State
Inputters ==
Outputters =<

I command

Selectors 0..1 (single selection)
Selectors O..n (multiple selection)

Form

Groupbox, Panel

Input box, text area, grid

Label, grid, image box, text content.

Combobox, list box, radio button, tree view

List box, grid, checkbox, list view

Command butten, hyperdink, menu, image button

Guibot is the CASE tool created by the authors incorporating XAS and directly mapping the activity
diagram elements and the XAS to GUI components. As the activity diagrams in Figures 2, 3 and 4 are created,
Guibot automatically produces the GUI prototypes for the customer, sales, and stockroom swimlanes as shown in
Figures 5, 6, and 7. The resulting prototype allows immediate understanding between users and analysts, and defines

the expectations for the coder.

49

N. Ashley, T. Meehan & N. Carr 2005 Volume 14, Number 3

Figure 5: GUI prototype produced by XAS notation in the customer swimlane in Figure 2.

Y UML Modeling - order - Guibot Xtreme Workbench
Customer Sales | Stockroom |

Request services

service : Service.name
Line 1
Line 2
Line 3

Pay

order.amount ; float | $*.## [order. amount = sum of service, amount]

cc.number ! integer | B#ER-FERE-FRIE-RRER

cc.expiration : Date | mm-yy [cc.expiration > today]

submit order

Collect Crder

order | Order [order.receivedate <= delivery dusdate]

50

UML Activity Diagram Semantics Journal of International Technology and Information Management

Figure 6: GUI prototype produced by the XAS notation in the sales swimlane in Figure 3.

Y UML Modeling - order - Guibot Xtreme Workbench

Customer | |Sales Stc-ckroom'

Take order

order.number : integer

payrnent : CreditCard

process payment |

Deliver order

order | Order [delivery.data <= delivery,duedate]

Figure 7: GUI prototype produced by the XAS notation in the stockroom swimlane in Figure 4.

'Y UML Modeling - order - Guibot Xtreme Workbench

Customer | Sales | |Stockroom

Fill arder
order.number : integer [order.status = unfilled]

| -

process order |

An action state can also be reverse-engineered by working directly with the prototype. If you add an input
box to the Pay panel in the Customer user interface in Figure 5 for security code (cc.csc) entry for credit cards, the
action state is updated with the new inputter information via the mapping between notational elements and the GUI
components; see Figure 8.

51

N. Ashley, T. Meehan & N. Carr 2005 Volume 14, Number 3

Figure 8: Reverse engineering of GUI component to XAS notation for an action state.

Pay

order,amount : float | %24 [order. amount = sum of service, amount]

cc.number @ integer | FREF-FEER-RREE-FREY

cc.expiration : Date | mm-yy [cc.expiration = today]

cCoosc :ink | #&4

submit order

y <<GUI Panel>> N,
y 3
/ Pay Y

guif =< 1..1 order.amount ; float | $*.## [order. amount = sum of service, amount]
guif == 1..1 cc.number : integer | #A42-#4RH- 22 - R 2 E
guif == 1..1 cc.expiration : Date | mm-yy [cc.expiration > today]
‘\ quif == 1..1 cc.csc i int | ### /{
\ guif | submit arder /

In our practice we have found that use-case diagrams and activity diagrams with XAS are frequently the
only diagramming tools that we use when eliciting software and system requirements from end-users.

Mapping Extended Activity Diagrams to Object-Oriented Class Diagrams

Since XAS captures the information for the label and data type, which is typically modeled in class
diagrams, the extended activity diagrams and the GUI components now have a direct link to the attributes within a
class. If a class does not exist in the class diagram to provide the necessary entity and datatype, then a new class is
entered into the class diagram to fulfill these user requirements. Futhermore, the extended notation illustrates the
origin of object flow in an activity diagram, which allows the GUI component, object flow within an activity
diagram and class diagram to be linked with their requisite behavior specified.

XAS is incorporated in Guibot, which is a plug-in for Rational Rose, the leading UML modeling tool.
While there are as yet relatively few users of the tool Guibot, there is a wide need for the abilities found in XAS to
enhance communication between end-users and analysts. We know of no comparable tools or notations that support
the collection of precise requirements in parallel with the generation of a prototype interface.

Call for Further Research

Further research is needed on XAS. We would like to see implementations of XAS in other UML tools,
and refinement of Guibot. Especially needed are controlled studies to determine its effectiveness in capturing
requirements and communicating with users, compared to other approaches.

52

UML Activity Diagram Semantics Journal of International Technology and Information Management

CONCLUSION

The developers of XAS and Guibot have seen in their software development practice that XAS extensions
maximize the benefits that activity diagrams offer. In our practice we have seen that rapid prototyping gathers
faster buy-in from the customer and faster elaboration of their business needs. Less ambiguous software
requirements are generated earlier, obviating the need for onerous or extended iterations. This method yields greater
end-user involvement in the design and specification of user activity, provides better user satisfaction, and results in
a more accurate and detailed definition of end-user requirements early in the project lifecycle. The extended activity
diagrams are implementation agnostic, allowing technologists to determine the best implementation path, and
avoiding the excessively early buy-in to a development platform that has been seen to be a problem in evolutionary
prototyping. By addressing the need for a link between a diagram containing adequate detail (activity diagrams with
XAS notation) and a complementary visual prototype, it is possible to provide accurate vision to stakeholders of the
proposed design.

REFERENCES

Asur, S. and Hufnagel, S. (1993). Taxonomy of rapid-prototyping methods and tools, Proceedings from the IEEE
Fourth International Workshop on Rapid System Prototyping, June 1993, 42-5.

Fedorowicz, J., J. L. Gogan, & A. W. Ray (2004). The Ecology of Interorganizational Information Sharing. Journal
of International Technology and Information Management (formerly Journal of International Information
Management) 13(2), 73-86

Hoffer, J.A., George, J.F., and Valacich, J.S. (2005). Modern systems analysis and design. (4" ed.) Upper Saddle
River, N.J.: Pearson Prentice Hall.

Mannio, M. and U. Nikula (2001). Requirements elicitation using a combination of prototypes and scenarios, IV
Workshop on Requirements Engineering, Buenos Aires, Argentina, Universidad Tecnoldgica Nacional,
Facultad Regional Buenos Aires, Argentina, 2001, 283-296.

Meehan, T. E. and Carr, N. (2005). Extending UML, Dr. Dobb’s Journal, February 2005, 56-60.

Phillips, C. and Kemp, E. (2002). In support of user interface design in the rational unified process, Australian
Computer Science Communications, Third Australasian Conference on User interfaces, Melbourne,
Victoria, Australia, January 2002, 21-27.

Phillips, C.H.E., Kemp, E.A. and Kek, S.M. (2001). Extending UML use case modelling to support graphical user
interface design, Proceedings of ASWEC 2001, IEEE, Canberra, Australia, 26-28 August 2001, 48-57.

Scogings, C. and Phillips, C. (2001). A method for the early stages of interactive system design using UML and
Lean Cuisine+, Australian Computer Science Communications, Proceedings of the 2nd Australasian
Conference on User Interface, January 2001, 69-76.

Seffah, A. and Andreevskaia, A. (2003) Empowering software engineers in human-centered design, Proceedings of
the 25th International Conference on Software Engineering, May 2003, Portland, OR, 653.

Wiegers, K. (1995). In search of excellent requirements, Journal of the Quality Assurance Institute, 9(1).

Wilcox, P. A. (2003). Effective communication of scenarios of usage, A HWISE (Heriot Watt University Institute of
Software Engineering) Technical Report, OPHELIA (Open Platform and Methodologies for Development
Tools Integration in a Distributed Environment) Project, Retrieved December 12, 2004 from
http://www.macs.hw.ac.uk:8080/techreps/index.html

53

N. Ashley, T. Meehan & N. Carr 2005 Volume 14, Number 3

54

	Journal of International Technology and Information Management
	2005

	UML Activity Diagram Semantics and Automated GUI Prototyping
	Nancy Winniford Ashley
	Timothy E. Meehan
	Norman Carr
	Recommended Citation

	UML Activity Diagram Semantics and Automated GUI Prototyping

