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Time Dimension for Business News in the Knowledge Warehouse 
 

Pawel J. Kalczynski 
The University of Toledo 

 
ABSTRACT 

 
This paper proposes a data structure to support the integration of business news and data in the 

knowledge warehouse using the Temporal Document Retrieval Model (TDRM). Temporal document 
retrieval takes into account the time context expressed as temporal phrases in the document content. The 
maintenance and scalability of the proposed data cluster is discussed. The results of temporal document 
retrieval experiments based on typical and ad-hoc time constraints, performed on a large corpus of 
business news are reported. The experiments showed that the instantaneous TDRM-based retrieval using 
the proposed cluster is possible with the currently available database technology and confirmed the 
highly constraining character of the temporal context. 

 
INTRODUCTION 

 
 Since the dawn of data warehousing in the early 1990s (Inmon, 1992; Kimball, 1996), numerous extensions 
of the model were proposed. The major evolutionary concepts, i.e., Information Data Superstore (Bischoff & 
Yevich, 1996), Virtual Data Warehouse (Genesereth, Keller, & Duschka, 1997), Enterprise Information Portals 
(Shilakes & Tylman, 1998), Web Warehouse (Mattison, 1999), Web Farming (Hackathorn, 1999), Data Webhouse 
(Kimball & Merz, 2000), Active Data Warehouse (Thalhammer, Schrefl, & Mohania, 2001), Knowledge Warehouse 
(Nemati, Steiger, Iyer, & Herschel, 2002), and enhanced Data Warehouse (Abramowicz, Kalczynski, & Wecel, 
2002) considered populating the data warehouse with data and information acquired from Internet sources. 
However, only a few models emphasized the need for a full integration of structured and unstructured data. 

 
The idea of integrating documents with data in the knowledge warehouse is to instantaneously and 

automatically supply the users with a ranked list of business documents relevant to the current state of the data 
warehouse report being viewed (Abramowicz et al., 2002).  

 
This task may be accomplished by applying constraints to the collection of documents stored in the 

warehouse. These constraints represent various contexts, such as subject, temporal, spatial, semantic, or personal 
(Wecel, Abramowicz, & Kalczynski, 2004).  Presents the idea of context-based integration of documents and data in 
the data warehouse. 

 
The focus of this paper is on integration of documents and data based on the time (temporal) context. The 

time context in the knowledge warehouse is typically defined by temporal constraints of the current state of the data 
warehouse report being viewed by the user (e.g. years, quarters, months, weeks, or days). These constraints can be 
easily extracted from the warehouse reports and used to subset the collection of documents stored in the data 
warehouse. In order for subsetting to be done efficiently, the temporal context of documents must be represented in 
the repository. 

 
The theoretical TDRM paper (Kalczynski & Chou, 2005) proposed a model for representation of temporal 

content of documents and queries. The present work shows how TDRM can be implemented in an organization to 
integrate documents and data in the knowledge warehouse and extends the discussion (Kalczynski, 2004). A data 
cluster, integrated with the enterprise data warehouse, is proposed. The proposed model enables instantaneous 
temporal document retrieval for typical and ad-hoc time constraints. The present work also reports the results of 
technical feasibility and scalability analyses of the proposed structure. 
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Figure 1:  Context-Based Integration of Documents and Data in the Knowledge Warehouse. 
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BACKGROUND 
 

In the present work, the theoretical Temporal Document Retrieval Model (TDRM) (Kalczynski & Chou, 
2005) provides the background for time-based integration of documents and data in the knowledge warehouse.  

 
Before a document’s time context may be described in TDRM terms, all temporal expressions such as “last 

week” or “tomorrow” must be extracted from the content (Abramowicz, Chmiel, Kalczynski, & Wecel, 2001; 
Goralwalla, Leontiev, Ozsu, & Szafron, 1998; Kalczynski, Abramowicz, Wecel, & Kaczmarek, 2003; Koen & 
Bender, 2000; Llido, Berlanga, & Aramburu, 2001) and represented as subsets of the calendar term space Ω. The 
calendar space is a finite, enumerable, and continuous list of calendar days (e.g. 1/1/1992, 1/2/1992 … 12/30/1994, 
12/31/1994). Each day in Ω serves as an equivalent of an indexing term in the traditional Vector Space Model 
(Salton & Lesk, 1968). In addition, unlike words or phrases, calendar terms are mutually independent (orthogonal) 
at this granularity level.  

 
In TDRM, every document and every query are represented as comparable vectors of weights 

corresponding to calendar terms (days). The weights are based on the frequencies of terms in certain views of the 
document collection. Unlike in the traditional Vector Space Model (VSM), the frequency of calendar terms in 
TDRM is represented as a real number rather than an integer. This is due to the fact that when temporal expressions 
are transformed into calendar frequencies, partial occurrence of any term in the document is possible. For example, 
the temporal phrase “last month” extracted from a document published on 3/4/2005 is represented as 0.036 (1/28) of 
occurrence of each term (day) between 2/1/2005 and 2/28/2005. For some temporal phrases, such as “early last 
month,” a fuzzy model (Kalczynski & Chou, 2005) is used to represent term frequencies. The term frequency 
diagram for a particular document is created by tallying frequencies for each respective term occurring in the 
document content.  shows two term frequency diagrams for actual business documents.  

 
A slightly modified Term Frequency – Inverse Document Frequency (TF-IDF) weighting scheme (Salton 

& Buckley, 1988) is used for determining the weights of document index terms in TDRM. TF is normalized over the 
maximum frequency and prioritizes terms that frequently occur in the document content. Conversely, IDF prioritizes 
terms that are rarely referenced by other documents in the collection. Raw IDF is a number of documents that 
contain the full reference (freq>=1) to a particular term.  presents the raw IDF values for a large corpus of business 
news and the calendar space Ω ranging from 1/1/1992 to 12/31/1994.  
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Figure 2:  Sample Document Term Frequency Diagrams. 
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Figure 3:  Raw IDF of FT1993. 
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Note that in the Temporal Document Retrieval Model, raw IDF is transformed to IDFi = log(N/ni) where N 

is the total number of documents in the collection and ni is the number of documents with full reference (freq>=1) to 
the calendar term ci. If ci does not fully occur in any document, then ni is set to .5 in order to emphasize the 
importance of the term for the query and avoid division by zero at the same time. The product of TF and IDF serves 
as weight for each calendar term referenced by the document. For query index terms TF=1; therefore they are all 
weighted with IDF values. 

 
Let p=|Ω|, let wi,j denote the weight of calendar term ci referenced by document dj, and let wi,q be the weight 

of term ci in query q. Then the similarity between the document dj and the query q, measured by the angular distance 
between their vectors of weights, is given by: 
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Therefore, in order to compute similarity for a document-query pair the sum of squared weights for both 
vectors and the sum of weight products for matching terms must be determined.  

The following section will present a data cluster for TDRM-based integration of documents and data in the 
knowledge warehouse.  
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TIME DIMENSION CLUSTER 

Logical Design 
 

` A typical business report is based on natural calendar granules; i.e., it refers to particular years, quarters, 
months, weeks or days. Such granules may be conveniently represented as TDRM queries. For example the first full 
week of March 2005 can be represented as seven subsequent calendar terms and their corresponding weights. The 
proposed data model takes advantage of this fact and stores pre-computed values for typical temporal queries and all 
documents in the collection, still enabling and facilitating ad-hoc temporal queries. Moreover, the model may be 
easily adjusted to work with different weighting schemes and similarity measures.  presents the proposed data 
structure.  

 
Figure 4:  Time Dimension for Documents in the Knowledge Warehouse. 

 

 
The Document table stores basic information about documents in the system. Omega stores the calendar 

terms (dates) and the corresponding number of documents in which the term fully occurs. Query stores all typical 
time constraints of business reports. Each calendar year defines 424 typical constraints, namely, one year, four 
quarters, 12 months, 52 weeks, and 365 (366) daily constraints.  

 
DocIndexTerm and QueryIndexTerm are weak associative entity types which store raw frequencies and 

weights of calendar terms occurring in documents and queries. These structures provide efficient representations of 
sparse vectors in the term space Ω because no database records exist if weight=0. Finally, Match stores values which 
represent similarity between the two vectors (e.g. cosine) computed for all document-query pairs in the collection. 
The records in Match are derived from DocIndexTerm and QueryIndexTerm; no records are stored if there is no 
match (cosine=0). 
Physical Design 
 

It should be noted that physical design is a complex and on-going process. Therefore the present work 
describes just the initial choice of database indexes that may be further updated based on the cluster usage statistics. 
All experiments described in this paper were performed with Microsoft SQL Server 2000 running on a 3.8GHz 
desktop PC with 512MB RAM. 

 
 
 presents the auxiliary (non-primary key) indexes introduced to the Time Dimension (see ) for the 

Knowledge Warehouse. 
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Table 1.  Auxiliary Indexes for the Cluster 
 

Table Index Clustered 
DocIndexTerm Term 

DocID 
No 
No 

QryIndexTerm Term 
QueryID 

No 
No 

Match QueryID Yes 
 
The proposed initial choice of database indexes focuses on efficient query processing (frequent) and fast 

updates (less frequent) of the cluster. In addition to the indexes, data usage statistics were added to most fields.  
 
Most TDRM queries involve initial joining of two tables: Query and Match and return multiple records. 

Although the SQL Server Index Tuning Wizard recommended the use of multiple auxiliary indexes (including 
clustering and multi-column indexes), we found that this significantly affects the time it takes to rebuild the cluster. 
In fact, rebuilding the cluster with the Index Tuning Wizard recommendations took 39 times longer than with the 
proposed set of indexes. Thus, we believe that the initial choice of indexes, limited to keys (primary and foreign), is 
justified.  

 
A slight modification in the physical design that eliminated primary-key constraints (clustered indexes) for 

DocIndexTerm and Match further sped up the cluster rebuilding process. Data integrity (entity and referential) was 
not a concern because both DocIndexTerm and Match are secondary repositories populated by automated processes.  

 
The proposed cluster can be implemented using the database technology available to any organization 

running an enterprise database management system. It can be easily adapted to other variations of the VSM-based 
Temporal Document Retrieval Model (e.g. different weighting schemes or similarity measures).  

 
In the following sections we show that the maintenance of the cluster is relatively easy and that it scales 

quite well. In addition, we show the results of temporal document retrieval experiments that confirm the highly 
constraining character of the temporal context.  

MAINTENANCE OF THE TIME DIMENSION CLUSTER 

Adding new documents or queries to the collection triggers a sequence of updates in the proposed time 
dimension. Adding a new query to the database is relatively easy because it only requires creating the query index 
and computing the match values for all documents in the collection. The process of adding a new document is far 
more complex and, theoretically, it requires (1) creating the document index, (2) updating all IDF values, (3) 
updating all document and query weights in the system, and (4) computing cosine values for every document-query 
pair.  

 
Analysis of the Update Process 

 
Let N be the current number of documents stored in the collection, let M be the total number of temporal 

queries in the system, and let p be the number of terms in calendar space Ω. After the document is processed with 
temporal indexer, its temporal index must be stored in the database. The index of document dj consists of the set of 
Cj distinct calendar terms with corresponding frequencies and weights. Unfortunately all weights include IDF which 
is based on the number of documents (now N+1).  

 
The average number of distinct days referenced by a single document from the TREC/FT 1993 collection 

(Cj) was found to be almost 301. The typical number of temporal queries in a year is 434. Let Qi be the total number 
of distinct calendar terms referenced by a query; it is equal to the number of calendar days within the context of this 
query (e.g. Qi=7 for weekly constraints). Upon addition of a single document to the collection CN+1 records must be 

added to the DocIndexTerm, and ∑
=

N

1j
jC  weights must be updated in this table. In addition ∑

=

M

1i
iQ  records must be 
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updated in QueryIndexTerm, CN+1 records must be updated in Omega, N records must be updated in Document and 
M×(N+1) cosine values must be determined for the Match table. Computing the cosine value for a single document-
query pair requires DocIndexTerm and QueryIndexTerm to be joined on Term.  

 
Assuming that Ω extends over the period of five calendar years and N=500,000, over 200 million records 

would have to be modified upon addition of just one new document. Because the knowledge warehouse is designed 
to be constantly supplied with new documents, accepting hundreds of documents daily, this process may prove very 
inefficient. However, if we take advantage of the fact that, in a large collection of documents, IDF is not 
significantly affected by adding a few documents, we may reduce the number of physical record accesses. We 
therefore propose to update the IDF, the corresponding weights, and the match values periodically, say, daily, 
instead of doing that each time a new document is added to the collection. Then, the number of records added or 
updated upon arrival of a new document reduces to CN+1+M. For the sample collection of 500,000 documents and 
|Ω|=1,826 (5 years) this means about 650 records added or updated upon addition of a new document instead of 200 
million.  

 
Experiments 

 
In the cluster-building experiment 64,138 documents published in 1992 and 69,162 documents published in 

1993 were extracted from the Text Retrieval Conference (TREC) Financial Times (TREC/FT) collection and 
processed with the Time Indexer (Kalczynski et al., 2003). We extracted 423,272 (444,805) temporal references 
from the FT1992 (FT1993) collection, which averages 6.6 (6.4) references per document. The average number of 
daily publications for the FT1992 (FT1993) collection was 210 (227). Because only about 10% of all temporal 
references are imprecise (Kalczynski & Chou, 2005), for simplicity, all references in this experiment were 
represented as temporal intervals rather than fuzzy numbers. Nevertheless the proposed model supports the fuzzy 
representation of temporal references. As a result 20.5M (20.8M) document index terms were generated for all 
FT1992 (FT1993) documents in the analyzed collection. The respective Ωs were defined as 1/1/1991-12/31/1993 for 
FT1992 and 1/1/1992-12/31/1994 for FT1993. 

 
Next, temporal queries representing time contexts of typical analytical reports were created for each 

collection. The queries extended over the respective Ωs with the following granules: three years, 12 quarters, 36 
months, 156 calendar weeks, and 1096 days. 

 
Monday was considered the first day of the calendar week; hence the first week in 1992 starts on Jan. 6, 

and the last week of 1994 ends on Jan. 1, 1995. The total number of query index terms turned out to be 5,474 
(5,473) for FT1992 (FT1993). 

 
Finally, the cosine values were computed for all document-query pairs in the collection and appropriate 

records were added to the Match table for all cosine ≥ 0.05 (the choice of the threshold is explained later). The 
process resulted in 1,070,409 (781,938) document-query pairs for FT1992 (FT1993). The corresponding time of re-
building the entire cluster executed as a batch was 57 (36) min. The query batch used to rebuild the cluster can be 
found in the appendix. We also observed that the total disk space consumed by the cluster was 2.6 (2.9) GB for 
FT1992 (FT1993).  

 
It should be noted that a significant improvement of the updating time has been achieved by removing most 

of the indexes recommended by the Index Tuning Wizard and adding appropriate statistics to the cluster. 
 
Scalability 

 
 In the scalability experiment the FT1992 and FT1993 documents were loaded into a single cluster. Ω was 
defined as an interval 1/1/1991-12/31/1994. The purpose of the experiment was to check if the proposed structure 
scales well in terms of the update time, retrieval time and memory consumption given that the hardware system 
remains unchanged.  

 
 As a result a cluster of documents published in the Financial Times between 1992 and 1993 emerged. This 
revealed 41.3M document index terms in the DocIndexTerm table, 7,297 records in the QryIndexTerm, and 
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1,725,761 entries in the Match table. The total time for updating the composite cluster turned out to be 155 min. on 
the same desktop PC. The space consumed by the cluster was 5.5 GB. In addition 12GB of temporary space 
(tempdb) was required to rebuild the cluster.  
 

In sum, daily updates of the proposed data cluster can be performed using the existing database technology. 
 

TEMPORAL RETRIEVAL  
 

The present section offers a description of the experiments with temporal document retrieval using the 
proposed cluster.  

 
Generally, we distinguish two types of temporal queries: typical and ad-hoc. Typical queries are usually 

temporal intervals corresponding to calendar granules (e.g. “March 1993”, “the first week of May 1992”). Ad hoc 
queries, in turn, can be any subsets of the term space Ω.  

 
Typical queries (common calendar granules) usually correspond to temporal contexts of most business 

reports. As the data warehouse user drills the report down or up, the corresponding list of documents relevant to the 
report should be displayed. Therefore, instantaneous retrieval of documents was the major goal of that research.  

 
Typical Time Constraints 
 

 shows the distribution of cosine values for the typical calendar granules. About 6 million records which 
contained documents “relevant” to queries with cosine<0.05 were dropped, i.e., a relevance threshold t=0.05 was 
introduced. This is due to the impact of temporal references like “this year” or “in 1991” which are quite frequent in 
business documents.  

 
Figure 5:  Distribution of Cosine Values (t=0.05). 
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Another interesting feature of the distribution of cosine values is the relatively large number of Document-

Query pairs with cosine between 0.9 and 1.0. This is due to the fact that for a large number of documents in the 
collection, the publication date was the only temporal context extracted and such documents are strongly relevant to 
the corresponding daily granules in terms of cosine.  

 
Error! Reference source not found.0 shows the percentage of documents of the FT1992∪FT1993 

collection relevant to the typical time constraints for the assumed Ω.  
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Figure 10:  Number of Documents Relevant to Typical Time Constraints. 
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The results confirm the highly constraining character of temporal retrieval. We suggest that the time 

context should be used before keywords because if a document is not relevant to time constraints specified it is also 
not relevant to keywords and vice versa. However, the assessment of the temporal relevancy is typically more 
precise than the assessment of relevancy in terms of keywords. 

 
A typical query is in the form: “SELECT * FROM Match WHERE queryID='y1993' ORDER BY Cosine 

Desc.” We found that the execution time did not exceed one second for any of the 7,297 typical queries in 
FT1992∪FT1993 cluster. We concluded that the goal of instantaneous temporal retrieval has been achieved for 
typical time constraints.  

 
Ad-Hoc Constraints 

 
In order for an ad-hoc query to be processed within the proposed data model, it must be indexed, i.e., 

represented as a set of calendar terms. Because the weights are already computed for query and document terms and 
the sum of squared weights are stored for all documents, only the Match value must be determined for every 
document in the collection. This requires joining DocIndexTerm with the temporary table (representing the query) 
on Term and with Document on DocID.  

 
As an example, the query “Weekends of January 1993” was indexed with ten calendar terms and 

appropriate weights were computed.  Presents the details of the ad-hoc temporal query.  
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Table 2:  Sample Ad-Hoc Temporal Query “Weekends of January 1993.” 
QueryID Term TF-IDF 

Weight 
ad-hoc1993_01 1/2/93 5.630778 
ad-hoc1993_01 1/3/93 5.907765 
ad-hoc1993_01 1/9/93 5.488215 
ad-hoc1993_01 1/10/93 6.416819 
ad-hoc1993_01 1/16/93 5.638875 
ad-hoc1993_01 1/17/93 6.655571 
ad-hoc1993_01 1/23/93 5.542088 
ad-hoc1993_01 1/24/93 6.559239 
ad-hoc1993_01 1/30/93 5.545785 
ad-hoc1993_01 1/31/93 5.345114 

 
It took 64 seconds to provide a ranked list of matching documents using the same set of queries as for 

typical time constraints. This result was certainly not satisfactory; hence a new approach to ad-hoc queries is 
described below. 

 
Recall that, in the proposed cluster the similarity between a document dj and query q is computed as: 
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The Match table of the cluster contains cosine values computed for typical time constraints, including daily 

constraints. Daily constraints are very specific because each of them consists of only one calendar term α. Therefore 
the cosine value for a daily constraint is given by: 
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Further, we can transform the above equation into a formula for computing the weight of calendar term α 

when the similarity between this term and the daily constraint  qα is given. 
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The set of K ad-hoc query terms {α1, α2, .., αK} is a subset of Ω. For each document dj the cosine value for 
the ad-hoc query can be computed using the pre-computed values stored in the cluster. By substituting each wi,j with 
corresponding values computed according to formula (4) we get: 
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and finally, we get 

j j 1 1, j 2 2, j K ,

1sim(d ,q) sim(d ,q ) sim(d ,q ) ... sim(d ,q )q q K qw w w
K α α α α α α= × + × + + × . (6) 

The final formula enables computing cosine for ad-hoc temporal queries by joining just two tables: Query 
and Match. As a result, the ad-hoc queries execute instantaneously, i.e., in less than one second. 
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CONCLUDING REMARKS 
 

This paper proposed a data model to support the time-dimension-based integration of document and data in 
the knowledge warehouse. The Temporal Document Retrieval Model (TDRM) provided a framework for 
determining the similarity between the temporal context of documents and queries. We demonstrated that it is 
possible to implement and maintain the proposed data structure with reasonable processing time and memory 
consumption. We managed to achieve instantaneous retrieval for typical and ad-hoc temporal constraints on a 
desktop PC running SQL Server 2000 and showed that the structure scales quite well.  

 
 The lack of explicit handling of temporal granularities can be considered a major disadvantage of TDRM. 
In particular, one should be able to match documents and queries assuming a given precision level. This precision 
level could be expressed in terms of calendar granularities. Although TDRM enables working with calendar 
granularities, all matching is performed on the finest granularity, i.e., day. Therefore, an extension of TDRM that 
would work with multiple granularities might be a potential research avenue to be explored. Such an extension 
would also require revising the database model presented in this paper.  
 
 Another disadvantage of the proposed model is that it works only for the time domain. Extending TDRM to 
other granularity systems (e.g. spatial or organizational) and introducing similar clusters for these retrieval contexts 
could be another potential research avenue. Perhaps a generic retrieval model for granularity systems could be 
developed.  
 
 Nonetheless, this model as it stands contributes significantly to practice and theory of temporal document 
retrieval because it supports the existing theoretical model, enabling its practical application in the business world. 

APPENDIX 

Views 
 
CREATE VIEW DOCW_X_QRYW AS 
SELECT DocIndexTerm.DocID, QryIndexTerm.QueryID, SUM(DocIndexTerm.Weight * QryIndexTerm.Weight) 
AS DocWProdQryW 
FROM DocIndexTerm INNER JOIN 
 QryIndexTerm ON DocIndexTerm.Term = QryIndexTerm.Term 
GROUP BY DocIndexTerm.DocID, QryIndexTerm.QueryID 
HAVING (SUM(DocIndexTerm.Weight * QryIndexTerm.Weight) > 0) 
 
CREATE VIEW COSINE AS 
SELECT DOCW_X_QRYW.DocID, DOCW_X_QRYW.QueryID, DOCW_X_QRYW.DocWProdQryW / 
(SQRT(Document.SumWSqr) * SQRT(Query.SumWSqr)) AS Cosine 
FROM DOCW_X_QRYW INNER JOIN 
 Query ON DOCW_X_QRYW.QueryID = Query.queryID INNER JOIN 
 Document ON DOCW_X_QRYW.DocID = Document.DocID 
WHERE (DOCW_X_QRYW.DocWProdQryW / SQRT(Document.SumWSqr) * SQRT(Query.SumWSqr)) >= 
0.05) 
 
CREATE VIEW MAX_FREQ 
WITH SCHEMABINDING AS 
SELECT DocID, MAX(RawFreq) AS MaxFreq 
FROM DocIndexTerm 
GROUP BY DocID 
 
CREATE VIEW MAX_FREQ_REFDATE AS 
SELECT MAX_FREQ.DocID, MAX_FREQ.MaxFreq AS NewMaxFreq, Document.MaxFreq 
FROM MAX_FREQ INNER JOIN 
 Document ON MAX_FREQ.DocID = Document.DocID 
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CREATE VIEW FOT AS 
SELECT Term, DocID, RawFreq 
FROM DocIndexTerm 
WHERE (RawFreq >= 1) 
 
CREATE VIEW FOT_IDF AS 
SELECT Term, COUNT(DocID) AS fIDF 
FROM FOT 
GROUP BY Term 
 
CREATE VIEW FOT_OMEGA AS 
SELECT Omega.IDF, FOT_IDF.Term, FOT_IDF.fIDF 
FROM FOT_IDF INNER JOIN 
 Omega ON FOT_IDF.Term = Omega.Term 
 
Maintenance Queries 
 
UPDATE FOT_OMEGA 
SET FOT_OMEGA.[IDF] = FOT_OMEGA.[fIDF] 
FROM FOT_OMEGA 
 
DECLARE @doccount bigint 
SET @doccount = (SELECT Count(*) FROM Document) 
 
UPDATE QryIndexTerm  
SET Weight = Log(@doccount/IDF) 
FROM QryIndexTerm INNER JOIN Omega ON QryIndexTerm.Term = Omega.Term  
 
UPDATE Query 
Set Query.SumWSqr=A.SumWSqr 
FROM Query INNER JOIN(SELECT QueryID, SUM(Weight*Weight) AS SumWSqr 
FROM QryIndexTerm 
Group BY QueryID) A ON Query.QueryID=A.QueryID 
 
DECLARE @documentcount bigint 
SET @documentcount = (SELECT Count(*) FROM Document) 
 
UPDATE DocIndexTerm 
SET Weight = (RawFreq/MaxFreq)*Log(@documentcount/Omega.IDF) 
FROM  Omega INNER JOIN 
DocIndexTerm INNER JOIN Document ON DocIndexTerm.DocID = Document.DocID  
ON Omega.Term = DocIndexTerm.Term  
 
UPDATE Document 
Set Document.SumWSqr=A.SumWSqr 
FROM Document INNER JOIN(SELECT DocID, SUM(Weight*Weight) AS SumWSqr 
FROM DocIndexTerm 
Group BY DocID) A ON Document.DocID=A.DocID 
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