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ABSTRACT 
 

Discovering patterns that indicate software reliability provides valuable information to software project 
managers. Software Quality Classification (SQC) modeling is a methodology that can be used to discover 
reliability patterns of large software projects.  However, the patterns found by SQC modeling may not be 
accurate and robust owing to insufficient information used in the training process. This study compares 
two genetic programming-based SQC models using different volumes of data. These data were extracted 
from seven different NASA software projects. The results demonstrate that combining data from different 
projects can produce more accurate and reliable patterns.  

 
INTRODUCTION 

As one of the major measurements of software quality (Kitchenham, 1996), software reliability plays a key role in 
the success of safety-critical systems.  Until now, none of the large software systems can be recognized as defect-
free regardless of the amount of time and effort invested in the debugging and testing phases of the software 
development process. Therefore, a critical issue for project managers is to define a reliability goal and achieve the 
goal within a given time and budget.  

Software Quality Classification (SQC) modeling (Khoshgoftaar, Seliya, & Herzberg, 2005) is to discover reliability 
patterns which categorize software modules in a project as high-risk or low-risk based on software metrics. By using 
these metrics, SQC modeling can predict the reliability of each software module in early stages of development. 
Since the effort to locate and correct faults early is much more cost-effective than in later stages, SQC modeling can 
help project managers to achieve their reliability goals within the given time and cost. Several studies indicate that 
using this methodology may lead to good results (Nagappan, Ball, & Murphy, 2006; Fenton & Ohlsson, 2000; 
Khoshgoftaar & Allen, 2000; Briand, Melo, & Wuest, 2002). For example, Nagappan, Ball and Murphy (Nagappan, 
Ball, & Murphy, 2006) applied the method to Microsoft XP and Windows Server 2003, and concluded the efficacy 
of building such models to estimate post-release failures and failure proneness. Tian and Palma (Tian & Palma, 
1998) introduced a software tool built by using SQC modeling and applied the tool on five large software systems 
developed by IBM.   

Software projects are usually implemented by different teams, in different organizations, using multiple 
programming languages and methods. Data extracted from different projects may not be consistent, relevant, or 
follow the same pattern.  Therefore, existing approaches to build SQC models always use a single dataset extracted 
from a single software project. However, the available information based on a single project is very limited, despite 
the fact that large volumes of information crucial in data mining may be obtained. Fortunately, most organizations 
maintain their own software metrics repositories for each project (Fenton & Peeger, 1997). Among the repositories, 
many projects have similar reliability requirements. This paper has thus uniquely addressed a question: can the 
combination of multiple datasets with similar project characteristics help project managers achieve more robust and 
accurate patterns? 

In this study, the technique applied to build SQC models is Genetic Programming (GP). It has been successfully 
applied in a large number of fields, such as circuit design (Dastidar, Chakrabarti, & Ray, 2005; Chang, Hou, & Su, 
2006), data mining (Folino, Pizzuti & Spezzano, 2006; Wong & Leung, 2000), robotic control (Banzhaf, 1997), 

http://ieeexplore.ieee.org.ezproxy.fau.edu/search/searchresult.jsp?disp=cit&queryText=(folino%20%20g.%3cIN%3eau)&valnm=Folino%2C+G.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org.ezproxy.fau.edu/search/searchresult.jsp?disp=cit&queryText=(%20pizzuti%20%20c.%3cIN%3eau)&valnm=+Pizzuti%2C+C.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org.ezproxy.fau.edu/search/searchresult.jsp?disp=cit&queryText=(%20spezzano%20%20g.%3cIN%3eau)&valnm=+Spezzano%2C+G.&reqloc%20=others&history=yes
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bioinformatics (Handley, 1995), and picture generation (Gritz & Hahn, 1997). The advantage of GP is that it can be 
used to discover solutions without predefining the size, shape and structure of those solutions. Moreover, as a 
parallel search-based technique, GP is a powerful tool for multi-objective optimization problems, and a valuable 
alternative to traditional statistical and data mining methodologies. 

This paper describes the construction and comparison of two GP-based classifiers for SQC models based on seven 
NASA’s projects implemented with different languages by different teams. One classifier uses data from a single 
data source in the training process, while the other classifier increases the volume of data by combining different 
data sources. Both classifiers are evaluated and compared by applying the statistical paired t-test. The results 
demonstrate that using data from multiple software projects with similar backgrounds significantly improves the 
accuracy and robustness of SQC models.  

Since the SQC modeling is to discover faulty software modules, and the models are only available after coding is 
done, the comparisons between it and UML, or component-based software engineering approaches are not 
appropriate and therefore, not provided in this paper. However, SQC modeling can be integrated into other software 
engineering approaches (Ashley, Meehan, & Carr, 2005), or provide guideline to select highly reliable software 
components. 

 
FUNDAMENTALS 

 
 SOFTWARE QUALITY CLASSIFICATION MODELING 
 
SQC modeling focuses on discovering reliability patterns by classifying software modules into two classes: high-
risk and low-risk. An SQC model is constructed from characteristic information extracted from an existing project, 
where its defect characteristic is known. Project managers can then apply the model to predict reliability of similar 
projects where defects are unknown.   The characteristic information, such as the software product and process 
metrics, are usually collected by software tools and represented as a data structure. The structure used to train the 
SQC model is called a fit dataset; and the structure used to validate the SQC model is called a test dataset. SQC 
models can guide project managers to allocate available resources, and define more thorough test plans. Therefore, 
more successful software development can be achieved (Edwards & Steinke, 2007). 

SQC modeling always misclassifies some modules due to data quality and model adequacy (Witten & Frank, 2005). 
A Type I error occurs when a model misclassifies a low-risk module as high-risk. A Type II error occurs when a 
model misclassifies a high-risk module as low-risk (Khoshgoftaar & Allen, 2000).  The penalties for different 
misclassifications are not the same in software engineering practice. When a Type I error occurs, the cost is wasted 
resources trying to improve a high quality module. However, when a Type II error occurs, the cost could be very 
expensive even unaffordable, since a poor quality module could cause the whole system to fail.   

The performance of an SQC model is measured by the Expected Cost of Misclassification (ECM) which is defined 
as: 

IIIIII NCNCECM +=    (Khoshgoftaar and Allen, 2000). 

Where  is the cost of a Type I misclassification,  is the cost of a Type II misclassification.  is the number 

of Type I errors, and  is the number of Type II errors. In order to simplify the discussions, we define 

. The value of  is selected to achieve the project's preferred balance between the two 
misclassification rates.  

IC IIC IN

IIN

III CCc /= c

SOFTWARE DATASETS 
 

Seven datasets are extracted from seven NASA software systems. All are high assurance and complex real-time 
systems. The datasets include software measurement data and associated defect data collected at the function level 
(Khoshgoftaar & Seliya, 2004). The reliability of a module is described by whether or not the module has any 
defects, or by the number of defects in the module. Fenton and Peeger (1997) provide a complete description of the 
datasets. In order to discover the reliability patterns behind the datasets, thirteen common primitive software metrics 
are selected, normalized, and scaled (Khoshgoftaar & Rebours, 2004): Cyclomatic Complexity, Essential 
Complexity, Design Complexity, Loc Code And Comment, Loc Total, Loc Comment, Loc Blank, Loc Executable, 
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Unique Operators, Unique Operands, Total Operators, Total Operands, and Branch Count. For the classifier which 
uses multiple projects in the training process, two important factors are available and need to be considered: whether 
an object-oriented language is used or not, and the size of the project. Therefore, two corresponding independent 
variables are added in the second classifier. The dependent variable is whether the module is high-risk or low-risk. 
Table 1 summarizes the properties of the seven datasets referred to as JM, KC1, KC2, KC3, CM, MW, and PC, 
respectively.  

 
Table 1:  Summary of the Software Data Repositories. 

 
Dataset NFP FP Total Language Size 
JM 7163 1687 8850 C Large 
KC1 1782 325 2107 C++ Medium 
KC2 414 106 520 C++ Small 
KC3 415 43 458 JAVA Small 
CM 457 48 505 C Small 
MW 372 31 403 C Small 
PC 1031 76 1107 C Medium 

 
GENETIC PROGRAMMING  

 
Genetic Programming imitates the Darwinian principle of survival and reproduction of the fittest individuals 
(Banzhaf et al., 1998; Koza, 1992). Each GP run may require several hundred or several thousand generations 
depending on the complexity of a problem. Each generation may contain thousands of individuals; each is an SQC 
model in our study. A fitness function, which evaluates the performance of individuals, assigns a value to each 
model, indicating how well the model solves the problem. A model with better performance is given a higher 
probability to produce offspring and pass its good substructure to the next generation. After a certain number of 
generations, the best model in a GP run represents the reliability pattern we are looking for based on the given fit 
dataset (Khoshgoftaar, Liu, & Seliya, 2004;  Banzhaf, 1998). A GP process is described step by step below: 
 
Initialization: GP generates the first population in the problem domain randomly. The individuals in the first 
population have extremely poor fitness except when the problem is so simple that it can be solved by a randomly 
generated solution. The first population can be generated using the half-and-half method: 50% of individuals in the 
first population are generated using the full method, where the individuals have to reach the specified maximum 
depth of trees. Another 50% of individuals are produced using the grow method where the individuals can have 
various depth.  
 
Evaluation:  After the first population has been generated, each individual is evaluated and assigned a fitness value 
by a fitness function using a set of fitness cases, which is the fit dataset in this study. Two measures of fitness used 
in this study are raw fitness and adjusted fitness (Koza, 1992). The raw fitness uses the natural terminology of a 
problem to express the fitness. It generally measures the amount of errors in an individual's attempted solution. In 
our research, it is computed as the total cost of misclassification. Adjusted fitness is computed as below. 

),(1
1),(

tir
tia

+
=  

Where i is the ith generation, t is the tth individual, and r(i, t) is the raw fitness. The reason to use the adjusted 
fitness is that it can exaggerate small difference when the raw fitness approaches zero. 

Selection:  After the fitness of each individual is calculated, a selection algorithm is carried out to select individuals. 
An individual with better performance has higher possibility to be selected by the selection algorithm. The widely 
used tournament selection is applied in our study. The tournament chooses two or more models randomly. The 
model with the highest fitness will win and be applied to the following breeding process. The benefits of applying 
this method include accelerating the evolution process, paralleling the competition, and eliminating the centralized 
fitness comparison among the individuals.  

Breeding:  The breeding process contains three operations: crossover, mutation, and reproduction. The process 
starts with choosing a breeding operation randomly, then one or two individuals are selected based on the operation. 
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The crossover operation selects two individuals, randomly chooses a crossover point on each individual, exchanges 
the substructure below the points, and creates two new offspring individuals. The mutation operation chooses a 
random point in one selected individual, removes the substructure from that point, and inserts a randomly generated 
structure. The reproduction operation generates a new individual by coping the selected individual. All offspring 
generated from these operations are sent to the next generation. 

After breeding, the new population replaces the old one. Then GP measures the fitness of the individuals in the new 
generation, selects the fitter ones, and repeats the breeding process. The whole process is repeated until the 
terminating conditions are satisfied. The terminating conditions could be either that an individual is found to solve 
the problem, or that the maximum number of generations is reached. 

 
FITNESS EVALUATION 
 
Two fitness functions are defined to evaluate model performance in the GP-modeling process. The first objective in 
this study is the accuracy of classification. Hence, ECM is used as the first and more important fitness function to 
evaluate performance of each SQC model. In order to shorten the running time and simplify SQC models, the size of 
the model is selected as the second fitness function. Namely, if two models have the same ECM values, then the 
smaller one indicates better performance. In this study, we empirically select 10 as a threshold to avoid losing major 
diversity in the early generations of a run. The effectiveness of this fitness function has been verified by 
Khoshgoftaar, Liu, & Seliya (2004). 

 
METHODOLOGIES 

 
The size and quality of data used by data mining algorithms often have strong implications for obtaining realistic 
assessments of predictive accuracy of generated models. Determining the adequacy of the datasets is difficult. In 
general, the larger volume of fit dataset is recommended to use for building more robust and accurate models except 
that the running time becomes unaffordable. Therefore, Classifiers 1 and 2 carry out the GP method introduced 
above to build SQC models, but they are using different volumes of training data. Specifically, classifier 1 uses the 
data from one software project to train the models, while classifier 2 is trying to increase the size of fit dataset by 
empirically exploring the homogeneity of data coming from different software projects.  
 
CLASSIFIER 1 
 
Classifier 1 contains seven experiments, each of which uses one of the seven datasets to train SQC models. In each 
experiment, 100 runs are performed and 100 models, each of which is the best model in a run, are recorded. Among 
the 100 models, the top three models are chosen to classify the modules in test datasets.  If the difference between 
the performances of two models is too small, i.e., <0.5%, then the model size is used as a criterion for selection.  
 
The independent variables used in Classifier 1 are thirteen primitive software metrics introduced in the Software 
Datasets section. The dependent variable identifies whether the module is high-risk or low-risk. When one 
experiments ends, the top three models are recorded and applied to each of the remaining six test datasets. The 
results show how well the models can predict risks of similar or future projects. 
 
CLASSIFIER 2 
 
Classifier 2 explores the homogeneity of data from different software projects by combining multiple datasets with 
similar project characteristics. It is to find more available data to build robust and accurate models. The modeling 
building process is the same as classifier 1 except that the fit dataset combines six of the seven datasets to train SQC 
models, leaving the remaining one as the test dataset.  
 
As mentioned in the previous section, two additional independent variables are added during the training process.  
One is determined by whether an object-oriented language is used or not. If the programming language is C++ or 
JAVA, then the value of the variable is one; otherwise, the value of the variable is zero. The other categorizes the 
projects into three types-small, medium, and large-based on the number of modules in each project. In this study, a 
project is considered  small  if its number of modules is less than 1000, medium if its number of modules is in the 
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range from 1000 to 5000, or large if its number of modules in above 5000. The last column of Table 1 shows the 
category of each project. It is worth mentioning a special case where the fit dataset includes KC1, KC2, KC3, CM, 
MW, and PC; because none of these fit datasets are large, the test dataset JM is re-classified as medium.  

 
Table 2:  Parameters list. 

 
Pop Size 1000 
max generations 50 
random seed 3 
output.basename  mutl1 
output.bestn 1 
init.method  half and half 
init.depth  2-6 
max depth 10 
breed phases 3 
breed(1).operator  crossover, sele=tournament 
breed(1).rate 0.6 
breed(2).operator  reproduction, sele=tournament 
breed(2).rate 0.1 
breed(3).operator  mutation, sele=tournament 
breed(3).rate 0.3 
function set  +,-,*,/,sin,cos,exp,log,GT, VGT 

 
CASE STUDIES 

 
PARAMETER LIST 
 
The genetic programming tool known as lilgp1.01, developed by Douglas Zongker and Bill Punch of Michigan State 
University, is used in this study. The parameters are listed in Table 2. The values of the first eight parameters follow 
those provided by Koza (1992).  The operators of breeding and the function set use the same values provided from 
the previous experiments (Khoshgoftaar, Liu, & Seliya, 2004). In addition, the maximum number of generations for 
Classifier 1 is 50, while it increases to 100 for Classifier 2 since multiple datasets are used in the training process.   
 
EXPERIMENT RESULTS FOR CLASSIFIER 1 
 
Results generated by Classifier 1 are shown in Tables 3 and 4. Table 3 shows the average results of the top three 
models for each fit dataset. The first column shows the names of the fit datasets. The second, third, and fourth 
columns indicate the Type I, Type II, and overall error rates, respectively. For example, the first row indicates the 
average Type I and Type II error rates of the top three models built based on PC are 22.50% and 22.81%. Namely, 
22.50% low-risk modules are misclassified as high-risk modules, and 22.81% high-risk modules are misclassified as 
low-risk modules. The overall misclassification rate is 22.52%. Table 4 shows the average results achieved for each 
test dataset. It is worth mentioning that given a test dataset, each of the remaining six datasets can be used to train 
the SQC models and generate three top SQC models. Therefore, eighteen models are used to calculate the average 
results in Table 3. For example, when PC is chosen as the test dataset, the eighteen models obtained from six 
datasets, JM, CM, KC1, KC2, KC3, and MW, were applied to PC. The average Type I and Type II error rates are 
38.70% and 36.77%, and the overall misclassification rate is 38.57%.  
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Table 3: The Average Results of Applying Classifier 1 on Fit Datasets. 
 
Error Rates 

Dataset Type I Type II Overall 
 PC 22.50% 22.81% 22.52% 
JM 40.39% 25.98% 37.64% 
CM 28.01% 4.17% 25.74% 
MW 18.46% 10.75% 17.87% 
KC1 29.24% 18.05% 27.51% 
KC2 18.20% 15.72% 17.69% 
KC3 15.10% 13.95% 14.99% 

Average 24.56% 15.92% 23.42% 
 

 
EXPERIMENT RESULTS FOR CLASSIFIER 2 
 
Each experiment of Classifier 2 selects three top models and applies them to the remaining test dataset. Since results 
coming from a small number of models might introduce more bias than those coming from a large number of 
models, each experiment is repeated three times. As a result, nine models are chosen and averaged. Table 5 shows 
the average results of the nine best models. The first column indicates which dataset is excluded from the seven 
datasets during the training process. The second, third and fourth columns indicate the Type I, Type II, and overall 
error rates, respectively. For example, the value, exceptPC, in the second row and first column indicates that dataset 
PC is excluded and the remaining six datasets are used to train the models. The resulting Type I, Type II, and overall 
error rates are 22.50%, 22.81%, and 22.52%, respectively.  

Table 6 lists the results when these models are applied to the corresponding test datasets. The first column indicates 
which dataset is used as the test dataset. For example, the value PC in the second row of the first column indicates 
the results in the second row are achieved when applying the nine models obtained based on the datasets, JM, CM, 
KC1, KC2, KC3, and MW.  In this case, Type I, Type II, and overall error rates are 44.13%, 15.79%, and 42.19%, 
respectively. 

 
Table 4:  The Average Results of Applying Classifier 1 on Test Datasets. 

 
Error Rates 

Dataset Type I Type II Overall 
PC 38.70% 36.77% 38.57% 
JM 29.45% 51.46% 33.65% 
CM 38.73% 37.04% 38.57% 
MW 40.52% 32.62% 39.91% 
KC1 25.91% 45.68% 28.96% 
KC2 34.08% 34.70% 34.21% 
KC3 26.37% 41.47% 27.79% 

Average 33.40% 39.96% 34.52% 
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Table 5: The Average Results of Applying Classifier 2 on Fit Datasets. 
 

Error Rates 
Dataset Type I Type II Overall 

exceptPC 22.50% 22.81% 22.52% 
exceptJM 40.39% 25.98% 37.64% 
exceptCM 28.01% 4.17% 25.74% 
exceptMW 18.46% 10.75% 17.87% 
exceptKC1 29.24% 18.05% 27.51% 
exceptKC2 18.20% 15.72% 17.69% 
exceptKC3 15.10% 13.95% 14.99% 

Average 24.56% 15.92% 23.42% 
 

 
COMPARISONS BETWEEN TWO CLASSIFIERS 
 
Table 7 shows the Type I, Type II errors, and Normalized Expected Cost of Misclassification (NECM), which is 
defined as: , where NECMNECM /= N  is the number of modules in the dataset. Because all of the seven 
software projects are safety-critical systems, the cost of a Type II error is considered much higher than that of a 
Type I error. Therefore, this study only reports cases where the cost of a Type II error is 15 times higher than the 
cost of Type I error. Specifically, the NECM values at c = 15, 20, and 25 are applied to compare the performances of 
Classifier 1 and Classifier 2. Figure 1 takes a closer look at the performances of the two classifiers. In general, the 
lower value of NECM indicates the lower misclassification costs, therefore, representing better model performance. 
The statistic paired t-test (Miller, 1986) is performed among these results. The concentration of paired t-test is the 
difference between the paired data. Each pair is the two NECM values generated by Classifier 1 and Classifier 2 at 
each cost ratio for each dataset. For example, the two NECM values obtained from Classifier 1 and Classifier 2 at c 
= 15 for JM are a pair. Table 8 lists the statistic paired t-test results calculated at 95% confidence interval. It contains 
three parts, the statistical results for Classifier 1, Classifier 2, and the differences between the paired data. The row, 
AAD, lists Average Absolute Deviation from Median; and the last row, p-value, lists the probability that the actual 
mean difference is consistent with zero. The low probabilities of rejecting differences (0.033 for c = 15, 0.038 for c 
= 20, and 0.043 for c = 25) indicate that combining different software repositories with similar project background 
can increase the amount of useful information. Thus, more accurate and robust reliability patterns can be discovered 
and used for project managers. 
 

Table 6:  The Average Results of Applying Classifier 2 on Test Datasets. 
 

Error Rates 
Dataset Type I Type II Overall 

PC 44.13% 15.79% 42.19% 
JM 21.13% 58.45% 28.25% 
CM 34.79% 20.83% 33.47% 
MW 37.90% 25.81% 36.97% 
KC1 31.03% 27.69% 30.52% 
KC2 21.01% 23.58% 21.54% 
KC3 22.41% 32.56% 23.36% 

Average 30.34% 29.24% 30.90% 
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Table 7:  The Comparison Results of Two Classifiers on the Test Dataset. 
 

Dataset Classifier Type I Type II c=15 c=20 c=25 
Classifier 1 25.91% 45.68% 1.276 1.628 1.981 KC1 
Classifier 2 31.03% 27.69% 0.903 1.117 1.33 
Classifier 1 34.08% 34.70% 1.332 1.686 2.04 KC2 
Classifier 2 21.01% 23.58% 0.889 1.129 1.37 
Classifier 1 26.37% 41.47% 0.823 1.018 1.212 KC3 
Classifier 2 22.41% 32.56% 0.662 0.815 0.968 
Classifier 1 29.45% 51.46% 1.71 2.2 2.691 JM 
Classifier 2 21.13% 58.45% 1.842 2.399 2.956 
Classifier 1 38.73% 37.04% 0.879 1.055 1.231 CM 
Classifier 2 34.79% 20.83% 0.611 0.71 0.809 
Classifier 1 38.70% 36.77% 0.739 0.865 0.992 PC 
Classifier 2 44.13% 15.79% 0.573 0.628 0.682 
Classifier 1 40.52% 32.62% 0.75 0.876 1.001 MW 
Classifier 2 37.90% 25.81% 0.648 0.747 0.846 

 
CONCLUSION 

 
In this study, data repositories from seven NASA software projects are applied to investigate the performances of 
two GP-based classifiers. These classifiers train the SQC models using data extracted from different projects. The 
results demonstrate that combination of data from several software repositories with similar characteristics can 
significantly improve the robustness and accuracy of SQC models, even though different languages and various 
methods are used in these software projects. Further research will focus on finding new methods to improve 
performance of SQC modeling based on multiple software projects.  

 
Table 8:  The Results of Paired T-Test between Classifier 1 and Classifier 2. 

 
Classifier 1 c=15 c=20 c=25 

Mean 1.07 1.33 1.59 
Std 0.372 0.511 0.651 

Highest 1.71 2.2 2.691 
Lowest 0.739 0.865 0.992 
Median 0.879 1.05 1.23 
AAD 0.287 0.394 0.501 

Classifier 2 c=15 c=20 c=25 
Mean 0.875 1.08 1.31 
Std 0.446 0.615 0.793 

Highest 1.84 2.4 2.96 
Lowest 0.573 0.628 0.682 
AAD 0.257 0.366 0.507 

Difference c=15 c=20 c=25 
Mean 0.197 0.255 0.279 
Std 0.19 0.255 0.288 

Highest 0.443 0.557 0.651 
Lowest -0.132 -0.199 -0.265 
AAD 0.136 0.183 0.197 

p-value 0.033 0.038 0.043 
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