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ABSTRACT 

Adhikari, Hitesh. M.S. The University of Memphis. August 2016. Synthesis and 

Electrochemical Performance of Hydrothermally Synthesized Co3O4 Nanostructured Particles 

Major Professor: Sanjay R. Mishra, Ph. D. 

Spinel Co3O4 exhibit remarkable photo- and electro-chemical properties. Combined with 

its cost effectiveness and wide abundance, Co3O4 has emerged as a promising candidate for 

pseudocapacitor, fuel cell, lithium ion batteries, water splitting and energy applications. It is well 

documented in the literature that the pseudocapacitive performance of oxides depends on many 

factors such as type of oxide, surface area and morphology, electrolyte, temperature etc. In view 

of this, the present work delineates efforts to understand the effect of morphology on the 

electrocapacitive behavior of Co3O4 nanostructured particles. The systematic morphological 

changes in Co3O4 is achieved by varying hydrolyzing agent, urea content during the 

hydrothermal synthesis of particles. Morphology and size analysis using scanning electron 

microscopy (SEM), show hierarchical structures namely plate like architecture and brush like 

structures of particles. The electrochemical measurements are performed using standard three-

electrode system with 3M KOH electrolyte via cyclic voltammetry and galvanostatic charge-

discharge methods. Amongst the Co3O4 studied, Co3O4-U0.37 displayed moderate surface area 

(50.10 m2/g), highest specific capacitance (764 F/g at 5mV/s) and energy density (19.56 Wh/kg). 

The specific capacitance of all Co3O4 decreased with the increase in scan rate. The cyclic 

stability of Co3O4-U0.37 is studied up to 5,000 cycles and about 64% retention in charge storage 

capacity was observed. The superior electro-capacitive behavior of the Co3O4-U0.37 is attributed 

to high surface area, brush like structure, and high electrical conductivity amongst studied 

Co3O4. In conclusion, it is demonstrated that high specific capacitance is achievable in the same 

oxide material by the tight control of morphology of the material. The low hydrolyzing 

concentration aided in producing high surface area architecture. 
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  CHAPTER 1 

INTRODUCTION 

1.1 Energy storage 

Why store energy, and in particular, why store electrical energy? Energy storage is a 

critical component of manufacturing, of the service industry, of the future renewable energy 

industry, and of all the portable electronics with which we have become obsessed. Without 

modern energy storage, using lithium-ion (Li-ion) batteries, the decade of the smartphone, iPad, 

and iPod would not have progressed as it did [1]. Besides entertainment, energy storage plays a 

critical role in high-tech manufacturing where it is essential to have an uninterruptable power 

source of constant frequency. It is reported that some $80 billion is lost by U.S. industry [2] each 

year because of mainly short power interruptions. To ameliorate this, high-tech high-cost 

industry such as chip fabs have large power storage backups, using, for example, lead acid 

batteries, as well as frequency smoothing. Flywheels and ultracapacitors are finding application 

for grid frequency regulation in such critical applications, as utilities commonly vary the 

frequency to smooth the power output. Some essential service industries, such as the telephone 

industry rely mainly on large batteries for backup in case of power failure. In remote areas, such 

as Fairbanks, Alaska, a 40-MW Ni/Cd battery system is used to guarantee continuous power 

availability. There is a great need for electrical energy storage, not only for mobile electronic 

devices, such as cell phones, computers, and iPods, but also for transportation and load-leveling 

and for the effective commercialization of renewable resources such as solar and wind power. 

Fig.1.1 shows a typical renewable energy generation system with energy storage. 

Much attention is being given to hybrid electric vehicles (HEVs), in which batteries 

and/or capacitors are used to capture the energy evolved in braking. A related application is the 
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capture of the energy normally wasted when a dock crane is lowering a crate; capturing this 

energy through capacitors saves around 40% of total energy utilization. Similarly, subway trains, 

with many stops and starts, can capture the braking energy entering the station for use in 

accelerating out of the station. The next generation of electric vehicles might be plug-in hybrids, 

in which larger batteries are used and the vehicle can be recharged by plugging into the electrical 

power line. An effective unlimited range can be attained by using a small internal engine as a 

battery charger; the waste heat from the internal combustion engine can provide the heating and 

defogging energy. The all-electric vehicle might find a few niche markets; these include city 

buses and postal delivery and utility repair vehicles with much stopping and starting and limited 

daily ranges, high-cost hot-rod sports cars, and small commuter cars. In all of these 

transportation applications, low cost and long life are essential for commercial success. Neither 

can be attained with the present chemical storage battery and capacitor charge storage systems 

[3]. 

 
Fig.1.1. A typical renewable (distributed) energy generation system with energy storage [4]. 

Renewable energy sources are highly variable and un-predictable in their power output. 

To smoothen out this intermitted supply of energy, an energy storage device can be used. This 

device is charged when a surplus of energy is available, and discharged when the source does not 
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produce enough power for the load. Broadly two classes of energy storage can be identified, 

based on the length of the power transfer interval: short-term and long-term power transfer. The 

situation described above, where an energy storage device acts as an energy buffer, falls under 

long-term power transfer. Power can be delivered in this case from a few seconds to a few 

minutes or even longer. Short-term power transfer would for example be used to protect sensitive 

equipment against momentary voltage sags. In this case, power transfer can take place from a 

few milliseconds to a few seconds. In many cases, a short voltage sag can be ridden through 

with- out energy storage by making use of appropriate techniques [5]. 

1.2 Purpose of energy storage 

Energy storage is the storage of some form of energy that can be drawn upon later to 

perform some useful operation. All forms of energy are either potential energy, chemical or 

gravitational energy: 

i) A wind up clock stores potential energy (in this case mechanical, in the spring 

tension);  

ii) A battery stores readily convertible chemical energy to keep a clock chip in a 

computer running even when the computer is turned off; and  

iii) A hydroelectric dam stores power in a reservoir as gravitational potential energy.  

Energy storage became a dominant factor in economic development with the widespread 

introduction of electricity and refined chemical fuels, such as gasoline, kerosene and natural gas 

in the late 1800s. Unlike other common energy storage used in prior use, such as wood or coal, 

electricity must be used as it is generated. Electricity is transmitted in a closed circuit, and for 

essentially any practical purpose cannot be stored as electrical energy. This meant that changes 
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in demand could not be accommodated without either cutting supplies (e.g., blackouts) or 

arranging for a storage technique [6]. 

The rapidly growing commercial markets providing portable electronic devices and other 

related electronics such as electric vehicles  requires high-performance energy-storage systems 

[7].There is of course global issues threatening the environmental resulting in academics and 

industry exploring clean alternative energies where electricity storage needs to be either stored as 

electricity or in other forms of energy to meet growing consumers’ needs [8]. Electrochemical 

supercapacitors (ECs), also called supercapacitors or ultracapacitors, are electronic components 

that can be rapidly charged and discharged and relied upon to store energy reliably for long 

periods. Emerging as an ideal model, they have been touted as a solution to the mismatch 

between the fast growth in power required by devices and the inability of batteries in various 

applications which require transient but high/peak power pulses for the time-dependent usage 

[9]. 

1.3 Energy storage methods 

1.3.1 Chemical energy storage  

Chemical fuels have become the dominant form of energy storage, both in electrical 

generation and energy transportation. Chemical fuels in common use are processed coal, 

gasoline, diesel fuel, natural gas, liquefied petroleum gas (LPG), propane, butane, ethanol, 

biodiesel and hydrogen. All of these chemicals are readily converted to mechanical energy and 

then to electrical energy using heat engines that used for electrical power generation. 

Hydrogen: Hydrogen is a chemical energy carrier, just like gasoline, ethanol or natural 

gas. The unique characteristic of hydrogen is that it is the only carbon-free or zero-emission 
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chemical energy carrier. Hydrogen is a widely used industrial chemical that can be produced 

from any primary energy source. 

Biofuels: Various biofuels such as biodiesel, straight vegetable oil, alcohol fuels, or 

biomass can be used to replace hydrocarbon fuels. Various chemical processes can convert the 

carbon and hydrogen in coal, natural gas, plant and animal biomass, and organic wastes into 

short hydrocarbons suitable as replacements for existing hydrocarbon fuels. 

1.3.2 Electrochemical energy storage 

An early solution to the problem of storing energy for electrical purposes was the 

development of the battery, an electrochemical storage device. It has been of limited use in 

electric power systems due to small capacity and high cost. 

Batteries: A battery is a device that transforms chemical energy into electric energy. All 

batteries have three basic components in each cell – an anode, a cathode, and an electrolyte and 

their properties relate directly to their individual chemistries. Batteries are broadly classified into 

primary and secondary. 

Fuel Cells: Fuel cells were invented about the same time as the battery. However, fuel 

cells were not well developed until the advent of space-crafts when lightweight, non-thermal 

sources of electricity were required. Fuel cell development has increased in recent years to an 

attempt to increase conversion efficiency of chemical energy stored in hydrocarbon or hydrogen 

fuels into electricity. Like a battery, a fuel cell uses stored chemical energy to generate power. 

Unlike batteries, its energy storage system is separate from the power generator. It produces 

electricity from an external fuel supply as opposed to the limited internal energy storage capacity 

of a battery [10]. 

 



 

   6 
 

1.3.3 Electrical energy storage 

Superconducting magnetic energy storage (SMES): In a SMES system, energy is 

stored within a magnet that is capable of releasing megawatts of power within a fraction of a 

cycle to replace a sudden loss in line power. It stores energy in the magnetic field created by the 

flow of direct current (DC) power in a coil of superconducting material that has been 

cryogenically cooled [11]. 

Capacitor: Capacitors are two-terminal electrical elements. They are essentially two 

conductors, usually conduction plates - but any two conductors - separated by an insulator - a 

dielectric - with connection wires connected to the two conducting plates. They store energy on 

the surfaces of metalized plastic film or metal electrodes. When compared to batteries and 

supercapacitors, the energy density of capacitors is very low – less than 1% of a supercapacitor's, 

but the power density is very high, often higher than that of a supercapacitor. This means that 

capacitors are able to deliver or accept high currents, but only for extremely short periods, due to 

their relatively low capacitance [7]. 

Supercapacitor:A supercapacitor (sometimes ultracapacitor,formerly electric double 

layer capacitor (EDLC) is a high-capacity electrochemical capacitor with capacitance values 

much higher than other capacitors (but lower voltage limits) that bridge the gap 

between electrolytic capacitors and rechargeable batteries. They typically store 10 to 100 times 

more energy per unit volume or mass than electrolytic capacitors, can accept and deliver 

charge much faster than batteries, and tolerate many more charge and discharge cycles 

than rechargeable batteries. They are however 10 times larger than conventional batteries for a 

given charge. Energy storage is by means of static charge rather than of an electrochemical 

process inherent to the battery. Supercapacitors rely on the separation of charge at an electrified 

https://en.wikipedia.org/wiki/Electrochemistry
https://en.wikipedia.org/wiki/Capacitor
https://en.wikipedia.org/wiki/Electrolytic_capacitor
https://en.wikipedia.org/wiki/Rechargeable_battery
https://en.wikipedia.org/wiki/Energy_density
https://en.wikipedia.org/wiki/Power_density
https://en.wikipedia.org/wiki/Power_density
https://en.wikipedia.org/wiki/Rechargeable_battery
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interface that is measured in fractions of a nanometer, compared with micrometers for most 

polymer film capacitors. 

The lifetime of supercapacitors is virtually indefinite and their energy efficiency rarely 

falls below 90% when they are kept within their design limits. Their power density is higher than 

that of batteries while their energy density is generally lower. However, unlike batteries, almost 

all of this energy is available in a reversible process. 

1.4 Introduction to capacitor 

Conventional capacitors consist of two conducting electrodes separated by an insulating 

dielectric material. When a voltage is applied to a capacitor, opposite charges accumulate on the 

surfaces of each electrode. The charges are kept separate by the dielectric, thus producing an 

electric field that allows the capacitor to store energy. This is illustrated in Figure Fig.1.2. 

Capacitance C is defined as the ratio of stored (positive) charge Q to the applied voltage 

V: 

                                          
V

Q
C                                                                                       (1) 

For a conventional capacitor, C is directly proportional to the surface area A of each 

electrode and inversely proportional to the distance D between the electrodes: 

                                         
D

A
C                                                                                      (2) 



 

   8 
 

 
Fig.1.2. Schematic of a supercapacitor [12]. 

Where  = ε0 εr is a constant of proportionality wherein ε0 is the dielectric constant (or 

“permittivity”) of free space and εr is the dielectric constant of the insulating material between 

the electrodes. 

The two primary attributes of a capacitor are its energy density and power density. For 

either measure, the density can be calculated as a quantity per unit mass or per unit volume. The 

energy E stored in a capacitor is directly proportional to its capacitance: 

                           𝐸 =
1

2
𝐶𝑉2                                                                                               (3) 

In general, the power P is the energy expended per unit time. To determine P for a 

capacitor, though, one must consider that capacitors are generally represented as a circuit in 

series with an external “load” resistance R, as is shown in Fig.1.2. 

The internal components of the capacitor (e.g., current collectors, electrodes, and 

dielectric material) also contribute to the resistance, which is measured in aggregate by a 

quantity known as the equivalent series resistance (ESR). These resistances determine the 
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voltage during discharge. When measured at matched impedance (R = ESR), the maximum 

power Pmax for a capacitor is given by: 

                       𝑃𝑚𝑎𝑥 =
𝑉2

4×𝐸𝑆𝑅
                                                                                              (4)                                                                                                                                                         

This relationship shows how the ESR can limit the maximum power of a capacitor.     

Conventional capacitors have relatively high power densities, but relatively low energy 

densities when compared to electrochemical batteries and to fuel cells. That is, a battery can 

store more total energy than a capacitor, but it cannot deliver it very quickly, which means its 

power density is low. Capacitors, on the other hand, store relatively less energy per unit mass or 

volume, but what electrical energy they do store can be discharged rapidly to produce a lot of 

power, so their power density is usually high. 

Supercapacitors are governed by the same basic principles as conventional capacitors. 

However, they incorporate electrodes with much higher surface areas A and much thinner 

dielectrics that decrease the distance D between the electrodes. Thus, from Equations 2 and 3, 

this leads to an increase in both capacitance and energy. 

Furthermore, by maintaining the low ESR characteristic of conventional capacitors, 

supercapacitors also are able to achieve comparable power densities. Additionally, 

supercapacitors have several advantages over electrochemical batteries and fuel cells, including 

higher power density, shorter charging times, and longer cycle life and shelf life. Fig. 1.2 

provides a schematic diagram of a supercapacitor. 

The performance improvement for a supercapacitor is shown in Fig.1.3 graph termed a 

“Ragone plot.” This type of graph presents the power densities of various energy storage devices, 

measured along the vertical axis, versus their energy densities, measured along the horizontal 

axis. In Fig.1.3, it is seen that supercapacitors occupy a region between conventional capacitors 
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and batteries. Despite greater capacitances than conventional capacitors, supercapacitors have yet 

to match the energy densities of mid to high-end batteries and fuel cells. Thus, much of the 

literature surveyed for this overview focuses on developing improved types or classes of 

supercapacitors to make their energy densities more comparable to those of batteries. These 

factors and trends are reflected in the taxonomy of supercapacitors presented in the next section. 

 
Fig.1.3. Comparison of energy density and power density for various energy storage      

             devices [13]. 

1.5 Comparison of supercapacitors and batteries 

  While batteries and capacitors have similarities, there are several key differences. Table 

1.1 shows the differences of performance of supercapacitors and batteries.  The potential energy 

in a capacitor is stored in an electric field, where a battery stores its potential energy in a 

chemical form. The technology for chemical storage currently yields greater energy densities 

(capable of storing more energy per weight) than capacitors. However, when a battery is 

discharging it can be slower than a capacitor ability to discharge because there is a latency 

associated with the chemical reaction to transfer the chemical energy into electrical energy. A 
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capacitor is storing the electrical energy directly on the plates so discharging rate for capacitors 

are directly related to the conduction capabilities of the capacitors plates. A capacitor is able to 

discharge and charge faster than a battery because of this energy storage method. But unlike a 

battery that can turn its electrical current on and off, once a capacitor is connected to an outside 

circuit it will discharge as fast as it can until all the charge is drained. 

Table.1.1. PERFORMANCE COMPARISION BETWEEN SUPERCAPACITOR AND    

                  LI-ION BATTERIES [14]. 

Function Supercapacitor Lithium-ion 

Charge time 1-10 seconds 10-60 minutes 

Cycle life 1 million or 30,000h 500 and higher 

Cell voltage 2.3 to 2.75 V 3.6 to 3.7 V 

Specific energy (Wh/kg) 5 (typical) 100-200 

Specific power (W/kg) Up to 10,000 1,000 to 3,000 

Cost per Wh $20 (typical) $0.50-$1.00 (large system) 

Service life (in vehicle) 10 to 15 years 5 to 10 years 

Charge temperature -40 oC to 65 oC 0 oC to 45 oC 

Discharge temperature -40 oC to 65 oC -20 oC to 60 oC 

 

1.5   Supercapacitors 

Because of increasing demand of power in the modern society, energy 

storage/consumption is playing a more important role on future economics. The reliance on fossil 

fuels such as petroleum however has a severe impact on the global ecology. Therefore, energy 

storage systems that are more environmentally friendly, low-cost and high-performance have 

attracted much attention [15]. Electrochemical energy storage/conversion system with the 

mentioned properties is a prominent candidate for the modern energy storage systems.  

Electrochemical energy storage systems can be divided into three categories, which are 

batteries, fuel cells and supercapacitors, based on different energy conversion mechanisms. The 
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common denominators that the systems share are the separated electron/ion transport and that the 

energy conversion process happens at the electrode/electrolyte interface [9]. 

In batteries and fuel cells, energy is stored in the form of chemical energy and is 

converted to electrical energy through redox reactions. Cathode, anode and electrolyte are the 

common components in both battery and fuel cell. Ionic conductivity is provided by electrolytes, 

which eventually allows electric charges move to move between two electrodes. Fig.1.4 shows 

the schematic diagram of fuel cell.  

 
Fig.1.4. Schematic of a fuel cell [15]. 

The main difference between batteries and fuel cells is the locations where energy is 

stored [9]. In batteries, cathodes and anodes are the medium of charge-transfer and the places 

energy is stored. Electrodes are either reduced or oxidized, thus the redox reaction powers the 

battery. As a closed system, energy storage and conversion happen inside the system, which 

means chemical energy a battery carries is strictly limited to the electrode materials. On the 

contrary, fuel cells are open systems that require a constant source of chemical energy from 

outside the cell to run the reaction. Cathodes and anodes in fuel cells are just charge-transfer 



 

   13 
 

media. Because of the character, fuel cells are capable of producing electricity continuously if 

inputs are supplied constantly from environment.  

In supercapacitors, electric energy is stored at the electrode/electrolyte interface where an 

electrochemical double layer is formed [16]. Energy storage in the supercapacitors consists of 

electrostatic storage from separation of charge in a double layer at the electrode/electrolyte 

interface, and faradaic electrochemical storage from redox reactions. 

An ideal energy storage system compromises high-energy capacity and high rate of 

energy conversion. The reason for the interest in development of different electrochemical 

energy storage systems is shown in Fig.1.3, the so-called “Ragone chart” [17]. It is a chart used 

for performance comparison of various energy storage and conversion devices. “specific energy” 

(Wh/kg) or “energy density” (Wh/L) are the terms used to describe the energy contents of a 

system, whereas the speed of charge/discharge is indicated by the “specific power” (Wh/kg) or 

“power density” (Wh/L). The variations between the electrochemical energy storage systems 

come from the different energy storage/conversion mechanisms.  

 Fuel cells have the highest specific energy in the Ragone chart, which is mainly because 

of the constant chemical energy source from outside. As the most widely used energy storage 

system, battery has a lower energy capacity compared to fuel cells. Capacitors can be considered 

as high power systems based on the charge/discharge mechanism. Supercapacitors occupy the 

area between batteries and conventional capacitors. 

Supercapacitors have several orders of magnitude higher power density than that of 

battery, with a higher amount of energy stored compared to a conventional capacitor. 

Nevertheless, the amount of energy stored in supercapacitors is significantly lower than that of 

batteries and fuel cells. 
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Supercapacitor was demonstrated and patented by General Electric in 1957 [9]. Since then it 

has been attracting considerable attention from both scientists and engineers. With the features of 

longer cycle life, low maintenance, rapid charge/discharge and high power density, supercapacitors 

are believed to be capable of meeting the rapid growing demand for clean energy storage [18]. 

Nowadays, supercapacitors are used in a wide and growing range of high power density required 

applications. 

Supercapacitors can be divided into two categories based on different energy storage 

mechanisms: electric double-layer capacitors (EDLCs) and pseudocapacitors [10]. Fig.1.5 shows 

taxonomy of supercapacitors. EDLCs store energy using the adsorption of both anions and cations, 

and accumulated charge at electrode/electrolyte interface. So called “electric double-layer” refers to 

the layer of charge at the electrode/electrolyte interface that stores the charge. With the use of high 

surface area electrode materials significantly higher quantities of charge can be stored. Therefore, 

porous carbon materials with higher specific surface area and pore-size distribution, such as  

 
Fig.1.5. Taxonomy of Supercapacitors [19]. 
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activated carbons, aerogels, CNTs and mesoporous carbons, have been studied for use as electrodes 

in EDLCs [10]. Because of electrostatic surface-charge accumulation, EDLCs have very high rates 

of charge/discharge and infinite lifetime in principles, which makes it environmentally friendly (Fig. 

1.6). 

 
Fig.1.6. Schematic diagram of an electrochemical double-layer capacitor [20]. 

1.6 Pseudocapacitors 

In contrast to EDLCs, that store charge electro-statically, pseudocapacitors store charge 

faradaically through the transfer of charge between electrode and electrolyte. This is 

accomplished through electrosorption, reduction-oxidation reactions, and intercalation processes 

[21,22,23].The pseudo-capacitors may be allowed to achieve greater capacitance properties and 

energy densities than EDLCs by presence of Faradaic processes [15,24]. Two types of electrode 

materials are served to store charge in pseudocapacitors: (i) metal oxides and (ii) conducting 

polymers. 
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1.6.1 Metal oxides 

Because of their high conductivity, metal oxides viz. NiO, MnO2, Fe3O4, Co3O4, 

NiCo2O4, RuO2 etc. have also been explored as a possible electrode material for 

pseudocapacitors [10, 13, 25, 26, 27 ]. The majority of relevant research concerns ruthenium 

oxide. This is because other metal oxides have yet to obtain comparable capacitances. The 

capacitance of ruthenium oxide is achieved through the insertion and removal, or intercalation, 

of protons into its amorphous structure. In its hydrous form, the capacitance exceeds that of 

carbon-based and conducting polymer materials [20-21]. Furthermore, the ESR of hydrous 

ruthenium oxide is lower than that of other electrode materials. As a result, ruthenium oxide 

pseudocapacitors may be able to achieve higher energy and power densities than similar EDLCs 

and conducting polymer pseudocapacitors. However, despite this potential, the success of 

ruthenium oxide has been limited by its prohibitive cost. Thus, a major area of research is the 

development of fabrication methods and composite materials to reduce the cost of ruthenium 

oxide, without reducing the performance [10, 13, 19]. 

1.6.2 Conducting polymers 

Conducting polymers have a relatively high capacitance and conductivity, plus a relatively 

low ESR and cost compared to carbon-based electrode materials [28]. In particular, the n/p-type 

polymer configuration, with one negatively charged (n-doped) and one positively charged (p-

doped) conducting polymer electrode, has the greatest potential energy and power densities; 

however, a lack of efficient, n-doped conducting polymer materials has prevented these 

pseudocapacitors from reaching their potential [29]. 
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1.7 Applications of pseudocapacitors 

Electrochemical supercapacitors are still novel devices that have yet to practice 

widespread use. This is all because of their restricted power and energy capabilities, and 

therefore find only useful in low power and energy applications like memory backup. Currently, 

great advances have been made in improving characteristics like energy and power density. 

Novel applications for EDLCs are being discover and promoting at excellent rate [30]. The 

supercapacitors find application in electric vehicles, battery enhancement, memory backup, 

improved quality of power and many more. 

1.8 Limitation of pseudocapacitors 

The major advantages of using supercapacitor against batteries include extended life 

time, amplified rated voltage, wide range of working temperature, superior energy and power 

densities, excellent cyclability (hundreds of thousands charge/discharge cycles as compared with 

hundreds of cycles for storage batteries) [31]. However, like every device’s limitation, 

supercapacitors too have some demerits like low energy density for example it generally holds 

1/5th to1/10th of a battery. Inability to use the full energy spectrum for some applications. To get 

higher voltages, serial connections are required as these are low voltage cells. A voltage-

balancing element is always required to connect more than three supercapacitors in series to use 

accordingly for any application. Disadvantage of self-discharge in compared to electrochemical 

batteries. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 RuO2 pseudocapacitance 

Most of the work on pseudocapacitors utilizing pseudo-capacitance has been done 

using mixed metal oxide materials, but the most success has been achieved using ruthenium 

and tantalum oxides [32,33]. The high cost of ruthenium has resulted in a search for other 

metal oxides and nitrides for use in pseudocapacitors electrodes, but no substitute for 

ruthenium has been found with a comparable specific capacitance and higher surface area 

[27]. The most extensive efforts to develop pseudocapacitors using ruthenium oxide have 

been done at Pinnacle Research Institute (PRI) [34,35]. The PRI devices utilized a thin 10–50 

µm layer of ruthenium / tantalum oxide on a titanium substrate with sulfuric acid as the 

electrolyte. 

Since the pioneering study by Trasatti and Buzzanca who first recognized that the 

‘rectangular’ shaped cyclic voltammogram of a RuO2 film resembled that of the electric double 

layer capacitors, much effort has been devoted to enhancing the capacitance as well as the 

fundamental understanding of the mechanism of the pseudocapacitance [36].They found the film 

of RuO2 behaves as an electric condenser exhibiting a charging and discharging process in 1M 

HClO4 at scan rate of 40 mV/s. 

Gujar et.al. successfully electrochemically deposited ruthenium oxide (RuO2) onto tin 

doped indium oxide (ITO) electrode and used as electrodes to form a supercapacitor in a 0.5M 

H2SO4 electrolyte [37]. For electrochemical supercapacitor applications, He found that the 

electrochemically prepared crystalline RuO2 was stable for large number of cycles with the 

specific capacitance 498 F/g at a scan rate of 5 mV/s. He also observed that the specific 
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capacitances of RuO2 electrode decreased with an increase of scan rate and maximum 

capacitance 498 F/g was observed at 5 mV/s. 

Zheng et.al. demonstrated an excellent electrode property of RuO2.xH2O be an excellent 

electrode material for electrochemical capacitors as prepared by a sol‐gel process at low 

temperatures and found that specific capacitance is over 720 F/g [38]. This value is at least two 

times higher than the highest value ever reported for such materials.  

Bi et.al. investigated RuO2 nanoparticles on carbon nanotubes for potential application in 

electrochemical capacitors as electrode materials [39]. He demonstrated that the supporting 

material of carbon nanotubes can significantly promote the supercapacitance performance of 

RuO2 and achieved a specific capacitance as 953 F/g. The results presented give clear evidence 

of the ability of CNTs to improve the electrochemical performance of electrode materials, such 

as nanostructured transition metal oxides. 

Provencher et.al. reported for the first time that pseudocapacitance can arise on a metal 

oxide electrode (RuO2) in a PIL electrolyte composed of 2-methylpyridine and trifluoroacetic 

acid [40].He also studied the capacitive behavior on a thermally prepared RuO2 electrode of 

several new protic ionic liquids composed of heterocyclic amines and trifluoroacetic acid ( TFA) 

at the 1:1 and 1:2 base: acid ratio where he found the Redox peaks attributed to the shift of the 

oxidation state of RuO2, thus giving direct evidence that pseudocapacitance is involved in the 

energy storage mechanism. 

Hu et.al. successfully designed and tailored an advanced electrode material with a 3D, 

arrayed, nanotubular architecture; annealed RuO2.xH2O nanotubes which achieve the 

performances (ultrahigh-power characteristics and high capacity) required for next generation 

supercapacitors by using a very simple, one-step, reliable, cost-effective, anodic deposition 
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technique [41]. This unique structure not only reduces the diffusion resistance of electrolytes but 

also enhances the facility of ion transportation and maintains the very smooth electron pathways 

for the extremely rapid charge/discharge reactions. The specific power and specific energy of 

RuO2.xH2O nanotubular arrayed electrodes is equal to 4320 kW /kg and 7.5 W h/kg, 

respectively, achieving the perfect performance for next generation supercapacitors where 

specific capacitance was found as 740 F/g. 

Chen et.al. developed a simple and efficient approach to produce hybrid nanostructured 

electrodes via the integration of RuO2 nanowires and printed single-walled carbon nanotube 

films [42] which displayed an enhanced device performance, in terms of coulombic efficiency of 

>99%, specific capacitance of 138 F/g, power density of 96 kW/kg, and energy density of 18.8 

Wh/kg suggesting that printable electrochemical capacitors hold significant promise for 

applications in wearable energy storage devices, and can be fully integrated with the fabrication 

process in current printed electronics. 

Liu et.al. successfully prepared a series of Co3O4/RuO2·xH2O by one-step co-

precipitation method with the usage of P123 as a soft template [43]. From the results of 

electrochemical measurements, he found that the specific capacitances and stability of the 

composites are strongly dependent on the heat treatment temperature. A highest capacitance of 

642 F/g was obtained from the composite with molar ratio of Co:Ru = 1:1 at 150 ◦C and the 

capacitance gradually decrease with rising of the heat treatment temperature ranging from 150 ◦C 

to 900 ◦C, but the recyclability of the composites is improved. 

Among the transition-metal oxides, ruthenium oxide has been employed as one of the 

most important electrode materials for electrochemical supercapacitors because of its ultrahigh 

pseudocapacitance and reversibility of accepting and donating protons from an aqueous 
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electrolyte. The above synthesis methods gave improvement of specific capacitance of RuO2 to 

some extent. However, because of the high cost of Ruthenium, the commercial application of 

RuO2 as electrode materials in supercapacitors has been restricted. The limitation has encouraged 

several studies of cheap metal –oxides. 

2.2 Supercapacitance in metal-oxides 

Supercapacitors using metal oxides for the electrodes has been under development for 

nearly ten years. Most of the work has been done using ruthenium oxides, but more recently 

other metal oxides have received attention in order to use precursor materials for electrode 

formation that are more plentiful and lower cost than ruthenium oxides. Extensive efforts have 

been devoted to improve the specific capacitance of supercapacitors by introducing pseudo-

capacitive metal oxides. Compared with EDLC-based capacitors; pseudocapacitor based on 

metal oxide electrodes have attracted a large amount of attention since they can produce higher 

capacitances than double-layer carbonaceous materials. In terms of base metal oxides such as 

MnO2, NiO, Fe3O4, etc., their outstanding pseudo-capacitive behavior, practical availability, 

environmental compatibility and lower cost have been demonstrated when compared to the state-

of-the-art supercapacitor material RuO2. 

Zhang et.al. reported a facile way to grow various porous NiO nanostructures including 

nanoslices, nanoplates, and nanocolumns, which show a structure-dependence in their specific 

charge capacitances [44]. The formation of controllable porosity was due to the dehydration and 

re-crystallization of β-Ni(OH)2 nanoplates synthesized by a hydrothermal process. The specific 

capacitance of the porous NiO nanocolumns (390 F/g) is significantly higher than that of the 

nanoslices (176 F/g) or nanoplates (285 F/g) at a discharge current of 5 A/g. This approach 

provides a clear illustration of the process–structure–property relationship in nanocrystal 
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synthesis and potentially offers strategies to enhance the performance of supercapacitor 

electrodes. 

Nam et.al. prepared NiOx thin film electrodes for use in a supercapacitor by 

electrochemical precipitation of Ni(OH)2 films followed by heat-treatment [45]. He examined the 

effect of electrodeposition conditions such as cathodic current density and concentration of 

Ni(NO3)2 solution on the surface morphology of NiOx and found to have a significant effect on 

the surface morphology of the deposited films. A maximum specific capacitance of 277 F/g was 

obtained for a highly porous NiOx film electrode prepared by heating the Ni(OH)2 film deposited 

at 4.0 mA/cm2 in 0.1 M Ni(NO3)2 at 300 ◦C which seems to be caused by an increase in the 

surface active sites, which is induced by the formation of a porous surface morphology. 

Pang et.al. deposited thin films of manganese dioxide on nickel foils by electrodeposition 

and by both dip-coating and drop-coating with manganese dioxide suspensions (sols) and their 

subsequent gelation and calcination [46]. The performance of these films as ultracapacitors was 

studied by cyclic voltammetry in the range 0.0-0.9 V (SCE) and by chronopotentiometry in 

unbuffered Na2SO4 solution. The cyclic voltammograms of ultrathin, dip-coated sol-gel-derived 

films indicated better capacitive behavior and gave differential specific capacitance values as 

high as 698 F/g compared to values half to two-thirds as great for the electrodeposited films. In 

conclusion, sol-gel-derived nano particulate manganese dioxide thin films on nickel foils have 

been shown to be an outstanding electrode material for the fabrication of ultracapacitors. 

Chen et.al. fabricated flexible asymmetric supercapacitors (ASCs) based on transition-

metal-oxide nanowire/single-walled carbon nanotube (SWNT) hybrid thin-film electrodes which 

exhibited a superior device performance with specific capacitance of 184 F/g, energy density of 

25.5 Wh/kg, and columbic efficiency of 90% [47]. In this research, manganese dioxide 



 

   23 
 

nanowire/SWNT hybrid films worked as the positive electrode, and indium oxide 

nanowire/SWNT hybrid films served as the negative electrode in a designed ASC. The superior 

performance was attributed to the enhanced charge storage contributed by electrical double-layer 

capacitance from SWNT films and pseudocapacitance from transition-metal oxide nanowires, 

and good conductivity as a result of using SWNTs as conductivity agent. 

Du et.al. assembled and characterized activated carbon (AC)-Fe3O4 nanoparticles 

asymmetric supercapacitor cells in 6 M KOH aqueous electrolyte for the first time where the 

nanostructure Fe3O4 was prepared by the microwave method [48]. The supercapacitor delivered 

a specific capacitance of 37.9 F/g at a current density of 0.5 mA/cm2. The result of cyclic 

characteristic test showed that it also could keep 82% of initial capacity over 500 cycles. The 

results of CV, EIS, and the charge/discharge measurements proved that this kind of hybrid 

supercapacitor has good electrochemical capacitance performance within potential range from 0 

to 1.2 V. 

Metal oxides used as electrode active materials for ECs have developed at a high rate 

over the past decades and may be classed as either noble or based metal oxides. However, their 

relatively high cost, low capacitance values and potential (reported) harmful nature to the 

environment have limited their widespread application in supercapacitors. 

2.3 Supercapacitance in mixed metallic oxides 

A promising family of mixed transition-metal oxides (MTMOs) (designated as AxB3-xO4; 

A, B = Co, Ni, Zn, Mn, Fe, etc.) with stoichiometric or even non-stoichiometric compositions, 

typically in a spinel structure, has recently attracted increasing research interest worldwide. 

Benefiting from their remarkable electrochemical properties, these MTMOs will play significant 

roles for low-cost and environmentally friendly energy storage/conversion technologies. 
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Yuan et.al. fabricated an advanced three-dimensional electrode by growing ultrathin 

mesoporous NiCo2O4 nanosheets on Ni foam with strong adhesion for high-performance 

electrochemical capacitors [49].  The synthesis involved the co-electrodeposition of a bimetallic 

(Ni, Co) hydroxide precursor on a Ni foam support and subsequent thermal transformation to 

spinel mesoporous NiCo2O4. As a result, superior pseudocapacitive performance was achieved 

with an ultrahigh specific capacitance of 1450 F/g, even at a very high current density of 20 A/g, 

and excellent cycling performance at high rates, suggesting its promising application as an 

efficient electrode for electrochemical capacitors. 

Cheng et.al. deposited ZnCo2O4 nanoflakes on a cellular nickel foam using a cost 

effective hydrothermal procedure where he found an excellent specific capacitance of 1220 F/g 

at a current density of 2 A/ g in a 2 M KOH aqueous solution and a long-term cyclic stability of 

94.2% capacitance retention after 5000 cycles [50]. The mesoporous ZnCo2O4 nanoflakes have 

large electroactive surface areas with strong adhesion to the Ni foam, allowing fast ion and 

electron transport. The fabrication strategy is facile, cost-effective, and can offer great promise 

for large-scale supercapacitor applications. This may be due to the unique three-dimensional 

mesoporous nanoflakes architecture with a very large surface area and porosity offers faster 

ion/electron transfer, an improved reactivity and enhanced electrochemical kinetics. 

Mondal et.al. successfully synthesized the mesoporous flake-like manganese-cobalt 

composite oxide (MnCo2O4) through the hydrothermal method [51]. As an electrode material for 

supercapacitors, the flake like MnCo2O4 also demonstrates a high supercapacitance of 1487 F/g 

at a current density of 1 A/g, and an exceptional cycling performance over 2000 

charge/discharge cycles. In view of its simple preparation process and excellent electrochemical 

performance, this mesoporous flake like MnCo2O4 might serve as an attractive candidate for 
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LIBs and supercapacitors. The excellent electrochemical performance might be attributed due to 

the pores in the flake-like MnCo2O4, which not only serve as a reservoir for the electrolyte, but 

also enhance the diffusion kinetics in the interior of the electrode. 

Wang et.al. successfully synthesized multi-shelled CoFe2O4 hollow microspheres with a 

tunable number of layers (1–4) via a facile one-step hydrothermal method using cyclodextrin as a 

template, followed by calcination at 550 ◦C for 2 hours [52]. The CoFe2O4 hollow spheres 

displayed significantly enhanced electrochemical performance relative to the reported CoFe2O4 

nanocomposites because of the unique, porous, hollow multi-shelled structure. The initial 

capacities of the single-, double-, triple-, and quadruple-shelled CoFe2O4 microspheres were 

406.8, 552.8, 1,450.0, and 1,211.0 F/g, respectively. This may be caused by activation of the 

electrode materials during the reaction. In addition, high capacitance of the CoFe2O4 hollow 

spheres may be attributed not only to the Faradic pseudocapacitance of the CoFe2O4 

nanoparticles, but also to the unique structure of these nanocomposites. 

While reviewing different literatures, it was well known that structures also character 

electrode materials. Due to the fact that the functionalities of materials can be tuned efficiently 

through manipulating their structures, diverse strategies have been developed successfully to 

produce materials with well-defined structures. Crystallographic nature may play important role 

in order to improve further the performances of energy storage devices such as supercapacitors. 

2.4 Crystallographic structures of Co3O4 

There has been an increasing interest in developing materials based on cobalt oxides 

because of their potential application in many technological fields [53].Co3O4 belongs to the 

normal spinel crystal structure based on a cubic close packing array of oxide ions.Co3O4 is one 

of the most intriguing magnetic p-type semiconductors known, and has found use in applications 
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in many fields, such as sensors, heterogeneous catalysts, electronic devices , magnetic materials, 

supercapacitors and solid state sensors [54]. Co3O4 crystallizes in the cubic normal spinel 

structure (space group Fd3̅m ) which contains cobalt ions in two different oxidation states, Co2+ 

and Co3+. These are located at the interstitial tetrahedral (8a) and octahedral (16d) sites, 

respectively, of the close-packed face centered cubic (fcc) lattice formed by the oxygen ions. 

(Fig.2.1) 

Fig.2.1. Unit cell (on the left) and primitive cell (on the right) of Co3O4. Light cyan and navy   

  blue balls indicate Co2+ and Co3+ ions, red ones indicate O2- ions [55]. 

In a simplified picture, the crystal fields at the 8a and 16d sites split the five degenerate 

atomic d orbitals into two groups, leading to 3 unpaired d electrons on Co2+, while all the d 

electrons of Co3+ are paired (Fig.2.2). As a result, the Co3+ ions are not magnetic, whereas the 

Co2+ ions carry a magnetic moment. Experimentally, Co3O4 is a paramagnetic semiconductor at 

room temperature. It becomes antiferromagnetic below TN ~ 40 K, [56] where the 
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antiferromagnetism is mainly due to the weak coupling between nearest neighbor Co2+ ions. The 

conductivity is usually p-type at low temperature and intrinsic at high temperature [57] measured 

values of the band gap are around 1.6 eV [58,59]. 

2.5 Co3O4 as supercapacitors 

For the purpose of improving supercapacitors energy densities, numerous efforts have 

been made to investigate pseudocapacitive transition metal oxides or hydroxide (such as RuO2, 

MnO2, NiO, Co3O4, Ni(OH)2, Co(OH)2, NiCo2O4 etc.) and their composites with conductive 

additives, which could produce higher specific capacitance than typical carbonaceous materials 

with electric double layer capacitance. Among these available pseudocapacitive materials, Co3O4 

is particularly attractive for application in supercapacitors, due to its low cost, low environmental 

footprint, great redox activity and especially, extremely high theoretical specific capacitance 

(3560 F/g) [60,61]. 

However, the observed specific capacitance for Co3O4 are much lower than its theoretical 

value [62], and it is still challenging and imperative to improve its specific capacitance as well as 

rate capability and long term stability with rational design and fabrication process. 

2.6 Review of Co3O4 as electrode for supercapacitors 

Gao et. al. successfully prepared Co3O4 nanowire arrays on nickel foam e prepared via template-

free growth followed by thermal treatment at 300 ◦C in air, which showed a maximum specific 

capacitance of 746 F/g measured at a current density of 5 mA/cm2 in KOH electrolyte solution 

[63].This excellent specific capacitance is due to the open spaces between neighboring 

nanowires which allow for easy diffusion of electrolyte into the inner region of the electrode, 

resulting in reduced internal resistance .In addition ,each nanowire has its own contact with the 
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nickel foam current collector ensuring all nanowires participate in the electrochemical reaction, 

and thus enhanced the utilization of active materials. 

Wang et.al. synthesized nanoporous cobalt oxide nanorods using a facile and efficient 

hydrothermal method, nanoporous Co3O4 nanorods were prepared and maximum specific 

capacitance of 281 F/g was obtained at a 5 mV/s scan rate in 2 M KOH solution [64]. This 

indicated that the capacitance obtained was not pure double layer capacitance, but mainly 

originated from Faradaic pseudocapacitance. This high supercapacitance of Co3O4 nanorods 

could be attributed to the nanoporous structure of nanorods with high specific surface area. 

Cui et.al. successfully synthesized Co3O4 nanorods by thermal decomposition of the 

precursor prepared via a facile and efficient microwave-assisted hydrothermal method, using 

cetyltrimethylammonium bromide (CTAB) with ordered chain structures as soft template for the 

first time [65]. This Co3O4 nanorods as electroactive materials for supercapacitor exhibited 

supercapacitance of 456 F/g for a single electrode even after 500 cycles, suggesting its potential 

application in electrochemical capacitors which could be due to the maximum charge transfer 

process at the electrode/electrolyte interface. 

Shinde et.al. deposited uniform and adherent cobalt oxide thin films on glass substrates 

from aqueous cobalt chloride solution, using the solution spray pyrolysis technique and studied 

the possible application in energy storage devices using Co3O4 and found that the supercapacitor 

properties of spray deposited Co3O4 film is capable of exhibiting specific capacitance of 74 F/g 

[66] in 2M aqueous KOH electrolyte. This relatively low capacitance may be attributed to the 

anhydrous nature of Co3O4 electrode; due to high temperature preparation technique and the 

resistance of current collector, i.e. fluorine doped tin oxide (FTO) coated glass substrate. 



 

   29 
 

Xu et.al. successfully synthesized Co3O4 nanotubes by chemically depositing cobalt 

hydroxide in anodic aluminum oxide (AAO) templates and thermally annealing at 500◦C 

[62].The electrochemical capacitance behavior of the Co3O4 nanotubes electrode was 

investigated by cyclic voltammetry, galvanostatic charge–discharge studies and electrochemical 

impedance spectroscopy in 6 M KOH solution and demonstrated the good capacitive behavior 

with a specific capacitance of 574 F/g at a current density of 0.1 A/g which may be due to the 

surface adsorption of high concentration alkali ions which can decrease the electrolyte starvation 

near the electrode surface and reduce the internal resistance of the electrode, which help to 

improve the pseudocapacitance . 

Wei et.al. successfully synthesized with the epoxide addition procedure for the first time 

by using cobalt nitrate as the precursor [67]. The specific capacitance of 623 F/g was observed, 

indicating high reversibility of the redox reaction on oxide surfaces. This high capacitance is due 

to increasing the difficulty for the diffusing electrolytes to access the internal pore surfaces of the 

porous electrode and increasing the pathway distances that the electrons need to travel. The high 

specific surface area and porosity as well as the mesoporous structure of the cobalt oxide aerogel 

are essential for the obtained outstanding supercapacitive properties. 

Zheng et. al. synthesized mesoporous Co3O4 nanoparticles with different textural 

parameters by using mesoporous silicas, KIT-6 and SBA-15, as templates and Co(NO3)2·6H2O 

as precursor via an improved solid-liquid route [68] .He also studied the effects of calcination 

temperature and textural parameters on the electrochemical capacitive behaviors of Co3O4 

samples. He found that the results of electrochemical tests showed the capacitance value of the 

sample decreases slightly with the increase of the calcination temperature and the maximum 

specific capacitance value of the samples can reach 370 F/g. He realized that the BET surface 
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area is the crucial factor for the capacitance value of the sample; and for mesoporous materials, 

large pore size and high ordered degree of mesopore are advantageous to the maintenance of the 

capacitance value at high discharging current. 

2.7 Summary 

In this chapter, the recent advances in metal oxide electrode materials for supercapacitors 

have been reviewed. It is unquestionable that metallic oxide materials play a key role in 

developing high-performance energy storage devices. The electrochemical performances of 

electrode materials are mainly depending on their morphology and size. Due to the high specific 

surface area of nanostructured materials, these materials can provide more active sites for 

electrochemical reactions, short diffusion pathways for both ions and electrons and effectively 

alleviate the volume change during charge-discharge process, leading to enhanced 

electrochemical performance. Nanostructured electrode materials with high capacity, good 

safety, long cycle life and good reliability will undoubtedly boost the performance of lithium ion 

batteries and supercapacitors and facilitate their extensive application. In this thesis, study is 

emphasizing on cobalt oxide electrode materials with improved electrochemical performance for 

supercapacitors applications. 
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CHAPTER 3 

RESEARCH HYPOTHESIS AND APPROACH 

3.1  Statement of hypothesis 

As discussed in the literature review, structure, morphology, electrolyte etc. influences the 

electrochemical behavior of oxide electrodes. In this study, the effort is to change the 

morphology of Co3O4 to achieve high surface area and subsequently assessed its 

electrocapacitive performance. The change in morphology of Co3O4 is achieved via hydrolyzing 

agent, urea, in this study. The influence of morphology on the electrochemical performance of 

Co3O4 electrodes will be `assessed via galvanometric study. Several routes such as solvothermal 

[69], thermal decomposition [70], hydrothermal [71], spray pyrolysis [72], electrostatic spray 

deposition [73], sol-gel [74], precipitation [75], electrospinning [76], anodic oxidation of alloys 

[77], rheological phase reaction and pyrolysis [78], gel hydrothermal oxidation [79], 

electrodeposition technique [80] etc. are available for the synthesis of Co3O4 nanostructures. Out 

of these methods, we have adopted hydrothermal synthesis method for the preparation of Co3O4. 

3.2  Hydrothermal method 

Hydrothermal method is a synthesis method of single crystals from high temperature 

aqueous solution at high vapour pressure [81]. The crystal growth is performed in an apparatus 

consisting of a steel pressure vessel called an autoclave, in which a nutrient is supplied along 

with water. The crystal growth in hot solvent under high pressure depends on the solubility of the 

precursors. Hydrothermal method can create crystalline phases that are unstable at the melting 

point temperatures. The hydrothermal method can also grow materials that have a high vapour 

pressure near their melting points. This method is particularly suitable for the growth of many 

crystals with various morphologies and is widely used to prepare nanostructured materials. 
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Synthesis conditions can affect the morphology, composition and crystal structure of the 

materials. These include the temperature, the volume of the solvent, the concentration of the 

precursors and the use of a surfactant. The autoclave used in this study is made of stainless steel 

and the inside contains a polytetrafluoroethylene (PTFE) lined with 50 ml capacity, which is 

shown in Fig. 3.1 (a and b). In this study, hydrothermal method was employed to synthesize 

Co3O4 nanostructure, which is presented in Chapter 4. 

 
Fig.3.1. (a) Electric oven and (b) Autoclaves for hydrothermal synthesis [69]. 

3.3 Urea as hydrolysis Agent 

Morphology plays a significant role in the electrochemical properties So It is much 

dependent on the adapted synthesis techniques. Particularly the use of oxidizer, complexing, and 

dispersing agent is essential in controlling the morphology of the particles [69]. Urea is chosen as 

a forced-hydrolysis agent in this study as it is water soluble in temperatures between 80 and 100 ◦ 

C, and gradually decomposed into NH3 and CO2 [82]. Further NH3 reacts with water to produce 

NH4
+

 and OH- as shown below; 

CO (NH2)2 + H2O→2 NH3 +CO2↑ 

NH3 + H2O→ NH4
+ + OH- 
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Fig.3.2. Schematic representation of the proposed formation mechanism for shaped  

  Co3O4 [83]. 

According to schematic Fig.3.2, It is clear that urea plays an important role in the formation of 

structures along with hydrothermal time too. The formation of NH3 and CO2 from urea exists in 

the form of bubbles in aqueous solution [84,85]. These bubbles acts as soft templates. At the 

initial stage, the nanoparticles of hydrated cobalt hydroxy carbonate grow around the bubbles 

forming a hierarchical structure in which the particles are loosely packed. By Ostwald ripening, 

the particles grow along a certain crystallographic axis with the exposure of the plane forming 

different structures [74]. In the oxide crystal growth process, tiny crystalline nuclei are formed, 

and nanoparticles of this oxide gets precipitated by an increase in pH due to NH4
+ ions generated 

from of NH3 as a result of  urea decomposition with increased temperature. The hydrolysis of 

urea leads to a rise in the pH due to increased release of NH4
+

 in the solution. The urea 

hydrolysis progresses slowly, and the basic solution undergoes supersaturation of the metal-

hydroxide species [86,87]. Thus, the formation of metal-oxide occurs by a nucleation process 

with the preferred growth direction of the crystal. Furthermore, by the formation of gas 

molecules and an increase in the pressure in the hydrothermal system is expected to perturb 
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nanocrystalline growth and thereby may result in morphological changes. Under mild reaction 

conditions, hydrothermal time and temperature ~180 ◦C, this added factor may accelerate the 

reaction between the synthesis precursors and lead to anisotropic crystal growth and the 

crystallization of oxide. 

3.4       Proposed Tasks 

The purposed task is to synthesize of Co3O4 nanostructures with different urea 

concentration, study crystal structure, phase, morphology using SEM, XRD, Raman and FTIR, 

surface study using BET and electrochemical performance using potentiostat.  
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CHAPTER 4 

EXPERIMENTAL 

4.1  Sample preparation 

Weighing advantages and disadvantages of the various synthesis route as discussed in the 

literature review section, a prudent choice was made in favor of hydrothermal technique to 

synthesis Co3O4. Samples were prepared via hydrothermal method using cobalt nitrate 

hexahydrate salt and urea, in which metal nitrates acted as an oxidizing reactant and urea is as a 

hydrolyzing agent (combustion fuel). This process is simple, safe, and rapid process where in 

main advantages are high homogeneity, high purity, time saving and ultrafine powders. 

The hydrothermal process, in which the chemical reaction could take place under auto-

generated pressure upon heating, is efficient to achieve the crystalline phase at relatively low 

temperatures. The hydrothermal process proceeds with aqueous and/or non-aqueous systems as 

the reaction medium and is environmentally friendly since the reactions are carried out in a 

closed system. The phase, particle size, and crystallinity can easily be controlled by 

hydrothermal conditions [88]. In particular, the particles prepared through hydrothermal 

synthesis are expected to have large surface area, smaller crystallite size, and higher stability 

than those obtained by other methods. 

Chemicals required for the synthesis were purchased from Sigma Aldrich. Stoichiometric 

amount of Co (NO3)2.6H2O and different weight concentration (Molar Ratio /Mass Ratio=4, 2, 

0.5, 0.3, 0.15) of urea (Co (NH2)2) were dissolved in a minimum amount of deionized water (35 

ml) by stirring on a hotplate at 60 ◦C for 30 minutes. Then the entire solution was transferred to a 

45 mL Teflon lined autoclave and maintained at 180 ◦C for 10 h and then cooled to room 

temperature naturally The precipitates were collected and washed with water and ethanol several 
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times by centrifugation and then dried at 80 ◦C for overnight. All of the as-synthesized 

intermediate products were calcined at 350 ◦C in air for 3.5 hrs. 

The balanced chemical reaction for process is given as:    

Hydrothermal reaction: 2Co (NO3)2 + 2CO (NH2)2 + 5H2O→Co2(OH)2CO3↓ + 4NH4NO3 +CO2↑ 

Heat-treatment: 3Co2(OH)2CO3 + O2→2Co3O4 + 3H2O↑ + 3CO2↑ 

The detail amount of chemicals used for the synthesis of Co3O4 is summarized in the Table 4.1.  

TABLE 4.1. DETAILS OF THE CHEMICALS USED FOR PREPARATION OF Co3O4 

             Sample Co(NO3)2 .6H2O (gm) Urea (gm) 

     Co3O4-U2.99     3.626 2.993 

Co3O4-U1.49 3.626 1.497 

Co3O4-U0.37 3.626 0.374 

Co3O4-U0.22 3.626 0.224 

Co3O4-U0.11 3.626 0.112 

 

4.2  Sample characterization 

4.2.1     X-ray diffraction (XRD) 

X-ray diffraction is a non-destructive analytical characterization technique to determine 

the crystal phase and structure. It generates an x-ray beam hitting a sample as a function of 

incident and scattered angle, polarization and wavelength or energy. A certain sample has a 

particular arrangement within the unit cell and this will lead to particular relative intensities of 

the recorded diffraction peaks upon x-ray hitting. Therefore, the unit cell size and geometry may 

be resolved from the angular positions of the x-ray diffraction results. The resultant diffraction 

lines with obvious peaks together are called an x-ray diffraction (XRD) pattern. Since the 

wavelength of x-ray is comparable to the size of atoms, they are suited for examining the 

structural arrangement of atoms and molecules in a wide range of materials. Each crystal has its 

unique characteristic x-ray diffraction pattern based on Bragg’s law: 
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nλ = 2d sin θ                                                        (5) 

Where d is the interplanar spacing, θ is the Bragg angle, n is the order of reflection and λ 

is the wavelength of the x-rays irradiation. 

In this research work, the basic use of XRD was to determine the actual phase of the 

material by comparing the obtained XRD pattern to the known standard diffraction lines in the 

International Centre for diffraction Data (ICDD) database. Samples were prepared by mounting 

the sample powder onto a low background glass disk. As the XRD test is non-destructive, the 

material can be reused for other tests. Structural characterization including phase purity, lattice 

parameter, crystalline size, lattice strain was performed on powder samples using x-ray 

diffractometer (D8 Advance Bruker Inc.) with Cu-Kα radiation ( λ=1.54056 Å).  

4.2.2     Scanning electron microscopy (SEM) 

The scanning electron microscope (SEM) is a type of the electron microscope that images 

a sample by scanning it in a raster scan pattern with the excited beam of electrons. The electrons 

interact with the atoms that make up the sample producing signals that contain information about 

the sample’s surface morphology. SEM is often used to obtain high magnification images to 

examine the details within nanostructured materials (around 1 nm in size). In this work, SEM 

was employed to characterize the morphology and surface structure of as pre-pared electrode 

materials. Its high-efficiency in-lens detector produces exceptional quality scanning electron 

images. The FESEM specimens can be prepared by spreading sample powder directly onto the 

carbon tape and then air-drying. All the measurements were carried out by using Phenom, SEM 

at 10 KV. 
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4.2.3     Brunauer-Emmett-Teller (BET) nitrogen adsorption-desorption isotherms 

Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) method are used to 

determine surface area, pore size and pore volume of the desired materials. BET analysis 

examines the external area and pore area of the materials to determine the total specific surface 

area those developers. BET analysis examines the external area and pore area of the materials to 

determine the total specific surface area in m2/g by nitrogen multilayer adsorption isotherms. 

BJH analysis can also be employed to determine pore area and specific pore volume using 

nitrogen adsorption and desorption techniques to characterize pore size distribution of the 

sample. All the surface area measurements were carried out using Autosorb-1, (Quanta chrome, 

Boynton Beach, FL 33426, model no. AS1MP) using nitrogen as adsorb gas at 77 K.   

4.2.4     Raman spectroscopy 

Raman spectroscopy is a non-destructive spectroscopic technique used to study 

vibrational, rotational and other low-frequency modes in a molecular system. It relies on inelastic 

scattering, or Raman scattering of monochromatic light, such as laser. The laser light, in the 

Raman Microscope, is set to focus on the test sample. This allows interactions of the sample with 

its vibrations or excitations at a molecular level in the system, resulting in the energy of the laser 

photons being shifted up or down. The shift in energy gives information about the vibrational 

modes in the system. The resolution of the Raman spectra can be enhanced by accumulated scans 

with a longer exposed time. All the spectroscopy measurements were carried out using Thermo 

Scientific DXR Raman Microscope between 55 and 1000 cm-1 at 40 s exposure time. 

4.2.5     Fourier transform infrared spectroscopy 

Fourier Transform Infrared Spectroscopy (FTIR) is a technique used to obtain an infrared 

spectrum of absorption of a solid, liquid or gas sample. An FTIR spectrometer simultaneously 
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collects spectral data in a wide spectral range. This confers a significant advantage over a 

dispersive spectrometer that measures the intensity over a narrow range of wavelengths at time. 

Fourier transform infrared (FTIR) spectra were recorded on a Thermo Scientific (Nicolet iS10) 

between 450 and 900 cm-1. 

4.2.6     Electrode fabrication and cell assembly 

4.2.6.1    Electrode fabrication 

The Co3O4 electrodes were prepared by mixing 80 wt. % of the synthesized sample 

(Co3O4), 10 wt. % of acetylene black, and 10 wt. % of poly-vinylidene difluoride (PVDF). The 

three ingredients are mixed thoroughly in a mortar followed by the addition of a small amount of 

N-methyl pyrrolidinone (NMP) solution to form slurry. After mixing the components, the slurry 

was pasted onto nickel foam and pressed. The prepared electrode was dried at 60 ◦C under 

vacuum overnight. The electrochemical measurements were performed using a standard three-

electrode system on a Versa STAT 4-500 electrochemical workstation (Princeton Applied 

Research, USA). The active material loading is around 1 mg. 

 

Fig.4.1. Schematic representation of the electrochemical cell [89]. 
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4.2.6.2    Cell assembly 

For supercapacitor test, beaker-type three-electrode cell was assembled with a working 

electrode facing a counter electrode (platinum foil) and reference electrode (saturated calomel 

electrode, SCE), which was placed close to working electrode. Fig.4.1 shows the schematic 

representation of the electrochemical cell. In this study 3 M KOH was used as an electrolyte. 

Before electrochemical testing, the three-electrode cell was left for one or two hours so that the 

electrolyte solution can penetrate into the working electrode. 

4.2.7     Electrochemical measurements 

Electrochemistry is a branch of chemistry that studies chemical reactions that take place 

in a solution at the interface of an electron conductor and an ionic conductor, and which involve 

electron transfer between the electrode and the electrolyte or species in solution. In this study, 

the electrochemical properties were evaluated by cyclic voltammetry and galvanostatic charge-

discharge, which are discussed below. 

4.2.7.1    Cyclic voltammetry 

Cyclic voltammetry (CV) is an important tool to study electrochemical reactions 

(oxidation and reduction) and the electrochemical reversibility. It is a type of potentiodynamic 

measurement that can be used to record a relationship of current vs. voltage. The measurement is 

taken when the potential at the working electrode is ramped linearly versus time (at a particular 

scan rate) to a set potential and reversed back to the original potential at the same scan rate. 

For lithium ion batteries and supercapacitors, an ideal CV curve for a reversible reaction 

consists of two peaks opposite each other, as one process is anodic and the other is cathodic, and 

further confirm the energy storage mechanism involved. In this thesis, CV was conducted using a 



 

   41 
 

standard three-electrode system on a Versa STAT 4-500 electrochemical workstation (Princeton 

Applied Research, USA) at different scan rates and voltage ranges at room temperature. 

4.2.7.2    Galvanostatic charge-discharge 

For three-electrode supercapacitors test system, the galvanostatic charge-discharge 

performance is examined by a chronopotentiometry technique on an electrochemistry 

workstation with an aqueous electrolyte.  
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CHAPTER 5 

RESULT AND DISCUSSION 

5.1  Structural study: x-ray diffraction 

The x-ray diffraction (XRD) pattern of Co3O4 sample heated at 350◦C for 3.5 hrs is 

shown in Fig.5.1. No characteristic peaks from other impurities are observed in the XRD pattern, 

indicating that the sample was highly pure. All the reflections can be indexed to the typical 

Co3O4 phase (space group Fd3̅m [227] ), and corresponding to the standard crystallographic data 

depicted by International Centre for Diffraction Data (ICDD) card no. 02-0770. No secondary or 

impurity phases were detected, indicating high purity of the final products. The main peaks at  

31.3°, 36.8°, 44.8°, 59.4° and 65.2° can be assigned to the  (220), (311), (400), (511) and (440) 

reflections of Co3O4 respectively. The crystallite size of the Co3O4 is estimated by the Scherrer’s 

formula [90], and the average calculated size is listed in Table 5.1. The average crystallite size 

of Co3O4 falls in the range of 14.80 nm to 54.53 nm. Furthermore, the sharp diffraction peaks 

indicate the crystallization of calcined Co3O4 nanostructures. It is also interesting to note the 

influence of urea content on lattice constant that is the lattice constant of samples increases with 

the decrease in the urea concentration. 

TABLE 5.1. LATTICE PARAMETER AND CRYSTALLINE SIZE OF Co3O4       

                     NANOSTRUCTURES 

Sample a (Å) Crystallite size (nm) 

Co3O4-U2.99 8.01 14.80 

Co3O4-U1.49 8.20 15.02 

Co3O4-U0.37 8.52 17.74 

Co3O4-U0.22 8.91 24.06 

Co3O4-U0.11 9.09 54.53 
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Fig. 5.1. XRD patterns of Co3O4 with different urea concentrations. 

The decrease in urea content brings in lattice expansion of the unit cell. In addition, 

comparing full width half maxima (FWHM) of diffraction peaks, it is evident that the 

crystallinity of samples increases with the decrease in the urea concentration. Thus Co3O4-U0.11 

is highly crystalline with crystal size ~ 54.53 nm as compared to Co3O4-U2.99 with crystal size ~ 

14.80 nm. 
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5.2  Structural study: SEM 

 

 

Fig.5.2 a) Co3O4-U2.99                                    Fig.5.2 b) Co3O4-U1.49 

 

                Fig. 5.2 c) Co3O4-U0.37                                     Fig. 5.4 d) Co3O4-U0.22 
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Fig. 5.2 e) Co3O4-U0.11 

Fig.5.2. SEM images of the Co3O4 nanostructures with different urea concentrations (a)      

           Co3O4-U2.99 (b) Co3O4-U1.49 (c) Co3O4-U0.37 (d) Co3O4-U0.22 (e) Co3O4-

U0.11 

 

As morphology plays a significant role in the electrochemical properties, morphological 

analysis of the obtained materials was conducted using SEM. Figure 5.2 shows the SEM images 

of Co3O4-U2.99, Co3O4-U1.49, Co3O4-U0.37, Co3O4-U0.22 and Co3O4-U0.11. Co3O4-U2.99 and 

Co3O4-U1.49 particles show plate like architecture while Co3O4-U0.37, Co3O4-U0.22 and 

Co3O4-U0.11 shows brush like morphology. It is interesting to note the change in morphology of 

Co3O4 with change in urea concentration. The morphology of Co3O4 samples from cubic plate 

like structure gradually went to brush like structure at low urea content. The decreased thickness 

of the architecture usually means higher surface area and thus, greater improvements in the 

performance of an electro-active material were expected. Usually, porosity of the electrode 

material provides large surface area and an easy access for the electrolyte, and thereby facilitates 

redox reactions during charge/discharge process. Therefore, porous microstructures of the 

current Co3O4 electrodes are very much desired for enhanced performance of supercapacitors. It 
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is to be noted that the morphology of Co3O4 is much dependent on the adapted synthesis 

techniques, which means the concentration of urea [91]. Particularly the use of oxidizer, 

complexing, and dispersing agent is essential in controlling the morphology of the particles [92]. 

5.3  Pore size distribution 

 
Fig. 5.3. The nitrogen adsorption/desorption isotherm of Co3O4 nanostructures. 

 

 
Fig. 5.4. The nitrogen adsorption/desorption pore size distribution curve of Co3O4. 

The BET specific surface areas of Co3O4 was determined by N2 adsorption-desorption 

isotherms at 77 K, and the corresponding pore size distributions were calculated by Barrette 
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Joynere Halenda (BJH) method, as displayed in Fig.5.3. The N2 adsorption-desorption isotherm 

curves for all samples were measured at 77K between relative pressure P/Po ~ 0.029 to 0.99. 

Important structural parameters are derived from the isotherms and tabulated in Table 5.2.  

All samples display typical isotherm for mesoporous materials having hysteretic cycles at 

intermediate pressure, as represented by a type IV isotherms [93]. The measured surface area of 

cobaltite samples was 77.02 m2/g for Co3O4-U2.99, 56.11 m2/g for Co3O4-U1.49, 50.10 m2/g for 

Co3O4-U0.37, 45.32 m2/g for Co3O4-U0.22 and 4.72 m2/g for Co3O4-U0.11 and were listed in 

Table 5.2. The width of hysteresis loops decreases in order of Co3O4-U2.99> Co3O4-U1.49> 

Co3O4-U0.37> Co3O4-U0.22> Co3O4-U0.11. On a side note, it is interesting to understand the 

adsorption-desorption behavior observed in Co3O4-U2.99. Co3O4-U2.99 exhibit “ink bottle” type 

hysteresis where the narrowing at the pore openings can deteriorate the access of the external gas 

phase to the pore interior on the desorption. A step in desorption isotherm is usually understood 

as a sign of interconnection of the pores [94,95]. The observed variation in isotherm hysteresis 

behavior of Co3O4-U2.99 is thus likely due to interconnected pore system while independent 

mesopores could be responsible for the hysteresis in Co3O4-U1.49, Co3O4-U0.37, Co3O4-U0.22 

and Co3O4-U0.11 [96].The Fig 5.4 shows pore size distribution. From the curve, it can be 

observed that the largest number of pores is distributed at around 3 nm for Co3O4-U1.49, Co3O4-

U0.37, Co3O4-U0.22 and Co3O4-U0.11 with the highest pore volume and should be more 

favorable for rapid ion transport within the electrode surface. Additionally, Co3O4-U2.99 also 

shows pore distribution at around 10 nm. 
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TABLE 5.2: SURFACE AREA PARAMETERS OF CO3O4 NANOSTRUCTURES. 

Sample 
BET Specific 

Surface area (m2/g) 

Total pore 

volume (cm3/g)* 

Average pore  

diameter (Å) 

Co3O4-U2.99 77.02 3.863*10-2 138.30 

Co3O4-U1.49 56.11 2.769*10-2 89.91 

Co3O4-U0.37 50.10 2.447*10-2 67.51 

Co3O4-U0.22 45.32 2.174*10-2 48.90 

Co3O4-U0.11 4.72 2.048*10-3 86.13 

            *diameter less than 26.4 Å at P/Po = 0.3082 

 

5.4  Raman Study 

Raman spectroscopy is a non-destructive approach to characterize nanostructures, in 

particular to determine ordered and disordered crystal structures of materials [97]. Fig. 5.5 shows 

the Raman spectra of the Co3O4 nanostructures displayed in five bands in the range 100–1000 

cm-1. The signals located at approximately 187, 473, 515, 609, and 680 cm-1 correspond to the 

F2g, Eg, F2g, F2g, and A1g modes, respectively, of the crystalline Co3O4 phase in agreement with 

the literature values [98]. No vibrational modes due to impurities were observed. The band at 

680 cm-1 is attributed to the characteristics of the octahedral sites (CoO6), which is assigned to 

the A1g species in the Oh
7 spectroscopic symmetry [99,100]. The Raman bands with medium 

intensity located at 473 and 515 cm-1 have the Eg and F2g symmetry, respectively, whereas the 

weak band located at 609 cm-1 has the F2g symmetry. The band at 187 cm−1 is attributed to the 

characteristics of the tetrahedral sites (CoO4), which is attributed to the F2g symmetry [79]. This 

result further confirms the formation of the Co3O4 nanostructures. The phonon symmetries of the 

Raman peaks are caused by the lattice vibrations of the spinel structure, in which Co2+ and Co3+ 

cations are situated at tetrahedral and octahedral sites in the cubic lattice [101]. 
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Fig. 5.5. Micro-Raman spectra of Co3O4 nanostructures. 

5.5  FTIR study 

Fig. 5.6 shows that the Fourier transform IR spectra for the synthesized Co3O4 

nanostructure. The IR spectrum displays two distinct and sharp bands at 578.05 (ν1) and 664.61 

(ν2) cm–1, which originate from the stretching vibrations of the metal–oxygen bond 

[102,103,104]. The ν1 band is characteristic of OCo3 vibrations (Co3+ in octahedral 

coordination), and the ν2 band is attributable to Co2+Co3+O3 (Co2+ in tetrahedral coordination) 

vibrations in the spinel lattice [105].The presence of these bands confirms the formation of 

phase-pure Co3O4 nanostructure.  
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Fig. 5.6. FTIR Spectrum of Co3O4 nanostructures. 

5.6  Electrochemical performance of Co3O4 nanostructures 

The electrochemical performances of Co3O4 nanostructures as electrode materials for 

pseudocapacitors were evaluated by cyclic voltammetry measurement and galvanostatic 

charge/discharge. 

Fig. 5.7 shows the cyclic voltammograms obtained at different scan rates (5–300 mV/s) 

in a voltage window of 0–0.6 V (vs. SCE).  The capacitance characteristic of the Co3O4` 

nanostructures is that of typical pseudo-capacitance arising from reversible surface or near-

surface Faradic reactions for charge storage. The detailed electrochemical process of the Co3O4 

nano structures was illustrated by cyclic voltammograms (CVs). The redox reactions involved 

during the charge and discharge process, for example for Co3O4 can be described as follows 

[106]. Two typical redox couples are noticed in the CV curve. The first redox couple was 

attributed to the conversion between Co3O4 and CoOOH, expressed as follows: 
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Fig. 5.7. CV curve of the Co3O4 nano structures on nickel foam substrate in the potential      

   region of 0 – 0.6 V at different scanning rate from 5 mV/s to 300 mV/s. 

 

MO + OH-  4MOOH + e-  

Co3O4 + OH- + H2O  3CoOOH + e- 

The second redox couple corresponds to the reversible reaction between CoOOH and 

CoO2, represented by the following reaction: 

CoOOH + OH-   CoO2 + H2O + e- 
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Non-rectangular form of CV curves is indicative of the pseudocapacitive characteristics 

of electrodes. A pair of reversible redox peaks can be observed within the potential range from 0 

to 0.6 V. The anodic peak is due to the oxidation of Co3O4 to CoO2 while the cathodic peak is for 

the reverse process. A small positive shift of the oxidation peak potential and a negative shift of 

the reduction peak potential have been observed with increased scan rate, which can be primarily 

attributed to the influence of the increasing electrochemical polarization as the scan rate scales 

up. Pairs of reversible redox curve indicating pseudocapacitance behavior of the material with 

redox peaks attributed M(II)/M(III) redox couples [107]. The shape and redox potentials of the 

CV curves are comparable to those reported for cobaltite [108],suggesting that the measured 

capacitance is mainly due to the redox mechanism. Furthermore, cathodic sweeps of CV curves 

are not completely symmetric to their corresponding anodic sweeps, which denotes some 

irreversibility. Asymmetric CV curve depicts the rate kinetics of the redox reactions were quasi 

reversible. Factors like polarization during faradaic redox reaction for pseudocapacitors and 

ohmic resistance due to electrolyte diffusion into the porous electrode kinetically limits the 

reversibility for the positive and negative sweeps [109]. It can be clearly observed that there is a 

pair of broad cathodic-anodic peaks, which becomes prominent at a higher scan rates.CV shape 

changes and shift in peak potential with increasing the scan rate indicate low polarization and 

high power characteristics of electrode material. At low scan rates, all the active specimen of the 

electrode material was fully utilized, whereas diffusion of ions to the innermost sites was 

hindered at high scan rates. Porous nature of the material felicitates rapid insertion/exertion of 

electron during redox reaction. 

For diffusion control process the peak current density is related to the square root of the 

scan rate, v1/2, via the following Randles-Sevcik [110,111] equation: ip = (2.687x105) v1/2 n3/2 D1/2 
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C.  In this equation, n is the number of electrons appearing in half-reaction for the redox couple, 

v is the sweep rate, C, D is the concentration and the diffusion coefficient of the diffusing 

species. The slope and hence the diffusion coefficient D per unit area, for Co3O4-U0.37 is highest 

(~ D/A=0.007566 s-1) and lowest for Co3O4-U2.99 (D/A ~ 0.005126 s-1). As evident from 

Fig.5.8, the linear behavior of the curve for all sample shows presence of diffusion controlled 

process in all Co3O4 structures. In addition, higher peak current density for Co3O4-U0.37 

signifies higher electrochemical reaction activity. 

The average specific capacitance of the four samples were calculated from the CV curves 

based on the following equation [22]: 
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Where I (A) is the current, m (g) is the mass of the active material, u (V/s) is the scan 

rate, V1 and V2 (V) are the start and end voltage of the CV scan.  

 
Fig. 5.8. Peak current vs. square root of scan rate of Co3O4 nano structures. 
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The average specific capacitances of all the Co3O4 samples calculated at various scan 

rates were presented in Fig. 5.9. The specific capacitance of Co3O4 nanostructures was calculated 

as 479, 510, 764,213 and 240 F/g at the scan rate of 5 mV/s for Co3O4-U2.99, Co3O4-U1.49, 

Co3O4-U0.37, Co3O4-U0.22 and Co3O4-U0.11, respectively. Among all Co3O4 nanostructures, 

Co3O4-U0.37 exhibited the highest capacitance for all scan rates with maximum value of 764 F/g 

at 5 mV/s scan rate. While other Co3O4 with different urea concentration display considerably 

lower value of specific capacitance between 100-510 F/g. These high values of specific 

capacitance can suggest a relatively high electrochemical utilization and high surface area of the 

synthesized nanostructures of Co3O4. It is worth noting that the porous morphology of the 

Co3O4 nanostructures caused better electrolyte penetration in the plates and so exhibited high 

contribution to the redox reactions [112]. From the CV curves at various scan rates, it can be 

noticed that the peak current increases with increasing the scan rate and difference in the 

cathodic and anodic peak potential expands gradually, indicating diffusion controlled reaction 

kinetics [113]. 
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TABLE 5.3: SPECIFIC CAPACITANCES OF CO3O4 NANOSTRUCTURES AT DIFFERENT      

                      SCAN RATES. 

Scan 
 Specific Capacitance (F/g) 

Rate 

(mV/s)      Co3O4 -U2.99       Co3O4 -U1.49       Co3O4 -U0.37       Co3O4 -U0.22       Co3O4 -U0.11       

5 478.98 510.43 763.37 212.60 240.18 

10 409.71 434.18 622.60 204.18 224.41 

20 346.09 369.94 519.41 196.81 215.56 

30 316.13 338.15 456.52 189.72 210.75 

50 283.93 302.29 395.03 177.09 200.97 

75 259.75 270.16 348.49 163.61 188.82 

100 242.56 247.03 314.49 152.01 177.69 

125 227.79 228.91 287.73 142.18 167.74 

150 216.26 213.34 265.57 132.74 158.80 

175 205.49 200.00 246.66 125.66 150.92 

200 196.02 188.78 230.40 119.30 143.89 

225 187.35 178.63 216.30 113.66 137.56 

250 179.49 169.60 203.98 108.61 131.81 

275 172.19 160.86 193.06 104.05 126.56 

300 165.41 154.12 183.25 99.86 121.80 

 

 
Fig. 5.9. Specific Capacitance vs Scan rate of Co3O4 nanostructures. 
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The rate capability and specific capacitance of the Co3O4 electrodes were performed 

using charge/discharge measurements. The charge storage capacity from the galvanostatic 

charge-discharge measurements was calculated using the following equation [114]:  

Vm

tI
Csp




                                                                                                                     (7) 

where, I is the discharge current (A), t is the discharge time (s), V is the potential 

window (V),and m is the mass (g) of the active material. 

The calculated specific capacitance as a function of current density is shown in Table 

5.3. The specific capacitance of Co3O4-U2.99 is calculated to be 262.58, 234.28, 218.59, 205.54, 

185.31, 170.18 and 156 F/g at current densities of 0.5,1,1.5,2,3,4,5 A/g with a capacity retention 

rate (as compared to 0.5 A/g) is 40.58 % at current density of 5A/g (Fig.5.10). The specific 

capacitance of Co3O4 -U1.49  is calculated to be 272.86,245.86,230.76,217.61,192.40,176.26, 

and 170.36 F/g at current densities of 0.5,1,1.5,2,3,4,5 A/g with a capacity retention rate (as 

compared to 0.5 A/g) is 37.57 % at current density of 5A/g. The specific capacitance of Co3O4-

U0.37  is calculated to be 469.80, 416.90, 382.44,354.07, 307.13,278.39 and 256.21 F/g at 

current densities of 0.5,1,1.5,2,3,4,5 A/g with a capacity retention rate (as compared to 0.5 A/g) 

is 45.47 % at current density of 5A/g. The specific capacitance of Co3O4 -U0.22 is calculated to 

be 96.31, 95.23, 93.60, 92.21, 91.50, 88.11and 85.50 F/g at current densities of 0.5,1,1.5,2,3,4,5 

A/g with a capacity retention rate (as compared to 0.5A/g) is 11.23 % at current density of 5A/g. 

The specific capacitance of Co3O4-U0.11 is calculated to be 107.98, 106.29, 105.40, 104.97, 

103.96, 101.87 and 100.07F/g at current densities of 0.5,1,1.5,2,3,4,5 A/g with a capacity 

retention rate (as compared to 1 A/g) is 7.32 % at current density of 5A/g. When the current 

density increased from 0.5 A/g to 5 A/g the specific capacitances were noted to decrease. This 

was due to the presence of inner active sites that were incapable to take part complete redox 
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transitions at high current densities. This suggests that the some areas of the electrode surfaces 

were unreachable at high current densities. As seen, Co3O4 -U0.37 exhibits excellent 469.80 F/g 

capacitance while other Co3O4 show specific capacitance in the range of 85-272 F/g at all the 

current densities evaluated and show a good rate capability.  The good electrochemical 

performance of Co3O4-U0.37 among all Co3O4 studied herein may be attributed to short 

diffusion length for the electrolyte ions through porous structure which allows enough electrolyte 

ions to rapidly contact the large surfaces of the electroactive and conducting Co3O4 

nanoparticles. This ensure rapid and sufficient Faradaic reactions at high current densities for 

energy storage [115].Table 5.4 compares the capacitance of the capacitance for the Co3O4 

electrode material with other reported Co3O4 materials based electrodes in previous literatures. 
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TABLE 5.4: COMPARISON OF THE CAPACITANCE FOR THE CO3O4 ELECTRODE 

MATERIAL WITH OTHER REPORTED CO3O4 MATERIALS BASED ELECTRODES IN 

PREVIOUS LITERATURES. 

Electrode Materials Specific Capacitance Rate Capability Reference 

Co3O4-U0.37 469.8 F/g at 0.5 A/g 45.7 % retention from 

0.5 to 5 A/g 

This work 

Co3O4 nanoparticles 286 F/g at 4 A/g 73.5 % retention from 

0.5 to 5 A/g 

116 

Co3O4 film 325 F/g at 2 A/g 24 % retention from 2 

to 40 A/g 

117 

Co3O4 nanowire 295 F/g at 2 A/g 16.27 % retention from 

2 to 40 A/g 

118 

Dendrite-like Co3O4 

nanostructures 

207 F/g at 0.5 A/g 36.1% retention from 

0.5 to 6 A/g 

119 

Mesoporous Co3O4 

nanocubes 

350 F/g at 0.2 A/g 45.7 % retention from 

0.2 to 2 A/g 

120 

Hollow Co3O4 boxes 278 F/g at 0.5 A/g 63.3 % retention from 

0.5 to 5 A/g 

121 

Co3O4/Carbon 

composites 

400 F/g at 0.5 A/g 37.5 % retention from 

0.5 to 5 A/g 

122 

Co3O4/RGO composites 518. F/g at 0.5 A/g 47.6 % retention from 

0.5 to 10 A/g 

123 

Co3O4 

nanowire@MnO2 

ultrathin nanosheets 

480 F/g at 2.67 A/g 55.6 % retention from 

2.67 to 29.8 A/g 

124 
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Fig. 5.10. Specific capacitance vs. current density of Co3O4 nanostructures. 

TABLE 5.5: THE SPECIFIC CAPACITANCE OF THE CO3O4 AT DIFFERENT CURRENT              

DENSITIES. 

Current  
Specific Capacitance (F/g) 

Density 

(A/g) Co3O4-U2.99 Co3O4-U1.49 Co3O4-U0.37 Co3O4-U0.22 Co3O4-U0.11 

0.5 262.58 272.86 469.80 96.31 107.98 

1 234.28 245.86 416.90 95.23 106.29 

1.5 218.59 230.76 382.44 93.60 105.40 

2 205.54 217.61 354.07 92.21 104.97 

3 185.31 192.40 307.13 91.50 103.96 

4 170.18 176.26 278.39 88.11 101.87 

5 156.00 170.36 256.21 85.50 100.07 
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Fig. 5.11. Galvanic discharge characteristics of Co3O4-U0.37 nano structures at various 

discharge currents 

To further, characterize the electrochemical performance, galvanostatic charge-discharge 

measurements were done. The galvanic charge/discharge cycles in Fig. 5.11 tested at different 

current density 0.5, 1, 1.5, 2, 3, 4 and 5 A/g showed  efficiency of Co3O4-U0.37 nanostructures, 

which indicates excellent reversibility of the electrodes during charge–discharge process and this 

could be attributed to the porosity and nanostructures of the active material as they provide large 

surface area with reduced charge and mass diffusion distances along with easy accessibility to 

the electrolyte [97]. The drop in potential during the discharge process can be attributed to the 

internal resistance of the electrode. A potential plateau was observed in charge-discharge curves, 

suggesting high electrochemical reversibility and fast reaction kinetics of Co3O4-U0.37 electrode 

indicating typical pseudocapacitance behavior of the electrode. This could be due to charge 

transfer reaction or electrochemical adsorption/desorption process at the electrode/electrolyte 
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interface. As seen, the specific capacitance of the electrode decreases with increasing current for 

all electrolytes. The decrease in the specific capacitance with the increasing discharge current 

could be due to increase in potential drop and insufficient faradic redox reaction at higher 

currents [125]. 

For potential applications, supercapacitors are rated in terms of their power density and 

energy density. Power density and energy density demonstrate the operational characteristics of 

supercapacitors. The Ragone plot is plotted to compare the energy and power density of Co3O4 as 

shown in Fig. 5.12. The measured energy and power density for all Co3O4 nanostructures is 

listed in Table 5. The energy densities (E) and power densities (P) of the electrochemical cells 

are calculated using the following equations: E=(1/2) CV2 and P=E/t where C is the specific 

capacitance that depends on the mass of the electrodes, V is the operating voltage of the cell and 

“t” is the discharge time in seconds as obtained from Fig. 5.11. 

 
Figure 5.12. Ragone plot of Co3O4 nanostructures. 
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Table 5.6:  SPECIFIC POWER DENSITY AND ENERGY OF AS SYNTHESIZED CO3O4 

NANOSTRUCTURES AT DIFFERENT CURRENT DENSITIES OBTAINED FROM 

CHARGE-DISCHARGE CHARACTERISTIC CURVES. 

Co3O4-U2.99 Co3O4-U1.49 Co3O4-U0.37 Co3O4-U0.22 Co3O4-U0.11 

ED PD ED PD ED PD ED PD ED PD 

10.87 136.48 11.35 136.79 19.56 136.87 4.00 136.79 4.50 136.94 

9.70 272.97 10.14 272.51 17.26 272.97 3.90 271.43 4.37 271.90 

8.97 407.61 9.31 404.16 15.74 408.30 3.81 406.23 4.24 403.47 

8.54 546.86 8.65 534.90 14.28 538.88 3.77 542.26 4.09 529.68 

7.53 811.08 7.78 809.24 12.40 808.78 3.54 791.76 3.94 783.48 

6.85 1076.54 7.14 1080.22 10.81 1057.52 3.39 1053.23 3.80 1036.67 

6.51 1370.21 6.46 1306.09 9.88 1317.30 3.22 1301.20 3.68 1286.63 

ED=Energy Density (Wh/kg), PD=Power density (W/kg) 

In terms of energy density performance, Co3O4 nanostructures are grouped into three 

regions. Co3O4-U0.11 and Co3O4-U0.22 with energy density around 4 Wh/kg, Co3O4-U1.49 and 

Co3O4-U2.99 with energy density around 11 Wh/kg and Co3O4-U0.37 with energy density 19.56 

Wh/kg for different power density values. As known, the most important point for high 

performance supercapacitors is to obtain a high energy density and meanwhile providing an 

outstanding power density. The results showed that all Co3O4 nanostructures have performed 

well in terms of power density and Co3O4-U0.37 performed superior and high energy density 

performance as compare to other Co3O4 nanostructures. 
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Fig. 5.13. Percentage change in specific capacitance vs. number of cycle for Co3O4- 

     U0.37 

The cyclic performance of any electroactive material is a significant parameter to be 

studied for its practical applications. The cyclic performance of Co3O4-U0.37 nanostructure was 

carried out at a current density of 0.5 A/g and was shown in Fig. 5.13. The specific capacitance 

of the electrode gradually decreased at higher cycle numbers to 64% of the initial capacitance 

value after 5000 cycles. The cyclic performance data clearly highlights the capability of the 

Co3O4-U0.37 nanostructure electrode meets the requirement of both long cycling performance 

and good rate capability, parameters that are important for the practical energy storage devices. 
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CHAPTER 6 

CONCLUSION 

Co3O4 electrode materials prepared by different urea concentration were successfully 

synthesized via simple hydrothermal process with calcination at 350 °C. The optimum specific 

capacitance was observed for Co3O4-U0.37. By comparing the electrocapacitive performance of 

Co3O4, it can be concluded that brush like open structures of Co3O4 is more discrete architecture 

for supercapacitors applications. The power and energy density clearly show that high power 

density can be retained at high energy density values. 

It is shown that, the nanostructure affects the electrocapacitive behavior of electrodes. 

The study suggests a guide for optimizing the electrocapacitive behavior of electrode via 

alteration of nanoarchitecture of electrode. The electrochemical stability, excellent capacitive 

performance, and the easiness of the preparation method suggest this unique material system is 

promising for future high performance energy storage applications. 

In conclusion, architecture of Co3O4 nanostructures was successfully altered using urea as 

a hydrolyzing agent. It is observed that low urea concentration leads to Co3O4 nanostructures 

with high electrocapacitive performance. 

Future Work: 

A further work is necessary to understand the electrocapacitive property of Co3O4. 

a) A theoretical work is needed to understand the dependence of band gap on unit cell and 

lattice parameter. This will help to identify best possible lattice parameter leading to the high 

conductivity of Co3O4 and hence electrocapacitive performance. 

b) Influence of various electrolyte (e.g. KOH, LiOH, NaOH) on the electrocapacitive 

performance of Co3O4 is to be assessed. 
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