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Abstract 

 Adkins, Ronné Allen. Ph.D. The University of Memphis. December, 2012. The 

Feasibility of Growing Switchgrass in China for Lignocellulosic Ethanol Production. 

Major Professor: Dr. Hsiang-te Kung. 

 

Switchgrass (Panicum virgatum L.) is a perennial plant species native to the 

United States that is capable of adapting to a wide variety of geographic and climate 

conditions. There are two ecotypes of switchgrass: lowland varieties which favor areas 

with higher rainfall and longer growing seasons and upland varieties which favor areas 

with cooler and drier climate conditions with shorter growing seasons. Switchgrass has 

the capacity to become a significant bioenergy feedstock for lignocellulosic ethanol 

conversion. The purpose of this dissertation is to determine which regions in China are 

suitable for switchgrass production, estimate potential biomass yield, and examine the 

effects of predicted climate change scenarios at the end of the 21
st
 century on potential 

yields in China. To accomplish these goals, two ecological niche models (Maxent and 

GARP) are implemented based on known switchgrass presence data throughout the 

United States to ascertain which regions in China have suitable habitats for its growth. 

Multiple linear regression analysis was performed on a comprehensive database of 1,190 

switchgrass field trials in 39 separate locations across the United States to build a model 

that estimates potential switchgrass yields across China. Future climate projections (2070 

– 2099) from the Hadley Centre Coupled Model, version 3 (HadCM3) global circulation 

model (GCM) are employed in the multiple linear regression model to make switchgrass 

yield estimations for the end of the century. The ecological niche modeling results reveal 

China has large areas of suitable habitat for switchgrass development. The multiple linear 

regression analysis demonstrates that China has the potential to produce large quantities 

of switchgrass, even more so than in the United States; however, analysis of the impact of 
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climate change by the end of the 21
st
 Century indicates that warmer temperatures will 

result in lower yields on average, a substantial reduction in suitable habitat for lowlands, 

and an expanded habitat range for upland ecotypes. This dissertation concludes that 

switchgrass should be considered a viable plant species to serve as a bioenergy feedstock 

for lignocellulosic ethanol production in China, and the results herein offer guidelines 

regarding optimal regions in the country for switchgrass production. 
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CHAPTER 1 

1.  Introduction 

The purpose of this dissertation is to examine the feasibility of growing 

switchgrass (Panicum virgatum L.) throughout every region of China for the production 

of lignocellulosic ethanol and soil erosion control under present climate conditions and 

the end of the 21
st
 century projected climate conditions. The analysis consists of three 

separate, complementary methods to model switchgrass’s potential distribution, predict 

potential yields, and evaluate the impact climate change could have on switchgrass 

development throughout China. Switchgrass is a perennial plant species native to the 

United States and has been researched extensively over the past fifty years, both for soil 

and habitat rehabilitation and for use as feedstock for biofuel production (i.e. 

lignocellulosic ethanol). As a result of the accumulated wealth of knowledge regarding 

where and how much switchgrass can be grown in the United States, the environmental 

conditions suitable for its development will be analyzed and then projected onto China to 

determine areas that have similar growing and environmental conditions that could serve 

as potential sites to cultivate switchgrass for biofuel production or to control and 

rehabilitate areas of degraded soils. 

This research is very important and timely to present energy concerns not only in 

China, but globally, as more countries are looking to strengthen and reinforce their 

energy security to meet present and projected future energy needs. China currently leads 

the rest of the world in population, energy consumption and demand, and has therefore 

directed many policies and much research toward developing its renewable energy sector. 

Switchgrass has shown great potential as a relatively low-maintenance energy crop that 

can produce significant quantities of biomass, as well as play a substantial role in the 
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United States’ Conservation Reserve Program (CRP) that uses switchgrass as a means to 

enhance degraded soils, improve wildlife habitat and increase biodiversity amongst plant 

and animal species (McLaughlin and Kszos, 2003). 

The regions in China that have suitable climate and environmental conditions 

necessary for switchgrass to grow, based on information about those conditions in its 

native habitat in the US are discussed in chapter one. This essentially determines areas in 

China that meet switchgrass’ fundamental niche requirements for growth and long-term 

survivability. To accomplish this analysis, locations of switchgrass in the United States 

were used in conjunction with the environmental and climate data from these locations in 

an ecological niche model. The data were processed using Spatial Analyst tools in ESRI 

ArcGIS (ESRI, Redlands, CA).  Two ecological niche models, maximum entropy 

(Maxent) and genetic algorithm for rule-making program (GARP), are used to analyze 

the native presence locations’ environmental and climate data and then make projections 

onto China. The two models are then compared to each other and analyzed for accuracy. 

The model results will be used to identify areas in China that most reasonably meet 

switchgrass’ development requirements. 

Estimates of potential switchgrass yields across China were generated through 

employing an empirical model built from a multiple linear regression analysis on 1,190 

switchgrass field trial observations from 39 locations in the United States and are shown 

in chapter two. The model uses soil, climate and crop management information for 

predictor variables and total switchgrass yields from each observation as the outcome 

variable. Once the model was developed based on the environmental and climate 

conditions in the United States, it was also then applied to China. A predicted switchgrass 

potential yield map was produced from the results of the model, indicating estimated 
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potential yields across China. The results show preferential areas for switchgrass 

production within China, but indicate that China has the potential to produce significant 

quantities of switchgrass across a vast area of the country. 

The final chapter focuses on the effects of predicted climate change at the end of 

the current century on potential switchgrass yields in China, using the Hadley Centre 

Coupled Model, vers. 3 (HadCM3), global circulation model (GCM) climate projections. 

Climate change projections are made based in large part on estimated future global 

greenhouse gas emissions. Three different emissions scenarios were analyzed, 

representing high, intermediate, and low greenhouse gas emissions. The regression model 

developed in chapter 2 was used to predict switchgrass yields in China under these future 

climate and greenhouse gas scenarios. The objective is to determine the impact of rising 

greenhouse gas emissions and associated climate change on potential switchgrass yields 

throughout China.  

The results from each chapter complement each other in their representation of 

switchgrass potential in China, and can be useful to policy makers and energy companies 

to evaluate the potential large-scale production of switchgrass in China for lignocellulosic 

ethanol production and for controlling soil erosion problems. Findings from this 

dissertation represents the first time switchgrass has been analyzed across all of China for 

potential suitable habitat distributions, yield estimations, and climate change impacts. 
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CHAPTER 2 

 

Predicting Potential Switchgrass Distribution across China Based on GARP and 

Maxent Ecological Niche Models 

 

1. Introduction 

Switchgrass (Panicum virgatum L.) is a native North American, C4, perennial 

grass species that has shown great potential as feedstock for lignocellulosic ethanol 

production as well as demonstrated success in reducing soil erosion in marginal and 

degraded soils (Parrish and Fike, 2005).  Given China’s climate, its growing need for 

energy, its vast cultivable area, and its struggles with erosion, switchgrass farming may 

be of significant use in China.  Predicting the suitable habitat for switchgrass in China is 

critical for identifying and mapping these areas for potential ethanol production and 

rehabilitation and management of eroded soils. Switchgrass’s native distribution stretches 

from the Atlantic coast to the eastern Rocky Mountains and from the southern U.S. 

border north into Canada (Rinehart, 2006).  The growing season is from April through 

September.  The two primary ecotypes of switchgrass are lowland and upland ecotypes. 

Lowland varieties are taller, coarser, produce more biomass than uplands and generally 

found in areas that have higher rainfall and longer growing seasons and mild winters 

(Vogel, 2002). Upland varieties are more adapted to the drier and colder climates that can 

be found in the Midwestern and Northern states (Bouton, 2007). The ploidy levels for 

each ecotype are different: lowlands are tetraploids (2n=4x=36) and uplands are primarily 

octoploids (2n=8x=72) with some tetraploids (Hopkins et al., 1996; Hultquist et al., 

1996). Many different cultivars of switchgrass exist within the ecotypes. Cultivars are the 

different switchgrass varieties within ecotypes that have been selected and reproduced for 

desirable qualities and characteristics. The most common are Alamo and Kanlow, which 

are lowlands that are grown in the Southern states and are capable of producing high 
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biomass yields, and Cave-in-Rock, an upland which is best adapted to the Northern states 

(Parrish and Fike, 2005).  

China is currently the largest and fastest growing developing country, the largest 

automobile market, and the largest energy consumer in the world (CSY, 2008; BP, 2011).  

Realizing this and facing increasing transportation fuel costs, soaring energy demand, and 

a diminishing supply of crude oil, China has formulated national policies (i.e. PRC Law 

of Renewable Energy in 2005) that enhance renewable energy research, supply and 

structure, with the goal of bolstering domestic energy and economic security while 

protecting the environment (Peidong et al., 2009). China is also home to some of the 

world’s most eroded soils in the Loess Plateau, an area that covers 640,000 km
2
 in the 

upper middle reaches of the Yellow River in northern China. Recent analyses of 

approximately 20,000 plant species studied for vegetation recovery and soil erosion 

control in the Loess Plateau concluded that switchgrass functioned the best of all species 

evaluated (Ichizen et al., 2005). If adopted on a wide scale in China, switchgrass has the 

potential to be a significant source of biomass feedstock while mitigating the serious 

environmental concern of soil erosion. 

Ecological niche modeling is one approach scientists have used to model the 

potential geographic distribution of a species. This method analyzes the environmental 

conditions of a species’ known occurrence distribution to predict potential suitable 

habitats in different locations and is used in a variety of disciplines, including ecology, 

biogeography, conservation management and many other fields (Peterson et al., 1999; 

Guisan and Zimmermann, 2000; Guisan and Thuiller, 2005; Peterson et al., 2007; Bombi 

et al., 2009; Kumar et al., 2009). The predicted distribution is a characterization of the 

estimated ecological niche of a species. The fundamental niche of a species is comprised 
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of all the environmental conditions necessary for survival; however, its realized niche is a 

subdivision of the fundamental niche that the species actually occupies (Hutchinson, 

1957). It is possible for a species’ realized niche to be smaller than its fundamental niche, 

as a result of anthropogenic impacts, geographic barriers, biotic interactions (such as 

competition, predation and parasitism), and other factors not easily captured spatially 

(Phillips et al., 2006; Pearson, 2007). The environmental conditions within a species’ 

fundamental niche is captured in  ecological niche models, plotted spatially, hence 

representing its potential geographic distribution. 

While there are many ecological niche models, two commonly used modeling 

algorithms are the Genetic Algorithm for Rule-set Production (GARP) and maximum 

entropy (Maxent) (Scachetti-Pereira, 2002; Phillips, 2006). Both are considered presence-

only models that use known occurrence data to create pseudo-absences based on 

locations where the species is not known to occur. Both methods also utilize elevation, 

temperature, precipitation, soil characteristics and other environmental variables that can 

potentially affect the species’ distribution. GARP uses sets of rules of logic inference to 

determine the presence or absence of a species in a given area (Stockwell and Nobel, 

1992). The occurrence data are divided evenly, with one half (training data) randomly 

chosen to develop the model rules and the other half (test data) used to evaluate the 

accuracy of the model rules. GARP uses an iterative process of rule selection, testing, 

evaluation, rejection or incorporation to select a method from a set of options (logistic 

regression, atomic rules, range rules, negated range rules) and applies it to the training 

data to develop or evolve a rule (Stockwell and Peters, 1999). Model output is binary, 

where 0 represents unsuitable habitat and 1 represents suitable habitat. 
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 Maxent is a recently developed machine learning method based on the principle 

of maximum entropy (i.e. uniform distribution) (Phillips et al., 2006). It develops the 

probability distribution for species occurrence by estimating the probability distribution 

of maximum entropy that is constrained from the environmental parameters in the study 

area (Phillips et al., 2004). Maxent applies categorical and continuous data, incorporates 

interactions between different environmental variables, and is effective at avoiding 

commission errors (Pearson et al., 2007).  The Maxent output map is a cumulative 

probability of occurrence across the study area. Recent studies comparing various 

ecological niche models found that Maxent performed as good as or better than the other 

models at predicting a species’ potential distribution (Elith et al., 2006; Phillips et al., 

2006; Hernandez et al., 2006, 2008).  

 In this study, GARP and Maxent are employed to predict the potential distribution 

of switchgrass across every region of China. These two models were selected for this 

analysis based on their abilities to predict suitable species habitat with presence only data 

and their consideration of being two of the best ecological niche modeling algorithms 

(Elith et al., 2006). ArcMap, version 10 (ESRI Inc., Redlands, CA), was used to process 

environmental data in a Geographic Information Systems (GIS) context and display the 

projected potential distribution output map.  The primary objective of this research is to 

identify suitable locations in China that can sustain switchgrass development for 

prospective ethanol production and/or soil erosion control. 

2. Materials and Methods 

2.1. Occurrence and environmental data 

The complete list of occurrence locations for Panicum virgatum L. in the United 

States was collected from the United States Department of Agriculture’s (USDA) plants 
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database online (USDA, NRCS, 2010). The database provided switchgrass occurrence 

data for 1,481 counties in 45 states. Alaska, Hawaii, Washington, Oregon and California 

are the only states that did not have an occurrence record for switchgrass. Geographic 

barriers and climate conditions are likely reasons why occurrence records don’t exist in 

those states. The majority of the native distribution lies in the middle of the country 

between Kansas and Indiana. There is also a large cluster of presence records on the East 

Coast, stretching from Pennsylvania and New Jersey down the coast to South Carolina. 

The latitude and longitude of the center of each county where switchgrass has been 

recorded were obtained by using spatial analyst tools in ArcMap. The USDA’s plant 

database does not differentiate between upland and lowland ecotypes, therefore the 

occurrence data was divided at the 42
o
N latitude, where all records above 42

o
N were 

considered uplands and those below where labeled lowlands, based upon Casler et al.’s 

(2004) findings that lowlands lose competitive advantage to uplands at higher latitudes. 

This analysis yielded 605 lowland ecotypes and 876 upland ecotypes. 

 

 
Fig. 1. Switchgrass’ native distribution throughout United States (USDA Plants 

Database).  
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 Switchgrass’ adaptability across a wide variety of environmental and edaphic 

conditions is shown in figure one. Previous studies have found soil type and soil acidity 

to have minimal effect on switchgrass growth (Sanderson et al., 1999b; Parrish and Fike, 

2005; Bona and Belesky, 1992). Soil organic carbon was selected as an environmental 

variable to use in the model because of its importance to crop production, soil structure, 

water holding capacity, nutrient availability, carbon sequestration and root growth. It is 

also a good indicator of the condition of the soils, measured as the percent weight of 

organic carbon in the top soil, where soils with less than 0.6% organic carbon are 

considered to be poor in organic matter. The Harmonized World Soil Database (HWSD) 

provided the soil organic carbon data at 1 km resolution (FAO et al., 2012). Spatial 

analyst tools in ArcMap were used to extract all of the environmental data used in this 

study for the United States and China. 

 Altitude and climate variables were obtained from WorldClim (version 1.4) 

(Hijmans et al., 2004) at 1 km resolution. Initially, eight climate variables were selected 

for analysis in the model, specifically average winter minimum temperature, average 

growing season maximum temperature, average growing season mean temperature, 

average annual minimum temperature, average annual mean temperature, average annual 

maximum temperature, average growing season precipitation and average annual 

precipitation. SPSS (IBM, Inc., Armonk, New York), a predictive analytics software, was 

used to test the climate variables for multicollinearity by assessing the cross-correlations 

between the variables. All of the temperature variables were highly correlated with each 

other, as were the precipitation variables. Because it cannot be determined exactly which 

temperature variable is needed to understanding switchgrass’ native distribution, average 

annual mean temperature was selected and all other temperature variables were removed 
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from analysis. Wullschleger et al. (2010) noted the strong correlation of temperature 

variables when developing a model to predict switchgrass yields in the United States and 

they also utilized annual mean temperature. While annual precipitation is an important 

contributor to soil moisture availability, numerous studies have concluded that growing 

season precipitation is more critical to switchgrass’ growth and development (Sanderson 

et al., 1999; Muir et al., 2001; Berdahl et al., 2005; Lee and Boe, 2005); consequently, 

average annual precipitation was removed from the model. Therefore, the final set of 

environmental variables to be applied to the ecological niche models was condensed to 

four (table 1). Special attention was given during the extraction process to ensure all of 

the pixels were the same size and that the spatial extent for each environmental layer was 

the same. 

 

Table 1. Source list for occurrence and environmental data. 

 

 

 

 

Occurrence Data (categorical)

(1,481 records) USDA Plants Database http://plants.usda.gov/

Environmental Data (continuous)

Altitude WorldClim (v. 1.4) http://www.worldclim.org/

Mean monthly temperature (mean 

annual temperature variable created 

from this data source)

WorldClim (v. 1.4) http://www.worldclim.org/

Mean monthly precipitation (mean 

growing season precipitation 

variable created from this data 

source)

WorldClim (v. 1.4) http://www.worldclim.org/

Soil organic carbon Harmonized World Soil 

Database (v. 1.2)

http://www.iiasa.ac.at/

Data Source
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2.2. GARP model parameters 

The Genetic Algorithm for Rule-set Production was implemented in 

openModeller desktop version 1.1 (available at http://openmodeller.sourceforge.net/; 

accessed 14 March 2012) (Muñoz et al., 2009).   This method of implementation was 

selected based on Elith et al.’s (2006) findings that openModeller outperformed older 

desktop GARP versions. The switchgrass occurrence data was randomly separated into 

two parts, where 50% of the data was used for model training and the remaining 50% was 

used to test the model. The four environmental predictor variables used in the model were 

altitude, soil organic carbon, average annual mean temperature and average growing 

season precipitation. The following parameters were used in the GARP analysis: 400 runs 

for each experiment, 0.01 convergence limit and up to 2400 maximum iterations. Three 

of the four (range, negated range and logistic regression) rule types were applied to the 

model. Atomic rules were omitted because they seem to have little significance compared 

to the other rules (Stockwell, 1999). The final output from the analysis is a potential 

distribution map for both ecotypes of switchgrass where pixels are assigned 0 if it is 

outside the fundamental niche and 1 if the pixel is within a suitable environment. The 

lowest training presence threshold parameter was selected to determine which pixels 

would be designated 0 or 1. 

2.3. Maxent model parameters  

 Maxent software, version 3.3.3k, was used in this analysis (Phillips, 2006) along 

with the same group of climate, elevation and soil variables and occurrence data. 

Occurrence data were divided randomly in the same equal percentage for training and 

testing as was implemented in the GARP analysis. A jackknife test was performed to 

assess each environmental variable’s importance to switchgrass’s fundamental niche. The 

http://openmodeller.sourceforge.net/
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logistic output format was chosen, which gives values for each pixel between 0 and 1. 

The model threshold for Maxent was selected where both the test sensitivity and 

specificity intersect at their maximum values. This threshold value maximizes the 

presence of switchgrass in the testing data locations while minimizing false positives 

(Simon et al., 2010). These values represent the probability of presence of suitable 

environmental conditions for switchgrass. The rest of the model’s algorithm parameters 

were left at their default values.  

3. Results and discussion 

 The predicted potential geographic distribution of switchgrass from both GARP 

and Maxent models were projected onto China using the identical environmental 

variables used to define its fundamental niche in the models (figures 2 and 3). The output 

maps for China’s potential distribution of lowland and upland ecotypes of switchgrass 

based on GARP analysis were consistent with Maxent’s projected distribution. Initially, a 

50% probability-of-presence threshold was applied to both models; however the results 

clearly under-predicted switchgrass distribution based on known climate tolerances of 

switchgrass. Allowing the models to use a lower threshold, where sensitivity and 

specificity intersect, produced better results, more in line with expectations. Both models’ 

predicted distribution for lowland ecotypes were in relative agreement with each other, 

although GARP’s suitability areas were slightly thinner than Maxent’s lowland ecotype 

output, meaning Maxent predicted more areas in China for lowland switchgrass. The 

difference in the upland ecotype potential distribution in China between models was less 

subtle. Maxent clearly predicted a much larger suitable habitat distribution for upland 

ecotype switchgrass in China than did the GARP model.   
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Fig. 2. Potential geographic distribution of lowland switchgrass in China based on 

GARP. 

 

 

 

 
Fig. 2.1. Potential geographic distribution of upland switchgrass in China based on 

GARP. 
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Fig. 3. Potential geographic distribution of lowland switchgrass in China based on 

Maxent. 

 

 

 
Fig. 3.1. Potential geographic distribution of upland switchgrass in China based on 

Maxent. 
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 A threshold independent method for evaluating the performance of ecological 

niche models is to examine the receiver operating characteristics (ROC) curve and 

calculate the area under the curve (AUC) (Fielding and Bell, 1997). ROC curves are 

created by plotting the sensitivity, considered the true positive fraction against 1-

specificity, the false positive fraction. Thus, the AUC is a calculation of the area under 

the ROC curve, with ranges between 0.5 and 1, that provides a ranking mechanism to 

evaluate the differences between ecological niche models and random distribution. 

Models with AUC values at or near 0.5 are regarded no better than random at predicting 

potential distribution, whereas values closer to 1 are considered very good models 

(Phillips et al., 2006). 

 In this study, AUC values for Maxent where higher than GARP for both ecotypes, 

indicating that Maxent outperformed GARP at modeling the potential switchgrass 

distribution in China (table 2). Comparison of the area under curve follows the visual 

assessment of the output maps between Maxent and GARP, as the values for lowlands 

are very close to each other, while the upland AUC’s display a greater difference between 

the two models. Maxent estimates, the most suitable provinces in China for upland 

ecotypes Gansu, Ningxia, Shaanxi, Shanxi, Shandong, Hebei, Tianjin, Beijing, Jilin, and 

only small parts of Heilongjiang and Inner Mongolia. Lowland ecotypes are predicted to 

be most suitable in the lower parts of Hebei, Shandong, Henan, Jiangsu, Shanghai, 

Zhejiang, Fujian, Guangdong, Guangxi, Hunan, Jiangxi, Hubei, Anhui and Chongqing. 

This distribution across China is relatively consistent with the known fundamental niche 

of switchgrass, at least as it pertains to climate. Northern China, which favors upland 

ecotypes, typically has very dry and cold winters, along with extreme summer heat and 

precipitation. Southern China, which is more suitable for lowland ecotypes, lies in a sub-
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tropical zone and with warm, humid temperatures throughout much of the year. Summer 

monsoons are also common in this area, providing critical precipitation for the April – 

September growing season. 

 

Table 2.  Area under curve (AUC) values from Maxent and GARP model runs. AUC 

>0.9 = very good; 0.7<AUC<0.9 = good; AUC<0.7 = no better than random/model 

uninformative (Swets, 1988). 

 

 

 Jackknife tests (figure 4) analyzed in Maxent on the environmental predictor 

variables indicated that average annual mean temperature was the most important 

environmental predictor affecting the distribution of switchgrass. The jackknife analysis 

generates a graph of the regularized training gain, which is a measure of the model’s 

fitness, by running several models in order to determine the importance of each variable 

to the species distribution. One predictor variable is excluded at a time and a model is 

created with the other variables (turquoise bar). Next a model is created using each 

predictor variable by itself (blue bar). And finally a model is created with all the variables 

together (red bar). High values indicate the variable was very important to switchgrass 

niche modeling, while low values indicate the variable has a low impact on switchgrass’s 

ecological niche. Soil organic carbon was shown to have the least influence on 

switchgrass distribution.  

 

 

AUC

Maxent GARP

Lowlands 0.907 0.89

Uplands 0.863 0.79
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Fig. 4. Jackknife test of individual environmental variables’ importance to the Maxent 

model, in relation to the other environmental variables in the model (red bar). 

 

 

 Analysis of the response curves (figures 5 and 6) also indicate how the logistic 

prediction for switchgrass changes as each predictor variable is varied while keeping the 

other predictor variables at their average values. For lowland ecotypes, mean annual 

temperature has the most effect on switchgrass suitability. For uplands, mean annual 

temperature and growing season precipitation have the most effect on habitat suitability. 

Evidence of this can be seen in the parabolic shape of the response curve, indicating an 

optimal range of precipitation and temperature for upland ecotypes.  
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Fig. 5. Response curves for lowland ecotype. 

 

 

  

  
Fig. 6. Response curves for upland ecotype. 

 

 Due to switchgrass’s high adaptability to a wide variety of environmental 

conditions, it becomes logical that temperature and precipitation would be a greater factor 

than soil characteristics in niche modeling, as soil characteristics and qualities change 

more frequently spatially than do climate variables. Temperature and precipitation’s 

importance to switchgrass’s potential distribution, as indicated by the model, is likely due 
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to its C4 nature. As a C4 perennial grass, switchgrass is more efficient at utilizing 

photosynthesis, nitrogen inputs, and water (Parrish and Fike, 2005). 

4. Conclusions 

 This study provides an estimate of the predicted potential distribution of 

switchgrass across China. Results from these ecological niche models indicate that China 

has large areas of suitable habitat for switchgrass to grow and survive. Understanding its 

potential distribution for both ecotypes is significant as China continues to develop its 

biofuels industry and address soil erosion concerns. Both models predicted potential 

distribution for upland ecotypes in the Loess Plateau, a region that could benefit from 

switchgrass’ ability to increase biodiversity and improve soil structure. AUC results 

showed that Maxent had greater predictive power than GARP, consistent with prior 

research comparing the two models (Elith et al., 2006). The output maps for both 

ecotypes revealed that switchgrass distribution would be severely restricted in all areas 

west of Chongqing and Shaanxi provinces. This restriction is most likely due to the 

contrasting climate in Western China, where growing season precipitation and average 

annual mean temperatures are considerably lower than other parts of China and the 

occurrence data in the USA. 

 The nature of ecological niche models do not allow for one to develop a realized 

niche of a species, primarily because there are too many macro and micro-interactions 

that cannot be quantified which could influence a potential species distribution. It is not 

possible to account for every interaction where a species is known to occur; however, 

models such as Maxent provide relative straightforward methods for estimating potential 

distribution, as long as some environmental data based on the known occurrence are 

collected. The methods and procedures presented here could be used for estimating 
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potential geographic distributions of other bioenergy crops or plant and animal species; 

however, care should be taken to ensure that the predictor variables selected are 

significant to the species’ fundamental and/or realized niches.  
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CHAPTER 3 

 

1. Introduction 

Worldwide, population growth, economic and societal advancements over the 

latter course of the 20
th 

and beginning of the 21
st
 centuries have led to an unsustainable 

consumption and demand for non-renewable fossil fuel energy sources, leading to rising 

fuel prices, greenhouse gas emissions and international dependencies on imported fossil 

fuels. This has encouraged many countries, including China, to develop energy policies 

that will combat these issues through stimulating growth in domestically produced 

renewable energy. The passing of the People’s Republic of China (PRC) Law of 

Renewable Energy in 2005 emphasized for the first time China’s resolute commitment 

toward developing a strong and sustainable renewable energy industry whose objectives 

are to enhance energy supply and structure, while ensuring energy and economic security 

and protecting the environment (Peidong et al., 2009). China is the largest and fastest 

developing country in the world, with an annual GDP growth rate that has centered 

around or above 10% on average for the last two decades (CSY, 2008). China turned 

from a net energy exporter in the early 1990s to become the world’s third largest net 

importer of oil in 2006 (Hengyun et al., 2010). Then, in 2010, China surpassed the United 

States as the world’s largest energy consumer, accounting for 20.3 percent of the global 

energy demand, compared to 19 percent in the U.S. (BP, 2011). China’s population also 

makes it the largest automobile market in the world.  

Rising transportation fuel costs, increasing demand, and diminishing supply of 

crude oil has spurred the pursuit towards producing renewable biofuels in China. While 

many plant and herbaceous crop species have been studied as potential biomass 

feedstock, switchgrass (Panicum vigratum) has proven to be one of the best options for 
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developing a non-food crop for biofuel production, and one of the  most efficient options 

of any crop (McLaughlin, 1992). Switchgrass is a native North American perennial grass 

species that is found from the Atlantic coast to the eastern Rocky Mountains (Rinehart, 

2006). In addition to its potential as a feedstock for lignocellulosic ethanol production, it 

has also demonstrated success in reducing soil erosion in marginal and degraded soils 

(Parrish and Fike, 2005). Switchgrass adapts to and tolerates a wide variety of 

environmental conditions, thus enhancing its ability to be adopted as part of a large-scale 

lignocellulosic ethanol production initiative (Hitchcock, 1951). Another benefit of 

switchgrass is that it is a non-invasive crop, meaning it will not spread naturally without 

intentional establishment (Thomson et al., 2009). 

The two primary ecotypes of switchgrass are lowland and upland ecotypes. 

Lowland varieties are taller, coarser and produce more biomass than upland varieties, and 

are generally found in areas that have higher rainfall and longer growing seasons and 

mild winters (Vogel, 2004).  The shorter upland varieties fare well in drier, colder 

climates, such as those that are found in the Midwestern and Northern United States 

(Bouton, 2007). There are also several different types of cultivars for each ecotype. The 

three most common cultivars are Alamo, a lowland which favors the Southern states and 

has generated exceptional biomass yields, Kanlow, another lowland that has shown good 

promise, and Cave-in-Rock, an upland best adapted to the Northern states (Parrish and 

Fike, 2005). 

Switchgrass’s perennial nature and ability to be baled similar to hay also makes it 

a highly desirable bioenergy feedstock, thus being less labor intensive for the farmer and 

not requiring the purchase or use of specialized farming equipment (Vogel et al., 2002).  

Switchgrass has also been distinguished for its ability to enhance soils and wildlife in 



28 

 

areas where it has been planted, resulting in its robust use in restoring poorly degraded 

areas across the United States through the Conservation Reserve Program (CRP) (Dunn 

et al., 1993). Recognizing the need to develop renewable fuels domestically, the U.S. 

Department of Energy commissioned the Bioenergy Feedstock Development Program 

(BFDP) at Oak Ridge National Laboratory in 1978. The goal of this program was to test 

various crop and plant species to determine which showed the most promise as a 

bioenergy feedstock.   Switchgrass demonstrated the most potential of all of the 

herbaceous crops tested (Bouton, 2007). The results of the BFDP report are particularly 

interesting in conjunction with the findings of Ichizen et al. (2005) that determined that 

switchgrass is the best candidate of approximately 20,000 plant species studied for 

vegetation revitalization and soil erosion control in the Loess Plateau region of China. 

This area covers 640,000 km
2
 in the upper middle segments of the Yellow River 

watershed in North China and encompasses some of the world’s most eroded soils, 

historically due to natural processes, but more recently exacerbated due to anthropogenic 

land use change as a result of poor farming and other land management practices (Xinbao 

et al., 1990). Considering switchgrass’s ability to rehabilitate soils and increase 

biodiversity, planting it in the Loess Plateau and utilizing best practices for crop 

management could produce vast environmental benefits. 

Although switchgrass has been researched on a minor scale at regional levels for 

use as a bioenergy feedstock in China (Xiong et al., 2008), no effort has been made to 

quantify potential yield throughout the country. Field testing of the upland cultivar, Cave-

in-Rock, in the semiarid climate of Ying Xian in Shanxi Province, near the Loess Plateau, 

demonstrated switchgrass’s adaptability by doubling its yield in the second year, relative 

to the first, from 9 mg/ha to 18 mg/ha without irrigation (Xiong et al., 2008). The primary 
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objective of this study is to develop a multiple linear regression model that will estimate 

potential switchgrass yield throughout every region of China. Because there have only 

been a small number of switchgrass field trials in China, which are mostly concentrated 

in the North, field trials from the more regionally and climatically diverse United States 

sites are utilized. 

There has been recent interest in the United States to estimate switchgrass yield 

throughout the country as well. Thomson et al. (2009) simulated potential switchgrass 

yields in the United States based on seven test locations in the southeast, using the EPIC 

(Environmental Policy Integrated Climate) model. Wullschleger et al. (2010) developed 

yield estimates by creating a multiplicative, parametric model for biomass yield from a 

more regionally diverse database that was compiled from publications that listed 

switchgrass field trial results from 39 different locations in 17 states, totaling 1190 

observations, spanning the Southern, Midwestern, and Northern United States. This was 

the first published paper written from such a compilation of field trials from across the 

country and after personal communication with the author, this database was used as the 

basis for building a regression model to estimate switchgrass yield in the US and 

applying the model to the entire region of China.  

2. MATERIALS AND METHODS 

2.1. Dataset and Description 

To develop a multiple linear regression model that predicts switchgrass yield in 

China, the compiled data set of biomass yields used by Wullschleger et al. (2010) was 

also used in this study (see table 1). To increase the model’s predictive performance, it 

was important that the dataset included a high number of observations from diverse 

geographic locations with records of biomass yield, ecotype, stand age, nitrogen fertilizer 
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application, growing season precipitation (April-September) and annual mean 

temperature from the year of harvest for each observation. The latitude and longitude 

coordinates were used to overlay additional environmental variables in a Geographic 

Information Systems (GIS) at 1 km resolution, for instance, soil order classifications, soil 

characteristics, altitude,  mean annual maximum and minimum temperature, average 

growing season mean and maximum temperature, average annual minimum temperature, 

and annual and growing season average annual precipitation. The U.S. Department of 

Agriculture’s (USDA) Natural Resources Conservation Service (NRCS) provided the soil 

classification data for China and the United States according to the USDA soil taxonomy. 

Soil characteristics, such as drainage and soil organic carbon content were added from the 

Harmonized World Soil’s Database (FAO et al., 2012). Drainage was classified into four 

categories, ranging from 1 for poorly drained soils to 4 for excessively drained soils. 

Climate data were obtained from the WorldClim global climate database which produced 

climate grids by interpolating average monthly climate data from weather stations around 

the globe at 1 km
2
 resolution from 1950-2000 (Hijmans et al., 2005). Spatial analyst tools 

in ArcMap (ESRI Inc., Redlands, CA) were used to extract the site specific data from 

each of these additional environmental variables at a 1km
2
 resolution throughout China. 
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Table 1. 39 locations of switchgrass field trials along with respective ecotype, climate 

and soil data. 

 
 

Location

No. of 

Observations Lowland Upland

Mean 

Annual 

T (°C)

Mean 

Growing 

Season 

Precip 

(mm)

Soil 

Order

% Soil 

Organic 

C

Shorter, Al 16 6 10 16.8 674 Ultisol 1

Athens, GA 30 10 20 16.3 595 Ultisol 1

Tifton, GA 30 10 20 18.6 638 Ultisol 1.13

Chariton, IA 60 12 48 9.5 633 Mollisol 1.68

Manhattan, KS 4 2 2 11.5 620 Mollisol 1.83

Princeton, KY 24 12 12 13.9 619 Ultisol 1.45

Clinton, LA 6 6 0 18.7 821 Ultisol 1

Raleigh, NC 24 12 12 15.4 607 Ultisol 1

Dickinson, ND 24 0 24 5.4 328 Mollisol 1.27

Mandan, ND 48 0 48 5.4 329 Entisol 0.48

Munich, ND 3 0 3 2.9 345 Mollisol 1.65

Streeter, ND 3 0 3 4.9 354 Mollisol 2.08

Atkinson, NE 2 0 2 8.7 450 Entisol 0.5

Crofton, NE 3 0 3 8.8 382 Mollisol 0.97

Douglas, NE 3 0 3 10.5 578 Mollisol 1.29

Lawrence, NE 3 0 3 10.4 517 Mollisol 1.27

Mead, NE 4 2 2 10.1 572 Mollisol 1.29

Chickasha, OK 143 115 28 16.2 523 Mollisol 1.27

Haskell, OK 70 28 42 15.6 610 Mollisol 1.05

Perkins, OK 46 46 0 15.4 568 Mollisol 1.27

Stillwater, OK 4 2 2 15.1 601 Mollisol 1.05

Rock Springs, PA 10 0 10 9.3 547 Alfisol 0.86

Bristol, SD 3 0 3 5.8 394 Mollisol 1.74

Brookings, SD 24 0 24 6.2 446 Mollisol 1.27

Ethan, SD 3 0 3 8.3 429 Mollisol 1.27

Highmore, SD 3 0 3 6.7 367 Mollisol 1.27

Huron, SD 3 0 3 7.3 386 Mollisol 1.27

Jackson, TN 24 12 12 15.1 651 Alfisol 0.82

Knoxville, TN 24 12 12 14.3 620 Ultisol 1

Beeville, TX 51 45 6 21.5 493 Alfisol 0.86

College Station, TX 67 46 21 19.9 531 Alfisol 0.86

Dallas, TX 84 74 10 17.9 514 Alfisol 0.86

Stephenville, TX 146 121 25 17.5 469 Alfisol 0.86

Temple, TX 70 59 11 19 475 Vertisol 1.2

Blacksburg, VA 48 24 24 11.1 546 Ultisol 1

Orange, VA 24 12 12 12.9 584 Ultisol 1

Arlington, WI 28 2 26 7.3 550 Alfisol 1.91

Spooner, WI 4 2 2 5.3 554 Spodosol 1.91

Morgantown, WV 24 12 12 10.8 599 Ultisol 1
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3. Modeling 

 A multiple linear regression is a statistical method useful for examining the 

concurrent relationships between multiple independent variables and one continuous 

dependent variable (Neter et al., 1996). The model equation for a multiple linear 

regression is characterized by the following: 

 

 

Yi = α + β1Xi1 + β 2Xi2 + β 3Xi3 + … β mXim + ei     [1] 

 

where 

 

Yi = predicted variable (i.e. biomass yield Mg/ha) 

α = regression constant 

β 1-m = beta coefficient (slope) for independent variables 

Xi(1,…,m) = independent variables (i.e. environmental and crop management variables) 

ei = error term 

 

The least squares principle is typically used to develop regression parameters and 

determine the best fit model, which is one that minimizes the sum of squares between the 

differences from observed and predicted values. The least squares are calculated by the 

following formula: 

 

 

Ŷi = a + b1Xi1 + b2Xi2 + b3Xi3 + … bmXim      [2] 

 

 

where each variable represents the same as in model [1] except Ŷ represents the predicted 

value of Y based on the values of the independent X variables. Since the true model for 

[1] is unknown, ei is defined as the residual values from the difference of equations [1] 

and [2], written as: 

 

 

ei = Yi – ŶI          [3] 
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where Σ (ei)
2
 is minimized. A forward stepwise regression procedure was used to 

determine which independent variables would remain in the model. To build the stepwise 

regression model, verify the assumptions, and analyze descriptive statistics and bivariate 

plots, SPSS (IBM, Inc., Armonk, New York), predictive analytics software was used.  

4. Data 

 This analysis is based on a 1 – cut per year harvest management system and 

makes biomass yield predictions for stand ages greater than 2 years. There are 1,190 

observations of switchgrass yield data (Wullschleger et al., 2010) from 39 locations in 17 

states covering a time period from 1979 to 2005 are assembled in this database. Lowland 

ecotypes account for 57.4 percent of the data with 684 observations, whereas uplands 

make up 42.6 percent of the data with 504 observations. Mean biomass yield was 11.12 

Mg/ha. The lowest reported annual yield was 1.03 Mg/ha in Beeville, TX, (Sanderson et 

al., 1999) during a year that had near average mean annual temperature and growing 

season precipitation. The highest observed yield was 39.1 Mg/ha, recorded in Temple, 

TX, (Kirniry et al., 1999) with slightly below average mean annual temperature and 

above average growing season precipitation. Evaluation of the box plot distribution of 

biomass yields reveals that the most commonly  recorded yields were between 6.9 Mg/ha 

(25
th

 percentile) and 14.61 Mg/ha (75
th

 percentile) (figure 1). Biomass yields above 26 

Mg/ha are few and may be considered outliers (figure 1). 
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Fig.1. Box plot of all reported biomass yields. The bold horizontal line represents the 

median yield. The bottom line of the box represents the 25
th

 percentile, while the top 

represents the 75
th

. Values above the whiskers are reflected as outliers. 

 

 Switchgrass yield generally responded favorably to nitrogen fertilizer application, 

although some test fields that did not apply N fertilizer produced biomass yields well 

above the mean yield for all observations. The distribution of N fertilizer application 

from 0 to 896 kg/ha is shown in figure two. N fertilization above 225 kg/ha was rare and 

particularly excessive as well (figure 2). The 58 observations that fell into this category 

were thus treated as outliers and taken out of the regression analysis.  
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Fig. 2. Frequency distribution of nitrogen fertilizer application for all observations. 

Application rates above 400 kg/ha were rare and marked as outliers and taken out of the 

analysis. 

 

Switchgrass yields varied substantially over all values of N fertilization 

application (figure 3). Other factors such as soil nutrients and climate could account for 

the high variability, yet this data analysis shows that high N fertilization does not equate 

to high biomass yields. Switchgrass responds favorably to N fertilization application up 

to 90-115 kg/ha, and then decreases at higher levels (though there was some increase 

again as N fertilization levels reached extremely high levels) (figure 3). This indicates 

that, used in moderation, N fertilization can have positive results on biomass yield. Wolf 

and Fiske (1995) documented that N fertilization application rates between 80-100 kg/ha 

for fields 2 years old and greater is considered standard N management procedure.  While 

Nitrogen fertilizer rates at 224 kg/ha in this database generated positive responses, the 

economics and long-term production sustainability could indicate the need for lower rates 

(McLaughlin et al., 1999). Wullschleger et al. (2010), in their analysis, found optimal N 

fertilization rates to be approximately 100 kg/ha, which coincides with the bivariate plot 
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in this study, and therefore will be used as the optimal N fertilizer input for predicting 

biomass yields in China. 

 

 
Fig. 3. Bivariate plot of N fertilization and biomass yield from 1,132 observations (58 

high N observations were deemed outliers and removed from analysis). Note the biomass 

yield with zero N fertilization had comparable yields in comparison with other 

observations. 

 

 Switchgrass stand ages in the year of harvest varied in this dataset from 2 to 21 

years. Biomass yields were generally greater after the 2
nd

 year (figure 4), corresponding 

to switchgrass’s known biological characteristic of reaching maturity and full yield 

potential during its third year post-establishment (McLaughlin et al., 1999). Some 

observations in the second year of harvest had exceptionally high yields, though the 

reason is likely due to other key parameters. Establishing switchgrass in China for ligno-

cellulosic ethanol feedstock is considered a long-term investment, therefore the multiple 

linear regression analysis will build a yield prediction model with the assumption that 

biomass yield estimates are for stand ages 3 and greater.  
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Fig. 4. Boxplot of stand age and total yield. Stand age is represented as a dummy 

variable, where 0 = all stand ages ≤ 2 years and 1 = all stand ages > 2 years. 

 

 There was no obvious correlation between soil characteristics and biomass yield. 

Switchgrass’ native distribution covers much of North America consequently making it 

well adapted to a wide range of edaphic and environmental conditions. Regression 

analysis revealed that soil order and drainage were not significant variables in 

switchgrass production (p > .10) and were removed from the model. This finding concurs 

with research by Sanderson et al. (1999) and Parrish and Fike (2005) that found soil type 

to have minimal effect on switchgrass yield. Switchgrass has also been reported to be 

tolerant of strongly acidic soils (Bona and Belesky, 1992). Soil organic carbon also had a 

p-value greater than .05 and was considered for removal from the model, however it is 

widely accepted in the agriculture industry that soil organic carbon is a critical element 

influencing crop production, soil structure, nutrient availability, water holding capacity, 

root growth and carbon sequestration (Liang et al., 2011). Soil organic carbon is a good 

indicator of the health of the soils and was therefore included in the model. It is measured 



38 

 

as the percent weight of organic carbon in the top soil, where soils with organic carbon < 

0.6% are considered to be poor in organic matter (FAO et al., 2012). Switchgrass 

responds positively to soil organic carbon. Figure 5 shows that the majority of the 

switchgrass observations occur in soils > 0.6 % and the greatest yields occur in soil 

organic carbon around 1%. Furthermore, regression analysis yielded a positive estimated 

beta coefficient for soil organic carbon, thus signifying switchgrass’s positive response to 

soil organic carbon content. 

 

 
Fig. 5. Bivariate plot of total biomass yield and percent soil organic carbon. Percentages 

are of total weight of top soil.  

 

 

In general, lowland ecotypes outperformed uplands with an average biomass yield 

of 12.59 Mg/ha and 8.74 Mg/ha, respectively. To account for this difference in yield in 

the prediction model, it was necessary to create a dummy variable for ecotype, where 0 = 

lowlands and 1 = uplands (figure 6). This caused the estimated beta coefficient for the 

binary ecotype variable to be negative, an expected result given that lowlands produced 

greater biomass yield. Accordingly, a method was required to assign pixel values in 
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China that identified whether or not they would be classified as 1 for upland or 0 for 

lowland ecotypes when the prediction model was applied. Scientific studies have 

indicated that in the United States lowland ecotypes exhibit a competitive advantage over 

uplands in southern latitudes up to 42
o
N (Casler et al., 2004). Because both ecotypes can 

grow in many locations throughout the United States, they are also likely to be viable in 

areas with similar climates in China.  

 

 

 
Fig. 6. Boxplot of ecotype (lowland = 0, upland = 1) and total yield. Plot shows that 

lowlands produce greater yields on average compared to uplands. 

 

Rather than allowing the 42
 o
N latitude to be the dividing line for uplands and 

lowlands when predicting biomass yields in China, climate was used to determine this 

dividing line instead, by running a logistic regression in SPSS on the ecotype variable. 

When the dependent variable is binary, logistic regression analysis is a good method for 

determining the absence or presence of a species at a particular location relative to 

climactic or other environmental variables, thus making it possible to predict its potential 
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occurrence in regions outside of its native range (Pearce and Ferrier, 2000). In this case, 

the logistic model was built using the climate data from the observations that had the 

highest yield at each of the 39 locations (n = 39 and 22 lowlands, 17 uplands). These 

observations were selected because they produced the greatest yields under the present 

climate settings, thereby providing key information regarding how each ecotype performs 

under those conditions. Growing season precipitation and mean annual temperature from 

the years of harvest were the independent variables and ecotype of the highest-yield crop 

was the outcome (dependent) variable. Running the logistic regression produces the 

estimated constant and beta coefficients required to model Logit(p) = α + ß1X1 + ß2X2 + 

ε, where Logit(p) = the probability that Y = 1. Once the model was developed, it was 

applied to the United States and China in ArcMap, using growing season precipitation 

and average mean annual temperature raster grids for each country. 

The subsequent map output (figure 7) for the United States showed that optimum 

locations for lowland ecotypes were constrained to the majority of the Southeast, while 

being extremely restricted in the West, and extended North up to nearly 40
o
N. These 

findings are comparable to the results of Casler et al. (2004) and Wullschleger et al. 

(2010) that found lowland ecotype production decreases at a rate of 12.5% per degree at 

latitudes above 38
o
N and lose all competitive advantage to upland ecotypes at 42

o
N. 
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Fig. 7. Here the logistic regression model results, which predict optimal yields for 

lowland (green) or upland (red) ecotypes, are presented.  

 

 

 Climate variables are significant environmental variables for the production of 

switchgrass (Schmer et al., 2005). Biomass yields fluctuated across all mean annual 

temperatures and growing season precipitation (figures 8 and 9). Yields were lowest 

between 5-8
o
C and highest between 12-16

o
C, emphasizing switchgrass’s proclivity to 

produce higher biomass yields in warmer regions with longer growing seasons.  

Wullschleger et al. (2010) found that biomass yield increases up to 14
o
C and then 

decreases as temperatures increase, suggesting a parabolic effect on temperature, as can 

be observed in the bivariate plot (figure 8). To account for this effect in the model, a 

squared mean annual temperature variable was created. In order to do this, mean annual 

temperature had to first be increased by 30
o
C for each location to eliminate the outcome 

of squared negative values becoming positive as there are negative average mean annual 

temperature values in some locations within China. As a result, the model was able to 

depict this parabolic effect with a positive estimated beta coefficient for annual mean 

temperature and a negative estimated beta for the squared term. 

 Growing season precipitation had a positive effect on biomass yield across all 

precipitation amounts (as can be seen from the regression results below and a slight 

upward trend in the graph in figure 9), though there were both high and low biomass 
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yields recorded for high and low precipitation values (figure 8). Growing season 

precipitation has been considered to be one of the most important factors in determining 

biomass yield (Sanderson et al., 1999b). The bivariate plot also depicts that growing 

season precipitation values above 600 mm do not necessarily enhance productivity. Soil 

water holding capacity is essential to how switchgrass manages and responds to periods 

of low rainfall, droughts and imbalanced rainfall distribution (Stout et al., 1988). 

 

 
Fig. 8. Bivariate plot of mean annual temperature and total yield. Plot indicates parabolic 

effect on temperature, as yield increases to a point and then decreases. 
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Fig. 9. Bivariate plot of growing season precipitation and total yield. Plot shows how 

yields vary across all values of precipitation.  

 

 

5. Multiple Linear Regression Results 

 Initially, the stepwise regression procedure was run with yield as the outcome 

variable, and the following independent variables: soil order classifications, altitude, 

average annual mean, maximum and minimum temperature, average growing season 

mean and maximum temperature, average annual minimum temperature, annual and 

growing season average annual precipitation, ecotype, stand age, nitrogen fertilizer 

application, growing season precipitation and annual mean temperature from the year of 

harvest. The final model produced by the stepwise regression procedure contained seven 

independent variables (growing season precipitation, annual mean temperature, annual 

mean temperature squared, a binary ecotype, a binary stand age variable, N fertilization, 

and soil organic carbon) when modeled against yield as the outcome variable.  

Residual analysis revealed a heteroskedastic association in the model and that the 

square root transformation on yield provided a better fit to linearize the relationships. The 
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modeling process revealed that annual mean temperature had a nonlinear effect on the 

outcome variable (square root of yield), so various transformations were tested on the 

annual mean temperature variable, and it was found that the inclusion in the model of 

annual mean temperature squared (in addition to annual mean temperature) did the best to 

linearize the relationship. Altitude was tested in the model; however it was not at all 

significant and taken out of the model. An explanation for this could be that climate, in 

many ways, is affected by altitude and the climate variables selected for this analysis 

accounted for changes in altitude. After deleting the 58 high N fertilization observations 

and inspecting the studentized deleted residuals, Cook’s D and leverage values, no other 

observations needed to be removed as statistical outliers. Analysis of the residual plots 

against predicted values and predictor variables indicated agreement with linearity and 

homoskedasticity regression assumptions. Tests for normality of the residual values 

showed that the residuals adhered to normality (figure 10).  

 

 
Fig. 10. P-P Plot of residuals follows a straight line, indicating the data does not 

significantly deviate from normality. 

 

 Six out of the seven (soil organic carbon being the exception) independent 

variables were all very significant (table 2). Adjusted r
2
 was .291, indicating the model 
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accounted for roughly 30% of the variation seen in the square root of biomass yield. . 

Since this study was completed on such a broad scale with a relatively small sample size 

of input locations, there are likely many more variables and interactions that could not be 

accounted for, such as field management methods, timing of rainfall, and more soil 

characteristics. Therefore, even this modest R-square is a significant accomplishment. 

  

Table 2. Regression analysis output from final model run. 

 

 

Examination of the estimated beta coefficients revealed the annual mean 

temperature was the most important predictor variable, positively affecting yield when 

holding all other variables constant. On the other hand, the squared temperature term 

indicated that when mean annual temperatures are too high, biomass yields are negatively 

affected. Keeping all other variables constant, the data show that biomass yields increases 

up to 13
o
C and then decreases at temperatures above that threshold, although there is not 

much difference in predicted yield between 12-14
o
C (table 3).  
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Table 3. Effect of mean annual temperature (Xi1) and squared mean annual temperature 

(Xi2) variables on biomass yield.  The maximum effect is at 13°C. 

 
 

 

 Stand age had a positive effect on biomass yield; however its overall contribution 

to the prediction model was relatively small. Predicted biomass yields in China are made 

assuming stand ages are 2 years or greater. Growing season precipitation and N 

fertilization increased biomass yields as well, although more modestly than the other 

predictor variables. Biomass yield responded very positively to soil organic carbon, 

which was expected given the importance organic carbon is to plant growth. The beta 

coefficient for the binary ecotype variable was negative, implying that biomass yield 

decreases when the ecotype is upland and all other variables held constant.  

 This model predicts biomass yield based on raw predictor variables and does not 

take into account micro-level interactions that occur within seasons, above and 

underground dynamics of soil organic carbon and N fertilization and the method in which 

each of these acts on each ecotype. Wullschleger et al. (2010) found that plot size and 

harvest year were not significant factors in switchgrass production.  Research has also 

shown that harvest management (1 or 2 cut systems) along with whether or not surface 

litter residue is removed, is critical to below ground carbon and nitrogen availability and 

switchgrass production (Garten et al., 2010). Mean growing season, winter and annual 

temperatures are all too correlated for linear regression analysis, however any of these 

Mean 

Annual T 

(°C) b1Xi1 + b2Xi2

10 24.86672

11 24.928943

12 24.963876

13 24.97152

14 24.951872

15 24.904935

16 24.830708
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variables, as well as other temperature correlations such as mean diurnal range and 

isothermality could influence switchgrass production. Annual precipitation was not 

reported for the observations, yet it may influence soil water holding capacity and other 

aspects of soil texture throughout the year that could not be accounted for. The amount of 

precipitation switchgrass receives during the growing season is important for its growth, 

but the effect of precipitation during the fall and winter months could have implications 

as well. Edaphic conditions are another area that could boost r
2
 and help with the 

understanding of switchgrass production. Because switchgrass grows in a variety of 

geographic areas with different soil types and textures, it is difficult to develop significant 

relationships to biomass yield. Future switchgrass field trials could benefit from the 

collection of more underlying soil, climate, nitrogen and carbon data.  

6. Results and discussion 

 Prior to predicting biomass yields in China, the model was first applied to the 

United States (figure 11) to compare the results to Wullschleger et al.’s (2010) 

multiplicative, parametric model for estimating switchgrass yield. Key model 

assumptions are that stand ages are > 2years and, for the China model, that N fertilization 

use across all of China would be 100 kg/ha. Mapped output from Wullschleger et al.’s 

(2010) model and this paper’s model revealed differences in ecotype distribution and 

biomass yield estimates. Wullschleger et al.’s (2010) output map implies that lowland 

ecotypes extend up to 42
o
N, and are capable of producing high biomass yields in the 

latitudes between 40 – 42
o
N. Their research also indicates high biomass yields extending 

from the Southeast west into the majority of New Mexico, the eastern half of Colorado, 

all of Kansas and parts of Nebraska. They predict the highest biomass yields (23 Mg/ha) 

throughout the middle section of the country in the Southeast.  
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 The model analysis in this paper used climate to estimate the distribution of 

upland ecotypes and lowland ecotypes, rather than using latitude as a parameter of the 

model itself, and appears to have produced results more in line with the climactic niche 

for each ecotype. For instance, there is a 2 – 3
o
C difference in average mean annual 

temperature between locations at 42
o
N versus those at 39 – 40

o
N. According to these 

model results, the cooler temperatures are likely to favor uplands rather than lowlands in 

latitudes between 39° and 42°N, which also imply lower yield estimates.  Additionally, 

average growing season precipitation is generally lower at 42
o
N than at 39 – 40

o
N and is 

considerably lower from the middle half of the country out to the Pacific coast. Absent of 

irrigation systems, the reduced rainfall in the higher latitudes coupled with cooler 

temperatures favor uplands as well and also imply reduced yield estimates from the 

lower, warmer latitudes. Biomass yield estimates were much lower in this analysis, with 

the highest yielding region predicted to produce 13-16 Mg/Ha as opposed to 23 Mg/ha in 

Wullschleger et al.’s (2010) model. The differences in biomass yield estimates are most 

likely because they are based on different empirical modeling techniques. Areas in figure 

10 that show yields above 16 Mg/ha, including stretches in Minnesota with yields above 

10 Mg/ha should be considered anomalies because those yield predictions are all (with 

the exception of the area in northern Georgia and South Carolina) influenced by 

exorbitantly high soil organic carbon content as opposed to the data used to build the 

model. The region in northern Georgia and South Carolina appears to predict high 

biomass yields due to an extraordinary amount of precipitation during the growing season 

in that region, well outside the bounds in the training data. 
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Fig. 11. Predicted switchgrass biomass yield for the United States.  

 

 

 Projecting the model onto China (figure 12) revealed that switchgrass can grow 

exceptionally well in many areas throughout China. The model projected lowland and 

upland ecotypes well within their known climatic niches. Unexpectedly, the model shows 

that China has the capability of producing higher biomass yields per unit area on average 

than the United States. The highest switchgrass yields were predicted in the southeastern 

part of China, primarily consisting of the North China Plain, Sichuan Basin, and the 

Chang Jiang Downstream Plain, where growing season precipitation is the highest, 

largely due to the summer monsoon season. It is of no coincidence that these areas 

consist of China’s largest and most important agricultural regions.  
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Fig. 12. Predicted switchgrass biomass yield for China. Areas in black represent regions 

that have environmental data that far exceed the training data. 

 

 

 The model output map also implies that switchgrass would grow well in the Loess 

Plateau, an area of pronounced soil erosion, and produce respectable yields between 7 – 

10 Mg/ha. An initial hypothesis held prior to conducting this research was that while 

switchgrass may grow in the Loess Plateau, it would not produce enough to make it 

economically feasible to be harvested for biofuel feedstock and would have to be used 

instead solely for soil and vegetative recovery. To the contrary, the model shows that 

upland ecotypes can produce harvestable amounts of biomass in the Loess Plateau. This 

analysis, of course, does not take into account other factors behind crop management, 

such as storage, transportation and biofuel conversion, or difficulties of growing 

switchgrass in an area where wind or water erosion may carry away sewn seeds – one or 

more of these factors may make harvesting switchgrass difficult or not economically 

feasible in this area as well as more rural parts of China. Switchgrass biomass yield is 
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predicted to be lowest in western and northern China, consisting of the Plateau of Tibet, 

Takla Makan Desert and the Gobi Desert. The region shaded in black represents a region 

of China that had environmental data outside the data range used to build the model, and 

could not be used to accurately predict biomass yield.  

The purpose of this research was to estimate yield on a broad scale for 

switchgrass as a function of climate, soil organic carbon, N fertilization and ecotype 

selection across all of China, rather than individual locations or regions, and thus does not 

account for all of the intricacies and nuances of managing bioenergy crops on the ground 

level where individual differences, such as plot sizes, N fertilization amounts, irrigation, 

till or no-till farming, cultivar selection and other factors can influence biomass yield. 

However based on the training data, this model represents a relatively accurate 

assessment of potential switchgrass yields across China. 

7. Conclusions 

In this research, a large pre-published database of switchgrass field trials was used 

to estimate potential biomass yields across China based on climate, ecotype, N 

fertilization, soil organic carbon and stand age. The model showed that switchgrass yield 

is heavily influenced by climate conditions along with ecotype. In general, switchgrass 

responded positively to N fertilization, but also produced strong yields without any. N 

fertilization use in China for switchgrass growth should vary based on soil conditions 

throughout the different regions. China has the potential to produce significant 

switchgrass yields; however, the majority of the high producing agricultural areas is 

currently being farmed for food crops and, given China’s high population, switching to a 

bioenergy crop may not be socially and economically feasible in many areas. This leaves 

marginal lands and regions such as the Loess Plateau as potential sites for switchgrass 
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production. Under this scenario, a double benefit can be realized, both for biofuel 

feedstock and soil and biodiversity recovery. In addition, more switchgrass field trials for 

biofuel production throughout different climate regions in China are needed to provide 

more spatially accurate data for predicting biomass yields across China. The database 

used in this analysis is the best and largest compilation of switchgrass field trials 

available to spatially extrapolate estimated potential switchgrass biomass yields. 

However, when utilizing a database of this nature, a pre-published compilation of 

multiple published studies, limitations exist that may constrain the level of analysis that 

can be achieved with the data. For instance, the analyses are not repeatable and there may 

have been different management techniques between studies. The timing of rainfall, 

warm temperatures, first frost and solar receipt could have differed between times and 

places of studies. Different studies may also have different levels of error associated with 

their measurements. Though a better understanding of soil interactions and nutrient 

cycles could increase the model’s performance, this model can be spatially extrapolated 

to any country or region based on climate, however, the limitations that exist within this 

type of database should be considered. 
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CHAPTER 4 

 

Simulating potential switchgrass yield response to climate change in China 

 

1. Introduction 

 Climate change and its effects on crop production, water availability, energy 

resources, and social and economic development are just a few of the important issues 

facing China and the rest of the world in the twenty-first century. In its Fourth 

Assessment Report, the Intergovernmental Panel on Climate Change (IPCC) found that 

global temperatures have increased by 0.74 (± 0.18)°C during the 100-year study period 

(1906 – 2005), up from 0.6 (± 0.2)°C (1901 – 2000) reported in the Third Assessment 

Report in 2001 (IPCC, 2007). Mean surface temperature across China mirrored the global 

rate, increasing significantly over the past 100 years on average between 0.5 – 0.8°C 

(Ding e al., 2006). The IPCC report also concluded that increased concentrations of 

greenhouse gases in the atmosphere are expected to influence global climate by 

lengthening the summer agricultural growing season, increasing worldwide averaged 

mean precipitation, evaporation and severe rainfall event frequency (i.e. flooding and 

more intense thunderstorms, monsoons and hurricanes), while also prolonging droughts 

in other regions. Mitigating ground level impacts of increased severe rainfall events are 

of great importance, as intermittent severe storms have been shown to increase soil 

erosion and loss, leading to a reduction in agricultural productivity and air quality from 

rising concentrations of particulate matter (Edwards and Owens, 1991; Zhang and Liu, 

2005; Zhang and Garbrecht, 2002). 

 If no mitigating actions in China against climate change are taken by 2030, total 

crop productivity is expected to decrease by 5 – 10%. By the latter half of the 21
st
 

century, wheat, rice, and maize harvest will reduce by 37%, in conjunction with thinning 
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water resources necessary to irrigate farmlands (Erda et al., 2007). In 2010, China 

became the world’s largest automobile market and energy consumer, accounting for 20.3 

percent of the global energy demand (BP, 2011). While all living organisms give off 

greenhouse gases, the rising concentrations experienced over the past 100 years and those 

predicted in the future are largely due to the combustion of fossil fuels for energy usage. 

Therefore, there is an urgent effort in China to develop non-fossil based renewable fuels 

capable of supplementing current and future energy demands as well as reducing the 

buildup of greenhouse gases in the atmosphere.  

 Switchgrass is a perennial grass species, native to North America that could be 

grown in China to provide biofuel feedstock, enhance soils and reduce soil erosion. It has 

shown great potential as a highly efficient bioenergy feedstock and has proven success at 

reducing soil erosion, increasing biodiversity, and sequestering carbon (McLaughlin et 

al., 1999; Parrish and Fike, 2005). Many studies have documented switchgrass’s deep 

root system’s abilities to store carbon and increase soil organic matter (McLauglin and 

Walsh, 1998; Romm et al., 1998; Ma et al., 2000; Ma et al., 2001; Lemus and Lal, 2005; 

Garten et al., 2010). Because switchgrass is a perennial crop and the root system is so 

vast, it is likely to provide superior carbon sequestration versus other annual energy 

crops, such as corn or soybeans (Zan et al., 2001). Zhou et al.’s (2009) analysis in China 

demonstrated that low-input high-diversity grasslands should be the preferred bioenergy 

feedstock of choice for producers because they are more economical and have greater 

environmental benefits than do annual biofuel crops. Annual biofuel crops lose 

significant quantities of soil organic matter through respiration and soil erosion (Garten 

and Wullschleger, 1999; Hallam et al., 2001). Switchgrass’ tolerance to drought and 
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flooding, two issues of significant concern with future climate change, also makes it an 

appealing biofuel feedstock (Rinehart, 2006). 

The two primary ecotypes of switchgrass consist of lowland and upland ecotypes. 

Lowlands are taller, coarser and produce more biomass than uplands, and are generally 

found in areas that have higher rainfall and longer growing seasons and mild winters 

(Vogel, 2004).  The shorter uplands fare well in drier, colder climates, such as those that 

are found in the Midwestern and Northern United States (Bouton, 2007). There are also 

several different types of cultivars for each ecotype. The three most common cultivars are 

Alamo, a lowland ecotype which favors the Southern states and has generated 

exceptional biomass yields, Kanlow, another lowland ecotype that has shown good 

promise, and Cave-in-Rock, an upland ecotype best adapted to the Northern states 

(Parrish and Fike, 2005). 

Ichizen et al. (2005) and Xiong et al. (2008) demonstrated switchgrass’s potential 

in China as an important option in mitigating severe soil erosion in the Loess Plateau and 

its ability to produce significant biomass yield for bioenergy conversion, respectively. A 

multiple linear regression analysis on switchgrass yield data from 1,190 observations 

provided by Wullschleger et al. (2010) from 39 different locations in the United States 

was used to build a model to estimate potential switchgrass yield across China. This 

paper estimates future yields in China using climatic conditions estimated from global 

circulation models (GCMs). GCMs simulate climate patterns at the continental level; 

however, the coarse resolution of the models requires them to be downscaled to higher 

spatial resolutions (Arnell, 2004) for some applications. The IPCC’s Special Report on 

Emissions Scenarios (SRES) from its fourth assessment (IPCC, 2007) provides the most 

recent future greenhouse gas projections, which influences future climate, and is applied 
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in this analysis. The purpose of this analysis is to assess the impact of climate change at 

the end of the 21
st
 century (2070-2099) under three different IPCC SRES greenhouse gas 

emission scenarios (high, intermediate and low) on potential switchgrass yields and 

distribution across China. To accomplish this goal a model is built from switchgrass field 

trial observations based on present climate and environmental conditions in the United 

States and then projected onto China with the 2070-2099 climate projections. 

2. Materials and Methods 

2.1. Dataset description 

1,190 field trials of switchgrass production from 39 different locations in the 

United States (table 1) were used to build a multiple linear regression model to predict 

potential switchgrass yields across China (Wullschleger et al., 2010). The data were 

compiled from switchgrass field trials presented in 18 publications by Wullschleger et al. 

2010. The 39 locations represented diverse climate regions and the data included GPS 

coordinates, biomass yield, stand age, nitrogen fertilizer application, ecotype selection, 

growing season (April – September) precipitation and mean annual temperature from the 

year of harvest. Latitude and longitude coordinates of each field test site were used to 

determine soil organic carbon, obtained from the Harmonized World Soil Database (FAO 

et al., 2012) at 1 km resolution. Table 2 provides a summary of the data sources. Spatial 

analyst tools in ArcMap 10 (ESRI Inc., Redlands, CA) were used to extract the site-

specific data from each of these additional environmental variables, at a 1km
2
 pixel 

resolution for the whole country of China. 
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Table 1. 39 locations of switchgrass field trials along with respective ecotype, climate 

and soil data. 

 
 

 

Location

No. of 

Observations Lowland Upland

Mean 

Annual 

T (°C)

Mean 

Growing 

Season 

Precip 

(mm)

Soil 

Order

% Soil 

Organic 

C

Shorter, Al 16 6 10 16.8 674 Ultisol 1

Athens, GA 30 10 20 16.3 595 Ultisol 1

Tifton, GA 30 10 20 18.6 638 Ultisol 1.13

Chariton, IA 60 12 48 9.5 633 Mollisol 1.68

Manhattan, KS 4 2 2 11.5 620 Mollisol 1.83

Princeton, KY 24 12 12 13.9 619 Ultisol 1.45

Clinton, LA 6 6 0 18.7 821 Ultisol 1

Raleigh, NC 24 12 12 15.4 607 Ultisol 1

Dickinson, ND 24 0 24 5.4 328 Mollisol 1.27

Mandan, ND 48 0 48 5.4 329 Entisol 0.48

Munich, ND 3 0 3 2.9 345 Mollisol 1.65

Streeter, ND 3 0 3 4.9 354 Mollisol 2.08

Atkinson, NE 2 0 2 8.7 450 Entisol 0.5

Crofton, NE 3 0 3 8.8 382 Mollisol 0.97

Douglas, NE 3 0 3 10.5 578 Mollisol 1.29

Lawrence, NE 3 0 3 10.4 517 Mollisol 1.27

Mead, NE 4 2 2 10.1 572 Mollisol 1.29

Chickasha, OK 143 115 28 16.2 523 Mollisol 1.27

Haskell, OK 70 28 42 15.6 610 Mollisol 1.05

Perkins, OK 46 46 0 15.4 568 Mollisol 1.27

Stillwater, OK 4 2 2 15.1 601 Mollisol 1.05

Rock Springs, PA 10 0 10 9.3 547 Alfisol 0.86

Bristol, SD 3 0 3 5.8 394 Mollisol 1.74

Brookings, SD 24 0 24 6.2 446 Mollisol 1.27

Ethan, SD 3 0 3 8.3 429 Mollisol 1.27

Highmore, SD 3 0 3 6.7 367 Mollisol 1.27

Huron, SD 3 0 3 7.3 386 Mollisol 1.27

Jackson, TN 24 12 12 15.1 651 Alfisol 0.82

Knoxville, TN 24 12 12 14.3 620 Ultisol 1

Beeville, TX 51 45 6 21.5 493 Alfisol 0.86

College Station, TX 67 46 21 19.9 531 Alfisol 0.86

Dallas, TX 84 74 10 17.9 514 Alfisol 0.86

Stephenville, TX 146 121 25 17.5 469 Alfisol 0.86

Temple, TX 70 59 11 19 475 Vertisol 1.2

Blacksburg, VA 48 24 24 11.1 546 Ultisol 1

Orange, VA 24 12 12 12.9 584 Ultisol 1

Arlington, WI 28 2 26 7.3 550 Alfisol 1.91

Spooner, WI 4 2 2 5.3 554 Spodosol 1.91

Morgantown, WV 24 12 12 10.8 599 Ultisol 1
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Table 2. Data Sources 

 
 

 

2.2. Regression model and analysis 

The independent variables used to build this model were mean annual 

temperature, growing season precipitation, nitrogen fertilizer application, soil organic 

carbon percentage, and binary ecotype and stand age variables. These variables explained 

more variation in yield than did other environmental variables. To build the stepwise 

regression model, verify the assumptions, analyze descriptive statistics and plots, SPSS 

(IBM, Inc., Armonk, New York) predictive analytics software was used (table 3).  

 

Table 3. Regression analysis output from final model run. 

 
 

 

Adjusted r
2
 was .291, indicating the model accounted for roughly 30% of the 

variation seen in the square root of biomass yield. This linear regression analysis assumes 

Switchgrass Field Trial Data

(1,190 observations) Wullschleger et al., 2010

Environmental Variables

Mean annual temperature WorldClim (v. 1.4) http://www.worldclim.org/

Mean growing season 

precipitation WorldClim (v. 1.4) http://www.worldclim.org/

Climate data (2070 - 2099) CCAFS http://www.ccafs-climate.org/

Soil organic carbon

Harmonized World Soil 

Database (v. 1.2) http://www.iiasa.ac.at/
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a 1 – cut per year harvest management system and makes biomass yield predictions for 

stand ages older than 2 years. 1,190 observations of switchgrass yield data (Wullschleger 

et al., 2010) from 39 locations in 17 states over the period from 1979 to 2005 are 

assembled in this database. There are 684 observations of lowland ecotypes and 504 

observations of uplands. Mean biomass yield for the database was 11.12 Mg/ha. The 

lowest reported annual yield was 1.03 Mg/ha in Beeville, TX, (Sanderson et al., 1999) 

during a year with normal mean annual temperature and growing season precipitation. 

The highest observed yield was 39.1 Mg/ha, recorded in Temple, TX, (Kirniry et al., 

1999) with slightly below average mean annual temperature and above average growing 

season precipitation. The most commonly recorded yields were between 6.9 Mg/ha (25
th

 

percentile) and 14.61 Mg/ha (75
th

 percentile) and biomass yields above 26 Mg/ha were 

considered outliers. Residual analysis revealed a heteroskedastic association in the model 

and that the square root transformation on yield provided a better fit to linearize the 

relationships. 

 While some switchgrass stands without applications of nitrogen fertilization 

produced biomass yields well above the average, the data indicate that switchgrass 

responds favorably to nitrogen fertilizer. Nitrogen fertilizer rates across the database 

varied from 0 to 896 kg/ha, although applications greater than 225 kg/ha was rare and 

especially excessive. There were 58 observations that fell into this category and were thus 

treated as outliers and taken out of the regression analysis.  

Switchgrass yields varied considerably over all values of nitrogen fertilization 

application, yet data analysis indicated that high nitrogen fertilization does not always 

produce high biomass yields. Further analysis revealed that switchgrass responds 

favorably to nitrogen fertilization up to 90-115 kg/ha, and then declines at higher 
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quantities. This implies that switchgrass is not nitrogen fertilization dependent; however, 

if used in moderation, it can have positive results on biomass yield. Nitrogen fertilization 

application rates between 80-100 kg/ha in stands 2 years and older are considered 

standard nitrogen management procedure (Wolf and Fiske, 1995).  Wullschleger et al. 

(2010) found optimal nitrogen fertilization rates to be approximately 100 kg/ha. This rate 

coincides with bivariate plot analysis of nitrogen and biomass yields (data not shown) 

and therefore will be used as the optimal nitrogen fertilizer input for predicting biomass 

yields in China. 

Switchgrass stand ages varied from 2 to 21 years and biomass yields were 

generally greater after the 2
nd

 year, which corresponds to switchgrass’ known biological 

trait of reaching maturity and full yield potential during its third year post-establishment 

(McLaughlin et al., 1999). Some observations with exceptionally high yields were in the 

second year of harvest; however, the reasons were unclear and beyond the scope of this 

study. Model results showed that while stand age had a positive effect on yield, its overall 

contribution to the prediction model was relatively minor. Establishing switchgrass in 

China for bioenergy feedstock is considered a long-term investment; therefore, the model 

will make the assumption that biomass yield estimates are for stands > 2 years.  

The percentage of soil organic carbon in the soil profile is considered one good 

measure of the quality of the soil and was therefore included in the model. It is measured 

as the percent weight of organic carbon in the topsoil, where soils with organic carbon < 

0.6% are considered to be poor in organic matter (FAO et al., 2012). The majority of the 

observations occurred in soils > 0.6 % and plot analysis suggests that switchgrass 

responds well to soil organic carbon. 
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In order to determine the potential distribution of the two switchgrass ecotypes in 

China and develop a more accurate yield model, it was necessary to create a binary 

variable for ecotype, where 0 = lowlands and 1 = uplands. Lowland ecotypes 

outperformed uplands with an average biomass yield of 12.59 Mg/ha and 8.74 Mg/ha, 

respectively. Past studies on the optimal ecotype distribution in the United States have 

indicated that lowland ecotypes exhibit a competitive advantage over uplands in the 

southern regions up to 42
o
N (Casler et al., 2004). Since both ecotypes can grow in many 

locations throughout the United States, they are also likely to be viable in areas with 

similar latitudes and climates in China.  

Instead of simply using the 42
 o
N latitude as the threshold determinant for uplands 

and lowlands when predicting biomass yields in China, climate indicators were used by 

running a logistic regression on the ecotype variable. With a binary dependent variable, 

logistic regression analysis becomes a good method for determining the absence or 

presence of a species at a particular location relative to climate or other environmental 

variables, thus making it feasible to predict its potential distribution in regions outside of 

its native range (Pearce and Ferrier, 2000). The logistic model was built using the 

growing season precipitation and mean annual temperature from the observations that 

had the highest yield at each of the 39 locations (n = 39 and 22 lowlands, 17 uplands). 

These observations were selected because they produced the greatest yields under the 

present climate settings, thereby providing key information regarding how each ecotype 

performs under those conditions. Growing season precipitation and mean annual 

temperature from the years of harvest were the independent variables and ecotype was 

the outcome variable. Running the logistic regression produces the constant and beta 

coefficient required to model Logit(p) = α + ßX + ε, where Logit(p) = the probability that 
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Y = 1. Once the model was developed, it was applied to China’s growing season 

precipitation and mean annual temperature variables in ArcMap 10. 

Climate is a significant environmental variable for the production of switchgrass 

(Schmer et al., 2005). Biomass yields varied across all mean annual temperatures and 

growing season precipitation. Yields were lowest between 5-8
o
C and highest between 12-

16
o
C, emphasizing switchgrass’ proclivity to produce higher biomass yields in warmer 

regions with longer growing seasons.  Wullschleger et al. (2010) found that biomass yield 

increases up to 14
o
C and then decreases with further temperature increase, suggesting a 

parabolic effect of temperature on biomass yield. To account for this effect in the model, 

a squared mean annual temperature variable was created. In order to do this, mean annual 

temperature had to first be increased by 30
o
C for each location to eliminate the outcome 

of squared negative values becoming positive as there are negative mean annual 

temperature values in some locations within China. With all other variables constant, the 

model shows that switchgrass yields increases up to approximately 13
o
C and then 

decreases at greater temperatures, although not much difference is predicted in biomass 

yield between 12-14
o
C. Growing season precipitation had a positive effect on biomass 

yield across all precipitation values. Growing season precipitation is considered to be one 

of the most important variables in determining biomass yield (Sanderson et al., 1999b). 

The data also suggest that growing season precipitation amounts above 600mm does not 

automatically enhance biomass yields. 

2.3. China climate data and emission scenarios 

Baseline (present) climate data were obtained from the WorldClim global climate 

database, which produced climate grids by interpolating average monthly climate data 

from weather stations around the globe at 1 km resolution from 1950-2000 (Hijmans et 
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al., 2005). Future climate projections for the time period 2070 – 2099 were obtained from 

the CGIAR Research Program on Climate Change, Agriculture and Food Security 

(CCAFS) database available for download at http://www.ccafs-climate.org/data/.  

CCAFS climate projections are downscaled from very coarse resolution (between 100 – 

300 km) to 1 km resolution from the IPCC fourth assessment GCMs.  

The climate change scenarios used in this study were derived from the Hadley 

Centre Coupled Model, version 3 (HadCM3) GCM, which employed the delta method 

downscaling technique. The delta method, developed by Ramirez-Villegas and Jarvis 

(2010), is a statistical downscaling technique designed to be used for crop modeling, 

ecological niche modeling and measuring impacts of climate change on agriculture at 

high resolutions. Two key assumptions this method makes are that relationships between 

variables in the baseline data (1950-2000) are probable to be sustained into the future and 

climate differences vary only over large distances (Ramirez-Villegas and Jarvis, 2010). 

This method is also designed to minimize inconsistences with the data when downscaled. 

The original dataset is simply too coarse to be useful for these types of studies, rendering 

downscaling a necessary step. 

 The IPCC (2007) report provides new projections of greenhouse gas emissions, 

contained in four emission scenario families, A1, A2, B1 and B2. Each scenario is based 

on a combination of future economic development, global population flux, technological 

advances, environmental stewardship and social welfare. The A1 emission family 

consists of three sub-families, whereas the others have one each, and project a future of 

very rapid economic growth, more efficient technology, improved cultural and social 

interactions, considerable reductions in regional disparities in per capita income, and a 

global population that peaks in the mid-century and declines afterwards. The sub-families 
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are represented by the fossil fuel reliant A1F1, non-fossil fuel A1T, and A1B which 

represents a balance across all energy sources (meaning the use of a mixture of fossil and 

renewable energies). 

 A2 represents a more heterogeneous, self-reliant world, with emphasis on 

preserving local cultures and traditions. Technological and economic growth is assumed 

to be less than in A1 and more regionally fragmented; however, the convergence of 

fertility rates across regions yields a higher and steady population growth rate throughout 

the century. A2A is considered the “business as usual” scenario and the one most often 

predicted to unfold in the future; hence it is the recommended choice for future modeling 

if only one climate change emission scenario is to be analyzed (White et al., 2010). B1 

and B2 scenarios represent a more globalized world with increased focus on sustainable 

environmental, economic, technological and social development with greater social 

equity. B1 is even more environmentally oriented than B2, and therefore has lower 

greenhouse gas emissions and the least effect on predicted climate change. Population 

growth increases steadily in B2, but less than A2, while B1’s global population growth 

rate is the same as A1. The emission scenarios employed here are A2A, A1B and B2A, 

which were selected to represent high, medium and low greenhouse gas emissions, 

respectively, by the end of the 21
st
 century. 

 For each climate scenario, including baseline, mean annual temperature and mean 

growing season precipitation variables in China were created from monthly mean 

temperatures and monthly total precipitation at 1 km resolution using spatial analyst tools 

in ArcMap 10 (table 3). 
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Table 4. Comparisons of present and future climate data. Table summarizes all pixels in 

China for both present and future climate. 

 
 

 

3. Results and discussion 

3.1. Climate and ecotype threshold 

 Logistic model results restrict lowland ecotypes to southern China in both present 

and future projections; however, the distribution becomes smaller and more fragmented 

in future conditions (figure 1). The B2A scenario predicts the most scarce distribution of 

lowland ecotypes, presumably because it has the lowest growing season precipitation 

along with temperatures higher than the optimal range for lowlands. A2A and A1B 

emission scenarios had very similar distributions for lowland and upland ecotypes, likely 

due to almost identical maximum mean annual temperatures. It is clear, however, that 

climate change is expected to alter suitable habitat for lowlands and uplands, as both 

ecotypes have a southern migration trend in the future. 

 

Min Max Mean St. Dev. Min Max Mean St. Dev.

Present 

Conditions 7 2345 455.9 359.67 -21.6 25.8 6.4 7.91

A2A 0 472 87.2 70.7 -17.3 29 11.1 7.7

A1B 1 462 90.3 70.5 -17.7 29.2 11.2 7.74

B2A 0 456 83.9 67.5 -18.8 28.2 9.8 7.71

Mean Annual Temp (°C)Growing Season Precipitation (mm)
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Fig.1. Predicted upland and lowland threshold based on mean annual temperature and 

growing season precipitation for present and future time periods. 

 

 

3.2. Current Predicted Switchgrass Yield 

 The present-day regression model results indicate that switchgrass has a strong 

productivity potential in China, particularly in the southern regions (figure 2). The 

climate in Southern China favors lowland ecotypes, with compliant mean annual 

temperatures and plentiful precipitation due to the summer monsoon season. As a result, 

the model predicts a considerable amount of biomass production (13 – 19 Mg/ha) in the 

region. In Sichuan province, there is a clear decline to nearly 0 Mg/ha of switchgrass 

productivity from the western half of the province all the way through Qinghai and 

Xizang provinces. The division is caused by a drastic change elevation in the region by 

the Qionglai Mountains, leading to much lower temperatures and precipitation, both of 

which combinations are unfavorable for switchgrass development. To the north and 

northeast, switchgrass potential is effectively zero in Inner Mongolia and provinces north 

of Liaoning. Switchgrass is even expected to grow well in the Loess Plateau, with 
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predicted yields between 7 – 10 Mg/ha. This is a harvestable amount that could be very 

beneficial for not only biofuel production but also for the soils in the region. On the 

whole, the model indicates that the current climate conditions in China are more than 

adequate to allow wide scale switchgrass production for biomass feedstock as well as soil 

erosion control.  

 

 
Fig. 2. Predicted switchgrass yield across China under present climate conditions. 

 

 

3.3. Projected climate change impact 

 According to Table 3table 4, climate change will have a profound effect on China 

across all scenarios. The predicted precipitation and temperature values in all scenarios 

were very similar to each other. Mean annual temperatures are nearly 4° higher than now 

in each model and growing season precipitation is predicted to be considerably less than 

under current conditions. In addition, while future maximum temperatures are all higher 

than baseline conditions, the corresponding minimum temperatures are all nearly just as 
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high above the current low. Mean precipitation values further illustrate the vast disparity 

in future precipitation values. This amounts to prolonged drought-like conditions, 

compared to the present time period. The social and economic effect these climate 

conditions could have on China could be very significant. Projected mean growing 

season precipitation during 2070 – 2099 decreases by an average of 368.7 mm, 365.6 mm 

and 372.0 mm for A2A, A1B and B2A emission scenarios, respectively. While 

switchgrass is generally water efficient and drought tolerant, this significant decrease in 

precipitation is undoubtedly a reason future switchgrass yield estimates are considerably 

lower than present conditions (figure 3).  

 Despite the reduction in biomass yield, the future increase in temperature has a 

profound impact on upland distribution, particularly in Inner Mongolia and Northeast 

China. The warmer temperatures in the northern regions are creating suitable habitats for 

upland switchgrass. On the other hand, the temperatures become even warmer in the 

southern regions where lowlands dominated in present climate conditions, becoming 

potentially too excessive for lowlands to produce high yields. The expansion of the 

upland ecotypes and the reduction of the lowlands distribution exhibited in the model 

could be because uplands are thought to be more tolerant of drought conditions than 

lowlands (Porter, 1966). Uplands also exchange CO2 at higher rates, utilize water more 

efficiently, and improve faster than lowlands under drought stress (Nickell, 1972). Areas 

along the southern coast were productive in present conditions, but exceedingly 

unproductive in the future predictions. All emission scenarios reflect a significant decline 

in switchgrass production by the end of the century.  
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Fig. 3.1. Switchgrass yield predictions for future A2A climate conditions. 

 

 

 
Fig. 3.2. Switchgrass yield predictions for future A1B climate conditions. 
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Fig. 3.3. Switchgrass yield predictions for future B2A climate conditions. 

 

 

4. Conclusions 

Switchgrass yield estimates in the years 2070 – 2099 were modeled in this study 

using three emission scenarios derived from the Hadley Centre model (HadCM3). It 

should be noted that the choice of this model was subjective, essentially due to data 

availability, as there are other GCM models with different emission scenarios available 

for analysis, however, not all of the models have been down-scaled. The HadCM3 model 

provided down-scaled data for all three target scenarios. The future climate scenarios 

depict a changing agricultural landscape in China, where regions can become unsuitable 

or cost ineffective for production absent some forms of agricultural engineering. While 

B2A is the most environmentally friendly scenario and has the lowest greenhouse gas 

emissions, mean annual temperature is still significantly higher than present conditions 

and presents a diminished outlook on switchgrass production in China compared to 

projections under present conditions. Though yield estimates are lower on average in the 
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future climate projection scenarios than in the present, a large portion of China is 

estimated to produce switchgrass yields between 7 – 10 Mg/ha, which is significant 

enough to make switchgrass a viable option in the future for China’s renewable energy 

production. 

This regression model was built using mean annual temperature from the years of 

harvest at each location. Previous regression analyses revealed that all temperature 

variables, mean annual, growing season, winter, minimum and maximum temperatures 

were all very correlated in relation to switchgrass production (Wullschleger et al., 2010), 

resulting in the need to exclude the others from the regression model due to 

multicollinearity. The vast difference in climate between the two research periods could 

decrease correlation amongst temperature variables and should be considered in future 

studies. Soil changes as a result of climate change could also impact future yield 

predictions and should be further explored; however, future soil projections are currently 

not available. 

 The end of the 21
st
 century temperature projections in China results in a southerly 

shift and reduction in switchgrass productivity yet provides a good demonstration of 

switchgrass’s adaptability. The lower precipitation estimates will lead to more difficulty 

in producing substantial yields in both biofuel and food crops.  Results suggest that 

switchgrass is a viable candidate for bioenergy feedstock development, under present and 

future climate conditions. Switchgrass’s positive environmental benefits may help 

improve its viability despite the rising temperatures and decreasing precipitation 

predicted in the future. It should be kept in mind that these climate scenarios are only 

forecasts and substantial uncertainty exists between projections and models. Developing 

reasonable measures to mitigate against future climate change will be very critical for 
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China in order to meet their future energy needs while protecting the environment and to 

remain a harmonious society. 
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CHAPTER 5 

 

1. Conclusion 

 The primary research objective of this dissertation was to determine where 

switchgrass could be grown in China based on its known climate and environmental 

constraints in the USA, and if so provide estimates on yield so that policy makers in 

China can assess if this is a feasible feedstock for bioenergy production and controlling 

soil erosion. Three research questions were addressed using a variety of geographic, 

biogeographic, ecological and spatial statistics tools to analyze the feasibility of growing 

switchgrass in China. 

 In the first chapter, two ecological niche models were created that projected 

potential suitable habitats for switchgrass in China. The models determined switchgrass’ 

fundamental environment and climate requirements based on a set of independent 

variables produced from switchgrass’s habitats throughout the United States where it is 

native. Results reveal that the climate in much of China is very favorable for growing 

switchgrass and that a large portion of the country is quite suitable for growing 

switchgrass, even in some areas of serious soil degradation.  

 The second chapter utilizes a multiple linear regression model to estimate 

switchgrass yields across China. Developing the model allowed for the analysis of 

individual predictor variables on switchgrass yield. Annual average temperature proved 

to be the most significant variable for switchgrass growth, followed by growing season 

precipitation. Since so much of China’s climate is so favorable for switchgrass, the 

results indicate that China has the potential to produce a considerable amount of 

switchgrass, even more so than in the United States where switchgrass is native. This 

research improved upon current methods of determining latitudinal thresholds for 
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switchgrass ecotypes by developing a logarithmic regression model on climate variables 

based on yield results from switchgrass field trials.    

In the final chapter, the effects of climate change under three greenhouse gas 

emission scenarios at the end of the 21
st
 century were modeled to estimate potential 

future switchgrass yields. In all of the emission scenarios, which represent high, 

intermediate, and low emissions, the average annual temperatures are all considerably 

higher than present conditions and total precipitation values throughout the growing 

season are much lower as well. Due to the importance of these climate variables, 

estimated switchgrass yields are all much lower than the present yield estimations. 

Climate change could have not only a staggering affect on switchgrass in China, but also 

on its entire agroeconomy. Although there are a variety of farm management tools that 

can be used to help combat the changing climate, mitigation of these future conditions 

should begin now to ensure China’s sustainable development of agriculture in the future. 

This chapter also represents the first time potential switchgrass yields have been modeled 

across China or any country for the end of the 21
st
 century time horizon. 

 In summary, this dissertation demonstrated that switchgrass is capable of growing 

well throughout a large area in China and should be considered a meaningful option for 

bioenergy feedstock input and soil erosion control. In addition, the model performance 

can be improved if data become available from switchgrass field trials in China, or more 

field trials elsewhere in the world. Policy makers and agribusinesses in China could also 

utilize and benefit from the findings in this research. Not only has it been demonstrated 

that switchgrass can grow well in China, but yield estimates indicate that switchgrass 

production for biofuels are significant enough to warrant further economic analysis and 

potential adoption to address goals to increase domestic biofuel production. A useful next 
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step would be to create a water urban mask to eliminate areas in China not available to 

grow or convert switchgrass production. In addition, further analysis may allow these 

map outputs to help identify underutilized agricultural or vacant land areas in China 

suitable for growing switchgrass. Such underutilized lands are generally found in rural 

areas, suggesting that switchgrass production could help boost the rural economy and 

economically motivate improvement of infrastructure in those regions to allow for the 

efficient production and processing of biofuels. Future research on switchgrass in China 

is needed to study the environmental and economic feasibility of growing and converting 

switchgrass into lignocellulosic ethanol. Furthermore, these research methodologies can 

be adapted to other countries to determine switchgrass feasibility for present and future 

climate conditions. 
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