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Abstract
According to popular belief, big data and machine learning provide a wholly novel
approach to science that has the potential to revolutionise scientific progress and will
ultimately lead to the ‘end of theory’. Proponents of this view argue that advanced
algorithms are able to mine vast amounts of data relating to a given problem without
any prior knowledge and that we do not need to concern ourselves with causality,
as correlation is sufficient for handling complex issues. Consequently, the human
contribution to scientific progress is deemed to be non-essential and replaceable. We,
however, following the position most commonly represented in the philosophy of
science, argue that the need for human expertise remains. Based on an analysis of
big data and machine learning methods in two case studies—skin cancer detection
and protein folding—we show that expert knowledge is essential and inherent in the
application of these methods. Drawing on this analysis, we establish a classification
of the different kinds of expert knowledge that are involved in the application of
big data and machine learning in scientific contexts. We address the ramifications
of a human-driven expert knowledge approach to big data and machine learning for
scientific practice and the discussion about the role of theory. Finally, we show that
the ways in which big data and machine learning both influence and are influenced
by scientific methodology involve continuous conceptual shifts rather than a rigid
paradigm change.
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1 Introduction

According to popular belief, big data and machine learning provide a wholly novel
approach to science that could potentially revolutionise scientific progress (Hey et al.,
2009a; Kitchin, 2014). A radical expression of this belief can be found in Chris Ander-
son’s, 2008 claim that big data and machine learning in science will lead to the ‘end of
theory’, which was also the title of his famous editorial inWIREDMagazine where he
first put forward this proposal (Anderson, 2008). According to Anderson, advanced
big data and machine learning algorithms enable us to mine vast amounts of data relat-
ing to a given task without any prior knowledge of that task; as such, we do not need
to possess a causal understanding of the issues at stake, because correlation is all that
is required for the scientific progress to happen. Anderson argues that once you have
access to big data, there is no need to ‘settle for models’. He notes that in the ‘Petabyte
Era’, “information is not a matter of simple three- and four-dimensional taxonomy
and order, but dimensionally agnostic statistics” (Anderson, 2008). The article is full
of buzzwords; in addition to his references to the ‘Petabyte Era’ and an ‘agnostic’
method, Anderson prophesies what he calls the ‘end of theory’, i.e., the demise of
classical scientific explanation ‘built around testable hypotheses’, in which ‘coherent
models’ and ‘unified theories’, confirmed by experiments, serve as the basis for the
scientific understanding of facts and the prediction of the future. Anderson’s claims
have become so influential that it is almost impossible to find a scholarly analysis of
big data and machine learning published in the past 15 years that does not cite him.1

Another highly influential voice in the debate around the epistemological status
of big data and machine learning has been James (Jim) Grey, a computer scientist
and entrepreneur respected in both science and business. Grey claims that a ‘Fourth
Paradigm’ for science’s role as an academic discipline has been established through
the development of ‘eScience’, a term that Grey uses to denote the application of data
science methods to scientific data collected by instruments or generated by simula-
tions. The results of such applications are not necessarily processed by humans to be
turned into knowledge, but are instead stored on computers as additional data. Grey
has expressed the hope that future computer scientists and information technology
developers will design and build ‘generic tools for scientists’ in the form of ‘cheap
“data bricks”’. These ‘data bricks’ could be used by both simulation and data anal-
ysis tools, which would then be applicable to various sets of data regardless of their
potential or known significance (Hey et al., 2009b, p. xx).2

1 We can say without much hesitation that every author cited in our bibliography who is involved in the
discussion of the new method mentions Anderson. The same can be said about Grey, whose views are
presented in the next paragraph.
2 Grey defines the first three paradigms in order as experimental science (which describes natural phenom-
ena), theoretical science (which uses models and generalisations), and the use of computer simulations. The
simulations used in this third paradigm, Grey explains, “are generating a whole lot of data, along with a
huge increase in data from the experimental sciences”; consequently, a huge amount of data must be stored
and then processed on computers before scientists can make any use of it. Data-intensive sciences and their
associated ‘techniques and technologies’ form Grey’s ‘Fourth Paradigm’—an expression that has gained
popularity and is widely used, although it does not fit the traditional Kuhnian sense. The term is discussed
further in Sect. 6 of this paper.
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We take Anderson and Grey’s views as prime examples of views that discard any
need for expert knowledge in applying big data and machine learning methods to
science. These views raise two key questions: where did these ideas originate, and to
what extent, if at all, are they justified? To address the first question, we must consider
the hype surrounding big data and machine learning in industry. Conversations about
new innovations and disruptions (which are commonplace in industry) easily transform
into conversations about paradigm shifts in science; such exaggerated claims should be
carefully monitored and frequently questioned. Furthermore, the current application
of big data and machine learning methods to many areas of industry, as well as the
significant amount of research that large tech companies have conducted on big data
and machine learning, have resulted in a growing pressure to bridge the gap between
business and science, which in turn makes it difficult to distinguish valuable insights
and ideas from superficial chatter. Thus, it is important to clearly trace the flow of
knowledge between business and science. In this paper, however, we shall focus solely
on the second question, examining the rationale for these views in relation to the current
backdrop of big data and machine learning.

It should first be noted that philosophers of science reject the radical claim that big
data andmachine learning provide a completely newandhuman-independent approach
to answering scientific questions. However, the indispensability of human contribution
is often tacitly assumed. Researchers on this topic focus instead on explaining big
data and machine learning methods in relation to other well-established and widely
studied approaches. For instance, Wolfgang Pietsch (2021) has recently examined the
extent to which big data and machine learning represent a resurgence of inductive
methods. Other investigators have considered the extent to which it is possible to gain
knowledge of a phenomenon without first understanding it; Domenico Napoletani
et al. (2011, 2014, 2021), for example, have formulated the concept of ‘agnostic
science’. While it may sound as if the views could be in line with Anderson and Grey,
this is not the case. On the contrary, Napoletani et al.’s notion of ‘agnostic science’
differs substantially from that of Anderson and Pietsch is explicit about the need for a
theoretical background to proper application of big data andmachine learningmethods
(we will elaborate on this in Sect. 2).

Thus, in this paper, we will not argue against Pietsch and Napoletani et al., but
against views that discard the need for expert knowledge in the application of big
data and machine learning methods in science. In other words, we are adding to
the ‘informed’ debate a direct focus on the question of whether methods using big
data and machine learning eliminate the need for domain-specific expert knowledge
altogether, and could thus lead to some form of automated science. Our approach
originates from an analysis of two cases of scientific practice that use big data and
machine learning, which led us to develop a taxonomy of expert knowledge involved
in such types of research. Thus, our approach aligns well with other studies in the
philosophy of science that focus on analysing scientific practice (Ankeny et al., 2011;
Leonelli, 2016; Northcott, 2020); Leonelli (2016) and Northcott (2020) in particular
seem to anticipate our claim that expert knowledge is significantly involved in research
driven by big data and machine learning. The main contribution of this paper is an
analysis of case studies that support this claim, as well as a taxonomy that explicates
this dependence on expert knowledge.
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We begin by discussing what we refer to as the ‘informed’ (or ‘critical’) view in
contrast to Anderson’s popular view (Sect. 2) and explain what we mean by big data
and machine learning methods (Sect. 3). We then elaborate on two paradigmatic uses
of big data andmachine learningmethods in science: skin cancer detection and protein
folding (Sect. 4). On this basis, we develop a taxonomy of expert knowledge that can
be applied to big data and machine learning-driven research (Sect. 5). Finally, we
argue that this taxonomy provides a fresh perspective on several debates surrounding
the role of big data and machine learning in science: whether they concern inductive
methods, the removal of the need for theory, or the constitution of a new scientific
paradigm (Sect. 6).

2 The informed view of big data andmachine learning in science

In a series of papers published between 2011 and 2021, Napoletani et al. put for-
ward the thesis that there is a particular kind of methodology that differs from those
underlying classical scientific methods3 and makes it possible to find significant cor-
relations across huge datasets. According to these authors, certain scientific methods,
when applied to phenomena that are not even tentatively understood, can represent
instances of what they call ‘agnostic science’. One paradigmatic example of such a
method that might be agnostic in this sense, is machine learning. A comparison of
two usages of machine learning, the PageRank algorithm and the microarray method,
illustrates how it can be applied to both, phenomena that are understood and those that
are not. Napoletani and his co-authors argue that the PageRank algorithm, which pro-
vides a hierarchical classification of websites, represents a way of applying a machine
learning algorithm to awell-understood problem that possesses a foreseeable solution-
structure; because the result of this application is an increased understanding of the
problem and its solution, this usage does not count as an example of agnostic sci-
ence. Conversely, the microarray method, which classifies messenger ribonucleic acid
(mRNA) molecules according to their function as co-occurrent with specific diseases,
involves the application ofmachine learning to a problem that is known to exist, but for
which we lack any insight regarding its structure and for which predicting an outcome
is infeasible; as Napoletani et al. (2021, p. 45) argue, “[the] mechanism that leads from
a certain distribution of mRNA molecules to the manifestation of a certain disease is
[…] rarely understood. In addition, it is also unclear which specific mRNAmolecules
are relevant in particular diseases”. Consequently, although it provides us with mean-
ingful correlations, the microarray method does not increase our understanding of
the problem and its solution-structure is not transparent. That is, ‘agnostic science’
according to Napoletani et al. refers to whether we gain any understanding of a phe-
nomenon when applying big data and machine learning methods in science, while
Anderson’s notion of ‘agnostic science’ is that these methods can be applied without

3 Classical scientific methods (i) use models and/or theories and experiments to test hypotheses (hence are
also called hypothetico-deductive methods), (ii) strongly rely on correlations, (iii) see the predictive power
in models and/or theories, (iv) relate to human understanding and human cognition. This is how we see it,
but also how the authors we quote understand what classical scientific methods are. Hepburn and Andersen
(2021) provide further insights.
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any prior expert knowledge or theory. Thus, the importance of expert knowledge in
applying these methods will have different ramifications for the different notions of
‘agnostic science’. We will return to this discussion in Sect. 6.1.

In his book on big data, Wolfgang Pietsch analyses the extent to which a method
based on the use of big data and machine learning is similar to inductive method-
s—particularly to variational induction in its experimental form, which is known as
‘exploratory experimentation’. He concludes that, despite the differences between
the two approaches, an underlying epistemological similarity between them provides
a means by which we can more clearly understand big data and machine learning:
“big data approaches allow [us] to analyze a wide range of phenomena that are not
accessible to conventional exploratory experimentation. This makes a huge differ-
ence to scientific practice in data-rich special sciences like medicine or the social
sciences” (Pietsch, 2021, p. 69). Pietsch further argues that—as with the inductive and
experimental methods—some traditional theoretical background must underlie any
successful application of big data and machine learning, which clearly contradicts the
view of Anderson. We will return to the discussion of the role of theory in regards to
big data and machine learning methods in Sect. 6.2.

3 Big data andmachine learningmethods

Given the centrality of ‘big data and machine learning methods’ to our discussion, it is
essential to clarify our precise terms of reference. Machine learning is the science of
making machines (specifically computers) ‘learn’ from data by enabling them to dis-
cover certain patterns in that data. Because learning is an essential part of intelligence,
machine learning is often regarded as a subfield or offshoot of artificial intelligence.
Traditionally, machine learning is divided into three types: supervised, unsupervised,
and reinforcement learning. Supervised learning refers to situations where the train-
ing data provide labelled examples of the pattern the machine is trying to learn, while
unsupervised learning requires a machine to look for patterns without any prior direc-
tion or labelled examples of the pattern it should learn. Finally, reinforcement learning
refers to amachine learning through interaction with its environment by acquiring data
from environmental responses to particular actions in particular states.

All three types of machine learning involve finding mathematical functions that
map input to output. Supervised learning in particular is centred on finding functions,
referred to as ‘machine learning algorithms’ or ‘machine learning models’, that can
be inferred from training examples of matching input–output pairs. These machine
learning algorithms come in different classes, such as linear regression, decision trees,
random forest, and deep neural networks. Within each class, particular algorithms
can be specified in different ways depending on particular parameters; the process
of finding the optimal values for these parameters is exactly what constitutes the
‘learning’ step in machine learning.4

4 This learning step is itself performed by an algorithm. Thus, one can regard the field of machine learning
as the development of algorithms that can produce other algorithms from data (Domingos, 2015).
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The approach taken in our two case studies, which we examine in Sect. 4 of this
paper, is often referred to as ‘deep learning’, in which deep neural networks are used
to carry out machine learning. Deep neural networks comprise layers of connected
neurons that process data in amanner that progresses from input to output. The number
and types of layers, as well as the connections between them, are referred to as the
model’s architecture. For any particular model architecture, there is a corresponding
set of parameters whose optimal values are obtained in the step of learning (or ‘fitting’)
the model.

The term ‘big data’ is often employed as a generic term that simultaneously refers
to the size of any individual dataset, themethods that are used to analyse such data, and
the entire approach of undertaking such analysis on such data. We do not define the
term precisely here, but instead simply indicate some key features of big data analyses.
In contrast to traditional data analysis, where data are often collected through carefully
planned, randomised controlled trials, big data utilizes data that are inherently digital
in terms of collection, storage, and analysis. Each of these three aspects has required
the invention of new methods and techniques in the fields of computer science and
engineering. For the remainder of this paper, it is sufficiently precise to define big data
and machine learning methods as a set of methods and algorithms that uses significant
computational resources to discover patterns in vast datasets.

4 The role of expert knowledge

Big data and machine learning methods are not passive; a researcher does not simply
feed raw data into an algorithm and then wait for it to detect correlations between
certain features of amassive dataset.All of these datamust bemanipulated and cleaned,
for instance—acts that require significant expert knowledge of scientific applications.5

In addition to expert knowledge about the data involved, specificknowledgeofmachine
learning is also often necessary when using these methods, as algorithms cannot be
applied blindly in practice. Instead, a promising model architecture must be selected,
appropriate data augmentation techniques must be applied to improve the algorithm’s
performance, and the algorithm itself must be tuned and adjusted.

As such, although we agree that the kind of expert knowledge used in big data and
machine learning methods may be different from that required in traditional methods,
we argue that this difference is not fundamental—a point to which we return in Sect. 6.
Here, we concern ourselves with the extent of expert knowledge that is required for
big data and machine learning methods to function efficiently. By carefully examining
two scientific applications of big data and machine learning—skin cancer detection
(Esteva et al., 2017) and protein folding (Jumper et al., 2021)—we assess the role
played by expert knowledge in each case.

5 This is similar to what Leonelli (2016, p. 16) calls ‘data packaging’—a process that involves the selection,
formatting, standardisation, and classification of data, and is typically done before publishing data in large
public scientific databases. The aim in the examples presented here, however, is not to publish the data in
a database, but to use the data as training data for a machine learning model.
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4.1 Skin cancer detection

In a study published in 2017, Esteva et al. trained a deep neural network to classify
different types of skin cancer based on images alone. The researchers fed approx-
imately 130,000 images labelled with types of skin lesions into a pre-trained deep
convolutional neural network (CNN) and then enabled it to classify previously unseen
images into one of 757 lesion types. The final network classified these images of skin
lesions at a level of accuracy that corresponded to that of a professional dermatologist.

Initially, this study may seem to prove that computer scientists with no specialist
knowledge of dermatology can achieve in an afternoon what dermatologists train for
years to be able to do. Yet, while such impressions reflect a common perception of
deep learning, the truth is far more complex. To achieve their results, Esteva et al.
put in a significant amount of work at many different levels, both drawing on their
own experience with deep learning and relying on considerable dermatological expert
knowledge; as such, their work illustrates how big data and machine learning research
requires a combination of different kinds of expert knowledge and skill.

Prior to the study, the 129,450 images that would ultimately be used to train the
networkwere labelled by dermatologists to indicate the type of skin cancer represented
in the image. Thus, considerable dermatological knowledgewas used to create the large
dataset that was a prerequisite for training the deep neural network in this case; such
use of labelled training data is the key to supervised machine learning. Some of the
2032 different types of skin lesions contained in the images occurred very rarely in the
dataset; as this can cause problems when training massive machine learning models,
researchers had to find a way to create classes with more examples of each type. To do
this, they developed a precise and hierarchically organised taxonomy of different skin
lesions—a taxonomy that itself could exist only thanks to other researchers’ extensive
prior work in dermatology. Based on this taxonomy, an algorithm could be used to
group the images into 757 different classes, each of which had enough sample images
to train a neural network effectively.

The final stages of testing were also highly dependent on prior dermatological
knowledge. Because deep neural networks of this size are extremely powerful and
flexible models, it is usually not difficult to make them learn efficiently from training
data. However, this practice carries the risk that the neural networks will learn specific
errors and noise from the training data that can significantly degrade their ability to
generalise to images beyond the training data —in machine learning, we are not inter-
ested in performance on training data, but in the ability generalise to new unseen test
data. The final testing of the neural network, in which the algorithm’s performancewas
compared with the combined performance of more than twenty dermatologists, was
thus crucial for gauging an appropriate estimate of the network’s ability to generalise.
While this testing may seem extraneous to the training or construction of a deep neural
network, it is essential in confirming the network’s success and is therefore a neces-
sary part of any research based on deep learning applications. Furthermore, the criteria
for the success of a deep neural network may depend on its application, and thus the
appropriate design of the testing phase may require relevant expert knowledge.
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Finally, we argue that a more elementary level of dermatological expertise is also
important for several of the design choices taken during the research process. First,
one must know that skin lesions are usually visually classifiable based on skin images.
While this may seem like a trivial point, it is important to bear in mind when collecting
the correct training data; onemost know to collect images of skin lesions rather thanX-
rays, sound waves, or patients’ recent meals. Basic domain knowledge of the problem
in question is also necessary for the proper use of such data once collected. In this
study, for example, images of skin lesions were randomly rotated and flipped vertically
to create a more diverse training set—amethod called ‘data augmentation’, commonly
usedwhen trainingCNNs on images.Without basic domain knowledge, however, such
data augmentation could be applied in unhelpful ways; if the task is facial recognition,
for example, image rotation and vertical flipping do notmake any sense. Thus, although
neither researchers nor the deep neural network required any specialist knowledge of
the biology of cell division or the causes of skin cancer, significant domain expert
knowledge was required to develop a successful scientific application of deep learning
on this large dataset.

4.2 Protein folding

Another example of the novel application of machine learning in science is the pre-
diction of the 3D structures of proteins based on their amino acid sequences. How
proteins fold is an important issue in molecular biology, as how a protein folds largely
determines its function. Determining how a particular protein folds is a long-standing
biological problem that has traditionally been solved for individual proteins one at a
time through highly expensive and time-consuming experimental methods. Thus, the
development of algorithms or automatic methods that can determine how a protein
folds based on its amino acid sequence is an important task. Indeed, this task has been
the object of the biennial competition CASP (Protein Structure Prediction Center,
n.d.), in which different teams of scientists compete with one another to formulate the
best predictions of folded proteins’ 3D structures.

Although there has been significant progress in this enterprise, the problem has not
yet been fully solved. In 2020, however, a team of scientists from DeepMind entered
CASP14 with their AlphaFold algorithm, which went on to beat the competitors by
a considerable order of magnitude and, in the opinion of many observers, solved the
problem. This scientific achievement is expected to have far-reaching consequences
in the biological sciences, and the journal Nature Methods declared protein-folding
prediction the scientific method of the year in 2021 (Method of the year 2021, 2022).

AlphaFold is a collaborative effort by a group of scientists (the paper—Jumper et al.
(2021)—describing the work lists 34 authors) and it draws on expert knowledge in
physics and biology, as well as ingenuity in deep learning. According to the authors,
“[u]nderpinning the latest version of AlphaFold is a novel machine learning approach
that incorporates physical andbiological knowledge about protein structure, leveraging
multi-sequence alignments into the design of the deep learning algorithm” (Jumper
et al., 2021, p. 583). The work is comprehensive in scope and incorporates expert
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knowledge in numerous phases; for the sake of the present discussion, we highlight a
few key points from the authors’ description of the work.

Although the problem of protein folding centres on determining a 3D structure
from an amino acid sequence, the AlphaFold algorithm takes a more elaborate data
structure as its input, combining multiple sequence alignments (MSA)6 and pairwise
features to generate a specially designed representation of the 3D structure as its
output. The data that are used to train the model contain historical information about
known 3D structures of proteins taken from the Protein Data Bank Archive (PDB),
a data archive amassed by structural biologists over more than 50 years (wwPDB
consortium, 2018). Thanks to their efforts, a substantial body of expert knowledge
is available to provide the requisite training data for AlphaFold.7 Furthermore, the
collection of MSA data used in the AlphaFold algorithm involved multiple design
decisions and was constructed on the basis of searches in multiple protein databases.
The compilation of the final training data for the algorithm was a more involved
process than is outlined here; we limit our discussion to these examples, which show
that the data used for AlphaFold were not a simple inductive, automatically generated
dataset blindly fed into an algorithm, but rather the product of many decades of expert
knowledge accumulated by biological researchers.

Pre-processing the complex data produces both an MSA representation and a pair
representation, both of which are then fed into a deep neural network. These data rep-
resentations are specific to the problem of protein folding andwould not be appropriate
for other problems (such as the skin cancer image detection problem discussed above).
Moreover, this data representation influences the structure of the AlphaFold algo-
rithm through a specifically designed module, dubbed ‘Evoformer’ by Jumper et al.,
which uses attention mechanisms from other state-of-the-art deep learning networks
to exchange and simultaneously update the MSA and pair representations through 48
layers of computation. The intuition behind the pair representation is that it will cor-
respond to distances between elements of the amino acid sequence in a 3D space and
will thus satisfy the triangular inequality of distances, which is captured by a tailor-
made updating mechanism in the Evoformer module. After the Evoformer module
follows a structural module, which contains a geometry-aware Invariant Point Atten-
tion mechanism designed specifically for this problem that translates the MSA and
pair representations into a 3D structure. Thus, the deep learning algorithm used in
AlphaFold is not a standard algorithm or architecture, but one carefully and delib-
erately designed by experts in protein folding and machine learning, incorporating
knowledge from biology and physics.

Evaluation of the AlphaFold algorithm’s performance was a complex process, con-
ducted in accordance with a twofold set of criteria (as is the case in most machine
learning projects). First, an evaluative component was involved in the training and
fine-tuning of the algorithm, in the sense that a particular loss-function was designed

6 MSA data refer to sequence data of proteins that are evolutionarily similar to a given protein and have
been aligned to the given protein’s sequence. Thus, such data again belong to the body of expert knowledge
within biology and bioinformatics.
7 Leonelli (2016) elaborates in great details how such large databases in biology are created through data
packaging (see the footnote 5). Moreover, she further unfolds the importance of this work and its reliance
on decisions made by people and institutions.
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(which, in turn, was composed of six different components— see Jumper et al., 2021,
Supplementary Information). Second, the final algorithm was evaluated to establish
its expected future performance (as well as to compare it with other CASP partici-
pants). Here too, criteria specific to the protein folding problem were used, such as
measurements taken to ascertain the root-mean-square deviation on the carbon atom
backbone of the protein and the local Distance Difference Test (Jumper et al., 2021).
Finally, the paper contains a detailed ablation study that demonstrates that the success
of the AlphaFold system relied on the collection of a variety of different mechanisms,
all of which contributed in some way to its overall accuracy (Jumper et al., 2021). This
once again demonstrates how the success of AlphaFold is the result of an incredibly
detailed and finely tuned piece of expert-specific work.

5 A taxonomy of expert knowledge in research driven by big data
andmachine learning

In the previous sections, we discussed two case studies (skin cancer detection and
protein folding) and highlighted numerous instances in which expert domain-specific
knowledge and expert knowledge of machine learning were involved in research in
reciprocal ways. Based on these observations, we now suggest a classification of
the various kinds of expert knowledge involved in the application of big data and
machine learning methods, categorising these methods’ use in four main contexts:
(i) defining the problem, (ii) creating the dataset, (iii) pre-processing the data, and
(iv) testing and validating the trained model. One could also consider the use, or
deployment, of the trained model as another context, but one could also argue that
this is beyond the scope of research and is an aspect of product development and
operations instead. As the extent to which expert knowledge is involved in the use of
a trained model does not affect the other contexts listed, nor the main argument of the
paper, we refrain from discussing it further here.8 In addition to these contexts, the
task of choosing a proper model architecture or machine learning algorithm often also
requires elaborate knowledge of big data and machine learning, and in some cases
domain-specific knowledge as well. Before we elaborate on this, however, we discuss
each of the four contexts mentioned above.

5.1 Defining the problem

The cases discussed show that domain-specific expert knowledge andmachine learning
expert knowledge are both frequently needed when selecting the problems to address
with big data and machine learning methods and determining how to formulate these

8 It is important that trainedmachine learningmodels are used on data that resemble the data they are trained
on, both in quality and in distribution, as otherwise the model might not perform as well as tests initially
show. Moreover, changes in real-world conditions may lead to data drift (change in data distribution) or
concept drift (change in the meaning of the response variable); in fact, the issue of deploying, monitoring,
retraining, and using machine learning models in production has given rise to an entire new practice called
machine learning operations, or MLOps (Mäkinen et al., 2021; Sculley et al., 2015). The extent to which
these tasks involve expert knowledge has yet to be determined but is beyond the scope of this paper.
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problems precisely. When selecting a scientific problem to resolve with big data and
machine learning methods, one’s chances of success often rely on certain assumptions
about the domain of expertise in question. In the case of skin cancer detection, for
instance, it was assumed that a sensible categorisation of skin lesions could be made
only on the basis of visually detectable differences at a certain image resolution.
Conversely, in the case of protein folding, researchers assumed that the 3D structure
of a protein could be determined from information about which amino acid chains
constitute the protein. Furthermore, both cases required that particular output structures
for the designed deep learning algorithm be defined, such as the particular taxonomy of
skin lesions or the particular means of representation for the 3D structure of a protein.
Finally, the success of big data and machine learning methods depends on the stability
of the phenomenon being modelled; the data generated by the phenomenon and used
to train the model must be stationary, i.e., they remain a good representation of the
phenomenon (Northcott, 2020; Pietsch, 2015).

5.2 Creating the dataset

The process of skin cancer prediction described above is a prime example of a super-
vised machine learning problem, as it requires training data that contain explicit
positive and negative examples to guide the algorithm’s prediction. In this exam-
ple, every image was labelled as either ‘no cancer’ or the type of cancer depicted.
Such labelled training data cannot be collected automatically but require labelling by
dermatologists, as well as theoretical reasoning to establish a taxonomy of skin cancer.
In the case of protein folding, researchers relied on the Protein Data Bank Archive, a
vast body of biological domain-specific knowledge carefully collected over a 50-year
period. Moreover, a particular theory pertaining to sequence alignment was used to
create the MSA data representation. Thus, novel applications of big data and machine
learning methods often rely on carefully created data that require varied and extensive
expert knowledge.9

In addition to its use in labelling training data, expert knowledge may also be
required to determine what training data to retrieve. In work on skin cancer, for
instance, should the images be black and white or colour? Should the lighting, reso-
lution, or angle be set in certain ways? Are there examples of skin cancer that should
not be included, or examples of skin lesions that are not cancerous but should never-
theless be included as negative examples? Does a patient’s skin type or age matter for
these predictions? The answers to these and other similar questions could all influence
the data that ought to be retrieved. Crucially, these questions predominantly involve
expert knowledge and are also connected to the task of defining the problem,whichwas
examined in the previous sub-section. Finally, the improper labelling of data can have
severe consequences beyond the determination of scientific truth; numerous studies
have shown how biases in labelled data can transfer to become biases in algorithms,

9 This is true for scientific applications of machine learning but even more so for industrial applications,
which have now created an entire new labour market of AI (Crawford, 2021). Of course, researchers are
attempting to develop forms of machine learning and AI that could label training data automatically, but
it is inconceivable that such techniques would ever be able to eliminate the need for expert knowledge in
creating data at the frontiers of science.
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creating unfair or unethical predictive machine learning applications (Barocas et al.,
2019).

We have phrased the issue here as that of creating the data required rather than on
that of collecting it because ‘collecting’ has amore passive connotation than ‘creating’.
As we have demonstrated, extensive expert knowledge was involved in the delivery of
the required data in both cases. The process of creating public datasets is referred to as
‘data packaging’ by Leonelli (2016) who carefully elaborate on the journey data often
need take from collection to being exposed in public databases. In this journey data
are often formatted, standardised, and categorised by what she calls ‘data curators’ to
fit a format in a database that is deemed most useful to the research community. As
our case studies also show, however, data in such databases often require additional
processing before they can be used to trainmachine learning algorithms.Moreover, the
fact that data creation entails an active work on the data means additionally that there
is not always a clear-cut distinction between data creation and data pre-processing.

5.3 Pre-processing the data

Data pre-processing is the preparation of data for analysis or use in training a machine
learning algorithm; other terms for the process are ‘data wrangling’, ‘data transfor-
mation’, ‘data cleaning’, and ‘tidying’. It is often stated that this stage takes 70–80%
of the time in a data analysis or machine learning project (Wickham, 2014). No stan-
dard approach encompasses all of the data pre-processing that might be required; as
Hadley Wickham states, “[l]ike families, tidy datasets are all alike but every messy
dataset is messy in its own way” (Wickham, 2014, p. 2). Common subtasks of data
pre-processing include reshaping the data, re-formatting the data, removing or imput-
ing missing values in data, dealing with outliers, augmenting the data, and feature
engineering. Let us consider a dataset containing information about people’s features,
such as their age or height: should the age of a person be a number or an age inter-
val? If a person’s height is missing in the data, should the person be excluded from
the dataset or should her height be imputed from the mean height of people in the
dataset? If a person is reported to be 210 years old, what should be done with this
obvious outlier? Should more features, such as body mass index, be added to the data?
Such questions are just a few simple examples of how such pre-processing could be
conducted. While some steps in pre-processing data can be performed without any
domain-specific expert knowledge, such knowledge is often required in dealing with
(and discovering) missing values and outliers. For instance, different contexts may
require data to be imputed in different ways; a missing temperature reading on a par-
ticular day could often be replaced with themean temperature of the surrounding days,
but a missing sales number reported on a particular day might indicate a closed shop,
which would lead the missing value to be replaced with a zero rather than a mean
from the surrounding days. Finally, it should be noted that training a machine learning
algorithm is an iterative process that often involves researchers going back to perform
additional data pre-processing.

Reports on scientific findings generally give little attention to the pre-processing of
data, even though this might have constituted substantial work in the various iterations
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of the research. Several examples of pre-processing are reported in our two cases,
however. In the skin cancer example, as explained previously, data augmentation was
used to create additional training data. In addition, data transformation or reformatting
was performed in the creation of the final objective (often referred to as the ‘response
variable’)—in this case, the labelling of images according to the taxonomy. In the
protein folding example, the elaborate creation of the MSA and pair representations
both constitute a step in data pre-processing.

Data pre-processing is rarely discussed at length, but it is essential for successful
research. Although various software vendors sell tools that purport to make data pre-
processing easy or superfluous, and a significant body of research on the creation of
automatic machine learning pipelines (AutoML) has developed, it is highly unlikely
that the need for data pre-processing will ever be removed from big data and machine
learning applications, especially in the case of novel scientific applications.

5.4 Testing and validating themodel

Generalisability is an important virtue in science. Within classical statistics used in
randomised controlled experiments, generalisability is achieved through the care-
ful sampling of participants. Researchers in machine learning, however, have sought
another approach to ensure generalisability. Here, data have been divided into training
and test sets; training data are used to train the algorithm, while test data are used
only in the final stage to provide an unbiased estimate of the machine learning algo-
rithm’s overall performance. Assuming that the test dataset is a representative sample
of the target population, the algorithm’s claim to generalisability would resemble the
procedure followed in classical statistics. However, the test dataset might not always
be a good representation of the problem in mind; as such, other test datasets can be
used, as seen in the example of skin cancer detection, in which the algorithm’s perfor-
mance was evaluated through the addition of new images that had also been labelled
by twenty dermatologists. In the protein folding example, the different algorithms in
the CASP competition were tested on proteins whose 3D structures had recently been
discovered experimentally but had not yet been published.

Furthermore, it is one thing to determine what data should be used to test a machine
learning algorithm, but another to determine how to measure this algorithm’s perfor-
mance. If the algorithm generates a particular label as its output, as in the skin cancer
example, a natural goal would be tomeasure the number of mistakes made by the algo-
rithm. Classification algorithms such as this often generate a probability or degree of
confidence that a particular example belongs to a particular lass, however; as a result,
the quality of the algorithm’s prediction can be measured in other ways. In the case of
protein folding, for example, we saw that 3D structures of proteins could be compared
in multiple ways and that several metrics were used in both the training and the final
evaluation of the model.

Finally, machine learning algorithms produce different types of errors, and because
some of these will be more important than others, a simple tally of errors is an insuf-
ficient measure of success in many cases. For instance, if an algorithm is used in an
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initial screening for skin cancer, it might be preferable to mistakenly flag a poten-
tial skin cancer that can later be dismissed by further tests rather than to mistakenly
overlook a case of skin cancer and conduct no further tests.

The proper evaluation of a big data or machine learning algorithm is essential for
ensuring the generalisability of its results and guaranteeing that the work constitutes a
scientific contribution. It is also essential for judging the feasibility of future applica-
tions of the algorithm. This testing and validation require domain-specific andmachine
learning expert knowledge to ensure that the right data and measures are used and to
interpret the results within the wider scientific context.

5.5 Selectingmodel architecture

Although the skin cancer example used a model architecture that would be considered
standard for such a task today, its use still necessitated certain design choices, such
as the size of the convolution layers of the CNN architecture; moreover, the protein
folding example demonstrates that a standard architecture is sometimes entirely insuf-
ficient for a task, in which case new custom-made architecture such as the Evoformer
and the Invariant Point Attention mechanismmust be developed. The creation of these
newarchitectures involved significant research by skilledmachine learning researchers
at Google DeepMind; they were not developed in isolation by a team of researchers
solely concerned with machine learning, however, but by an interdisciplinary team of
researchers working on the AlphaFold algorithm, as Jumper et al. (2021, p. 583) state
in their analysis of the algorithm: “Underpinning the latest version of AlphaFold is a
novel machine learning approach that incorporates physical and biological knowledge
about protein structure, leveraging multi-sequence alignments, into the design of the
deep learning algorithm”. Thus, the creation of model architectures for big data and
machine learning methods requires experts not only within machine learning but also
within a variety of other scientific fields.

6 Big data andmachine learning in scientific practice

Our claim that expert knowledge is required at multiple stages in the application of big
data and machine learning methods carries ramifications for philosophical questions
about science. In this section, we address some of these questions, including: to what
extent can these methods be seen as agnostic? How much do they resemble inductive
procedures? What role, if any, does theory play in big data and machine learning-
driven research? To what extent does the application of big data and machine learning
methods represent a paradigm shift in science? Our goal in this final section is merely
to indicate areas in which this paper’s analysis of the role of expert knowledge may
provide researchers with additional ideas or suggest new perspectives.
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6.1 To what extent are big data andmachine learningmethods agnostic?

We earlier cited two distinct uses of the term ‘agnostic’ in the literature, one arising
from the popular view and one arising from the informed view on big data andmachine
learning in the sciences. Thus far, we have considered, with reference to specific
examples, the extent to which expert knowledge is involved in research that applies big
data andmachine learningmethods and have shown that such knowledge is involved at
multiple stages, including the creation of the proper training data, the pre-processing
of the data, and the development of testing and measurements of objectives. If the
popular view of ‘agnostic’ science is taken to mean that big data and machine learning
methods can be used without prior expert knowledge or theory, or that these methods
easily generalise to other fields, no compelling evidence supports the existence of such
agnostic science.10

In the conception of ‘agnostic’ science proposed by Napoletani et al. (2011, 2014,
2021), however, this ‘agnosticism’ seems to pertain to the understanding of phenomena
that is gained by the application of the big data and machine learning methods; for this
reason, these authors might not disagree with our claims made in the last paragraph. In
their discussion of mRNA and diseases, Napoletani et al. (2021) argue that the use of
big data and machine learning methods in this case might qualify as ‘agnostic’ science
because we do not gain any understanding of the phenomenon under investigation.
The examples discussed above corroborate this position; in the case of skin cancer
detection, we do not gain any further understanding of skin cancer by being able
to detect its different types with a deep learning algorithm, nor does the AlphaFold
algorithm teach us anything about why proteins fold in the way that they do.11

Thus, the necessity of expert knowledge is consistent with that big data andmachine
learning methods are not agnostic in the popular view, but may be agnostic in the
informed view.

6.2 The role of theory in applying big data andmachine learningmethods
to science

The role of expert knowledge in the scientific application of big data and machine
learning methods is also related to the debate about the role of theory in science—a
controversy sparked in part by the contentious and influential critique made by Chris
Anderson (2008), outlined above, in which Anderson “envisioned a future of atheoret-
ical, automated science” (Napoletani et al., 2014, p. 3) and maintained that the use of
big data and machine learning were leading to the ‘end of theory’. This controversial

10 Furthermore, in terms of applicability to a wide range of fields, the same can be said for the use of
classical statistical methods (such as the t-test).
11 Because no understanding of a phenomenon is obtained through the application of big data and machine
learning methods, one might question whether these examples constitute science at all, or whether they
should instead be viewed as cases of engineering. A discussion of the definition of ‘science’ or its relation
to engineering is outside the scope of this paper; here, we note only that the history of science contains many
examples of scientific research that do not concern themselves solely with understanding phenomena. For
instance, David Baird (2004) has highlighted the importance of the development of scientific instruments
and the scientific knowledge they constitute.
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but attractive claim prompted a lively debate on the question of whether there can be
any understanding without theory in science. Many intellectuals, including writers,
scientists, and philosophers, took part in this debate and marked out their positions.

Mieke Boon (2012) provides a broader context, contending that the debate sur-
rounding the role of theory in big data and machine learning can be regarded as a
natural extension of historical ideas about the objectivity of scientific methods and
the efficacy of various scientific explanations (cf. Duhem, 1914/1954; Hempel, 1962,
1966; van Fraassen, 1980). In this debate, concepts such as ‘the objectivity of sci-
entific methods’, ‘mathematical models’, and ‘logic-based theories’ are criticised as
“arbitrary intellectual instruments to fit the data” (Boon, 2012, p. 50). Viewed in this
way, data science offers a method that is “not confined by the kinds of idealizations
and simplifications humans need to make to fit data into comprehensive mathematical
formalisms” (p. 51). After all, regularities, patterns, and correlations discovered by
humans may turn out to describe the world no more adequately than the regularities,
patterns, and correlations detected by machines.

Our careful mapping of the role of expert knowledge in the discussion above adds
further arguments to this debate. We have seen how experts’ theoretical background
is involved in data generation, problem formulation, and algorithm evaluation. This
observation implies that even if arbitrariness can be imputed to human-induced factors
(at least at the current state of the art in big data and machine learning methods), pre-
and post-analytic human involvement cannot be avoided in practice. As Rob Kitchin
(2014) suggests, arguments that emphasise the need for theoretical underpinnings
when formulating a scientific problem and selecting an algorithm are usually based on
the observation that no methodologically sound scientific inquiry can be based solely
on ‘raw data’, because raw data never occur in a ‘scientific vacuum’ but are always
“discursively framed by previous findings, theories, and training; by speculation that
is grounded in experience and knowledge” (p. 5).

Wolfgang Pietsch (2015) takes enquiry into the inherent theoretical commitment
even further when he distinguishes between two ways in which ‘data-intensive sci-
ence’, understood as a form of inductive science, including big data and machine
learning methods,12 is theory-dependent: data-intensive science is theory-laden in the
external sense as it is dependent on theoretical assumptions held by the researcher, but
it is not theory-laden in the internal sense because it does not depend on or participate
in the formation of theory. Both we, emphasising that the initial and post-analytic
involvement of a certain theory underlying any expert intervention is unavoidable,
and Kitchin, arguing that no ‘raw data’ resides in a ‘scientific vacuum’, qualify data-
intensive science as theory-laden only in the external sense. None of us make claims
about the internal sense.13

12 Wolfgang Pietsch (2021) has defended the thesis that the big data and machine learning method is a
form of a specific type of induction known as variational induction. Although we agree with Pietsch that
the training of machine learning algorithms resembles the process of variational induction, we argue that
the mere training of a machine learning algorithm should not be regarded as a scientific method on its own,
because the stages of data creation, data cleaning, and the evaluation and testing of the machine learning
algorithm are all necessary steps if the process is to be considered scientific.
13 Proponents of the internal sense of theory-ladenness claim that, even if big data and machine learning do
not currently have the ability to create or contribute to theory, there is no reason to believe that this will not
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6.3 Big data andmachine learning as a new scientific paradigm

In his famous talk to the Computer Science and Telecommunication Board on 11
January 2007, Jim Grey predicted the following:

[A]lmost everything about science is changing because of the impact of infor-
mation technology. Experimental, theoretical, and computational science are all
being affected by the data deluge, and a fourth, ‘data-intensive’ science paradigm
is emerging. The goal is to have a world in which all of the science literature is
online, all of the science data is online, and they interoperate with each other.
Lots of new tools are needed to make this happen. (Hey et al., 2009b, p. xxx)

While we find Grey’s enthusiastic presentation to be a useful visionary endeavour,
we argue that it lacks the scientific grounding to establish a serious argument for a
fourth scientific revolution and paradigm shift.

The possibility for such a paradigm shift involving big data and machine learning
methods has been widely explored. Napoletani et al. (2011) have argued that big
data and machine learning methods have the potential to solve problems that the
current form of understanding-based science cannot solve. They emphasise that a new
methodological paradigm, dependent on a new conception of science, is appearing:

Instead of attempting to understand and model a phenomenon, this paradigm
suggests that a scientist needs to approach a phenomenon with a limited set of
assumptions, and needs to look for specific techniques capable to solve some of
the problems it presents, without attempting any sort of structural understanding
of the phenomenon itself. (p. 6)

In contrast, Robert Northcott (2020) has reached the opposite conclusion; based on
four case studies of the predictive power of big data methods, he finds that in all cases
this predictive power is limited, concluding that “they suggest caution about whether
prediction, and thus scientific method generally, will really be revolutionized by big
data” (p. 103). Pietsch (2016, p. 138) observes that reference to a ‘change of paradigm’
is misleading from a philosophical perspective because it diverges from the classical
Kuhnian sense, although he agrees that one can adequately speak of an emergence of
a novel scientific methodology.

We also suggest that the relative frequency of use of traditional methods and big
data and machine learning methods will vary depending on the field, so that the extent
to which each science incorporates ‘agnostic’ elements will differ, as will the extent
to which each domain manages to rule out any reference to theory. Consequently,
we argue that big data and machine learning methods will become incorporated into
scientific methodology through continuous small conceptual shifts rather than a rigid
paradigm shift in the Kuhnian sense.

Yet another interesting line of thought might involve considering to what degree the
application of these methods will lead to scientific progress; while we leave a deeper
discussion of this for future research, it should be mentioned that the problems that

Footnote 13 continued
change in the future; Donoho (2000), for example, speculates that “[t]he present approach will eventually
be replaced by another, more traditional approach, which relies on new, yet undiscovered, theories”.
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these methods are used to solve may fit well with a functional approach to scientific
progress in comparison to the more widespread epistemic and semantic approaches
(Bird, 2007; Shan, 2019).14

6.4 Limitations of big data andmachine learningmethods

By mapping the role of expert knowledge in the scientific applications of big data
and machine learning methods, we have shown that a complete departure from expert
knowledge and theory is unlikely, and thus that these methods have a limited potential
to replace traditional scientific methods and lead to an entirely automated science.
Here, we briefly review other researchers’ similar theoretical arguments on the limi-
tations of big data and machine learning methods, categorising one as formal and one
as philosophical.

Formal arguments centre on the impossibility of the emergence of an entirely auto-
mated science. Calude and Longo (2017), for instance, providemathematical evidence
to demonstrate the impossibility of consistently determining those correlations that are
relevant in big data analyses, claiming that “the more data, the more arbitrary, mean-
ingless, and useless (for future action) correlations will be found in them” (p. 600).
Their argument is based mainly on Ramsey’s theory, which essentially states that
there are regular patterns in any sufficiently large set of mathematical objects; this
theory—combined with the observation that no regularity can lead to predictability in
dynamical systems and with the theorem that algorithmic information is always ran-
domly distributed—proves that most correlations are insignificant and do not allow
for any scientific generalisations. We do not replicate the technical details of this argu-
ment here, but the basic point—that big data and machine learning analyses depend
on human-driven causal understanding—should stand.

Philosophical arguments emphasise the limitations of big data andmachine learning
methods based on analyses of the epistemological assumptions of scientific methods.
Boon (2012) critiques the optimism surrounding the effectiveness of data science and
machine learning methods and data models by making a distinction between ‘useful’
theories (theories that provide the basis for developing applications) and ‘true’ theories
(theories that, assuming scientific realism, adequately model reality). As she states:

Even if it were possible to obtain the data-models from the machine, they would
be useless for epistemic uses by humans as these data-models do not meet rel-
evant pragmatic criteria to enable such uses. The other way around, in order to
be useful for humans in performing epistemic tasks, scientific knowledge must
also meet pragmatic criteria. (p. 59)

Boon’s argument follows the same trajectory as ours. She continues:

14 According to the epistemic approach, scientific progress should be defined in terms of knowledge, such
that progress occurs as more knowledge is accumulated, while the semantic approach defines scientific
progress in terms of truth, such that progress occurs when science converges closer to the truth (Bird, 2007).
In the functional approach, scientific progress instead occurs when a certain function, such as problem-
solving, is fulfilled or, alternatively, when a piece of science is useful (Shan, 2019).
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Every tiny step in these intricate research processes involves epistemic
tasks—e.g., to explain, interpret, invent, idealize, simplify, hypothesize, model,
mathematize, design, and calculate—for which all kinds of practical and scien-
tific knowledge are crucial and needs to be developed in the research process.
Therefore, scientific knowledge needs to be comprehensible to the extent that it
allows for these epistemic tasks. (pp. 61–62)

Consequently, Boonwrites, “it is inconceivable that machine-learning technologies
will make science and scientists superfluous” (p. 62). Like Boon, we point out the
necessity for expert knowledge at multiple levels of data processing. Boon argues for
this necessity on the grounds that any dataset should meet pragmatic criteria and be
useful in human applications; our arguments, conversely, are based on observations
drawn from scientific practice.

Another philosophical argument on the limitations of big data andmachine learning
methodologies is based on the observation that no matter how capacious a dataset is,
there may always be new cases that humans will know belong in the dataset, but that
algorithms will not be able to recognise as such. In the example of the skin cancer
dataset presented in Sect. 4, for instance, it can be anticipated with great certainty that
currently unknown types of skin cancer will be found; these will have to be manually
added to the dataset, and machine learning algorithms will have to be trained on them
anew.15

7 Conclusion

This paper argues against the view that science based on theory, models, and hypothe-
ses can be replaced by atheoretical and automated algorithmic methods. As our
research indicates, any data analysis or machine learning project begins with a well-
formulated scientific problem, systematic data collection, data pre-processing, model
training, and model evaluation; in other words, the entire data-mining process is car-
ried out in an expert- and theory-driven manner. Moreover, the evaluation of machine
learning algorithms on new test datasets and their comparison with other methods
(such as human performance) is an important component of the research procedure
that ascribes seriousness and credibility to the results. Although we hesitate to postu-
late that it will never be possible to exclude human input from big data and machine
learningmethods, our two case studies and our discussion in the previous section show
that this possibility is highly unlikely.

It is not our intention here to dismiss new scientificmethods or new lines of research.
Rather, we seek to emphasise the research expertise and domain knowledge required
by these new methods; in so doing, we aim to show in detail what is truly new and
what is only ‘business as usual’. Big data and machine learning methods may be used
in a more ‘agnostic’ way, but they do not lead to completely agnostic science. We do
not believe that these methods will lead to a radical change or revolution in science,
but rather that they represent a (considerable) expansion of science’s methodological

15 Inspiration for this argument comes from the oral presentation given byMarija Slavkovik at theworkshop
‘Philosophy of Computing’, held at the Warsaw University of Technology in September 2021.
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toolkit. Even if big data and machine learning approaches do not revolutionise all of
science, they will still lead to changes in subfields and stimulate the emergence of new
fields or endeavours, such as the digital humanities or computational social sciences.
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