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The SARS-CoV-2 ancestral strain has caused pronounced super-
spreading events, reflecting a disease characterized by overdisper-
sion, where about 10% of infected people causes 80% of infections.
New variants of the disease have different person-to-person varia-
tions in viral load, suggesting for example that the Alpha (B.1.1.7)
variant is more infectious but relatively less prone to superspread-
ing. Meanwhile, mitigation of the pandemic has focused on limiting
social contacts (lockdowns, regulations on gatherings) and decreas-
ing transmission risk through mask wearing and social distancing.
Using a mathematical model, we show that the competitive advan-
tage of disease variants may heavily depend on the restrictions im-
posed. In particular, we find that lockdowns exert an evolutionary
pressure which favours variants with lower levels of overdispersion.
We find that overdispersion is an evolutionarily unstable trait, with a
tendency for more homogeneously spreading variants to eventually
dominate.
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One of the major features of the coronavirus pandemic has1

been overdispersion in transmission, manifesting itself2

as superspreading. There is evidence that around 10% of3

infected individuals are responsible for 80% of new cases (1–4

4). This means that some individuals have a high personal5

reproductive number, while the majority hardly infect at all.6

A recent study has shown this is reflected in the distribution of7

viral loads which is extremely wide, with just 2% of of SARS-8

CoV-2 positive individuals carrying 90% of the virus particles9

circulating in communities (5). Overdispersion is in fact a key10

characteristic of certain diseases (6–8). However, this is by no11

means a universal signature of infectious respiratory diseases.12

Pandemic influenza, for example, is characterized by a much13

more homogeneous transmission pattern (9–11).14

As an emerging virus evolves, its transmission patterns may15

change and it may become more or less prone to superspreading.16

The Alpha (B.1.1.7) variant of SARS-CoV-2 has been reported17

to be ∼ 50% more transmissible than the ancestral SARS-CoV-18

2 virus under varying degrees of lockdown (12–14). Meanwhile,19

others have shown that the Alpha variant possesses a higher20

average viral load and a reduced variability between infected21

persons, compared to the ancestral strain (15, 16). It remains22

to be seen how this reduced variability affects the transmission23

patterns of the virus.24

The altered viral load distributions seen in persons in-25

fected with the Alpha variant have also been investigated at26

the level of individual mutations. The spike protein of the27

Alpha variant prominently features the N501Y substitution28

(asparagine replaced by tyrosine at the 501 position) as well29

as the ∆H69/V70 deletion (histidine and valine deleted at30

the 69 and 70 positions). Investigators found that the viral31

load is, on average, three times as great for the Alpha variant 32

compared with the ancestral strain (16). Furthermore, viral 33

load distributions in samples taken from persons infected with 34

a variant with the ∆H69/V70 show a lower variance, whether 35

or not they also have tyrosine at the 501 position. However, 36

the difference in variance was most pronounced for those sam- 37

ples which had the deletion as well as the 501Y mutation. 38

Similarly, an analysis of samples with the N501Y mutation 39

show that they have a higher median viral load as well as a 40

substantially diminished variance compared to those without 41

it. Using data from Ref. (15), we calculate that the viral loads 42

in samples of the Alpha variant are associated with a lower 43

coefficient of variation of approximately 2, compared to 4 for 44

the ancestral strain. Importantly, the exact relation between 45

viral load and infectiousness is not well understood; however, 46

a higher viral load is logically expected to increase the risk of 47

disease transmission. By this logic, the decreased variability 48

in the viral load for the Alpha variant may translate into a 49

reduced overdispersion in transmission. 50

In this paper, we use a mathematical model to study the 51

competition between idealized variants which differ in their 52

level of overdispersion (k) and their mean infectiousness. Our 53

focus is on exploring whether overdispersion confers any evo- 54

lutionary (dis)advantages, and whether non-pharmaceutical 55

interventions which restrict social network size and transmis- 56

sibility change the fitness landscape for variants with varying 57

degrees of overdispersion. While it is evident that a higher 58

mean infectiousness confers an evolutionary advantage to an 59

emerging pathogen, it is not a priori obvious if a competitive 60
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advantage can be gained by specifically altering the variability61

in infectiousness (while keeping transmissibility unchanged).62

Our recent studies have shown that the presence of overdisper-63

sion makes a pandemic far more controllable than influenza64

pandemics when mitigating by limiting non-repetitive contacts65

(17) and personal contact network size (18). We therefore spec-66

ulate that restrictions which alter social contact structure may,67

conversely, provide a fitness advantage to variants with more68

homogeneous transmission, and may thus play a role in viral69

evolution.70

Across several diseases, individual variations in infectious-71

ness have been approximated by a Gamma distribution (6)72

characterized by a certain mean value and a dispersion pa-73

rameter known as k, which is related to the coefficient of74

variation (CV ) through CV = 1/
√
k. In the simplest of cases75

(a well-mixed population), infection attempts are modeled as76

a constant-rate (Poisson) process, which leads to a personal77

reproductive number which follows a negative binomial distri-78

bution. The dispersion parameter k characterizes the degree of79

transmission heterogeneity; a lower k corresponds to greater80

heterogeneity. For small values of k, it approximately corre-81

sponds to the fraction of infected individuals responsible for82

80% of new infections The value for the SARS-CoV-2 ancestral83

virus is around 10%, corresponding to a k-value of approxi-84

mately 0.1. Other coronaviruses are also prone to superspread-85

ing, with the k-values of SARS-CoV-1 and MERS estimated86

at 0.16 (6) and 0.26 (19), respectively. To explore questions of87

how such overdispersion affects fitness and pathogen evolution,88

we use an agent-based model of COVID-19 spreading in a89

social network, as originally developed in Ref. (18).90

Overdispersion in personal reproductive number – i.e. su-91

perspreading – is a phenomenon that requiresmeans (biological92

infectiousness) as well as opportunity (social context). Super-93

spreading can have diverse origins, ranging from purely be-94

havioural to biological (8, 20). However, a recent meta-review95

(21) compared the transmission heterogeneity of influenza96

A (H1N1), SARS-CoV-1 and SARS-CoV-2 and found that97

higher variability in respiratory viral load was closely associ-98

ated with increased transmission heterogeneity. This suggests99

that biological aspects of individual diseases are decisive in100

determining the level of overdispersion, and thus the risk of101

superspreading.102

Initial survival of variants103

The words fitness and competitive advantage may take on104

several meanings in an evolutionary context. For our purposes,105

it is especially important to distinguish between the ability106

of a pathogen to avoid stochastic extinction and to reproduce107

effectively in a population.108

To quantify the ability to avoid stochastic extinction we109

use a branching process to simulate an outbreak of a variant110

with a given level of overdispersion in a naive population. We111

then record whether it survives beyond the first 10 generations112

of infections, as a measure of the ability of that variant to take113

hold. Repeating these simulations multiple times allows us114

to compute the survival chance of each variant as a function115

of its infectiousness and overdispersion, in the absence and116

presence of mitigation (Fig. 1). Since we are dealing with a117

few related quantities, some definitions must be made. By118

the basic reproductive number (R0) we mean the average num-119

ber of new infections which each infected person gives rise to120
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Fig. 1. Initial survival chance depends strongly on overdispersion and mod-
erately on lockdown status. A) The epidemic spreads in an unrestricted setting
(homogeneous mixing contact structure) B) The epidemic spreads in a situation with
limited social connectivity (modeled as an Erdos-Renyi network of average connec-
tivity 10). The survival chance is computed by simulating several outbreaks, each
starting from a single infected individual in a susceptible population. This initial in-
dividual is infected with a variant of a given overdispersion. For each outbreak, the
variant is recorded as having survived if it does not go extinct within 10 generations.
The dashed white line indicated parameters for which the variant has a 5% chance
of surviving. The biological mean infectiousness (horizontal axis) has been scaled
such that it equals the basic reproductive number (R0) in the homogeneous mixing
scenario of panel A. For details on these calculations, see the Materials and Methods
section.

when all contacts are susceptible. This is in contrast to the 121

effective reproductive number (known variously as R, Rt and 122

Re), which is affected by population immunity. Note that R0 123

as well as Re are context dependent, since behaviour (and 124

mitigation strategies) will affect e.g. the number of contacts 125

that a person has and thus the reproductive number. Another 126

parameter entirely is the (biological) mean infectiousness, by 127

which we mean the rate at which transmission occurs when an 128

infected person is in contact with a susceptible person. This is 129

a property of the disease and not of the social environment. In 130

Fig. 1, the independent variables are thus the mean infectious- 131

ness and the dispersion parameter, both of which are assumed 132

to be properties of the disease. The details of the calculation 133

can be found in the Materials and Methods section. 134

In the unmitigated scenario (Fig. 1A), the procedure is rel- 135

atively straightforward. A single infected individual is initially 136

introduced, with a personal reproductive number z drawn from 137

a negative binomial distribution PNB[Z;R0, k] with mean value 138

R0 and dispersion parameter k. Thus, this individual gives 139

rise to z new cases, and the algorithm is reiterated for each of 140

these subsequent infections. 141

In the case of a lockdown scenario, in terms of restrictions 142

of the number of social contacts (Fig. 1B), the algorithm is 143

slightly more involved. In this case, a degree c (the number of 144

contacts) is first drawn from a degree distribution (in this case 145
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a Poisson distribution, to mimic an Erdös-Renyi network). A146

biological reproductive number ξ (the infectiousness) is then147

drawn from a Gamma distribution with mean value R0 and148

dispersion parameter k. The actual personal reproductive149

number z is then drawn from the distribution150

P (z; ξ, c) =
(
c

z

)(
1− e−ξ/c)z (e−ξ/c)(c−z)

. [1]151

This reflects that the personal reproductive number z is, natu-152

rally enough, limited by the number of distinct social contacts153

c. This algorithms is then reiterated for each of the z new154

cases.155

Similar results can be obtained analytically by considering156

the probability that an infection chain dies out in infinite157

time. Let that probability be d and let pi, i ∈ {0, 1, . . . } be158

the distribution of personal reproductive number (i.e. pi is159

the probability that a single infected individual will infect i160

others). Then the extinction risk d is the sum:161

d = p0 + p1d+ p2d
2 + . . . [2]162

where the first term on the right hand side is the extinction163

risk due to the index case producing no new infections, the164

second term is the case where the index case gives rise to165

one branch of infections which then dies out (this being the166

reason for the single factor of d in the second term) and so on.167

Since each new branch exists independently of the other, the168

extinction events are independent and the probabilities may169

be combined by simple multiplication as in Eq. Eq. (2).170

We find that the survival chance depends very strongly171

on overdispersion (Fig. 1), with more homogeneous variants172

(k ∼ 1) having a good chance of survival while highly overdis-173

persed variants (k ≤ 0.1) are very unlikely to survive beyond174

10 generations. This finding fits well with the general pat-175

tern of overdispersed spreading, namely that many individuals176

hardly become infectious while a few pass the disease onto177

many others. The uneven distribution of infectiousness makes178

heterogeneous diseases more fragile in the early stages of an179

epidemic, and thus more prone to stochastic extinction.180

For the case of homogeneous mixing (Fig 1A) and the num-181

ber of generations tending to infinity, Lloyd-Smith et al (6)182

performed a similar calculation using the generating function183

method described in Eq. 2. For a disease with R0 = 3 and a k184

value of 0.16 (similar to what they estimated for SARS-CoV-1),185

the survival chance was found to be 24%. Our model yields186

the same figure in the unmitigated connectivity→∞ limit.187

To assess the effect of lockdown-like non-pharmaceutical188

interventions on the initial survival chances of a pathogen, we189

performed an analogous computation in a socially restricted190

setting (Fig. 1B). Compared with the unmitigated scenario of191

Fig. 1A, it can be seen that the mitigation has an effect on the192

survival chance, affecting highly overdispersed variants (small193

k) much more than their more homogeneous counterparts194

(with the same mean infectiousness). This result is parallel195

to the effect of lockdown-like interventions on the competitive196

advantage of a variant, which we explore in the next section.197

In Ref. (20), the authors study stochastic extinction of198

a superspreading disease under a targeted intervention they199

call cutting the tail. They introduce a cutoff value Ncutoff200

for the personal reproductive number, and if a person has a201

personal reproductive number z ≥ Ncutoff, a new z is drawn202

until one below the threshold is obtained. Since the disease is203

highly heterogeneous, this process is analogous to ”removing” 204

a potential superspreading event and replacing it with a much 205

lower personal reproductive number (typically z = 0). This is 206

exactly why the intervention is rightly called targeted. Their 207

approach is thus based on viewing superspreading entirely as 208

an event-based phenomenon, where one can directly remove 209

superspreading events above some threshold size, and instead 210

let the individuals take part in other less risky events. Our 211

approach, on the other hand, assumes superspreading to be 212

due to a combination of high individual biological infectious- 213

ness and opportunity, e.g. a large number of social contacts. 214

These two viewpoints are complementary in obtaining a com- 215

prehensive description of superspreading phenomena, rather 216

than mutually exclusive (17). 217
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Fig. 2. Simulations of the emergence of a new variant. An initially dominant
(”ancestral”) strain with dispersion parameter k = 0.1 (red) has initially infected 1%
of the population. The figure follows the emergence of a new variant (purple), which
has the same biological mean infectiousness, but is more homogeneous (k = 0.2).
Initially, 0.01% of the population is infected with the emerging variant. The two variants
exhibit perfect cross-immunity. The initial scenario is a partially locked-down society
(modeled as an Erdös-Renyi network with 10 contacts/person). When the new variant
reaches 20% of all current infections (around day 65), the lockdown is completely
lifted (modeled by a homogeneous mixing contact structure with the same total social
time available per person). A) Incidence of each strain as a function of time since
the new variant was introduced. Notice that the new variant spreads approximately
exponentially until day 65 (see also panel B), whereas the ancestral strain stays
at about 1% incidence. When restrictions are lifted, both surge. B) Same data as
panel A, but plotted on a logarithmic scale. In this plot, exponential growth shows
up as a straight line, and it is thus clear that the new variant spreads approximately
exponentially during the lockdown phase. C) The relative proportions of the old
and new variants. In the locked-down society, the new variant has a distinct fitness
advantage, as revealed by its increasing share of infections. Once restrictions are
lifted around t = 65 days, the fitness advantage is lost and the two variants spread
equally well.
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Competitive advantage is determined by context218

We now turn to the competition between two variants which219

have already managed to gain a foothold, and so have moved220

past the initial risk of stochastic extinction. This is a separate221

aspect of “fitness”, distinct from the initial survival ability222

described in the last section. Fig. 2 explores the competi-223

tion between two strains which differ only in their level of224

overdispersion. The ancestral variant has a broad infectious-225

ness distribution (k = 0.1) while the other – the new variant –226

is more narrowly distributed (k = 0.2). In the initial partial227

lockdown scenario, each person is only allowed contact with228

10 others, At first, the fraction of infections due to the new229

variant is observed to grow rapidly. When it reaches a 20%230

share of active infections, around day 65, the lockdown is231

lifted (simulated by a shift to a homogeneous mixing contact232

structure). Naturally, this more permissive contact structure233

causes a surge in both variants (Fig. 2c). However, the frac-234

tion of infections owing to each variant suddenly stabilizes,235

indicating that the more homogeneous new variant has lost236

its competitive advantage in the unmitigated scenario.237

This sudden loss of competitive advantage demonstrates238

conceptually that the fitness of variants with different pat-239

terns of overdispersion depends on context, in the form of240

non-pharmaceutical interventions or the absence thereof. To241

quantify this dependence, we separately simulate the spread242

of several pathogen variants, each with its own specified mean243

infectiousness and dispersion parameter k, and measure the244

resulting basic reproductive numbers. In each case we let the245

pathogen spread in an Erdös-Renyi network with a mean con-246

nectivity of either 10 or 50, to simulate scenarios with either247

a restricted or fairly open society. The results are shown in248

Fig. 3, where the competitive (dis)advantage of each variant249

is plotted as a function of its a given biological mean infec-250

tiousness and dispersion. The infectiousness is given relative251

to the SARS-CoV-2 ancestral strain which is set to average252

infectiousness = 1 and has dispersion k = 0.1. This average253

infectiousness of 1 corresponds to a basic reproduction number254

of R0 = 3 in a well-mixed scenario, representative of COVID-255

19 (22). In the socially restricted case with only 10 contacts,256

the competitive advantage depends strongly on the dispersion257

parameter, as evidenced by the contour lines in Fig. 3A. The258

dashed white contour in the figure indicates variants which259

spread as well as the ancestral strain. Concretely, a variant260

with just half the biological infectiousness of the ancestral261

strain has no substantial competitive disadvantage, provided262

it is sufficiently homogeneous (k & 1.0). In the more socially263

connected scenario (Fig. 3B), the competitiveness of a strain264

is observed to depend less strongly on dispersion, and is pri-265

marily determined by biological mean infectiousness. Viewed266

more broadly, these results imply that an observed increase267

in R0 for an emerging variant may be due to a combination268

of changes in transmission patterns (k) and biological mean269

infectiousness270

So far, our focus has been on mitigation strategies which271

rely on reductions in contact network. However, even when272

societies reopen by allowing contact with an increased num-273

ber of individuals, non-pharmaceutical interventions which274

decrease transmission risk per encounter may be in force.275

These may include face masks and regular testing. In the276

Supporting Information, we show that interventions which277

decrease the transmission risk per encounter (i.e. per unit of278

contact time) in fact decrease the competitive advantage of 279

more homogeneous variants. These types of interventions thus 280

have essentially the opposite effect, relative to strategies which 281

reduce social connectivity. 282
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Fig. 3. Relative fitness of variants. The color indicates the basic reproductive
number that each variant exhibits under the given circumstances. The dashed white
line indicates variants which have the same fitness as the ancestral strain, which is
estimated to have k = 0.1. The biological mean infectiousness (horizontal axis) has
been scaled such that it equals the basic reproductive number (R0) in a homogeneous
mixing scenario. A) Spread of the disease in a connectivity 10 Erdös-Renyi network,
corresponding to a partial lockdown. B) Spread of the disease in a connectivity 50
Erdös-Renyi network, corresponding to a mostly open society.

Interventions exert selection pressure 283

As the observed differences in the viral load distributions of 284

the Alpha (B.1.1.7.) variant and the ancestral strain suggest, 285

overdispersion is not a fixed property, but rather one that may 286

evolve over time. Furthermore, the SARS-CoV-2 pathogen 287

has been estimated to mutate at a rate of approximately 2 288

substitutions per genome per month (23), translating to about 289

one mutation per three transmissions. In Fig. 4, we explore 290

the consequences of overdispersion as an evolving feature of 291

the pathogen. In these simulations, the virus has a mutation 292

probability of 1/3 at each transmission. When it mutates, the 293

overdispersion factor is either increased (by a factor of 3/2) or 294

decreased (by a factor of 2/3). Thus, we assume no drift on 295

the microscopic scale, but one may arise macroscopically due 296

to selection pressure from the environment. It should of course 297

be noted that while the assumed mutation rate is realistic for 298

SARS-CoV-2, many mutations will be neutral and only very 299

few mutations will affect transmission dynamics. As such, the 300

present model will likely overestimate the magnitude of the 301

drift in overdispersion. It is however conceptually robust – 302

decreasing the mutation rate merely slows down the drift, but 303

the tendency remains. 304

In our simulations, we find that there is always a tendency 305
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for overdispersion to decrease (i.e. for the k value to increase),306

leading to more homogeneous disease transmission. This makes307

sense, since we have already established that heterogeneous308

disease variants are more likely to undergo stochastic extinc-309

tion (Fig. 1) and that they have a competitive disadvantage310

as soon as contact structures are anything but well-mixed311

(Fig. 3). In the absence of any interventions, the tendency312

to evolve towards homogeneity is quite weak (Fig. 4A), but313

when a partial lockdown is instituted, the picture changes314

dramatically and the k value increases exponentially. The315

conclusion is thus that lockdowns exert a selection pressure on316

the virus when it comes to overdispersion, towards developing317

a less superspreading-prone phenotype.318

One may of course object that the scenarios of Fig. 4A (un-319

restricted spread) and 4B (partial lockdown) are not directly320

comparable, since the epidemic in 4A unfolds much more321

rapidly. For this reason, we have included the scenario shown322

in 4C, where the transmission rate per encounter has been323

lowered, but social structure is unrestricted. The transmission324

rate is lowered such that the initial daily growth rates in Fig.325

4B and 4C are identical (11%/day averaged over the first 14326

days). This slightly increases the growth of k over the course of327

the epidemic, but to a much lower level than in the lockdown328

scenario, demonstrating that it is indeed the restriction of329

social network that provides the selection pressure driving k330

upwards.331

Discussion332

With this paper we have demonstrated that the relative success333

and survival of mutants of a superspreading disease depends on334

the type of mitigation strategies employed within a population.335

The choice of a certain mitigation strategy may well amount to336

selecting the next dominant variant. If, for example, a simple337

lockdown is enacted while still allowing people to meet within338

restricted social groups, the evolution of more homogeneously339

spreading disease variants may become favoured.340

The spreading of an emerging virus in a human society is341

a complex phenomenon, where the actual reproductive num-342

ber depends on sociocultural factors, mitigation policies and343

self-imposed changes in the behaviour of citizens as awareness344

grows in the population. The spread of a disease such as345

COVID-19 cannot simply be characterized by a single fitness346

quantity like the basic reproductive number R0, but will also347

depend on the heterogeneities of transmission patterns within348

the population. If schools are open, mutants which spread349

more easily among children may be selected for, whereas rapid350

self-isolation of infected individuals may tend to favor vari-351

ants which temporally separate disease transmission from the352

development of symptoms. We have focused on modeling the353

evolutionary effects of biological superspreading in the context354

of mitigations such as lockdowns which have been implemented355

globally during the COVID-19 pandemic. We found that such356

lockdowns will favour the emergence of homogeneously spread-357

ing variants over time.358

Our findings also have implications for the assessment of359

new variants. They highlight the importance of taking overdis-360

persion into account when evaluating the transmissibility of an361

emerging variant. We have shown that the disease can spread362

more effectively not only by increasing its biological mean363

infectiousness, but also by changing its pattern of transmission364

to become more homogeneous. Practically, this means that365

transmission data obtained under even partial lockdown can 366

lead to an overestimation of the transmissibility of an emerging 367

variant. We thus call for an increased focus on measuring the 368

overdispersion of variants, as this may be critical for estimat- 369

ing the reproductive number of new variants. These estimates 370

in turn determine the required vaccination levels to reach herd 371

immunity. 372
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Fig. 4. Evolution of overdispersion is driven by imposed restrictions. In these
simulations, random mutations occur which alter the level of transmission overdisper-
sion in a non-directed fashion. However, external evolutionary pressures are seen to
drive the disease towards developing more homogeneous spreading patterns. The
filled red curve shows the combined incidence of all strains. The purple curve shows
the average dispersion factor k in the infected population (with higher k corresponding
to a more homogeneous infectiousness). The shaded purple area shows the 25% and
75% percentiles of the distribution of dispersion factors in the infected population. A)
The pathogen evolves in an open society with no restrictions imposed (homogeneous
mixing contact structure). B) Partial lockdown, with an average social network connec-
tivity restricted to 15 persons. C) No restrictions on social network, but infectiousness
lowered by other means (e.g. face masks).

Materials and Methods 373

We use an individual-based (or agent-based) network model of 374

disease transmission as originally developed in Ref. (18). In this 375

section, we present only a brief overview of the basic model, and 376

refer to Ref. (18) for a more detailed description. We then go on 377

to describe in detail the simulations and calculations which are 378

particular to this manuscript. 379

The disease progression model consists of four overall states, 380

Susceptible, Exposed, Infected and Recovered. The exposed state 381

has an average duration of 2.4 days and is subdivided into two 382

consecutive states with exponentially distributed waiting times (i.e. 383
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having constant probability rate for leaving the state) of 1.2 days384

each, thus constituting a gamma distributed state when viewed as385

a whole. The infectious state is divided into two states as well, of386

1.2 and 5 days in duration, respectively.387

Each individual in the model is associated with a fixed social388

network. Only a subset of edges are activated in each timestep, to389

simulate a contact event. In the simulations of this work, we always390

use either an Erdös-Renyi network with finite mean connectivity, or391

a homogeneous-mixing contact structure, which is also obtainable392

as the infinite connectivity limit of an Erdös-Renyi network.393

When an edge connecting a susceptible and an infectious in-394

dividual is active, there is a certain probability per unit of time395

for disease transmission to occur. This rate is determined by the396

individual infectiousness ri of the infectious agent, which is drawn397

from a gamma distribution with dispersion parameter k before the398

individual has become infectious. As such, the infectiousness for399

any given individual is assumed constant throughout the infectious400

stage of the disease. The infectiousness distribution determines an401

upper bound on size ∆t of the the timesteps in the model, since402

the inequality ri ·∆t < 1 must hold for all agents. A timestep of403

size ∆t = 30min was used throughout, since this was sufficient to404

ensure that the inequality was satisfied.405

Below we go into more detail as to how the simulations involving406

multiple strains were performed.407

Stochastic extinction. The stochastic extinction (or, conversely, sur-408

vival) plots of Figure 1 in the main text rely entirely on a branching409

process algorithm with sampling of probability distributions with410

an analytic description. In practice, we have performed the compu-411

tation by numerical sampling.412

In each generation of the epidemic, the computation is reiter-413

ated. Without loss of generality, we therefore here describe a single414

generation which initially has I infected individuals. Note that for415

the initial generation, I = 1 infected individuals.416

• For i ∈ {1, . . . , I}:417

– Draw individual infectiousness ξi from Gamma distribu-418

tion Pξ(ξ; k, µ)419

– Draw number of contacts c from a Poisson distribution420

with a given mean connectivity.421

– Given number of contacts c, draw personal reproductive422

number zi from the distribution Eq. (3)423

Pz(z; ξ, c) =
(
c

z

)(
1− e−ξ/c

)z (
e−ξ/c

)(c−z)
. [3]424

• Let the number of newly infected be I =
∑

i
zi and repeat the425

algorithm with this new value of I.426

If the number of infected I ever drops to zero, the outbreak is said427

to have undergone stochastic extinction in that generation. By428

performing multiple such branching process simulations for each429

value of the parameters µ (mean infectiousness) and k (dispersion430

factor) we build up a statistic of the survival chance of each specific431

variant. To generate Figure 1, this is repeated for two different432

values of the mean connectivity c.433

Two-strain competition simulations. In Fig. 2, two strains spread434

simultaneously in the population of N = 106 individuals. Initially,435

0.99% of the population are infected with the heterogeneous ”old”436

variant (k = 0.1), while 0.01% are infected with the more homo-437

geneous ”new” variant (k = 0.2). Once a person with a given438

variant infects a susceptible individual, the characteristics of the439

variant are passed on to the newly infected individual, such that440

the infectiousness of this person is drawn from a Gamma distri-441

bution with dispersion parameter k set by the variant. In other442

words, these simulations assume that no further mutations affecting443

overdispersion occur, allowing us to track solely the competition of444

two differently-dispersed variants within a population.445

Evolutionary model. In Fig. 4, we allow the pathogen to stochasti-446

cally mutate upon transmission, with the mutations affecting the447

degree of overdispersion. In the simulations, the pathogen mutates448

on average once for each new host it is transmitted to (i.e. with449

mutation probability p = 1/3) and the mutations are assumed to 450

always affect overdispersion, by either increasing the k value by a 451

factor of 3/2 (i.e. k → 3k/2) or decreasing it by a factor of 2/3 452

(i.e. k → 2k/3). On a microscopic level, the dispersion level thus 453

performs an unbiased (multiplicative) random walk. The value of 454

this step-size parameter is arbitrarily chosen, and as such the simula- 455

tions can only be regarded as qualitative and conceptual. However, 456

although no intrinsic bias is built into the mutation mechanism, 457

external selection pressures may drive the level of overdispersion in 458

the population up or down, as is explored in Fig. 4. 459

In Fig. 4C, the average infectiousness of the strain is lowered so 460

as to produce an initial growth rate that is identical to that of 4A, 461

namely 11% per day in the first 14 days of the epidemic. 462
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