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Inference-Guiding on Bayesian Knowledge-Based Systems 
 

Jinchang Wang 
Richard Stockton College of New Jersey 

USA 
 

ABSTRACT 
 
Bayesian network is a robust structure for representing knowledge containing uncertainties in a 
knowledge-based system.  In applications of expert systems and knowledge-based systems, it 
often happens that initial data are not sufficient to derive a conclusion of high enough certainty.  
Inference-guiding is in that case to identify the missing information, pursue its value, and lead 
inference to a conclusion.  This paper presents and characterizes a criterion for effectively 
selecting key missing information, and thereby develops a “smart” inference approach with the 
inference-guiding function based on the newly developed criterion for uncertain inference in a 
Bayesian knowledge-based system.  
 

INTRODUCTION 
 
A knowledge-based system is a computer system that automates intelligent processes.  Inference 
on a knowledge-based system is a field of artificial intelligence (AI).  AI has found numerous 
applications in business management.  An AI approach can assist international firms in screening 
markets (Fish, 2006), can help plan and control the performance of a just-in-time manufacturing 
system (Wray, Markham, & Mathieu, 2003), and can serve for monitoring and detecting 
financial frauds and abuses (Hall & McPeak, 2003).  Knowledge-based systems are necessary 
components of decision support systems (DSS) that are now widely used in business to enhance 
managers’ decision making process (McManus & Snyder, 2003; Hung, Tang, & Shu, 2008).  
 
A knowledge-based system is composed of a knowledge base, an inference engine, and an 
environment interface.  A knowledge base organizes and stores knowledge.  An inference engine, 
which is composed of software for inference and reasoning, generates logical implications of 
given data based on the knowledge in the knowledge base.   An environment interface consists of 
software and hardware, such as sensors, monitors, keyboards, speakers, and control mechanisms, 
for interacting with the environment.   Knowledge-based systems have been successfully used in 
numerous applications such as locating fuel deposits, designing complex computer systems, 
analyzing electronic circuits, diagnosing diseases, assisting driving vehicles, and doing the jobs 
that are dangerous to humans.   
 
An inference engine has two functions for practical applications: logical inference and inference-
guiding.  Logical inference, or simply inference or reasoning, generates facts that are logically 
implied by the knowledge and given facts.  Inference is aimed at the top-level-conclusion (TLC) 
that is a conclusion in the desired domain. When data are not sufficient, logical inference cannot 
reach a TLC, and inference-guiding (IG), the second function of an inference engine, is needed 
to identify missing data and lead inference to a top-level-conclusion.  In a disease diagnosing 
system, for example, TLCs are possible ailments patients may have, and logical inference is the 
process of deducting the disease a patient has based on the patient’s symptoms and doctor’s 
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knowledge.  A patent’s superficial symptoms and initial information are usually not sufficient for 
the doctor to determine the illness, and he/she has to ask the patient to provide more information 
and arrange some medical examinations.  In a crime investigation example, TLCs are the 
suspects who may have committed a particular crime.  Based on the information and evidences 
initially available, a detector deducts the logical implications.  If the detector is not able to reach 
any conclusion due to the missed links, he/she has to identify the missing information and go 
ahead to find evidences so as to solve the criminal puzzle.   
 
A good IG approach must be able to identify relevant missing information to pursue.  
Gynecological questions, for example, are not relevant for a male patient.  A good IG approach 
must also be able to select key missing information so that confirmation of those pieces of 
missing information would quickly lead to a TLC.  In other words, a good IG approach should 
lead to a TLC after pursuing minimum amount of missing information.  A bad IG approach, on 
the other hand, would delay the inference process by asking irrelevant, silly, and off-the-point 
questions.   
 
Inference and inference-guiding are conducted alternately in the process of reaching a TLC as 
shown in Figure 1.  The process starts with the function of inference based on the currently 
known facts.  If they are not sufficient to logically reach a TLC in the target domain, the 
inference-guiding function is kicked on to select a missing fact to confirm.  The system’s 
environment interface then pursues the value of the selected missing fact through a proper 
information source (a sensor, or a user, for example).  The newly confirmed fact is added to the 
known data, and the process is repeated again.  The process stops when a TLC is reached.   
 

Figure 1:  Inference and inference guiding in a knowledge-based system. 
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Knowledge can be imprecise and incomplete. Data can be inexact and fragmentary.  Knowledge-
based systems in many cases must draw conclusions and act under uncertainty that comes from 
un-sureness of belief and un-sureness of truth.  Un-sureness of belief is often associated with a 
piece of knowledge.  For instance, we do not believe with 100% confidence that “if someone 
breaks in, then the alarm will sound” because the alarm would not work if it is malfunctioned or 
the power is out.   Un-sureness of belief can be associated with data.  For example, we may 
reasonably doubt at the collected data that “57 people saw a UFO at Hutchinson, Kansas, at 
1:35am 11/27/2001” since it could be simply an airplane instead of a UFO.  Un-sureness of truth 
occurs where the definition of a truth value is ambiguous.  For example, truth of “the patient has 
a headache” or “it is cloudy today” may not be definite since “headache” and “cloudy” are not 
defined clearly. 
 
A couple of models have been developed to represent uncertainties in knowledge and data.  Non-
probabilistic approaches that were proposed in 1970s and 1980s include MYCIN's certainty factor 
method (Buchanan & Shortliffe, 1984; Shortliffe & Buchanan, 1975), the confidence factor union 
method (Hayes-Roth, Waterman, & Lenat, 1983), and the fuzzy set method (Zadeh, 1965; Kickert, 
1978).   They have been used in many expert system shells (Magill & Leech, 1991).  Probability 
theory was considered in 1960s for dealing with uncertainty (Duda et al., 1976).  Expert Edge 
(Human Edge, 1985), an expert system shell, for example, applies the Bayes' Theorem.  The 
probabilistic models fell out of favor in the early 1970s, until in the recent decade when researchers 
realized the shortcomings of the non-probabilistic approaches and showed that probability systems 
had theoretical strength in many applications where the knowledge base is large and there exist 
complex interactions between pieces of knowledge (Russell & Norvig, 2003).  
 
Probability has an intrinsic link with the uncertainty.  Un-sureness of belief is subjective 
probability by its nature, whose calculations and propagations follow the probability theory.  
Assigning a probability of 0 to a given assertion corresponds to an unequivocal belief that the 
assertion is false, while assigning a probability of 1 corresponds to an unequivocal belief that the 
assertion is true.  Probabilities between 0 and 1 correspond to intermediate degrees of belief in 
the truth of the assertion.   Although un-sureness of truth is not probability by its nature, it can be 
viewed as probability and be taken into the uncertainty calculations and propagations by 
following the probability theory.   
 
Bayesian network is a robust structure for representing knowledge with uncertainties, which has 
captured attentions of researchers (Ben-Gal, 2007; Pearl, 1988; Langseth & Portinale, 2007).  Its 
structure makes it convenient to depict a complex knowledge base (Chavira & Darwiche, 2007).  
There are two exclusive advantages of Bayesian network.  One is that Bayesian network is 
inherently capable of allowing uncertainties (Kanal & Lemmer, 1986).  Another is that logical 
inference in Bayesian network becomes calculations of probabilities, which are supported by the 
probability theory (Wang, 2005b).   
 
Uncertain inference has been a active research field in artificial intelligence for almost four 
decades.  The approaches of uncertain inference available in literatures can be grouped into three 
categories.  One category is for the rule-base, which was built on the success of logical rule-
based systems by adding a sort of “fudge factor” to each rule to accommodate uncertainty.  
Certainty factor is an instance.  The methods of this category were developed in the mid-1970s 
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and formed the basis for a large number of expert systems in medicine and other areas.   The 
second category of uncertainty reasoning methods is based on fuzzy logic that was developed in 
1980s and specially good for calculating un-sureness of truth (Zadeh, 1965).  The third category 
is based on the probability theory.  By such an approach, the process of reasoning becomes a 
process of calculating probabilities.  Researchers have developed a couple of algorithms to have 
more efficient inference in Bayesian networks more efficient, such as variational methods 
(Bishop, Spiegelhalter, & Winn, 2003), variable elimination method and likelihood weighting 
methods (Liu & Soetjipto, 2004),  and those surveyed by Russell and Norvig in their book in 
their book (Russell & Norvig, 2003).  
 
Compared to logical inference, inference-guiding has received less attention from researchers, 
though there have been some published literature on the topic.  For exact inference that does not 
consider uncertainties, EXPERT uses pre-listed orderings of rules and questions for missing data 
selection (Hayes-Roth et al., 1983).  KAS, a shell over PROSPECT, uses both forward and 
backward chaining, together with a scoring function, for selecting missing data (Duda, Hart, & 
Nilsson, 1979).  Mellish gave a procedure, using a so-called "Alpha-beta pruning technique", to 
eliminate irrelevant questions for acyclic inference nets (Mellish, 1985).  Wang and Vande Vate 
(1990) proved that the inference-guiding problem is NP-hard even in a Horn clause system.  Based 
on a dynamic representation of Horn systems (Jerolow & Wang, 1989), they proposed an efficient 
heuristic strategy, called minimum usage set strategy (MUS).  The experiments carried out by Wang 
and Triantaphyllou (1994) showed that MUS strategy performed well.  The inference guiding 
strategy developed in (Wang, 2005a) was able to select the key pieces of missing information in 
such a way that the total cost of acquiring additional information for reaching a conclusion is 
minimized.  For uncertain inference, the method presented in (Wang, 1994) is a heuristic for 
inference-guiding in a rule-base with certainty factors.   The research on inference-guiding in the 
probabilistic Bayesian network started in (Wang, 2005b). 
 
This paper presents the criterion for selecting key missing information for inference-guiding in a 
Bayesian network, and thereby develops an inference approach that aims at reaching a TLC after 
pursuing fewest data.   Section 2 introduces the fundamental concepts of uncertain inference and the 
Bayesian network.  Section 3 explores the criterion for effectively guiding inference in Bayesian 
network.  An IG index is developed and characterized as an effective criterion.  Section 4 
incorporates the IG index into an inference approach that would lead inference quickly to a TLC.   
An example is given throughout the paper to illustrate Bayesian network, the IG index, and the new 
inference approach. 
 

FUNDAMENTALS 
 
An assertion is a statement can be either ‘true’ or ‘false’.  An assertion is observable if its value 
can be obtained directly from an information source in the environment (a user or a sensor, for 
example).  An assertion is called unconfirmed observable assertion (UOA) if it is observable and 
its value is not yet known.  UOAs represent the missing data.  Selecting a missing data is to 
select a UOA.  If assertion Ak’s value is logically implied by assertions Aj1

, Aj2
, ..., then Aj1

, Aj2
, 

..., are called the premises of Ak, and Ak is called the inferred assertion.  As defined in Section 1, 
an assertion is a top-level-conclusion (TLC) if it is in the domain that inference is aimed at.  For 
example, possible diseases are TLCs in a disease diagnosing system; possible faults in an engine 
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are TLCs in a diagnosing system for aircraft maintenance; and required operating adjustments are 
TLCs of a real-time piloting control system.  
 
If the currently known facts are not sufficient to reach a TLC, inference-guiding is needed to 
identify some UOAs, whose values are then pursued.  The newly obtained data are added to the 
set of facts for purpose of further inference.  If there are n UOAs, then there are n options in 
selecting the next UOA to pursue.  Total number of UOAs that are selected to pursue before a 
TLC is reached can be large or small, depending on what UOAs are selected for pursuing and 
their sequence.  Of cause, we want to reach a TLC after asking for as few UOAs as possible.   
 
Uncertainties may occur in knowledge and facts.  Inference on knowledge and facts with 
uncertainty is called uncertain inference or uncertain reasoning.   A TLC is reached when its 
certainty to be true is high enough.  For example, the doctor would not inform a patient about the 
disease he might have unless, in the doctor’s mind, the probability that the patient has that 
disease is significantly high.   Usually, people use a threshold value to represent the ‘high 
enough’ probability.  Thus, a TLC is reached if its probability to be true is at or above the preset 
threshold.    
 
The Bayesian network is composed of nodes and arcs. A node represents an assertion.  There is a 
directed arc from node Aj to node Ak if Aj is a premise of Ak.  In other words, there is an arc 
from Aj to Ak if Aj has a direct influence on Ak.  Each node is labeled with the probabilities of 
possible values.  If assertion Ak is observable, then the prior probability of ‘Ak to be true’, 
denoted as P(Ak=T), is given as the label.   If Ak is an inferred assertion with premises Ai and Aj, 
for example, then node Ak is labeled with full conditional probabilities, {P(Ak=T | Ai=T, Aj=T), 
P(Ak=T | Ai=F, Aj=T), P(Ak=T | Ai=T, Aj=F), and P(Ak=T | Ai=F, Aj=F)}.  The complementary 
conditional probabilities can be derived from the above probabilities, such as P(Ak=F | Ai=T, 
Aj=T) = 1− P(Ak=T | Ai=T, Aj=T).  The uncertainties are thus embedded in these probabilities.  
Given the full conditional probabilities, we can calculate any joint probability by applying the 
probability theory.  The process of logical inference in a Bayesian network is therefore a process 
of probability calculations. 
 
Example 1. A Bayesian network and calculations for inference. 
 
Figure 2 shows a Bayesian network with five assertions.  Suppose that A1, A2 and A3 are UOAs, 
and A4 and A5 are inferred assertions and TLCs.  The arcs show that A1 and A2 have direct 
influences on A4, and A2 and A3 have direct influences on A5.  In terms of “if...then...” 
statements, that Bayesian network represent two rules: “If A1, A2 then A4”, and “If A2 and A3, 
then A5”. There are no arcs among A1, A2 and A3, which means they are independent between 
each other.   The prior probabilities are given to the observable assertions A1, A2 and A3, while 
the full conditional probabilities are given to the inferred assertions A4 and A5 in form of tables. 
 
With the given prior and conditional probabilities, we can calculate all joint probabilities.  For 
instance, the joint probability: 
  

P(A4=T, A1=T, A2=F)  
= P(A4=T|A1=T,A2=F)*P(A1=T,A2=F)  
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= P(A4=T| A1=T,A2=F)*P(A1=T)*(A2=F)  (since A1 and A2 independent) 
= 0.75*0.8*0.4 = 0.24. 
  

Similarly,  
 
 P(A4=T, A1=T, A2=T) = P(A4=T|A1=T,A2=T)*P(A1=T)*(A2=T) = 0.9*0.8*0.6 = 0.432; 
 P(A4=T, A1=F, A2=T) = P(A4=T|A1=F,A2=T)*P(A1=F)*(A2=T) = 0.6*0.2*0.6 = 0.072; 
 P(A4=T, A1=F, A2=F) = P(A4=T|A1=F,A2=F)*P(A1=F)*(A2=F) = 0.2*0.2*0.4 = 0.016. 
 
With the joint probabilities, the prior probability of inferred assertion A4 can be derived: 
 

P(A4=T)  
= P(A4=T,A1=T,A2=T)+P(A4=T,A1=T,A2=F)+P(A4=T,A1=F,A2=T)+P(A4=T,A1=F,A2=F) 
= 0.432 + 0.24 + 0.072 + 0.016 
= 0.76. 
 

Similarly, we can calculate the prior probability of A5 and have P(A5=T) = 0.571. 
        

Figure 2:  An example of a Bayesian network.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THE CRITERION FOR SELECTING KEY MISSING DATA 
 
Let X represent the truth value Ax=true, ¬X represent the truth value Ax=false (i.e., ¬Ax=true).  
With this notation, we have P(X) for probability P(Ax=true), P(¬X) for P(¬Ax=true) or 
P(Ax=false), and P(K|¬I, J) for P(Ak=true|¬Ai=true, Aj=true) = P(Ak=true|Ai=false, Aj=true).  
 
We define the presumed contribution index of truth value U to proving truth value T, CIU→T, as 
the difference between P(T|U) and P(T).  That is, CIU→T = P(T|U)−P(T) = 

F F 0.2 
T F 0.6 
F T 0.75 
T T 0.9 
A 2 A 1 P(A 4 =T|A 1 ,A 2 ) 

F F 0.2 
T F 0.6 
F T 0.75 
T T 0.9 
A 2 A 1 P(A 4 =T|A 1 ,A 2 ) 

F F 0.1 
T F 0.8 
F T 0.7 
T T 0.85 
A 3 A 2 P(A 5 =T|A 2 ,A 3 ) 

F F 0.1 
T F 0.8 
F T 0.7 
T T 0.85 
A 3 A 2 P(A 5 =T|A 2 ,A 3 ) 

A 1 A 2 
A 3 

A 4 A 5 

P(A 1 =T)=0.8 P(A 2 =T)=0.6 P(A 3 =T)=0.3 
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P(At=true|Au=true)−P(At=true).  CI¬U→T, CIU→¬T, and CI¬U→¬T are defined similarly.  For 
example, CI¬U→¬T = P(¬T|¬U)−P(¬T) = P(At=false|Au=false)−P(At=false).   
 
CIU→T measures how much it would help proving At=true if knowing Au=true for any Au and any 
At.  If At is a TLC and Au is a UOA, then CIU→T shows that in case the UOA Au’s  value is true, 
how much it would contribute to inferring that TLC At is true.   The larger the CIU→T is, the more 
significant ‘Au=true’ is towards proving ‘At=true’. If Pu does not have any influence on Pt, then 
CIU→T= CI¬U→T= CIU→¬T= CI¬U→¬T = 0.  The presumed contribution index is an indicator of 
relevance between an UOA and a TLC.   
 
However, the presumed contribution index has two flaws to be the criterion of selecting missing 
data.  (1) Between Au and At, there are four presumed contribution indices, CIU→T, CI¬U→T, 
CIU→¬T, and CI¬U→¬T. Which one should be used as the criterion?  (2) The presumed 
contribution index may mislead inference sometime.  If Au1 and Au2 are two UOAs, and CIU1→T 
> CIU2→T, then it looks that Au1 is more significant than Au2 in proving At=true if both Au1 and 
Au2 are true.  But it is not always correct because Au1 and Au2’s values can be false and we do not 
know their values when selecting one from them.  If P(Au1=true) were much smaller than 
P(Au2=true), then selecting Au2 to pursue would be better than selecting Au1 even CIU1→T > 
CIU2→T. 
 
To improve the above two flaws of the presumed contribution index, we define the inference-
guiding index (IG-index) of truth value Au=true towards proving At=true, IGIU→T, as the product 
of the presumed contribution index CIU→T and the prior probability of U.  That is, 
 

IGIU→T = CIU→T * P(U). 
 

IGIU→T is a better indicator of contribution of Au than CIU→T since it takes both the contribution 
of Au=true for deriving At=true and the prior probability of Au=true into account.  The IG-index 
IGIU→T is high if both the presumed contribution of U and probability of U are high.  With this 
improvement on the presumed contribution index, the IG-index can be called the “true 
contribution index” of Au=true for deriving At=true.  Thus, the second flaw of the presumed 
contribution index mentioned above is taken care of.  But among the four IG-indices between Au 
and At, IGIU→T, IGIU→¬T, IGI¬U→T, and IGI¬U→¬T, which one should be used as the criterion in 
inference-guiding?  Theorem 1 below answers this question by showing that the absolute values 
of the four IG-indices are same.  To prove Theorem 1, we need three lemmas. 
 
Lemma 1. 
 
   IGI¬U→¬T = IGIU→T for any assertion Au and At. 
 
Proof: 
 
By definitions of IGI•→• and CI•→•, and the probability theory, for any Au and At we have: 
        IGI¬U→¬T = CI¬U→¬T * P(¬U)     (by definition of IGI•→•) 
  = (P(¬T|¬U) − P(¬T)) * P(¬U)   (by definition of CI•→•) 
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  = P(¬T|¬U) * P(¬U) − P(¬T) * P(¬U) 
  = P(¬T|¬U) * P(¬U) − (1– P(T)) * (1–P(U)) 
  = P(¬T|¬U) * P(¬U) − (1– P(T) – P(U) + P(T)*P(U)) 
  = P(¬T,¬U) − 1+ P(T) + P(U) − P(T)*P(U)) 
  = P(¬T,¬U) −1+ P(T,U) + P(T,¬U) + P(U,T) + P(U,¬T) −P(T)*P(U)). 
Since P(¬T,¬U) + P(T, U) + P(T, ¬U) + P(U, ¬T) = 1, 
        IGI¬U→¬T =  P(U, T) – P(T)*P(U) 
  = P(T, U) – P(T)*P(U) 
  = P(T|U)*P(U) – P(T)*P(U) 
  = (P(T|U) − P(T)) * P(U) 
  = CIU→T * P(U)     
  = IGIU→T. 
        # 
Lemma 2. 
 
IGIU→¬T = IGI¬U→T, for any assertion Au and At. 
 
Proof: 
 
Let Av an assertions.  By Lemma 1, IGI¬V→¬T = IGIV→T.  Let Au=¬Av.  So, ¬Au=Av, i.e., ¬U=V.  
Make the substitution, we have IGIU→¬T = IGI¬U→T.   
        # 
Lemma 3. 
 
 IGIU→T = −IGIU→¬T for any assertion Au and At. 
 
Proof: 
 
        IGIU→¬T = (P(¬T|U) − P(¬T)) * P(U)   (by definition of IGI•→•) 
  = (1 − P(T|U) − 1 + P(T)) * P(U) 
  = − (P(T|U) − P(T)) * P(U) 
  = − CIU→T * P(U) 
  = − IGIU→T   
        # 
Theorem 1. 
  
IGIU→T = IGI¬U→¬T = − IGIU→¬T = − IGI¬U→T for any Au and At in a Bayesian network. 
 
Proof: 
 
Putting Lemma 1, 2, and 3 together, we have IGIU→T = IGI¬U→¬T = − IGIU→¬T = − IGI¬U→T  for 
any Au and At in a Bayesian network. 
        # 
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Recall that IGIU→T is interpreted as the contribution index of Au=true for proving At=true.  Then, 
IGI¬U→¬T is interpreted as the contribution index of Au=false for proving At=false.  A negative 
IGI value is viewed as the contribution to ‘disproving’.  So, −IGIU→¬T represents the contribution 
of ‘Au=true’ to disproving ‘At=false’.  
 
With the above interpretation, Theorem 1 tells that the true contribution of Au=true to proving 
At=true is same as its true contribution to disproving At=false; and no matter whether Au=true or 
Au=false, it has contributions to confirming the value of At, either At=true or At=false, and the 
amounts of contributions are same.  That is just the property we want the IG criterion to possess, 
- It would select such a UOA that once its value is known it would help confirm a TLC to a large 
extent. 
 
By Theorem 1, absolute values of the four IG-indices between two assertions, Au and At are 
same.  Let |IGIAu→At

| denote the absolute value of four IG-indices between Au and At.  For a TLC 
At, we would select a UOA Au such that |IGIAu→At

| is the largest comparing to the other UOAs, 
even we do not yet know the value of Au at the time of selection.   
 
Example 2.   Illustration of Calculations and Property of IG-index  
 
Continuing Example 1, in which A1, A2 and A3 are UOAs, and A4 and A5 are TLCs.   
 
For A1, A2, and A4, the following probabilities are given in the Bayesian network: P(A1)=0.8, 
P(A2)=0.6, P(A4|A1,A2)=0.9, P(A4|A1,¬A2)=0.75, P(A4|¬A1,A2)=0.6, P(A4|¬A1,¬A2)=0.2.  The 
calculation results of presumed contribution indices and IG-indices are shown in Table 1. 
 

Table 1:  Presumed contribution indices and IG-indices relative to A4. 
 
Conditional Probabilities Presumed contribution index 

to A4 
IG-index to A4 

P(A4|A1) 0.84 CIA1→A4
 0.08 IGIA1→A4

 0.064 

P(A4|¬A1) 0.44 CI¬A1→A4
 -0.32 IGI¬A1→A4

 -0.064 

P(¬A4|A1) 0.16 CIA1→¬A4
 -0.08 IGIA1→¬A4

 -0.064 

P(¬A4|¬A1) 0.56 CI¬A1→¬A4
 0.32 IGI¬A1→¬A4

 0.064 
P(A4|A2) 0.84 CIA2→A4

 0.08 IGIA2→A4
 0.048 

P(A4|¬A2) 0.64 CI¬A2→A4
 -0.12 IGI¬A2→A4

 -0.048 

P(¬A4|A2) 0.16 CIA2→¬A4
 -0.08 IGIA2→¬A4

 -0.048 

P(¬A4|¬A2) 0.36 CI¬A2→¬A4
 0.12 IGI¬A2→¬A4

 0.048 
  
 
For A2, A3, and A5, the following probabilities are given in the Bayesian network: P(A2)=0.6, 
P(A3)=0.2, P(A5|A2,A3)=0.85, P(A5|A2,¬A3)=0.7, P(A5|¬A2,A3)=0.8, P(A5|¬A2,¬A3)=0.1.  The 
calculation results of the presumed contribution indices and IG indices are shown in Table 2. 
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Table 2:  Presumed contribution indices and IG-indices relative to A5. 
 

Conditional Probabilities Presumed contribution index 
to A5 

IG-index to A5 

P(A5|A2) 0.745 CIA2→A5
 0.174 IGIA2→A5

 0.1044 

P(A5|¬A2) 0.31 CI¬A2→A5
 -0.261 IGI¬A2→A5

 -0.1044 

P(¬A5|A2) 0.255 CIA2→¬A5
 -0.174 IGIA2→¬A5

 -0.1044 

P(¬A5|¬A2) 0.69 CI¬A2→¬A5
 0.261 IGI¬A2→¬A5

 0.1044 
P(A5|A3) 0.83 CIA3→A5

 0.259 IGIA3→A5
 0.0777 

P(A5|¬A3) 0.46 CI¬A3→A5
 -0.111 IGI¬A3→A5

 -0.0777 

P(¬A5|A3) 0.17 CIA3→¬A5
 -0.259 IGIA3→¬A5

 -0.0777 

P(¬A5|¬A3) 0.54 CI¬A3→¬A5
 0.111 IGI¬A3→¬A5

 0.0777 
  
  
In summary, |IGIA1→A4

| =0.064, |IGIA2→A4
| =0.048, |IGIA2→A5

| =0.1044, |IGIA3→A5
| =0.0777, and 

|IGIA1→A5
| = |IGIA3→A4

| = 0. 
       # 
 
Further investigations have revealed more characteristics of the IG-index. Theorem 2 and 
Corollary 1 below establish the correspondence between IG-indices and covariances. 
 
Theorem 2. 
 
Let Xu and Xt be 0-1 random variables with 1 representing ‘true’ and 0 representing ‘false’.   Let 
U represent the truth value Xu=true, ¬U represent the truth value ¬Xu=true (i.e. Xu=false).  Let T 
represent the truth value Xt=true, ¬T represent the truth value ¬Xt=true (i.e. Xt=false). Then, 
IGIU→T = Cov(Xu, Xt), where Cov(Xu, Xt) stands for covariance of Xu and Xt. 
 
Proof: 
 
By the definition of covariance and probability theory: 
 Cov(Xu, Xt) = E[(Xu–E[Xu])(Xt–E[Xt])] 
   = E[XuXt – XuE[Xt] – XtE[Xu] +E[Xu][Xt]] 
   = E[XuXt] – E[Xu]E[Xt] – E[Xt]E[Xu] + E[Xu][Xt] 
   = E[XuXt] – E[Xu]E[Xt] 
 
Let Y=XuXt.  Y is such a 0-1 random variable that Y=1 if and only if both Xu=1 and Xt=1. 
Then, P(Y=1) = P(Xu=1, Xt=1), and  

E[XuXt] = E[Y] 
 = P(Y=1) 

= P(Xu=1, Xt=1)  
= P(Xt=1, Xu=1)  
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= P(Xt=1|Xu=1)P(Xu=1)  
= P(T|U)P(U). 

 
And E[Xu] =P(Xu=1) = P(U), and E[Xt] = P(Xt=1) = P(T).   
 
Therefore, 
 Cov(Xu, Xt) = E[XuXt] – E[Xu]E[Xt] 
   = P(T|U)P(U) – P(U)P(T) 
   = (P(T|U) – P(T)) P(U) 
   = IGIU→T. 
        # 
Theorem 2 shows that the inference-guiding index, IGIU→T, is the covariance of two random 
variables corresponding to U and T.   Covariance has limited use in the probability theory (for 
example, Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)), and its properties are not explored 
sufficiently (Ross, 1985).  Theorem 2 can be extended to the following corollary about other IG-
indices and their corresponding covariances.  Proofs are straightforward, so not provided. 
 
Corollary 1. 
 
Let us define random variables uu XX −= 1  and tt XX −= 1 .  uX =1 if and only if Xu=0 (or 
Xu=false, or ¬U); and uX =0 if and only if Xu=1 (or Xu is true, or U).  tX =1 if and only if Xt=0 
(or Xt is false, or ¬U); and tX =0 if and only if Xt=1 (or Xt is true, or U).  Then: 

IGI¬U→T = Cov( tu XX , ), 
IGIU→¬T = Cov( tu XX , ), 
IGI¬U→¬T = Cov( tu XX , ). 

        # 
 

A REASONING APPROACH WITH INFERENCE-GUIDING 
 
In this section a reasoned approach is presented that integrates logical inference and inference-
guiding functions for a Bayesian knowledge-based system.  The absolute value of IG-index, as 
we have investigated in Section 3, is used as the criterion in inference-guiding.  
 
Let {TLC} be the index set of TLCs, {UOA} be the index set current UOAs.  Let 1>h>0 be a 
preset threshold for the acceptable certainty level of a TLC.  The reasoning approach with 
inference-guiding function for Bayesian knowledge-based systems is formalized as follows. 
 
IG-index Inference Approach: 
 
Step 1. Reasoning 
 Calculate P(Ai) for each i∈{TLC}.   

Pick up At such that t∈{TLC} and P(At)=Max
i∈{TLC}

P(Ai).   
If P(At)≥h, Stop, - the inference is done with At being the inferred TLC; otherwise, go to 

Step 2. 
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Step 2. Inference-Guiding 
If {UOA} is empty, then Stop, - no TLC with certainty level equal to or higher than h can 

be derived. 
Calculate |IGIAi→At

| for each i∈{UOA}. 
Pick a UOA Au such that |IGIAu→At

| = Max
i∈{UOA}

|IGIAi→At
|.   

Find the truth value of Au from an information resource in environment.  
Step 3. Updating 

Update the set {UOA} such that {UOA} = {UOA} \ {Au}. 
Recalculate the conditional probabilities in Bayesian network with the newly obtained 

truth value of Au. 
Go back to Step 1. 

        # 
 
Step 1 is doing logical inference.  There are various inference algorithms available for the user to 
choose from, such as variable elimination, direct sampling, and Markov chain simulation 
(Russell & Norvig, 2003).  The problem of logical inference in a Bayesian network is, same as in 
a knowledge base with other structures, computationally hard.  The classic method based on the 
probability theory gives accurate results but are not efficient for large Bayesian networks.  
Approximate methods are efficient, but their results are more or less inaccurate.  A user may 
choose an inference algorithm for this step at his/her discretion. 
 
Step 2 is doing inference-guiding.  It first calculates the IG-index for each UOA, Ai, associated 
with the TLC At selected in Step 1. To do it, recall that the absolute value of IG-index is 
calculated with the formula: 
 
  |IGIAi→At

| = |((P(At|Ai) − P(At)) * P(Ai)|. 
 
The value of P(Ai) is given in the network since Ai is a UOA.  P(At) was calculated in Step 1.  To 
calculate P(At|Ai),  we set Ai to ‘true’ and then use the inference algorithm selected in Step 1 to 
figure out the probability of At=true under that circumstance.  
 
The UOA with the largest IG-index absolute value is picked as the key missing data, and its 
value is pursued from an information source such as a sensor or the user.   
 
After obtaining the truth value of the selected UOA, Au, Step 3 removes Au from the UOA set, 
since Au is no longer unconfirmed, and recalculates the conditional probabilities in the Bayesian 
network.   For each assertion influenced by Au, its conditional probabilities must be recalculated.  
Suppose Au=true from an information source, Ax is an inferred assertion that is influenced by Au, 
and the conditional probabilities are in the format of P(X|z, Au) where z represents a set of 
assertions.  For example, z={A1, A2}, then P(X|z, Au) = P(X|A1, A2, Au).   By the probability 
theory, if Au is ‘true’ (i.e., P(Au)=1), then the new conditional probability is: 
 
 P(X|z) = P(X,z) / P(z) = (P(X,z,Au) + P(X,z,¬Au)) / P(z) 
  = P(X,z,Au) / P(z)     (since P(¬Au)=0) 
  = (P(X|z,Au) * P(z,Au)) / P(z) 
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  = (P(X|z,Au) * P(z|Au) * P(Au)) / P(z) 
  = P(X|z,Au) * (P(z|Au) / P(z))    (since P(Au)=1) 
 Similarly, if Au is ‘false’ (i.e., P(Au)=0), then the new conditional probability is: 
 P(X|z) = (P(X|z,¬Au) * (P(z|¬Au) / P(z)). 
 
In the formulas for updating conditional probabilities, P(X|z,Au) and P(X|z,¬Au) are currently 
given at the node Ax in the Bayesian network before Au’s truth value is obtained.  So, the new 
conditional probability is calculated from the current probability by multiplying a ratio 
proportional to the correlation between Au and z.  If Au is independent of z, then P(z|Au) = 
P(z|¬Au) = P(z), and the ratios (P(z|Au) / P(z)) and (P(z|¬Au) / P(z)) will become one, so that 
P(X|z)=P(X|z,Au) if Au=true, and  P(X|z)=P(X|z, ¬Au) if Au=false.  If Au is not independent of z, 
then the probabilities P(z|Au) and P(z) are calculated from the joint probabilities with the 
formulas P(z|Au)=P(z,Au)/P(Au), and P(z)=P(z, Au)+P(z,¬Au). 
 
The three steps are executed repeatedly until a TLC with certainty level higher than the preset 
threshold h so that we can claim the TLC is reached, or all UOAs are asked and no TLC reaches 
the threshold. 
 
Example 3.   A complete inference process with IG-index Inference Approach 
 
Continuing Example 1 and Example 2.  Recall that A1, A2, and A3 are UOAs, and A4 and A5 are 
TLCs.  Suppose we set threshold h=0.82.  We have initially {UOA}={A1, A2, A3} and 
{TLC}={A4, A5}. 
 
Iteration 1. 
 
Step 1. Calculate the probabilities of TLCs: 
  P(A4) = 0.76, and P(A5) = 0.571 (as calculated in Example 1 in Section 2). 
 Neither reaches the threshold h.  We pick TLC A4 since P(A4) > P(A5). 
 
Step 2. The two influential UOAs on A4 are A1 and A2 (referring to Fig. 1), whose IG-indices 
with respective to A4 are |IGIA1→A4

|= 0.064, and |IGIA2→A4
|= 0.048, as calculated in Example 2.  

Since |IGIA1→A4
| is the larger, we pick UOA A1 and pursue its truth value.  Suppose an 

information source in environment gives A1’s value that is ‘true’. 
 
Step 3.  
 Update {UOA} so that the new {UOA} = {A2, A3}.  The conditional probabilities at 
node A4, after knowing A1=T, are updated.  Note that A1 is independent of A2.  We have: 
P(A4=true|A2=true)=0.9, and P(A4=true|A2=false)=0.75. 
 The conditional probabilities at node A5 do not change since A1 has no influence on A5. 
 
Iteration 2. 
 
Step 1.  Calculate the probabilities of TLCs: 
  P(A4) = 0.84, and  
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P(A5) = 0.571. 
Since P(A4) > h = 0.82, we are done with this inference process and the TLC derived is A4 whose 
certainty level is 84%. 
        # 

CONCLUSION 
 
IG-index and the inference approach presented in this paper are for the Bayesian network that is 
a robust structure of the knowledge base containing uncertainties.  The IG-index provides an 
effective criterion in selecting the key missing information when given data is not sufficient to 
reach a top-level-conclusion.  The reasoning approach, IG-index Inference Approach, integrates 
inference-guiding function with logical inference function, and “smartly” leads reasoning to a 
top-level-conclusion.   
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