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ABSTRACT 
 

The rational replacement management of hi-tech equipment is an important problem of technology 
management. This paper analyzes and compares two alternative policies for determining the service 
life and replacement demand of industrial equipment under improving technology. These policies 
lead to different estimates of the impact of new technology on the replacement policies and 
equipment service life. 

 
INTRODUCTION 

 
In order to secure the services of durables at minimum cost, producers and consumers confront 
invariably the question: How frequently should a stock of old durables be replaced by a stock of 
new ones? Clearly, the old durables should not be replaced too soon because the cost of 
acquiring them will occur too frequently and this will raise the unit cost of their services. 
However, the durables should not be replaced too late either, because their rising operating costs 
and the higher productivity of durables of newer vintages render them economically inferior. So, 
to tackle the issues involved in determining the optimal service life of durables, researchers in 
the fields of management and economics have adopted over the years various approaches.  
 
The terms "capital", "equipment", and "machine" have been employed frequently in the relevant 
literature to indicate that the good under consideration has the properties of a producer's durable. 
In this paper, we use these terms interchangeably. The same comment holds also for “economic 
life”, “service life”, “life”, and “lifetime”. 

 
Preinreich (1940) was the first to show how the optimal life of durables can be determined. More 
specifically, according to his theorem, the optimal economic life of a single machine should be 
computed together with the economic life of each machine in the chain of future replacements 
extending as far into the future as the owner’s profit horizon. However, the theorem was 
formulated under two crucial assumptions. The first of them abstracted from a technological 
progress and postulated that newer machines of identical type replaced older machines (like-for-
like). This assumption contradicted casual observations and was ultimately relaxed by Smith 
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(1961) who generalized the above result of Preinreich (1940) to the case where the older machines 
were replaced by more productive machines embodying the most recent advances in science and 
technology.  
 
The second assumption concerned the horizon of the reinvestment process and required the owner 
of the machine to choose its duration on the basis of their perception on how long the investment 
opportunity might remain profitable. Later, depending on the specification of the owner’s profit 
horizon, different models emerged for the determination of the optimal lifetime of assets. In 
particular, by limiting the owner’s profit horizon to a single investment cycle, researchers in the 
field of capital budgeting obtained the so-called “abandonment” class of models and used it to 
derive strict rules regarding the optimal asset life. Initially, Robichek and Van Horne (1967) 
suggested that an asset should be abandoned during any period, in which the present value of 
future cash flows did not exceed its abandonment value. Then, based on the possibility that the 
function of cash flows might not have a single peak, Dyl and Long (1969) argued that 
abandonment should not occur at the earliest possible date that the above abandonment condition 
was satisfied, but rather at the date that yielded the highest net present value over all future 
abandonment opportunities. Later, Howe and McCabe (1983) highlighted the patterns of cash 
flows and scrap values under which the “abandonment” model led to a unique global optimum of 
the abandonment time. They also characterized the complete range of models that could be 
obtained by varying the owner’s profit horizon and clarified the practical guidelines for the 
choice between “abandonment” and “replacement” models.  
 
Theoretical economists, on the other hand, continued to work in the tradition of Terborgh (1949) and 
Smith (1961) by assuming invariably that the owner’s profit horizon is infinite. This in turn led them to 
concentrating on a single class of replacement models, all of which presumed that the infinite 
reinvestments took place at equal time intervals. This pervasive conceptualization was adopted in all 
significant contributions in the area from Brems (1968) to Nickel (1975), Rust (1987) and to Mauer and 
Ott (1995). The persistence of this approach was probably encouraged by the proof that Elton and 
Gruber (1976) provided regarding the optimality of an equal life policy for a machine subject to 
technological improvement. However, subsequent research has established that the equal life 
policy is only a special case of a much more general set of variable life replacement policies.  
More recently, Van Hilten (1991), Hritonenko and Yatsenko (1996, 2005, 2007, 2008), Regnier, 
Sharp, and Tovey (2004) relaxed these assumptions and considered both the variable replacement 
period and the finite profit horizon.  
 
The practical importance of the finite-horizon replacement problem was highlighted by Hartman 
and Murphy (2006), who explored the replacement policy which occurs when companies only 
require an asset for a specified length of time, usually to fulfill a specific contract and identify when 
this policy deviates significantly from optimal. Bitros and Flytzanis (2005) demonstrated that the 
infinite-horizon replacement policies and the abandonment policies of transitory replacements 
ending with scrapping “abandonment” lead to different results regarding the profit horizon, the 
duration of replacements, the timing of scrapping, and the impact of output and market structure on 
service lives. In doing so, they assumed that the technological progress had the form of random 
breakthroughs, which at the time of their occurrence rendered all existing equipment inoperable.   
 
In the real world, there are two fundamentally different modes of technical progress (e.g., Simpson, 
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Toman, and Ayres 2005, p.144):  a “normal mode”, in which technological improvements occur 
incrementally and more or less automatically as a result of accumulated experience and learning, and 
the radical innovations (technological breakthroughs). The normal mode is characterized by a simple 
positive feedback between increasing consumption, increasing investment, increasing scale, and 
learning-by-doing (or experience). The production technology itself may also gradually become more 
efficient. It results in gradually declining costs and prices, stimulating further increases in consumption 
and, hence, economic growth. The second mode involves multiple competing and evolving production 
technologies (plastics and synthetic fibers substituting iron and steel, automobiles replacing horses and 
carriages, air transport displacing railways, and so on). The substitution of major general-purpose 
technologies can be both very productive and very traumatic. 
 
The goal of this paper is to explore and analyze differences between the abandonment and replacement 
management policies of Bitros and Flytzanis (2005) in the case when the technological change is in 
the normal mode and of the embodied type. As analytic tool, we adopt a vintage capital model in 
which the units of equipment brought into operation are more productive than the ones already in 
place because they embody the most recent advances in science and technology. We expect that 
this setting is promising for our purpose because the optimal lifetime of equipment in each 
vintage depends on the horizon of the reinvestment opportunity as well as on the date of its 
introduction into operations. On the other hand, this setting poses essential challenges because it 
requires solving a non-linear dynamic optimal control problem. Mathematical fundamentals of 
such non-linear control problems have been established in Hritonenko and Yatsenko (2007, 
2008, 2009).  
 
The rest of the paper is organized as follows. In the next section, we set up the model. Its vintage 
specification allows for improvements in the productivity of consecutive vintages of equipment. 
This, in turn, leads to a new non-linear optimization problem that involves the optimal control of 
the lifetime of specific vintages. Then, in the following two sections, we investigate the 
implications of two different approaches to the administration of equipment. Section 3 focuses 
on the strategy of infinite-horizon replacements, implying that the equipment is being replaced 
indefinitely, whereas Section 4 concentrates on the strategy of transitory replacements, where 
the equipment is replaced a finite number of times, ending with abandonment or scrapping. 
Lastly, in Section 5, we conclude with a synopsis of main findings. 
 

OPTIMIZATION MODEL  
 

At the end of the service life of equipment, there are always two options: to replace it and 
continue doing so up to some profit horizon, or to abandon (scrap) it and terminate operations. 
To examine their implications, we assume that during year τ the representative firm acquires 

)(τK  units of new capital, which possess the same efficiency )(τb  because they belong to the 
same vintage and embody the same technology. The output of the new capital )(τK  is denoted 
as )()()( τττ KbX = .  The units of capital built later in the year t>τ are more productive because 
they embody the latest advances of science and technology. To describe this process, we assume 
that the capital efficiency (output-capital ratio) is 
                                            

)()()( τµτ −= tebtb ,                                                               (1) 
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where  >0 is the constant exogenous rate of technological change. Thus, the efficiency of capital in 
each vintage depends on the date  of its construction.  
 
To emphasize the role of the new technology in optimal equipment replacement, we will assume that 
the representative firm acquires only the newest vintage of equipment and removes from service the 
oldest equipment that has become obsolete. Then, the total output produced in year t is described as:  
 

,)(         ,)()0()(
 

)( 
ttadKebtX

t

ta
<= ∫ ττµτ                   (2) 

where the purchasing time ( )a t  of the equipment scrapped at time t is known as the capital 
scrapping time, following Malcomson (1975), van Hilten (1991), Boucekkine et al. (1997, 1998), 
Hritonenko and Yatsenko (1996, 2005, 2007), Greenwood et al. (2000). The integral over 
[ ( ), ]a t t  in (2) implies that at time t  the firm uses only the equipment units placed into service 
between ( )a t  and t . Specifically, expression (2) states that the capital bought at time ( )a t  is 
scrapped at the current time t . The time t - ( )a t  is the service life (lifetime) of equipment bought 
at time ( )a t . Introducing the market price ( )p t  of output ( )X t , we can represent the net 
operating revenue of the firm as:  
 

                     ),()(-)()0()()(
 

)( 
tLtwdKebtptQ

t

ta∫= ττµτ                                       (3) 

where ( )L t  is the total labor employed in year t and ( )w t  is the wage rate. In this paper, we 
restrict ourselves to the labor expenses only, although other operating costs can be also 
considered. Assuming that m(τ) units of labor operate each equipment unit introduced at time τ, 
the total labor demand of the firm is described as: 

 

        .)()()(
 

)( ∫=
t

ta
dmKtL τττ                      (4) 

 
We shall notice that a resource constraint similar to (4) can be imposed on any other critical resource 
of a firm such as energy, finances, operating space, or even repair facilities. For example, in energy 
production, a crucial restriction is set by the environment contamination limits. 
 
 Compared to other models reviewed in the previous section, the vintage capital model (1)-(4) 
provides a convenient tool to consider the optimal lifetime of equipment as an unknown 
(endogenous) variable. To determine this endogenous variable, we formulate an optimization 
problem by assuming that the present value of total profits over the planning horizon 0 max[ , ]t T   

 

  ∫ −=Π −max

0

 

 
)]()()([

T

t

rt dttKtqtQe                     (5)   

is maximized under the given labor resource (4). Here ( )q t  is the acquisition price of the new 
equipment unit and r is the discount rate. We assume that the residual (salvage) value of the 
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scrapped equipment is negligible compared with its acquisition price. The dynamics of ( )q t  is also 
determined by technological change and, together with the output-capital coefficient described in 
(1), appears to be critical for determining the optimal service life of equipment. In this paper, we 
assume the dynamics of ( )q t  and ( )p t  to be different: 
 

                           q(t)= q(0) exp(ηt),         p(t) = p(0) exp(ζ t),                                     (6) 

where the constants η  and ζ  may be positive or negative. 
 
In the formulated optimization problem, the unknown controls are the investment ( )K t  and the 
scrapping time ( )ta . In contrast to the simple model of infinite equal time replacements 
employed by Bitros (2005) to compare the two policies, the vintage capital model  (1)-(6) 
considers the variable equipment lifetime (service life) T(t)=t−a(t). The output-capital ratio b(τ), 
the labour-capital ratio m(τ), the total labor ( )L t , the acquisition price of capital ( )q t , and the 
product price ( )p t  are given on t∈[t0, Tmax). It is convenient to assume that one man operates 
one unit of equipment. Then, m(τ)=1 in (4), b(τ) becomes the output-labor coefficient, and ( )q t  
in (5) is the relative price of a labor unit of equipment as in Greenwood et al. (2000). To simplify 
the optimization analysis, we also assume that L(t)=const.   
 
Remark 1. Bitros and Flytzanis (2005) considered a similar problem in a simpler time-invariant 
framework with an impatience assumption and in the absence of embodied technological change. 
 
Let us impose some necessary restrictions on the unknown variables.  First of all, we set 
0≤K(t)≤Kmax(t). This implies that the maximal possible investment Kmax(t) is determined by 
external financial constraints faced by the representative firm. It is also natural to assume that the 
scrapped equipment cannot be used again, i.e. a’(t)≥0. Finally, as model (3)-(5) is defined on the 
future interval [t0,Tmax), a specific vintage structure of the equipment should be known at the 
initial time t0. This structure is defined by the given investment K(τ)=K0(τ) undertaken 
throughout the pre-history interval [a(t0), t0]. 
 
Thus, the problem is to find the unknown functions K(t) and a(t),  t∈[t0,Tmax), Tmax≤∞, which 
maximize the objective functional (5) under the constraint-equalities (3) and (4), the constraints-
inequalities: 
 

                                        0 ≤ K(t) ≤ Kmax (t),                                                             (7)  

                                     a’(t) ≥ 0,   a(t) < t,                                                                 (8) 

 and the initial conditions: 

                   a(t0) = a0 < t0,      K(τ) = K0(τ),  τ ∈[a0, t0].                                            (9) 

Malcomson (1975) was first to introduce the vintage capital model  (2)-(3) to find the optimal 
capital replacement policy of an individual firm with vintage technology under the embodied 
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technological progress. In the same framework, van Hilten (1991) investigated an infinite–horizon 
optimization problem where the constant lifetime of capital was optimal. Hritonenko and Yatsenko 
(1996, 2005, 2008) provided a qualitative analysis of the problem (2)-(9).  

Remark 2. It would be interesting to assume that the representative firm faces a demand curve of the 
constant elasticity type as in (Samaniego 2008). However, this assumption introduces a scale effect 
and makes the solution of the problem (1)-(9) considerably more difficult. In particular, the optimal 
lifetime of equipment would depend on the amount of output produced. So, we leave this 
specification for future research.  

Let us turn now to the investigation of the possible differences between the two approaches to 
the management of capital. In the optimization problem (1)-(9), the policy of infinite-horizon 
replacements corresponds to the case Tmax=∞, whereas the policy of transitory replacements 
ending with scrapping corresponds to the case Tmax<∞. The structure of the solutions 

* *( ( ), ( ))K t a t  appears to be quite different under Tmax=∞ and Tmax<∞.  Section  below is devoted 
to the analysis of the infinite horizon replacement policy, whereas the investigation of the policy 
of transitory replacements ending with scrapping is relegated to Section 4. 
 

INFINITE-HORIZON REPLACEMENTS 
 
The formulated optimization problem is meaningful at Tmax=∞ if the value of the improper 
integral in (5) is finite (otherwise, there is no sense to maximize it). One can see that the integral 
is finite when   
 

                                              r  > µ,    r  >µ + ζ,    r  > η ,            (10) 

Formulae (10) reflect the natural condition that the discounting factor r needs to be greater than 
the TC rates in order to have a finite value of the profit on the infinite horizon. 
 
The structure of problem (1)-(9) solutions appears to be quite simple in the case Tmax=∞ of 
infinite horizon. As shown by Hritonenko and Yatsenko (1996, 2008), the problem (1)-(9) at 
Tmax=∞  has a unique solution (K*(t), a*(t)), t∈[t0,∞), such that the optimal scrapping time a*(t) 
coincides with a special trajectory (turnpike) a~(t), t∈[t0,∞), on almost all planning horizon [t0,∞) 
except for an initial (transition) period [t0,µ). The turnpike a~ determined from the following 
nonlinear integral equation  

 

                  ,]1[ )()(

 

))(()(
1

trta

t

atr Cedee ηµτµτζ τ +−−−−+− =−∫
−

               (11) 

over the interval [t0,∞), where a-1(t) is the inverse function of a(t) and  

                                                     C = q(0)/b(0)/p(0).                                                (12) 

The inverse function a-1(t) in (11) exists because a'(t)≥0 by (8). The economic interpretation of 
equality (11) is that the profit of introducing new equipment unit and using it during its future 
lifetime with removing an older unit must be equal to the price of the new equipment unit.   
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Proposition 1.  (Hritonenko & Yatsenko, 2009). If (10) holds and µ>0, then equation (11) has 
the unique solution a~(t), at least, in the following cases: 

 
• If  µ + ζ = η  and C (r−ζ)<1, then a~(t)≡t−T, t∈[t0,∞),  where the positive constant T is 

determined by the following non-linear equation: 
 

                (r−ζ)exp(−c1T) − µexp(−(r−ζ)T) = (r−ζ−µ) (1 − C(r−ζ))                      (13) 

     The constant lifetime is approximately  T≈(2C /µ)1/2  at small µ<<1. 

• If  µ + ζ > η  and C(r−ζ)( r−η) exp[(η−µ−ζ )t] < (r−ζ−µ), then equation (11) has the 
unique monotonically increasing solution a~(t) on an interval [t0,∞), such that T~(t)= t-
a~(t) >0  and T~(t)→0  at  t→∞.   
 

• If  µ + ζ < η, then equation (13) has the unique solution a~(t) only over a certain finite 
interval [t0, tcr), where tcr ≈ ln[(r−ζ−µ)/(r−ζ)/( r−η)/C]/(η−µ−ζ ). On the interval [t0, 
tcr), the solution a~(t) increases on [t0,tc), becomes decreasing on (tc, tcr) at some tc<tcr, 
and  a~(t)→−∞, T~(t)→∞  at  t→ tcr.  

 
Definition. We refer the proportional TC to the case  

                                                          µ + ζ = η,                                              (14) 

when the sum of the TC and product price rates is equal to the growth rate of equipment price. 
Then, the revenue/cost ratio b(t)p(t)/q(t) is constant (12).  
 
This Proposition 1 can be used for estimating the rational replacement strategies for industrial 
equipment based on economic obsolence at a separate firm (plant, enterprise) level.  In 
particular, the below properties of a firm’s optimal capital replacement strategy follow 
immediately: 
 

1. Except for a possible initial (transitory) period, the rational lifetime of capital 
equipment T~(t) = t−a~(t) does not depend on the production scale and the initial 
equipment structure and is defined only by the rates of TC, prices, and discount.  
 

2. The rational equipment lifetime may be finite only if the equipment productivity b(t) 
increases, i.e., if µ>0.  Otherwise, no replacement is necessary (in the absence of 
deterioration). 
 

3. The ratio (proportion) between the productivity b(t)p(t) and equipment price q(t) 
determines the dynamics of the rational capital lifetime. If µ + ζ > η (i.e., the revenue 
b(t)p(t)/q(t) per new equipment unit cost increases), then the rational capital lifetime 
decreases. If µ + ζ < η (i.e., b(t)p(t)/q(t) decreases), then the rational capital lifetime 
increases and becomes infinite at some finite instant tcr. The replacements become 
less frequent and finally stop.  
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4. In the case of proportional TC (and only this case), the rational capital lifetime is 
constant. This constant lifetime depends only on the discount rate and the ratio 
b(t)p(t)/q(t) between the productivity and equipment price. 
 

Following  (Bitros and Flytzanis 2005), we can say that the equipment is: 
 

• finitely replaceable if  it has a finite number N >0 profitable replacements;  
• infinitely replaceable if N =∞; 
• non-replaceable if no replacements is profitable. 

 
Then, in accordance with the above Properties 1-4, the following result holds.  

Proposition 2.  The vintage equipment is: 
 

• infinitely replaceable if µ+ζ≥η,   
 

• non-replaceable if µ+ζ<η  and tcr<t0,  
 

• finitely replaceable if µ+ζ<η  and tcr>>t0. Then, the exact number N of profitable 
replacements depends on the proportion between the horizon length T0-t0 and the 
optimal T~(t) (where T~(t) is determined from equation (11) ).  
 

Now, let us describe the optimal dynamics of the corresponding replacement investment K*(t). 
During an initial transitory period [t0,t1], t1≥t0, the replacement is maximum possible 
K*(t)=Kmax(t) if a0<a~(t0) or minimum possible K*(t)=0 if a0>a~(t0). Differentiating (4), we get 
the equation K(a(t))a’(t)=K(t)-L’(t) for optimal investment K under known optimal a. Recalling 
our assumption L≡const, this equation becomes 
 

                                                K(a(t))a’(t)=K(t).                                                     (15)  

Hence, under the constant labour L≡const, the minimum replacement regime K*(t)=0 is a*’(t)=0, 
a*(t)=const. It means that no working equipment is being scrapped.  
 
In the general case, the optimal investment trajectory K*(t) is boundary (minimum or maximum) 
at a beginning (transitory) part [t0,t1] of the planning horizon. After that, K*(t) is found from (4) 
as  K*(t)=K(a~(t))da~/dt  under the known optimal a~. The last formula shows that the initial 
boundary-valued section of K* is reproduced throughout the whole horizon [t0,T). In particular, 
in the case µ+ζ=η, we obtain a~(t)=t−T and a strictly periodic K*(t)=K(t−T). The repetition 
pattern with bursts and slumps in K* could be observed in Figure 1. These “spikes” (replacement 
echoes in Hritonenko and Yatsenko (1996) and Boucekkine et al. (1997)) were confirmed in 
recent years by economists studying investment at the plant level. 
 
In the case (14) of the proportional TC, the optimal equipment lifetime a~(t) is constant and the 
replacement echoes repeat indefinitely in the same shape (as in Figure 1). In the general case, if 
the TC rates µ+ζ and η are different, then the optimal equipment lifetime is not constant and 
decreases or increases depending on the sign of µ+ζ−η and the replacement echoes amplitude 
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and shape vary.  If a~(t)  increases, then replacement intervals increase and, by (14), the 
amplitude of investment echoes decreases from one interval to other, and converse.  

 
Figure 1:  Optimal dynamics of the scrapping time a* and investment K* for the infinite-horizon 

replacement (dashed lines) and the transitory replacement ending with scrapping. 

 

    

  0            t  0                                                                       Θ                     Tmax   

a* ( t )                         y = a - 1 ( t )      

    K * ( t )     

 y=a ( t )     

t   

t   



Journal of International Technology and Information Management Volume 19, Number 4  2010 

 
© International Information Management Association, Inc, 2010 84  ISSN:  1543-5962-Printed Copy       ISSN:  1941-6679-On-line Copy 

The replacement echoes are absent in the ideal case a0=a~(t0) of a “perfect” replacement 
prehistory. However, in practice, the perfect prehistory is not possible because every firm starts 
with buying some significant amount of equipment during the date of its establishment. This 
process is known as entry echoes – see (Samaniego 2008, Jovanovic and Tse 2010). The entry 
echoes cause the exit echoes near the end of a finite planning horizon (abandonment time), which 
is explored in the next section. 

 
TRANSITORY REPLACEMENTS ENDING WITH SCRAPPING 

No equipment is scrapped. The optimal lifetime T*(Tmax) = Tmax−a*(Tmax) = T*(Θ) of the oldest 
equipment at the horizon end t=Tmax is always larger than the optimal lifetime T~(Tmax) in the 
indefinite-replacement case from Section 3.  
 
The presence of the zero-investment period causes essential changes (end-of-horizon effects) in 
the behavior of the optimal trajectories K*(t) and a*(t) over the whole [t0, Tmax] (see Hritonenko 
and Yatsenko 2008). However, the endHere, we assume that the equipment is managed optimally 
for a finite number of operating periods with terminal scrapping, i.e., Tmax<∞. Then the structure 
of the optimization problem solutions is more complicated as compared with the Tmax=∞ case.   

A key new feature is the existence of the zero-investment period [Θ, Tmax],  t0≤Θ <Tmax, at the 
end of the planning horizon [t0, Tmax], first discovered by Hritonenko and Yatsenko (1996). 
During this period, the investment is minimum possible because there is no sense to invest into 
new capital given the firm quits production at Tmax. This effect is well known in different 
optimization economic models. Under the condition of constant labour, L≡const, the minimum 
investment regime is K*(t)=0 and da*/dt=0, a*(t)=a*(Θ)=const at t∈[Θ, Tmax], i.e., no new 
investment is made and -of-horizon effects weaken when the duration Tmax− t0 becomes larger. 
In particular, the optimal lifetime T*(t)=t−a*(t) strives to the “indefinite-replacement” optimal 
lifetime T~(t) = t−a~(t) as T−t →∞. Mathematically (see Hritonenko and Yatsenko 2008), at 
µ+ζ≥η, the finite–horizon optimization problem (1)-(9) has the unique solution (K*, a*) such 
that the optimal K* has zero-investment parts K*(t)=0 on a finite set of backward repetitive 
intervals (αi, βi), βi+1<αi <βi, i=1,2,3,…, α1=Θ,  β1=Tmax.  

The solution a* and K* of the problem (1)-(9) is shown in Figure 1 (solid lines). The infinite-
horizon replacement solution is indicated with the dotted line (where t−a~(t)≡const as in the 
proportional TC case µ+ζ=η). The finite-horizon equipment lifetime *( )a t  tends to the infinite-
horizon turnpike when the horizon endpoint Tmax and the time Tmax−t increase. The finite-horizon 
optimal policy possesses sharper changes at certain “critical” instants, that depend on the length 
of the planning horizon 0 max[ ,  ]t T . These changes are referred to as the anticipation echoes in 
Yatsenko and Hritonenko (2008). They are caused by the zero–investment period [Θ,Tmax] and 
propagate backward through the entire planning horizon 0 max[ ,  ]t T . As shown in Figure 1, these 
“anticipation echoes” propagate backward throughout the whole horizon [t0,T] starting from the 
zero-investment period (Θ,T]. The intensity of the anticipation echoes in the optimal trajectory 
a*(t) decreases as T-t increases. Namely, the optimal capital lifetime a* becomes smoother at the 
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beginning of [t0,T] for larger horizons. However, the above described optimal replacement policy 
remains the same near the abandonment point Tmax  regardless of the planning horizon length. 
 
The beginning Θ of the”zero-investment period” [Θ, Tmax] is found from the condition  
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and Θ  is obviously smaller than Tmax.  

The relationship between the values t0, Tmax, and Θ  determines the practical properties of the 
optimal replacement policy.  
        
Namely, if the calculated above Θ appears to be less than t0, then the equipment is non-
replaceable over the planning horizon [t0, Tmax] because [t0, Tmax] is too short. If Θ >t0, then the 
corresponding equipment is finitely replaceable on the finite interval [t0, Tmax]. If the equipment 
is finitely replaceable on a finite interval, then it may be infinitely replaceable on the infinite 
interval or may be not (see Section 3). However, if the equipment is infinitely replaceable, then it 
is finitely replaceable over a large enough finite horizon [t0, Tmax]. This result clarifies the 
profitability conditions of (Bitros 2005) for infinite-horizon replacement and transitory 
replacement policies on large planning horizons [t0, Tmax]. 
       
Remark 3. The profit horizon in the transitory case can be endogenously determined by the 
equipment parameters and the external market environment (Bitros 2005). Namely, taking the 
given initial equipment distribution on the pre-history interval [a(t0), t0]  into account, it may 
appear that it is more profitable to extend (or decrease) slightly the interval [t0, Tmax]. So, the 
transitory approach to replacement is more flexible. For example, in capital budgeting it will 
allow us to consider the endogenous influence of profit horizon on the selection of projects (and 
inversely). Mathematically, it requires adding the value Tmax as the additional control variable of 
the optimization problem.  

 
CONCLUSION 

Our objective in this paper is to compare the differences between the policy of infinite-horizon 
replacements and that of transitory replacements ending with scrapping in the presence of 
embodied technological change. To accomplish it, we adopt the vintage capital model, in which 
the new units of equipment brought into operation are more productive than those already in 
place due to advances in science and technology. Our main findings show that, if the vintage 
equipment is infinite-horizon replaceable, it is always finite-horizon replaceable over a large finite 
horizon. The infinite-horizon policy predicts shorter replacement durations than the transitory 
replacement policy does. This difference is significant near the end of the planning horizon in the 
case of the transitory replacement policy and becomes smaller when the planning horizon ends in the 
more distant future.  
 
As in Bitros and Flytzanis (2005), the replacement period in the infinite-horizon case adjusts 
gradually to possible changes in economic parameters. In the case of the transitory replacement 
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policy, in addition to this smooth change, we have also sharp changes in optimal policies when 
the parameters (such as the planning horizon length) cross certain critical values. These changes 
are caused by the existence of the zero–investment period at the end of the planning horizon, 
when no new investment is made and no capital is scrapped. Because of the zero–investment 
period, the optimal replacement possesses the zero–investment echoes that propagate backward 
through the entire planning horizon. This fact demonstrates that the multi-step transitory 
replacement is much more complex and flexible management policy, which is often overlooked 
in economic theory and management practice.  
 
In summary, in cases when the owner’s profit horizon is given (for example, by a contract 
length), the rational investment policy is heavily affected near the horizon end when no capital 
modernization is profitable, no new investment should be made, and no workable equipment is 
scrapped. Other management implications for long enough planning horizons include the 
possibility of careful planning of the investments during the period far before policy the horizon 
- during the times when a capital is being installed that will be used until the horizon end. In 
addition, when possible, the owner’s profit horizon length shall be considered as an endogenous 
variable along with other variables in the optimization process (instead of treating the horizon as 
given).  
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