
Journal of International Technology and Information
Management

Volume 19 | Issue 1 Article 5

2010

Identifying Entity Types for E-R Diagramming in
Developing Data- Intensive Web Applications
Seung C. Lee
University of Minnesota at Duluth

Follow this and additional works at: http://scholarworks.lib.csusb.edu/jitim

Part of the Management Information Systems Commons

This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Journal of International
Technology and Information Management by an authorized administrator of CSUSB ScholarWorks. For more information, please contact
scholarworks@csusb.edu.

Recommended Citation
Lee, Seung C. (2010) "Identifying Entity Types for E-R Diagramming in Developing Data- Intensive Web Applications," Journal of
International Technology and Information Management: Vol. 19: Iss. 1, Article 5.
Available at: http://scholarworks.lib.csusb.edu/jitim/vol19/iss1/5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CSUSB ScholarWorks

https://core.ac.uk/display/55335419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.lib.csusb.edu/jitim?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol19%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol19%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim/vol19?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol19%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim/vol19/iss1?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol19%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim/vol19/iss1/5?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol19%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol19%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol19%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/jitim/vol19/iss1/5?utm_source=scholarworks.lib.csusb.edu%2Fjitim%2Fvol19%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

Identifying Entity Types for E-R Diagramming in Developing Data-Intensive Web Applications S. C. Lee

© International Information Management Association, Inc, 2010 111 ISSN: 1543-5962-Printed Copy ISSN: 1941-6679-On-line Copy

Identifying Entity Types for E-R Diagramming in Developing Data-
Intensive Web Applications

Seung C. Lee

University of Minnesota at Duluth
U.S.A.

ABSTRACT

Although the Web has become a major enabler for data-intensive business applications such as
e-tailing, customer relationship management, and supply chain management, we find that most
Web applications are built up in ad hoc fashion, raising the data-related issues of data definition
and data integration. This paper proposes a new approach for identifying entity types for E-R
diagramming in developing data-rich Web applications. The methodology is founded on
elements of Web applications including pages, links, Web application architecture, and business
logic modules.

INTRODUCTION

The Web has become a major enabler for new, data-intensive business applications such as e-
tailing, customer relationship management, and supply chain management. Furthermore, new
software service delivery models, including software as a service (SaaS) and Web services, have
brought even traditional data-rich enterprise applications, like human resource management,
within the reach of the Web (Dubey & Wagel, 2007; Carraro & Chong, 2006). The emergence of
the Web as a powerful platform for such data-heavy applications seems to warrant a systematic
approach to their development, and especially to the conceptual data modeling process.
However, we still find that most Web applications are built up in ad hoc fashion, raising the data-
related issues of data definition, data integration, and query construction (Florescu, Levy, &
Mendelzon, 1998; Genero, Poels, & Piattini, 2008). Worse, unlike traditional standalone
applications, Web applications have data dispersed everywhere because of their unique features
(Myers, Hollan, Cruz, Bryson, Bulterman, Catarci, Citrin, Glinert, Grudin, & Ioannidis, 1996).
These features include static or dynamic interactions between client and server via the request
and response mechanism; link-based navigation facility; differentiations between client (Web)
pages, server (Web) pages, and other resources; dynamic generation of user interface objects and
contents; different degrees of exposure to the user (e.g., extranet or intranet); and data flows
between Web pages, not between processes in the conventional SDLC sense. In this paper, the
term page or pages, unless otherwise specified, refers to a Web page or Web pages that can be
requested by a user agent or Web browser.

The problems caused by an ad-hoc development approach and by the unique features of Web
applications have led to a significant body of research on data modeling and methodologies for
Web applications development (Abiteboul, 1997; Atzeni, Mecca, Merialdo, & DI e
Automazione, 1998; Buneman, 1997; Conallen, 2000; Isakowitz, Stohr, & Balasubramanian,
1995; Post & Kagan, 2005; Young, 2005). Although these studies made significant contributions
to the Web applications development process as a whole, few addressed data-related issues,

Journal of International Technology and Information Management Volume 19, Number 1 2010

© International Information Management Association, Inc, 2010 112 ISSN: 1543-5962-Printed Copy ISSN: 1941-6679-On-line Copy

especially the very first step of conceptual data modeling. This modeling includes identifying
entity types of a problem domain and drawing an entity-relationship (E-R) diagram—a graphical
representation of the Entity Relationship model, which remains the core approach for conceptual
data modeling. As is clearly known, one of the key success factors for any data-intensive Web
application (such as many data-heavy traditional applications) is optimally defined data in terms
of data structure, data elements, and their organization. In modern database management, the
starting point for defining the effective and efficient management of data is to thoroughly
identify entity types, including their attributes and relationships, as part of the conceptual data
modeling which is one of the most important tasks in developing applications (Kalczynski, 2005;
Misic & Russo, 1996). Conceptual data modeling provides an overall picture of an application’s
most valuable resource. It can be costly to incorrectly represent data requirements at the
conceptual level, and such errors can invalidate the completed application.

As already mentioned, the step in conceptual data modeling is to identify entity types and to
draw an E-R diagram. Developing an E-R diagram has traditionally taken one (or both) of two
non-normative approaches (Teorey, Yang, & Fry, 1986). With a top-down approach, the starting
point is to prepare high-level descriptions of the application, including its functions, scope, and
environment. This approach usually generates a high-level E-R diagram with only a limited set
of major entities, attributes, and relationships. With a bottom-up approach, the designer studies
documents, screens, and other data sources and pursues detailed discussions with users about a
proposed application. This technique is necessary for producing a detailed E-R diagram. These
two approaches have their own strengths and weaknesses when applied to Web applications. A
top-down perspective is appropriate for providing an integrative view of multiple sub-domains of
a proposed Web application. A bottom-up perspective is appropriate for conceptual data
modeling for “private” Web applications because users and internal documents are well known
beforehand. Regardless of applicability, identifying entity types for E-R diagramming using
these two approaches may expose the designer to their pitfalls: a function or process can be
confused with entity type (Batini, Ceri, & Navathe, 1991), and an entity can be confused with a
relationship (Chen, 1976).

This paper presents a methodology for identifying entity types for E-R diagramming in
developing data-rich Web applications. The new methodology is radically different from the
above two approaches. It incorporates the notion of a Web model where a proposed Web
application can be broken into a hierarchy of tightly-cohesive and loosely-coupled business logic
modules. Each business logic module, or each business logic piece of a proposed Web
application, may be any mixture of business façades, workflow, and business rules. This implies
that a business logic module is a superset of a function. The former may be a function or a unit of
information to be delivered by a Web application. Delivering a unit of information (e.g., help on
returning purchased items) may not involve any execution of code, which is always required by a
function. The methodology consists of three major phases: business logic analysis phase,
business logic design phase, and entity type identification phase. In the business logic analysis
phase, business logic modules are arranged into a tree, organized from most abstract to the least
abstract modules. In the business logic design phase, the three aspects of a business logic module
are logically represented by presentation-layer Web pages (often called client pages), business-
layer Web pages (frequently called server pages), other resources, and their logical associations
(denoted by various semantic links). In addition to the presentation and business layers, another

Identifying Entity Types for E-R Diagramming in Developing Data-Intensive Web Applications S. C. Lee

© International Information Management Association, Inc, 2010 113 ISSN: 1543-5962-Printed Copy ISSN: 1941-6679-On-line Copy

layer is taken into account to logically identify one or more data stores that may interact with
business layer pages. Altogether, the proposed methodology incorporates three-tier Web
application architecture, a set of Web page types, resource types, and semantic link types.

This paper is organized into eight sections. Sections 2 and 3 lay the groundwork for the
methodology by describing a Web model in terms of business logic, Web application
architecture, and the unique features of Web applications. Section 4 suggests classification
schemes for Web pages and links, followed by Sections 5 and 6 which present business logic
analysis and design, respectively. Section 7 then explains how to use business logic diagrams to
identify entity types for E-R diagramming for Web applications development. The last section
presents some concluding remarks.

BACKGROUND

The Web is a large set of applications, called Web applications, running on the Internet.
Implementation of a Web application in general employs a multi-tier Web application
architecture. Application architecture is usually broken into logical chunks called “tiers”, where
every tier is assigned a role (Petersen, 2002). Traditional applications consist only of one tier,
which resides on the client machine; but Web applications lend themselves to an n-tiered
approach by nature. Web application architecture is important because it visualizes interactions
among Web application elements and introduces a logical separation of client- and server-side
pages (or simply client and server pages), as well as determines the actual level of application
performance, resource utilization, and maintainability. This methodology assumes the common
three-tier architecture, consisting of presentation layer, business layer, and data layer. The
presentation or user-services layer includes things specific to the user interface. This layer often
does all its work through interactions with the business layer. As stated previously, the proposed
method is built around business logic and its components. (The terms “business logic” and
“business logic module” will be used interchangeably throughout this paper). Each piece of
business logic comprises business façades, workflow, and business rules. Business facades are
interfaces that expose business services to the user in the presentation layer, while hiding how
workflow and business rules have been implemented. Workflow is a sequence of steps that
involve state transformations in terms of name-value pairs. Business rules control the
implementation of autonomous transactions, such as constraints on acceptable data values, and
conditions where data may be accessed. The business, or business-services, layer implements
workflow and business rules. Finally, the data layer houses data and data store software, such as
relational database management systems.

A Web application consists of a set of business logic modules, each of which is composed of

interlinked pages and resources accessed via the client-server mechanism. The server stores the
pages and resources of a Web application, serves as a nucleus where incoming instructions from
one or more clients are processed, and sends the processing results back to the sources of the
instructions. A client is, in general, a Web browser, and the origin of instructions for the server.
The client displays business facades implemented by presentation-layer Web pages. They may
be linked to other business façade pages or business-layer pages, which implement workflow
and/or business rules of business logic. A page that has a link to another page is called a link
page. A given link’s endpoint is called an anchor page. Link and anchor pages may be

Journal of International Technology and Information Management Volume 19, Number 1 2010

© International Information Management Association, Inc, 2010 114 ISSN: 1543-5962-Printed Copy ISSN: 1941-6679-On-line Copy

augmented by other resources such as components and stylesheets. Thus, a business logic
module can be described by a set of client- and server-side link pages, client- and server-side
anchor pages, client- and server-side resources, and links.

IDEMPOTENCY AND WEB APPLICATIONS

Web applications have some unique characteristics compared to traditional counterparts. They
include ill-defined users in the case of public Web applications, mode of information delivery,
statelessness of pages, and multi-faceted interface functionality (Lee, 2008; Molly, 2001). Unlike
traditional applications, Web applications can deliver information to a user in two different
modes: static mode and dynamic mode. Static delivery mode involves a simple rendition by a
browser of the content that has already been marked up at design time in a markup document
such as an HTML page (e.g., census data marked up in an HTML document). The term “static”
is used in the sense that the process results of a page is idempotent by both interpretation and
execution—that is, duplicate requests to a static page received by an application have the same
effect as a single request. In an idempotent state by interpretation, each request involves an
interpretation of the markup elements for the same content. In an idempotent state by execution,
the same content always results through the execution of program code. For example, a Web
page may contain executable code, not just markups, to deliver the same login form on each
request. Thus, the input to a request for a static page is a simple descriptive message (e.g., I want
this page), not a prescriptive message such as parameters or user input for functions. The latter is
the case for the dynamic delivery mode. Dynamic delivery mode involves an execution of
program code to generate certain output on the fly by processing user data. This mode could be
idempotent by input, as well as by execution, but not persistently. Such dual delivery modes of
information are possible because of the unique coding scheme of Web programming. Traditional
applications, either standalone or distributed, are written in programming languages that are used
to convert functional requirements into executable code. By contrast, Web applications employ
two different language types: markup languages such as HTML and XML, and ordinary
programming languages. This unique feature is the direct result of the original purpose of
HTML, which is information exchange over a network in a platform-independent manner
(Berners-Lee, 2000). However, the programming aspect of Web applications is the result of the
extended functionality of the Web. The dual-language coding for Web applications carries an
important implication in terms of Web page types and of interactions and associations among
them.

The statelessness of Web pages by HTTP makes a Web application more scalable because it
does not have to store state information between page requests. However, real world Web
applications rely mostly on stateful services, which require special mechanisms like query
strings. In addition to this sort of stateful link between pages, many other types of links can be
defined, such as the ordinary hyperlinks you can create using the HTML anchor tag (i.e., <a>).
Others would include a link connecting a page containing a user form (e.g., a registration form)
to a page processing the form data upon being submitted, a link calling a component, a link
associating a page with a style sheet, and even a link redirecting a user to a different page. One
thing, however, is clear. Not all the link types listed above would carry meaningful or observable
data in the context of application data. Some of the links simply carry a request string or a flag.
This is where we encounter difficulties in applying well-established process modeling techniques
such as use case modeling and data flow diagramming to Web applications development. The

Identifying Entity Types for E-R Diagramming in Developing Data-Intensive Web Applications S. C. Lee

© International Information Management Association, Inc, 2010 115 ISSN: 1543-5962-Printed Copy ISSN: 1941-6679-On-line Copy

former is based on the notion of binding data and its processing together, and its diagramming
tools employ sequences of function calls and data flows. Use case modeling also assumes that
users and actors of applications are well defined around functional requirements. On the other
hand, in data flow diagramming every process must have observable data inflows and outflows,
which is not always true for Web applications. Above all, both modeling techniques do not
explicitly take into account the unique characteristics of Web applications and the various page
linkages that have different semantics. Therefore, it appears to be a natural development that the
previous studies were centered on specifying navigational arrangements and functional
requirements (e.g., Conallen, 2000; Isakowitz et al., 1995).

Multi-faceted interface functionality is about offering business logic and its elements (i.e.,
façade, workflow, and business rules) in a cohesive and loosely-coupled way for better user
comprehension. Thus, the interface functionality pertains to presenting effective navigational
structure (Hardman & Sharrat, 1990; Kahn, 1995; Rivlin et al., 1994; Treiblmaier, Pollach, Floh,
& Kotlowski 2004), and rendering interfaces to the user (Thüring, Hannemann, & Haake, 1996).
In cognitive science, a user’s level of comprehension is a function of the mental model the user
would construct, based on visible objects and their semantic relations, in which coherence has a
positive influence while cognitive overhead has a negative influence on comprehension
(Conklin, 1987). This suggests some useful insights into Web application development: to
provide users with an effective navigation, a Web application should be characterized by higher
coherence through careful accommodation of various link semantics, effective structure with
appropriate breadth and depth, and efficient static and dynamic interface rendition. To realize the
insight, a Web application should replicate the real building blocks of an application domain—
business logic modules—in a cohesive and loosely-coupled way for better user comprehension.

DESIGN PRIMITIVES

We have discussed the unique characteristics of Web applications and also introduced three-tier
Web application architecture. In this section we explain design primitives: page and link types.

Page types

Before we describe each of the page types used to construct this methodology, we need to
understand how a Web page is rendered. To open a Web page in a Web browser a user types in a
URL to the page or clicks a link to the page. Right after the key stroke, the browser prepares a
request for the page designated by the URL with the help of HTTP. The request arrives at the
Web server identified by the URL (i.e., a destination IP address specified in the HTTP request
message header). As soon as the web server receives a request, it begins searching the page
requested. If it is a static page (e.g., HTML document), the server copies the page and puts it into
an HTTP response message. The message travels back to the browser that has requested the
page. Then the browser displays the contents of the page after interpreting the HTML tags. This
kind of page rendition procedure involves request/response (R/R) steps. Another page rendition
procedure needs one more step in addition to the R/R steps. When a requested page contains
executable code, then the web server executes the code and builds an HTTP response message
with the execution results. Thus, this more sophisticated rendition procedure requires
request/execution/response (R/E/R) steps.

Journal of International Technology and Information Management Volume 19, Number 1 2010

© International Information Management Association, Inc, 2010 116 ISSN: 1543-5962-Printed Copy ISSN: 1941-6679-On-line Copy

Some Web pages rendering business facades may be idempotent, either by interpretation (i.e.,
facades are delivered in a static delivery mode by interpretations of markups specified in Web
pages at design time), or by execution (i.e., facades are rendered in a static delivery mode by
execution of some program code contained in Web pages). Other Web pages may not (i.e.,
facades are delivered in a dynamic delivery mode, but corresponding Web pages are not
idempotent by interpretation; they could be idempotent by input and by execution, but not
persistently). Regardless of being idempotent or not, business facades are results of HTML
documents interpreted by a browser, which could be augmented by other resources, including
style sheets, client scripts, client components (e.g., plug-ins) and various media types defined by
the RFCs for MIME. Furthermore, a markup document may or may not carry a user form for
catching data from users. If a rendered page contains a form, it is said to be an interactive page.
Otherwise, it is called a non-interactive page. In summary, page augmentation schemes, two
distinct page rendition procedures (R/R and R/E/R), and two information delivery modes (static
delivery mode and dynamic delivery mode) lead to a classification of Web pages and resources
(Table 1).

Table 1: Page and resource types.

Architectural
Layer

Page Type Description

Presentation
layer

R/R non-interactive
page (RRNIP)

A pure HTML page that has no form (e.g., a product
description page). This is often called a client page or
base page and is for a business façade. Idempotent by
interpretation.

R/R interactive page
(RRIP)

A pure HTML page that has a form (e.g., a registration
page). This is also often called a client page or base
page and is for a business façade. Idempotent by
interpretation.

R/E/R non-interactive
page (RERNIP)

A page resulted from an execution of a server page
containing only markups. This page type has no
rendered form. This is often called a derived page and
is for a business façade. This type of page is an
example of a server page that is physically one (i.e., a
single server page) but logically two different pages (a
page for the presentation layer and another for the
business layer). Could be idempotent by input and by
execution, but not persistently.

R/E/R interactive
page (RERIP)

A page resulted from an execution of a server page
containing only markups. This page type has a form.
This is also often called a derived page and is for a
business façade. This type of page is also an example of
a server page that is physically one but logically two
different pages. Could be idempotent by input and by
execution not persistently.

CSR Client-side resources that augment web pages on the
client side, including style sheets, client scripts, and

Identifying Entity Types for E-R Diagramming in Developing Data-Intensive Web Applications S. C. Lee

© International Information Management Association, Inc, 2010 117 ISSN: 1543-5962-Printed Copy ISSN: 1941-6679-On-line Copy

various media types defined by the RFCs for MIME.
CSC Components that work on the client side of websites,

including plug-ins, add-ons, and applets.
Business layer R/R server page

(RRSP)
This is a type of server page needed to process form
data submitted via R/R interactive pages (RRIPs). This
type of page handles workflow and business rules of a
business logic module.

R/E/R server page
(RERSP)

This is the other type of server page required to handle
interactions with R/E/R non-interactive pages
(RERNIPs) and R/E/R interactive pages (RERIPs).
This type of page also handles workflow and business
rules of a business logic module.

SSR Server-side resources that augment web pages on the
server-side, including global routines.

SSC Components that work on the server side of websites,
including custom components and Web services

Link types

A link is an associative connection between pages, which can be understood via descriptive and
prescriptive semantics. A standard hyperlink, which is created by using the HTML anchor tag,
that simply links a page to another, plays a descriptive role. If a link, upon clicked, conveys data
between pages, it plays a prescriptive role because the data also include an instruction (e.g.,
process form data being submitted or read as a cookie file). The instruction can be implicit or
explicit. When a server page programmatically generates a presentation-layer page (either
RERNIP or RERIP) on the fly (e.g., generating a billing summary at the end of an online order
process), the semantic relationship between the server page and the presentation-layer page is
called a “build” link. Assume that a page passes a piece of information to another page to
maintain a state. State management is the process of keeping, in terms of name/value pairs, state
and page data over multiple requests for the same or different web pages (Fraternali, 1999). This
sort of association is dubbed a “state” link. Imagine that a user submit a registration form on a
RERIP to a RERSP. This kind of relationship is named a “form” link. In some situations a page
redirects a user to a different page, or a page of a business logic module delegates a task to a
page of another business logic module. This type of association could be called “redirect” link.
There could be more link types. For example, a page is often augmented by a client-side or a
server-side resource page like a style sheet. This sort of connection could be named a “directive”
link because it directs the resource page to be processed before the other page is processed (see
W3C website for link-related issues). Table 2 summarizes the link types.

Journal of International Technology and Information Management Volume 19, Number 1 2010

© International Information Management Association, Inc, 2010 118 ISSN: 1543-5962-Printed Copy ISSN: 1941-6679-On-line Copy

Table 2: Link types.

Symbol Meaning Description
<h> Hyperlink The standard hyperlink created by <a> HTML element.

 Build link
A semantic link that associates a business-layer page with a
presentation layer page, where the former builds the latter on
the fly.

<i> Invoke link
A semantic link that associates a presentation- or business-
layer page with either a CSC or SSC, where the former
invokes the latter.

<s> State link A semantic link that associates a page to another, where the
former passes state information to the latter.

<d> Directive link A link that associates a page to a CSR or SSR. This link can
be created by <link>, <script>, or a processing instruction.

<r> Redirect link A semantic link that shows a task delegation from a page to
another or that literally redirects a user to another page.

<f> Form link A semantic link that associates an interactive page to a server
page that processes the form data submitted.

BUSINESS LOGIC ANALYSIS

As mentioned earlier, a Web application can be seen as a collection of loosely-coupled and
tightly-cohesive business logic modules (BLM). A business logic analysis phase is for the
process of identifying BLMs for a target Web application and then organizing them into a
hierarchy, from the most abstract to the least abstract business logic modules. Identification of
BLMs should be done in the manner that manifests higher coherence and loose coupling among
BLMs while considering their hierarchical relationships. Hierarchy has been a major facilitating
factor enabling us to understand and describe complex objects and their parts (Simon, 1962).
Arranging BLMs as nodes of a tree depends on the scope of a target Web application. It may be
divided into multiple sub-domains. For instance, we could think of “storefront” and
“administration” sub-domains for a typical online store. During the requirements gathering, we
first focus our effort in identifying highly abstract, loosely-coupled, and highly-cohesive BLMs
for each sub-domain. For example, we can think of “catalog” and “shoppingCart” BLMs for the
storefront sub-domain. The next step, as in the established process modeling techniques, is to
decompose the abstract BLMs until we reach reasonable, non-trivial, but smaller BLMs. To
secure succinct and logical relationships between BLMs, we should organize them into a
hierarchy, where each BLM would become a node of the tree. In this methodology, nodes
represent BLMs and arcs represent logical relationships between BLMs. Child nodes should be
finer and more cohesive than parent nodes in terms of the number of functions and logical
relationships between them. For example, for an online store, a parent BLM labeled
“shoppingCart” could be decomposed into two child BLMs, which could be named “wishList”
and “orderPlacing.” The former would include functions like storing item information a
customer wishes to buy, notifying the wish list upon customer login, converting the list into
orders, etc. The functions seem to be all logically cohesive, and further decomposition may be

Identifying Entity Types for E-R Diagramming in Developing Data-Intensive Web Applications S. C. Lee

© International Information Management Association, Inc, 2010 119 ISSN: 1543-5962-Printed Copy ISSN: 1941-6679-On-line Copy

unnecessary. Figure 1 shows a partial BLM tree example for a hypothetical online store named
SandyNile.com.

Figure 1: A partial BLM tree.

SandyNile.com

storeFront admin

catalog authentication shoppingCart ...

wishList orderPlacing

BUSINESS LOGIC DESIGN

Once we get a hierarchy of BLMs, the next step is to elaborate the identified BLDs by drawing a
business logic diagram (BLD) for each leaf node in the hierarchy and by incorporating the
architecture, page and resource types, and link types. Although all of the seven link types can be
used for drawing BLDs, to avoid cluttering, the figure does not show associations among pages
within the presentation and business layers. When we identify entity types from BLDs, we are
mainly interested in the build link () and form link (<f>). The former, in general, carries data
structures or data elements between pages (e.g., generating a billing summary for an order), and
the latter always transfers data structures or data elements between pages (e.g., processing
registration data). Data can also flow over the state link (<s>) (e.g., a query string attached to a
URL may carry one or more name/value pairs) and invoke a link (<i>) (e.g., a page calling a
directory access component gets directory data from the component). For the sake of simplicity,
but without losing generality, we shall illustrate how to draw a BLD and how to identify entity
types from the BLD. Figure 2 shows an example BLD for “orderPlacing” of the online store.

Journal of International Technology and Information Management Volume 19, Number 1 2010

© International Information Management Association, Inc, 2010 120 ISSN: 1543-5962-Printed Copy ISSN: 1941-6679-On-line Copy

Figure 2: An example business logic diagram.

Basket
RERNIP

EditBasket RERIP

ShippingAddr
RERIP

ShippingDetail
RERIP

Payment
RERIP

BillingStmt
RERNIP

SalesTaxInfo RRIP

ShippingMethod
RRNIP

Presentation
layer

Basket RERSP

EditBasket
RERSPShippingAddr

RERSP
ShippingDetail

RERSP

SalesTaxInfo RRSP

Payment RERSP

BillingStmt
RERSP

Business
layer

<f>

<f>

<f>

<f>

<f>

Data layer

TaxRate RERNIP

The presentation-layer page Basket RERNIP is displayed with an item a customer just added,
plus a list of suggested books. The page is built dynamically, based on the added item by the
business-layer page Basket RERSP, but does not contain any form. This is why the link between
the two pages is labeled a “build” link, and the page type is non-interactive. Once the customer
clicks on a “Proceed to checkout” button, he will be asked to log in or register, depending on the
nature of the customer. The authentication process should be shown by a separate BLD for an
authentication business logic module, which is not shown here. Once the customer is
authenticated, another presentation-layer page, ShippingAddr RERIP, is presented. He can add a
new shipping address or edit an existing address(es). To add a new address, the page should have
a form; to edit an address, the page should display the existing address. Adding a new address
requires a “form” link to the business-layer page ShippingAddr RERSP, editing an existing
address requires a “build” link from the same page. Both actions require interactions with the
server page. That is why the presentation-layer page is marked interactive. The same logic
applies to the EditBasket, ShippingDetail, Payment, SalesTaxInfo pages in the two layers, and
similarly to the BillingStmt pages across the two layers. Note that the SalesTaxInfo is an
example of a pure HTML page with a form whose data are processed by the SalesTaxInfo RRSP.
This server page also builds the TaxRate RERNIP page, showing a tax rate and related
information based on the form data submitted through the SalesTaxInfo RRIP. Although we have
identified the ShippingMethod RRNIP page, it is not our concern because there are no data flows
into or out of the page. This type of page is in general written in HTML only, and probably
contains client-side scripts and style rules such as JavaScript scripts and Cascading Style Sheet.
The most appropriate link type, from and to this type page, would be standard hyperlinks, which

Identifying Entity Types for E-R Diagramming in Developing Data-Intensive Web Applications S. C. Lee

© International Information Management Association, Inc, 2010 121 ISSN: 1543-5962-Printed Copy ISSN: 1941-6679-On-line Copy

do not carry any substantial data. Note that, as we can see in Figure 2, any possible links between
presentation-layer pages and between business-layer pages are not of interest. Rather, our agenda
should be navigation design. Furthermore, although not shown, we should assume there are
connections between business-layer pages and a database shown in the data layer. How then do
we identify entity types from a BLD?

IDENTIFICATION OF ENTITY TYPES

As implied by Figure 2, links between pages may carry one or more data abstractions
(structures), or one or more data elements. For example, a presentation-layer page for resume
posting would convey several data abstractions like “personal information,” “education,” and
“experience” over a form link. A presentation-layer page for user login would transfer
“username” and “password” data elements, which probably are part of a data abstraction.
Similarly, when a customer queries sales tax rates of a state, a business-layer page (e.g,
SalesTaxInfo RRSP) would build a presentation-layer page (e.g., SalesTaxInfo RRIP) based on a
sales tax rate data abstraction. It would carry data elements such as state name and tax rate over a
“build” link. As such, we can easily identify such data abstractions and data elements, carried by
links, from Figure 2. The data abstractions we can identify from the figure would include
“book,” “payment,” “shipping_address,” “sales_tax_rate,” “order,” “shipper,” and “customer.”
After identifying all the data abstractions from all of the BLDs, duplicate data abstractions
should be removed to define a set of unique data abstractions for a web application. Note that it
is possible to have syntactically different but semantically identical data abstractions. The names
of data abstractions then become entity types. If a link carries one or more data elements, we can
infer the data abstractions to which they should belong. In this manner, we can thoroughly
identify and clearly define entity types for conceptual data modeling in developing data-rich web
applications.

CONCLUSION

E-R modeling, as the mainstream approach for conceptual data modeling, is perhaps the single
most important facet of database development, and according to Misic and Russo (1996), is one
of the most critical tasks that determine the quality of an application. Failure to capture and
represent the data requirements of a Web application at the conceptual level could invalidate the
completed application. To warrant a successful Web application development, we should secure
correct and complete data requirements. At the heart of such an important task is the requirement
to identify entity types completely before we begin drawing E-R diagrams. This paper has
introduced a novel, yet clean, method for entity type identification, for conceptual data modeling.
It has built upon the very elements of Web applications: pages, links, and business logic, and we
therefore argue that the method is robust and easy to follow. One final thing to note is that the
method, although it is not explicitly described, could readily be extended to cover the attribute
identification of, and relationships between, entity types.

Journal of International Technology and Information Management Volume 19, Number 1 2010

© International Information Management Association, Inc, 2010 122 ISSN: 1543-5962-Printed Copy ISSN: 1941-6679-On-line Copy

REFERENCES

Abiteboul, S. (1997). Querying semi-structured data. Proceedings of the International
Conference on Database Theory (ICDT), Delphi, Greece.

Atzeni, P., Mecca, G., Merialdo, P., & DI e Automazione. (1998). Design and maintenance of

data-intensive web sites. Proceedings of the 6th International Conference on Extending
Database Technology: Advances in Database Technology, 436-450, Valencia, Spain.

Batini, C., Ceri, S., & Navathe, S. B. (1991). Conceptual database design: an Entity-relationship

approach. Redwood City:Benjamin-Cummings.

Berners-Lee, T. (2000). Weaving the web: the original design and ultimate destiny of the world

wide web. Collins.

Buneman, P. (1997). Semistructured data. Proceedings of the ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems (PODS), 117-121, Tucson, Arizona.

Carraro G., & Chong, F. (2006). Software as a service (saas): an enterprise perspective.

Retrieved March 19, 2009, from http://msdn2.microsoft.com/en-
us/architecture/aa905332.aspx.

Chen P. (1976). The entity-relationship model—toward a unified view of data. ACM

Transactions on Database Systems, 1(1), 9-36.

Conallen, J. (2000). Building Web Applications with UML. Reading:Addison-Wesley.

Conklin, J. (1987). Hypertext: an introduction and survey. IEEE Computer, 20(9), 17-40.

Dubey, A., & Wagel, D. (2007). Delivering Software as a Service. The McKinsey Quarterly,

www.mckinseyquarterly.com/article_page.aspx?ar=2006&l2=4&l3=43&srid=17&gp=0.

Florescu, D., Levy, A., & Mendelzon, A. (1998). Database techniques for the World-Wide Web:

a survey. ACM SIGMOD Record, 27(3), 59-74.

Fraternali, P. (1999). Tools and approaches for developing data-intensive Web applications: A

survey. ACM Computing Surveys, 31(3), 227-263.

Genero, M., Poels, G., & Piattini, M. (2008). Defining and validating metrics for assessing the

understandability of entity–relationship diagrams. Data & Knowledge Engineering,
64(3), 534-557.

Hardman, L., & Sharrat, B. (1990). User-centered hypertext design: the applications of HCI

design principles and guidelines. In R. Mcaleese and C. Green (Eds.), Hypertext State of
the Art, Intellect, 252-259.

http://msdn2.microsoft.com/en-us/architecture/aa905332.aspx�
http://msdn2.microsoft.com/en-us/architecture/aa905332.aspx�
http://www.mckinseyquarterly.com/article_page.aspx?ar=2006&l2=4&l3=43&srid=17&gp=0�

Identifying Entity Types for E-R Diagramming in Developing Data-Intensive Web Applications S. C. Lee

© International Information Management Association, Inc, 2010 123 ISSN: 1543-5962-Printed Copy ISSN: 1941-6679-On-line Copy

Isakowitz, T., Stohr, E. A., & Balasubramanian, P. (1995). RMM: a methodology for structured
hypermedia design. Communications of the ACM, 38(8), 34-44.

Kahn, P. (1995). Visual cues for local and global coherence in the WWW. Communications of

the ACM, 38(8), 67-69.

Kalczynski, P. J. (2005). Time dimension for business news in the knowledge warehouse.

Journal of International Technology and Information Management, 14(3), 21-32.

Lee, S. (2008). Collocation and collation of business logic for web application development.

Journal of Computer Information Systems, 49(1), 57-66.

Misic, M., & Russo, N. (1996). Educating systems analysts: a comparison of educators’ and

practitioner’ options concerning the relative importance of systems analyst tasks and
skills. Journal of Computer Information Systems, 36(4), 86-90.

Molly, H. C. (2001). Designing User-Centered Web Applications in Web Time. IEEE Software,

18(1), 62-69.

Myers, B., Hollan, J., Cruz, I., Bryson, S., Bulterman, D., Catarci, T. Citrin, W., Glinert, E.,

Grudin, J., & Ioannidis Y. (1996). Strategic directions in human-computer interaction.
ACM Computing Surveys, 28(4), 794-809.

Petersen, J. (2002). Benefits of using the n-tiered approach for web applications. ColdFusion

Developer's Journal. Retrieved March 19, from
 http://www.adobe.com/devnet/coldfusion/articles/ntier.html

Post, G. V., & Kagan, A. (2005). Systems development tools and the relationship to project

design: cost and budget implications. Journal of International Technology and
Information Management, 14(1), 1-14.

Rivlin, E., Botafogo, R., & Schneiderman, B. (1994). Navigating in hyperspace: designing a
structure-based toolbox. Communications of the ACM, 37(2), 87-96.

Simon, H. (1962). The Architecture of Complexity. Proceedings of the American Philosophical
Society, 106(6), 467-482.

Teorey, T. J., Yang, D., & Fry, J. P. (1986). A logical design methodology for relational
databases using the extended entity-relationship model. ACM Computing Surveys, 18(2),
197-222.

Thüring, M., Hannemann, J., & Haake, J. M. (1995). Hypermedia and cognition: designing for
comprehension. Communications of the ACM, 38(8), 57-66.

http://www.adobe.com/devnet/coldfusion/articles/ntier.html�

Journal of International Technology and Information Management Volume 19, Number 1 2010

© International Information Management Association, Inc, 2010 124 ISSN: 1543-5962-Printed Copy ISSN: 1941-6679-On-line Copy

Treiblmaier, H., Pollach, I., Floh, A., & Kotlowski, M. (2004). A conceptual framework for e-
branding strategies in the non-profit sector. Journal of International Technology and
Information Management, 13(3), 143-156.

World Wide Web Consortium (W3C). Link Types. Retrieved Mar 19, from

http://www.w3.org/DesignIssues/LinkTypes.html.

Young, D. (2005). Best practices and web practices: comparing corporate supplier diversity
programs with web-based minority supplier content. Journal of International Technology
and Information Management, 14(1), 41-52.

	Journal of International Technology and Information Management
	2010

	Identifying Entity Types for E-R Diagramming in Developing Data- Intensive Web Applications
	Seung C. Lee
	Recommended Citation

	Seung C. LeeUniversity of Minnesota at Duluth

