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ABSTRACT 

This project presents the concepts of modeling cloth objects with different 

materials by using parameters such as mass, stiffness, and damping. This 

project also introduces deformation and simulation methods to present the 

movement and interaction of cloth objects. The implementation is developed 

using C++ for fast processing but the visualization is done by Maya, which is a 

professional 3D modeling and animation tool. 
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CHAPTER ONE 

INTRODUCTION 

 

This project addresses research challenges in modeling, deformation and 

simulation of 3D cloth materials. These problems exist in the applied fields of 

computer graphics, motion pictures, and movie animation. My project describes 

and prototypes the process of simulating cloth using a mass-spring system to 

control a deformable mesh. The processes of modeling, deforming, and 

simulating are implemented in C++.  The results are visualized using 3D 

animation software, such as Maya and Blender. 
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CHAPTER TWO 

RESEARCH TOOLS AND ENVIRONMENTS 

 

There are two main tools used in this project.  First, Visual Studio is used 

to develop a library written in C++.  Second, Maya is used as a host environment 

for the C++ library. 

Visual Studio provides the build environment needed to produce the 

library to be loaded by Maya.  Visual Studio makes sense for this project 

because the development environment is a Windows-based computer.  Visual 

Studio provides excellent support for development and testing of the needed 

library, including the ability to set break points, inspect variables and step through 

the code.  It also provides code assist functionality that makes it easier to 

navigate the code base and avoid compilation errors due to incorrect spelling of 

class and function names. 

Maya is a widely used 3D modeling and animation tool.  Maya is 

extendable through a library plug-in architecture.  This project makes use of this 

extendibility by developing a library that lets animators apply algorithms and 

methods in order to create, deform, and simulate models. 
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CHAPTER THREE 

PROJECT APPROACH 

Modeling 

In this project, objects are presented by collections of vertices, edges, and 

faces, which are commonly referred to as meshes (Figure 3.1).  With these basic 

elements, I can create functional models, such as voxel objects and tetrahedral 

objects. 

 

 
 
Figure 3.1. Simple model with vertices, edges and faces. 
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A voxel object represents an object using a set of cubes or 3D grid (Figure 

3.2), and a tetrahedral object represents an object using a set of triangles (Figure 

3.3). 

 

 
 
Figure 3.2. Voxel mesh. 

 

 

 
 
Figure 3.3. Tetrahedral mesh. 
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These functional models are useful (more formal) in applying techniques 

to move or transform cloth models.  These object models can be saved or 

transferred easily in several formats, including OBJ, XML-based Collada, PLY or 

FBX. In this project, however, I use our own text-based format to implement 

these features. 

The image in Figure 3.1 illustrates a simple model of a leaf that is 

composed of vertices, edges and faces. It is converted into a set of voxels/cubes 

(Figure 3.2). Then, it continues being converted to a tetrahedral mesh (Figure 

3.3), which is a set of cubes where each cube is comprised of 6 triangles. This 

process is described in detail in chapter 5.  

Deformation 

When a voxel or tetrahedral object is created from a normal mesh object, I 

can use them to build a mass-spring system, which is a set of particles 

connected by springs.  (See Figure 3.4.) A mass-spring system relies on 

properties of an object including: mass value per particle, spring stiffness, 

damping coefficient, and rest length per spring. 
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Figure 3.4. Mass-spring system (single voxel). 

 

 

Object deformation is the action of applying forces onto different points of 

an object. Using a mass-spring system, I can find out the total force, including 

both external and internal forces, which apply onto each particle and calculate 

their new positions. For any two particles A and B (A = B + z), I have a spring AB 

with rest length r and stiffness k.  The spring force f can be calculated as follows: 

f(z) = k(|z|-r)z/|z|. 

Particle A receives a force f(z) and B receives a force –f(z). A change of 

f(z) will cause a change of particle positions. Thus, I can deform the object by 

providing or changing the forces between mesh vertices. 

 

Face spring 

Face diagonal spring 

Body diagonal spring 
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Figure 3.5. Mass-spring system with force. 

 

 

In Figure 3.5, a mass-spring system is represented by a wireframe 

system. Each edge is a spring that holds stiffness values, and two vertices of that 

edge hold mass values. A force is applied as shown by the yellow arrow in the 

figure, which cause the springs representing the edges to stretch. 
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Simulation 

By using different forces on different places of an object at different times 

and adjusting values manually as needed, I can simulate objects with natural 

motions or with special motions.  By natural motion, I mean motion resulting from 

only the application of gravity.  By special motion, I mean motion resulting forces 

other than gravity but possibly including gravity as well. An example of a natural 

motion would be a flag falling down with only the force of gravity applied. An 

example of a special motion would be pulling two corners of a flag by hand, 

which would be simulated with forces at two corners of a flag. You can imagine 

what this would look like if one held a flag by hand at two corners and stretched it 

out.  In general, the forces can result from many sources, such as gravity, wind, 

and collisions with objects. 
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CHAPTER FOUR 

LIBRARIES AND TECHNIQUES 

Vega 

Vega [2] is a C/C++ middleware library that includes many small libraries 

that provide support for deformation and simulation of 3D objects.  

The Vega library provides a mass-spring system; however, it is not 

sufficient for generating natural looking motion in cloth. Although Vega uses an 

object’s vertices and edges to directly build a mass-spring system, it cannot 

conserve volume to keep the mesh stable. According to Diziol, Bender, and 

Bayer [1], I can use voxel and tetrahedrons to build mass-spring volume 

conservation systems in order to make a stable system. If I build a mass-spring 

system directly from an object’s edges and vertices (Figure 3.1), the constraints 

among edges and vertices are very weak and cannot fully represent material 

characteristics. In voxel and tetrahedral systems (Figure 4.1), constraints are 

more stable because of the connections inside and among the voxels and 

tetrahedrons. 

Using different values of mass, damping and stiffness in the Vega mass-

spring system, a mesh can be used to simulate various kinds of materials.  
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TetGen 

TetGen [3] is a C/C++ library that provides support for building a 

tetrahedral mesh (Figure 4.1) using Voronoi partition techniques.  One Voronoi 

technique is to partition a planar surface with n points into convex polygons such 

that each polygon contains exactly one generating point and every point in a 

given polygon is closer to its generating point than to any other [4]. Another 

technique uses a Voronoi partition with Delaunay triangulation, which is 

equivalent to the nerve of the cells in a Voronoi diagram [5]. In our case, because 

the mesh is converted into voxels/cubes by a software process called a voxelizer, 

they can be used as Voronoi partitions.  The tetrahedral parts can be treated 

similarly. 

 

 
 
Figure 4.1. Tetrahedral mesh. 
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Level Set 3 

Level Set 3 is a part of the El Topo library. I use this library to build a 

distance field map of a mesh in either 3D or 2D.  A distance field map is a map of 

points that show distances from each point to closest points on the mesh (Figure 

4.2). A positive distance value means that the point is outside the mesh and a 

negative distance value means the point is inside the mesh. A more detailed map 

is used to represent a higher quality mesh.  I use a distance field to create voxels 

and marching cubes (3D) or marching squares (2D), which will be used in the 

simulation as explained in the next section. 

 

 
 
Figure 4.2. Distance field map from Level Set 3. 
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Marching Cube/Square 

Marching cubes is a technique for rebuilding a mesh from a distance field 

map. In Figure 4.3, the green lines represent the edges of the mesh and the blue 

lines represent the edges of the marching cubes, which are used to deform the 

mesh. 

 

 
 
Figure 4.3. Marching cubes. 
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The marching cubes are formed from the points on the distance field.  For 

each cube, I create a polygon from the data in the distance field, as explained 

below. When going through the marching cubes, I consider cubes that have both 

positive and negative values. Those cases indicate whether the cube has 

vertices inside the mesh (when the point has a negative distance value) and 

outside the mesh (when the point has a positive distance value).  When a cube 

has vertices both inside and outside a mesh, then the cube intersects the mesh, 

defining a face within the mesh (Figure 4.4). The edges which have one vertex 

(A) inside the mesh and one vertex (B) outside the mesh should intersect the 

mesh at a point on the line (AB). From the combination of all intersection vertices 

in the cube, I can rebuild a face (triangle or rectangle) for the marching mesh. 

 

 
 
Figure 4.4. Face with one vertex inside the mesh. 

 

 

Isosurface 
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There are fifteen cases of marching cubes (Figure 4.5). In Figure 4.5, the 

vertices that fall inside the object’s mesh are represented by small balls. 

 

 
 
Figure 4.5. 15 cases of marching cube. (By Jmtrivial (talk), GPL, 
https://commons.wikimedia.org/w/index.php?curid=1282165). 

 

 

After I go through all the cubes and create all the faces, then I will have a 

marching mesh. 

Similar to a marching cube, for the 2D case I implement a marching 

square for 2D meshes (or 3D meshes without z values) (Figure 4.6).  This can be 

used to simulate such things as a flat flag, flat leaf, etc. 

 

https://commons.wikimedia.org/w/index.php?curid=1282165
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Figure 4.6. Marching squares with distance field. 

 

 

For the 2D case, I have sixteen cases of marching squares used to 

determine how an edge is created in the marching square (Figure 4.7). 

 

 
 
Figure 4.7. 16 cases of marching squares. 
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0.707 0.5 
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Figure 4.8 shows a corner of a marching mesh built from a distance field 

map in 2D. 

 

 
 
Figure 4.8. Marching squares in distance field map (converted from 3D to 2D). 
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CHAPTER FIVE 

IMPLEMENTATION 

Overview Process 

An overview of the implementation process is shown in Figure 5.1. 

 

 
 
Figure 5.1. Implementation process. 
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The process starts with the input of a 2D mesh (in a 3D coordinate 

system). Its vertices and edges will be passed to the Level Set 3 library in order 

to build a distance field map. Then the voxelizer uses the map values to build a 

voxel system in which each voxel should be either inside or on the face of a 

mesh. Each voxel is then divided into 6 tetrahedrons. After a tetrahedral mesh is 

built from all the voxels, its vertices and edges are used as a mass-spring 

system. Providing various initial stiffness and mass values for the mass-spring 

system, I can represent various kinds of materials. Applying constant or 

adjustable forces during a period of time, I can deform and simulate the mesh. 

Building the Distance Field Map 

Using the Level Set 3 library, I provide all vertices and faces to get a 

distance field map (Figure 5.2). I limit how big the map is so that the object’s 

mesh falls completely within the map at its initial position and at all subsequent 

positions as a result of simulating its motion. 
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Figure 5.2. Distance field map. 

 

 

In almost cases, the distance between two points of the map, called voxel 

width, is 1 unit of length. With a smaller voxel width, the distance field map will 

have more detail. However, it will take more time to process more values from 

the map. Also, a more detailed mesh (which renders a higher quality image of the 

object) needs more time to process. Thus, adjusting voxel width to get a 

reasonable performance is necessary. 
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Building the Voxel Object 

After the distance field map is calculated, I can build voxels for the map. 

Each point in the distance field map shows how far the point is from the mesh 

and, by the sign of the value, whether the point is inside or outside mesh. Points 

that are inside or on the surface of the mesh are chosen to create voxels. 

In theory, I use positive and negative values to check if a voxel is created 

(threshold is 0). But when implemented, there is a lot of cases where a positive 

value is near to zero.  This occurs when the point is very close to the mesh 

surface. In this case, the voxels cannot cover the whole mesh (Figure 5.3). 

 

 
 
Figure 5.3. Voxels with threshold 0. 

 

 

Mesh 

Voxel (distance 
field is -0.15) 

Close point (distance 
field is 0.1) 
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In my implementation, I do a lot of experiments and then decided to 

choose threshold values about a half of the voxel width, which is the distance 

between neighboring points in the distance field map. In most of the cases, 

voxels will cover the whole mesh (Figures 5.4 and 5.5). 

 

 
 
Figure 5.4. Voxels with threshold 0.5. 

 

 

 
 
Figure 5.5. Voxels covering the whole mesh in 3D view. 

Voxel (distance 
field is 0.1) Mesh 

Voxel (distance 
field is -0.15) 
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Building Tetrahedrons and Mass-Spring System 

Tetrahedrons are built from voxels by dividing each voxel into six 

tetrahedrons, which is illustrated in Figure 5.6. Each tetrahedralized voxel has 8 

vertices and 9 edges. 

 

 
 
Figure 5.6. Tetrahedrons from a voxel. 

 

 

I build a tetrahedral mesh by converting all voxels to tetrahedrons (Figure 

5.7). The set of vertices and edges of the tetrahedral mesh comprise the mass-

spring system (Figure 5.8). I assign mass values to vertices and stiffness values 

to edges to represent various materials. These values are adjusted to get a good 

simulation. 
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Figure 5.7. Tetrahedral mesh. 

 

 

 
 
Figure 5.8. Mass-spring system. 
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Building Marching Squares 

From a distance field map, I build a marching square mesh. Figure 5.9 

shows a marching mesh built from 2D distance field map. Each four closest 

points form a square, so I go through all squares in the distance field map to 

generate the marching squares. (See the section on marching cubes/squares in 

Chapter 4.) 

 

 
 
Figure 5.9. Marching squares. 

 

 

Because I want to build a model in 3D, I implement marching squares in 

3D in which each square becomes a cube (Figure 5.10). In 3D, two points on the 

same z-index are considered as 1 point in 2D mode. Thus, I can easily convert 
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between 3D and 2D modes. This may also be considered as a special case of 

marching cubes. 

 

 
 
Figure 5.10. Marching squares in 3D view 

 

 

Object Deformation and Simulation 

I have a relationship between the distance field map and the mass-spring 

system, where each point in the distance field map refers to one voxel and also 8 

points of the mass-spring system. When I provide forces onto a mass-spring 

system to make it move, the vertices in the mass-spring system take on new 

positions. I will apply these new positions onto the distance field map using the 

relationship between them. Then I perform marching squares with the initial 

values of the distance field map (which do not change with time) and combine 

this with the new positions. See Figure 5.11 for an example. 
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Figure 5.11. Marching squares with new position. 

 

 

The simulation is computed for successive points in time by deforming the 

mesh for each small interval of time. Figure 5.12) shows how this might look for 3 

separate times in the simulation.  These points in time are referred to as frames 

in animation tools such as Maya. I can adjust the force per time period (specified 

in seconds or frames) to find out the way to simulate a mesh naturally (includes 

gravity force only), or specially (includes forces other than gravity). 

 

 
 
Figure 5.12. Three frames of simulation 
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CHAPTER SIX 

OBJECT MODELS AND RESULTS 

Initial Flag 

In this chapter I consider the problem of simulating the movement of a 

flag. The example flag I consider is a 10 by 6 grid of cubes (Figure 6.1). Its mass 

is 10 kilograms per meter cubed (kg/m3). Its stiffness values (called Young’s 

Modulus) are 20000, 100, and 100 newtons per meter squared (N/m2) for face 

spring, face diagonal spring, and body diagonal spring (See section on 

Deformation of Chapter 3). 

 

 
 
Figure 6.1. Initial flag mesh. 
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Figure 6.2 shows the flag deformed by running the simulation without user 

force and gravity. 

 

 
 
Figure 6.2. Deformed flag with no applied forces 

 

 

Flag with Two Fixed Corners 

The first experiment that I consider is holding a flag at two corners and 

letting it fall freely. Considering gravity as the only force, I have:  fy = -9.8N, 

where f represents the force in the y direction. Figure 6.3 contains 3 frames of 

the resulting simulation.  Based on performing the actual physical experiment 

with a real flag, I conclude that this process is sufficient for producing a natural 
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looking motion. Note that I ignore the force of air resistance but I still obtain a 

natural looking result when comparing the animation with the physical 

experiment.  

 

 
 
Figure 6.3. Simulation of flag held at 2 corners 
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Flag Held at Center 

In this experiment, I hold the flag at its center and blow on its left edge as 

it falls from a horizontal position.  In this case, I have the force of gravity: fy = -

9.8N. But I also have the user’s blowing force: fx = 15N and fy = -15N. 

Figure 6.4 contains 2 frames of the resulting simulation.  I did not perform 

a physical experiment with a real flag; instead, I use subsequent simulations and 

experiments to build our confidence that our simulation is natural looking. 

 
 
Figure 6.4. Simulation of flag held at center 
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Flag Held on Vertical Edges 

In this experiment, I hold the flag on its left edge and let it fall freely.  In 

this case, I only have the force of gravity: fy = -9.8N. Figure 6.5 contains selected 

frames of the resulting simulation. 

 

 
 
Figure 6.5. Simulation of flag held at left edge 

 

 

Based on performing the actual physical experiment with a real flag 

(Figure 6.6), I conclude that this process produces natural looking motion in this 

case. 
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Figure 6.6. Observed motion of real flag held at edge 

 

 

Flag with Horizontal Pole 

This experiment is done with flag and pole. An edge of the flag is attached 

to a pole.  The two opposite corners are held by hand initially.  The pole is kept in 

a horizontal position throughout the entire experiment.   The flag is initially 

positioned flat in a horizontal position.  I then release the two hand held edges of 

the flag and observe its falling motion.  The force of gravity will be the only 

external force involved: fy = -9.8N. Figure 6.7 contains 2 frames of the resulting 

animation.  The simulated result resembles the actual motion when performing 

the experiment with a real flag. 
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Figure 6.7. Simulation of flag with pole (1) 

 

 

I extend the problem to include a wind force in addition to the gravity force.  

In particular, I apply a wind force at middle of the flag with: uy = 30N for a line 

passing through the center and uy = 0 for all other points. The total force is the 

force of gravity plus the user force: fy + uy, where fy is the force due to gravity. 

Figure 6.8 contains 2 frames of the resulting simulation. I did not perform a 

physical experiment for this problem. 
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Figure 6.8. Simulation of flag with pole (2) 

 

 

A Ball Falls Down into Flag 

In this experiment, I drop a ball into the middle of the flag without gravity 

affecting the flag. The force that the ball applies onto middle point of flag is 

represented as: fy = -50N for the center point and fy = 0 for all other points. 

Figure 6.9 contains 2 frames of the resulting animation. I did not perform a 

physical experiment for this problem. 
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Figure 6.9. Simulation of flag with dropping ball 

 

 

Flag Held at Center By Pole 

In this experiment, I hold the flag at center point and let it fall freely.  In this 

case, I only have the force of gravity: fy = -9.8N. Figure 6.10 contains selected 

frames of the resulting simulation. 
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Figure 6.10. Simulation of flag held at center 

 

 



37 
 

Based on performing the actual physical experiment with a real flag 

(Figure 6.11), I conclude that this process produces natural looking motion in this 

case. 

 

 
 
Figure 6.11. Observed motion of real flag held at center 
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CHAPTER SEVEN 

CONCLUSION 

 

In general, this project aims to understand realistic animation processing 

and to improve and extend current methods for better performance. Cloth 

material is common in real life, so the realism of the simulated cloth motion can 

be checked through visual inspection. Once the basic simulation techniques are 

validated with actual physical experiments, I can use those techniques to 

produce animations that appear natural. This project has determined several 

such techniques that can now be used for applied cloth animation problems. In 

future work, I can extend the concepts to the simulation of plastic, wood, steel 

and other materials. 

 

 

  



39 
 

APPENDIX 

SIMULATION EXPERIMENTS 
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The following animation frames were generated from the simulation of a 

falling flag held on left edge. 
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The following animation frames were generated from the simulation of a 

falling flag held in its center. 
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