CONSTRUCTIONS AND ISOMORPHISM TYPES OF IMAGES

Jessica Luna Ramirez
California State University - San Bernardino, lunaj308@coyote.csusb.edu

Follow this and additional works at: http://scholarworks.lib.csusb.edu/etd
Part of the Algebra Commons

Recommended Citation

Ramirez, Jessica Luna, "CONSTRUCTIONS AND ISOMORPHISM TYPES OF IMAGES" (2015). Electronic Theses, Projects, and Dissertations. Paper 254.

A Thesis

Presented to the

Faculty of California State University, San Bernardino

In Partial Fulfillment
of the Requirements for the Degree

Master of Arts
in

Mathematics
by

Jessica Luna Ramirez

December 2015

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino
\qquad
by

Jessica Luna Ramirez

December 2015

Approved by:
$\overline{\text { Dr. Zahid Hasan, Committee Chair }} \overline{\text { Date }}$
$\overline{\text { Dr. Belisario Ventura, Committee Member }}$

Dr. J. Paul Vicknair, Committee Member

Dr. Charles Stanton, Chair,
Department of Mathematics

Dr. Corey Dunn
Graduate Coordinator, Department of Mathematics

Abstract

In this thesis, we have presented our discovery of true finite homomorphic images of various permutation and monomial progenitors, such as $2^{* 7}: D_{14}, 2^{* 7}:(7: 2)$, $2^{* 6}:\left(S_{3} \times 2\right), 2^{* 8}: S_{4}, 2^{* 72}:\left(3^{2}:\left(2 S_{4}\right)\right)$, and $11^{* 2}:_{m} D_{10}$. We have given delightful symmetric presentations and very nice permutation representations of these images which include, the Mathieu groups M_{11}, M_{12}, the 4-fold cover of the Mathieu group M_{22}, $2 \times L_{2}(8)$, and $L_{2}(13)$. Moreover, we have given constructions, by using the technique of double coset enumeration, for some of the images, including M_{11} and M_{12}. We have given proofs, either by hand or computer-based, of the isomorphism type of each image. In addition, we use Iwasawa's Lemma to prove that $L_{2}(13)$ over $A_{5}, L_{2}(8)$ over D_{14}, $L_{2}(13)$ over $D_{14}, L_{2}(27)$ over $2 \cdot D_{14}$, and M_{11} over $2 S_{4}$ are simple groups. All of the work presented in this thesis is original to the best of our knowledge.

Acknowledgements

First and foremost, I would like to thank my advisor and Professor, Dr. Zahid Hasan for his great patience, motivation, and encouragement through the study and research of my thesis. I thank you for helping me fully understand the concepts of Group Theory. Also, I thank you for always believing in me and for all of your support.

Furthermore, I would like to thank Dr. Belisario Ventura and Dr. J. Paul Vicknair for being part of my thesis committee and motivating me to reach all my educational goals. I also thank Dr. Corey Dunn and Dr. Charles Stanton for guiding me through my graduate studies.

Finally and most importantly, I want to thank my parents, Hector Luna and Maria Luna for all of their love, support, and for never giving up on me. Next, I thank my siblings for taking care of my daughter while I was working on my graduate studies. Further, I am grateful with my husband, Eduardo Ramirez (alma gemela) for his patience and love towards my daughter and myself. Lastly, I dedicate this thesis to my daughter, Luna Cuevas for always being on my side despite the time of day.

I love you! ∞ and beyond.

Table of Contents

Abstract iii
Acknowledgements iv
List of Tables viii
List of Figures ix
Introduction 1
1 Writing Progenitors 3
1.1 Writing Progenitors Preliminaries 3
1.2 Permutation Progenitor of A_{5} 6
1.2.1 Factoring $2^{* 5}: A_{5}$ by First Order Relations 8
1.3 Monomial Progenitor $11^{* 2}:_{m} D_{10}$ 9
1.3.1 $\quad 11^{* 2}:_{m} D_{10}$ Factor by First Order Relations 18
1.4 Progenitor of $2^{* 7}: D_{14}$ 20
2 Double Coset Enumeration and Factoring by the Center 25
2.1 Double Coset Enumeration Preliminaries 25
$2.22 \times A_{5}$ as a Homomorphic Image of $2^{* 3}: S_{3}$ 27
2.2.1 Construction of $2 \times A_{5}$ over S_{3} 27
2.2.2 Permutation Representation of $2 \times A_{5}$ over S_{3} 32
2.2.3 Prove $G \cong 2 \times A_{5}$ 35
2.3 Finding and Factoring by the Center $(Z(G))$ of $2 \times A_{5}$ over S_{3} 37
2.4 Converting Symmetric and Permutation Representation of $2 \times A_{5}$ over S_{3} 42
$2.5 \quad 2 \times S_{5}$ as a Homomorphic Image of $2^{* 4}: S_{4}$ 44
2.5.1 Construction of $2 \times S_{5}$ over S_{4} 44
2.5.2 Permutation Representation of $2 \times S_{5}$ over S_{4} 48
2.5.3 Prove $G \cong 2 \times S_{5}$ 50
2.6 Finding and Factoring by the Center $(Z(G))$ of $2 \times S_{5}$ over S_{4} 52
3 Iwasawa's Lemma 56
3.1 Iwasawa's Lemma Preliminaries 56
3.2 Iwasawa's Lemma to Prove $L_{2}(13)$ over A_{4} is Simple 58
3.2.1 $G=L_{2}(13)$ acts on X Faithfully 59
3.2.2 $G=L_{2}(13)$ acts on X Primitively 59
3.2.3 $G=L_{2}(13)$ is Perfect 63
3.2.4 Conjugates of a Normal Abelian K
Generate $G=L_{2}(13)$ over A_{4} 65
$3.32 \times L_{2}(8)$ as a Homomorphic Image of $2^{* 7}: D_{14}$ 65
3.3.1 Construction of $2 \times L_{2}(8)$ over D_{14} 65
3.3.2 Factoring $2 \times L_{2}(8)$ by the Center 71
3.3.3 Construction of $L_{2}(8)$ over D_{14} 73
3.4 Iwasawa's Lemma to Prove $L_{2}(8)$ over D_{14} is Simple 77
3.4.1 $G=L_{2}(8)$ acts on X Faithfully 77
3.4.2 $G=L_{2}(8)$ acts on X Primitively 78
3.4.3 $G=L_{2}(8)$ is Perfect 78
3.4.4 Conjugates of a Normal Abelian K Generate $G=L_{2}(8)$ over D_{14} 79
$3.5 L_{2}(13)$ as a Homomorphic Image of $2^{* 7}: D_{14}$ 80
3.5.1 Construction of $L_{2}(13)$ over D_{14} 80
3.6 Iwasawa's Lemma to Prove $L_{2}(13)$ over D_{14} is Simple 87
3.6.1 $G=L_{2}(13)$ over D_{14} acts on X Faithfully 88
3.6.2 $G=L_{2}(13)$ over D_{14} acts on X Primitively 88
3.6.3 $G=L_{2}(13)$ over D_{14} is Perfect 88
3.6.4 Conjugates of a Normal Abelian K
Generate $G=L_{2}(13)$ over D_{14} 90
4 Double Coset Enumeration over a Maximal Subgroup 92
4.1 Construction of $L_{2}(27)$ over $M=2 D_{14}$ 92
4.2 Iwasawa's Lemma to Prove $L_{2}(27)$ over $M=2 D_{14}$ is Simple 119
4.2.1 $G=L_{2}(27)$ over $M=2 D_{14}$ acts on X Faithfully 119
4.2.2 $G=L_{2}(27)$ over $M=2 D_{14}$ acts on X Primitively 120
4.2.3 $G=L_{2}(27)$ over $M=2 D_{14}$ is Perfect 120
4.2.4 Conjugates of a Normal Abelian K
Generate $G=L_{2}(27)$ over $M=2 D_{14}$ 120
5 Extension Problem 126
5.1 Extension Problem Preliminaries 126
5.2 Mixed Extension $\left(G \cong\left(2^{6^{\circ}}: L_{2}(7)\right): 2\right)$ 127
6 Double Coset Enumeration of M_{11} over S_{4} 134
6.1 G Factor by a Subgroup of Order 12 134
6.2 Construction of M_{11} over S_{4} 136
6.3 Construction of M_{11} over $M=2 \cdot S_{4}$ 148
6.4 Iwasawa's Lemma to Prove M_{11} over $M=2 S_{4}$ is Simple 155
6.4.1 $G=M_{11}$ over $M=2 S_{4}$ acts on X Faithfully 155
6.4.2 $G=M_{11}$ over $M=2 \cdot S_{4}$ acts on X Primitively 156
6.4.3 $G=M_{11}$ over $M=2 S_{4}$ is Perfect 156
6.4.4 Conjugates of a Normal Abelian K Generate $G=M_{11}$ over $M=2 S_{4}$ 157
7 Double Coset Enumeration of M_{12} over $\left(3^{2}: 2: S_{4}\right)$ 158
7.1 Factoring by the Center $(Z(G))$ of $2^{* 72}:\left(3^{2}: 2 S_{4}\right)$ 158
7.2 Construction of M_{12} over ($3^{2}: 2 S_{4}$) 159
8 Tabulated Images 165
$8.1 \quad 2^{* 7}:(7: 2)$ 165
$8.2 \quad 2^{* 6}:\left(S_{3} \times 2\right)$ 165
$8.3 \quad 2^{* 8}: S_{4}$ 166
$8.42^{* 8}:\left(2^{3}: 2\right)$ 167
$8.5 \quad 2^{* 72}:\left(3^{2}:\left(2 S_{4}\right)\right)$ 167
Appendix A: MAGMA Code for Permutation Progenitor of A_{5} 169
Appendix B: MAGMA Code for Monomial Progenitor of $11^{* 2}{ }^{2}{ }_{m} D_{10}$ 170
Appendix C: MAGMA Code for Progenitor of $2^{* 7}: D_{14}$ 174
Appendix D: MAGMA Code for DCE of $2^{* 3}: S_{3}$ 176
Appendix E: MAGMA Code for DCE of $2 \times L_{2}(8)$ over D_{14} 181
Appendix F: MAGMA Code for DCE of $L_{2}(27)$ over a Maximal Subgroup 198
Appendix G: MAGMA Code for Mixed Extension $\left(2^{6}: L_{2}(7)\right): 2$ 225
Appendix H: MAGMA Code for DCE of M_{12} 230
Bibliography 243

List of Tables

1.1 Conjugacy Classes of A_{5} 8
1.2 Centralizer of A_{5} 8
1.3 Some Finite Images of the Progenitor $2^{* 5}: A_{5}$ 9
1.4 Character Table of $G=D_{10}$ 13
1.5 Character Table of $H=\mathbb{Z}_{5}$ 13
1.6 Labeling t_{i} s of Order 11 16
1.7 Permutations of the $t_{i}^{\prime} s$ using $A(x)$ 16
1.8 Permutations of the $t_{i}^{\prime} s$ using $A(y)$ 17
1.9 Conjugacy Classes of D_{10} 19
1.10 Some Finite Images of the Progenitor $11^{* 2}:_{m} D_{10}$ 19
1.11 Some Finite Images of the Progenitor $2^{* 7}: D_{14}$ 24
2.1 Permutation Representation of $2 \times A_{5}$ over S_{3} 32
2.2 Permutation Representation of $2 \times S_{5}$ over S_{4} 48
8.1 Some Finite Images of the Progenitor $2^{* 7}:(7: 2)$ 165
8.2 Some Finite Images of the Progenitor $2^{* 6}:\left(S_{3} \times 2\right)$ 166
8.3 Some Finite Images of the Progenitor $2^{* 6}:\left(S_{3} \times 2\right)$ 166
8.4 Some Finite Images of the Progenitor $2^{* 8}: S_{4}$ 167
8.5 Some Finite Images of the Progenitor $2^{* 8}:\left(2^{3}: 2\right)$ 167
8.6 Some Finite Images of the Progenitor $2^{* 72}:\left(3^{2}:\left(2 S_{4}\right)\right)$ 168

List of Figures

2.1 Cayley Diagram of $2 \times A_{5}$ over S_{3} 31
2.2 Cayley Diagram of A_{5} over S_{3} 41
2.3 Cayley Diagram of $2 \times S_{5}$ over S_{4} 47
2.4 Cayley Diagram of S_{5} over S_{4} 55
3.1 Cayley Diagram of $L_{2}(13)$ over A_{4} 58
3.2 Cayley Diagram of $2 \times L_{2}(8)$ over D_{14} 72
3.3 Cayley Diagram of $L_{2}(8)$ over D_{14} 76
3.4 Cayley Diagram of $L_{2}(13)$ over D_{14} 87
4.1 Cayley Diagram of $L_{2}(27)$ over $M=2 D_{14}$ 118
6.1 Cayley Diagram of M_{11} over S_{4} 147
6.2 Cayley Diagram of M_{11} over $2 S_{4}$ 154
7.1 Cayley Diagram of M_{12} over $\left(3^{2}: 2 \cdot S_{4}\right)$ 164

Introduction

Group theory is the study of symmetry of objects. Symmetric presentations provide a uniform way of constructing finite groups. In this thesis, we are particularly interested in symmetric presentations of finite simple groups, since these can be used to obtain all finite groups. The process to obtain finite homomorphic images is through the use of a progenitor, $m^{* n}: N$, where N is transitive on n letters. The objective is to factor the progenitor by relations, that equate elements of N to the product of $t_{i} \mathrm{~s}$, that give finite homomorphic images. An isomorphism is a homomorphism that is also a bijection. We say that group G is isomorphic to group H, denoted by $G \cong H$, if there exists an isomorphism $f: G \rightarrow H$.

In Chapter 1, we describe the process of creating permutation progenitors and monomial progenitors. In addition, we factor these progenitors by all first order relations and suitable relations. In Chapter 2, we apply the technique of double coset enumeration, resulting in the construction of Cayley diagrams, and give by hand or computer-based proofs for the isomorphism type of each group. We also, explain the technique of factoring by the center. In Chapter 3, we use Iwasawa's lemma and the transitive action of a group on the set of single cosets to prove that a group is simple. Similarly, in Chapter 4, we apply the technique of double coset enumeration over a maximal subgroup and apply Iwasawa's lemma to prove that a group simple. In Chapter 5 , we compute an extension problem, by looking at the composition factors to find the isomorphic type. In Chapter 6, we construct M_{11} over the subgroup S_{4} with an imprimitivite action. We then construct this group over the maximal subgroup $2 \cdot S_{4}$ with a primitive action and thus apply Iwasawa's lemma to prove that this group is simple. Similarly, in Chapter 7, we construct M_{12} by performing the double coset enumeration, and our goal is to show that the group is simple, however, at the time of writing our
proof, we did not have time to apply Iwasawa's lemma, it is still in progress. Finally, in Chapter 8, we give progenitors tables with homomorphic images.

Chapter 1

Writing Progenitors

1.1 Writing Progenitors Preliminaries

Definition 1.1. (Permutation). If X is a nonemty set, a permutation of X is a bijection $\alpha: X \rightarrow X$. We denote the set of all permutations of X by S_{X}. [Rot12]

Definition 1.2. (Operation). Let G be a set. A (binary) operation on G is a function that assigns each ordered pair of elements of G an element on G. [Rot12]

Definition 1.3. (Semigroup). A semigroup ($G, *$) is a nonempty set G equipped with an associative operation *. [Rot12]

Definition 1.4. (Group). A group is a semigroup G containing an element e such that
(i) $e * a=a=a * e$ for all $a \in G$
(ii) for every $a \in G$, there is an element $b \in G$ with $a * b=e=b * a$. [Rot12]

Definition 1.5. (Abelian). A pair of elements a and b in a semigroup commutes if $a * b=b * a$. A group (or a semigroup) is abelian if every pair of its elements commutes. [Rot12]

Theorem 1.6. If $K \leq H$ and $[H: K]=n$, then there is a homomorphism $\phi: H \rightarrow S_{n}$ with $\operatorname{ker} \phi \leq K$. [Rot12]

Definition 1.7. (Free Group). If X is a nonempty subset of a group F, then F is a free group with basis X if, for every group G and every function $f: X \rightarrow G$, there
exists a unique homomorphism $\phi: F \rightarrow G$ extending f. Moreover, X generates F. [Rot12]

Definition 1.8. (Presentation). Let X be a nonempty set and let Δ be a family of words on X. A group G has generators X and relations Δ if $G \cong F / R$, where F is the free group with basis X and R is the normal subgroup of F generated by Δ. The ordered pair $(X \mid \Delta)$ is called a presentation of G. [Rot12]

Definition 1.9. (Progenitor). Let G be a group and $T=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ be a symmetric generating set for G with $\left|t_{i}\right|=m$. Then if $N=N_{G}(\bar{T})$, then we define the progenitor to be the semi direct product $m^{* n}: N$, where $m^{* n}$ is the free product of n copies of the cyclic group C_{m}. [Cur07]

Definition 1.10. (Normalizer). If $H \leq G$, then the normalizer of H in G, denoted by $N_{G}(H)$, is

$$
N_{G}(H)=\left\{a \in G: a H a^{-1}=H\right\} .[\operatorname{Rot} 12]
$$

Definition 1.11. (Centralizer). If $a \in G$, then the centralizer of a in G, denoted by $C_{G}(a)$, is the set of all $x \in G$ which commute with a. [Rot12]

Note 1.12. An isomorphism is a homomorphism that is also bijection. We say that G is isomorphic to H denoted by $G \cong H$, if there exist an isomorphism $\phi: G \rightarrow H$. [Rot12]

Definition 1.13. (Homomorphism). Let G and H be groups. A map $\phi: G \rightarrow H$ is a homomorphism if, for all $\alpha, \beta \in G$,

$$
\phi(\alpha \beta)=\phi(\alpha) \phi(\beta) .[\operatorname{Rot} 12]
$$

Theorem 1.14. (First Isomorphism Theorem (F.I.T)). Let $\phi: G \rightarrow H$ be a homomorphism with ker ϕ. Then

$$
\begin{aligned}
& \bullet \operatorname{ker} \phi \unlhd G \\
& \bullet G / \operatorname{ker} \phi \cong \operatorname{img} \phi .[\operatorname{Rot12]}
\end{aligned}
$$

Theorem 1.15. (Second Isomorphism Theorem).

Let N and T be subgroups of G with N normal. Then $N \cap T$ is normal in T and $T /(N \cap T) \cong N T / N .[\operatorname{Rot12]}$

Theorem 1.16. (Third Isomorphism Theorem).

Let $K \leq H \leq G$, where both K and H are normal subgroups of G. Then H / K is a normal subgroup of G / K and

$$
(G / K)(H / K) \cong G / H .[\operatorname{Rot} 12]
$$

Definition 1.17. (Monomial Character). Let G be a finite group and $H \leq G$. The character X of G is monomial if $X=\lambda^{G}$, where λ is a linear character of H. [Led87]

Definition 1.18. (Character). Let $A(x)=\left(a_{i j}(x)\right)$ be a matrix representation of G of degree m. We consider the characteristic polynomial of $A(x)$, namely

$$
\operatorname{det}(\lambda I-A(x))=\left(\begin{array}{cccc}
\lambda-a_{11}(x) & -a_{12}(x) & \cdots & -a_{1 m}(x) \\
\lambda-a_{11}(x) & -a_{12}(x) & \cdots & -a_{1 m}(x) \\
\cdots & \cdots & & \cdots \\
\lambda-a_{m 1}(x) & -a_{m 2}(x) & \cdots & \lambda-a_{m m}(x)
\end{array}\right)
$$

This is a polynomial of degree m in λ, and inspection shows that the coefficient of $-\lambda^{m-1}$ is equal to

$$
\phi(x)=a_{11}(x)+a_{22}(x)+. .+a_{m m}(x)
$$

It is customary to call the right-hand side of this equation the trace of $A(x)$, abbreviated to $\operatorname{tr} A(x)$, so that

$$
\phi(x)=\operatorname{tr} A(x)
$$

We regard $\phi(x)$ as a function on G with values in K, and we call it the character of $A(x)$. [Led87]

Theorem 1.19. The number of irreducible character of G is equal to the number of conjugacy classes of G. [Led87]

Definition 1.20. (Degree of a Character). The sum of squares of the degrees of the distinct irreducible characters of G is equal to $|G|$. The degree of a character χ is $\chi(1)$. Note that a character whose degree is 1 is called a linear character. [Led87]

Definition 1.21. (Lifting Process). Let N be a normal subgroup of G and suppose that $A_{0}(N x)$ is a representation of degree m of the group G / N. Then $A(x)=A_{0}(N x)$ defines a representation of G / N lifted from G / N. If $\phi_{0}(N x)$ is a character of $A_{0}(N x)$, then $\phi(x)=\phi_{0}(N x)$ is the lifted character of $A(x)$. Also, if $u \in N$, then $A(u)=I_{m}$, $\phi(u)=m=\phi(1)$. The lifting process preserves irreducibility. [Led87]

Definition 1.22. (Induced Character)

Let $H \leq G$ and $\phi(u)$ be a character of H and define $\phi(x)=0$ if $x \in H$, then

$$
\phi^{G}(x)=\left\{\begin{array}{l}
\phi(x), x \in H \\
0, x \notin H
\end{array}\right.
$$

is an induced character of G. [Led87]

Definition 1.23. (Formula for Induced Character).

Let G be a finite group and H be a subgroup such that $[G: H]=n$. Let C_{α}, $\alpha=1,2, \cdots m$ be the conjugacy classes of G with $\left|C_{\alpha}\right|=h_{\alpha}, \alpha=1,2, \cdots m$. Let ϕ be a character of H and ϕ^{G} be the character of G induced from the character ϕ of H up to G. The values of ϕ^{G} on the m classes of G are given by:

$$
\phi_{\alpha}^{G}=\frac{n}{h_{\alpha}} \sum_{w \in C_{\alpha} \cap H} \phi(w), \alpha=1,2,3, \cdots, m .[\text { Led } 87]
$$

1.2 Permutation Progenitor of A_{5}

We want to write a permutation progenitor of $2^{* 5}: A_{5}$, where our control group is $N=A_{5}$. First, we write a presentation of A_{5} which is $G\langle x, y\rangle=<x, y \mid x^{2}=$ $y^{3}=(x y)^{5}=1>$. We check in Magma if the above presentation gives A_{5}.

```
> G<x,y>:=Group< x,y | x^2 = y^3 = (x*y)^5 = 1 >;
> f,G1,k:=CosetAction(G,sub<G|Id(G)>);
> s,t:=IsIsomorphic(G1,Alt(5));s;
true
```

Moreover, the corresponding permutation representation is $N=<x, y>$, where $x=$ $(1,2)(3,4)$ and $y=(1,3,5)$. Now we add the free product $2^{* 5}\left(\left|t_{i}^{\prime} s\right|=2\right)$ to this group to form our progenitor. Hence, a presentation for the progenitor $2^{* 5}: N$ is given by $<x, y, t \mid x^{2}, y^{3},(x y)^{5}, t^{2},\left(t, N^{1}\right)>$, where $t \sim t_{1} . N^{1}$ is the point stabilizer of 1 , and $\left(t, N^{1}\right)=1$ means that $1^{g}=1 \forall g \in N^{1}$. Note that $1^{g}=1 \forall g \in N^{1}$ implies t has [$N: N^{1}$] conjugates in N. Using Magma, we can see that the point stabilizer of 1 in N is equal to $<(2,3,4),(3,4,5)$. Now we use the Schreier System to convert the permutations into words. Thus, $N^{1}=<y x y^{-1} x y^{-1}, y^{-1} x y^{-1} x y x y^{-1}>$ (see below).

```
>G<x,y>:=Group< x,y | x^2 = y^3 = (x*y)^5 = 1>;
> S:=Alt(5);
> xx:=S! (1,2) (3,4);
> yy:=S! (1,3,5);
> N:=sub<S|xx,yy>;
> N1:=Stabiliser(N,1);
> N1;
Permutation group N1 acting on a set of cardinality 5
Order = 12 = 2^2 * 3
    (2, 3, 4)
    (3, 4, 5)
> Sch:=SchreierSystem(G,sub<G|Id(G)>);
> ArrayP:=[Id(N): i in [1..60]];
> for i in [2..60] do
for> P:=[Id(N): l in [1..#Sch[i]]];
for> for j in [1..#Sch[i]] do
for|for> if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
for|for> if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
for|for> if Eltseq(Sch[i])[j] eq -2 then P[j]:=yy^-1; end if;
for|for> end for;
for> PP:=Id(N);
for> for k in [1..#P] do
for|for> PP:=PP*P[k]; end for;
for> ArrayP[i]:=PP;
for> end for;
> for i in [1..60]do if ArrayP[i] eq N! (2,3,4) then Sch[i];
end if;
for> end for;
y * x * y^-1 * x * y^-1
> for i in [1..60]do if ArrayP[i] eq N! (3,4,5) then Sch[i];
end if;
for> end for;
y^-1 * x * y^-1 * x * y * x * y^-1
```

So, a presentation of the progenitor $G=2^{* 4}: N$ is given by $\left.G<x, y, t\right\rangle:=$ Group $<x, y, t \mid x^{2}, y^{3},(x y)^{5}, t^{2},\left(t, y x y^{-1} x y^{-1}\right),\left(t, y^{-1} x y^{-1} x y x y^{-1}\right)>$. This progenitor is infinite. In order to find find finite images of $2^{* 5}: N$ we must factor it by the first order relations.

1.2.1 Factoring $2^{* 5}: A_{5}$ by First Order Relations

The first order relations are written of the form $\left(\pi t_{i}^{a}\right)^{b}=1$, where $\pi \in N$ and w is word in the $t_{i}^{\prime} s$. In order to find these relations, we compute the conjugacy classes of $N=A_{5}$, as show below:

Table 1.1: Conjugacy Classes of A_{5}

Class Number	Order	Class Representative	Length
$[1]$	1	e	1
$[2]$	2	$(1,2)(3,4)$	15
$[3]$	3	$(1,2,3)$	20
$[4]$	5	$(1,2,3,4,5)$	12
$[4]$	5	$(1,3,4,5,2)$	12

Next, we need to compute the centralizer of each class representative in $N=A_{5}$ and then find the orbits of the corresponding centralizer. The centralizer and their orbits on $\{1,2,3,4,5\}$ are given below.

Table 1.2: Centralizer of A_{5}

Class Num	Class Rep	Cent(N,Class Rep)	Orbits
$[2]$	$(1,2)(3,4)$	$\langle(1,2)(3,4),(1,3)(2,4)\rangle$	$\{1,2,3,4\},\{4\},\{5\}$
$[3]$	$(1,2,3)$	$<(1,2,3)>$	$\{1,2,3\}\{4\},\{5\}$
$[4]$	$(1,2,3,4,5)$	$<(1,2,3,4,5)\rangle$	$\{1,2,3,4,5\}$
$[5]$	$(1,3,4,5,2)$	$<(1,3,4,5,2)\rangle$	$\{1,3,4,5,2\}$

Thus, we use the table above to obtain the following relations of $N=A_{5}$:

$$
\begin{gathered}
(1,2)(3,4) t_{1}=x t \\
(1,2)(3,4) t_{4}=x t^{y x} \\
(1,2)(3,4) t_{5}=x t^{y^{-1}} \\
(1,2,3) t_{1}=y x y x y^{-1} x t
\end{gathered}
$$

$$
\begin{gathered}
(1,2,3) t_{4}=y x y x y^{-1} x t^{y x}, \\
(1,2,3) t_{5}=y x y x y^{-1} x t^{y^{-1}}, \\
(1,2,3,4,5) t_{1}=x y t, \\
(1,3,4,5,2) t_{1}=x y^{-1} x y x y^{-1} x t .
\end{gathered}
$$

Thus, a presentation of the progenitor of $G=2^{* 5}: A_{5}$ factored by all relations of the first order is

$$
\begin{aligned}
& G<x, y, t>:=G r o u p<x, y, t \mid x^{2}, y^{3},(x * y)^{5}, t^{2},\left(t, y x y^{-} 1 x y^{-1}\right),\left(t, y^{-1} x y^{-1} x y x y^{-1}\right), \\
& (x t)^{a},\left(x y^{y^{-1}}\right)^{b},\left(y x y x y^{-1} x t\right)^{c},\left(y x y x y^{-1} x t^{(y x)}\right)^{d},\left(y x y x y^{-} 1 x t^{\left(y^{-1}\right)}\right)^{e},(x y t)^{f}, \\
& \left(x y^{-1} x y x y^{-1} x t\right)^{g}>
\end{aligned}
$$

Hence, the table below shows some finite images of the progenitor $2^{* 5}: A_{5}$ factored by all relations of the first order.

Table 1.3: Some Finite Images of the Progenitor $2^{* 5}: A_{5}$

a	b	c	d	e	f	g	Order of G	Shape of G
0	0	0	0	0	0	$\mathbf{5}$	1920	$2\left(A_{5}: 2^{4}\right)$
0	0	0	0	0	0	$\mathbf{6}$	720	$A_{6}: 2$
0	0	0	0	0	0	$\mathbf{7}$	175560	J_{1}

1.3 Monomial Progenitor $11^{* 2}:_{m} D_{10}$

Given that D_{10} has a monomial irreducible representation in dimension 2, write a progenitor for $11^{* 2}:_{m} D_{10}$. Lets show that a presentation for D_{10} is given as $<x, y \mid x^{5}=y^{2}=(x y)^{2}=1>$.

Proof. Given $D_{10}=<(1,2,3,4,5),(1,5)(2,4)>$. Let F be a free group with basis $X=\{x, y\}$. Define a homomorphism

$$
\phi: F \longrightarrow D_{10}
$$

$$
\text { by } \phi(x)=(1,2,3,4,5) \text { and } \phi(y)=(1,5)(2,4)
$$

From Theorem 1.6, we have ϕ is an onto homomorphism. Let $G=F / R$, where $R=<$ $x^{5}, y^{2},(x y)^{2}>\left(\right.$ in $\left.G, x^{5}=1, y^{2}=1,(x y)^{2}=1\right)$. Thus,

$$
\phi: F \xrightarrow[\text { onto }]{\text { homo. }} D_{10} .
$$

We know $F / \operatorname{ker} \phi \cong D_{10}$. Now we want to show that $R \leq k e r \phi$. We compute the following:

$$
\begin{aligned}
& \phi\left(x^{5}\right)=(\phi(x))^{5}=((1,2,3,4,5))^{5}=1 \\
& \Longrightarrow x^{5} \in \operatorname{ker} \phi, \\
& \phi\left(y^{2}\right)=(\phi(y))^{2}=((1,5)(2,4))^{2}=1 \\
& \Longrightarrow y^{2} \in \operatorname{ker} \phi, \\
& \phi\left((x y)^{2}\right)=(\phi(x) \phi(y))^{2}=((1,2,3,4,5)(1,5)(2,4))^{2}=1 \\
& \Longrightarrow(x y)^{2} \in \operatorname{ker} \phi .
\end{aligned}
$$

So, $x^{5}, y^{2},(x y)^{2} \in \operatorname{ker} \phi$. Thus, $\left\langle x^{5}, y^{2},(x y)^{2}>=R \cong \operatorname{ker} \phi\right.$,

$$
\begin{aligned}
|F / R| & \geq|F / \operatorname{ker} \phi| \quad \text { (since } \mathrm{R} \text { and } \operatorname{ker} \phi \text { are normal) } \\
\Longrightarrow|F / R| & \geq\left|D_{10}\right|=10 \\
\Longrightarrow|G| & \geq 10 .
\end{aligned}
$$

Now we need to show $|G| \leq 10$. That is to show

$$
G=F / R \leq\left\{R, R x, R x^{2}, R x^{3}, R x^{4}, R y, R x y, R x^{2} y, R x^{3} y, R x^{4} y\right\} .
$$

We need to show that the above set is closed under right multiplication by x and y.
(i) Show $\left\{R, R x, R x^{2}, R x^{3}, R x^{4}, R y, R x y, R x^{2} y, R x^{3} y, R x^{4} y\right\}$ is closed under right multiplication by y.

$$
\text { (1) } \begin{aligned}
(R x y) y=R x y^{2} & =x R y^{2} \quad(\text { since } \mathrm{R} \text { is normal) } \\
& =x R \quad\left(\text { since } y^{2} \in R\right) \\
& =R x \quad \text { belongs to the set above. }
\end{aligned}
$$

(2) $\left(R x^{2} y\right) y=R x^{2} y^{2}=x^{2} R y^{2} \quad$ (since R is normal)

$$
\begin{aligned}
& \left.=x^{2} R \quad \text { (since } y^{2} \in R\right) \\
& =R x^{2} \text { belongs to the set above. }
\end{aligned}
$$

(3) $\left(R x^{3} y\right) y=R x^{3} y^{2}=x^{3} R y^{2} \quad$ (since R is normal)

$$
\begin{aligned}
& \left.=x^{3} R \quad \text { (since } y^{2} \in R\right) \\
& =R x^{3} \text { belongs to the set above. }
\end{aligned}
$$

(4) $\left(R x^{4} y\right) y=R x^{4} y^{2}=x^{4} R y^{2} \quad$ (since R is normal)

$$
=x^{4} R \quad\left(\text { since } y^{2} \in R\right)
$$

$$
=R x^{4} \text { belongs to the set above. }
$$

So $\left\{R, R x, R x^{2}, R x^{3}, R x^{4}, R y, R x y, R x^{2} y, R x^{3} y, R x^{4} y\right\}$ is closed under right multiplication by y.
(ii) Show $\left\{R, R x, R x^{2}, R x^{3}, R x^{4}, R y, R x y, R x^{2} y, R x^{3} y, R x^{4} y\right\}$ is closed under right multiplication by x.

$$
\text { (1) } \begin{aligned}
\text { Note: } R(x y)^{2} & =R \quad\left(\text { since }(x y)^{2} \in R\right) \\
\Longrightarrow R x y x y & =R \\
\Longrightarrow x R y x & =R y^{-1} \\
\Longrightarrow R y x & =x^{-1} R y^{-1} \\
\Longrightarrow R y x & =R x^{-1} y^{-1} .
\end{aligned}
$$

Then $R y x=R x^{4} R y$ since $R x^{5}=R \Longrightarrow R x^{4}=R x^{-1}$ and $R y^{2}=R \Longrightarrow R y=R y^{-1}$. Thus, $R y x=R x^{4} y$ belongs to the set above.

$$
\text { (2) } \begin{aligned}
R x y x & =x R y x \quad \text { (since } \mathrm{R} \text { is normal) } \\
& =x R x^{4} y \\
& =R x^{5} y \\
& =R y \text { belongs to the set above. }
\end{aligned}
$$

(3) $\left(R x^{2} y\right) x=R x^{2} y x \quad$ (since R is normal)

$$
\begin{aligned}
& =x^{2} R y x \\
& =x^{2} R x^{4} y \\
& =R x^{6} y \\
& =R x y \text { belongs to the set above. }
\end{aligned}
$$

$$
\text { (4) } \begin{aligned}
\left(R x^{3} y\right) x & =R x^{3} y x \quad \text { (since } \mathrm{R} \text { is normal) } \\
& =x^{3} R y x \\
& =x^{3} R x^{4} y \\
& =R x^{7} y \\
& =R x^{2} y \text { belongs to the set above. }
\end{aligned}
$$

(5) $\left(R x^{4} y\right) x=R x^{4} y x \quad$ (since R is normal)

$$
=x^{4} R y x
$$

$$
=x^{4} R x^{4} y
$$

$$
=R x^{8} y
$$

$$
=R x^{3} y \text { belongs to the set above. }
$$

So $\left\{R, R x, R x^{2}, R x^{3}, R x^{4}, R y, R x y, R x^{2} y, R x^{3} y, R x^{4} y\right\}$ is closed under right multiplication by x.

$$
\begin{aligned}
& \text { Hence }|G|=10 \text {. So } G \cong D_{10}, \\
& \qquad \begin{aligned}
& \phi: F \xrightarrow[\text { onto }]{\text { hooo }} D_{10} \\
& F / \text { ker } \phi \cong D_{10} .
\end{aligned}
\end{aligned}
$$

By Third Isomorphism Theorem, we have an onto homomorphism

$$
\begin{gathered}
\psi: F / R \xrightarrow[\text { onto }]{\text { homo }} F / \text { ker } \phi \\
R \leq \text { ker } \phi \leq F \\
|F / R| \leq|F / \operatorname{ker} \phi| \\
F / R / \operatorname{ker} \psi \cong F / \operatorname{ker} \phi
\end{gathered}
$$

with $F / R=10$ and $F / \operatorname{ker} \phi=10$. So $\operatorname{ker} \psi=1$. Thus, $F / R \cong F / \operatorname{ker} \phi \cong D_{10}$.

So D_{10} has a presentation of $\left\{x, y \mid x^{5}=y^{2}=(x y)^{2}=1\right\}$.
Given a presentation for D_{10} is $G<x, y>=<x, y \mid x^{5}=y^{2}=(x y)^{2}=1>$ and a corresponding permutation representation is $N=\langle x, y>$, where $x=(1,2,3,4,5)$ and $y=(1,5)(2,4)$. By using Magma we get the character table of $G=D_{10}$.

Table 1.4: Character Table of $G=D_{10}$

Conjugacy Classes $=C_{\alpha}$	1	$(1,5)(2,4)$	$(1,2,3,4,5)$	$(1,3,5,2,4)$
Order $=h_{\alpha}$	1	5	2	2
λ_{1}	1	1	1	1
λ_{2}	1	-1	1	1
λ_{3}	2	0	$W 1$	$W 1 \# 2$
λ_{4}	2	0	$W 1 \# 2$	$W 1$

Explanation of Character Value Symbol

\# denotes algebraic conjugation, that is, $\# k$ indicates replacing the root of unity w by w^{k}

$$
\begin{gathered}
W 1=\operatorname{zeta}(5)_{5}^{3}+\operatorname{zeta}(5)_{5}^{2} \\
W 1 \# 2=\operatorname{zeta}(5)_{5}+\operatorname{zeta}(5)_{5}^{4}
\end{gathered}
$$

Now we find a subgroup H of D_{10} of index $n=2$. We use the following formula, $n=\frac{\left|D_{5}\right|}{|H|}=\frac{10}{|H|}=2$, that implies $|H|=5$. Let $H=\langle 1,(1,2,3,4,5)\rangle$. The character table of $H=\mathbb{Z}_{5}$ is given below.

Table 1.5: Character Table of $H=\mathbb{Z}_{5}$

Conjugacy Classes	1	$(1,2,3,4,5)$	$(1,3,5,2,4)$	$(1,4,2,5,3)$	$(1,5,4,3,2)$
Order	1	1	1	1	1
ϕ_{1}	1	1	1	1	
ϕ_{2}	1	$Z 1$	$Z 1 \# 2$	$Z 1 \# 3$	$Z 1 \# 4$
ϕ_{3}	1	$Z 1 \# 2$	$Z 1 \# 4$	$Z 1$	$Z 1 \# 3$
ϕ_{4}	1	$Z 1 \# 3$	$Z 1$	$Z 1 \# 4$	$Z 1 \# 2$
ϕ_{5}	1	$Z 1 \# 4$	$Z 1 \# 3$	$Z 1 \# 2$	$Z 1$

where $Z 1=z e t a(5)_{5}$.
Now we look at the finite smallest field that has fifth roots of unity, which is

$$
\mathbb{Z}_{11} \backslash\{0\}=\{1,2,3,4,5,6,7,8,9,10\} .
$$

Let $Z 1=\operatorname{zeta}(5)_{5}=4$.

So $Z 1 \# 2=\left(z e t a(5)_{5}\right)^{2} \equiv 5(\bmod 11)$,

$$
\begin{aligned}
Z 1 \# 3 & =\left(z \operatorname{eta}(5)_{5}\right)^{3} \equiv 9(\bmod 11), \text { and } \\
Z 1 \# 4 & =\left(\operatorname{zeta}(5)_{5}\right)^{4} \equiv 3(\bmod 11)
\end{aligned}
$$

Next we use the following formula

$$
\phi_{\alpha}^{G}=\frac{n}{h_{\alpha}} \sum_{w \in C_{\alpha} \cap H} \phi(w),
$$

to induce the character ϕ_{2} of H up to D_{10}. We get
$\phi_{2}^{G}(1)=\frac{n}{h_{1}} \sum_{w \in C_{1} \cap H} \phi_{2}(w)=\frac{2}{1} \sum_{w \in 1 \cap H} \phi_{2}(w)$

$$
\begin{aligned}
& =2 \sum_{w \in\{1\}} \phi_{2}(w)=2 \phi_{2}(1)=2(1) \\
& =2 .
\end{aligned}
$$

$$
\phi_{2}^{G}((1,5)(2,4))=\frac{n}{h_{2}} \sum_{w \in C_{2} \cap H} \phi_{2}(w)=\frac{2}{5} \sum_{w \in(1,5)(2,4) \cap H} \phi_{2}(w)
$$

$$
=\frac{2}{5} \sum_{w \in(1,5)(2,4) \cap H=\emptyset} \phi_{2}(w)=\frac{2}{5}(0)
$$

$$
=0
$$

$$
\phi_{2}^{G}((1,2,3,4,5))=\frac{n}{h_{3}} \sum_{w \in C_{3} \cap H} \phi_{2}(w)=\frac{2}{2} \sum_{w \in(1,2,3,4,5) \cap H} \phi_{2}(w)
$$

$$
=1 \sum_{w \in\{(1,2,3,4,5),(1,5,4,3,2)\}} \phi_{2}(w)
$$

$$
=1\left(\phi_{2}(1,2,3,4,5)+\phi_{2}(1,5,4,3,2)\right)
$$

$$
=Z 1+Z 1 \# 4
$$

$$
=z e t a(5)_{5}+z e t a(5)_{5}^{4}
$$

$$
=W 1 \# 2 .
$$

$\phi_{2}^{G}((1,3,5,2,4))=\frac{n}{h_{4}} \sum_{w \in C_{4} \cap H} \phi_{2}(w)=\frac{2}{2} \sum_{w \in(1,3,5,2,4) \cap H} \phi_{2}(w)$

$$
=1 \sum_{w \in\{(1,3,5,2,4),(1,4,2,5,3)\}} \phi_{2}(w)
$$

$$
=1\left(\phi_{2}(1,3,5,2,4)+\phi_{2}(1,4,2,5,3)\right)
$$

$$
=Z_{1} \# 2+Z_{1} \# 3
$$

$$
=z e t a(5)_{5}^{3}+z e t a(5)_{5}^{2}
$$

$$
=W 1
$$

Thus, $\phi_{2}^{G}=\lambda_{4}$.

Hence the representation of H (respect to ϕ_{2}) yields:

$$
\begin{aligned}
B(1) & =1 \\
B(1,2,3,4,5) & =4 \\
B(1,3,5,2,4) & =5 \\
B(1,4,2,5,3) & =9 \\
B(1,5,4,3,2) & =3 \\
B(g) & =0 \quad \text { if } g \notin G .
\end{aligned}
$$

Since $H \leq G$, the right transversals of H in G (or a complete set of right coset representatives) are $t_{1}=e$ and $t_{2}=(1,5)(2,4)$

$$
\Longrightarrow G=H e \cup H(1,5)(2,4) .
$$

Now we use the formula for monomial representation to find $A(x)$ and $A(y)$, where $x=(1,2,3,4,5)$ and $y=(1,5)(2,4)$:

$$
\begin{aligned}
& \begin{array}{l}
A(x)=\left[\begin{array}{cc}
B\left(t_{1} x t_{1}^{-1}\right) & B\left(t_{1} x t_{2}^{-1}\right) \\
B\left(t_{2} x t_{1}^{-1}\right) & B\left(t_{2} x t_{2}^{-1}\right)
\end{array}\right] \\
\quad=\left[\begin{array}{cc}
B(1,2,3,4,5) & B((1,2,3,4,5)(1,5)(2,4)) \\
B((1,5)(2,4)(1,2,3,4,5)) & B((1,5)(2,4)(1,2,3,4,5)(1,5)(2,4))
\end{array}\right] \\
\quad=\left[\begin{array}{ll}
B(1,2,3,4,5) & B((1,4)(3,2)) \\
B((5,2)(3,4)) & B(1,5,4,3,2)
\end{array}\right] \\
\quad=\left[\begin{array}{ll}
4 & 0 \\
0 & 3
\end{array}\right] \\
\text { Thus, } A(x)=\left[\begin{array}{ll}
4 & 0 \\
0 & 3
\end{array}\right] .
\end{array} \text {. } \\
& \quad
\end{aligned}
$$

This matrix has 2 columns: label the columns 1 , and 2 as t_{1}, and t_{2}, respectively. The entries of the matrix are in \mathbb{Z}_{11}. Hence, $t_{i}^{\prime} s$ are of order 11 . We label t_{1}^{2} and t_{2}^{2} as 3 and $4 ; t_{1}^{3}$ and t_{2}^{3} as 5 and $6 ; t_{1}^{4}$ and t_{2}^{4} as 7 and $8 ; t_{1}^{5}$ and t_{2}^{5} as 9 and $10 ; t_{1}^{6}$ and t_{2}^{6} as 11 and $12 ; t_{1}^{7}$ and t_{2}^{7} as 13 and $14 ; t_{1}^{8}$ and t_{2}^{8} as 15 and $16 ; t_{1}^{9}$ and
t_{2}^{9} as 17 and $18 ; t_{1}^{10}$ and t_{2}^{10} as 19 and 20. As shown below:
Table 1.6: Labeling $t_{i} \mathrm{~S}$ of Order 11

1. t_{1}	2. t_{2}	3. t_{1}^{2}	4. t_{2}^{2}	5. t_{1}^{3}
6. t_{2}^{3}	7. t_{1}^{4}	8. t_{2}^{4}	$9 . t_{1}^{5}$	10. t_{2}^{5}
11. t_{1}^{6}	12. t_{2}^{6}	13. t_{1}^{7}	14. t_{2}^{7}	15. t_{1}^{8}
16. t_{2}^{8}	17. t_{1}^{9}	18. t_{2}^{9}	19. t_{1}^{10}	20. t_{2}^{10}

Now $A(x)$ is a monomial automorphism of $<t_{1}>*<t_{2}>$ given by $a_{i j}=$ $a \Longleftrightarrow t_{i} \rightarrow t_{j}^{a}$ Thus, $a_{11}=4$ or $t_{1} \rightarrow t_{1}^{4}$ and $a_{22}=3$ or $t_{2} \rightarrow t_{2}^{3}$. We use the chart above, to write down the permutation representation for $A(x)$.

Table 1.7: Permutations of the $t_{i}^{\prime} s$ using $A(x)$

t_{1}	t_{2}	t_{1}^{2}	t_{2}^{2}	t_{1}^{3}	t_{2}^{3}	t_{1}^{4}	t_{2}^{4}	t_{1}^{5}	t_{2}^{5}
1	2	3	4	5	6	7	8	9	10
\downarrow									
7	6	15	12	1	18	9	2	17	8
t_{1}^{6}	t_{2}^{6}	t_{1}^{7}	t_{2}^{7}	t_{1}^{8}	t_{2}^{8}	t_{1}^{9}	t_{2}^{9}	t_{1}^{10}	t_{2}^{10}
11	12	13	14	15	16	17	18	19	20
\downarrow									
3	14	11	20	19	4	5	10	13	16

So, $A(x)=\left(t_{1}, t_{1}^{4}, t_{1}^{5}, t_{1}^{9}, t_{1}^{3}\right)\left(t_{1}^{2}, t_{1}^{8}, t_{1}^{10}, t_{1}^{7}, t_{1}^{6}\right)\left(t_{2}, t_{2}^{3}, t_{2}^{9}, t_{2}^{5}, t_{2}^{4}\right)\left(t_{2}^{2}, t_{2}^{6}, t_{2}^{7}, t_{2}^{10}, t_{2}^{8}\right)$.
Then $A(x)=(1,7,9,17,5)(3,15,19,13,11)(2,6,18,10,8)(4,12,14,20,16)$.
Now $A(y)=\left[\begin{array}{ll}B\left(t_{1} y t_{1}^{-1}\right) & B\left(t_{1} y t_{2}^{-1}\right) \\ B\left(t_{2} y t_{1}^{-1}\right) & B\left(t_{2} y t_{2}^{-1}\right)\end{array}\right]$

$$
=\left[\begin{array}{cc}
B((1,5)(2,4)) & B((1,5)(2,4)(1,5)(2,4)) \\
B((1,5)(2,4)(1,5)(2,4)) & B((1,5)(2,4)(1,5)(2,4)(1,5)(2,4))
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
B((1,5)(2,4)) & B(1) \\
B(1) & B((1,5)(2,4))
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Thus, $A(y)=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
Now $A(y)$ is an automorphism (permutation) of $\left.\left\langle t_{1}\right\rangle *<t_{2}\right\rangle$ given by $a_{i j}=a \Longleftrightarrow t_{i} \rightarrow t_{j}^{a}$ Thus, $a_{12}=1$ or $t_{1} \rightarrow t_{2}$ and $a_{21}=1$ or $t_{2} \rightarrow t_{1}$.

Table 1.8: Permutations of the $t_{i}^{\prime} s$ using $A(y)$

t_{1}	t_{2}	t_{1}^{2}	t_{2}^{2}	t_{1}^{3}	t_{2}^{3}	t_{1}^{4}	t_{2}^{4}	t_{1}^{5}	t_{2}^{5}
1	2	3	4	5	6	7	8	9	10
\downarrow									
2	1	4	3	6	5	8	7	10	9
t_{1}^{6}	t_{2}^{6}	t_{1}^{7}	t_{2}^{7}	t_{1}^{8}	t_{2}^{8}	t_{1}^{9}	t_{2}^{9}	t_{1}^{10}	t_{2}^{10}
11	12	13	14	15	16	17	18	19	20
\downarrow									
12	11	14	13	16	15	18	17	20	19

Using the chart above, we get the following permutation representation for $A(y)=\left(t_{1}, t_{2}\right)\left(t_{1}^{2}, t_{2}^{2}\right)\left(t_{1}^{3}, t_{2}^{3}\right)\left(t_{1}^{4}, t_{2}^{4}\right)\left(t_{1}^{5}, t_{2}^{5}\right)\left(t_{1}^{6}, t_{2}^{6}\right)\left(t_{1}^{7}, t_{2}^{7}\right)\left(t_{1}^{8}, t_{2}^{8}\right)\left(t_{1}^{9}, t_{2}^{9}\right)\left(t_{1}^{10}, t_{2}^{10}\right)$.
Then

$$
A(y)=(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20) .
$$

Thus, $D_{10}=<A(x), A(y)>$

$$
\begin{aligned}
&=<(1,7,9,17,5)(3,15,19,13,11)(2,6,18,10,8)(4,12,14,20,16), \\
&(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)>
\end{aligned}
$$

We are now in a position to give a monomial presentation of the progenitor $11^{\star 2}: m D_{10}$. A presentation of D_{10} is $<x, y \mid x^{5}=y^{2}=(x * y)^{2}=1>$. We fix one of the two $t_{i}^{\prime} s$, say t_{1} and call it t. Next, we compute the normalizer of the subgroup $<t_{1}>$ in D_{10}. Therefore we compute the set stabilizer in D_{10} of the set $\left\{t_{1}, t_{1}^{2}, t_{1}^{3}, t_{1}^{4}, t_{1}^{5}, t_{1}^{6}, t_{1}^{7}, t_{1}^{8}, t_{1}^{9}, t_{1}^{10}\right\}=\{1,3,5,7,9,11,13,15,17,19\}$ which is $<$ $(1,9,5,7,17)(2,18,8,6,10)(3,19,11,15,13)(4,14,16,12,20)>$ and that $x^{2}=(1,9,5,7,17)(2,18,8,6,10)(3,19,11,15,13)(4,14,16,12,20)$. Hence, a presentation for the monomial progenitor $11^{\star 2}:_{m} D_{10}$ is given by

$$
G<x, y, t>:=\text { Group }<x, y, t \mid x^{5}=y^{2}=(x * y)^{2}=1, t^{11}, t^{x^{2}}=t^{5}>
$$

Next we add the relation, $t * t^{y}=t^{y} * t$ to the progenitor of D_{10}, to verify if the monomial progenitor $11^{\star 2}:_{m} D_{10}$ is correct. By using MAMGA we verified that the monomial progenitor, $G<x, y, t>:=$ Group $<x, y, t \mid x^{5}, y^{2},(x * y)^{2}, t^{1} 1, t^{x^{2}}=$

```
t },(t,\mp@subsup{t}{}{y})>\mathrm{ is correct :
>G< x,y,t >:= Group< x,y,t|x^5 = y^2 = (x*y)^2 = 1,t^11,
    t^}(\mp@subsup{x}{}{\wedge}2)=t^5, t*t^y=t^y*t>; 
f, G1,k:=CosetAction(G,sub<G|x,Y>);
> #G;
1210
    #k;
1
> IN:=sub<G1|f(x),f(y)>;
> T:=sub<G1|f(t)>;
> #T;
11
> Normaliser(IN,T);
Permutation group acting on a set of cardinality 121
Order = 5
> Index(IN,Normaliser(IN,T));
2
```

Hence, we have a presentation of the progenitor $11^{* 2}:_{m} D_{10}$
$G<x, y, t>:=G r o u p<x, y, t \mid x^{\wedge} 5=y^{\wedge} 2=(x * y)^{\wedge} 2=1, t^{\wedge} 11$,
$t^{\wedge}\left(x^{\wedge} 2\right)=t \wedge 5>$

Next, we apply the first order relation to the progenitor $11^{* 2}:_{m} D_{10}$.

1.3.1 $\quad 11^{* 2}:_{m} D_{10}$ Factor by First Order Relations

Given a progenitor of the form $m^{* n}: N$ and $p^{* n}: N$.
All relations of the first order that $m^{* n}: N$ and $p^{* n}: N$ can be factored by are obtain as follows. Compute the conjugacy classes on N. Now we compute the centralizers of the representatives of each non-identity class. Then, we determine the orbits of the centralizer. Once we have the orbits we take the representative from each class and we right multiply by a t_{i}.

Consider the monomial progenitor of $11^{* 2}:_{m} D_{10}$ that has the following presentation

```
G< x,y,t >:= Group< x,y,t|x^5 = y^2 = (x*y)^2 = 1,t`11,
t^(x^2) =t^5>.
```

To compute all first order relations for the monomial progenitor $11^{* 2}:_{m} D_{10}$, we run the following code in MAGMA.

```
C:= Classes(N);
C;
C2:=Centraliser(N,N! (1,5) (2,4));
C2;
C3:=Centraliser(N,N!(1,2,3,4,5));
C3;
C4:=Centraliser(N,N!(1,3,5,2,4));
C4;
Set(C2);
Orbits(C2);
Set(C3);
Orbits(C3);
Set(C4);
Orbits(C4);
```

Then, we summarize the result in the table below.
Table 1.9: Conjugacy Classes of D_{10}

Classes	Centralizer	Orbits
$C_{2}=(1,5)(2,4)$	$<y>$	$\{1,5\},\{2,4\},\{3\}$
$C_{3}=(1,2,3,4,5)$	$<x>$	$\{1,2,3,4,5\}$
$C_{4}=(1,3,5,2,4)$	$<x^{2}>$	$\{1,3,5,2,4\}$

Next, we pick a representative from each orbit and we multiply by the representative from each class. Thus, the all first order relations are

$$
(y t)^{a},\left(y t^{x}\right)^{b},\left(y t^{x^{2}}\right)^{c},(x t)^{d} \text {, and }\left(x^{2} t\right)^{e}, \text { where } t \sim t_{1} .
$$

Hence, we factor the monomial progenitor $11^{* 2}:_{m} D_{10}$ by the relations

$$
(y t)^{a},\left(y t^{x}\right)^{b},\left(y t^{x^{2}}\right)^{c},(x t)^{d} \text {, and }\left(x^{2} t\right)^{e},
$$

to obtained the following homomorphic images:
Table 1.10: Some Finite Images of the Progenitor $11^{* 2}:_{m} D_{10}$

a	b	c	d	e	Order of G	Shape of G
0	0	$\mathbf{3}$	0	0	660	$L_{2}(11)$
0	0	$\mathbf{4}$	0	0	6600	$\left(5 \times L_{2}(11)\right): 2$
0	$\mathbf{5}$	$\mathbf{6}$	0	0	435600	$L_{2}(11) \times L_{2}(11)$
0	$\mathbf{6}$	$\mathbf{5}$	0	0	1351680	$2\left(2^{10}: L_{2}(11)\right)$

1.4 Progenitor of $2^{* 7}: D_{14}$

We want to write a permutation progenitor of $2^{* 7}: D_{14}$ where our control group is $N=D_{14}$. A presentation of D_{14} is $\left\{x, y \mid x^{7}=y^{2}=(x y)^{2}=1\right\}$. We are going to prove the presentation of D_{14}.

Proof. Given $D_{14}=<(1,2,3,4,5,6,7),(1,6)(2,5)(3,4)>$. Let F be a free group with basis $X=\{x, y\}$. Define a homomorphism

$$
\phi: F \longrightarrow D_{14}
$$

by $\phi(x)=(1,2,3,4,5,6,7)$ and $\phi(y)=(1,6)(2,5)(3,4)$.
From Theorem 1.6, we have ϕ is an onto homomorphism. Let $G=F / R$, where $R=<$ $x^{7}, y^{2},(x y)^{2}>\left(\right.$ in $\left.G, x^{7}=1, y^{2}=1,(x y)^{2}=1\right)$. Thus,

$$
\phi: F \xrightarrow[\text { onto }]{\text { homo. }} D_{14}
$$

We know $F / \operatorname{ker} \phi \cong D_{14}$. Now we want to show that $R \leq k e r \phi$. We compute the following:

$$
\begin{aligned}
& \phi\left(x^{7}\right)=(\phi(x))^{7}=((1,2,3,4,5,6,7))^{5}=1 \\
& \Longrightarrow x^{7} \in \operatorname{ker} \phi, \\
& \phi\left(y^{2}\right)=(\phi(y))^{2}=((1,6)(2,5)(3,4))^{2}=1 \\
& \Longrightarrow y^{2} \in \operatorname{ker} \phi, \\
& \phi\left((x y)^{2}\right)=(\phi(x) \phi(y))^{2}=((1,2,3,4,5,6,7)(1,6)(2,5)(3,4))^{2}=1 \\
& \Longrightarrow(x y)^{2} \in \operatorname{ker} \phi .
\end{aligned}
$$

So $x^{7}, y^{2},(x y)^{2} \in \operatorname{ker} \phi$. Thus, $\left\langle x^{7}, y^{2},(x y)^{2}>=R \cong \operatorname{ker} \phi\right.$,

$$
\begin{aligned}
|F / R| & \geq|F / \operatorname{ker} \phi| \quad \text { (since } \mathrm{R} \text { and } \text { ker } \phi \text { are normal) } \\
\Longrightarrow|F / R| & \geq\left|D_{14}\right|=14 \\
\Longrightarrow|G| & \geq 14
\end{aligned}
$$

Now we need to show $|G| \leq 14$. That is to show

$$
\begin{aligned}
& G=F / R \leq\left\{R, R x, R x^{2}, R x^{3}, R x^{4}, R x^{5}, R x^{6}, R y, R x y, R x^{2} y,\right. \\
& \left.R x^{3} y, R x^{4} y, R x^{5} y, R x^{6} y\right\}
\end{aligned}
$$

We need to show that the above set is closed under right multiplication by x and y.
(i) Show
$\left\{R, R x, R x^{2}, R x^{3}, R x^{4}, R x^{5}, R x^{6}, R y, R x y, R x^{2} y, R x^{3} y, R x^{4} y, R x^{5} y, R x^{6} y\right\}$ is closed under right multiplication by y.
(1) $(R x y) y=R x y^{2}=x R y^{2} \quad$ (since R is normal)

$$
\begin{aligned}
& =x R \quad\left(\text { since } y^{2} \in R\right) \\
& =R x \quad \text { belongs to the set above. }
\end{aligned}
$$

(2) $\left(R x^{2} y\right) y=R x^{2} y^{2}=x^{2} R y^{2} \quad$ (since R is normal)

$$
\begin{aligned}
& =x^{2} R \quad\left(\text { since } y^{2} \in R\right) \\
& =R x^{2} \text { belongs to the set above. }
\end{aligned}
$$

(3) $\left(R x^{3} y\right) y=R x^{3} y^{2}=x^{3} R y^{2} \quad$ (since R is normal)

$$
\begin{aligned}
& \left.=x^{3} R \quad \text { (since } y^{2} \in R\right) \\
& =R x^{3} \quad \text { belongs to the set above. }
\end{aligned}
$$

(4) $\left(R x^{4} y\right) y=R x^{4} y^{2}=x^{4} R y^{2} \quad$ (since R is normal)

$$
=x^{4} R \quad\left(\text { since } y^{2} \in R\right)
$$

$$
=R x^{4} \text { belongs to the set above. }
$$

(5) $\left(R x^{5} y\right) y=R x^{5} y^{2}=x^{5} R y^{2} \quad$ (since R is normal)

$$
=x^{5} R \quad\left(\text { since } y^{2} \in R\right)
$$

$$
=R x^{5} \text { belongs to the set above. }
$$

(6) $\left(R x^{6} y\right) y=R x^{6} y^{2}=x^{6} R y^{2} \quad$ (since R is normal)

$$
\begin{aligned}
& =x^{6} R \quad\left(\text { since } y^{2} \in R\right) \\
& =R x^{6} \text { belongs to the set above. }
\end{aligned}
$$

So $\left\{R, R x, R x^{2}, R x^{3}, R x^{4}, R x^{5}, R x^{6}, R y, R x y, R x^{2} y, R x^{3} y, R x^{4} y, R x^{5} y, R x^{6} y\right\}$
is closed under right multiplication by y.
(ii) Show
$\left\{R, R x, R x^{2}, R x^{3}, R x^{4}, R x^{5}, R x^{6}, R y, R x y, R x^{2} y, R x^{3} y, R x^{4} y, R x^{5} y, R x^{6} y\right\}$ is closed under right multiplication by x.
(1) Note: $R(x y)^{2}=R\left(\right.$ since $\left.(x y)^{2} \in R\right)$

$$
\begin{aligned}
\Longrightarrow R x y x y & =R \\
\Longrightarrow x R y x & =R y^{-1} \\
\Longrightarrow R y x & =x^{-1} R y^{-1} \\
\Longrightarrow R y x & =R x^{-1} y^{-1}
\end{aligned}
$$

Then $R y x=R x^{6} R y$ since $R x^{6}=R \Longrightarrow R x^{6}=R x^{-1}$ and $R y^{2}=R \Longrightarrow R y=R y^{-1}$. Thus, $R y x=R x^{6} y$ belongs to the set above.
(2) $R x y x=x R y x \quad$ (since R is normal)

$$
\begin{aligned}
& =x R x^{6} y \\
& =R x^{7} y \\
& =R y \text { belongs to the set above. }
\end{aligned}
$$

(3) $\left(R x^{2} y\right) x=R x^{2} y x$ (since R is normal)
$=x^{2} R y x$
$=x^{2} R x^{6} y$
$=R x^{8} y$
$=R x y$ belongs to the set above.
(4) $\left(R x^{3} y\right) x=R x^{3} y x \quad$ (since R is normal)

$$
\begin{aligned}
& =x^{3} R y x \\
& =x^{3} R x^{6} y \\
& =R x^{9} y \\
& =R x^{2} y \text { belongs to the set above. }
\end{aligned}
$$

(5) $\left(R x^{4} y\right) x=R x^{4} y x \quad$ (since R is normal)

$$
\begin{aligned}
& =x^{4} R y x \\
& =x^{4} R x^{6} y \\
& =R x^{10} y \\
& =R x^{3} y \text { belongs to the set above. }
\end{aligned}
$$

(6) $\left(R x^{5} y\right) x=R x^{5} y x \quad$ (since R is normal)

$$
=x^{5} R y x
$$

$$
=x^{5} R x^{6} y
$$

$$
=R x^{11} y
$$

$$
=R x^{4} y \text { belongs to the set above. }
$$

$$
\text { (7) } \begin{aligned}
\left(R x^{6} y\right) x & =R x^{6} y x \quad \text { (since } \mathrm{R} \text { is normal) } \\
& =x^{6} R y x \\
& =x^{6} R x^{6} y \\
& =R x^{12} y \\
& =R x^{5} y \text { belongs to the set above. }
\end{aligned}
$$

So $\left\{R, R x, R x^{2}, R x^{3}, R x^{4}, R x^{5}, R x^{6}, R y, R x y, R x^{2} y, R x^{3} y, R x^{4} y, R x^{5} y, R x^{6} y\right\}$ is closed under right multiplication by x.

$$
\text { Hence }|G|=14 \text {. So } G \cong D_{14} \text {, }
$$

$$
\begin{gathered}
\phi: F \xrightarrow[\text { onto }]{\text { homo }} D_{14} \\
F / \text { ker } \phi \cong D_{14} .
\end{gathered}
$$

By Third Isomorphism Theorem, we have an onto homomorphism

$$
\begin{gathered}
\psi: F / R \xrightarrow[\text { onto }]{\text { homo }} F / \text { ker } \phi \\
R \leq \text { ker } \phi \leq F \\
|F / R| \leq|F / \operatorname{ker} \phi| \\
F / R / \operatorname{ker} \psi \cong F / \operatorname{ker} \phi
\end{gathered}
$$

with $F / R=14$ and $F / \operatorname{ker} \phi=14$. So $\operatorname{ker} \psi=1$. Thus,

$$
F / R \cong F / \operatorname{ker} \phi \cong D_{14} .
$$

So D_{14} has a presentation of $\left\{x, y \mid x^{7}=y^{2}=(x y)^{2}=1\right\}$.

Moreover, the corresponding permutation representation is $N=D_{14}=<$ $x, y>$, where $x=(1,2,3,4,5,6,7)$ and $y=(1,6)(2,5)(3,4)$. Now we add the free product $2^{* 7}\left(\left|t_{i}^{\prime} s\right|=2\right)$ to this group to form our progenitor. Hence, a presentation for the progenitor $2^{* 7}: N$ is given by $\left\langle x, y, t \mid x^{7}, y^{2},(x y)^{2}, t^{2},\left(t, N^{7}\right)\right\rangle$, where $t \sim t_{7} . N^{7}$ is the point stabilizer of 7 , and $\left(t, N^{7}\right)=1$ means that $7^{g}=7 \forall g \in N^{7}$. Note that $7^{g}=7 \forall g \in N^{7}$ implies t has $\left[N: N^{7}\right]$ conjugates in N. Using Magma, we can see that the point stabilizer of 7 in N is equal to $\left.N^{7}=<(1,6)(2,5)(3,4)\right\rangle=\langle y>$.

Hence, a presentation of the progenitor $2^{* 7}: D_{14}$ is given by $G\langle x, y, t\rangle:=$ Group $<x, y, t \mid x^{7}, y^{2},(x y)^{2}, t^{2},(t, y)>$. Now we factor this progenitor by the following relations: $(x t)^{a},\left(x t t^{x}\right)^{b},\left(x y t^{x} t\right)^{c},(t t x t)^{d}$

In conclusion we obtained the following progenitor:
$<x, y, t \mid x^{7}, y^{2},(x y)^{2}, t^{2},(t, y),(x t)^{a},\left(x t t^{x}\right)^{b},\left(x y t^{x} t\right)^{c},(t t x t)^{d}>$. The table below shows some finite images of the progenitor $2^{* 7}: D_{14}$.

Table 1.11: Some Finite Images of the Progenitor $2^{* 7}: D_{14}$

a	b	c	d	Order of G	Shape of G
0	7	$\mathbf{2}$	0	196	$((7 \times 7): 2) 2$
6	0	$\mathbf{3}$	$\mathbf{6}$	79464	$P G L_{2}(43)$
0	7	$\mathbf{3}$	$\mathbf{7}$	9828	$L_{7}(27)$
0	5	$\mathbf{3}$	0	68880	$P G L_{2}(41)$
$\mathbf{3}$	8	$\mathbf{6}$	$\mathbf{9}$	336	$P G L_{2}(7)$
3	0	$\mathbf{7}$	$\mathbf{3}$	1092	$L_{2}(13)$
3	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{3}$	504	$L_{2}(8)$
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{1 0}$	$\mathbf{0}$	24360	$P G L_{2}(29)$
$\mathbf{4}$	$\mathbf{3}$	$\mathbf{8}$	8	672	$P G L_{2}(7) \times 2$
0	$\mathbf{2}$	$\mathbf{9}$	0	1008	$L_{2}(8) \times 2$
$\mathbf{3}$	7	0	$\mathbf{9}$	2184	$L_{2}(13) \times 2$
$\mathbf{3}$	0	$\mathbf{9}$	3	5040	$A_{7}: 2$
3	$\mathbf{8}$	0	$\mathbf{3}$	21504	$\left(2^{6} \bullet L_{2}(7)\right): 2$
0	$\mathbf{2}$	10	0	48720	$P G L_{2}(29) \times 2$
0	3	$\mathbf{4}$	0	4368	$P G L_{2}(13) \times 2$

In later chapter, we will construct some of the simple groups, given above, using the technique of double coset enumeration and prove their simplicity.

Chapter 2

Double Coset Enumeration and Factoring by the Center

2.1 Double Coset Enumeration Preliminaries

Definition 2.1. (Normal Subgroup). A subgroup $H \leq G$ is a normal subgroup, denoted by $H \unlhd G$, if $g \mathrm{Hg}^{-1}=H$ for every $g \in G$. [Rot12]

Definition 2.2. (Right Coset). If $H \leq G$ and if $k \in G$, then a right coset of H in G is the subset of G

$$
H k=\{h k: h \in H\}
$$

where k is a representative of $H k$. [Rot12]
Definition 2.3. (Index). If $H \leq G$, then the index of $H \in G$, denoted by $[G: H]$, is the number of single cosets of H in G. [Rot12]

Definition 2.4. (Order). If G is a group, then the order of G, denoted by $[G]$, is the number of elements in G. [Rot12]

Theorem 2.5. (Lagrance). If G is a finite group and $H \leq G$, then $|H|$ divides $|G|$ and $[G: H]=|G| /|H|$. [Rot12]

Definition 2.6. (Double Coset). Let H and K be subgroups of the group G and define a relation on G as follows:

$$
x \sim y \Longleftrightarrow \exists h \in H \text { and } k \in K \text { such that } y=h x k
$$

where \sim is an equivalence relation and the equivalence classes are sets of the following form

$$
H x K=\{h x k \mid h \in H, k \in K\}=\cup_{k \in K} H x k=\cup_{h \in H} h x K
$$

Such a subset of G is called a double coset. [Cur07]
Definition 2.7. (Point Stabilizer). Let G be a group of permutations of a set S. For each $g, s \in S$, let $g^{s}=g$, then we call the set of $s \in S$ the point stabilizer of $g \in G$. [Cur07]

Definition 2.8. (Coset Stabilizing Group). The coset stabilizing group of a coset $N w$ is defined as

$$
N^{(w)}=\{\pi \in N \mid N w \pi=N w\}
$$

where $n \in N$ and w is a reduced word in the $t_{i}^{\prime} s$. [Cur07]
Theorem 2.9. (Number of single cosets in $N w N$). From above we see that,

$$
\begin{aligned}
N^{(w)} & =\{\pi \in N \mid N w \pi=N w\}=\left\{\pi \in N \mid N w \pi w^{-1}=N\right\} \\
& =\left\{\pi \in N \mid(N w)^{\pi}=N w\right\}
\end{aligned}
$$

and the number of single cosets in $N w N$ is given by $\left[N: N^{(w)}\right]$. [Cur07]
Definition 2.10. (Orbits). Let G be a group of permutations of a set S. For each $s \in S$, let $\operatorname{orb}_{G}(s)=\{\phi(s) \mid \phi \in G\}$. The set orb $b_{G}(s)$ is a subset of S called the orbits of s under G. We use $\left|o r b_{G}(s)\right|$ to denote the number of elements in orb ${ }_{G}(s)$. [Rot12]

Definition 2.11. (Transversal). If $K \leq G$, then a (right) transversal of K in G (or a complete set of right coset representatives) is a subset T of G consisting of one element from each right coset of K in G. [Rot12]

Definition 2.12. (Center). The center of a group G, denoted by $Z(G)$, is the set of all $a \in G$ that commute with every element of G. [Rot12]

$2.22 \times A_{5}$ as a Homomorphic Image of $2^{* 3}: S_{3}$

2.2.1 Construction of $2 \times A_{5}$ over S_{3}

Consider the group $G=2^{* 3}$: S_{3} factored by the relator $\left[(0,1,2) t_{3}\right]^{5}$. Note: $N=S_{3}=\{e,(1,2),(1,0),(2,0),(1,2,0),(1,0,2)\}$, where $x \sim(0,1,2)$ and $y \sim(1,2)$. Let $t \sim t_{3} \sim t_{0}$. Let us expand the relator:

$$
\begin{aligned}
& {\left[(0,1,2) t_{0}\right]^{5}=1 \text { with } \pi=(0,1,2) \text { becomes }} \\
& \qquad \begin{array}{c}
1=\left[\pi t_{0}\right]^{5}=\pi^{5} t_{0} \pi^{4} t_{0} \pi^{3} t_{0} \pi^{2} t_{0}{ }^{\pi} t_{0} \\
=(0,2,1) t_{0}^{(0,1,2)} t_{0} t_{0}^{(0,2,1)} t_{0}^{(0,1,2)} t_{0} \\
=(3,2,1) t_{1} t_{0} t_{2} t_{1} t_{0} \\
\Longrightarrow 1=(0,2,1) t_{1} t_{0} t_{2} t_{1} t_{0} \\
\Longrightarrow t_{0} t_{1}=(0,2,1) t_{1} t_{0} t_{2} \\
\Longrightarrow N t_{0} t_{1}=N t_{1} t_{0} t_{2}
\end{array}
\end{aligned}
$$

Moreover if we conjugate the previous relation by all elements of S_{3}, we otbain the following relations:

$$
\begin{aligned}
\left(t_{0} t_{1}\right)^{(1,2)} & =(0,2,1)^{(1,2)}\left(t_{1} t_{0} t_{2}\right)^{(1,2)} \Longrightarrow t_{0} t_{2}=(0,1,2) t_{2} t_{0} t_{1} \\
\left(t_{0} t_{1}\right)^{(1,0)} & =(0,2,1)^{(1,0)}\left(t_{1} t_{0} t_{2}\right)^{(1,0)} \Longrightarrow t_{1} t_{0}=(1,2,0) t_{0} t_{1} t_{2} \\
\left(t_{0} t_{1}\right)^{(2,0)} & =(0,2,1)^{(2,0)}\left(t_{1} t_{0} t_{2}\right)^{(2,0)} \Longrightarrow t_{2} t_{1}=(2,0,1) t_{1} t_{2} t_{0} \\
\left(t_{0} t_{1}\right)^{(1,2,0)} & =(0,2,1)^{(1,2,0)}\left(t_{1} t_{0}\right)^{(1,2,0)} \Longrightarrow t_{1} t_{2}=(1,0,2) t_{2} t_{1} t_{0} \\
\left(t_{0} t_{1}\right)^{(1,0,2)} & =(0,2,1)^{(1,0,2)}\left(t_{1} t_{0} t_{2}\right)^{(1,0,2)} \Longrightarrow t_{2} t_{0}=(2,1,0) t_{0} t_{2} t_{1} .
\end{aligned}
$$

We want to find the index of N in G. To do this, we perform a manual double coset enumeration of G over N. We take G and express it as a union of double cosets $N g N$, where g is an element of G. So $G=N e N \cup N g_{1} N \cup N g_{2} N \cup \ldots$ where g_{i} 's words in t_{i} 's.

We need to find all double cosets $[w]$ and find out how many single cosets each of them contains, where $[w]=\left[N w^{n} \mid n \in N\right]$. The double cosets enumeration is complete when the set of right cosets obtained is closed under right multiplication by t_{i} 's. We need to identify, for each $[w]$, the double coset to which $N w t_{i}$ belongs for one
symmetric generator t_{i} from each orbit of the coset stabilising group $N^{(w)}$

$N e N$

First, the double coset $N e N$, is denoted by [*]. This double coset contains only the single coset, namely N. Since N is transitive on $\left\{t_{0}, t_{1}, t_{2}\right\}$, the orbit of N on $\{0,1,2\}$ is:

$$
\mathbb{O}=\{0,1,2\} .
$$

We choose t_{0} as our symmetric generator from \mathbb{O} and find to which double coset $N t_{0}$ belongs. $N t_{0} N$ will be a new double coset, denoted by [0]. Hence, three symmetric generators will go the new double coset [0].
$N t_{0} N$
In order to find how many single cosets [0] contains, we must first find the coset stabilizer $N^{(0)}$. Then the number of single coset in [0] is equal to $\frac{|N|}{\left|N^{(0)}\right|}$. Now, $N^{(0)}=N^{0}$ $=<e,(1,2)>$ so the number of the single cosets in $N t_{0} N$ is $\frac{|N|}{\left|N^{(0)}\right|}=\frac{6}{2}=3$. These three single cosets in [0] are $\left\{N t_{0}^{n} \mid n \in N\right\}=\left\{N t_{0}, N t_{1}, N t_{2}\right\}$. Furthermore, the orbits of $N^{(0)}$ on $\left\{t_{0}, t_{1}, t_{2}\right\}$ are:

$$
\mathbb{O}=\{0\} \text { and }\{1,2\} .
$$

We take t_{0} and t_{1} from each orbit, respectively, and to see which double coset $N t_{0} t_{0}$ and $N t_{0} t_{1}$ belong to. Now $N t_{0} t_{0}=N \in[*]$, so one element will go back to $N e N$ and two symmetric generators will go to a new double coset $N t_{0} t_{1} N$, denoted by [01].

$$
N t_{0} t_{1} N
$$

Now $N t_{0} t_{1} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(01)}=N^{01}=\langle e\rangle$. Only identity (e) will fix 0 and 1 . Hence the number of single cosets in $N t_{0} t_{1} N$ is $\frac{|N|}{\left|N^{(01)}\right|}=\frac{6}{1}=6$. These six single cosets in [01] are $\left\{N t_{0} t_{1}, N t_{1} t_{0}, N t_{0} t_{2}, N t_{2} t_{0}, N t_{1} t_{2}, N t_{2} t_{1}\right\}$. The orbits of $N^{(01)}$ on $\left\{t_{0}, t_{1}, t_{2}\right\}$ are:

$$
\mathbb{O}=\{0\},\{1\}, \text { and }\{2\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{i}$ belongs to.

We have:

$$
\begin{aligned}
N t_{0} t_{1} t_{1} & =N t_{0} \in[0] \\
\text { relation: }(0,2,1)^{(0,1)}\left(t_{1} t_{0} t_{2}\right)^{(0,1)} & =\left(t_{0} t_{1}\right)^{(0,1)} \\
\Longrightarrow(1,2,0) t_{0} t_{1} t_{2} & =t_{1} t_{0} \\
\Longrightarrow N t_{0} t_{1} t_{2} & =N t_{1} t_{0} \in[01] \\
N t_{0} t_{1} t_{0} & \in[010] .
\end{aligned}
$$

The new double cosets have single coset representatives $N t_{0} t_{1} t_{0}$, which is denoted by [010].

$$
N t_{0} t_{1} t_{0} N
$$

Now $N t_{0} t_{1} t_{0} N$ in N is a new double coset. However, $N^{(010)}=N^{010}=<e>$. Only identity (e) will fix 0 , and 1 . Hence the number of single cosets contained in $N t_{0} t_{1} t_{0} N$ is $\frac{|N|}{\left|N^{(010)}\right|}=\frac{6}{1}=6$. These six single cosets in [010] are $\left\{N t_{0} t_{1} t_{0}, N t_{1} t_{0} t_{1}, N t_{0} t_{2} t_{0}, N t_{2} t_{0} t_{2}, N t_{1} t_{2} t_{1}, N t_{2} t_{1} t_{2}\right\}$. The orbits of $N^{(010)}$ on $\{0,1,2\}$ are:

$$
\mathbb{O}=\{0\},\{1\}, \text { and }\{2\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{0} t_{i}$ belongs to. We have:

$$
\begin{aligned}
N t_{0} t_{1} t_{0} t_{0} & =N \in[01] \\
\text { relation: } t_{1}(0,2,1) t_{1} t_{0} t_{2} & =t_{1} t_{0} t_{1} \\
\Longrightarrow(0,2,1) \underline{(0,2,1)^{-1} t_{1}(0,2,1)} t_{1} t_{0} t_{2} & =t_{1} t_{0} t_{1} \\
\Longrightarrow(0,2,1) t_{1}^{(0,2,1)} & t_{1} t_{0} t_{2}
\end{aligned}=t_{1} t_{0} t_{1} .
$$

The new double coset is $N t_{0} t_{1} t_{0} t_{1} N$, denoted by [0101].

Now $N t_{0} t_{1} t_{0} t_{1} N$ is a new double coset. We determine how many single cosets are in this double coset. We have $N^{(0101)}=N^{0101}=\langle e\rangle$. But $N t_{0} t_{1} t_{0} t_{1}$ is not distinct. Using the retlation: $t_{0} t_{1}=(0,2,1) t_{1} t_{0} t_{2} \Longrightarrow t_{0} t_{1} t_{0} t_{1}=(0,2,1) t_{1} t_{0} \underline{t_{2}} t_{0} t_{1}=$ $(0,2,1) t_{1} t_{0}(2,1,0) t_{0} t_{2}=(1,2,0) t_{0} t_{2} t_{0} t_{2}$. Now $t_{0} t_{1} t_{0} t_{1}=(1,2,0) t_{0} t_{2} t_{0} t_{2}$
$\Longrightarrow N t_{0} t_{1} t_{0} t_{1}=N t_{0} t_{2} t_{0} t_{2}$. Thus $N\left(t_{0} t_{1} t_{0} t_{1}\right)^{n}=N t_{0} t_{2} t_{0} t_{2}$. Then $N\left(t_{0} t_{1} t_{0} t_{1}\right)^{(1,2)}=$ $N t_{0} t_{2} t_{0} t_{2}$. But $N t_{0} t_{2} t_{0} t_{2}=N t_{0} t_{1} t_{0} t_{1} \Longrightarrow(1,2) \in N^{(0101)}$ since $N\left(t_{0} t_{1} t_{0} t_{1}\right)^{(1,2)}=$ $N t_{0} t_{2} t_{0} t_{2}$. We conclude:

$$
N^{(0101)} \geq<e,(1,2)>
$$

Hence $\left|N^{(0101)}\right|=2$ so the number of single cosets in $N^{(0101)}$ is $\frac{|N|}{\left|N^{(0101)}\right|}=\frac{6}{2}=3$. These three single cosets in [010] are $N t_{0} t_{1} t_{0} t_{1}=N t_{0} t_{2} t_{0} t_{2}, N t_{1} t_{0} t_{1} t_{0}=N t_{1} t_{2} t_{1} t_{2}$, and $N t_{2} t_{1} t_{2} t_{1}=N t_{2} t_{0} t_{2} t_{0}$. The orbits of $N^{(0101)}$ on $\{0,1,2\}$ are:

$$
\mathbb{O}=\{0\} \text { and }\{1,2\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{0} t_{1} t_{i}$ belongs to. We have:

$$
\begin{aligned}
& N t_{0} t_{1} t_{0} t_{1} t_{0} \in[01010] \\
& N t_{0} t_{1} t_{0} t_{1} t_{1}=N t_{0} t_{1} t_{0} \in[010] .
\end{aligned}
$$

$N t_{0} t_{1} t_{0} t_{1} t_{0} N$

Now $N t_{0} t_{1} t_{0} t_{1} t_{0} N$ is indeed a new double coset. We determine how many single cosets are in this double coset. We have $N^{(01010)}=N^{01010}=\langle e\rangle . N t_{0} t_{1} t_{0} t_{1} t_{0}$ has six names. We have the following:

$$
\begin{aligned}
& N t_{0} t_{1} t_{0} t_{1}=N t_{0} t_{2} t_{0} t_{2} \Longrightarrow N t_{0} t_{1} t_{0} t_{1} t_{0}=N t_{0} t_{2} t_{0} t_{2} t_{0} \\
& N t_{1} t_{0} t_{1} t_{0}=N t_{1} t_{2} t_{1} t_{2} \Longrightarrow N t_{1} t_{0} t_{1} t_{0} t_{1}=N t_{1} t_{2} t_{2} t_{1} \\
& N t_{2} t_{1} t_{2} t_{1}=N t_{2} t_{0} t_{2} t_{0} \Longrightarrow N t_{2} t_{1} t_{2} t_{1} t_{2}=N t_{2} t_{0} t_{2} t_{0} t_{2} .
\end{aligned}
$$

Now we want to show that the six names are the same. We have the following:

$$
\begin{gather*}
t_{0} t_{1} t_{0} t_{1} t_{0}=t_{0} t_{1} t_{0} t_{1} t_{0} t_{2} t_{2} \\
=t_{0} t_{1} t_{0}(2,0,1) t_{0} t_{1} t_{2}=t_{1} \underline{t_{2} t_{1} t_{0} t_{1} t_{2}} \\
=t_{1}(2,0,1) t_{1} t_{2} t_{1} t_{2}=(2,0,1) t_{2} t_{1} t_{2} t_{1} t_{2} \\
\Longrightarrow t_{0} t_{1} t_{0} t_{1} t_{0}=(2,0,1) t_{2} t_{1} t_{2} t_{1} t_{2} \tag{1}
\end{gather*}
$$

$$
\begin{gather*}
\Longrightarrow N t_{0} t_{1} t_{0} t_{1} t_{0}=N t_{2} t_{1} t_{2} t_{1} t_{2}, \\
t_{0} t_{2} t_{0} t_{2} t_{0}=t_{0} t_{2} t_{0} \underline{t_{2} t_{0} t_{1}} t_{1} \\
=t_{0} t_{2} t_{0}(2,1,0) t_{0} t_{2} t_{1}=t_{2} \underline{t_{1} t_{2} t_{0}} t_{2} t_{1} \\
=t_{2}(1,0,2) t_{2} t_{1} t_{2} t_{1}=(1,0,2) t_{1} t_{2} t_{1} t_{2} t_{1} \\
\Longrightarrow t_{0} t_{2} t_{0} t_{2} t_{0}=(1,0,2) t_{1} t_{2} t_{1} t_{2} t_{1} \tag{2}\\
\Longrightarrow N t_{0} t_{2} t_{0} t_{2} t_{0}=N t_{1} t_{2} t_{1} t_{2} t_{1} .
\end{gather*}
$$

Now by (1) and (2) we have that the six names are equal. Hence,

$$
t_{0} t_{1} t_{0} t_{1} t_{0} \sim t_{0} t_{2} t_{0} t_{2} t_{0} \sim t_{1} t_{0} t_{1} t_{0} t_{1} \sim t_{1} t_{2} t_{1} t_{2} t_{1} \sim t_{2} t_{1} t_{2} t_{1} t_{2} \sim t_{2} t_{0} t_{2} t_{0} t_{2}
$$

Therefore, $N^{(01010)}=n \in N \mid N(01010)^{n}=N(01010)$. Thus, $N^{(01010)} \geq<(1,2),(0,2,1)>$ then $N^{(01010)}=N$. Hence $\left|N^{(01010)}\right|=6$, so the number of single cosets in $N^{(01010)}$ is $\frac{|N|}{\left|N^{(01010)}\right|}=\frac{6}{6}=1$. The orbit of $N^{(01010)}$ on $\{1,2,0\}$ is $\{1,2,0\}$. Take a representative from this orbit, say t_{0}. Hence $N t_{0} t_{1} t_{0} t_{1} t_{0} t_{0} \in[0101]$. Therefore, three symmetric generators will go back to $N t_{0} t_{1} t_{0} t_{1} N$.

We have completed the double coset enumeration since the set of right cosets is closed under right multiplication, hence, the index of N in G is 20 . We conclude:

$$
\begin{aligned}
& G=N \cup N t_{0} N \cup N t_{0} t_{1} N \cup N t_{0} t_{1} t_{0} N \cup N t_{0} t_{1} t_{0} t_{1} N \cup N t_{0} t_{1} t_{0} t_{1} t_{0} N, \text { where } \\
& \qquad G=\frac{2^{* 3}: S_{3}}{t_{0} t_{1}=(0,2,1) t_{1} t_{0} t_{2}} \\
& |G| \leq\left(|N|+\frac{|N|}{N^{(0)}}+\frac{|N|}{N^{(01)}}+\frac{|N|}{N^{(010)}}+\frac{|N|}{N^{(0101)}}+\frac{|N|}{N^{(01010)}}\right) \times|N| \\
& |G| \leq(1+3+6+6+3+1) \times 6 \\
& |G| \leq 20 \times 6 \\
& |G| \leq 120
\end{aligned}
$$

A Cayley diagram that summarizes the above information is given below:

Figure 2.1: Cayley Diagram of $2 \times A_{5}$ over S_{3}

2.2.2 Permutation Representation of $2 \times A_{5}$ over S_{3}

In order to find the permutation representation of $G=2^{* 3}: S_{3}$, in terms of x, y, and t_{0}, we create a table in which we conjugate the twenty single cosets by x and y and we right multiply them by t_{0}.

Table 2.1: Permutation Representation of $2 \times A_{5}$ over S_{3}

Cosets	$x \sim(0,1,2)$	$y \sim(1,2)$	$t \sim t_{0}$
$1 . N$	$1 . N$	$1 . N$	$2 . N t_{0}$
$2 . N t_{0}$	$3 . N t_{1}$	$2 . N t_{0}$	$1 . N$
$3 . N t_{1}$	$4 . N t_{2}$	$4 . N t_{2}$	$6 . N t_{1} t_{0}$
$4 . N t_{2}$	$2 . N t_{0}$	$3 . N t_{1}$	$8 . N t_{2} t_{0}$
$5 . N t_{0} t_{1}$	$9 . N t_{1} t_{2}$	$7 . N t_{0} t_{2}$	$11 . N t_{0} t_{1} t_{0}$
$6 . N t_{1} t_{0}$	$10 . N t_{2} t_{1}$	$8 . N t_{2} t_{0}$	$3 . N t_{1}$
$7 . N t_{0} t_{2}$	$6 . N t_{1} t_{0}$	$5 . N t_{0} t_{1}$	$13 . N t_{0} t_{2} t_{0}$
$8 . N t_{2} t_{0}$	$5 . N t_{0} t_{1}$	$6 . N t_{1} t_{0}$	$4 . N t_{2}$
$9 . N t_{1} t_{2}$	$8 . N t_{2} t_{0}$	$10 . N t_{2} t_{1}$	$10 . N t_{1} t_{2} t_{0}$
$10 . N t_{2} t_{1}$	$7 . N t_{0} t_{2}$	$9 . N t_{1} t_{2}$	$9 . N t_{2} t_{1} t_{0}$
$11 . N t_{0} t_{1} t_{0}$	$15 . N t_{1} t_{2} t_{1}$	$13 . N t_{0} t_{2} t_{0}$	$5 . N t_{0} t_{1}$
$12 . N t_{1} t_{0} t_{1}$	$16 . N t_{2} t_{1} t_{2}$	$14 . N t_{2} t_{0} t_{2}$	$18 . N t_{1} t_{0} t_{1} t_{0}$
$13 . N t_{0} t_{2} t_{0}$	$12 . N t_{1} t_{0} t_{1}$	$11 . N t_{0} t_{1} t_{0}$	$7 . N t_{0} t_{2}$
$14 . N t_{2} t_{0} t_{2}$	$11 . N t_{0} t_{1} t_{0}$	$12 . N t_{1} t_{0} t_{1}$	$19 . N t_{2} t_{0} t_{2} t_{0}$
$15 . N t_{1} t_{2} t_{1}$	$14 . N t_{2} t_{0} t_{2}$	$16 . N t_{2} t_{1} t_{2}$	$16 . N t_{1} t_{2} t_{1} t_{0}$
$16 . N t_{2} t_{1} t_{2}$	$13 . N t_{0} t_{2} t_{0}$	$15 . N t_{1} t_{2} t_{1}$	$15 . N t_{2} t_{1} t_{2} t_{0}$
$17 . N t_{0} t_{1} t_{0} t_{1}$	$18 . N t_{1} t_{2} t_{1} t_{2}$	$17 . N t_{0} t_{2} t_{0} t_{2}$	$20 . N t_{0} t_{1} t_{0} t_{1} t_{0}$
$18 . N t_{1} t_{0} t_{1} t_{0}$	$19 . N t_{2} t_{1} t_{2} t_{1}$	$19 . N t_{2} t_{0} t_{2} t_{0}$	$12 . N t_{1} t_{0} t_{1}$
$19 . N t_{2} t_{1} t_{2} t_{1}$	$17 . N t_{0} t_{2} t_{0} t_{2}$	$18 . N t_{1} t_{2} t_{1} t_{2}$	$14 . N t_{2} t_{1} t_{2} t_{1}$
$20 . N t_{0} t_{1} t_{0} t_{1} t_{0}$	$20 . N t_{1} t_{2} t_{1} t_{2} t_{1}$	$20 . N t_{0} t_{2} t_{0} t_{2} t_{0}$	$17 . N t_{0} t_{1} t_{0} t_{1}$

We have:

$$
\begin{aligned}
\phi(x) & =(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19) \\
\phi(y) & =(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19) \\
\phi(t) & =(1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20) .
\end{aligned}
$$

Thus, we have a homomorphism $\phi: 2^{* 3}: S_{3} \longrightarrow S_{20}$. Then $\phi(G)=<\phi(x), \phi(y), \phi(t)>$. In order for us to prove that $\phi(G)=<\phi(x), \phi(y), \phi(t)>$ is a homomorphic image of
$G=2^{* 3}: S_{3}$, we must have the the following conditions met:
(1) $\phi(N) \cong S_{3}$
(2) $\phi(t)$ has three conjugates under conjugation by $\phi(N)$
(3) $\phi(N)$ acts as S_{3} on the three congugates of $\phi(t)$ by conjugates.

Proof. We have $\phi(N)=<\phi(x), \phi(y)>$.
(1) $\phi(N)=<\phi(x), \phi(y)>$ $=<(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)$, $(1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20)>$ $\cong S_{3}$ since $|\phi(x) \phi(y)|=|(2,4)(5,10)(6,9)(7,8)(11,16)(12,15)(13,14)(17,19)|$ $=2$.

Thus, $\phi(N) \cong S_{3}$.
(2) We need to compute $\phi(t)^{\phi(N)}$:

$$
\begin{aligned}
\phi(t)^{\phi(x)} & =\left\{(1,2)(3,6) \ldots(15,16)(17,20)^{(2,3,4)(5,9,8) \ldots(12,16,13)(17,18,19)}\right\} \\
& =\{(1,3)(4,10)(2,5)(9,15)(6,12)(8,7)(16,19)(11,17)(14,13)(18,20)\} \\
& =t_{1} . \\
\phi(t)^{\phi\left(x^{2}\right)} & =\left\{(1,2)(3,6) \ldots(15,16)(17,20)^{(2,4,3)(5,9,8) \ldots(12,13,16)(17,19,18)}\right\} \\
& =\{(1,4)(2,7)(3,9)(8,14)(10,16)(5,6)(13,17)(15,18)(11,12)(19,20)\} \\
& =t_{2} . \\
\phi(t)^{\phi\left(x^{3}\right)} & =\left\{(1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20)^{e}\right\} \\
& =\{(1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20)\} \\
& =t_{0} .
\end{aligned}
$$

Thus, $\phi(t)^{\phi(N)}=\left\{t_{0}, t_{1}, t_{2}\right\}$.
(3) We need to show that $\phi(N)$ acts as S_{3} on the three conjugates of $\phi(t)$ by conjugates. First, we have to conjugate by $\phi(x)$:

$$
\begin{aligned}
t_{0}^{\phi(x)} & =t_{1} \\
t_{1}^{\phi(x)} & =\left(t_{0}^{\phi(x)}\right)^{\phi(x)}=t_{0}^{\phi\left(x^{2}\right)}=t_{2} \\
t_{2}^{\phi(x)} & =\left(t_{1}^{\phi(x)}\right)^{\phi(x)}=t_{1}^{\phi\left(x^{2}\right)}=\left(t_{0}^{\phi(x)}\right)^{\phi\left(x^{2}\right)}=t_{0}^{\phi\left(x^{3}\right)}=t_{0} .
\end{aligned}
$$

Thus, $\phi(x)=\left(t_{0}, t_{1}, t_{2}\right)$.
Next, we have to conjugate by $\phi(y)$:

$$
\begin{aligned}
t_{1}^{\phi(y)} & =\left\{(1,3)(4,10) \ldots(14,13)(18,20)^{(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19)}\right\} \\
& =\{(1,4)(2,7)(3,9)(8,14)(10,16)(5,6)(13,17)(15,18)(11,12)(19,20)\} \\
& =t_{2} \\
t_{2}^{\phi(y)} & =\left(t_{1}^{\phi(y)}\right)^{\phi(y)}=t_{1}^{\phi\left(y^{2}\right)}=t_{1} .
\end{aligned}
$$

Thus, $\phi(y)=\left(t_{1}, t_{2}\right)$.
Hence, $\phi(G)=<\phi(x), \phi(y), \phi(t)>$ is a homomorphic image of $G=2^{* 3}: S_{3}$.
We have:

$$
G=\frac{2^{* 3}: S_{3}}{(0,2,1) t_{1} t_{0} t_{2}=t_{0} t_{1}} .
$$

Now, we want to verify if $\phi(0,2,1)=\phi\left(t_{0} t_{1} t_{2} t_{0} t_{1}\right)$ then $<\phi(x), \phi(y), \phi(t)>$ is a homomorphic image of G.
Verify: $\phi\left(x^{-1}\right)=\phi\left(t_{0} t_{1} t_{2} t_{0} t_{1}\right):$

$$
\begin{aligned}
\phi\left(t_{0} t_{1} t_{2} t_{0} t_{1}\right)= & (1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20) \\
& (1,3)(4,10)(2,5)(9,15)(6,12)(8,7)(16,19)(11,17)(14,13)(18,20) \\
& (1,4)(2,7)(3,9)(8,14)(10,16)(5,6)(13,17)(15,18)(11,12)(19,20) \\
& (1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20) \\
& (1,3)(4,10)(2,5)(9,15)(6,12)(8,7)(16,19)(11,17)(14,13)(18,20) \\
= & (2,4,3)(5,8,9)(6,7,10)(11,14,15)(12,13,16)(17,19,18) \\
= & \phi\left(x^{-1}\right) .
\end{aligned}
$$

Hence, $\phi: G \xrightarrow{\text { homo. }} S_{20}$ with $\phi(G)=<\phi(x), \phi(y), \phi(t)>$. By FIT we have:
$G / \operatorname{ker} \phi \cong \phi(G)$
$\Longrightarrow|G / k e r \phi| \cong|\phi(G)|$
$\Longrightarrow|G|=|\operatorname{ker} \phi||\phi(G)|$.
By completing the double coset enumeration we know $|G| \leq 120$. Moreover, by Magma, $|\phi(G)|=\left|<\phi(x), \phi(y), \phi\left(t_{0}\right)>\right|=120$.
So, $|G|=\mid$ ker $\phi \mid 120$
$\Longrightarrow|G| \geq 120$.
Hence, $|G|=120$.

2.2.3 Prove $G \cong 2 \times A_{5}$

We use two different methods to prove that $G \cong 2 \times A_{5}$.
(1) We will prove by hand that $G \cong 2 \times A_{5}$.

Proof. Given:

$$
\begin{aligned}
\phi(x) & =(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19) \\
\phi(y) & =(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19) \\
t_{0} & =(1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20) \\
t_{1} & =(1,3)(4,10)(2,5)(9,15)(6,12)(8,7)(16,19)(11,17)(14,13)(18,20)
\end{aligned}
$$

Note:

$$
\begin{aligned}
\bullet\left|\phi(y) \phi(x) t_{0} t_{1} t_{0} t_{1} t_{0}\right| & =\mid(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19) \\
& (2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19) \\
& (1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20) \\
& (1,3)(4,10)(2,5)(9,15)(6,12)(8,7)(16,19)(11,17)(14,13)(18,20) \\
& (1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20) \\
& (1,3)(4,10)(2,5)(9,15)(6,12)(8,7)(16,19)(11,17)(14,13)(18,20) \\
& (1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20) \mid \\
= & |(1,20)(2,17)(3,18)(4,19)(5,11)(6,12)(7,13)(8,14)(9,15)(10,16)|
\end{aligned}
$$

Thus, $\left|\phi(y) \phi(x) t_{0} t_{1} t_{0} t_{1} t_{0}\right|=2$, which is the center of order two.

$$
\begin{aligned}
& \bullet\left|\phi(x) t_{0}\right|=\mid(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19) \\
& \qquad \begin{aligned}
&(1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20) \mid \\
&=|(2,6,9,4,1),(3,8,11,16,7)(5,10,13,18,14)(12,15,19,20,17)| \\
&=5 . \\
& \bullet\left|t_{0}\right|=(1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20)=2 . \\
& \bullet\left|\phi(x) t_{0} t_{0}\right|=|\phi(x)| \\
&=|(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)| \\
&=3 .
\end{aligned}
\end{aligned}
$$

Hence, $\left\langle\phi(x) t_{0}, t_{0}\right\rangle=A_{5}$.
Now, $<\phi(x) t_{0}, t_{0}, \phi(y) \phi(x) t_{0} t_{1} t_{0} t_{1} t_{0}>\leq \phi(G)=<\phi(x), \phi(y), \phi(t)>$

$$
\Longrightarrow 2 \times A_{5} \leq \phi(G) . \text { But }|\phi(G)|=120 \text { and }\left|2 \times A_{5}\right|=120 .
$$

Thus, $\phi(G)=2 \times A_{5}$.
(2) We use the composition factors of G to construct a computer based proof to show that $G \cong 2 \times A_{5}$.

Proof. Given:

$$
G=<x, y, t \mid x^{3}, y^{2},(x y)^{2}, t^{2},(t, y), t t^{x}=x^{-1} t^{x} t t^{x^{2}}>=\frac{2^{* 3}: S_{3}}{(0,2,1) t_{1} t_{0} t_{2}=t_{0} t_{1}} .
$$

We use Magma, to obtain the following composition factors:

```
> CompositionFactors(G1);
    G
    | Alternating(5)
    *
    | Cyclic(2)
    1
```

Hence, G has the following composition series $G \supset G_{1} \supset 1$, where $G=\left(G / G_{1}\right)\left(G_{1} / 1\right)=$ $A_{5} C_{2}$. The normal lattice of G is:

```
> NL:=NormalLattice(G1);
> NL;
```

```
Normal subgroup lattice
[4] Order 120 Length 1 Maximal Subgroups: 2 3
[3] Order 60 Length 1 Maximal Subgroups: 1
[2] Order 2 Length 1 Maximal Subgroups: 1
[1] Order 1 Length 1 Maximal Subgroups:
```

First, we look at the center of G and we find it is of order 2. In addition, by looking at the normal lattice, we find that the normal subgroup NL[2] is of order 2. Hence, we might have a direct product of $\mathrm{NL}[2]$ by the Alternating group $\mathrm{NL}[3]=A_{5}$. Note: $N L[2] \unlhd G_{1}$ and $A_{5} \unlhd G_{1}$ then $A_{5} \cap N L[2]=1$.

```
> D:=DirectProduct(CyclicGroup(2),NL[3]);
> s:=IsIsomorphic(D,G1);s;
true
```

We use the above loops to confirm that G is a direct product of a cyclic group of order 2 by A_{5}. By using ATLAS, the presentation of the Alternating group $\left(A_{5}\right)$ is: $<a, b \mid a^{2}, b^{3},(a * b)^{5}>$.
Now, the element of NL[2] commutes with the element of $\mathrm{NL}[3]=A_{5}$, since G is a direct product extension. Thus, we have the following presentation for G :

```
>H<a,b,c>:=Group<a,b,c|a^2,b^3, (a*b)^ 5, c^2, (c,a), (c,b)>; # H;
120
> f1,H1,k1:=CosetAction(H,sub<H|Id(H) >);
> s:=IsIsomorphic(H1,G1);s;
true
```

Hence, $G \cong 2 \times A_{5}$.

2.3 Finding and Factoring by the Center $(Z(G))$ of $2 \times A_{5}$ over S_{3}

Let G acts on $X=\left\{N \cup N t_{0} N \cup N t_{0} t_{1} N \cup N t_{0} t_{1} t_{0} N \cup N t_{0} t_{1} t_{0} t_{1} N \cup N t_{0} t_{1} t_{0} t_{1} t_{0} N\right\}$ where $|X|=20$. From the Cayley Diagram of $2 \times A_{5}$ over S_{3} we see that G is transitive. Moreover, from the DCE and the Cayley diagram it is clear that the dou-
ble coset $N t_{0} t_{1} t_{0} t_{1} t_{0} N$ contains one single coset. We stabilize the coset N then another coset $N t_{0} t_{1} t_{0} t_{1} t_{0} N$ at the maximal distance from N also stabilize. This means $\left\{N, N t_{0} t_{1} t_{0} t_{1} t_{0} N\right\}$ is a nontrivial block of size 2 . Let B be a nontrivial block and $N \in B$. If $N t_{0} t_{1} t_{0} t_{1} t_{0} \in B$. Then

$$
\begin{aligned}
& B=\left\{N, N t_{0} t_{1} t_{0} t_{1} t_{0}\right\}=\{1,20\} \\
& B t_{0}=\left\{N t_{0}, N t_{0} t_{1} t_{0} t_{1}\right\}=\{2,17\} \\
& B t_{1}=\left\{N t_{1}, N t_{0} t_{1} t_{0} t_{1} t_{0} t_{1}\right\}=\left\{N t_{1}, N t_{1} t_{0} t_{1} t_{0} t_{1} t_{1}\right\} \\
& =\left\{N t_{1}, N t_{1} t_{0} t_{1} t_{0}\right\}=\{3,18\} \\
& B t_{2}=\left\{N t_{2}, N t_{0} t_{1} t_{0} t_{1} t_{0} t_{2}\right\}=\left\{N t_{2}, N t_{2} t_{1} t_{2} t_{1} t_{2} t_{2}\right\} \\
& =\left\{N t_{2}, N t_{2} t_{1} t_{2} t_{1}\right\}=\{4,19\} \\
& B t_{0} t_{1}=\left\{N t_{0} t_{1}, N t_{0} t_{1} t_{0}\right\}=\{5,11\} \\
& B t_{1} t_{0}=\left\{N t_{1} t_{0}, \underline{N t_{0} t_{1} t_{0} t_{1} t_{0}} t_{1} t_{0}\right\}=\left\{N t_{1} t_{0}, N t_{1} t_{0} t_{1} t_{0} t_{1} t_{1} t_{0}\right\} \\
& =\left\{N t_{1} t_{0}, N t_{1} t_{0} t_{1}\right\}=\{6,12\} \\
& B t_{2} t_{0}=\left\{N t_{2} t_{0}, N t_{0} t_{1} t_{0} t_{1} t_{0} t_{2} t_{0}\right\}=\left\{N t_{2} t_{0}, N t_{2} t_{0} t_{2} t_{0} t_{2} t_{2} t_{0}\right\} \\
& =\left\{N t_{2} t_{0}, N t_{2} t_{0} t_{2}\right\}=\{8,14\} \\
& B t_{0} t_{2}=\left\{N t_{0} t_{2}, \underline{\left.N t_{0} t_{1} t_{0} t_{1} t_{2}\right\}=\left\{N t_{0} t_{2}, N t_{0} t_{2} t_{0} t_{2} t_{2}\right\}}\right. \\
& =\left\{N t_{0} t_{2}, N t_{0} t_{2} t_{0}\right\}=\{7,13\} \\
& B t_{1} t_{2}=\left\{N t_{1} t_{2}, \underline{N t_{0} t_{1} t_{0} t_{1} t_{0}} t_{1} t_{2}\right\}=\left\{N t_{1} t_{2}, N t_{1} t_{0} t_{1} t_{0} t_{1} t_{1} t_{2}\right\} \\
& =\left\{N t_{1} t_{2}, \underline{\left.N t_{1} t_{0} t_{1} t_{0} t_{2}\right\}=\left\{N t_{1} t_{2}, N t_{1} t_{2} t_{1} t_{2} t_{2}\right\}, ~}\right. \\
& =\left\{N t_{1} t_{2}, N t_{1} t_{2} t_{1}\right\}=\{9,15\} \\
& B t_{2} t_{1}=\left\{N t_{2} t_{1}, N t_{0} t_{1} t_{0} t_{1} t_{0} t_{2} t_{1}\right\}=\left\{N t_{2} t_{1}, N t_{2} t_{1} t_{2} t_{1} t_{2} t_{2} t_{1}\right\} \\
& =\left\{N t_{2} t_{1}, N t_{2} t_{1} t_{2}\right\}=\{10,16\}
\end{aligned}
$$

We can see that $\left\{B t_{0}, B t_{1}, B t_{2}, B t_{0} t_{1}, B t_{1} t_{0}, B t_{2} t_{0}, B t_{0} t_{2}, B t_{1} t_{2}, B t_{2} t_{1}\right\} \cap B=\emptyset$ and $\left\{B t_{0}, B t_{1}, B t_{2}, B t_{0} t_{1}, B t_{1} t_{0}, B t_{2} t_{0}, B t_{0} t_{2}, B t_{1} t_{2}, B t_{2} t_{1}\right\} \neq B$. Hence, we have blocks of imprimitive of size two. Therefore, $|Z(G)|=2$ where
$Z(G)=<n w>$ (central elements permute the elements of each block of imprimitive)
$=\{(1,20)(2,17)(3,18)(4,19)(5,11)(6,12)(7,13)(8,14)(9,15)(10,16)\}$.

Now, we are going to find the central element of order 2 in G not in its homomorphic image G_{1}. Consider $n t_{0} t_{1} t_{0} t_{1} t_{0}=1 \in G$;
In addition, $t_{0} t_{1} t_{0} t_{1} t_{0}=n^{-1}$. Let $r=n^{-1}$. Then $t_{0} t_{1} t_{0} t_{1} t_{0}=r$. We now compute r by its action on the cosets $\left\{N t_{0}, N t_{1}, N t_{2}\right\}$. Recall that our relation is $t_{0} t_{1}=(0,2,1) t_{1} t_{0} t_{2}$. In addition, if we conjugate this relation by the elements of $N=S_{3}$, we obtain the following relations:

$$
\begin{aligned}
& t_{0} t_{1}=(0,2,1) t_{1} t_{0} t_{2} \\
& t_{0} t_{2}=(0,1,2) t_{2} t_{0} t_{1} \\
& t_{1} t_{0}=(1,2,0) t_{0} t_{1} t_{2} \\
& t_{2} t_{1}=(2,0,1) t_{1} t_{2} t_{0} \\
& t_{1} t_{2}=(1,0,2) t_{2} t_{1} t_{0} \\
& t_{2} t_{0}=(2,1,0) t_{0} t_{2} t_{1} .
\end{aligned}
$$

Compute r by its action on the coset $N t_{0}$:

$$
\begin{aligned}
N t_{0}^{r} & =N t_{0}^{t_{0} t_{1} t_{0} t_{1} t_{0}}=N\left(t_{0} t_{1} t_{0} t_{1} t_{0}\right)^{-1} t_{0} t_{0} t_{1} t_{0} t_{1} t_{0} \\
& =N \underline{t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=N t_{1} t_{0} t_{2} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}} \\
& =N t_{1} t_{0}(2,1,0) t_{0} t_{2} t_{0} t_{1} t_{0} t_{1} t_{0} \\
& =N t_{0} t_{2} t_{0} t_{2} t_{0} t_{1} t_{0} t_{1} t_{0}=N t_{0} t_{2} t_{0}(2,1,0) t_{0} t_{2} t_{0} t_{1} t_{0} \\
& =N t_{2} \underline{t_{1} t_{2} t_{0} t_{2} t_{0} t_{1} t_{0}=N t_{2}(1,0,2) t_{2} t_{1} t_{2} t_{0} t_{1} t_{0}} \\
& =N t_{1} t_{2} \underline{t_{1} t_{2} t_{0} t_{1} t_{0}=N t_{1} t_{2}(1,0,2) t_{2} t_{1} t_{1} t_{0}} \\
& =N \underline{t_{0} t_{1} t_{2} t_{0}}=N t_{1} t_{0} t_{0} \\
& =N t_{1} .
\end{aligned}
$$

Now, compute r by its action on the coset $N t_{1}$:

$$
\begin{aligned}
N t_{1}^{r} & =N t_{1}^{t_{0} t_{1} t_{0} t_{1} t_{0}}=N\left(t_{0} t_{1} t_{0} t_{1} t_{0}\right)^{-1} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} \\
& =N t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=N t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}(1,2,0) t_{0} t_{1} t_{2} \\
& =N t_{1} t_{2} t_{1} t_{2} t_{1} t_{2} t_{1} t_{2} t_{1} t_{0} t_{1} t_{2}=N t_{1} t_{2} t_{1} t_{2} t_{1} t_{2} t_{1}(2,0,1) t_{1} t_{2} t_{1} t_{2} \\
& =N t_{2} t_{0} t_{2} t_{0} t_{2} t_{0} t_{2} t_{1} t_{2} t_{1} t_{2}=N t_{2} t_{0} t_{2} t_{0} t_{2}(0,1,2) t_{2} t_{0} t_{2} t_{1} t_{2} \\
& =N t_{0} t_{1} t_{0} \underline{t_{1} t_{0} t_{2} t_{0} t_{2} t_{1} t_{2}=N t_{0} t_{1} t_{0}(1,2,0) t_{0} t_{1} t_{0} t_{2} t_{1} t_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =N t_{1} t_{2} t_{1} t_{0} t_{1} t_{0} t_{2} t_{1} t_{2}=N t_{1}(2,0,1) t_{1} t_{2} t_{1} t_{0} t_{2} t_{1} t_{2} \\
& =N t_{2} t_{1} t_{2} t_{1} t_{0} t_{2} t_{1} t_{2}=N t_{2} t_{1}(2,0,1) t_{1} t_{2} t_{2} t_{1} t_{2} \\
& =N t_{0} t_{2} t_{2} \\
& =N t_{0} .
\end{aligned}
$$

Next, compute r by its action on the coset $N t_{2}$:

$$
\begin{aligned}
N t_{2}^{r} & =N t_{2}^{t_{0} t_{1} t_{0} t_{1} t_{0}} \\
& =N\left(t_{0} t_{1} t_{0} t_{1} t_{0}\right)^{-1} t_{2} t_{0} t_{1} t_{0} t_{1} t_{0} \\
& =N t_{0} t_{1} t_{0} \underline{t_{1} t_{0} t_{2}} t_{0} t_{1} t_{0} t_{1} t_{0} \\
& =N t_{0} t_{1} t_{0}(1,2,0) t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} \\
& =N t_{1} \underline{t_{2} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}} \\
& =N t_{1}(2,0,1) t_{1} t_{2} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} \\
& =N t_{2} t_{1} \underline{t_{2} t_{1} t_{0}} t_{1} t_{0} t_{1} t_{0} \\
& =N t_{2} t_{1}(2,0,1) t_{1} t_{2} t_{1} t_{0} t_{1} t_{0} \\
& =N t_{0} t_{2} t_{1} t_{2} t_{1} t_{0} t_{1} t_{0} \\
& =N t_{2} t_{0} t_{2} t_{1} t_{0} t_{1} t_{0} \\
& =N t_{2} t_{0}(2,0,1) t_{1} t_{2} t_{1} t_{0} \\
& =N t_{0} t_{1} t_{1} t_{2} t_{1} t_{0} \\
& =N t_{0} t_{2} t_{1} t_{0} \\
& =N t_{0}(2,0,1) t_{1} t_{2} \\
& =N t_{1} t_{1} t_{2} \\
& =N t_{2}
\end{aligned}
$$

Thus, $N t_{0}^{r}=t_{1}, N t_{1}^{r}=t_{0}$, and $N t_{2}^{r}=t_{2}$. Therefore, $r=(0,1)$, and the generator of the center is $t_{0} t_{1} t_{0} t_{1} t_{0}=(0,1)$. Hence, the center of G is $Z(G)=<$ $(0,1) t_{0} t_{1} t_{0} t_{1} t_{0}>$.
Now, we factor

$$
G \cong \frac{2^{* 3}: S_{3}}{(0,2,1) t_{1} t_{0} t_{2}=t_{0} t_{1}}
$$

by the center $Z(G)$, that is:

$$
G \cong \frac{2^{* 3}: S_{3}}{(0,2,1) t_{1} t_{0} t_{2}=t_{0} t_{1},(0,1) t_{0} t_{1} t_{0} t_{1} t_{0}} .
$$

The Cayley diagram of G over N shown below illustrates that [*] consists of N only. Moreover, [0] consists of three cosets, $N t_{0} N=\left\{N t_{0}, N t_{1}, N t_{2}\right\}$ and the orbits of $N^{(0)}$ on $\{0,1,2\}$ are: $\mathbb{O}=\{0\}$ and $\{1,2\}$. Take a representative t_{i} from each orbit and see which double coset $N t_{0} t_{i}$ belongs to. We have: $N t_{0} t_{0} \in[*]$ and $N t_{0} t_{1} \in[01]$. In addition, [01] consists of six cosets,
$N t_{0} t_{1} N=\left\{N t_{0} t_{1}, N t_{1} t_{0}, N t_{2} t_{0}, N t_{0} t_{2}, N t_{1} t_{2}, N t_{2} t_{1}\right\}$ and the orbits $N^{(01)}$ on $\{0,1,2\}$ are: $\mathbb{O}=\{0\},\{1\}$, and $\{2\}$. Now we take a representative t_{i} from each orbit and see which double coset $N t_{0} t_{1} t_{i}$ belongs to. We have: $N t_{0} t_{1} t_{1} \in[0]$, by using the main relation $(0,2,1) t_{1} t_{0} t_{2}=t_{0} t_{1} \Longrightarrow N t_{1} t_{0}=N t_{0} t_{1} t_{2}$, thus, $N t_{0} t_{1} t_{2} \in[01]$. Moreover, by using the center $(0,1) t_{0} t_{1}=t_{0} t_{1} t_{0} \Longrightarrow N t_{0} t_{1}=N t_{0} t_{1} t_{0}$, hence, $N t_{0} t_{1} t_{0} \in[01]$. This completes our double coset enumeration of G factor by the center $Z(G)$ and our Cayley diagram is as follows:

Figure 2.2: Cayley Diagram of A_{5} over S_{3}

2.4 Converting Symmetric and Permutation Representation of $2 \times A_{5}$ over S_{3}

Now we want to convert symmetric representation of $G=2 \times A_{5}$ over S_{3} to permutation representation. Note: every element of G is of the form $n w$ where n is a permutation of S_{3} on three letters and w is a word in $\left\{t_{0}, t_{1}, t_{2}\right\}$ of length at most four and every element of G is also a permutation of the set of 20 cosets of N in G.

The following examples are converting symmetric representation to its permutation representation of G.

Example 2.13. $(0,1,2) t_{0} t_{1} t_{0}$

$$
\begin{aligned}
& =\phi(x) \phi(t) \phi\left(t^{\phi(x)}\right) \phi(t) \\
& =(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19) \\
& (1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20) \\
& (1,3)(4,10)(2,5)(9,15)(6,12)(8,7)(16,19)(11,17)(14,13)(18,20) \\
& (1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20) \\
& =(1,11,14)(2,18,7)(3,13,17)(4,6,16)(5,8,20)(10,19,12)
\end{aligned}
$$

Thus, $(0,1,2) t_{0} t_{1} t_{0}=(1,11,14)(2,18,7)(3,13,17)(4,6,16)(5,8,20)(10,19,12)$.

Example 2.14. $(2,0) t_{0} t_{1} t_{2}$

$$
\begin{aligned}
& =\phi(y)^{\phi(x)} \phi(t) \phi\left(t^{\phi(x)}\right) \phi\left(t^{\phi\left(x^{2}\right)}\right) \\
& =(3,4)(5,7) \ldots(15,16)(18,19)^{(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)} \\
& (1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20) \\
& (1,3)(4,10)(2,5)(9,15)(6,12)(8,7)(16,19)(11,17)(14,13)(18,20) \\
& (1,4)(2,7)(3,9)(8,14)(10,16)(5,6)(13,17)(15,18)(11,12)(19,20) \\
& =(1,6)(3,11)(4,9)(5,18)(7,16)(10,13)(12,20)(15,19)
\end{aligned}
$$

Hence, $(2,0) t_{0} t_{1} t_{2}=(1,6)(3,11)(4,9)(5,18)(7,16)(10,13)(12,20)(15,19)$.

Next, we want to convert permutation representation of $G=2 \times A_{5}$ over S_{3} to symmetric representation. Let p be a permutation on twenty letters. We write it in the form $n w$, where $n \in S_{3}$ and w is a word in at most three $t_{i}^{\prime} s$. Note: $N p=1^{p}=N w$, where

$$
\begin{aligned}
& p \in N p \\
& \Longrightarrow p \in N w
\end{aligned}
$$

$$
\begin{aligned}
& \Longrightarrow p=n w \text { for some } n \in N \\
& \Longrightarrow n=p w^{-1}
\end{aligned}
$$

The following examples are converting permutation representation to its symmetric representation of G.

Example 2.15. Let $p=(1,11,14)(2,18,7)(3,13,17)(4,6,16)(5,8,20)(10,19,12)$. Note: $p=n w \Longrightarrow n=p w^{-1}$.

$$
N p=1^{p}=11=N t_{0} t_{1} t_{0}
$$

$$
\Longrightarrow N p=N t_{0} t_{1} t_{0}
$$

$$
\Longrightarrow p=n t_{0} t_{1} t_{0}
$$

$$
\Longrightarrow n=p t_{0} t_{1} t_{0}
$$

$n=(1,11,14)(2,18,7)(3,13,17)(4,6,16)(5,8,20)(10,19,12)$
$(1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20)$
$(1,3)(4,10)(2,5)(9,15)(6,12)(8,7)(16,19)(11,17)(14,13)(18,20)$
$(1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20)$
$\Longrightarrow n=(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)$
Next, we compute n in the actions on $\left\{N t_{0}, N t_{1}, N t_{2}\right\}$:

$$
\begin{aligned}
& N t_{0}^{n}=N t_{0}^{(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)} \\
& =2^{(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)} \\
& =3 \\
& =N t_{1} . \\
& N t_{1}^{n}=N t_{1}^{(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)} \\
& =3^{(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)} \\
& =4 \\
& =N t_{2} . \\
& N t_{2}^{n}=N t_{2}^{(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)} \\
& =4^{(2,3,4)(5,9,8)(6,10,7)(11,15,14)(12,16,13)(17,18,19)} \\
& =2 \\
& =N t_{0} .
\end{aligned}
$$

Thus, $n=(0,1,2)$. We know that $p=n t_{0} t_{1} t_{0} \Longrightarrow p=(0,1,2) t_{0} t_{1} t_{0}$. Hence, $p=(1,11,14)(2,18,7)(3,13,17)(4,6,16)(5,8,20)(10,19,12)=(0,1,2) t_{0} t_{1} t_{0}$.

Example 2.16. Let $p=(1,5,14,20,11,8)(2,3,7,17,18,13)(4,12,16,19,6,10)(9,15)$.
Note: $p=n w \Longrightarrow n=p w^{-1}$.

$$
\begin{aligned}
& N p=1^{p}=5=N t_{0} t_{1} \\
& \Longrightarrow N^{p}=N t_{0} t_{1} \\
& \Longrightarrow p=n t_{0} t_{1} \\
& \Longrightarrow n=p t_{1} t_{0} \\
& n=(1,5,14,20,11,8)(2,3,7,17,18,13)(4,12,16,19,6,10)(9,15) \\
& (1,3)(4,10)(2,5)(9,15)(6,12)(8,7)(16,19)(11,17)(14,13)(18,20) \\
& (1,2)(3,6)(4,8)(5,11)(7,13)(9,10)(12,18)(14,19)(15,16)(17,20) \\
& \Longrightarrow n=(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19)
\end{aligned}
$$

Next, we compute n in the actions on $\left\{N t_{0}, N t_{1}, N t_{2}\right\}$:

$$
\begin{aligned}
& N t_{0}^{n}=N t_{0}^{(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19)} \\
& =2^{(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19)} \\
& =2^{2} \\
& =N t_{0} . \\
& N t_{1}^{n}=N t_{1}^{(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19)} \\
& =3^{(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19)} \\
& =4 \\
& =N t_{2} . \\
& N t_{2}^{n}=N t_{2}^{(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19)} \\
& =4^{(3,4)(5,7)(6,8)(9,10)(11,13)(12,14)(15,16)(18,19)} \\
& =3 \\
& =N t_{1} .
\end{aligned}
$$

Thus, $n=(1,2)$. We know that $p=n t_{0} t_{1} \Longrightarrow p=(1,2) t_{0} t_{1}$. Hence, $p=(1,5,14,20,11,8)(2,3,7,17,18,13)(4,12,16,19,6,10)(9,15)=(1,2) t_{0} t_{1}$.

$2.52 \times S_{5}$ as a Homomorphic Image of $2^{* 4}: S_{4}$

2.5.1 Construction of $2 \times S_{5}$ over S_{4}

Consider the group $G=2^{* 4}: S_{4}$ factored by the relator $\left[(0,1,2)=t_{0} t_{1} t_{2} t_{0}\right.$.
Note: $N=S_{4}=\{e,(3,0),(1,3,0,2),(1,3,0),(1,0,3),(1,0)(2,3),(1,2),(1,0,2),(1,2,3,0)$, $(1,3),(1,0),(2,3),(2,0,3),(1,3,2,0),(2,3,0),(1,2,3),(1,2,0,3),(1,0,2,3),(1,2,0)$,
$(1,3)(2,0),(1,0,3,2),(2,0),(1,2)(3,0),(1,3,2)\}$, where $x \sim(0,1,2,3)$ and $y \sim(0,1)$. Let $N=<(0,1,2,3),(0,1)>$. and $t \sim t_{4} \sim t_{0}$.

We will begin the manual double coset enumeration by looking at our first double coset. Note the definition of a double coset is as follows: $N w N=\{N w n \mid n \in N\}$.

$N e N$

First, the double coset $N e N$, is denoted by [*]. This double coset contains only the single coset, namely N. Since N is transitive on $\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}$, the orbit of N on $\{0,1,2,3\}$ is:

$$
\mathbb{O}=\{0,1,2,3\} .
$$

We choose t_{0} as our symmetric generator from \mathbb{O} and find to which double coset $N t_{0}$ belongs. $N t_{0} N$ will be a new double coset, denoted by [0]. Hence, four symmetric generators will go the new double coset [0].

$$
N t_{0} N
$$

In order to find how many single cosets [0] contains, we must first find the coset stabilizer $N^{(0)}$. Then the number of single coset in $[0]$ is equal to $\frac{|N|}{\left|N^{(0)}\right|}$. Now,

$$
\begin{gathered}
N^{(0)}=N^{0} \\
=<(1,3,2),(1,2)>
\end{gathered}
$$

so the number of the single cosets in $N t_{0} N$ is $\frac{|N|}{\left|N^{(0)}\right|}=\frac{24}{6}=4$. These four single cosets in [0] are $\left\{N t_{0}^{n} \mid n \in N\right\}=\left\{N t_{0}, N t_{1}, N t_{2}, N t_{3}\right\}$. Furthermore, the orbits of $N^{(0)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}$ are:

$$
\mathbb{O}=\{0\} \text { and }\{1,2,3\} .
$$

We take t_{0} and t_{1} from each orbit, respectively, and to see which double coset $N t_{0} t_{0}$ and $N t_{0} t_{1}$ belong to. Now $N t_{0} t_{0}=N \in[*]$, so one element will go back to $N e N$ and three symmetric generators will go to a new double coset $N t_{0} t_{1} N$, denoted by [01].

$N t_{0} t_{1} N$

Now $N t_{0} t_{1} N$ is a new double coset. We determine how many single cosets are in this double coset. We have $N^{(01)}=N^{01}=\langle e\rangle$. But $N t_{0} t_{1}$ is not distinct. If we conjugate
the relation by N we get that:

$$
\begin{aligned}
& N t_{0} t_{1}=N t_{0} t_{2}=N t_{0} t_{3} \\
& N t_{1} t_{0}=N t_{1} t_{2}=N t_{1} t_{3} . \\
& N t_{2} t_{1}=N t_{2} t_{0}=N t_{2} t_{3} . \\
& N t_{3} t_{1}=N t_{3} t_{2}=N t_{3} t_{0} .
\end{aligned}
$$

Thus, there exist $\left\{n \in N \mid N\left(t_{0} t_{1}\right)^{n}=N t_{0} t_{1}\right\}$ such that

$$
\begin{gathered}
N\left(t_{0} t_{1}\right)^{(1,2,3)}=N t_{0} t_{2}=N t_{0} t_{1} \Longrightarrow(1,2,3) \in N^{(01)} \\
N t_{0} t_{1}=N t_{0} t_{2}=N \underline{t_{0} t_{2} t_{3} t_{3}}=N(0,2,3) t_{0} t_{3}=N t_{0} t_{3} \\
N t_{0} t_{2}^{(2,3)}=N t_{0} t_{3}=N t_{0} t_{2}=N t_{0} t_{1} \Longrightarrow(2,3) \in N^{(01)}
\end{gathered}
$$

So, $N^{(01)}=<(1,2,3),(2,3)>$. The number of the single cosets in $N t_{0} t_{1} N$ is $\frac{|N|}{\left|N^{(01)}\right|}=$ $\frac{24}{6}=4$. These four single cosets in [01] are $\left\{N t_{0} 1^{n} \mid n \in N\right\}=\left\{N t_{0} t_{1}, N t_{1} t_{0}, N t_{2} t_{1}, N t_{3} t_{1}\right\}$. Furthermore, the orbits of $N^{(01)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}$ are:

$$
\mathbb{O}=\{0\} \text { and }\{1,2,3\} .
$$

$N t_{0} t_{1} t_{1} \in[0]$ (three symmetric generators will go back to the coset [0])
$N t_{0} t_{1} t_{0} \in[010]$ (one symmetric generator go to the double coset [010])

$N t_{0} t_{1} t_{0} N$

Consider $N t_{0} t_{1} t_{0} N$ denoted by [010]. We determine how many single cosets are in this double coset. We have $N^{(010)}=N^{010}=\langle e\rangle$. But $N t_{0} t_{1} t_{0}$ is not distinct. From the relation we know that:

$$
\begin{gathered}
N t_{0} t_{1} t_{0}=N t_{0} t_{2} t_{0}^{(2,3)}=N t_{0} t_{3} t_{0}=N t_{0} t_{2} t_{0}=N t_{0} t_{1} t_{0} \Longrightarrow(2,3) \in N^{(010)} \\
N t_{0} t_{1} t_{0}=N t_{0} t_{2} t_{0}=N t_{0} t_{2} t_{0} t_{1} t_{1}=N t_{0}(2,0,1) t_{2} t_{1}=N t_{1} t_{2} t_{1} \\
N t_{0} t_{1} t_{0}^{(0,1,2)}=N t_{1} t_{2} t_{1}=N t_{0} t_{1} t_{0} \Longrightarrow(0,1,2) \in N^{(010)}
\end{gathered}
$$

So, $N^{(010)}=<(0,1,2),(2,3)>$. The number of the single cosets in $N t_{0} t_{1} t_{0} N$ is $\frac{|N|}{\left|N^{(010)}\right|}=$ $\frac{24}{24}=4$. The single coset in [01] are $\left\{N t_{0} 1^{n} \mid n \in N\right\}=\left\{N t_{0} t_{1} t_{0}\right\}$. Furthermore, the orbits of $N^{(011)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}$ are:

$$
\mathbb{O}=\{0,1,2,3\} .
$$

Take a representative from this orbit, say t_{0}. Hence $N t_{0} t_{1} t_{0} t_{0} \in[01]$. Therefore, four symmetric generators will go back to $N t_{0} t_{1} N$.

We have completed the double coset enumeration since the set of right cosets is closed under right multiplication, hence, the index of N in G is 10 . We conclude:

$$
G=N \cup N t_{0} N \cup N t_{0} t_{1} N \cup N t_{0} t_{1} t_{0} N, \text { where }
$$

$$
G=\frac{2^{* 4}: S_{4}}{(0,1,2)=t_{0} t_{1} t_{2} t_{0}}
$$

$$
|G| \leq\left(|N|+\frac{|N|}{N^{(0)}}+\frac{|N|}{N^{(01)}}+\frac{|N|}{N^{(010)}}\right) \times|N|
$$

$$
|G| \leq(1+4+4+1) \times 24
$$

$$
|G| \leq 10 \times 24
$$

$$
|G| \leq 240
$$

A Cayley diagram that summarizes the above information is given below:

Figure 2.3: Cayley Diagram of $2 \times S_{5}$ over S_{4}

2.5.2 Permutation Representation of $2 \times S_{5}$ over S_{4}

In order to find the permutation representation of $G=2^{* 4}: S_{4}$, in terms of x, y, and t_{0}, we create a table in which we conjugate the twenty single cosets by x and y and we right multiply them by t_{0}.

Table 2.2: Permutation Representation of $2 \times S_{5}$ over S_{4}

Cosets	$x \sim(0,1,2,3)$	$y \sim(0,1)$	$t \sim t_{0}$
$1 . N$	$1 . N$	$1 . N$	$2 . N t_{0}$
$2 . N t_{0}$	$3 . N t_{1}$	$3 . N t_{1}$	$1 . N$
$3 . N t_{1}$	$4 . N t_{2}$	$2 . N t_{0}$	$7 . N t_{1} t_{0}$
$4 . N t_{2}$	$5 . N t_{3}$	$4 . N t_{2}$	$8 . N t_{2} t_{0}$
$5 . N t_{3}$	$2 . N t_{0}$	$5 . N t_{3}$	$9 . N t_{3} t_{0}$
$6 . N t_{0} t_{1}$	$7 . N t_{1} t_{2}$	$7 . N t_{1} t_{0}$	$10 . N t_{0} t_{1} t_{0}$
$7 . N t_{1} t_{0}$	$8 . N t_{2} t_{1}$	$6 . N t_{0} t_{1}$	$3 . N t_{1}$
$8 . N t_{2} t_{1}$	$9 . N t_{3} t_{2}$	$8 . N t_{2} t_{0}$	$4 . N t_{2} t_{1} t_{0}$
$9 . N t_{3} t_{1}$	$6 . N t_{0} t_{2}$	$9 . N t_{3} t_{0}$	$5 . N t_{3} t_{1} t_{0}$
$10 . N t_{0} t_{1} t_{0}$	$10 . N t_{1} t_{2} t_{1}$	$10 . N t_{1} t_{0} t_{1}$	$6 . N t_{0} t_{1}$

We have:

$$
\begin{aligned}
\phi(x) & =(2,3,4,5)(6,7,8,9) \\
\phi(y) & =(2,3)(6,7) \\
\phi(t) & =(1,2)(3,7)(4,8)(5,9)(6,10) .
\end{aligned}
$$

Thus, we have a homomorphism $\phi: 2^{* 4}: S_{4} \longrightarrow S_{10}$. Then $\phi(G)=<\phi(x), \phi(y), \phi(t)>$. In order for us to prove that $\phi(G)=<\phi(x), \phi(y), \phi(t)>$ is a homomorphic image of $G=2^{* 4}: S_{4}$, we must have the following conditions met:
(1) $\phi(N) \cong S_{4}$
(2) $\phi(t)$ has four conjugates under conjugation by $\phi(N)$
(3) $\phi(N)$ acts as S_{4} on the three conjugates of $\phi(t)$ by conjugates.

Proof. We have $\phi(N)=<\phi(x), \phi(y)>$.

$$
\text { (1) } \begin{aligned}
\phi(N) & =<\phi(x), \phi(y)> \\
& =<(2,3,4,5)(6,7,8,9),(2,3)(6,7)> \\
& \cong S_{4} \text { since }|\phi(x) \phi(y)|=|(3,4,5)(7,8,9)|=3 .
\end{aligned}
$$

Thus, $\phi(N) \cong S_{4}$.
(2) We need to compute $\phi(t)^{\phi(N)}$:

$$
\begin{aligned}
\phi(t)^{\phi(x)} & =\left\{(1,2)(3,7)(4,8)(5,9)(6,10)^{(2,3,4,5)(6,7,8,9)}\right\} \\
& =\{(1,3)(4,8)(5,9)(2,6)(7,10)\} \\
& =t_{1} \\
\phi(t)^{\phi\left(x^{2}\right)} & =\left\{(1,2)(3,7)(4,8)(5,9)(6,10)^{(2,4)(3,5)(6,8)(7,9)}\right\} \\
& =\{(1,4)(5,9)(2,6)(3,7)(8,10)\} \\
& =t_{2} \\
\phi(t)^{\phi\left(x^{3}\right)} & =\left\{(1,2)(3,7)(4,8)(5,9)(6,10)^{(2,5,4,3)(6,9,8,7)}\right\} \\
& =\{(1,5)(2,6)(3,7)(4,8)(9,10)\} \\
& =t_{3} \\
\phi(t)^{\phi\left(x^{4}\right)} & =\left\{(1,2)(3,7)(4,8)(5,9)(6,10)^{e}\right\} \\
& =\{(1,2)(3,7)(4,8)(5,9)(6,10)\} \\
& =t_{0}
\end{aligned}
$$

Thus, $\phi(t)^{\phi(N)}=\left\{t_{0}, t_{1}, t_{2}, t_{3}\right\}$.
(3) We need to show that $\phi(N)$ acts as S_{4} on the four conjugates of $\phi(t)$ by conjugates.

First, we have to conjugate by $\phi(x)$:

$$
\begin{aligned}
& t_{0}^{\phi(x)}=t_{1} \\
& t_{1}^{\phi(x)}=\left(t_{0}^{\phi(x)}\right)^{\phi(x)}=t_{0}^{\phi\left(x^{2}\right)}=t_{2} \\
& t_{2}^{\phi(x)}=\left(t_{1}^{\phi(x)}\right)^{\phi(x)}=t_{1}^{\phi\left(x^{2}\right)}=\left(t_{0}^{\phi(x)}\right)^{\phi\left(x^{2}\right)}=t_{0}^{\phi\left(x^{3}\right)}=t_{3} \\
& t_{3}^{\phi(x)}=\left(t_{2}^{\phi(x)}\right)^{\phi(x)}=t_{2}^{\phi\left(x^{2}\right)}=\left(t_{1}^{\phi(x)}\right)^{\phi\left(x^{2}\right)}=t_{1}^{\phi\left(x^{3}\right)}=\left(t_{0}^{\phi(x)}\right)^{\phi\left(x^{3}\right)}=t_{0}^{\phi\left(x^{4}\right)}=t_{0} .
\end{aligned}
$$

Thus, $\phi(x)=\left(t_{0}, t_{1}, t_{2}, t_{3}\right)$.
Next, we have to conjugate by $\phi(y)$:

$$
\begin{aligned}
t_{0}^{\phi(y)} & =\left\{(1,2)(3,7)(4,8)(5,9)(6,10)^{(2,3)(6,7)}\right\} \\
& =\{(1,3)(2,6)(4,8)(5,9)(7,10)\} \\
& =t_{1} \\
t_{1}^{\phi(y)} & =\left(t_{0}^{\phi(y)}\right)^{\phi(y)}=t_{0}^{\phi\left(y^{2}\right)}=t_{0} .
\end{aligned}
$$

Thus, $\phi(y)=\left(t_{0}, t_{1}\right)$.
Hence, $\phi(G)=<\phi(x), \phi(y), \phi(t)>$ is a homomorphic image of $G=2^{* 4}: S_{4}$.

We have:

$$
G=\frac{2^{* 4}: S_{4}}{(0,1,2)=t_{0} t_{1} t_{2} t_{0}} .
$$

Now, we want to verify if $\phi(0,1,2)=\phi\left(t_{0} t_{1} t_{2} t_{0}\right)$ then $<\phi(x), \phi(y), \phi(t)>$ is a homomorphic image of G.
Verify: $\phi(x) \phi(y)=\phi\left(t_{0} t_{1} t_{2} t_{0}\right):$

$$
\phi\left(t_{0} t_{1} t_{2} t_{0}\right)=(1,2)(3,7)(4,8)(5,9)(6,10)
$$

$$
(1,3)(4,8)(5,9)(2,6)(7,10)
$$

$$
(1,4)(5,9)(2,6)(3,7)(8,10)
$$

$$
(1,2)(3,7)(4,8)(5,9)(6,10)
$$

$$
=\phi(x) \phi(y) .
$$

Hence, $\phi: G \xrightarrow{\text { homo. }} S_{10}$ with $\phi(G)=<\phi(x), \phi(y), \phi(t)>$. By FIT we have:
$G / \operatorname{ker} \phi \cong \phi(G)$
$\Longrightarrow|G / \operatorname{ker} \phi| \cong|\phi(G)|$
$\Longrightarrow|G|=|\operatorname{ker} \phi||\phi(G)|$.
By completing the double coset enumeration we know $|G| \leq 240$. Moreover, by Magma, $|\phi(G)|=\left|<\phi(x), \phi(y), \phi\left(t_{0}\right)>\right|=240$.
So, $|G|=|\operatorname{ker} \phi| 240$

$$
\Longrightarrow|G| \geq 240
$$

Hence, $|G|=240$.

2.5.3 Prove $G \cong 2 \times S_{5}$

We use the composition factors of G to construct a computer based proof to show that $G \cong 2 \times S_{5}$.

Proof. Given:

$$
<x, y, t \mid x^{4}, y^{2},(x y)^{3}, t^{2},\left(t, y^{x}\right),(t, x y),(x y)^{y^{x^{3}}}=t t^{x} t^{x^{2}} t>=\frac{2^{* 4}: S_{4}}{(0,1,2)=t_{0} t_{1} t_{2} t_{0}} .
$$

We use Magma, to obtain the following composition factors:

```
> CompositionFactors(G1);
    G
    | Cyclic(2)
```

```
Alternating(5)
Cyclic(2)
```

1

Hence, G has the following composition series $G \supset G_{1} \supset G_{2} \supset 1$, where $\left(G / G_{1}\right)\left(G_{1} / G_{2}\right)\left(G_{2} / 1\right)=C_{2} A_{5} C_{2}$. The normal lattice of G is:
> NL:=NormalLattice(G1);
> NL;

Normal subgroup lattice

```
[7] Order 240 Length 1 Maximal Subgroups: 4 5 6
[6] Order 120 Length 1 Maximal Subgroups: 3
[5] Order 120 Length 1 Maximal Subgroups: 2 3
[4] Order 120 Length 1 Maximal Subgroups: 3
[3] Order 60 Length 1 Maximal Subgroups: 1
[2] Order 2 Length 1 Maximal Subgroups: 1
[1] Order 1 Length 1 Maximal Subgroups:
```

First, we look at the center of G and we find it is of order 2 . In addition, by looking at the normal lattice, we find that the normal subgroup NL[2] is of order 2. Now, we factor G by $N L[2]$ to find H such that $G / N L[2] \cong H$.

```
> q,ff:=quo<G1|NL[2]>;
> s:=IsIsomorphic(q,Sym(5));s;
true
```

We show that $H \cong S_{5}$ and a presentation for H is $<a, b \mid a^{2}, b^{4},(a * b)^{5},(a, b)^{3}>$.

```
> H<a,b>:=Group< a,b| a^2,b^4,(a*b)^5,(a,b)^3>;
> f1,H1,k1:=CosetAction(H,sub<H|Id(H)>);
> s:=IsIsomorphic(H1,q);s;
true
```

Thus, we might have a direct product of a cyclic group of order 2 by S_{5}.

```
> D:=DirectProduct(CyclicGroup(2),q);
> s:=IsIsomorphic(D,G1);s;
```

true
Now, the element of $\mathrm{NL}[2]$ commutes with the element of S_{5}, since G is a direct product extension. Thus, we have the following presentation for G :

```
> HH<a,b,c>:=Group< a,b,c| a^2 2,b^4, (a*b)^ 5, (a,b)^3 3, c^2, (c,a), (c,b)>;
> f2,H2,k2:=CosetAction(HH,sub<HH|Id(HH)>);
> s:=IsIsomorphic(H2,G1);s;
true
```

Hence, $G \cong 2 \times S_{5}$.

2.6 Finding and Factoring by the Center $(Z(G))$ of $2 \times S_{5}$ over S_{4}

Let G acts on $X=\left\{N \cup N t_{0} N \cup N t_{0} t_{1} N \cup N t_{0} t_{1} t_{0} N\right\}$ where $|X|=10$. From the Cayley Diagram of $2 \times S_{5}$ over S_{4} we see that G is transitive. Moreover, from the DCE and the Cayley diagram it is clear that the double coset $N t_{0} t_{1} t_{0} N$ contains one single coset. We stabilize the coset N then another coset $N t_{0} t_{1} t_{0} N$ at the maximal distance from N also stabilize. This means $\left\{N, N t_{0} t_{1} t_{0} N\right\}$ is a nontrivial block of size 2. Let B be a nontrivial block and $N \in B$. If $N t_{0} t_{1} t_{0} \in B$. Then

$$
\begin{aligned}
B & =\left\{N, N t_{0} t_{1} t_{0}\right\}=\{1,10\} \\
B t_{0} & =\left\{N t_{0}, N t_{0} t_{1}\right\}=\{2,6\} \\
B t_{1} & =\left\{N t_{1}, N \underline{t_{0} t_{1} t_{0}} t_{1}\right\}=\left\{N t_{1}, N t_{1} t_{0} t_{1} t_{1}\right\}=\left\{N t_{1}, N t_{1} t_{0}\right\}=\{3,7\} \\
B t_{2} & =\left\{N t_{2}, N \underline{\left.t_{0} t_{1} t_{0} t_{2}\right\}=\left\{N t_{2}, N t_{2} t_{0} t_{2} t_{2}\right\}=\left\{N t_{2}, N t_{2} t_{0}\right\}=\left\{N t_{2}, N t_{2} t_{1}\right\}=\{4,8\}}\right. \\
B t_{3} & =\left\{N t_{3}, N \underline{t_{0} t_{1} t_{0}} t_{3}\right\}=\left\{N t_{3}, N t_{3} t_{1} t_{3} t_{3}\right\}=\left\{N t_{3}, N t_{3} t_{1}\right\}=\{5,9\} .
\end{aligned}
$$

We can see that $\left\{B t_{0}, B t_{1}, B t_{2}, B t_{3}\right\} \cap B=\emptyset$ and $\left\{B t_{0}, B t_{1}, B t_{2}, B t_{3}\right\} \neq B$.Hence, we have blocks of imprimitive of size two. Therefore, $|Z(G)|=2$ where $Z(G)=\langle n w>$ (central elements permute the elements of each block of imprimitive) $=\{(1,10)(2,6)(3,7)(4,8)(5,9)\}$.

Now, we are going to find the central element of order 2 in G, not in its homomorphic image G_{1}. Consider $n t_{0} t_{1} t_{0}=1 \in G$;
in addition, $t_{0} t_{1} t_{0}=n^{-1}$. Let $r=n^{-1}$. Then $t_{0} t_{1} t_{0}=r$. We now compute r by its action on the cosets $\left\{N t_{0}, N t_{1}, N t_{2}, N t_{3}\right\}$.
Compute r by its action on the coset $N t_{0}$:

$$
\begin{aligned}
N t_{0}^{r} & =N t_{0}^{t_{0} t_{1} t_{0}}=N\left(t_{0} t_{1} t_{0}\right)^{-1} t_{0} t_{0} t_{1} t_{0} \\
& =N t_{0} t_{1} t_{0} t_{1} t_{0} \\
& =N t_{0} t_{1} t_{0} \underline{t_{1} t_{0} t_{2} t_{2}}=N t_{0} t_{1} t_{0}(1,0,2) t_{1} t_{2} \\
& =N t_{2} \underline{t_{0} t_{2} t_{1} t_{2}}=N t_{2}(0,2,1) t_{0} t_{2} \\
& =N t_{1} t_{0} t_{2} \\
& =N t_{1} .
\end{aligned}
$$

Now, compute r by its action on the coset $N t_{1}$:

$$
\begin{aligned}
N t_{1}^{r} & =N t_{1}^{t_{0} t_{1} t_{0}} \\
& =N\left(t_{0} t_{1} t_{0}\right)^{-1} t_{1} t_{0} t_{1} t_{0} \\
& =N t_{0} t_{1} t_{0} t_{1} t_{0} \underline{t_{1} t_{0}} \\
& =N t_{0} t_{1} t_{0} t_{1} t_{0}(0,2,1) t_{1} t_{2} \\
& =N t_{2} t_{0} t_{2} \underline{t_{0} t_{2} t_{1} t_{2}} \\
& =N t_{2} t_{0} t_{2}(0,2,1) t_{0} t_{2} \\
& =N t_{1} t_{2} t_{1} t_{0} t_{2} \\
& =N t_{1}(2,1,0) t_{2} t_{2}=N t_{0} .
\end{aligned}
$$

Next, compute r by its action on the coset $N t_{2}$:

$$
\begin{aligned}
N t_{2}^{r} & =N t_{2}^{t_{0} t_{1} t_{0}} \\
& =N\left(t_{0} t_{1} t_{0}\right)^{-1} t_{2} t_{0} t_{1} t_{0} \\
& =N t_{0} t_{1} t_{0} t_{2} t_{0} t_{1} t_{0} \\
& =N t_{0} t_{1} t_{0}(2,0,1) t_{2} t_{0} \\
& =N t_{1} t_{2} \underline{t_{1} t_{2} t_{0}} \\
& =N t_{1} t_{2}(1,2,0) t_{1} \\
& =N t_{2} t_{0} t_{1} \\
& =N(2,0,1) t_{2} \\
& =N t_{2} .
\end{aligned}
$$

Finally, compute r by its action on the coset $N t_{3}$:

$$
\begin{aligned}
N t_{3}^{r} & =N t_{3}^{t_{0} t_{1} t_{0}} \\
& =N\left(t_{0} t_{1} t_{0}\right)^{-1} t_{3} t_{0} t_{1} t_{0} \\
& =N t_{0} t_{1} t_{0} \underline{t_{3} t_{0} t_{1}} t_{0} \\
& =N t_{0} t_{1} t_{0}(3,0,1) t_{3} t_{0} \\
& =N t_{1} t_{3} \underline{t_{1} t_{3} t_{0}} \\
& =N t_{1} t_{3}(1,3,0) t_{1} \\
& =N t_{3} t_{0} t_{1} \\
& =N t_{3} .
\end{aligned}
$$

Thus, $N t_{0}^{r}=t_{1}, N t_{1}^{r}=t_{0}, N t_{2}^{r}=t_{2}$, and $N t_{3}^{r}=t_{3}$. Therefore, $r=(0,1)$, and the generator of the center is $t_{0} t_{1} t_{0}=(0,1)$. Hence, the center of G is $Z(G)=<$ $(0,1) t_{0} t_{1} t_{0}>$.
Now, we factor

$$
G \cong \frac{2^{* 4}: S_{4}}{(0,1,2)=t_{0} t_{1} t_{2} t_{0}}
$$

by $Z(G)=<(0,1) t_{0} t_{1} t_{0}>$. Now the question is whether the new relation $(0,1) t_{0} t_{1} t_{0}$ implies the original relation, $(0,1,2)=t_{0} t_{1} t_{2} t_{0}$.

We have $t_{0} t_{1} t_{2}=t_{0} \underline{t_{1} t_{2} t_{1}} t_{1}=t_{0}(1,2) t_{1}=(1,2) \underline{t_{0} t_{1} t_{0}} t_{0}=(1,2)(1,0) t_{0}=$ $(0,1,2) t_{0}$. Hence, $(0,1) t_{0} t_{1} t_{0} \Longrightarrow t_{0} t_{1} t_{0}=(0,1,2) t_{0}$.

Thus, G factor by the center $Z(G)$ is

$$
G \cong \frac{2^{* 4}: S_{4}}{(0,1,2)=t_{0} t_{1} t_{2} t_{0},(0,1)=t_{0} t_{1} t_{0}} \cong \frac{2^{* 4}: S_{4}}{(0,1)=t_{0} t_{1} t_{0}} .
$$

Now we construct a double coset enumeration of $G \cong \frac{2^{* 4}: S_{4}}{(0,1)=t_{0} t_{1} t_{0}}$. Our first double coset, $N e=\{N e n \mid n \in N\}=\{N\}$ denoted by $[*]$ contains one single coset. Since N is transitive on $\left\{t_{0}, t_{1}, t_{2}, t_{4}\right\}$, the orbit of N on $\{0,1,2,4\}$ is: $\mathbb{O}=\{0,1,2,4\}$. We take a representative from the orbit, say t_{0}, and find to which double coset $N t_{0}$ belongs. $N t_{0} N$ will be a new double coset, denoted by [0]. Hence, four symmetric generators will go the new double coset [0].
In order to find how many single cosets [0] contains, we must first find the coset stabilizer
$N^{(0)}$. Then the number of single coset in [0] is equal to $\frac{|N|}{\left|N^{(0)}\right|}$. Now, $N^{(0)}=N^{0}=<$ $(1,2,3),(1,2)>$, so the number of the single cosets in $N t_{0} N$ is $\frac{|N|}{\left|N^{(0)}\right|}=\frac{24}{6}=4$. These four single cosets in [0] are $\left\{N t_{0}^{n} \mid n \in N\right\}=\left\{N t_{0}, N t_{1}, N t_{2}, N t_{3}\right\}$. Furthermore, the orbits of $N^{(0)}$ on $\left\{t_{0}, t_{1}, t_{2}\right\}$ are: $\mathbb{O}=\{0\}$ and $\{1,2,3\}$. We take t_{0} and t_{1} from each orbit, respectively, and to see which double coset $N t_{0} t_{0}$ and $N t_{0} t_{1}$ belong to. Now $N t_{0} t_{0}=N \in[*]$, so one element will go back to $N e N$ and by our relation we have $(0,1) t_{0} t_{1} t_{0}=e \Longrightarrow(0,1) t_{0} t_{1}=t_{0} \Longrightarrow N t_{0} t_{1}=N t_{0}$. Hence, $N t_{0} t_{1} \in[0]$, so three elements will loop back to [0]. A Cayley diagram that summarizes the above information is given below:

Figure 2.4: Cayley Diagram of S_{5} over S_{4}

Chapter 3

Iwasawa's Lemma

In this chapter, we will apply Iwasawa's lemma to prove that a group G is simple.

3.1 Iwasawa's Lemma Preliminaries

Definition 3.1. (G-set).
If X is a set and G is a group, then X is a G-set if there is a function $\alpha: G \times X \rightarrow X$ (called an action), denoted by $\alpha:(g, x) \mapsto g x$, such that:
(i) $1 x=x$ for all $x \in X$ and
(ii) $g(h x)=(g h) x$ for all $g, h \in G$ and $x \in X$. We also say that G acts on X. If $|X|=n$, then n is called the degree of the G-set X. [Rot12]

Definition 3.2. (Transitive G-set).
A $G-$ set X is transitive if it has only one orbit; that is, for every $x, y \in X$, there exists $\sigma \in G$ with $y=\sigma x$. [Rot12]

Definition 3.3. If X is a transitive G-set of degree n, and if $x \in X$, then $|G|=n\left|G^{x}\right|$. [Rot12]

Definition 3.4. $A G-$ set X is transitive if it has only one orbit; that is, for every $x, y \in X$, there exists $\sigma \in G$ with $y=\sigma x$. [Rot12]

Definition 3.5. (Block).
If X is a G - set, then a block is a subset B of X such that, for each $g \in G$, either
$g B=B$ or $g B \cap B=\emptyset$. Note $g B=\{g x: x \in B\}$. Trivial blocks are \emptyset, X, and one-point subsets; any other other block is called nontrivial. [Rot12]

Definition 3.6. $A G-$ set X with action α is faithful if $\bar{\alpha}: G \rightarrow S_{x}$ is injective. [Rot12]

Definition 3.7. (Primitive).
A transitive $G-$ set X is primitive if it contains no nontrivial block; otherwise, it is imprimitive. [Rot12]

Definition 3.8. Let X be a finite G - set, and let $H \leq G$ act transitively on X. Then $G=H G^{x}$ for each $x \in X$. [Rot12]

Definition 3.9. Let X be $a G-$ set and $x, y \in X$.
(i) If $H \leq G$, then $H_{x} \cap H_{y} \neq \emptyset \Longrightarrow H_{x}=H_{y}$
(ii) If H is normal in G, then the subsets $H x$ are blocks of X. [Rot12]

Definition 3.10. If X is a faithful primitive $G-$ set of degree $n \geq 2$. If H is normal in G and if $H \neq 1$, then X is a transitive H - set. [Rot12]

Theorem 3.11. Let X be a transitive G - set. Then X is primitive if and only if, for each $x \in X$, the stabilizer G^{x} is a maximal subgroup. [Rot12]

Definition 3.12. (Commutator). If $a, b \in G$, the commutator of a and b, denoted $b y[a, b]$, is

$$
[a, b]=a b a^{-1} b^{-1} \cdot[\operatorname{Rot} 12]
$$

Definition 3.13. (Derived Group). The commutator subgroup (or derived group) of G, denoted by G^{\prime}, is the subgroups of G generated by all the commutators. [Rot12]

Definition 3.14. (Simple). A group $G \neq 1$ is simple if it has no normal subgroups other than G and 1. [Rot12]

Theorem 3.15. (Iwasawa's Lemma). Let $G^{\prime}=G$ (such a group is called perfect) and let X be a faithful primitive G - set. If there is $x \in X$ and an abelian normal subgroup K of G_{x} whose conjugates $\left\{g h g^{-1}\right\}$ generate G, then G is simple. [Rot12]

3.2 Iwasawa's Lemma to Prove $L_{2}(13)$ over A_{4} is Simple

We consider

$$
G \cong \frac{2^{* 4} A_{4}}{\left[(0,1,2) t_{0}\right]^{7}\left[(0,1)(2,3) t_{0}\right]^{7},\left[(0,1,2) t_{0} t_{1} t_{2} t_{3}\right]^{2}} \cong L_{2}(13),
$$

where A_{4} is maximal in $L_{2}(13)$ and the index of A_{4} in G equals 91 .
Note $N=A_{4} \cong<x, y \mid x^{3}, y^{3},(x * y)^{2}>$, where $x=(1,2,3)$ and $y=(1,2,0)$. Let $t_{4} \sim t_{0}$.
The manual double coset enumeration and the Cayley diagram was done by Maria de la Luz Torres [dILT05]. The Cayley diagram is shown below:

Figure 3.1: Cayley Diagram of $L_{2}(13)$ over A_{4}

We use Iwasawa's lemma to prove $G \cong L_{2}(13)$ is simple. Iwasawa's lemma has three sufficient conditions that we must satisfied:
(1) G acts on X faithfully and primitively
(2) G is perfect $\left(G=G^{\prime}\right)$
(3) There exist $x \in X$ and a normal abelian subgroup K of G^{x} such that the conjugates of K generate G.

Proof. 3.2.1 $G=L_{2}(13)$ acts on X Faithfully

Let G acts on $X=\left\{N, N t_{0} N, N t_{0} t_{1} N, N t_{0} t_{1} t_{0} N, N t_{0} t_{1} t_{0} t_{3} N, N t_{0} t_{1} t_{0} t_{2} N\right.$, $\left.N t_{0} t_{1} t_{2} N, N t_{0} t_{1} t_{3} N, N t_{0} t_{1} t_{3} t_{2} N, N t_{0} t_{1} t_{2} t_{3} N, N t_{0} t_{1} t_{0} t_{2} t_{0} N\right\}$, where $|X|=91 . G$ acts on X implies there exist homomorphism

$$
f: G \longrightarrow S_{91} \quad(|X|=91) .
$$

By First Isomorphic Theorem we have:

$$
G / \operatorname{ker} f \cong f(G) .
$$

If $\operatorname{ker} f=1$ then $G \cong f(G)$. Only elements of N fix N implies $G^{1}=N$. Since X is a transitive G - set of degree 91, we have:

$$
\begin{aligned}
|G| & =91 \times\left|G^{1}\right| \\
& =91 \times|N| \\
& =91 \times 12 \\
& =1092 \\
\Longrightarrow|G| & =1092 .
\end{aligned}
$$

From Cayley diagram, $|G| \leq 1092$. However, from above $|G|=1092$ implying $\operatorname{ker}(f)=$ 1. Since $\operatorname{ker} f=1$ then G acts faithfully on X.

3.2.2 $G=L_{2}(13)$ acts on X Primitively

In order to show that G is primitive, we must show that $G=L_{2}(13)$ is transitive on $X=91$ and there exists no nontrivial blocks of X. From the Cayley diagram of $G=L_{2}(13)$ over A_{4}, we see that G is transitive. Let B be a nontrivial block, then $|B|||X|$. Note if we had a nontrivial block it would have to be of size 7 or 13 . Let B be a nontrivial block and $N \in B$ since G is transitive on the coset of N. Now we look at different cases:

Case(1): Assume $N t_{0} \in B$, then

$$
\begin{aligned}
B & =\left\{N, N t_{0}\right\} \\
B & =\left\{N, N t_{0} N\right\} \quad(\text { since } N \in B, B N=B) \\
B & =\left\{N, N t_{0}, N t_{1}, N t_{2}, N t_{3}\right\} \\
B t_{1} & =\left\{N t_{1}, N t_{0} t_{1}, N, N t_{2} t_{1}, N t_{3} t_{1}\right\} \\
\Longrightarrow N & \in B \cap B t_{1} \\
\Longrightarrow B & =B t_{1} .
\end{aligned}
$$

Now $B=\left\{N, N t_{0} N, N t_{0} t_{1} N\right\}$, where $|B|=17$ (passed size 7 and 13). Note if $N t_{0} \in B$ then $B=X$. So B is a trivial block.

Case(2): Assume $N t_{0} t_{1} \in B$, then

$$
\begin{aligned}
B & =\left\{N, N t_{0} t_{1}\right\} \\
B & =\left\{N, N t_{0} t_{1} N\right\} \quad(\text { since } N \in B, B N=B) \\
B & =\left\{N, N t_{0} t_{1}, N t_{2} t_{1}, N t_{3} t_{1}, \ldots, N t_{2} t_{0}, N t_{1} t_{0}, N t_{3} t_{0}\right\} \text { where }|B|=13 \\
B t_{0} t_{2} & =\left\{N t_{0} t_{2}, N t_{0} t_{1} t_{0} t_{2}, N t_{2} t_{1} t_{0} t_{2}, \ldots, N, N t_{1} t_{2}, N t_{3} t_{2}\right\} \\
\Longrightarrow D & \in B \cap B t_{0} t_{2} \\
\Longrightarrow B & =B t_{0} t_{2} .
\end{aligned}
$$

So $B=\left\{N, N t_{0} t_{1} N, N t_{0} t_{1} t_{0} t_{2} N\right\}$, where $|B|=25$ (passed size 7 and 13). Hence, B is a no nontrivial block of X under the action G.
Case(3): Assume $N t_{0} t_{1} t_{0} \in B$, then

$$
\begin{aligned}
B & =\left\{N, N t_{0} t_{1} t_{0}\right\} \\
B & =\left\{N, N t_{0} t_{1} t_{0} N\right\} \quad(\text { since } N \in B, B N=B) \\
B & =\left\{N, N t_{0} t_{1} t_{0}, N t_{2} t_{1} t_{2}, N t_{3} t_{1} t_{3}, \ldots, N t_{2} t_{0} t_{2}, N t_{1} t_{0} t_{1}, N t_{3} t_{0} t_{3}\right\} \text { where }|B|=13 \\
B t_{1} & =\left\{N t_{1}, N t_{0} t_{1} t_{0} t_{1}, N t_{2} t_{1} t_{2} t_{1}, \ldots, N t_{2} t_{0} t_{2} t_{1}, N t_{1} t_{0}, N t_{3} t_{0} t_{3} t_{1}\right\} \\
& =\left\{N t_{1}, N t_{0} t_{1} t_{0}, N t_{2} t_{1} t_{2} t_{1}, \ldots, N t_{2} t_{0} t_{2} t_{1}, N t_{1} t_{0}, N t_{3} t_{0} t_{3} t_{1}\right\} \\
\Longrightarrow & N t_{0} t_{1} t_{0} \in B \cap B t_{1} \\
\Longrightarrow & B=B t_{1} .
\end{aligned}
$$

So $B=\left\{N, N t_{1} N, N t_{0} t_{1} N, N t_{0} t_{1} t_{0} N, N t_{0} t_{1} t_{0} t_{2} N, N t_{0} t_{1} t_{0} t_{3} N\right\}$, where $|B|=52$. Hence, B is a no nontrivial block of X under the action G.

Case(4): Assume $N t_{0} t_{1} t_{2} \in B$, then

$$
\begin{aligned}
& B=\left\{N, N t_{0} t_{1} t_{2}\right\} \\
& B=\left\{N, N t_{0} t_{1} t_{2} N\right\} \quad(\text { since } N \in B, B N=B) \\
& B=\left\{N, N t_{0} t_{1} t_{2}, N t_{2} t_{1} t_{3}, N t_{3} t_{1} t_{0}, \ldots, N t_{0} t_{3} t_{1}, N t_{1} t_{0} t_{3}, N t_{3} t_{0} t_{2}\right\} \text { where }|B|=13 \\
& B t_{2} t_{1} t_{0}=\left\{N t_{2} t_{1} t_{0}, N, N t_{2} t_{1} t_{3} t_{2} t_{1} t_{0}, \ldots, N t_{0} t_{3} t_{1} t_{2} t_{1} t_{0}, N t_{1} t_{0} t_{3} t_{2} t_{1} t_{0}, N t_{3} t_{0} t_{1} t_{0}\right\} \\
& =\left\{N t_{2} t_{1} t_{0}, N, N t_{2} t_{1} t_{3} t_{2} t_{1} t_{0}, \ldots, N t_{2} t_{3} t_{0} t_{1} t_{1} t_{0}, N t_{1} t_{0} t_{3} t_{2} t_{1} t_{0}, N t_{3} t_{0} t_{1} t_{0}\right\} \\
& =\left\{N t_{2} t_{1} t_{0}, N, N t_{2} t_{1} t_{3} t_{2} t_{1} t_{0}, \ldots, N t_{2} t_{3}, N t_{1} t_{0} t_{3} t_{2} t_{1} t_{0}, N t_{3} t_{0} t_{1} t_{0}\right\} \\
& \Longrightarrow N \in B \cap B t_{2} t_{1} t_{0} \\
& \Longrightarrow B=B t_{2} t_{1} t_{0} \text {. }
\end{aligned}
$$

So $B=\left\{N, N t_{0} t_{1} N, N t_{0} t_{1} t_{2} N\right\}$, where $|B|=25$. Hence, B is a no nontrivial block of X under the action G.

Case(5): Assume $N t_{0} t_{1} t_{3} \in B$, then

$$
\begin{aligned}
B & =\left\{N, N t_{0} t_{1} t_{3}\right\} \\
B & =\left\{N, N t_{0} t_{1} t_{3} N\right\} \quad(\text { since } N \in B, B N=B) \\
B & =\left\{N, N t_{0} t_{1} t_{3}, N t_{2} t_{1} t_{0}, N t_{3} t_{1} t_{2}, \ldots, N t_{2} t_{0} t_{3}, N t_{1} t_{0} t_{2}, N t_{3} t_{0} t_{1}\right\} \text { where }|B|=13 \\
B t_{3} t_{1} t_{0} & =\left\{N t_{3} t_{1} t_{0}, N, N t_{2} t_{1} t_{0} t_{3} t_{1} t_{0}, \ldots, N t_{2} t_{0} t_{1} t_{0}, N t_{1} t_{0} t_{2} t_{3} t_{1} t_{0}, N t_{3} t_{0} t_{1} t_{3} t_{1} t_{0}\right\} \\
& =\left\{N t_{3} t_{1} t_{0}, N, N t_{0} t_{1} t_{3} t_{2} t_{1} t_{0}, \ldots, N t_{2} t_{0} t_{1} t_{0}, N t_{1} t_{0} t_{2} t_{3} t_{1} t_{0}, N t_{3} t_{0} t_{1} t_{3} t_{1} t_{0}\right\} \\
& =\left\{N t_{3} t_{1} t_{0}, N, N t_{0} t_{1} t_{2} t_{3} t_{1} t_{1} t_{0}, \ldots, N t_{2} t_{0} t_{1} t_{0}, N t_{1} t_{0} t_{2} t_{3} t_{1} t_{0}, N t_{3} t_{0} t_{1} t_{3} t_{1} t_{0}\right\} \\
& =\left\{N t_{3} t_{1} t_{0}, N, N t_{0} t_{1} t_{2} t_{3} t_{0}, \ldots, N t_{2} t_{0} t_{1} t_{0}, N t_{1} t_{0} t_{2} t_{3} t_{1} t_{0}, N t_{3} t_{0} t_{1} t_{3} t_{1} t_{0}\right\} \\
& =\left\{N t_{3} t_{1} t_{0}, N, N t_{0} t_{1} t_{2}, \ldots, N t_{2} t_{0} t_{1} t_{0}, N t_{1} t_{0} t_{2} t_{3} t_{1} t_{0}, N t_{3} t_{0} t_{1} t_{3} t_{1} t_{0}\right\} \\
\Longrightarrow D & \in B \cap B t_{3} t_{1} t_{0} \\
\Longrightarrow B & =B t_{3} t_{1} t_{0} .
\end{aligned}
$$

So $B=\left\{N, N t_{3} t_{1} t_{0} N, N t_{0} t_{1} t_{2} N\right\}$, where $|B|=25$. Hence, B is a no nontrivial block of X under the action G.

Case(6): Assume $N t_{0} t_{1} t_{0} t_{3} \in B$, then

$$
\begin{aligned}
& B=\left\{N, N t_{0} t_{1} t_{0} t_{3}\right\} \\
& B=\left\{N, N t_{0} t_{1} t_{0} t_{3} N\right\} \quad(\text { since } N \in B, B N=B) \\
& B=\left\{N, N t_{0} t_{1} t_{0} t_{3}, N t_{2} t_{1} t_{2} t_{0}, N t_{3} t_{1} t_{3} t_{2}, \ldots, N t_{2} t_{0} t_{2} t_{3}, N t_{1} t_{0} t_{1} t_{2}, N t_{2} t_{3} t_{2} t_{1}\right\} \\
& B t_{1} t_{2} t_{0} t_{1} t_{0}=\left\{\underline{N t_{1} t_{2} t_{0} t_{1} t_{0}}, \underline{N t_{0} t_{1} t_{0} t_{3}} t_{1} t_{2} t_{0} t_{1} t_{0}, \ldots, \underline{\left.N t_{2} t_{3} t_{0} t_{1} t_{0}\right\}}\right. \\
& =\left\{N t_{0} t_{1} t_{0} t_{3}, N t_{0} t_{1} t_{0} t_{2} t_{1} t_{1} t_{2} t_{0} t_{1} t_{0}, \ldots, N t_{1} t_{3} t_{2} t_{0} t_{0}\right\} \\
& =\left\{N t_{0} t_{1} t_{0} t_{3}, N, \ldots, N t_{1} t_{3} t_{2}\right\} \\
& \Longrightarrow N \in B \cap B t_{1} t_{2} t_{0} t_{1} t_{0} \\
& \Longrightarrow B=B t_{1} t_{2} t_{0} t_{1} t_{0} .
\end{aligned}
$$

So $B=\left\{N, N t_{0} t_{1} t_{0} N, N t_{0} t_{1} t_{0} t_{3} N\right\}$, where $|B|=25$. Hence, B is a no nontrivial block of X under the action G.
Case(7): Assume $N t_{0} t_{1} t_{0} t_{2} \in B$, then

$$
\begin{aligned}
& B=\left\{N, N t_{0} t_{1} t_{0} t_{2}\right\} \\
& B=\left\{N, N t_{0} t_{1} t_{0} t_{2} N\right\} \quad(\text { since } N \in B, B N=B) \\
& B=\left\{N, N t_{0} t_{1} t_{0} t_{2}, N t_{2} t_{1} t_{2} t_{3}, \ldots, N t_{3} t_{2} t_{3} t_{1}\right\} \\
& B t_{1} t_{3} t_{0} t_{1} t_{0}=\left\{\underline{\left.N t_{1} t_{3} t_{0} t_{1} t_{0}, \underline{N t_{0}} t_{1} t_{0} t_{2} t_{1} t_{3} t_{0} t_{1} t_{0}, \ldots, \underline{N} t_{3} t_{2} t_{0} t_{1} t_{0}\right\}}\right. \\
& =\left\{N t_{0} t_{1} t_{0} t_{2}, N t_{0} t_{1} t_{0} t_{3} t_{1} t_{1} t_{3} t_{0} t_{1} t_{0}, \ldots, N t_{1} t_{2} t_{3} t_{0} t_{0}\right\} \\
& =\left\{N t_{0} t_{1} t_{0} t_{2}, N, \ldots, N t_{1} t_{2} t_{3}\right\} \\
& \Longrightarrow N \in B \cap B t_{1} t_{3} t_{0} t_{1} t_{0} \\
& \Longrightarrow B=B t_{1} t_{3} t_{0} t_{1} t_{0} .
\end{aligned}
$$

So $B=\left\{N, N t_{0} t_{1} t_{0} N, N t_{0} t_{1} t_{0} t_{2} N\right\}$, where $|B|=25$. Hence, B is a no nontrivial block of X under the action G.

Case(8): Assume $N t_{0} t_{1} t_{0} t_{2} t_{0} \in B$, then

$$
\begin{aligned}
B & =\left\{N, N t_{0} t_{1} t_{0} t_{2} t_{0}\right\} \\
B & =\left\{N, N t_{0} t_{1} t_{0} t_{2} t_{0} N\right\} \quad(\text { since } N \in B, B N=B) \\
B & =\left\{N, N t_{0} t_{1} t_{0} t_{2} t_{0}, N t_{2} t_{1} t_{2} t_{3} t_{2}, \ldots, N t_{3} t_{2} t_{3} t_{1} t_{3}\right\} \text { where }|B|=7 \\
B t_{0} & =\left\{N t_{0}, N t_{0} t_{1} t_{0} t_{2}, N t_{2} t_{1} t_{2} t_{3} t_{2} t_{0}, \ldots, N t_{3} t_{2} t_{3} t_{1} t_{3} t_{0}\right\} \\
B t_{1} & =\left\{N t_{1}, N t_{0} t_{1} t_{0} t_{2} t_{0} t_{1}, N t_{2} t_{1} t_{2} t_{3} t_{2} t_{1}, \ldots, N t_{3} t_{2} t_{3} t_{1} t_{3} t_{1}\right\} \\
& =\left\{N t_{1}, N t_{0} t_{1} t_{0} t_{2}, N t_{2} t_{1} t_{2} t_{3} t_{2} t_{1}, \ldots, N t_{3} t_{2} t_{3} t_{1} t_{3} t_{1}\right\}
\end{aligned}
$$

Since $B \cap B t_{0}=\emptyset$. Then B is a block and $B t_{0}$ is also a block. Moreover, $B \cap B t_{1}=\emptyset$ so $B t_{1}$ is a block. But $N t_{0} t_{1} t_{0} t_{2} \in B t_{0} \cap B t_{1}$. So $B=\left\{N, N t_{0} N, N t_{0} t_{1} t_{0} t_{2} N, N t_{0} t_{1} t_{0} t_{2} t_{0}\right\}$. Hence, B is a no nontrivial block of X under the action G.

Case(9): Assume $N t_{0} t_{1} t_{3} t_{2} \in B$, then

$$
\begin{gathered}
B=\left\{N, N t_{0} t_{1} t_{3} t_{2}\right\} \\
B=\left\{N, N t_{0} t_{1} t_{3} t_{2} N\right\} \quad(\text { since } N \in B, B N=B) \\
B=\left\{N, N t_{0} t_{1} t_{3} t_{2}, N t_{0} t_{2} t_{1} t_{3}, N t_{0} t_{3} t_{2} t_{1}, N t_{3} t_{0} t_{1} t_{2}\right\} \text { where }|B|=5
\end{gathered}
$$

Hence B is not a block since size of $|B|=5$ does not divide $|X|=91$.
Case(10): Assume $N t_{0} t_{1} t_{2} t_{3} \in B$, then

$$
\begin{gathered}
B=\left\{N, N t_{0} t_{1} t_{2} t_{3}\right\} \\
\left.B=\left\{N, N t_{0} t_{1} t_{2} t_{3} N\right\} \quad \text { (since } N \in B, B N=B\right) \\
B=\left\{N, N t_{0} t_{1} t_{2} t_{3}, N t_{0} t_{2} t_{3} t_{1}, N t_{0} t_{3} t_{1} t_{2}, N t_{3} t_{0} t_{2} t_{1}\right\} \text { where }|B|=5
\end{gathered}
$$

Hence B is not a block since size of $|B|=5$ does not divide $|X|=91$. In conclusion, from the cases above we show that we cannot create nontrivial block of size 7 or 13 . Thus G acts primitively on X.

3.2.3 $G=L_{2}(13)$ is Perfect

Next we want to show that $G=G^{\prime}$. Now $A_{4} \subseteq G \Longrightarrow A_{4}{ }^{\prime} \subseteq G^{\prime}$.
$A_{4}{ }^{\prime}=<[a, b] \mid a, b \in A_{4}>$. Now the derived group,

$$
\begin{aligned}
& A_{4}{ }^{\prime}=<(1,3)(20),(1,2)(3,0)> \\
& \Longrightarrow\{e,(1,3)(2,0),(1,2)(3,0),(1,0)(2,3)\} \subseteq G^{\prime}
\end{aligned}
$$

Now $x=(1,2,3)$ and $y=(0,1,2)$.
Then $[x, y]=x^{-1} y^{-1} x y=(1,3,2)(0,2,1)(1,2,3)(0,1,2)=(1,2)(3,0) \in G^{\prime}$. If we conjugate $(1,2)(3,0)$ by $(1,2,3)$ we get $(2,3)(1,0) \in G^{\prime}$.
Now by expanding the relation $\left[(0,1,2) t_{0}\right]^{7}=1$, we get

$$
\begin{gathered}
(0,1,2) t_{0} t_{2} t_{1} t_{0} t_{2} t_{1} t_{0}=1 \\
\Longrightarrow y=t_{0} t_{1} t_{2} t_{0} t_{1} t_{2} t_{0} .
\end{gathered}
$$

Also by expanding the relation $\left[(0,1)(2,3) t_{0}\right]^{7}=1$, we get

$$
\begin{gathered}
(0,1)(2,3) t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}=1 \\
\Longrightarrow x y=t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}
\end{gathered}
$$

Now we use the second relation to solve for x . We replace $y=t_{0} t_{1} t_{2} t_{0} t_{1} t_{2} t_{0}$.

$$
\begin{aligned}
x y & =t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} \\
x t_{0} t_{1} t_{2} t_{0} t_{1} t_{2} t_{0} & =t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} \\
\Longrightarrow x & =t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{2} t_{1} t_{0} t_{2} t_{1} t_{0} .
\end{aligned}
$$

So $G=<x, y, t>=<t_{0}, t_{1}, t_{2}, t_{3}>$. Our goal is to show that one of the $t_{i}^{\prime} s \in G^{\prime}$, then we can conjugate. Since $(0,1)(2,3) \in G^{\prime}$. Then

$$
\begin{aligned}
(0,1)(2,3) & =t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} \in G^{\prime} \\
(0,1)(2,3)^{\left(t_{0} t_{1}\right)} & =\left(t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}\right)^{\left(t_{0} t_{1}\right)} \in G^{\prime}\left(\text { since } G^{\prime} \unlhd G\right) \\
& =\left(t_{0} t_{1}\right)^{-1}\left(t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}\right)\left(t_{0} t_{1}\right) \\
& =\left(t_{1} t_{0}\right)\left(t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}\right)\left(t_{0} t_{1}\right) \\
& =t_{0} t_{1} t_{0} \\
& =t_{0} t_{1} t_{0} t_{1} t_{1} t_{1} \\
& =\left[t_{0}, t_{1}\right] t_{1} \in G^{\prime}\left(\text { since }\left[t_{0}, t_{1}\right] \in G^{\prime}\right) \\
& \Longrightarrow t_{1} \in G .
\end{aligned}
$$

So $t_{1} \in G^{\prime}$

$$
\begin{gathered}
\Longrightarrow t_{1}^{y}, t_{1}^{y^{-1}} \in G^{\prime}\left(\text { since } y, y^{-1} \in G \text { and } G^{\prime} \unlhd G\right) \\
\\
t_{1}^{y}=t_{1}^{(0,1,2)}=t_{2} \in G^{\prime} \\
t_{1}^{y^{-1}}=t_{1}^{(1,0,2)}=t_{0} \in G^{\prime}
\end{gathered}
$$

$\Longrightarrow t_{2}, t_{0} \in G^{\prime}$.
So $t_{2}^{x} \in G^{\prime}\left(\right.$ since $x \in G, t_{2} \in G^{\prime}$, and $\left.G^{\prime} \unlhd G\right)$

$$
t_{2}^{x}=t_{2}^{(1,2,3)}=t_{3} \in G^{\prime}
$$

Thus $G \supseteq G^{\prime} \supseteq<t_{0}, t_{1}, t_{2}, t_{3}>=G$
$\Longrightarrow G^{\prime}=G$. Hence G is perfect.

3.2.4 Conjugates of a Normal Abelian K

Generate $G=L_{2}(13)$ over A_{4}
Now we require $x \in X$ and a $K \unlhd G^{x}$, where K is a normal abelian subgroup such that the conjugates of K in G generate G. Recall, $G^{1}=N=A_{4}$. Let $K=<$ $(0,1)(2,3),(0,2)(1,3)>$. Since K is normal abelian subgroup in G then for any $s \in K$ and for all $g \in G$ implies $s^{g} \in K$. Since $(0,1)(2,3)=t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} \in K$. Now

$$
\begin{aligned}
& t_{0} t_{1} t_{0} \in G \text { and } t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} \in K \\
& \Longrightarrow\left(t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}\right)^{\left(t_{0} t_{1} t_{0}\right)} \in K^{G} \\
& \Longrightarrow\left(t_{0} t_{1} t_{0}\right)^{-1}\left(t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0}\right)\left(t_{0} t_{1} t_{0}\right) \in K^{G} \\
& \Longrightarrow t_{0} t_{1} t_{0} t_{0} t_{1} t_{0} t_{1} t_{0} t_{1} t_{0} t_{0} t_{1} t_{0} \in K^{G} \\
& \Longrightarrow t_{1} \in K^{G} \\
& \Longrightarrow t_{1}^{G} \in K^{G} \\
& \Longrightarrow K^{G} \supseteq\left\{t_{1}, t_{1}^{y^{-1}}, t_{1}^{y},\left(t_{1}^{y}\right)^{x}\right\} \\
& \Longrightarrow K^{G} \supseteq\left\{t_{1}, t_{1}^{y^{-1}}, t_{1}^{y},\left(t_{1}^{y}\right)^{x}\right\}=<t_{1}, t_{0}, t_{2}, t_{3}>=G
\end{aligned}
$$

Hence, the conjugates of K generate G. Therefore, by Iwasawa's lemma, $G \cong L_{2}(13)$ is simple.

$3.32 \times L_{2}(8)$ as a Homomorphic Image of $2^{* 7}: D_{14}$

3.3.1 Construction of $2 \times L_{2}(8)$ over D_{14}

Consider the group $G=2^{* 7}$: D_{14} factored by the relators $\left(x t t^{x}\right)^{2}$ and $(t t x t)^{9}$. Note $N=D_{14}$, where $x \sim(1,2,3,4,5,6,7)$ and $y \sim(1,6)(2,5)(3,4)$. Let $t \sim t_{7} \sim t_{0}$. Let us expand the relators:

$$
\begin{aligned}
1 & =\left(x t t^{x}\right)^{2}=\left(x t_{0} t_{1}\right)^{2} \\
& =x^{2}\left(t_{0} t_{1}\right)^{x} t_{0} t_{1}=x^{2} t_{1} t_{2} t_{0} t_{1} \\
\Longrightarrow 1 & =x^{2} t_{1} t_{2} t_{0} t_{1} \\
\Longrightarrow t_{1} t_{0} & =x^{2} t_{1} t_{2} \Longrightarrow N t_{1} t_{0}=N t_{1} t_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
e & =(t t x t)^{9} \\
& =\left(t_{0} t_{0} x t_{0}\right)^{9} \\
& =\left(x t_{0}\right)^{9} \\
& =x^{9} t_{0}^{x^{8}} t_{0}^{x^{7}} t_{0}^{x^{6}} t_{0}^{x^{5}} t_{0}^{x^{4}} t_{0}^{x^{3}} t_{0}^{x^{2}} t_{0}^{x} t_{0} \\
& =x^{2} t_{1} t_{0} t_{6} t_{5} t_{4} t_{3} t_{2} t_{1} t_{0} \\
\Longrightarrow e & =x^{2} t_{1} t_{0} t_{6} t_{5} t_{4} t_{3} t_{2} t_{1} t_{0} \\
\Longrightarrow t_{7} t_{1} t_{2} t_{3} & =x^{2} t_{1} t_{7} t_{6} t_{5} t_{4} \\
\Longrightarrow N t_{7} t_{1} t_{2} t_{3} & =N t_{1} t_{7} t_{6} t_{5} t_{4}
\end{aligned}
$$

We want to find the index of N in G. To do this, we perform a manual double coset enumeration of G over N.
$N e N$
First, the double coset $N e N$, is denoted by [*]. This double coset contains only the single coset, namely N. Since N is transitive on $\{0,1,2,3,4,5,6\}$, the orbit of N on $\{0,1,2,3,4,5,6\}$ is: $\mathbb{O}=\{0,1,2,3,4,5,6\}$. We choose t_{0} as our symmetric generator from this orbit \mathbb{O} and find to which double coset $N t_{0}$ belongs. $N t_{0} N$ will be a new double coset, denoted by [0], so seven symmetric generators will go to [0].

$N t_{0} N$

In order to find how many single cosets [0] contains, we must first find $N^{(0)}$. Then the number of single coset in [0] is equal to $\frac{|N|}{\left|N^{(0)}\right|}$. Now,

$$
N^{(0)}=N^{0}
$$

$$
=<e,(1,6)(2,5)(3,4)>
$$

so the number of the single cosets in $N t_{0} N$ is $\frac{|N|}{\left|N^{(0)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(0)}$ on $\{0,1,2,3,4,5,6\}$ are: $\mathbb{O}=\{0\},\{1,6\},\{2,5\}$, and $\{3,4\}$. We take t_{0}, t_{1}, t_{2} and t_{3} from each orbit respectively and find to which double coset $N t_{0} t_{0}, N t_{0} t_{1}, N t_{0} t_{2}$, and $N t_{0} t_{3}$ belong to. Now $N t_{0} t_{0}=N \in[*]$, so one element will go back to [*]. Two symmetric generators will go to new double cosets $N t_{0} t_{1}$, denoted by [01], $N t_{0} t_{2}$, denoted by [02], and $N t_{0} t_{3}$, denoted by [03].

$N t_{0} t_{1} N$

Now $N t_{0} t_{1} N$ in N is a new double coset. We determine how many single cosets are in the double coset. Well $N^{(01)}=N^{01}=<I d(N)>$. But $N t_{0} t_{1}$ is not distinct. Now $N t_{0} t_{6} \in[01]$ since $(1,6)(2,5)(3,4) \in N$ and $N\left(t_{0} t_{1}\right)^{(1,6)(2,5)(3,4)}=N t_{0} t_{6}$. Thus, $(1,6)(2,5)(3,4) \in N^{(01)}$. We conclude:

$$
N^{(01)} \geq<(1,6)(2,5)(3,4)>.
$$

Hence $\left|N^{(01)}\right|=2$ so the number of single cosets in $N^{(01)}$ is $\frac{|N|}{\left|N^{(01)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(01)}$ on $\{0,1,2,3,4,5,6\}$ are: $\mathbb{O}=\{0\},\{1,6\},\{2,5\},\{3,4\}$. Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{i}$ belongs to. We have:

$$
\begin{aligned}
& N t_{0} t_{1} t_{1} \in[0] \\
& N t_{0} t_{1} t_{2} \in[012] \\
& N t_{0} t_{1} t_{3} \in[013] \\
& N t_{0} t_{1} t_{0} \in[010] .
\end{aligned}
$$

The new double cosets have single coset representatives $N t_{0} t_{1} t_{2}, N t_{0} t_{1} t_{3}, N t_{0} t_{1} t_{0}$, we represent them as [012], [013], [010], respectively.

$N t_{0} t_{2} N$

Now $N t_{0} t_{2} N$ in N is a new double coset. We determine how many single cosets are in the double coset. Well $N^{(02)}=N^{02}=<I d(N)>$. But $N t_{0} t_{2}$ is not distinct. Now $N t_{3} t_{1} \in[02]$ since $(1,2)(3,0)(4,6) \in N$ and $N\left(t_{0} t_{2}\right)^{(1,2)(3,0)(4,6)}=N t_{3} t_{1}$. Thus, $(1,2)(3,0)(4,6) \in N^{(02)}$. We conclude:

$$
N^{(02)} \geq<(1,2)(3,0)(4,6)>
$$

Hence $\left|N^{(02)}\right|=2$ so the number of single cosets in $N^{(02)}$ is $\frac{|N|}{\left|N^{(02)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(02)}$ on $\{0,1,2,3,4,5,6\}$ are: $\mathbb{O}=\{0,3\},\{1,2\},\{4,6\},\{5\}$. Take a representative t_{i}
from each orbit and see which double cosets $N t_{0} t_{2} t_{i}$ belongs to. We have

$$
\begin{aligned}
t_{0} t_{2} t_{3} & =x^{-3} t_{5} t_{4} t_{2} \Longrightarrow N t_{0} t_{2} t_{3}=N t_{5} t_{4} t_{2} \in[013] \\
N t_{0} t_{2} t_{2} & =N t_{0} \in[0] \\
t_{0} t_{2} t_{4} & =x t_{4} t_{1} \Longrightarrow N t_{0} t_{2} t_{4}=N t_{4} t_{1} \in[03] \\
N t_{0} t_{2} t_{5} & \in[025] .
\end{aligned}
$$

The new double coset have single coset representative $N t_{0} t_{2} t_{5}$, denoted by [025].

$N t_{0} t_{3} N$

Now $N t_{0} t_{3} N$ in N is a new double coset. However, $N^{(03)}=N^{03}=<\operatorname{Id}(N)>$. Only identity e will fix 0 and 3 . Hence the number of single cosets living in $N t_{0} t_{3}$ is $\frac{|N|}{\left|N^{(03)}\right|}=$ $\frac{14}{1}=14$. The orbits of $N^{(03)}$ on $\{0,1,2,3,4,5,6\}$ are: $\mathbb{O}=\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}$. Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{3} t_{i}$ belongs to. We have:

$$
\begin{aligned}
t_{0} t_{3} t_{1} & =x^{-1} t_{2} t_{6} \Longrightarrow N t_{0} t_{3} t_{1}=N t_{2} t_{6} \in[03] \\
t_{0} t_{3} t_{2} & =x^{2} t_{2} t_{3} t_{4} \Longrightarrow N t_{0} t_{3} t_{2}=N t_{2} t_{3} t_{4} \in[012] \\
N t_{0} t_{3} t_{3} & =N t_{0} \in[0] \\
t_{0} t_{3} t_{4} & =x t_{0} t_{1} t_{3} \Longrightarrow N t_{0} t_{3} t_{4}=N t_{0} t_{1} t_{3} \in[013] \\
t_{0} t_{3} t_{5} & =e t_{3} t_{5} t_{1} \Longrightarrow N t_{0} t_{3} t_{5}=N t_{3} t_{5} t_{1} \in[025] \\
N t_{0} t_{3} t_{6} & \in[036] \\
t_{0} t_{3} t_{0} & =x t_{4} t_{2} \Longrightarrow N t_{0} t_{3} t_{0}=N t_{4} t_{2} \in[02] .
\end{aligned}
$$

The new double coset have single coset representative $N t_{0} t_{3} t_{6}$, denoted by [036].

$N t_{0} t_{1} t_{2} N$

Consider $N t_{0} t_{1} t_{2} N$ in N is a new double coset. We determined how many single cosets are in the double coset. Well $N^{(012)}=N^{012}=\langle e\rangle$. But $N t_{0} t_{1} t_{2}$ is not distinct. Now $N t_{3} t_{2} t_{1} \in[012]$ since $(1,2)(3,7)(4,6) \in N$ and $N\left(t_{0} t_{1} t_{2}\right)^{(1,2)(3,0)(4,6)}=$ $t_{3} t_{2} t_{1}$. Thus, $(1,2)(3,0)(4,6) \in N^{(012)}$. we conclude:

$$
N^{(012)} \geq<(1,2)(3,0)(4,6)>
$$

Hence $\left|N^{(012)}\right|=2$ so the number of single cosets in $N^{(012)}$ is $\frac{|N|}{\left|N^{(012)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(012)}$ on $\{0,1,2,3,4,5,6\}$ are: $\mathbb{O}=\{0,3\},\{1,2\},\{4,6\},\{5\}$ Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{2} t_{i}$ belongs to.

$$
\begin{aligned}
t_{0} t_{1} t_{2} t_{0} & =x^{-2} t_{5} t_{1} \Longrightarrow N t_{0} t_{1} t_{2} t_{0}=N t_{5} t_{1} \in[03] \\
N t_{0} t_{1} t_{2} t_{2} & =N t_{0} t_{1} \in[01] \\
t_{0} t_{1} t_{2} t_{4} & =x^{-2} t_{4} t_{3} t_{1} \Longrightarrow N t_{0} t_{1} t_{2} t_{4}=N t_{4} t_{3} t_{1} \in[013] \\
t_{0} t_{1} t_{2} t_{5} & =e t_{5} t_{1} t_{4} \Longrightarrow N t_{0} t_{1} t_{2} t_{5}=N t_{5} t_{1} t_{4} \in[036] .
\end{aligned}
$$

$N t_{0} t_{1} t_{3} N$

Consider $N t_{0} t_{1} t_{3} N$ in N is a new double coset. However, $N^{(013)}=N^{013}=<$ $\operatorname{Id}(N)>$. Only identity e will fix 0,1 , and 3 . Hence the number of single cosets living in $N t_{0} t_{1} t_{3}$ is $\frac{|N|}{\left|N^{(013)}\right|}=\frac{14}{1}=14$. The orbits of $N^{(013)}$ on $\{0,1,2,3,4,5,6\}$ are: $\mathbb{O}=\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}$. Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{3} t_{i}$ belongs to.

$$
\begin{aligned}
t_{0} t_{1} t_{3} t_{0} & =x^{-2} t_{4} t_{3} t_{2} \Longrightarrow N t_{0} t_{1} t_{3} t_{0}=N t_{4} t_{3} t_{2} \in[012] \\
t_{0} t_{1} t_{3} t_{1} & =x^{-4} t_{2} t_{1} t_{6} \Longrightarrow N t_{0} t_{1} t_{3} t_{1}=N t_{2} t_{1} t_{6} \in[013] \\
t_{0} t_{1} t_{3} t_{2} & =x^{2} t_{2} t_{4} \Longrightarrow N t_{0} t_{1} t_{3} t_{2}=N t_{2} t_{4} \in[02] \\
N t_{0} t_{1} t_{3} t_{3} & =N t_{0} t_{1} \in[01] \\
t_{0} t_{1} t_{3} t_{4} & =x^{-1} t_{0} t_{3} \Longrightarrow N t_{0} t_{1} t_{3} t_{4}=N t_{0} t_{3} \in[03] \\
t_{0} t_{1} t_{3} t_{5} & =x^{-1} t_{1} t_{4} t_{0} \Longrightarrow N t_{0} t_{1} t_{3} t_{5}=N t_{1} t_{4} t_{0} \in[036] \\
t_{0} t_{1} t_{3} t_{6} & =x^{-1} t_{5} t_{3} t_{0} \Longrightarrow N t_{0} t_{1} t_{3} t_{6}=N t_{5} t_{3} t_{0} \in[02] .
\end{aligned}
$$

$N t_{0} t_{1} t_{0} N$

Now $N t_{0} t_{1} t_{0} N$ is indeed a new double coset. We determine how many single cosets are in this double coset. Well $N^{(010)}=N^{010}=<\operatorname{Id}(N)>$. Well $N^{(010)}=$ $N^{010}=<I d(N)>$. We have these two relations $t_{0} t_{1} t_{0}=(0,5,3,1,6,4,2) t_{5} t_{6} t_{5}$ and $t_{0} t_{1} t_{0}=(1,0)(2,6)(3,5) t_{0} t_{6} t_{0}$. Since $(0,5,3,1,6,4,2) \in N$ and $N\left(t_{0} t_{1} t_{0}\right)^{(0,5,3,1,6,4,2)}=$ $N t_{5} t_{6} t_{5}$. Thus, $(0,5,3,1,6,4,2) \in N^{(010)}$ and $N^{(010)} \geq<(0,5,3,1,6,4,2)>$. Since
$(1,0)(2,6)(3,5) \in N$ and $N\left(t_{0} t_{1} t_{0}\right)^{(1,0)(2,6)(3,5)}=t_{1} t_{0} t_{1}$. Thus, $(1,0)(2,6)(3,5) \in N^{(010)}$. We conclude:

$$
N^{(010)} \geq<(1,0)(2,6)(3,5),(0,1,2,3,4,5,6)>
$$

Then $N^{(010)}=N$. Hence $\left|N^{(010)}\right|=14$, so the number of single cosets in $N^{(010)}$ is $\frac{|N|}{\left|N^{(010)}\right|}=\frac{14}{14}=1$. The orbit of $N^{(010)}$ on $\{0,1,2,3,4,5,6\}$ is $\mathbb{O}=\{0,1,2,3,4,5,6\}$. Take a representative from this orbit, say t_{0}. Hence $N t_{0} t_{1} t_{0} t_{0} \in[01]$. Therefore, seven symmetric generators will go back to $N t_{0} t_{1} N$.

$N t_{0} t_{2} t_{5} N$

Now consider $N t_{0} t_{2} t_{5} N$ in N is a new double coset. We determined how many single cosets are in the double coset. Well $N^{(025)}=N^{025}=\langle\operatorname{Id}(N)\rangle$. But $N t_{0} t_{2} t_{5}$ is not distinct. Now $N t_{3} t_{1} t_{5} \in[025]$ since $(0,3)(1,2)(4,6) \in N$ and $N\left(t_{0} t_{2} t_{5}\right)^{(0,3)(1,2)(4,6)}=$ $t_{3} t_{1} t_{5}$. Thus, $(3,0)(1,2)(4,6) \in N^{(025)}$. We conclude:

$$
N^{(025)} \geq<(0,3)(1,2)(4,6)>
$$

Hence $\left|N^{(025)}\right|=2$ so the number of single cosets in $N^{(025)}$ is $\frac{|N|}{\left|N^{(025)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(025)}$ on $\{0,1,2,3,4,5,6\}$ are: $\mathbb{O}=\{0,3\},\{1,2\},\{4,6\},\{5\}$. Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{2} t_{5} t_{i}$ belongs to.

$$
\begin{aligned}
t_{0} t_{2} t_{5} t_{0} & =x^{-4} t_{4} t_{6} t_{2} \Longrightarrow N t_{0} t_{2} t_{5} t_{0}=N t_{4} t_{6} t_{2} \in[025] \\
t_{0} t_{2} t_{5} t_{1} & =x^{2} t_{6} t_{3} \Longrightarrow N t_{0} t_{2} t_{5} t_{1}=N t_{6} t_{3} \in[03] \\
t_{0} t_{2} t_{5} t_{4} & =x^{-4} t_{5} t_{6} t_{1} \Longrightarrow N t_{0} t_{2} t_{5} t_{4}=N t_{5} t_{6} t_{1} \in[013] \\
N t_{0} t_{2} t_{5} t_{5} & \in[02] .
\end{aligned}
$$

$N t_{0} t_{3} t_{6} N$

Now consider $N t_{0} t_{3} t_{6} N$ in N is a new double coset. We determined how many single cosets are in the double coset. Well $N^{(036)}=N^{036}=<\operatorname{Id}(N)>$. But $N t_{0} t_{3} t_{6}$ is not distinct. Now $N t_{0} t_{4} t_{1} \in[036]$ since $(1,6)(2,5)(3,4) \in N$ and $N\left(t_{0} t_{3} t_{6}\right)^{(1,6)(3,4)(2,5)}=$ $t_{0} t_{4} t_{1}$. Thus, $(1,6)(3,4)(2,5) \in N^{(036)}$. We conclude:

$$
N^{(036)} \geq<(1,6)(3,4)(2,5)>
$$

Hence $\left|N^{(036)}\right|=2$ so the number of single cosets in $N^{(036)}$ is $\frac{|N|}{\left|N^{(036)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(036)}$ on $\{0,1,2,3,4,5,6\}$ are: $\mathbb{O}=\{1,6\},\{3,4\},\{2,5\},\{0\}$. Take a represen-
tative t_{i} from each orbit and see which double cosets $N t_{0} t_{3} t_{6} t_{i}$ belongs to.

$$
\begin{aligned}
N t_{0} t_{3} t_{6} t_{6} & \in[03] \\
t_{0} t_{3} t_{6} t_{3} & =x t_{1} t_{0} t_{5} \Longrightarrow N t_{0} t_{3} t_{6} t_{3}=N t_{1} t_{0} t_{5} \in[013] \\
t_{0} t_{3} t_{6} t_{5} & =x^{2} t_{3} t_{6} t_{2} \Longrightarrow N t_{0} t_{3} t_{6} t_{5}=N t_{3} t_{6} t_{2} \in[036] \\
t_{0} t_{3} t_{6} t_{0} & =e t_{2} t_{3} t_{4} \Longrightarrow N t_{0} t_{3} t_{6} t_{0}=N t_{2} t_{3} t_{4} \in[036] .
\end{aligned}
$$

We have completed the double coset enumeration since the right coset is closed under multiplication, hence, the index of N in G is 72 single cosets. We conclude:
$G=N \cup N t_{0} N \cup N t_{0} t_{1} N \cup N t_{0} t_{2} N \cup N t_{0} t_{3} N \cup N t_{0} t_{1} t_{2} N \cup N t_{0} t_{1} t_{3} N \cup N t_{0} t_{1} t_{0} N \cup$ $N t_{0} t_{2} t_{5} N \cup N t_{0} t_{3} t_{6} N$, where

$$
\begin{aligned}
& \quad G=\frac{2^{* 7}: D_{14}}{\left(x t t^{x}\right)^{2},(t t x t)^{9}=1} \\
& |G| \leq|N|+\frac{|N|}{N^{(0)}}+\frac{|N|}{N^{(01)}}+\frac{|N|}{N^{(02)}}+\frac{|N|}{N^{(03)}}+\frac{|N|}{N^{(012)}}+\frac{|N|}{N^{(013)}}+\frac{|N|}{N^{(010)}}+\frac{|N|}{N^{(025)}} \\
& +\frac{|N|}{N^{(036)}} \times|N| \\
& |G| \leq(1+7+7+7+14+7+14+1+7+7) \times 14 \\
& |G| \leq 72 \times 14 \\
& |G| \leq 1008
\end{aligned}
$$

The Cayley diagram that summarizes the above information is given below:

3.3.2 Factoring $2 \times L_{2}(8)$ by the Center

Consider $G=\frac{2^{* 7} \cdot D_{14}}{\left(x t t^{x}\right)^{2},(t t x t)^{9}=1} \cong 2 \times L_{2}(8)$. We are going to factor G by the center, to do so, we use the following loops in Magma:

```
> D:=DihedralGroup(7);
> xx:=D! (1,2,3,4,5,6,7);
> yy:=D! (1, 6) (2, 5) (3, 4);
> N:=sub<D|xx,yy>;
> G<x,y,t>:=Group<x,y,t|x^7, y^2, (x*y)^2, t^2, (t,y),
(x*t*t^x)^2,(t*t*x*t)^ 9>;
> f,G1,k:=CosetAction(G,sub<G|x,y>);
> Center(G1);
Permutation group acting on a set of cardinality 72
Order = 2
    (1, 20)(2, 12)(3, 6) (4, 7) (5, 11) (8, 13) (9, 18) (10, 19)
```


Figure 3.2: Cayley Diagram of $2 \times L_{2}(8)$ over D_{14}

```
(14, 21)(15, 22) (16, 29) (17, 30) (23, 31) (24, 32)
(25, 38) (26, 33) (27, 43) (28, 35) (34, 44) (36,45)
(37, 52)(39, 46) (40, 56)(41, 55) (42, 48) (47, 57)
(49, 58) (50, 62) (51,63) (53, 68) (54, 67) (59, 69) (60, 65)
(61, 71)(64, 66)(70, 72)
```

By Magma, we know that the center of G is of order 2. We let aa equals to the Center(G1). Now to convert the center in term of word, we use the Schreier System:

```
> A:=f(x);
> B:=f(y);
> C:=f(t);
> N:=sub<G1|A,B,C>;
> NN<x,y,t>:=Group<x,y,t|x^7, y^2, (x*y)^2, t^2, (t,y),
> (x*t*t^x)^2, (t*t*x*t)^ 9>;
> Sch:=SchreierSystem(NN,sub<NN|Id(NN) >);
> ArrayP:=[Id(N): i in [1..#N]];
> for i in [2..#N] do
for> P:=[Id(N): l in [1..#Sch[i]]];
for> for j in [1..#Sch[i]] do
```

```
for|for> if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
for|for> if Eltseq(Sch[i])[j] eq -1 then P[j]:=A^-1; end if;
for|for> if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
for|for> if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
for|for> end for;
for> PP:=Id(N);
for> for k in [1..#P] do
for|for> PP:=PP*P[k]; end for;
for> ArrayP[i]:=PP;
for> end for;
> for i in [1..#N] do if ArrayP[i] eq aa
then print Sch[i]; end if; end for;
x * y * t * x * t * x^-1 * t
```

Thus, the center of G is $Z(G)=<x y t x t x^{-1} t>$. Now we factor G by the center and we obtain the following:

```
> G<x,y,t>:=Group<x,y,t|x^7, y^2,(x*y)^2, t^2,(t,y),
    (x*t*t^x)^2,(t*t*x*t)^ 9, x*y*t*x*t*x^-1*t>;
> f,G1,k:=CosetAction(G,sub<G|x,y>);
> CompositionFactors(G1);
            G
        | A(1, 8) = L (2, 8)
        1
```

Now, $G=2^{* 7}: D_{14}$ is factored by the relators $\left(x t t^{x}\right)^{2},(t t x t)^{9}$ and the center $Z(G)=<$ xytxtx $x^{-1} t>$.

3.3.3 Construction of $L_{2}(8)$ over D_{14}

Consider the group $G \cong<x^{7}, y^{2},(x * y)^{2}, t^{2},(t, y)>$ factored by $\left(x t t^{x}\right)^{2},(t t x t)^{9}$ and the center $Z(G)=<x y t x t x^{-1} t>$. Recall, $G=2^{* 7}: D_{14}, N=D_{14}=<x, y>=<$ $(0,1,2,3,4,5,6),(1,6)(2,5)(3,4)>$, and $t \sim t_{7} \sim t_{0}$. Also, by expanding the two relations we have:

$$
\begin{aligned}
\left(x t t^{x}\right)^{2}=x^{2} t_{1} t_{2} t_{0} t_{1}=1 & \Longrightarrow x^{2} t_{1} t_{2}=t_{1} t_{0} \\
(t t x t)^{9}=x^{2} t_{1} t_{0} t_{6} t_{5} t_{4} t_{3} t_{2} t_{1} t_{0}=1 & \Longrightarrow x^{2} t_{1} t_{0} t_{6} t_{5}=t_{0} t_{1} t_{2} t_{3} t_{4}
\end{aligned}
$$

Now lets expand the center $Z(G)=<x y t x t x^{-1} t>$:

$$
x y t x t x^{-1} t=x y t_{0} x t_{0} x^{-1} t_{0}=x y t_{0} t_{6} t_{0}=1 \Longrightarrow x y t_{0} t_{6}=t_{0} .
$$

Now, we begin the construction of $L_{2}(8)$ over D_{14}.

$N e N$

First, the double coset $N e N$, is denoted by [*]. This double coset contains only the single coset, namely N. Since N is transitive on $\{0,1,2,3,4,5,6\}$, the orbit of N on $\{0,1,2,3,4,5,6\}$ is: $\mathbb{O}=\{0,1,2,3,4,5,6\}$. We choose t_{0} as our symmetric generator from this orbit \mathbb{O} and find to which double coset $N t_{0}$ belongs. $N t_{0} N$ will be a new double coset, denoted by [0], so seven symmetric generators will go to [0].

$N t_{0} N$

In order to find how many single cosets [0] contains, we must first find $N^{(0)}$. Then the number of single coset in $[0]$ is equal to $\frac{|N|}{\left|N^{(0)}\right|}$. Now,

$$
N^{(0)}=N^{0}=<e,(1,6)(2,5)(3,4)>
$$

so the number of the single cosets in $N t_{0} N$ is $\frac{|N|}{\left|N^{(0)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(0)}$ on $\{0,1,2,3,4,5,6\}$ are: $\mathbb{O}=\{0\},\{1,6\},\{2,5\}$, and $\{3,4\}$. We take t_{0}, t_{6}, t_{2} and t_{3} from each orbit respectively and find to which double coset $N t_{0} t_{0}, N t_{0} t_{6}, N t_{0} t_{2}$, and $N t_{0} t_{3}$ belong to. Now $N t_{0} t_{0}=N \in[*]$, so one element will go back to $[*]$. We have the relation $t_{0} t_{6}=x y t_{0} \Longrightarrow N t_{0} t_{6}=N t_{0} \in[0]$, since $x y \in N$ and $N t_{0} \in[0]$. Thus, $N t_{0} t_{6}=N t_{0} \in[0]$, so two elements will loop back to [0]. On the other hand, two symmetric generators will go to new double cosets $N t_{0} t_{2}$, denoted by [02], and $N t_{0} t_{3}$, denoted by [03].

$N t_{0} t_{2} N$

Now $N t_{0} t_{2} N$ in N is a new double coset. We determine how many single cosets are in the double coset. Well $N^{(02)}=N^{02}=<I d(N)>$. But $N t_{0} t_{2}$ is not distinct. Now $N t_{3} t_{1} \in[02]$ since $(1,2)(3,0)(4,6) \in N$ and $N\left(t_{0} t_{2}\right)^{(1,2)(3,0)(4,6)}=N t_{3} t_{1}$. Thus, $(1,2)(3,0)(4,6) \in N^{(02)}$. We conclude, $N^{(02)} \geq<(1,2)(3,0)(4,6)>$. Hence $\left|N^{(02)}\right|=2$ so the number of single cosets in $N^{(02)}$ is $\frac{|N|}{\left|N^{(02)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(02)}$ on $\{0,1,2,3,4,5,6\}$ are: $\mathbb{O}=\{1,2\},\{3,0\},\{4,6\},\{5\}$. Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{2} t_{i}$ belongs to. We have

$$
\begin{aligned}
N t_{0} t_{2} t_{2} & =N t_{0} \in[0] \\
t_{0} t_{2} t_{3} & =x^{2} y t_{5} t_{2} \Longrightarrow N t_{0} t_{2} t_{3}=N t_{5} t_{2} \in[03] \\
t_{0} t_{2} t_{4} & =x t_{4} t_{1} \Longrightarrow N t_{0} t_{2} t_{4}=N t_{4} t_{1} \in[03] \\
N t_{0} t_{2} t_{5} & \in[025] .
\end{aligned}
$$

The new double coset have single coset representative $N t_{0} t_{2} t_{5}$, denoted by [025].

$N t_{0} t_{3} N$

Now $N t_{0} t_{3} N$ in N is a new double coset. However, $N^{(03)}=N^{03}=<\operatorname{Id}(N)>$. Only identity e will fix 0 and 3 . Hence the number of single cosets living in $N t_{0} t_{3}$ is $\frac{|N|}{\left|N^{(03)}\right|}=$ $\frac{14}{1}=14$. The orbits of $N^{(03)}$ on $\{0,1,2,3,4,5,6\}$ are: $\mathbb{O}=\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}$. Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{3} t_{i}$ belongs to. We have:

$$
\begin{aligned}
t_{0} t_{3} t_{1} & =x^{-1} t_{2} t_{6} \Longrightarrow N t_{0} t_{3} t_{1}=N t_{2} t_{6} \in[03] \\
t_{0} t_{3} t_{2} & =x^{2} y t_{5} t_{3} \Longrightarrow N t_{0} t_{3} t_{2}=N t_{5} t_{3} \in[02] \\
N t_{0} t_{3} t_{3} & =N t_{0} \in[0] \\
t_{0} t_{3} t_{4} & =y t_{0} t_{3} \Longrightarrow N t_{0} t_{3} t_{4}=N t_{0} t_{3} \in[03] \\
t_{0} t_{3} t_{5} & =e t_{3} t_{5} t_{1} \Longrightarrow N t_{0} t_{3} t_{5}=N t_{3} t_{5} t_{1} \in[025] \\
t_{0} t_{3} t_{6} & =y t_{5} t_{3} t_{0} \Longrightarrow N t_{0} t_{3} t_{6}=N t_{5} t_{3} t_{0} \in[025] \\
t_{0} t_{3} t_{0} & =x t_{4} t_{2} \Longrightarrow N t_{0} t_{3} t_{0}=N t_{4} t_{2} \in[02] .
\end{aligned}
$$

$N t_{0} t_{2} t_{5} N$

Now consider $N t_{0} t_{2} t_{5} N$ in N is a new double coset. We determined how many single cosets are in the double coset. Well $N^{(025)}=N^{025}=<\operatorname{Id}(N)>$. But $N t_{0} t_{2} t_{5}$ is not distinct. Now $N t_{3} t_{1} t_{5} \in[025]$ since $(0,3)(1,2)(4,6) \in N$ and $N\left(t_{0} t_{2} t_{5}\right)^{(0,3)(1,2)(4,6)}=$ $t_{3} t_{1} t_{5}$. Thus, $(3,0)(1,2)(4,6) \in N^{(025)}$. We conclude, $N^{(025)} \geq<(0,3)(1,2)(4,6)>$. Hence $\left|N^{(025)}\right|=2$ so the number of single cosets in $N^{(025)}$ is $\frac{|N|}{\left|N^{(025)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(025)}$ on $\{0,1,2,3,4,5,6\}$ are: $\mathbb{O}=\{0,3\},\{1,2\},\{4,6\},\{5\}$. Take a
representative t_{i} from each orbit and see which double cosets $N t_{0} t_{2} t_{5} t_{i}$ belongs to.

$$
\begin{aligned}
t_{0} t_{2} t_{5} t_{1} & =x^{2} t_{6} t_{3} \Longrightarrow N t_{0} t_{2} t_{5} t_{1}=N t_{6} t_{3} \in[03] \\
t_{0} t_{2} t_{5} t_{3} & =x^{6} t_{6} t_{4} t_{1} \Longrightarrow N t_{0} t_{2} t_{5} t_{3}=N t_{6} t_{3} \in[025] \\
t_{0} t_{2} t_{5} t_{4} & =x^{6} y t_{5} t_{1} \Longrightarrow N t_{0} t_{2} t_{5} t_{4}=N t_{5} t_{1} \in[013] \\
N t_{0} t_{2} t_{5} t_{5} & \in[02] .
\end{aligned}
$$

We have completed the double coset enumeration since the right coset is closed under multiplication, hence, the index of N in G is 36 single cosets. We conclude: $G=N \cup N t_{0} N \cup N t_{0} t_{2} N \cup N t_{0} t_{3} N \cup N t_{0} t_{2} t_{5} N$, where

$$
\begin{aligned}
& \quad G=\frac{2^{* 7}: D_{14}}{\left(x t t^{x}\right)^{2},(t t x t)^{9}, x y t x t x^{-1} t=1} \\
& |G| \leq|N|+\frac{|N|}{N^{(0)}}+\frac{|N|}{N^{(02)}}+\frac{|N|}{N^{(03)}}+\frac{|N|}{N^{(025)}} \\
& |G| \leq(1+7+7+14+7) \times 14 \\
& |G| \leq 36 \times 14 \\
& |G| \leq 504
\end{aligned}
$$

The Cayley diagram that summarizes the above information is given below:

Figure 3.3: Cayley Diagram of $L_{2}(8)$ over D_{14}

3.4 Iwasawa's Lemma to Prove $L_{2}(8)$ over D_{14} is Simple

We consider

$$
G \cong \frac{2^{* 7} D_{14}}{\left[\left(x t_{0} t_{1}\right]^{2},\left[t_{0} t_{0} x t_{0}\right]^{9}, x y t_{0} x t_{0} x^{-1} t_{0}\right.} \cong L_{2}(8)
$$

Now we use Iwasawa's lemma to prove $G \cong L_{2}(8)$ is simple. We use Iwasawa's lemma to prove $G \cong L_{2}(8)$ is simple. Iwasawa's lemma has three sufficient conditions that we must satisfied:
(1) G acts on X faithfully and primitively
(2) G is perfect $\left(G=G^{\prime}\right)$
(3) There exist $x \in X$ and a normal abelian subgroup K of G^{x} such that the conjugates of K generate G.

Proof. 3.4.1 $G=L_{2}(8)$ acts on X Faithfully

Let G acts on $X=\left\{N, N t_{0} N, N t_{0} t_{2} N, N t_{0} t_{3} N, N t_{0} t_{2} t_{5} N\right.$, where $|X|=36 . G$ acts on X implies there exist homomorphism

$$
f: G \longrightarrow S_{36} \quad(|X|=36)
$$

By First Isomorphic Theorem we have:

$$
G / \operatorname{ker} f \cong f(G)
$$

If $\operatorname{ker} f=1$ then $G \cong f(G)$. Only elements of N fix N implies $G^{1}=N$. Since X is a transitive G - set of degree 36 , we have:

$$
\begin{aligned}
|G| & =36 \times\left|G^{1}\right| \\
& =36 \times|N| \\
& =36 \times 14 \\
& =508 \\
\Longrightarrow|G| & =508 .
\end{aligned}
$$

From Cayley diagram, $|G| \leq 508$. However, from above $|G|=508$ implying $\operatorname{ker}(f)=1$. Since $\operatorname{ker} f=1$ then G acts faithfully on X.

3.4.2 $G=L_{2}(8)$ acts on X Primitively

In order to show that G is primitive, we must show that $G=L_{2}(8)$ is transitive on $X=|36|$ and there exists no nontrivial blocks of X. From the Cayley diagram of $G=L_{2}(8)$ over D_{14}, we see that G is transitive. Let B be a nontrivial block, then $|B||X|$. Note if we had a nontrivial block it would have to be of size $2,3,4,6,9,12$, or 18. By inspection, of our Cayley diagram we ca see that we cannot create a nontrivial block of these sizes.

3.4.3 $G=L_{2}(8)$ is Perfect

Next we want to show that $G=G^{\prime}$. Now $D_{14} \subseteq G \Longrightarrow D_{14}{ }^{\prime} \subseteq G^{\prime}$.
$D_{14}{ }^{\prime}=<[a, b] \mid a, b \in D_{14}>$. Now the derived group,

$$
\begin{aligned}
& D_{14}{ }^{\prime}=<(0,1,2,3,4,5)>=<x> \\
& \left.\Longrightarrow\left\{e, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}\right)\right\} \subseteq G^{\prime}
\end{aligned}
$$

Now $x=(0,1,2,3,4,5,6)$ and $y=(1,6)(2,5)(3,4)$.
Then $[x, y]=x^{-1} y^{-1} x y$

$$
\begin{aligned}
& =(0,1,2,3,4,5,6)(1,6)(2,5)(3,4)(0,6,5,4,3,2,1)(1,6)(2,5)(3,4) \\
& =(0,2,4,6,1,3,5) \in G^{\prime} .
\end{aligned}
$$

If we conjugate $(0,2,4,6,1,3,5)$ by $(0,1,2,3,4,5,6)$ we get $(1,3,5,0,2,4,6) \in G^{\prime}$.
Main relation:

$$
\begin{aligned}
x^{2} & =t_{1} t_{0} t_{2} t_{1} \\
\left(x^{2}\right)^{3} & =\left(t_{1} t_{0} t_{2} t_{1}\right)^{3} \\
x^{6} & =t_{1} t_{0} t_{2} t_{0} t_{2} t_{0} t_{2} t_{1} \\
x^{-1} & =t_{1} t_{0} t_{2} t_{0} t_{2} t_{0} t_{2} t_{1} \\
x & =t_{1} t_{2} t_{0} t_{2} t_{0} t_{2} t_{0} t_{1}
\end{aligned}
$$

Now, we use the relation that we obtained by factoring by the center:

$$
\begin{aligned}
x y & =t_{0} t_{6} t_{0} \\
x^{-1} x y & =t_{1} t_{0} t_{2} t_{0} t_{2} t_{0} t_{2} t_{1} t_{0} t_{6} t_{0} \\
y & =t_{1} t_{0} t_{2} t_{0} t_{2} t_{0} t_{2} t_{1} t_{0} t_{6} t_{0}
\end{aligned}
$$

So $G=<x, y, t>=<t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}>$. Our goal is to show that one of the $t_{i}^{\prime} s \in G^{\prime}$, then we can conjugate. Since $x \in G^{\prime}$. Then from our double coset relation we have:

$$
\begin{aligned}
x & =t_{0} t_{2} t_{4} t_{1} t_{4} \in G^{\prime} \\
& =t_{0} t_{2} t_{1} t_{1} t_{4} t_{1} t_{4} \in G^{\prime} \\
& =t_{0} t_{2} t_{1}\left[t_{1}, t_{4}\right] \in G^{\prime}\left(\text { since }\left[t_{1}, t_{4}\right] \in G^{\prime}\right) \\
& =t_{0} t_{2} t_{1} \in G^{\prime}
\end{aligned}
$$

Now, we multiply $t_{0} t_{2} t_{1}$ by the inverse of $\left({ }^{*}\right)$:

$$
\left.t_{0} t_{2} t_{1} t_{1} t_{2} t_{0} t_{1}=t_{1} \in G^{\prime} \text { (since } x \in G^{\prime} \text { and }\left(x^{2}\right)^{-1} \in G^{\prime}\right) .
$$

So $t_{1} \in G^{\prime}$

$$
\begin{aligned}
& \Longrightarrow t_{1}^{x}, t_{1}^{x^{2}}, t_{1}^{x^{3}}, t_{1}^{x^{4}}, t_{1}^{x^{5}}, t_{1}^{x^{6}}, t_{1}^{x^{7}} \in G^{\prime}\left(\text { since } x \in G \text { and } G^{\prime} \unlhd G\right) \\
& \Longrightarrow<t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{0}, t_{1}>\in G^{\prime}
\end{aligned}
$$

Thus $G \subseteq G^{\prime} \subseteq<t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{0}, t_{1}>\in G \Longrightarrow G^{\prime}=G$.
Hence G is perfect.

3.4.4 Conjugates of a Normal Abelian K

Generate $G=L_{2}(8)$ over D_{14}
Now we require $x \in X$ and a $K \unlhd G^{x}$, where K is a normal abelian subgroup such as the conjugates of K in G generate G. Recall, $G^{1}=N=D_{14}$. Let $K=<x>$. Since K is normal abelian subgroup in G^{\prime} then for any $s \in K$ and for all $g \in G$ implies $s^{g} \in K$. Since $x \in K \Longrightarrow x^{2} \in K$. Now from (*) we have:

$$
\begin{aligned}
x^{2} & =t_{1} t_{0} t_{2} t_{1} \in K \\
\left(x^{2}\right)^{t_{1}} & =\left(t_{1} t_{0} t_{2} t_{1}\right)^{t_{1}} \in K^{G} \\
t_{1}\left(x^{2}\right) t_{1} & =t_{1}\left(t_{1} t_{0} t_{2} t_{1}\right) t_{1} \in K^{G} \\
x^{2} t_{3} t_{1} & =t_{0} t_{2} \in K^{G} \\
\Longrightarrow & t_{0} t_{2} \in K^{G}
\end{aligned}
$$

So, the inverse $t_{2} t_{0} \in K^{G}$. Moreover, from the double coset we have the following
relation:

$$
x=t_{0} t_{2} t_{4} t_{1} t_{4} \in K .
$$

Now, we multiply the above relation by $t_{2} t_{0}$:

$$
\begin{gathered}
t_{0} t_{2} t_{4} t_{1} t_{4} t_{2} t_{0} \in K \\
\left(t_{0} t_{2} t_{4} t_{1} t_{4} t_{2} t_{0}\right)^{t_{0} t_{2} t_{4}} \in K^{G} \\
=t_{4} t_{2} t_{0}\left(t_{0} t_{2} t_{4} t_{1} t_{4} t_{2} t_{0}\right) t_{0} t_{2} t_{4}=t_{1} \in K^{G}
\end{gathered}
$$

Thus, $t_{1} \in K^{G}$

$$
\begin{aligned}
& \Longrightarrow t_{1}^{G} \in K^{G} \\
& \Longrightarrow K^{G} \supseteq\left\{t_{1}^{x}, t_{1}^{x^{2}}, t_{1}^{x^{3}}, t_{1}^{x^{4}}, t_{1}^{x^{5}}, t_{1}^{x^{6}}\right\} \\
& \Longrightarrow K^{G} \supseteq\left\{t_{1}^{x}, t_{1}^{x^{2}}, t_{1}^{x^{3}}, t_{1}^{x^{4}}, t_{1}^{x^{5}}, t_{1}^{x^{6}}\right\}=<t_{1}, t_{0}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}>=G
\end{aligned}
$$

Hence, the conjugates of K generate G. Therefore, by Iwasawa's lemma, $G \cong L_{2}(8)$ is simple.

$3.5 \quad L_{2}(13)$ as a Homomorphic Image of $2^{* 7}: D_{14}$

3.5.1 Construction of $L_{2}(13)$ over D_{14}

Factoring the progenitor $2^{* 7}: D_{14}$ by the following relations

$$
\left[(1,5)(2,4)(6,0) t_{1} t_{0}\right]^{7} \text { and }\left[(1,2,3,4,5,6,0) t_{0}\right]^{3}
$$

yields the finite homomorphic image:

$$
G \cong \frac{2^{* 7}: D_{14}}{\left[(1,5)(2,4)(6,0) t_{1} t_{0}\right]^{7},\left[t_{0} t_{0}(1,2,3,4,5,6,0) t_{0}\right]^{3}},
$$

where D_{14} is a maximal in $L_{2}(13)$ and the index of D_{14} in G equals 78. $G \cong L_{2}(13)$, the projective special linear group.

A symmetric representation for the above image is given by:

$$
<x, y, t \mid x^{7}, y^{2},(x * y)^{2}, t^{2},(t, y),\left(x * y * t^{x} * t\right)^{7},(t * t * x * t)^{3}>
$$

where $N=D_{14} \cong<x^{7}, y^{2},(x * y)^{2}>$, and the action of x, y on the symmetric generators is given by

$$
\begin{aligned}
& x \sim(1,2,3,4,5,6,0), \\
& y \sim(1,6)(2,5)(3,4) .
\end{aligned}
$$

The relation
$\left((1,5)(2,4)(6,0) t_{1} t_{0}\right)^{7}=1$ with $(1,5)(2,4)(6,0)=\pi$ becomes

$$
\begin{gathered}
\left(\pi t_{1} t_{0}\right)^{7}=1 \\
\Longrightarrow \pi t_{1} t_{0} \pi t_{1} t_{0}=1 \\
\Longrightarrow \pi^{7}\left(t_{1} t_{0}\right)^{\pi^{6}}\left(t_{1} t_{0}\right)^{\pi^{5}}\left(t_{1} t_{0} \pi^{5}\left(t_{1} t_{0}\right)^{\pi^{3}}\left(t_{1} t_{0}\right)^{\pi^{2}}\left(t_{1} t_{0}\right)^{\pi}\left(t_{1} t_{0}\right)=1\right. \\
\left.\Longrightarrow \pi\left(t_{1} t_{0}\right)\left(t_{1} t_{0}\right)^{\pi}\left(t_{1} t_{0}\right)\left(t_{1} t_{0}\right)^{\pi}\left(t_{1} t_{0}\right) t_{1} t_{0}\right)^{\pi}\left(t_{1} t_{0}\right)=1 \\
\Longrightarrow(1,5)(2,4)(6,0) t_{1} t_{0} t_{5} t_{6} t_{1} t_{0} t_{5} t_{6} t_{1} t_{0} t_{5} t_{6} t_{1} t_{0}=1 \\
\Longrightarrow(1,5)(2,4)(6,0) t_{1} t_{0} t_{5} t_{6} t_{1} t_{0} t_{5} t_{6}=t_{0} t_{1} t_{6} t_{5} t_{0} \\
\quad \Longrightarrow N t_{1} t_{0} t_{5} t_{6} t_{1} t_{0} t_{5} t_{6}=N t_{0} t_{1} t_{6} t_{5} t_{0} t_{1} .
\end{gathered}
$$

The relation

$$
\begin{aligned}
& \left((1,2,3,4,5,6,0) t_{0}\right)^{3}=\left((1,2,3,4,5,6,0) t_{0}\right)^{3}=1 \\
& \Longrightarrow x^{3} t_{0}^{x^{2}} t_{0}^{x} t_{0}=1 \\
& \Longrightarrow(1,4,0,3,5,2,5) t_{2} t_{1} t_{0}=1 \\
& \Longrightarrow(1,4,0,3,5,2,5) t_{2}=t_{0} t_{1} \\
& \Longrightarrow N t_{2}=N t_{0} t_{1} .
\end{aligned}
$$

We want to find the index of N in G. To do this, we perform a manual double coset enumeration of G over N. We take G and express it as a union of double cosets $N g N$, where g is an element of G. So $G=N e N \cup N g_{1} N \cup N g_{2} N \cup \ldots$ where g_{i} 's words in t_{i} 's.

We need to find all double cosets $[w]$ and find out how many single cosets each of them contains, where $[w]=\left[N w^{n} \mid n \in N\right]$. The double cosets enumeration is complete when the set of right cosets obtained is closed under right multiplication by t_{i} 's. We will identify, for each $[w]$, the double coset to which $N w t_{i}$ belongs for one symmetric generator t_{i} from each orbit of the coset stabilising group $N^{(w)}$

$N e N$

First, the double coset $N e N$, is denoted by [*]. This double coset contains only the
single coset, namely N. Since N is transitive on $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{0}\right\}$, the orbit of N on $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{0}\right\}$ is:

$$
\mathbb{O}=\{\{1,2,3,4,5,6,0\}\} .
$$

We choose t_{0} as our symmetric generator from \mathbb{O} and find to which double coset $N t_{0}$ belongs. $N t_{0} N$ will be a new double coset, denote it [0].

$N t_{0} N$

In order to find how many single cosets [0] contains, we must first find the coset stabiliser $N^{(0)}$. Then the number of single coset in $[0]$ is equal to $\frac{|N|}{\left|N^{(0)}\right|}$. Now,

$$
\begin{gathered}
N^{(0)}=N^{0} \\
=<(1,6)(2,5)(3,4)>
\end{gathered}
$$

so the number of the single cosets in $N t_{0} N$ is $\frac{|N|}{\left|N^{(0)}\right|}=\frac{14}{2}=7$. Furthermore, the orbits of $N^{(0)}$ on $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{0}\right\}$ are:

$$
\mathbb{O}=\{\{0\},\{1,6\},\{2,5\},\{3,4\}\} .
$$

We take t_{0}, t_{1}, t_{2} and t_{3} from each orbit, respectively, and to see which double coset $N t_{0} t_{0}, N t_{0} t_{1}, N t_{0} t_{2}$, and $N t_{0} t_{3}$ belong to. We have:

$$
\begin{aligned}
N t_{0} t_{0} & =N \in[*] \\
t_{0} t_{1} & =x^{3} t_{2} \Longrightarrow N t_{0} t_{1}=N t_{2} \in[0] \\
N t_{0} t_{2} & \in[02] \\
N t_{0} t_{3} & \in[03] .
\end{aligned}
$$

The new double cosets have single coset representatives $N t_{0} t_{2}$ and $N t_{0} t_{3}$, which we represent them as [02] and [03] respectively.

$N t_{0} t_{2} N$

Now $N t_{0} t_{2} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(02)}=N^{02}=<e>$. But $N t_{0} t_{2}$ is not distinct. We have $N t_{5} t_{3} \in[02]$ since $(1,4)(3,2)(0,5) \in N$ and $N\left(t_{0} t_{2}\right)^{(1,4)(3,2)(0,5)}=N t_{5} t_{3}$. Thus, $(1,4)(3,2)(0,5) \in N^{(02)}$. We conclude:

$$
N^{(02)} \geq<(1,4)(3,2)(0,5)>.
$$

Hence $\left|N^{(02)}\right|=2$. So the number of single cosets in $N^{(02)} N$ is $\frac{|N|}{\left|N^{(02)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(02)}$ on $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{0}\right\}$ are:

$$
\mathbb{O}=\{\{1,4\},\{3,2\},\{0,5\},\{6\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{2} t_{i}$ belongs to We have:

$$
\begin{aligned}
t_{0} t_{2} t_{4} & =x^{2} t_{1} t_{5} \Longrightarrow N t_{0} t_{2} t_{4}=N t_{1} t_{5} \in[03] \\
N t_{0} t_{2} t_{2} & =N t_{0} \in[0] \\
N t_{0} t_{2} t_{0} & \in[020] \\
N t_{0} t_{2} t_{6} & \in[026] .
\end{aligned}
$$

The new double coset are $N t_{0} t_{2} t_{0}$ and $N t_{0} t_{2} t_{6}$, which we represent them as [020] and [026] respectively.

$N t_{0} t_{3} N$

Consider $N t_{0} t_{3} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(03)}=N^{03}=\langle e\rangle$. Only identity (e) will fix 0 and 3 . Hence the number of single cosets living in $N t_{0} t_{3} N$ is $\frac{|N|}{\left|N^{(03)}\right|}=\frac{14}{1}=14$. The orbits of $N^{(03)}$ on $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{0}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{0\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{3} t_{i}$ belongs to. We have:

$$
\begin{aligned}
N t_{0} t_{3} t_{1} & \in[031] \\
t_{0} t_{3} t_{2} & =x^{4} t_{4} t_{1} \Longrightarrow N t_{0} t_{3} t_{2}=N t_{4} t_{1} \in[03] \\
N t_{0} t_{3} t_{3} & =N t_{0} \in[0] \\
t_{0} t_{3} t_{4} & =x^{2} t_{1} t_{6} \Longrightarrow N t_{0} t_{3} t_{4}=N t_{1} t_{6} \in[02] \\
t_{0} t_{3} t_{5} & =x^{6} t_{6} t_{1} t_{6} \Longrightarrow N t_{0} t_{3} t_{5}=N t_{6} t_{1} t_{6} \in[020] \\
N t_{0} t_{3} t_{6} & \in[036] \\
N t_{0} t_{3} t_{0} & \in[030] .
\end{aligned}
$$

The new double coset are $N t_{0} t_{3} t_{1}, N t_{0} t_{3} t_{6}$, and $N t_{0} t_{3} t_{0}$, which we represent them as [031], [036], and [030] respectively.

$N t_{0} t_{2} t_{0} N$

Now consider $N t_{0} t_{2} t_{0} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(020)}=N^{020}=\langle e\rangle$. Only identity (e) will fix 0 and 2. Hence the number of single cosets living in $N t_{0} t_{2} t_{0} N$ is $\frac{|N|}{\left|N^{(020)}\right|}=\frac{14}{1}=14$. The orbits of $N^{(020)}$ on $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{0}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{0\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{2} t_{0} t_{i}$ belongs to. We have:

$$
\begin{aligned}
t_{0} t_{2} t_{0} t_{1} & =x^{2} t_{1} t_{6} t_{2} \Longrightarrow N t_{0} t_{2} t_{0} t_{1}=N t_{1} t_{6} t_{2} \in[026] \\
t_{0} t_{2} t_{0} t_{2} & =x^{5} y t_{0} t_{2} t_{0} \Longrightarrow N t_{0} t_{2} t_{0} t_{2}=N t_{0} t_{2} t_{0} \in[020] \\
t_{0} t_{2} t_{0} t_{3} & =y t_{4} t_{2} t_{5} \Longrightarrow N t_{0} t_{2} t_{0} t_{3}=N t_{4} t_{2} t_{5} \in[026] \\
t_{0} t_{2} t_{0} t_{4} & =x y t_{2} t_{5} t_{1} \Longrightarrow N t_{0} t_{2} t_{0} t_{4}=N t_{2} t_{5} t_{1} \in[036] \\
t_{0} t_{2} t_{0} t_{5} & =\left(x^{2}\right)^{-1} t_{5} t_{1} t_{4} \Longrightarrow N t_{0} t_{2} t_{0} t_{5}=N t_{5} t_{1} t_{4} \in[036] \\
t_{0} t_{2} t_{0} t_{6} & =x t_{1} t_{4} \Longrightarrow N t_{0} t_{2} t_{0} t_{6}=N t_{1} t_{4} \in[03] \\
N t_{0} t_{2} t_{0} t_{0} & =N t_{0} t_{2} \in[02] .
\end{aligned}
$$

$N t_{0} t_{2} t_{6} N$

Now $N t_{0} t_{2} t_{6} N$ is a new double coset. We determine how many single cosets are in the double coset. Now $N^{(026)}=N^{026}=\langle e\rangle$. But $N t_{0} t_{2} t_{6}$ is not distinct. Now $N t_{5} t_{3} t_{6} \in[026]$ since $(1,4)(3,2)(0,5) \in N$ and $N\left(t_{0} t_{2} t_{6}\right)^{(1,4)(3,2)(0,5)}=N t_{5} t_{3} t_{6}$. Thus, $(1,4)(3,2)(0,5) \in N^{(026)}$. We conclude:

$$
N^{(026)} \geq<(1,4)(3,2)(0,5)>.
$$

Hence $\left|N^{(026)}\right|=2$. So the number of single cosets in $N^{(026)} N$ is $\frac{|N|}{\left|N^{(026)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(026)}$ on $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{0}\right\}$ are:

$$
\mathbb{O}=\{\{1,4\},\{3,2\},\{0,5\},\{6\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{2} t_{6} t_{i}$ belongs
to. We have:

$$
\begin{aligned}
& t_{0} t_{2} t_{6} t_{1}=x^{6} y t_{4} t_{2} t_{4} \Longrightarrow N t_{0} t_{2} t_{6} t_{1}=N t_{4} t_{2} t_{4} \in[020] \\
& t_{0} t_{2} t_{6} t_{3}=x^{2} t_{0} t_{3} t_{6} \Longrightarrow N t_{0} t_{2} t_{6} t_{3}=N t_{0} t_{3} t_{6} \in[036] \\
& t_{0} t_{2} t_{6} t_{0}=x^{2} t_{1} t_{6} t_{1} \Longrightarrow N t_{0} t_{2} t_{6} t_{0}=N t_{1} t_{6} t_{1} \in[020] \\
& N t_{0} t_{2} t_{6} t_{6}=N t_{0} t_{2} \in[02] . \\
& \boldsymbol{t}_{\mathbf{0}} \boldsymbol{t}_{\mathbf{3}} \boldsymbol{t}_{\mathbf{1}} \boldsymbol{N}
\end{aligned}
$$

Now $N t_{0} t_{3} t_{1} N$ is a new double coset. We determine how many single cosets are in the double coset. Now $N^{(031)}=N^{031}=\langle e\rangle$. But $N t_{0} t_{3} t_{1}$ is not distinct. Now $N t_{1} t_{5} t_{0} \in[031]$ since $(1,0)(5,3)(2,6) \in N$ and $N\left(t_{0} t_{3} t_{1}\right)^{(1,0)(5,3)(2,6)}=N t_{1} t_{5} t_{0}$. Thus, $(1,0)(5,3)(2,6) \in N^{(031)}$. We conclude:

$$
N^{(031)} \geq<(1,0)(5,3)(2,6)>.
$$

Hence $\left|N^{(031)}\right|=2$. So the number of single cosets in $N^{(031)} N$ is $\frac{|N|}{\left|N^{(031)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(031)}$ on $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{0}\right\}$ are:

$$
\mathbb{O}=\{\{1,0\},\{5,3\},\{2,6\},\{4\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{3} t_{1} t_{i}$ belongs to. We have:

$$
\begin{aligned}
N t_{0} t_{3} t_{1} t_{1} & =N t_{0} t_{3} \in[03] \\
t_{0} t_{3} t_{1} t_{5} & =x^{5} y t_{0} t_{3} t_{1} \Longrightarrow N t_{0} t_{3} t_{1} t_{5}=N t_{0} t_{3} t_{1} \in[031] \\
t_{0} t_{3} t_{1} t_{2} & =x^{3} t_{3} t_{6} t_{3} \Longrightarrow N t_{0} t_{3} t_{1} t_{2}=N t_{3} t_{6} t_{3} \in[030] \\
t_{0} t_{3} t_{1} t_{4} & =x^{3} y t_{6} t_{2} t_{6} \Longrightarrow N t_{0} t_{3} t_{1} t_{4}=N t_{6} t_{2} t_{6} \in[030] .
\end{aligned}
$$

$N t_{0} t_{3} t_{6} N$

Now consider $N t_{0} t_{3} t_{6} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(036)}=N^{036}=\langle e\rangle$. Only identity (e) will fix 0 and 3. Hence the number of single cosets living in $N t_{0} t_{3} t_{6} N$ is $\frac{|N|}{\left|N^{(036)}\right|}=\frac{14}{1}=14$. The orbits of $N^{(036)}$ on $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{0}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{0\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{3} t_{6} t_{i}$ belongs
to. We have:

$$
\begin{aligned}
t_{0} t_{3} t_{6} t_{1} & =x^{3} y t_{0} t_{3} t_{6} \Longrightarrow N t_{0} t_{3} t_{6} t_{1}=N t_{0} t_{3} t_{6} \in[036] \\
t_{0} t_{3} t_{6} t_{2} & =x^{5} y t_{5} t_{0} t_{5} \Longrightarrow N t_{0} t_{3} t_{6} t_{2}=N t_{5} t_{0} t_{5} \in[020] \\
t_{0} t_{3} t_{6} t_{3} & =\left(x^{2}\right)^{-1} t_{0} t_{2} t_{6} \Longrightarrow N t_{0} t_{3} t_{6} t_{3}=N t_{0} t_{2} t_{6} \in[026] \\
t_{0} t_{3} t_{6} t_{4} & =\left(x^{2}\right)^{-1} t_{1} t_{5} t_{2} \Longrightarrow N t_{0} t_{3} t_{6} t_{4}=N t_{1} t_{5} t_{2} \in[036] \\
t_{0} t_{3} t_{6} t_{5} & =x^{4} t_{4} t_{0} t_{4} \Longrightarrow N t_{0} t_{3} t_{6} t_{5}=N t_{4} t_{0} t_{4} \in[030] \\
N t_{0} t_{3} t_{6} t_{6} & =N t_{0} t_{3} \in[03] \\
t_{0} t_{3} t_{6} t_{0} & =x^{2} t_{2} t_{4} t_{2} \Longrightarrow N t_{0} t_{3} t_{6} t_{0}=N t_{2} t_{4} t_{2} \in[020] .
\end{aligned}
$$

$N t_{0} t_{3} t_{0} N$

Now $N t_{0} t_{3} t_{0} N$ is a new double coset. We determine how many single cosets are in the double coset. Now $N^{(030)}=N^{030}=\langle e\rangle$. But $N t_{0} t_{3} t_{0}$ is not distinct. Now $N t_{3} t_{0} t_{3} \in[030]$ since $(0,3)(1,2)(6,4) \in N$ and $N\left(t_{0} t_{3} t_{0}\right)^{(0,3)(1,2)(6,4)}=N t_{3} t_{0} t_{3}$. Thus, $(0,3)(1,2)(6,4) \in N^{(030)}$. We conclude:

$$
N^{(030)} \geq<(0,3)(1,2)(6,4)>
$$

Hence $\left|N^{(030)}\right|=2$. So the number of single cosets in $N^{(030)} N$ is $\frac{|N|}{\left|N^{(030)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(030)}$ on $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{0}\right\}$ are:

$$
\mathbb{O}=\{\{0,3\},\{1,2\},\{6,4\},\{5\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{3} t_{0} t_{i}$ belongs to. We have:

$$
\begin{aligned}
N t_{0} t_{3} t_{0} t_{0} & =N t_{0} t_{3} \in[03] \\
t_{0} t_{3} t_{0} t_{1} & =x^{3} t_{3} t_{6} t_{2} \Longrightarrow N t_{0} t_{3} t_{0} t_{1}=N t_{3} t_{6} t_{2} \in[036] \\
t_{0} t_{3} t_{0} t_{6} & =\left(x^{2}\right)^{-1} t_{5} t_{2} t_{4} \Longrightarrow N t_{0} t_{3} t_{0} t_{6}=N t_{5} t_{2} t_{4} \in[031] \\
t_{0} t_{3} t_{0} t_{5} & =y t) 2 t_{6} t_{1} \Longrightarrow N t_{0} t_{3} t_{0} t_{5}=N t_{2} t_{6} t_{1} \in[031] .
\end{aligned}
$$

We have completed the double coset enumeration since the right coset is closed under multiplication, hence, the index of N in G is 78 single cosets. We conclude:
$G=N \cup N t_{0} N \cup N t_{0} t_{1} N \cup N t_{0} t_{2} N \cup N t_{0} t_{3} N \cup N t_{0} t_{1} t_{2} N \cup N t_{0} t_{1} t_{3} N \cup N t_{0} t_{1} t_{0} N \cup$
$N t_{0} t_{2} t_{5} N \cup N t_{0} t_{3} t_{6} N$, where

$$
\begin{aligned}
& G=\frac{2^{* 7}: D_{14}}{\left(x t t^{x}\right)^{2},(t t x t)^{9}=1} \\
& |G| \leq|N|+\frac{|N|}{N^{(0)}}+\frac{|N|}{N^{(02)}}+\frac{|N|}{N^{(03)}}+\frac{|N|}{N^{(020)}}+\frac{|N|}{N^{(026)}}+\frac{|N|}{N^{(031)}}+\frac{|N|}{N^{(036)}} \\
& +\frac{|N|}{N^{(030)}} \times|N|
\end{aligned}
$$

$$
\begin{aligned}
& |G| \leq(1+7+7+14+14+7+7+14+7) \times 14 \\
& |G| \leq 78 \times 14 \\
& |G| \leq 1092 .
\end{aligned}
$$

The Cayley diagram that summarizes the above information is given below:

Figure 3.4: Cayley Diagram of $L_{2}(13)$ over D_{14}

3.6 Iwasawa's Lemma to Prove $L_{2}(13)$ over D_{14} is Simple

We use Iwasawa's lemma and the transitive action of G on the set of single cosets to prove $G \cong L_{2}(13)$ over D_{14} is a simple group. Iwasawa's lemma has three sufficient conditions that we must satisfied:
(1) G acts on X faithfully and primitively
(2) G is perfect $\left(G=G^{\prime}\right)$
(3) There exist $x \in X$ and a normal abelian subgroup K of G^{x} such that the conjugates of K generate G.

Proof. 3.6.1 $G=L_{2}(13)$ over D_{14} acts on X Faithfully
Let G acts on $X=\left\{N, N t_{0} N, N t_{0} t_{2} N, N t_{0} t_{3} N, N t_{0} t_{2} t_{0} N, N t_{0} t_{2} t_{6} N\right.$, $\left.N t_{0} t_{3} t_{1} N, N t_{0} t_{3} t_{6} N, N t_{0} t_{3} t_{0} N\right\}$, where $X=78 . G$ acts on X implies there exist homomorphism

$$
f: G \longrightarrow S_{78} \quad(|X|=78) .
$$

By First Isomorphic Theorem we have:

$$
G / \operatorname{ker} f \cong f(G)
$$

If $\operatorname{ker} f=1$ then $G \cong f(G)$. Only elements of N fix N implies $G^{1}=N$. Since X is transitive G - set of degree 78 , we have:

$$
\begin{aligned}
|G| & =78 \times\left|G^{1}\right| \\
& =78 \times|N| \\
& =78 \times 12 \\
& =1092 \\
\Longrightarrow|G| & =1092 .
\end{aligned}
$$

From Cayley diagram, $|G| \leq 1092$. However, from above $|G|=1092$ implying $\operatorname{ker}(f)=$ 1. Since $\operatorname{ker} f=1$ then G acts faithfully on X.

3.6.2 $G=L_{2}(13)$ over D_{14} acts on X Primitively

Since $G=L_{2}(13)$ is transitive on $|X|=78$, if B is a nontrivial block then we may assume that $N \in B$. However, $|B|$ must divide $|X|=78$. The only nontrivial blocks must be of size $2,3,6,13,26$, or 39 . Note if $B t_{0} \in B$ then $B=X$. So B is a trivial block. By inspection, we can see from the Cayley diagram that we cannot create a nontrivial block of size $2,3,6,13,26$, or 13 . Thus, G acts primitively on X.

3.6.3 $G=L_{2}(13)$ over D_{14} is Perfect

Next we want to show that $G=G^{\prime}$. Since $G=<N, t>$, we have that $N \leq G^{\prime}$. Now $D_{14} \leq G \Longrightarrow D_{14}{ }^{\prime} \leq G^{\prime}$. The commutators subgroup of D_{14} is:

$$
\begin{aligned}
D_{14}^{\prime} & =<(1,2,3,4,5,6,0)>=<x> \\
& =\left\{e, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}\right\} \leq G^{\prime} .
\end{aligned}
$$

Now by expanding the relation $\left[t_{0} t_{0}(1,2,3,4,5,6,0) t_{0}\right]^{3}=1$, we get:

$$
\begin{aligned}
(1,4,0,3,5,2,5) t_{2} & =t_{0} t_{1} \\
\Longrightarrow x^{3} & =t_{0} t_{1} t_{2} \\
\Longrightarrow x^{6} & =t_{0} t_{1} t_{2} t_{0} t_{1} t_{2} \\
\Longrightarrow x^{-1} & =t_{0} t_{1} t_{2} t_{0} t_{1} t_{2} \\
\Longrightarrow x & =t_{2} t_{1} t_{0} t_{2} t_{1} t_{0}
\end{aligned}
$$

Also by expanding the relation $\left[(1,5)(2,4)(6,0) t_{1} t_{0}\right]^{7}=1$, we get:

$$
\begin{aligned}
(1,5)(2,4)(6,0) & =t_{0} t_{1} t_{6} t_{5} t_{0} t_{1} t_{6} t_{5} t_{0} t_{1} t_{6} t_{5} t_{0} t_{1} \\
\Longrightarrow x y & =t_{0} t_{1} t_{6} t_{5} t_{0} t_{1} t_{6} t_{5} t_{0} t_{1} t_{6} t_{5} t_{0} t_{1}
\end{aligned}
$$

Now we use the above relation to solve for y . We multiply by $x^{-1}=t_{0} t_{1} t_{2} t_{0} t_{1} t_{2}$.

$$
\begin{aligned}
x y & =t_{0} t_{1} t_{6} t_{5} t_{0} t_{1} t_{6} t_{5} t_{0} t_{1} t_{6} t_{5} t_{0} t_{1} \\
x^{-1} x y & =t_{0} t_{1} t_{2} t_{0} t_{1} t_{2} t_{0} t_{1} t_{6} t_{5} t_{0} t_{1} t_{6} t_{5} t_{0} t_{1} t_{6} t_{5} t_{0} t_{1} \\
\Longrightarrow y & =t_{0} t_{1} t_{2} t_{0} t_{1} t_{2} t_{0} t_{1} t_{6} t_{5} t_{0} t_{1} t_{6} t_{5} t_{0} t_{1} t_{6} t_{5} t_{0} .
\end{aligned}
$$

Now $D_{14} \leq G \Longrightarrow D_{14}{ }^{\prime} \leq G^{\prime} . D_{14}{ }^{\prime}=<(1,2,3,4,5,6,0)>=<x>$
$=\left\{e, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}\right\} \leq G^{\prime}$. Note $G=<x, y, t>=<t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{0}>$. Our goal is to show that one of the $t_{i}^{\prime} s \in G^{\prime}$, then we can conjugate by $\langle x, y\rangle$ to obtain all of the $t_{i}^{\prime} s$ in G^{\prime}. Consider, the relation:

$$
\begin{aligned}
x^{2} & =t_{0} t_{2} t_{6} t_{0} t_{1} t_{6} t_{1} \\
& =t_{0} t_{2} t_{6} t_{0} t_{6} t_{6} t_{1} t_{6} t_{1} \\
& =t_{0} t_{2} t_{6} t_{0} t_{6}[6,1] \\
& =t_{0} t_{2} t_{0} t_{0} t_{6} t_{0} t_{6}[6,1] \\
& =t_{0} t_{2} t_{0}[0,6][6,1] \\
& =t_{2} t_{2} t_{0} t_{2} t_{0}[0,6][6,1] \\
& =t_{2}[2,0][0,6][6,1] \in G^{\prime} .
\end{aligned}
$$

We see that $t_{2} \in G^{\prime}$. So $G^{\prime} \geq<x, t_{2}>=<t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{0}>=G$. But $G \geq G^{\prime}$. We conclude that $G=G^{\prime}$ and G is perfect.

3.6.4 Conjugates of a Normal Abelian K

Generate $G=L_{2}(13)$ over D_{14}
Now we require $x \in X$ and a normal abelian subgroup K of G^{x}, the point stabilizer of x in G, such that the conjugates of K in G generate G.
Now $G^{1}=N=D_{14}$ possesses a normal abelian subgroup $K=\langle x\rangle$. We have the relation

$$
\begin{align*}
x^{3} & =t_{0} t_{1} t_{2} \in K \\
\left(x^{3}\right)^{y} & =\left(t_{0} t_{1} t_{2}\right)^{y} \in K^{G} \\
\left(x^{3}\right)^{-1} & =t_{0} t_{6} t_{5} \in K . \tag{3.1}
\end{align*}
$$

Now conjugate the relation $x^{3}=t_{0} t_{1} t_{2}$ by t_{0} yields:

$$
\begin{align*}
\left(x^{3}\right)^{t_{0}} & =\left(t_{0} t_{1} t_{2}\right)^{t_{0}} K^{G} \\
t_{0}\left(x^{3}\right) t_{0} & =t_{0} t_{0} t_{1} t_{2} t_{0} \in K \\
x^{3} t_{3} t_{0} & =t_{1} t_{2} t_{0} \in k \\
x^{3} & =t_{1} t_{2} t_{3} \in K . \tag{3.2}
\end{align*}
$$

Now conjugate the relation $x^{3}=t_{0} t_{1} t_{2}$ by t_{1} yields:

$$
\begin{aligned}
\left(x^{3}\right)^{t_{1}} & =\left(t_{0} t_{1} t_{2}\right)^{t_{1}} \in K^{G} \\
t_{1}\left(x^{3}\right) t_{1} & =t_{1} t_{0} t_{1} t_{2} t_{1} \in K \\
x^{3} t_{4} t_{1} & =t_{1} t_{0} t_{1} t_{2} t_{1} \in K \\
\left(x^{3} t_{4} t_{1}\right)^{t_{1} t_{2} t_{1}} & =\left(t_{1} t_{0} t_{1} t_{2} t_{1}\right)^{t_{1} t_{2} t_{1}} \in K^{G} \\
t_{1} t_{2} t_{1}\left(x^{3} t_{4} t_{1}\right) t_{1} t_{2} t_{1} & =t_{1} t_{2} t_{1}\left(t_{1} t_{0} t_{1} t_{2} t_{1}\right) t_{1} t_{2} t_{1} \in K \\
x^{3} t_{4} t_{5} t_{2} t_{1} & =t_{1} t_{2} t_{0} \in k .
\end{aligned}
$$

We have $t_{1} t_{2} t_{0} \in K$ so the inverse is in K. Thus

$$
\begin{equation*}
t_{0} t_{2} t_{1} \in K \tag{3.3}
\end{equation*}
$$

Multiplying (3.3) and (3.2) yields:

$$
\begin{array}{r}
t_{0} t_{2} t_{1} t_{1} t_{2} t_{3} \in K \\
=t_{0} t_{3} \in K . \tag{3.4}
\end{array}
$$

Now we use the relation $t_{0} t_{3} t_{0} t_{1}=x^{3} t_{3} t_{6} t_{2}$ that we obtained from the double coset
enumeration.

$$
\begin{align*}
t_{0} t_{3} t_{0} t_{1} & =x^{3} t_{3} t_{6} t_{2} \\
x^{3} & =t_{0} t_{3} t_{0} t_{1} t_{2} t_{6} t_{3} \in K \\
x^{3} & =t_{3} t_{0} t_{3} t_{1} t_{2} t_{6} t_{3} \in K\left(\text { since } t_{0} t_{3} t_{0}=t_{3} t_{0} t_{3}\right) . \tag{3.5}
\end{align*}
$$

Multiplying (3.5) and (3.4) yields:

$$
\begin{align*}
x^{3} t_{0} t_{3} & =t_{3} t_{0} t_{3} t_{1} t_{2} t_{6} t_{3} t_{0} t_{3} \in K \\
\left(x^{3} t_{0} t_{3}\right)^{t_{3} t_{0} t_{3}} & =\left(t_{3} t_{0} t_{3} t_{1} t_{2} t_{6} t_{3} t_{0} t_{3}\right)^{t_{3} t_{0} t_{3}} \in K^{G} \\
t_{3} t_{0} t_{3}\left(x^{3} t_{0} t_{3}\right) t_{3} t_{0} t_{3} & =t_{3} t_{0} t_{3}\left(t_{3} t_{0} t_{3} t_{1} t_{2} t_{6} t_{3} t_{0} t_{3}\right) t_{3} t_{0} t_{3} \in K \\
x^{3} t_{6} t_{3} t_{6} t_{3} & =t_{1} t_{2} t_{6} \in K . \tag{3.6}
\end{align*}
$$

Multiplying (3.6) and (3.3) yields:

$$
\begin{array}{r}
t_{1} t_{2} t_{6} t_{0} t_{2} t_{1} \in K \\
\left(t_{1} t_{2} t_{6} t_{0} t_{2} t_{1}\right)^{t_{1} t_{2}} \in K^{G} \\
t_{2} t_{1}\left(t_{1} t_{2} t_{6} t_{0} t_{2} t_{1}\right) t_{1} t_{2} \in K \\
t_{6} t_{0} \in k . \tag{3.7}
\end{array}
$$

Multiplying (3.1) and (3.7) yields:

$$
\begin{array}{r}
t_{0} t_{6} t_{5} t_{6} t_{0} \in K \\
\left(t_{0} t_{6} t_{5} t_{6} t_{0}\right)^{t_{0} t_{6}} \in K^{G} \\
t_{6} t_{0}\left(t_{0} t_{6} t_{5} t_{6} t_{0}\right) t_{0} t_{6} \in K \\
t_{5} \in K .
\end{array}
$$

Thus $t_{5} \in K$

$$
\begin{aligned}
& \Longrightarrow t_{5}^{G} \in K^{G} \\
& \Longrightarrow K^{G} \leq\left\{t_{5}, t_{5}^{x}, t_{5}^{x^{2}}, t_{5}^{x^{3}}, t_{5}^{x^{4}}, t_{5}^{x^{5}}, t_{5}^{x^{6}}\right\} \\
& \Longrightarrow K^{G} \leq\left\{t_{5}, t_{5}^{x}, t_{5}^{x^{2}}, t_{5}^{x^{3}}, t_{5}^{x^{4}}, t_{5}^{x^{5}}, t_{5}^{x^{6}}\right\}=<t_{5}, t_{6}, t_{0}, t_{1}, t_{2}, t_{3}, t_{4}>=G
\end{aligned}
$$

So $G=K^{G}$.
Hence, the conjugates of K generate G. Therefore, by Iwasawa's lemma, $G \cong L_{2}(13)$ is simple.

Chapter 4

Double Coset Enumeration over a Maximal Subgroup

In this chapter, we will construct a double coset enumeration over a maximal subgroup and apply Iwasawa's lemma to prove $G \cong L_{2}(27)$ is a simple group.

4.1 Construction of $L_{2}(27)$ over $M=2 \cdot D_{14}$

Definition 4.1. (Maximal Subgroup). A subgroup $M \neq 1 \leq G$ is a maximal normal subgroup of G if there is no normal subgroup N of G with $M<N<G$. [Rot12]

We start by factoring the progenitor $2^{* 7}: D_{14}$ by the relations $\left(x y t^{x} t\right)^{3},(x t)^{7}$ to obtain the homomorphic image:

$$
G \cong \frac{2^{* 7}: D_{14}}{\left(x y t^{x} t\right)^{3},(x t)^{7}} \cong L_{2}(27),
$$

where $x \sim(0,1,2,3,4,5,6), y \sim(1,6)(2,5)(3,4)$, and $t \sim t_{0} \sim t_{7}$.
Let $\pi=x y=(1,5)(2,4)(6,0)$, then $\left(x y t^{x} t\right)^{3}=1$ can be written as $1=\left(\pi t_{1} t_{0}\right)^{3}$, which yields the following calculation:

$$
\begin{aligned}
1 & =\left(\pi t_{1} t_{0}\right)^{3} \\
& =\pi^{3}\left(t_{1} t_{0}\right)^{\pi^{2}}\left(t_{1} t_{0}\right)^{\pi} t_{1} t_{0} \\
& =\pi t_{1} t_{0} t_{5} t_{6} t_{1} t_{0} .
\end{aligned}
$$

Thus we have the relation:

$$
\pi t_{1} t_{0} t_{5}=t_{0} t_{1} t_{6}
$$

Now $(x t)^{7}=1$ can be written as $1=\left(x t_{0}\right)^{7}=x^{7} t_{0}^{x^{6}} t_{0}^{x^{5}} t_{0}^{x^{4}} t_{0}^{x^{3}} t_{0}^{x^{2}} t_{0}^{x} t_{0}$. Then

$$
t_{6} t_{5} t_{4}=t_{0} t_{1} t_{2} t_{3} .
$$

Let M be the maximal subgroup generated by the control group $N=D_{14}$ and $t_{2} t_{4} t_{5} t_{4} t_{2}=t^{x^{2}} t^{x^{4}} t^{x^{5}} t^{x^{4}} t^{x^{2}}$. That is,

$$
M=\left\langle N, t^{x^{2}} t^{x^{4}} t^{x^{5}} t^{x^{4}} t^{x^{2}}\right\rangle,=2 D_{14} \text { where }|M|=28
$$

Then M is the maximal subgroup.
We proceed to do a manual double coset enumeration of G over M and N. Denote $[w]$ to be the double coset $M w N$, where w is a word in the $t_{i}^{\prime} s$.

MeN

We begin with the double coset $M e N$, denote [*]. This double coset contains only one single coset, namely M. The single coset stabilizer of M is N, which is transitive on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ and therefore, has a single orbit,

$$
\mathcal{O}=\{\{0,1,2,3,4,5,6\}\} .
$$

Take an element from \mathcal{O} say t_{0} and multiply the single coset representative M by it to obtain $M t_{0}$. This is a new double coset $M t_{0} N$, denote it [0].

$M t_{0} N$

Continuing with the double coset $M t_{0} N$, we find the point stabilizer N^{0}. This is

$$
N^{0}=\langle(1,6)(2,5)(3,4)\rangle .
$$

The coset stabiliser:

$$
N^{(0)} \geq\langle(1,6)(2,5)(3,4)\rangle
$$

Since $\left|N^{(0)}\right|=2$, the number of single cosets in [0] is $\frac{|N|}{\left|N^{(0)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(0)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1,6\},\{2,5\},\{3,4\}\} .
$$

Take an element from each orbit and multiply on the right by the single coset represen-
tative $M t_{0}$ of the double coset $M t_{0} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{0}=M \in[*], \\
& M t_{0} t_{1} \in[01], \\
& M t_{0} t_{2} \in[02], \\
& M t_{0} t_{3} \in[03] .
\end{aligned}
$$

The new double cosets have single coset representatives $M t_{0} t_{1}, M t_{0} t_{2}$, and $M t_{0} t_{3}$, we represent them as [01], [02], and [03], respectively.

$M t_{0} t_{1} N$

Continuing with the double coset $M t_{0} t_{1} N$, we find the coset stabilizer $N^{(01)}=$ $N^{01}=\langle e\rangle$. Only e will fix 0 and 1 . Hence the number of single cosets in [01] is $\frac{|N|}{\left|N^{(01)}\right|}=\frac{14}{1}=14$. The orbits of $N^{(01)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{1}$ of the double coset $M t_{0} t_{1} N$. We have:

$$
\begin{aligned}
M t_{0} t_{1} t_{1} & =M t_{0} \in[0], \\
M t_{0} t_{1} t_{0} & \in[010], \\
M t_{0} t_{1} t_{2} & \in[012], \\
M t_{0} t_{1} t_{3} & \in[013], \\
M t_{0} t_{1} t_{4} & \in[014], \\
M t_{0} t_{1} t_{5} & \in[015], \\
t_{0} t_{1} t_{6} & =x y t_{1} t_{0} t_{5} \\
\Longrightarrow M t_{0} t_{1} t_{6} & =M t_{1} t_{0} t_{5} \in[013]=\left\{N\left(t_{0} t_{1} t_{3}\right)^{n} \mid n \in N\right\} .
\end{aligned}
$$

The new double cosets have single coset representatives $M t_{0} t_{1} t_{0}, M t_{0} t_{1} t_{2}$, $M t_{0} t_{1} t_{3}, M t_{0} t_{1} t_{4}$, and $M t_{0} t_{1} t_{5}$, we represent them as [010], [012], [013], [014], and [015], respectively.

$M t_{0} t_{2} N$

Continuing with the double coset $M t_{0} t_{2} N$, we find the coset stabilizer $N^{(02)}=N^{02}=$
$\langle e\rangle$. Only e will fix 0 and 2. Hence the number of single cosets in [02] is $\frac{|N|}{\left|N^{(02)}\right|}=\frac{14}{1}=$ 14. The orbits of $N^{(02)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\} .
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{2}$ of the double coset $M t_{0} t_{2} N$. We have:

$$
\begin{aligned}
M t_{0} t_{2} t_{2} & =M t_{0} \in[0], \\
t_{0} t_{2} t_{1} & =x^{2} t_{2} t_{0} t_{1} t_{2} t_{0} t_{2} t_{0} \Longrightarrow M t_{0} t_{2} t_{1}=M t_{2} t_{0} \in[02]=\left\{N\left(t_{0} t_{2}\right)^{n} \mid n \in N\right\}, \\
t_{0} t_{2} t_{3} & =t_{0} t_{2} t_{3} t_{2} t_{0} t_{0} t_{2} \Longrightarrow M t_{0} t_{2} t_{3}=M t_{0} t_{2} \in[02], \\
M t_{0} t_{2} t_{4} & \in[024], \\
M t_{0} t_{2} t_{5} & \in[025], \\
M t_{0} t_{2} t_{6} & \in[026], \\
M t_{0} t_{2} t_{0} & \in[020] .
\end{aligned}
$$

The new double cosets have single coset representatives $M t_{0} t_{2} t_{4}, M t_{0} t_{2} t_{5}$, $M t_{0} t_{2} t_{6}$, and $M t_{0} t_{2} t_{0}$, we represent them as [024], [025], [026], and [020], respectively.

$M t_{0} t_{3} N$

Continuing with the double coset $M t_{0} t_{3} N$, we find the coset stabilizer $N^{(03)}=N^{03}=$ $\langle e\rangle$. Only e will fix 0 and 3. Hence the number of single cosets in [03] is $\frac{|N|}{\left|N^{(03)}\right|}=\frac{14}{1}=$ 14. The orbits of $N^{(03)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{3}$ of the double coset $M t_{0} t_{3} N$. We have:

$$
\begin{aligned}
M t_{0} t_{3} t_{3} & =M t_{0} \in[0], \\
t_{0} t_{3} t_{1} & =t_{0} t_{2} t_{3} t_{2} t_{0} t_{6} t_{0} t_{6} \Longrightarrow M t_{0} t_{3} t_{1}=M t_{6} t_{0} t_{6} \in[010]=\left\{N\left(t_{0} t_{1} t_{0}\right)^{n} \mid n \in N\right\}, \\
M t_{0} t_{3} t_{2} & \in[032], \\
M t_{0} t_{3} t_{4} & \in[034], \\
t_{0} t_{3} t_{5} & =t_{3} t_{5} t_{1} \Longrightarrow M t_{0} t_{3} t_{5}=M t_{3} t_{5} t_{1} \in[025]=\left\{N\left(t_{0} t_{2} t_{5}\right)^{n} \mid n \in N\right\},
\end{aligned}
$$

$$
\begin{aligned}
& t_{0} t_{3} t_{6}=y x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} t_{6} t_{5} t_{3} \Longrightarrow M t_{0} t_{3} t_{6}=M t_{6} t_{5} t_{3} \in[013] \\
& \\
& \quad\left(\text { since }\left\{N\left(t_{0} t_{1} t_{3}\right)^{n} \mid n \in N\right\} \text { and } y x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} \in M\right), \\
& M t_{0} t_{3} t_{0} \in[030] .
\end{aligned}
$$

The new double cosets have single coset representatives $M t_{0} t_{3} t_{2}, M t_{0} t_{3} t_{4}$, and $M t_{0} t_{3} t_{0}$, we represent them as [032], [034], and [030], respectively.

$M t_{0} t_{1} t_{0} N$

Continuing with the double coset $M t_{0} t_{1} t_{0} N$, we find the coset stabilizer $N^{(010)}=$ $N^{010}=\langle e\rangle$. Only e will fix 0 and 1 . Hence the number of single cosets in [010] is $\frac{|N|}{\left|N^{(010)}\right|}=\frac{14}{1}=14$. The orbits of $N^{(010)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{1} t_{0}$ of the double coset $M t_{0} t_{1} t_{0} N$. We have:

$$
\begin{aligned}
M t_{0} t_{1} t_{0} t_{0} & =M t_{0} t_{1} \in[01], \\
t_{0} t_{1} t_{0} t_{1} & =y x t_{4} t_{2} t_{4} \Longrightarrow M t_{0} t_{1} t_{0} t_{1}=M t_{4} t_{2} t_{4} \in[020]=\left\{\left(N t_{0} t_{2} t_{0}\right)^{n} \mid n \in N\right\}, \\
t_{0} t_{1} t_{0} t_{2} & =x t_{0} t_{5} t_{4} t_{5} t_{0} t_{1} t_{4} \Longrightarrow M t_{0} t_{1} t_{0} t_{2}=M t_{1} t_{4} \in[03] \\
& \left(\text { since }\left\{N\left(t_{0} t_{3}\right)^{n} \mid n \in N\right\} \text { and } x t_{0} t_{5} t_{4} t_{5} t_{0} \in M\right), \\
t_{0} t_{1} t_{0} t_{3} & =x^{2} t_{6} t_{3} t_{4} t_{5} t_{2} t_{4} t_{6} \Longrightarrow M t_{0} t_{1} t_{0} t_{3}=M t_{6} t_{3} t_{4} t_{5} t_{2} t_{4} t_{6} \in[0321420] \\
& \left(\text { since }\left\{N\left(t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0}\right)^{n} \mid n \in N\right\}\right), \\
t_{0} t_{1} t_{0} t_{4} & =y x t_{0} t_{5} t_{4} t_{5} t_{0} t_{1} t_{0} t_{1} \Longrightarrow M t_{0} t_{1} t_{0} t_{4}=M t_{1} t_{0} t_{1} \in[010] \\
& \left(\text { since }\left\{N\left(t_{0} t_{1} t_{0}\right)^{n} \mid n \in N\right\} \text { and } y x t_{0} t_{5} t_{4} t_{5} \in M\right), \\
t_{0} t_{1} t_{0} t_{5} & =x t_{3} t_{0} t_{3} t_{1} t_{0} \Longrightarrow M t_{0} t_{1} t_{0} t_{5}=M t_{3} t_{0} t_{3} t_{1} t_{0} \in[03023] \\
& =\left\{N\left(t_{0} t_{3} t_{0} t_{2} t_{3}\right)^{n} \mid n \in N\right\}, \\
t_{0} t_{1} t_{0} t_{6}= & x^{2} t_{1} t_{4} t_{5} t_{1} t_{0} \Longrightarrow M t_{0} t_{1} t_{0} t_{6}=M t_{1} t_{4} t_{5} t_{1} t_{0} \in[03406] \\
= & \left\{N\left(t_{0} t_{3} t_{4} t_{0} t_{6}\right)^{n} \mid n \in N\right\} .
\end{aligned}
$$

$M t_{0} t_{1} t_{2} N$

Continuing with the double coset $M t_{0} t_{1} t_{2} N$, we find the coset stabilizer $N^{(012)}=N^{012}=$
$\langle e\rangle$. Only e will fix 0,1 , and 2. Hence the number of single cosets in [012] is $\frac{|N|}{\left|N^{(012)}\right|}=$ $\frac{14}{1}=14$. The orbits of $N^{(012)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\} .
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{1} t_{2}$ of the double coset $M t_{0} t_{1} t_{2} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{1} t_{2} t_{2}=M t_{0} t_{1} \in[01], \\
& t_{0} t_{1} t_{2} t_{1}=x t_{0} t_{5} t_{4} t_{5} t_{0} t_{6} t_{2} t_{1} t_{0} t_{3} t_{1} t_{6} t_{5} \\
& \Longrightarrow M t_{0} t_{1} t_{2} t_{1}=M t_{6} t_{2} t_{1} t_{0} t_{3} t_{1} t_{6} t_{5} \in[03214206] \\
& \left(\text { since }\left\{N\left(t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6}\right)^{n} \mid n \in N\right\} \text { and } x t_{0} t_{5} t_{4} t_{5} t_{0} \in M\right), \\
& t_{0} t_{1} t_{2} t_{3}=t_{6} t_{5} t_{4} \Longrightarrow M t_{0} t_{1} t_{2} t_{3}=M t_{6} t_{5} t_{4} \in[012]=\left\{N\left(t_{0} t_{1} t_{2}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{1} t_{2} t_{4}=x t_{0} t_{5} t_{4} t_{5} t_{0} t_{3} t_{6} t_{0} t_{3} \Longrightarrow M t_{0} t_{1} t_{2} t_{4}=M t_{3} t_{6} t_{0} t_{3} \in[0340] \\
& \left(\text { since }\left\{N\left(t_{0} t_{3} t_{4} t_{0}\right)^{n} \mid n \in N\right\} \text { and } x t_{0} t_{5} t_{4} t_{5} t_{0} \in M\right), \\
& t_{0} t_{1} t_{2} t_{5}=x t_{1} t_{3} t_{4} t_{3} t_{1} t_{0} t_{5} t_{0} \Longrightarrow M t_{0} t_{1} t_{2} t_{5}=M t_{0} t_{5} t_{0} \in[020] \\
& \left(\text { since }\left\{N\left(t_{0} t_{2} t_{0}\right)^{n} \mid n \in N\right\} \text { and } x t_{1} t_{3} t_{4} t_{3} t_{1} \in M\right), \\
& t_{0} t_{1} t_{2} t_{6}=x t_{0} t_{2} t_{3} t_{2} t_{0} t_{4} t_{3} t_{0} \Longrightarrow M t_{0} t_{1} t_{2} t_{6}=M t_{4} t_{3} t_{0} \in[014] \\
& \left(\text { since }\left\{N\left(t_{0} t_{1} t_{4}\right)^{n} \mid n \in N\right\} \text { and } x t_{0} t_{2} t_{3} t_{2} t_{0} \in M\right), \\
& t_{0} t_{1} t_{2} t_{0}=y x^{2} t_{4} t_{1} t_{4} t_{2} t_{1} \Longrightarrow M t_{0} t_{1} t_{2} t_{0}=M t_{4} t_{1} t_{4} t_{2} t_{1} \in[03023] \\
& =\left\{N\left(t_{0} t_{3} t_{0} t_{2} t_{3}\right)^{n} \mid n \in N\right\} . \\
& M t_{0} t_{1} t_{3} N
\end{aligned}
$$

Continuing with the double coset $M t_{0} t_{1} t_{3} N$, we find the coset stabiliser $N^{(013)}=$ $N^{013}=\langle e\rangle$. Only e will fix 0,1 , and 3 . Hence the number of single cosets in [013] is $\frac{|N|}{\left|N^{(013)}\right|}=\frac{14}{1}=14$. The orbits of $N^{(013)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\} .
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{1} t_{3}$ of the double coset $M t_{0} t_{1} t_{3} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{1} t_{3} t_{3}=M t_{0} t_{1} \in[01], \\
& t_{0} t_{1} t_{3} t_{1}=x t_{6} t_{2} t_{6} t_{1} t_{0} \Longrightarrow M t_{0} t_{1} t_{3} t_{1}=M t_{6} t_{2} t_{6} t_{1} t_{0} \in[03021] \\
& =\left\{N\left(t_{0} t_{3} t_{0} t_{2} t_{1}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{1} t_{3} t_{2}=y x^{3} t_{1} t_{0} \Longrightarrow M t_{0} t_{1} t_{3} t_{2}=M t_{1} t_{0} \in[01]=\left\{N\left(t_{0} t_{1}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{1} t_{3} t_{4}=x t_{0} t_{2} t_{3} t_{2} t_{0} t_{0} t_{4} t_{3} t_{6} t_{0} \Longrightarrow M t_{0} t_{1} t_{3} t_{4}=M t_{0} t_{4} t_{3} t_{6} t_{0} \in[03410]
\end{aligned}
$$

(since $\left\{N\left(t_{0} t_{3} t_{4} t_{1} t_{0}\right)^{n} \mid n \in N\right\}$ and $x t_{0} t_{2} t_{3} t_{2} t_{0} \in M$),

$$
t_{0} t_{1} t_{3} t_{5}=t_{2} t_{6} t_{2} t_{0} t_{1} t_{3} \Longrightarrow M t_{0} t_{1} t_{3} t_{5}=M t_{2} t_{6} t_{2} t_{0} t_{1} t_{3} \in[030216]
$$

$$
=\left\{N\left(t_{0} t_{3} t_{0} t_{2} t_{1} t_{6}\right)^{n} \mid n \in N\right\}
$$

$$
t_{0} t_{1} t_{3} t_{6}=x^{3} t_{4} t_{1} t_{2} t_{1} \Longrightarrow M t_{0} t_{1} t_{3} t_{6}=M t_{4} t_{1} t_{2} t_{1} \in[0323]
$$

$$
=\left\{N\left(t_{0} t_{3} t_{2} t_{3}\right)^{n} \mid n \in N\right\}
$$

$$
t_{0} t_{1} t_{3} t_{0}=y x^{-2} t_{5} t_{7} t_{6} t_{5} t_{6} t_{3} \Longrightarrow M t_{0} t_{1} t_{3} t_{0}=M t_{6} t_{3} \in[03]
$$

(since $\left\{N\left(t_{0} t_{3}\right)^{n} \mid n \in N\right\}$ and $\left.y x^{-2} t_{5} t_{7} t_{6} t_{5} \in M\right)$.

$M t_{0} t_{1} t_{4} N$

Continuing with the double coset $M t_{0} t_{1} t_{4} N$, we find the coset stabiliser $N^{(014)}=N^{014}=$ $\langle e\rangle$. Only e will fix 0,1 , and 4. Hence the number of single cosets in [014] is $\frac{|N|}{\left|N^{(014)}\right|}=$ $\frac{14}{1}=14$. The orbits of $N^{(014)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{1} t_{4}$ of the double coset $M t_{0} t_{1} t_{4} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{1} t_{4} t_{4}=M t_{0} t_{1} \in[01], \\
& t_{0} t_{1} t_{4} t_{1}=x^{-1} t_{5} t_{0} t_{6} t_{5} t_{0} t_{2} t_{6} t_{0} t_{1} t_{5} \Longrightarrow M t_{0} t_{1} t_{4} t_{1}=M t_{2} t_{6} t_{0} t_{1} t_{5} \in[03214], \\
& \left(\text { since }\left\{N\left(t_{0} t_{3} t_{2} t_{1} t_{4}\right)^{n} \mid n \in N\right\} \text { and } x^{-1} t_{5} t_{0} t_{6} t_{5} t_{0} \in M\right) \\
& t_{0} t_{1} t_{4} t_{2}=y x t_{0} t_{1} t_{4} \Longrightarrow M t_{0} t_{1} t_{4} t_{2}=M t_{0} t_{1} t_{4} \in[014] \\
& t_{0} t_{1} t_{4} t_{3}=t_{0} t_{5} t_{4} t_{5} t_{0} t_{0} t_{6} t_{2} t_{5} \Longrightarrow M t_{0} t_{1} t_{4} t_{3}=M t_{0} t_{6} t_{2} t_{5} \in[0152],
\end{aligned}
$$

(since $\left\{N\left(t_{0} t_{1} t_{5} t_{2}\right)^{n} \mid n \in N\right\}$ and $t_{0} t_{5} t_{4} t_{5} t_{0} \in M$),

$$
\begin{aligned}
& t_{0} t_{1} t_{4} t_{5}=x^{2} t_{0} t_{2} t_{3} t_{2} t_{0} t_{4} t_{3} t_{2} \Longrightarrow M t_{0} t_{1} t_{4} t_{5}=M t_{4} t_{3} t_{2} \in[012] \\
& \text { (since } \left.\left\{N\left(t_{0} t_{1} t_{2}\right)^{n} \mid n \in N\right\} \text { and } x^{2} t_{0} t_{2} t_{3} t_{2} t_{0} \in M\right), \\
& t_{0} t_{1} t_{4} t_{6}=x t_{1} t_{3} t_{4} t_{3} t_{1} t_{0} t_{4} t_{3} t_{0} t_{1} \Longrightarrow M t_{0} t_{1} t_{4} t_{6}=M t_{0} t_{4} t_{3} t_{0} t_{1} \in[03406] \\
& \text { (since } \left.\left\{N\left(t_{0} t_{3} t_{4} t_{0} t_{6}\right)^{n} \mid n \in N\right\} \text { and } x t_{1} t_{3} t_{4} t_{3} t_{1} \in M\right), \\
& t_{0} t_{1} t_{4} t_{0}=x^{2} y t_{3} t_{0} t_{6} t_{2} \Longrightarrow M t_{0} t_{1} t_{4} t_{0}=M t_{3} t_{0} t_{6} t_{2} \in[0341] \\
& =\left\{N\left(t_{0} t_{3} t_{4} t_{1}\right)^{n} \mid n \in N\right\} .
\end{aligned}
$$

$M t_{0} t_{1} t_{5} N$

Continuing with the double coset $M t_{0} t_{1} t_{5} N$ we find the single coset stabilizer is trivial. However, the relation

$$
\begin{gathered}
t_{0} t_{1} t_{5}=y x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} t_{6} t_{5} t_{1} \\
\Longrightarrow M t_{0} t_{1} t_{5}=M t_{6} t_{5} t_{1} \text { since } y x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} \in M
\end{gathered}
$$

Then $M\left(t_{0} t_{1} t_{5}\right)^{(0,6)(1,5)(2,4)}=M t_{6} t_{5} t_{1}$. But $M t_{6} t_{5} t_{1}=M t_{0} t_{1} t_{5} \Longrightarrow(0,6)(1,5)(2,4) \in$ $N^{(015)}$ since $M\left(t_{0} t_{1} t_{5}\right)^{(0,6)(1,5)(2,4)}=M t_{6} t_{5} t_{1}$

$$
\Longrightarrow N^{(015)} \geq\langle(0,6)(1,5)(2,4)\rangle .
$$

Since $\left|N^{(015)}\right|=2$, the number of single cosets in [015] is $\frac{|N|}{\left|N^{(015)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(015)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{3\},\{0,6\},\{1,5\},\{2,4\}\} .
$$

Take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{1} t_{5}$ of the double coset $M t_{0} t_{1} t_{5} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{1} t_{5} t_{5}=M t_{0} t_{1} \in[01], \\
& t_{0} t_{1} t_{5} t_{3}=x^{3} t_{6} t_{5} t_{1} \Longrightarrow M t_{0} t_{1} t_{5} t_{3}=M t_{6} t_{5} t_{1} \in[015]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{1} t_{5} t_{0}=x t_{1} t_{3} t_{4} t_{3} t_{1} t_{0} t_{5} t_{3} \Longrightarrow M t_{0} t_{1} t_{5} t_{0}=M t_{0} t_{5} t_{3} \in[024] \\
& \left(\text { since }\left\{N\left(t_{0} t_{2} t_{4}\right)^{n} \mid n \in N\right\} \text { and } x t_{1} t_{3} t_{4} t_{3} t_{1} \in M\right), \\
& M t_{0} t_{1} t_{5} t_{2} \in[0152] .
\end{aligned}
$$

The new double coset is $M t_{0} t_{1} t_{5} t_{2} N$, which we represent by [0152],
respectively.

$M t_{0} t_{1} t_{5} t_{2} N$

Now with the double coset $M t_{0} t_{1} t_{5} t_{2} N$, we find the coset stabilizer $N^{(0152)}=N^{0152}=$
$\langle e\rangle$. Only e will fix $0,1,5$, and 2. Hence the number of single cosets in [0152] is $\frac{|N|}{\left|N^{(0152)}\right|}=\frac{14}{1}=14$. The orbits of $N^{(0152)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\} .
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{1} t_{5} t_{2}$ of the double coset $M t_{0} t_{1} t_{5} t_{2} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{1} t_{5} t_{2} t_{2}=M t_{0} t_{1} t_{5} \in[015], \\
& t_{0} t_{1} t_{5} t_{2} t_{1}=x t_{0} t_{2} t_{3} t_{2} t_{0} t_{0} t_{4} t_{5} t_{4} \Longrightarrow M t_{0} t_{1} t_{5} t_{2} t_{1}=M t_{0} t_{4} t_{5} t_{4} \in[0323] \\
& \left(\text { since }\left\{N\left(t_{0} t_{3} t_{2} t_{3}\right)^{n} \mid n \in N\right\} \text { and } x t_{0} t_{2} t_{3} t_{2} t_{0} \in M\right), \\
& t_{0} t_{1} t_{5} t_{2} t_{3}=x^{2} t_{2} t_{0} t_{1} t_{2} t_{0} t_{2} t_{4} t_{1} \Longrightarrow M t_{0} t_{1} t_{5} t_{2} t_{3}=M t_{2} t_{4} t_{1} \in[026] \\
& \left(\text { since }\left\{N\left(t_{0} t_{2} t_{6}\right)^{n} \mid n \in N\right\} \text { and } x^{2} t_{2} t_{0} t_{1} t_{2} t_{0} \in M\right), \\
& t_{0} t_{1} t_{5} t_{2} t_{4}=t_{0} t_{2} t_{3} t_{2} t_{0} t_{0} t_{6} t_{3} \Longrightarrow M t_{0} t_{1} t_{5} t_{2} t_{4}=M t_{0} t_{6} t_{3} \in[014] \\
& \left(\text { since }\left\{N\left(t_{0} t_{1} t_{4}\right)^{n} \mid n \in N\right\} \text { and } t_{0} t_{2} t_{3} t_{2} t_{0} \in M\right), \\
& t_{0} t_{1} t_{5} t_{2} t_{5}=x^{2} t_{6} t_{3} t_{4} t_{5} t_{2} t_{4} t_{6} t_{0} \Longrightarrow M t_{0} t_{1} t_{5} t_{2} t_{5}=M t_{6} t_{3} t_{4} t_{5} t_{2} t_{4} t_{6} t_{0} \in[03214206] \\
& =\left\{N\left(t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{1} t_{5} t_{2} t_{6}=x t_{0} t_{5} t_{4} t_{5} t_{0} t_{0} t_{1} t_{2} t_{5} \Longrightarrow M t_{0} t_{1} t_{5} t_{2} t_{6}=M t_{0} t_{1} t_{2} t_{5} \in[0152] \\
& \text { (since } \left.\left\{N\left(t_{0} t_{1} t_{5} t_{2}\right)^{n} \mid n \in N\right\} \text { and } x t_{0} t_{5} t_{4} t_{5} t_{0} \in M\right), \\
& t_{0} t_{1} t_{5} t_{2} t_{0}=t_{0} t_{2} t_{3} t_{2} t_{0} t_{5} t_{1} t_{2} t_{6} t_{5} \Longrightarrow M t_{0} t_{1} t_{5} t_{2} t_{0}=M t_{5} t_{1} t_{2} t_{6} t_{5} \in[03410] \\
& \text { (since } \left.\left\{N\left(t_{0} t_{3} t_{4} t_{1} t_{0}\right)^{n} \mid n \in N\right\} \text { and } t_{0} t_{2} t_{3} t_{2} \in M\right) .
\end{aligned}
$$

$M t_{0} t_{2} t_{4} N$

Continuing with the double coset $M t_{0} t_{2} t_{4} N$, we find the coset stabilizer $N^{(024)}=N^{024}=$ $\langle e\rangle$. Only e will fix 0,2 , and 4. Hence the number of single cosets in [024] is $\frac{|N|}{\left|N^{(024)}\right|}=$ $\frac{14}{1}=14$. The orbits of $N^{(024)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{2} t_{4}$ of the double coset $M t_{0} t_{2} t_{4} N$. We have:

$$
M t_{0} t_{2} t_{4} t_{4}=M t_{0} t_{2} \in[02]
$$

$$
\begin{aligned}
& t_{0} t_{2} t_{4} t_{1}=x^{-2} t_{3} t_{6} t_{3} t_{4} \Longrightarrow M t_{0} t_{2} t_{4} t_{1}=M t_{3} t_{6} t_{3} t_{4} \in[0301] \\
& =\left\{N\left(t_{0} t_{3} t_{0} t_{1}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{2} t_{4} t_{2}=x t_{6} t_{4} t_{6} \Longrightarrow M t_{0} t_{2} t_{4} t_{2}=M t_{6} t_{4} t_{6} \in[020] \\
& =\left\{N\left(t_{0} t_{2} t_{0}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{2} t_{4} t_{3}=y x t_{0} t_{5} t_{4} t_{5} t_{0} t_{5} t_{1} t_{2} t_{6} t_{5} \Longrightarrow M t_{0} t_{2} t_{4} t_{3}=M t_{5} t_{1} t_{2} t_{6} t_{5} \in[03410] \\
& \left(\text { since }\left\{N\left(t_{0} t_{3} t_{4} t_{1} t_{0}\right)^{n} \mid n \in N\right\} \text { and } y x t_{0} t_{5} t_{4} t_{5} t_{0} \in M\right), \\
& t_{0} t_{2} t_{4} t_{5}=x t_{0} t_{5} t_{4} t_{5} t_{0} t_{1} t_{4} t_{5} t_{1} t_{0} \Longrightarrow M t_{0} t_{2} t_{4} t_{5}=M t_{1} t_{4} t_{5} t_{1} t_{0} \in[03406] \\
& \left(\text { since }\left\{N\left(t_{0} t_{3} t_{4} t_{0} t_{6}\right)^{n} \mid n \in N\right\} \text { and } x t_{0} t_{5} t_{4} t_{5} t_{0} \in M\right), \\
& t_{0} t_{2} t_{4} t_{6}=x t_{6} t_{1} t_{4} \Longrightarrow M t_{0} t_{2} t_{4} t_{6}=M t_{6} t_{1} t_{4} \in[025] \\
& =\left\{N\left(t_{0} t_{2} t_{5}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{2} t_{4} t_{0}=x t_{0} t_{5} t_{4} t_{5} t_{0} t_{0} t_{6} t_{2} \Longrightarrow M t_{0} t_{2} t_{4} t_{0}=M t_{0} t_{6} t_{2} \in[015] \\
& \left(\text { since }\left\{N\left(t_{0} t_{1} t_{5}\right)^{n} \mid n \in N\right\} \text { and } x t_{0} t_{5} t_{4} t_{5} t_{0} \in M\right) .
\end{aligned}
$$

$M t_{0} t_{2} t_{5} N$

Continuing with the double coset $M t_{0} t_{2} t_{5} N$, we find the coset stabilizer $N^{(025)}=N^{025}=$ $\langle e\rangle$. Only e will fix 0,2 , and 5 . Hence the number of single cosets in [025] is $\frac{|N|}{\left|N^{(025)}\right|}=$ $\frac{14}{1}=14$. The orbits of $N^{(025)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\} .
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{2} t_{5}$ of the double coset $M t_{0} t_{2} t_{5} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{2} t_{5} t_{5}=M t_{0} t_{2} \in[02], \\
& t_{0} t_{2} t_{5} t_{1}=x^{4} t_{2} t_{0} t_{1} t_{2} t_{0} t_{3} t_{0} t_{6} t_{3} t_{4} \Longrightarrow M t_{0} t_{2} t_{5} t_{1}=M t_{3} t_{0} t_{6} t_{3} t_{4} \in[03406] \\
& \left(\text { since }\left\{N\left(t_{0} t_{3} t_{4} t_{0} t_{6}\right)^{n} \mid n \in N\right\} \text { and } x^{4} t_{2} t_{0} t_{1} t_{2} t_{0} \in M\right), \\
& t_{0} t_{2} t_{5} t_{2}=t_{4} t_{0} \Longrightarrow M t_{0} t_{2} t_{5} t_{2}=M t_{4} t_{0} \in[03] \\
& =\left\{N\left(t_{0} t_{3}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{2} t_{5} t_{3}=x t_{6} t_{2} t_{1} t_{0} t_{3} t_{1} t_{6} \Longrightarrow M t_{0} t_{2} t_{5} t_{3}=M t_{6} t_{2} t_{1} t_{0} t_{3} t_{1} t_{6} \in[0321420], \\
& =\left\{N\left(t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0}\right)^{n} \mid n \in N\right\},
\end{aligned}
$$

$$
\begin{aligned}
& t_{0} t_{2} t_{5} t_{4}=y t_{0} t_{5} t_{4} t_{5} t_{0} t_{0} t_{3} t_{2} \Longrightarrow M t_{0} t_{2} t_{5} t_{4}=M t_{0} t_{3} t_{2} \in[032], \\
& \left(\text { since }\left\{N\left(t_{0} t_{3} t_{2}\right)^{n} \mid n \in N\right\} \text { and } y t_{0} t_{5} t_{4} t_{5} t_{0} \in M\right), \\
& t_{0} t_{2} t_{5} t_{6}=x^{2} t_{3} t_{6} t_{3} t_{5} t_{4} t_{2} \Longrightarrow M t_{0} t_{2} t_{5} t_{6}=M t_{3} t_{6} t_{3} t_{5} t_{4} t_{2} \in[030216] \\
& =\left\{N\left(t_{0} t_{3} t_{0} t_{2} t_{1} t_{6}\right)^{n}|n| \in N\right\}, \\
& t_{0} t_{2} t_{5} t_{0}=x^{-1} t_{1} t_{3} t_{5} \Longrightarrow M t_{0} t_{2} t_{5} t_{0}=M t_{1} t_{3} t_{5} \in[024] \\
& =\left\{N\left(t_{0} t_{2} t_{4}\right)^{n} \mid n \in N\right\} .
\end{aligned}
$$

$M t_{0} t_{2} t_{6} N$

Continuing with the double coset $M t_{0} t_{2} t_{6} N$, we find the coset stabilizer $N^{(026)}=N^{026}=$ $\langle e\rangle$. Only e will fix 0,2 , and 6 . Hence the number of single cosets in [026] is $\frac{|N|}{\left|N^{(026)}\right|}=$ $\frac{14}{1}=14$. The orbits of $N^{(026)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{2} t_{6}$ of the double coset $M t_{0} t_{2} t_{6} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{2} t_{6} t_{6}=M t_{0} t_{2} \in[02], \\
& t_{0} t_{2} t_{6} t_{1}=x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} t_{5} t_{6} t_{3} t_{0} \Longrightarrow M t_{0} t_{2} t_{6} t_{1}=M t_{5} t_{6} t_{3} t_{0} \in[0152] \\
& \left(\text { since }\left\{N\left(t_{0} t_{1} t_{5} t_{2}\right)^{n} \mid n \in N\right\} \text { and } x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} \in M\right), \\
& t_{0} t_{2} t_{6} t_{2}=t_{2} t_{5} t_{2} t_{4} \Longrightarrow M t_{0} t_{2} t_{6} t_{2}=M t_{2} t_{5} t_{2} t_{4} \in[0302] \\
& =\left\{N\left(t_{0} t_{3} t_{0} t_{2}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{2} t_{6} t_{3}=x^{2} y t_{6} t_{3} t_{6} t_{5} \Longrightarrow M t_{0} t_{2} t_{6} t_{3}=M t_{6} t_{3} t_{6} t_{5} \in[0301] \\
& =\left\{N\left(t_{0} t_{3} t_{0} t_{1}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{2} t_{6} t_{4}=x^{-3} t_{3} t_{6} t_{5} t_{6} \Longrightarrow M t_{0} t_{2} t_{6} t_{4}=M t_{3} t_{6} t_{5} t_{6} \in[0323] \\
& =\left\{N\left(t_{0} t_{3} t_{2} t_{3}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{2} t_{6} t_{5}=t_{0} t_{5} t_{4} t_{5} t_{0} t_{4} t_{1} t_{0} \Longrightarrow M t_{0} t_{2} t_{6} t_{5}=M t_{4} t_{1} t_{0} \in[034] \\
& \left(\text { since }\left\{N\left(t_{0} t_{3} t_{4}\right)^{n} \mid n \in N\right\} \text { and } t_{0} t_{5} t_{4} t_{5} t_{0} \in M\right),
\end{aligned}
$$

$$
\begin{aligned}
& t_{0} t_{2} t_{6} t_{0}=y x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} t_{3} t_{0} t_{6} t_{3} \Longrightarrow M t_{0} t_{2} t_{6} t_{0}=M t_{3} t_{0} t_{6} t_{3} \in[0340] \\
& \left(\text { since }\left\{N\left(t_{0} t_{3} t_{4} t_{0}\right)^{n} \mid n \in N\right\} \text { and } y x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} \in M\right)
\end{aligned}
$$

$M t_{0} t_{2} t_{0} N$

Continuing with the double coset $M t_{0} t_{2} t_{0} N$, we find the coset stabilizer $N^{(020)}=N^{020}=$ $\langle e\rangle$. Only e will fix 0 , and 2. Hence the number of single cosets in [020] is $\frac{|N|}{\left|N^{(020)}\right|}=$ $\frac{14}{1}=14$. The orbits of $N^{(020)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{2} t_{0}$ of the double coset $M t_{0} t_{2} t_{0} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{2} t_{0} t_{0}=M t_{0} t_{2} \in[02], \\
& t_{0} t_{2} t_{0} t_{1}=y x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} t_{0} t_{2} t_{0} \Longrightarrow M t_{0} t_{2} t_{0} t_{1}=M t_{0} t_{2} t_{0} \in[020] \\
& \left(\text { since }\left\{N\left(t_{0} t_{2} t_{0}\right)^{n} \mid n \in N\right\} \text { and } y x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} \in M\right), \\
& t_{0} t_{2} t_{0} t_{2}=x t_{0} t_{5} t_{4} t_{5} t_{0} t_{0} t_{6} t_{5} \Longrightarrow M t_{0} t_{2} t_{0} t_{2}=M t_{0} t_{6} t_{5} \in[012] \\
& \left(\text { since }\left\{N\left(t_{0} t_{1} t_{2}\right)^{n} \mid n \in N\right\} \text { and } x t_{0} t_{5} t_{4} t_{5} t_{0} \in M\right), \\
& t_{0} t_{2} t_{0} t_{3}=y t_{4} t_{3} t_{4} \Longrightarrow M t_{0} t_{2} t_{0} t_{3}=M t_{4} t_{3} t_{4} \in[010] \\
& =\left\{N\left(t_{0} t_{1} t_{0}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{2} t_{0} t_{4}=x t_{6} t_{4} t_{2} \Longrightarrow M t_{0} t_{2} t_{0} t_{4}=M t_{6} t_{4} t_{2} \in[024] \\
& =\left\{N\left(t_{0} t_{2} t_{4}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{2} t_{0} t_{5}=x^{-1} t_{3} t_{1} t_{3} \Longrightarrow M t_{0} t_{2} t_{0} t_{5}=M t_{3} t_{1} t_{3} \in[020] \\
& =\left\{N\left(t_{0} t_{2} t_{0}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{2} t_{0} t_{6}=x^{3} t_{6} t_{2} t_{6} t_{1} t_{0} \Longrightarrow M t_{0} t_{2} t_{0} t_{6}=M t_{6} t_{2} t_{6} t_{1} t_{0} \in[03021] \\
& =\left\{N\left(t_{0} t_{3} t_{0} t_{2} t_{1}\right)^{n} \mid n \in N\right\} .
\end{aligned}
$$

$M t_{0} t_{3} t_{2} N$

Continuing with the double coset $M t_{0} t_{3} t_{2} N$ we find the single coset stabilizer is trivial. However, the relation

$$
\begin{gathered}
t_{0} t_{3} t_{2}=x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} t_{2} t_{6} t_{0} \\
\Longrightarrow M t_{0} t_{3} t_{2}=M t_{2} t_{6} t_{0} \text { since } x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} \in M
\end{gathered}
$$

Then $M\left(t_{0} t_{3} t_{2}\right)^{(0,2)(3,6)(4,5)}=M t_{2} t_{6} t_{0}$. But $M t_{2} t_{6} t_{0}=M t_{0} t_{3} t_{2} \Longrightarrow(0,2)(3,6)(4,5) \in$ $N^{(032)}$ since $M\left(t_{0} t_{3} t_{2}\right)^{(0,2)(3,6)(4,5)}=M t_{2} t_{6} t_{0}$

$$
\Longrightarrow N^{(032)} \geq\langle(0,2)(3,6)(4,5)\rangle .
$$

Since $\left|N^{(032)}\right|=2$, the number of single cosets in [032] is $\frac{|N|}{\left|N^{(032)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(032)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{1\},\{0,2\},\{3,6\},\{4,5\}\} .
$$

Take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{3} t_{2}$ of the double coset $M t_{0} t_{3} t_{2} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{2} t_{2}=M t_{0} t_{3} \in[03], \\
& M t_{0} t_{3} t_{2} t_{1} \in[0321], \\
& M t_{0} t_{3} t_{2} t_{3} \in[0323], \\
& t_{0} t_{3} t_{2} t_{4}=x^{3} t_{2} t_{0} t_{1} t_{2} t_{0} t_{0} t_{2} t_{5} \Longrightarrow M t_{0} t_{3} t_{2} t_{4}=M t_{0} t_{2} t_{5} \in[025] \\
& \text { (since } \left.\left\{N\left(t_{0} t_{2} t_{5}\right)^{n} \mid n \in N\right\} \text { and } x^{3} t_{2} t_{0} t_{1} t_{2} t_{0} \in M\right)
\end{aligned}
$$

The new double cosets have single coset representatives $M t_{0} t_{3} t_{2} t_{1} N$ and $M t_{0} t_{3} t_{2} t_{3} N$, we represent them as [0321] and [0323], respectively.

$M t_{0} t_{3} t_{2} t_{1} N$

Continuing with the double coset $M t_{0} t_{3} t_{2} t_{1} N$ we find the single coset stabilizer is trivial. However, the relation

$$
\begin{gathered}
t_{0} t_{3} t_{2} t_{1}=x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} t_{2} t_{6} t_{0} t_{1} \\
\Longrightarrow M t_{0} t_{3} t_{2} t_{1}=M t_{2} t_{6} t_{0} t_{1} \text { since } x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} \in M
\end{gathered}
$$

Then $M\left(t_{0} t_{3} t_{2} t_{1}\right)^{(0,2)(3,6)(4,5)}=M t_{2} t_{6} t_{0} t_{1}$.
But $M t_{2} t_{6} t_{0} t_{1}=M t_{0} t_{3} t_{2} t_{1} \Longrightarrow(0,2)(3,6)(4,5) \in N^{(0321)}$
since $M\left(t_{0} t_{3} t_{2} t_{1}\right)^{(0,2)(3,6)(4,5)}=M t_{2} t_{6} t_{0} t_{1}$

$$
\Longrightarrow N^{(0321)} \geq\langle(0,2)(3,6)(4,5)\rangle
$$

Since $\left|N^{(0321)}\right|=2$, the number of single cosets in [0321] is $\frac{|N|}{\left|N^{(0321)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(0321)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{1\},\{0,2\},\{3,6\},\{4,5\}\} .
$$

Take an element from each orbit and multiply on the right by the single coset represen-
tative $M t_{0} t_{3} t_{2} t_{1}$ of the double coset $M t_{0} t_{3} t_{2} t_{1} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{2} t_{1} t_{1}=M t_{0} t_{3} t_{2} \in[032], \\
& t_{0} t_{3} t_{2} t_{1} t_{3}=x^{3} y t_{1} t_{4} t_{1} t_{2} \Longrightarrow M t_{0} t_{3} t_{2} t_{1} t_{3}=M t_{1} t_{4} t_{1} t_{2} \in[0301] \\
& =\left\{N\left(t_{0} t_{3} t_{0} t_{1}\right)^{n} \mid n \in N\right\}, \\
& M t_{0} t_{3} t_{2} t_{1} t_{4} \in[03214], \\
& t_{0} t_{3} t_{2} t_{1} t_{0}=t_{0} t_{4} t_{5} t_{6} \Longrightarrow M t_{0} t_{3} t_{2} t_{1} t_{0}=M t_{0} t_{4} t_{5} t_{6} \in[0321] \\
& =\left\{N\left(t_{0} t_{3} t_{2} t_{1}\right)^{n} \mid n \in N\right\},
\end{aligned}
$$

The new double coset is $M t_{0} t_{3} t_{2} t_{1} t_{4} N$, which we represent by [03214], respectively.

$M t_{0} t_{3} t_{2} t_{3} N$

Continuing with the double coset $M t_{0} t_{3} t_{2} t_{3} N$, we find the coset stabilizer $N^{(0323)}=$ $N^{0323}=\langle e\rangle$. Only e will fix 0,2 , and 3 . Hence the number of single cosets in [0323] is $\frac{|N|}{\left|N^{(0323)}\right|}=\frac{14}{1}=14$. The orbits of $N^{(0323)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{3} t_{2} t_{3}$ of the double coset $M t_{0} t_{3} t_{2} t_{3} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{2} t_{3} t_{3}=M t_{0} t_{3} t_{2} \in[032], \\
& t_{0} t_{3} t_{2} t_{3} t_{1}=x^{3} t_{4} t_{6} t_{3} \Longrightarrow M t_{0} t_{3} t_{2} t_{3} t_{1}=M t_{4} t_{6} t_{3} \in[026] \\
& =\left\{N\left(t_{0} t_{2} t_{6}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{2} t_{3} t_{2}=x y t_{4} t_{0} t_{4} t_{6} t_{5} \Longrightarrow M t_{0} t_{3} t_{2} t_{3} t_{2}=M t_{4} t_{0} t_{4} t_{6} t_{5} \in[03021] \\
& =\left\{N\left(t_{0} t_{3} t_{0} t_{2} t_{1}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{2} t_{3} t_{4}=x^{2} t_{2} t_{0} t_{1} t_{2} t_{0} t_{0} t_{3} t_{0} t_{1} \Longrightarrow M t_{0} t_{3} t_{2} t_{3} t_{4}=M t_{0} t_{3} t_{0} t_{1} \in[0301] \\
& \left(\text { since }\left\{N\left(t_{0} t_{3} t_{0} t_{1}\right)^{n} \mid n \in N\right\} \text { and } x^{2} t_{2} t_{0} t_{1} t_{2} t_{0} \in M\right), \\
& t_{0} t_{3} t_{2} t_{3} t_{5}=x^{3} t_{4} t_{3} t_{1} \Longrightarrow M t_{0} t_{3} t_{2} t_{3} t_{5}=M t_{4} t_{3} t_{1} \in[013] \\
& =\left\{N\left(t_{0} t_{1} t_{3}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{2} t_{3} t_{6}=y x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} t_{0} t_{6} t_{2} t_{5} \Longrightarrow M t_{0} t_{3} t_{2} t_{3} t_{6}=M t_{0} t_{6} t_{2} t_{5} \in[0152] \\
& \left(\text { since }\left\{N\left(t_{0} t_{1} t_{5} t_{2}\right)^{n} \mid n \in N\right\} \text { and } y x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} \in M\right),
\end{aligned}
$$

$$
t_{0} t_{3} t_{2} t_{3} t_{0}=x t_{0} t_{2} t_{3} t_{2} t_{0} t_{2} t_{5} t_{4} t_{3} t_{6} t_{4} \Longrightarrow M t_{0} t_{3} t_{2} t_{3} t_{0}=M t_{2} t_{5} t_{4} t_{3} t_{6} t_{4} \in[032142]
$$

$$
\left(\text { since }\left\{N\left(t_{0} t_{3} t_{2} t_{1} t_{4} t_{2}\right)^{n} \mid n \in N\right\} \text { and } x t_{0} t_{2} t_{3} t_{2} t_{0} \in M\right) \text {. }
$$

$M t_{0} t_{3} t_{2} t_{1} t_{4} N$

Continuing with the double coset $M t_{0} t_{3} t_{2} t_{1} t_{4} N$ we find the single coset stabilizer is trivial. However, the relation

$$
\begin{gathered}
t_{0} t_{3} t_{2} t_{1} t_{4}=t_{4} t_{1} t_{2} t_{3} t_{0} \\
\Longrightarrow M t_{0} t_{3} t_{2} t_{1} t_{4}=M t_{4} t_{1} t_{2} t_{3} t_{0}
\end{gathered}
$$

Then $M\left(t_{0} t_{3} t_{2} t_{1} t_{4}\right)^{(0,4)(3,1)(5,6)}=M t_{4} t_{1} t_{2} t_{3} t_{0}$. But $M t_{4} t_{1} t_{2} t_{3} t_{0}=M t_{0} t_{3} t_{2} t_{1} t_{4} \Longrightarrow$ $(0,4)(3,1)(5,6) \in N^{(03214)}$
since $M\left(t_{0} t_{3} t_{2} t_{1} t_{4}\right)^{(0,4)(3,1)(5,6)}=M t_{4} t_{1} t_{2} t_{3} t_{0}$

$$
\Longrightarrow N^{(03214)} \geq\langle(0,4)(3,1)(5,6)\rangle .
$$

Since $\left|N^{(03214)}\right|=2$, the number of single cosets in [03214] is $\frac{|N|}{\left|N^{(03214)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(03214)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{2\},\{0,4\},\{3,1\},\{5,5\}\} .
$$

Take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{3} t_{2} t_{1} t_{4}$ of the double coset $M t_{0} t_{3} t_{2} t_{1} t_{4} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{2} t_{1} t_{4} t_{4}=M t_{0} t_{3} t_{2} t_{1} \in[0321], \\
& M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} \in[032142], \\
& t_{0} t_{3} t_{2} t_{1} t_{4} t_{3}=x^{-1} t_{5} t_{0} t_{6} t_{5} t_{0} t_{2} t_{3} t_{6} \Longrightarrow M t_{0} t_{3} t_{2} t_{1} t_{4} t_{3}=M t_{2} t_{3} t_{6} \in[014] \\
& \left(\text { since }\left\{N\left(t_{0} t_{1} t_{4}\right)^{n} \mid n \in N\right\} \text { and } x^{-1} t_{5} t_{0} t_{6} t_{5} t_{0} \in M\right), \\
& t_{0} t_{3} t_{2} t_{1} t_{4} t_{5}=x^{4} t_{2} t_{0} t_{1} t_{2} t_{0} t_{1} t_{5} t_{1} t_{6} t_{0} \Longrightarrow M t_{0} t_{3} t_{2} t_{1} t_{4} t_{5}=M t_{1} t_{5} t_{1} t_{6} t_{0} \in[03021] \\
& \left(\text { since }\left\{N\left(t_{0} t_{3} t_{0} t_{2} t_{1}\right)^{n} \mid n \in N\right\} \text { and } x^{4} t_{2} t_{0} t_{1} t_{2} t_{0} \in M\right),
\end{aligned}
$$

The new double coset is $M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} N$, which we represent by [032142], respectively.

$M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} N$

Continuing with the double coset $M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} N$ we find the single coset stabilizer is trivial. However, the relation

$$
t_{0} t_{3} t_{2} t_{1} t_{4} t_{2}=t_{4} t_{1} t_{2} t_{3} t_{0} t_{2}
$$

$$
\Longrightarrow M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2}=M t_{4} t_{1} t_{2} t_{3} t_{0} t_{2} .
$$

Then $M\left(t_{0} t_{3} t_{2} t_{1} t_{4} t_{2}\right)^{(0,4)(3,1)(5,6)}=M t_{4} t_{1} t_{2} t_{3} t_{0} t_{2}$.
But $M t_{4} t_{1} t_{2} t_{3} t_{0} t_{2}=M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} \Longrightarrow(0,4)(3,1)(5,6) \in N^{(032142)}$
since $M\left(t_{0} t_{3} t_{2} t_{1} t_{4} t_{2}\right)^{(0,4)(3,1)(5,6)}=M t_{4} t_{1} t_{2} t_{3} t_{0} t_{2}$

$$
\Longrightarrow N^{(032142)} \geq\langle(0,4)(3,1)(5,6)\rangle .
$$

Since $\left|N^{(032142)}\right|=2$, the number of single cosets in $[032142]$ is $\frac{|N|}{\left|N^{(032142)}\right|}=\frac{14}{2}=7$.
The orbits of $N^{(032142)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{2\},\{0,4\},\{3,1\},\{5,6\}\} .
$$

Take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2}$ of the double coset $M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{2}=M t_{0} t_{3} t_{2} t_{1} t_{4} \in[03214], \\
& t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{3}=y x^{3} t_{0} t_{4} t_{3} t_{0} \Longrightarrow M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{3}=M t_{0} t_{4} t_{3} t_{0} \in[0340] \\
& =\left\{N\left(t_{0} t_{3} t_{4} t_{0}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{5}=x t_{0} t_{5} t_{4} t_{5} t_{0} t_{5} t_{1} t_{0} t_{1} \Longrightarrow M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{5}=M t_{5} t_{1} t_{0} t_{1} \in[0323] \\
& \left(\text { since }\left\{N\left(t_{0} t_{3} t_{2} t_{3}\right)^{n} \mid n \in N\right\} \text { and } x t_{0} t_{5} t_{4} t_{5} t_{0} \in M\right), \\
& M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} \in[0321420] .
\end{aligned}
$$

The new double coset is $M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} N$, which we represent by [0321420], respectively.

$M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} N$

Continuing with the double coset $M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} N$ we find the single coset stabilizer is trivial. However, the relation

$$
\begin{gathered}
t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0}=y t_{0} t_{5} t_{4} t_{5} t_{0} t_{5} t_{2} t_{3} t_{4} t_{1} t_{3} t_{5} \\
\Longrightarrow M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0}=M t_{5} t_{2} t_{3} t_{4} t_{1} t_{3} t_{5} \text { since } y t_{0} t_{5} t_{4} t_{5} t_{0}
\end{gathered}
$$

Now $M\left(t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0}\right)^{n}=M t_{5} t_{2} t_{3} t_{4} t_{1} t_{3} t_{5}$.
Then $M\left(t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0}\right)^{(0,5)(2,3)(1,2)}=M t_{5} t_{2} t_{3} t_{4} t_{1} t_{3} t_{5}$.
But $M t_{5} t_{2} t_{3} t_{4} t_{1} t_{3} t_{5}=M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} \Longrightarrow(0,5)(2,3)(1,2) \in N^{(0321420)}$
since $M\left(t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0}\right)^{(0,5)(2,3)(1,2)}=M t_{5} t_{2} t_{3} t_{4} t_{1} t_{3} t_{5}$

$$
\Longrightarrow N^{(0321420)} \geq\langle(0,5)(2,3)(1,2)\rangle
$$

Since $\left|N^{(0321420)}\right|=2$, the number of single cosets in [0321420] is $\frac{|N|}{\left|N^{(0321420)}\right|}=\frac{14}{2}=7$.

The orbits of $N^{(0321420)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{6\},\{0,5\},\{2,3\},\{1,4\}\} .
$$

Take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0}$ of the double coset $M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{0}=M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} \in[032142], \\
& t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{1}=x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} t_{4} t_{2} t_{6} \Longrightarrow M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{1}=M t_{4} t_{2} t_{6} \in[025] \\
& \left(\text { since }\left\{N\left(t_{0} t_{2} t_{5}\right)^{n} \mid n \in N\right\} \text { and } x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} \in M\right), \\
& t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{2}=x^{4} t_{2} t_{0} t_{1} t_{2} t_{0} t_{6} t_{0} t_{6} \Longrightarrow M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{2}=M t_{6} t_{0} t_{6} \in[010] \\
& \left(\text { since }\left\{N\left(t_{0} t_{1} t_{0}\right)^{n} \mid n \in N\right\} \text { and } x^{4} t_{2} t_{0} t_{1} t_{2} t_{0} \in M\right), \\
& M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6} \in[03214206] .
\end{aligned}
$$

The new double coset is $M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6} N$, which we represent by [03214206], respectively.

$M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6} N$

Continuing with the double coset $M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6} N$ we find the single coset stabilizer is trivial. However, the relation

$$
\begin{gathered}
t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6}=y t_{0} t_{5} t_{4} t_{5} t_{0} t_{5} t_{2} t_{3} t_{4} t_{1} t_{3} t_{5} t_{6} \\
\Longrightarrow M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6}=M t_{5} t_{2} t_{3} t_{4} t_{1} t_{3} t_{5} t_{6} \text { since } y t_{0} t_{5} t_{4} t_{5} t_{0} \in M
\end{gathered}
$$

Then $M\left(t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6}\right)^{(0,5)(2,3)(1,2)}=M t_{5} t_{2} t_{3} t_{4} t_{1} t_{3} t_{5} t_{6}$.
But $M t_{5} t_{2} t_{3} t_{4} t_{1} t_{3} t_{5} t_{6}=M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6} \Longrightarrow(0,5)(2,3)(1,2) \in N^{(0321406)}$
since $M\left(t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6}\right)^{(0,5)(2,3)(1,2)}=M t_{5} t_{2} t_{3} t_{4} t_{1} t_{3} t_{5} t_{6}$

$$
\Longrightarrow N^{(03214206)} \geq\langle(0,5)(2,3)(1,2)\rangle .
$$

Since $\left|N^{(03214206)}\right|=2$, the number of single cosets in [03214206] is $\frac{|N|}{\left|N^{(03214206)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(03214206)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{6\},\{0,5\},\{2,3\},\{1,4\}\} .
$$

Take an element from each orbit and multiply on the right by the single coset represen-
tative $M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6}$ of the double coset $M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6} t_{6}=M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} \in[0321420], \\
& t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6} t_{1}=x^{2} t_{6} t_{5} t_{1} t_{4} \Longrightarrow M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6} t_{1}=M t_{6} t_{5} t_{1} t_{4} \in[0152] \\
& =\left\{N\left(t_{0} t_{1} t_{5} t_{2}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6} t_{2}=y x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} t_{1} t_{2} t_{3} \Longrightarrow M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6} t_{2}=M t_{1} t_{2} t_{3} \in[012] \\
& \text { (since } \left.\left\{N\left(t_{0} t_{1} t_{2}\right)^{n} \mid n \in N\right\} \text { and } y x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} \in M\right), \\
& t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6} t_{0}=t_{0} t_{2} t_{3} t_{2} t_{0} t_{1} t_{4} t_{1} t_{2} \Longrightarrow M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6} t_{0}=M t_{1} t_{4} t_{1} t_{2} \in[0301] \\
& \text { (since } \left.\left\{N\left(t_{0} t_{3} t_{0} t_{1}\right)^{n} \mid n \in N\right\} \text { and } t_{0} t_{2} t_{3} t_{2} t_{0} \in M\right) .
\end{aligned}
$$

$M t_{0} t_{3} t_{4} N$

Continuing with the double coset $M t_{0} t_{3} t_{4} N$ we find the single coset stabilizer is trivial. However, the relation

$$
\begin{gathered}
t_{0} t_{3} t_{4}=x^{2} t_{2} t_{0} t_{1} t_{2} t_{0} t_{2} t_{6} t_{5} \\
\Longrightarrow M t_{0} t_{3} t_{4}=M t_{2} t_{6} t_{5} \text { since } x^{2} t_{2} t_{0} t_{1} t_{2} t_{0} \in M
\end{gathered}
$$

Then $M\left(t_{0} t_{3} t_{4}\right)^{(0,2)(3,6)(4,5)}=M t_{2} t_{6} t_{5}$.
But $M t_{0} t_{6} t_{5}=M t_{0} t_{3} t_{4} \Longrightarrow(0,2)(3,6)(4,5) \in N^{(034)}$
since $M\left(t_{0} t_{3} t_{4}\right)^{(0,2)(3,6)(4,5)}=M t_{2} t_{6} t_{5}$

$$
\Longrightarrow N^{(034)} \geq\langle(0,2)(3,6)(4,5)\rangle .
$$

Since $\left|N^{(034)}\right|=2$, the number of single cosets in [034] is $\frac{|N|}{\left|N^{(034)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(034)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{1\},\{0,2\},\{3,6\},\{4,5\}\} .
$$

Take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{3} t_{4}$ of the double coset $M t_{0} t_{3} t_{4} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{4} t_{4}=M t_{0} t_{3} \in[03], \\
& M t_{0} t_{3} t_{4} t_{1} \in[0341], \\
& M t_{0} t_{3} t_{4} t_{0} \in[0340], \\
& t_{0} t_{3} t_{4} t_{6}=x t_{1} t_{3} t_{4} t_{3} t_{1} t_{4} t_{2} t_{5} \Longrightarrow M t_{0} t_{3} t_{4} t_{6}=M t_{4} t_{2} t_{5} \in[026] \\
& \text { (since } \left.\left\{N\left(t_{0} t_{2} t_{6}\right)^{n} \mid n \in N\right\} \text { and } x t_{1} t_{3} t_{4} t_{3} t_{1} \in M\right) .
\end{aligned}
$$

The new double cosets have single coset representatives $M t_{0} t_{3} t_{4} t_{1} N$ and $M t_{0} t_{3} t_{4} t_{0} N$, we represent them as [0341] and [0340], respectively.

$M t_{0} t_{3} t_{4} t_{1} N$

Continuing with the double coset $M t_{0} t_{3} t_{4} t_{1} N$ we find the single coset stabilizer is trivial. However, the relation

$$
\begin{gathered}
t_{0} t_{3} t_{4} t_{1}=x^{2} t_{2} t_{0} t_{1} t_{2} t_{0} t_{2} t_{6} t_{5} t_{1} \\
\Longrightarrow M t_{0} t_{3} t_{4} t_{1}=M t_{2} t_{6} t_{5} t_{1} \text { since } x^{2} t_{2} t_{0} t_{1} t_{2} t_{0} \in M .
\end{gathered}
$$

Then $M\left(t_{0} t_{3} t_{4} t_{1}\right)^{(0,2)(3,6)(4,5)}=M t_{2} t_{6} t_{5} t_{1}$.
But $M t_{0} t_{6} t_{5} t_{1}=M t_{0} t_{3} t_{4} t_{1} \Longrightarrow(0,2)(3,6)(4,5) \in N^{(0341)}$
since $M\left(t_{0} t_{3} t_{4} t_{1}\right)^{(0,2)(3,6)(4,5)}=M t_{2} t_{6} t_{5} t_{1}$

$$
\Longrightarrow N^{(0341)} \geq\langle(0,2)(3,6)(4,5)\rangle
$$

Since $\left|N^{(0341)}\right|=2$, the number of single cosets in [0341] is $\frac{|N|}{\left|N^{(0341)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(0341)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{1\},\{0,2\},\{3,6\},\{4,5\}\} .
$$

Take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{3} t_{4} t_{1}$ of the double coset $M t_{0} t_{3} t_{4} t_{1} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{4} t_{1} t_{1}=M t_{0} t_{3} t_{4} \in[034], \\
& t_{0} t_{3} t_{4} t_{1} t_{3}=y x t_{3} t_{2} t_{6} \Longrightarrow M t_{0} t_{3} t_{4} t_{1} t_{3}=M t_{3} t_{2} t_{6} \in[014] \\
& =\left\{N\left(t_{0} t_{1} t_{4}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{4} t_{1} t_{4}=x^{-2} t_{6} t_{2} t_{3} t_{0} \Longrightarrow M t_{0} t_{3} t_{4} t_{1} t_{4}=M t_{6} t_{2} t_{3} t_{0} \in[0341] \\
& =\left\{N\left(t_{0} t_{3} t_{4} t_{1}\right)^{n} \mid n \in N\right\}, \\
& M t_{0} t_{3} t_{4} t_{1} t_{0} \in[03410] .
\end{aligned}
$$

The new double coset have single coset representative $M t_{0} t_{3} t_{4} t_{1} t_{0} N$, we represent it as [03410], respectively.

$M t_{0} t_{3} t_{4} t_{1} t_{0} N$

Continuing with the double coset $M t_{0} t_{3} t_{4} t_{1} t_{0} N$, we find the coset stabiliser $N^{(03410)}=$ $N^{03410}=\langle e\rangle$. Only e will fix $0,1,3$, and 4 . Hence the number of single cosets in [03410] is $\frac{|N|}{\left|N^{(03410)}\right|}=\frac{14}{1}=14$. The orbits of $N^{(03410)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\} .
$$

We now take an element from each orbit and multiply on the right by the single coset
representative $M t_{0} t_{3} t_{4} t_{1} t_{0}$ of the double coset $M t_{0} t_{3} t_{4} t_{1} t_{0} N$. We have:

$$
\begin{aligned}
M t_{0} t_{3} t_{4} t_{1} t_{0} t_{0} & =M t_{0} t_{3} t_{4} t_{1} \in[0341], \\
t_{0} t_{3} t_{4} t_{1} t_{0} t_{1} & =y x^{3} t_{5} t_{1} t_{2} t_{5} t_{4} \Longrightarrow M t_{0} t_{3} t_{4} t_{1} t_{0} t_{1}=M t_{5} t_{1} t_{2} t_{5} t_{4} \in[03406], \\
t_{0} t_{3} t_{4} t_{1} t_{0} t_{2} & =y x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} t_{2} t_{3} t_{0} t_{4} \\
& \Longrightarrow M t_{0} t_{3} t_{4} t_{1} t_{0} t_{2}=M t_{2} t_{3} t_{0} t_{4} \in[0152], \\
t_{0} t_{3} t_{4} t_{1} t_{0} t_{3} & =y x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} t_{0} t_{6} t_{4} \Longrightarrow M t_{0} t_{3} t_{4} t_{1} t_{0} t_{3}=M t_{0} t_{6} t_{4} \in[013], \\
t_{0} t_{3} t_{4} t_{1} t_{0} t_{4} & =y x t_{0} t_{3} t_{4} t_{1} t_{0} \Longrightarrow M t_{0} t_{3} t_{4} t_{1} t_{0} t_{4}=M t_{0} t_{3} t_{4} t_{1} t_{0} \in[03410], \\
t_{0} t_{3} t_{4} t_{1} t_{0} t_{5} & =x^{4} t_{2} t_{0} t_{1} t_{2} t_{0} t_{2} t_{4} t_{6} \Longrightarrow M t_{0} t_{3} t_{4} t_{1} t_{0} t_{5}=M t_{2} t_{4} t_{6} \in[024], \\
t_{0} t_{3} t_{4} t_{1} t_{0} t_{6} & =x^{3} t_{2} t_{0} t_{1} t_{2} t_{0} t_{0} t_{3} t_{0} t_{2} t_{3} \\
& \Longrightarrow M t_{0} t_{3} t_{4} t_{1} t_{0} t_{6}=M t_{0} t_{3} t_{0} t_{2} t_{3} \in[03023] .
\end{aligned}
$$

$M t_{0} t_{3} t_{4} t_{0} N$

Continuing with the double coset $M t_{0} t_{3} t_{4} t_{0} N$, we find the coset stabiliser $N^{(0340)}=$ $N^{0340}=\langle e\rangle$. Only e will fix 0,3 , and 4 . Hence the number of single cosets in [0340] is $\frac{|N|}{\left|N^{(0340)}\right|}=\frac{14}{1}=14$. The orbits of $N^{(0340)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{3} t_{4} t_{0}$ of the double coset $M t_{0} t_{3} t_{4} t_{0} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{4} t_{0} t_{0}=M t_{0} t_{3} t_{4} \in[034], \\
& t_{0} t_{3} t_{4} t_{0} t_{1}=t_{0} t_{5} t_{4} t_{5} t_{0} t_{4} t_{5} t_{6} \Longrightarrow M t_{0} t_{3} t_{4} t_{0} t_{1}=M t_{4} t_{5} t_{6} \in[012] \\
& \left(\text { since }\left\{N\left(t_{0} t_{1} t_{2}\right)^{n} \mid n \in N\right\} \text { and } t_{0} t_{5} t_{4} t_{5} t_{0} \in M\right), \\
& t_{0} t_{3} t_{4} t_{0} t_{2}=x^{-2} t_{6} t_{3} t_{6} t_{4} t_{5} \Longrightarrow M t_{0} t_{3} t_{4} t_{0} t_{2}=M t_{6} t_{3} t_{6} t_{4} t_{5} \in[03021] \\
& =\left\{N\left(t_{0} t_{3} t_{0} t_{2} t_{1}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{4} t_{0} t_{3}=x^{2} t_{0} t_{2} t_{3} t_{2} t_{0} t_{3} t_{1} t_{4} \Longrightarrow M t_{0} t_{3} t_{4} t_{0} t_{3}=M t_{3} t_{1} t_{4} \in[026] \\
& \left(\text { since }\left\{N\left(t_{0} t_{2} t_{6}\right)^{n} \mid n \in N\right\} \text { and } x^{2} t_{0} t_{2} t_{3} t_{2} t_{0} \in M\right),
\end{aligned}
$$

$$
\begin{aligned}
& t_{0} t_{3} t_{4} t_{0} t_{4}=x^{3} y t_{0} t_{4} t_{5} t_{6} t_{3} t_{0} \Longrightarrow M t_{0} t_{3} t_{4} t_{0} t_{4}=M t_{0} t_{4} t_{5} t_{6} t_{3} t_{0} \in[032142] \\
& =\left\{N\left(t_{0} t_{3} t_{2} t_{1} t_{4} t_{2}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{4} t_{0} t_{5}=y t_{0} t_{3} t_{4} t_{0} \Longrightarrow M t_{0} t_{3} t_{4} t_{0} t_{5}=M t_{0} t_{3} t_{4} t_{0} \in[0340] \\
& =\left\{N\left(t_{0} t_{3} t_{4} t_{0}\right)^{n} \mid n \in N\right\}, \\
& M t_{0} t_{3} t_{4} t_{0} t_{6} \in[03406] .
\end{aligned}
$$

The new double coset have single coset representative $M t_{0} t_{3} t_{4} t_{0} t_{6} N$, we represent it as [03406], respectively.

$M t_{0} t_{3} t_{4} t_{0} t_{6} N$

Continuing with the double coset $M t_{0} t_{3} t_{4} t_{0} t_{6} N$, we find the coset stabilizer $N^{(03406)}=$ $N^{03406}=\langle e\rangle$. Only e will fix $0,3,4$, and 6 . Hence the number of single cosets in [03406] is $\frac{|N|}{\left|N^{(03406)}\right|}=\frac{14}{1}=14$. The orbits of $N^{(03406)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{3} t_{4} t_{0} t_{6}$ of the double coset $M t_{0} t_{3} t_{4} t_{0} t_{6} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{4} t_{0} t_{6} t_{6}=M t_{0} t_{3} t_{4} t_{0} \in[0340] \\
& t_{0} t_{3} t_{4} t_{0} t_{6} t_{1}=x t_{0} t_{5} t_{4} t_{5} t_{0} t_{0} t_{6} t_{3} \Longrightarrow M t_{0} t_{3} t_{4} t_{0} t_{6} t_{1}=M t_{0} t_{6} t_{3} \in[014] \\
& \left(\text { since }\left\{N\left(t_{0} t_{1} t_{4}\right)^{n} \mid n \in N\right\} \text { and } x t_{0} t_{5} t_{4} t_{5} t_{0} \in M\right), \\
& t_{0} t_{3} t_{4} t_{0} t_{6} t_{2}=x^{4} t_{2} t_{0} t_{1} t_{2} t_{0} t_{3} t_{1} t_{5} \Longrightarrow M t_{0} t_{3} t_{4} t_{0} t_{6} t_{2}=M t_{3} t_{1} t_{5} \in[025] \\
& \text { (since } \left.\left\{N\left(t_{0} t_{2} t_{5}\right)^{n} \mid n \in N\right\} \text { and } x^{4} t_{2} t_{0} t_{1} t_{2} t_{0} \in M\right), \\
& t_{0} t_{3} t_{4} t_{0} t_{6} t_{3}=y t_{2} t_{5} t_{6} t_{3} t_{2} \Longrightarrow M t_{0} t_{3} t_{4} t_{0} t_{6} t_{3}=M t_{2} t_{5} t_{6} t_{3} t_{2} \in[03410] \\
& =\left\{N\left(t_{0} t_{3} t_{4} t_{1} t_{0}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{4} t_{0} t_{6} t_{4}=t_{0} t_{2} t_{3} t_{2} t_{0} t_{6} t_{1} t_{3} \Longrightarrow M t_{0} t_{3} t_{4} t_{0} t_{6} t_{4}=M t_{6} t_{1} t_{3} \in[024] \\
& \left.\left.\left(\operatorname{since}^{2} N{ }_{2} t_{0} t_{2} t_{4}\right)^{n} \mid n \in N\right\} \text { and } t_{0} t_{2} t_{3} t_{2} t_{0} \in M\right), \\
& t_{0} t_{3} t_{4} t_{0} t_{6} t_{5}=x^{-2} t_{6} t_{0} t_{6} \Longrightarrow M t_{0} t_{3} t_{4} t_{0} t_{6} t_{5}=M t_{6} t_{0} t_{6} \in[010] \\
& =\left\{N\left(t_{0} t_{1} t_{0}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{4} t_{0} t_{6} t_{0}=x^{2} y t_{0} t_{4} t_{0} t_{6} \Longrightarrow M t_{0} t_{3} t_{4} t_{0} t_{6} t_{0}=M t_{0} t_{4} t_{0} t_{6} \in[0301] \\
& =\left\{N\left(t_{0} t_{3} t_{0} t_{1}\right)^{n} \mid n \in N\right\} . \\
& M t_{0} t_{3} t_{0} N
\end{aligned}
$$

Continuing with the double coset $M t_{0} t_{3} t_{0} N$ we find the single coset stabilizer is trivial. However, the relation

$$
\begin{aligned}
& t_{0} t_{3} t_{0}=t_{5} t_{2} t_{5} \\
\Longrightarrow & M t_{0} t_{3} t_{0}=M t_{5} t_{2} t_{5}
\end{aligned}
$$

Then $M\left(t_{0} t_{3} t_{0}\right)^{(0,5)(2,3)(1,4)}=M t_{5} t_{2} t_{5}$.
But $M t_{5} t_{2} t_{5}=M t_{0} t_{3} t_{0} \Longrightarrow(0,5)(2,3)(1,4) \in N^{(030)}$
since $M\left(t_{0} t_{3} t_{0}\right)^{(0,5)(2,3)(1,4)}=M t_{5} t_{2} t_{5}$

$$
\Longrightarrow N^{(030)} \geq\langle(0,5)(2,3)(1,4)\rangle .
$$

Since $\left|N^{(030)}\right|=2$, the number of single cosets in [030] is $\frac{|N|}{\left|N^{(030)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(030)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{6\},\{0,5\},\{2,3\},\{1,4\}\} .
$$

Take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{3} t_{0}$ of the double coset $M t_{0} t_{3} t_{0} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{0} t_{0}=M t_{0} t_{3} \in[03], \\
& M t_{0} t_{3} t_{0} t_{1} \in[0301], \\
& M t_{0} t_{3} t_{0} t_{2} \in[0302], \\
& t_{0} t_{3} t_{0} t_{6}=x^{-1} t_{5} t_{0} t_{6} t_{5} t_{0} t_{0} t_{3} t_{0} \Longrightarrow M t_{0} t_{3} t_{0} t_{6}=M t_{0} t_{3} t_{0} \in[030] \\
& \text { (since } \left.\left\{N\left(t_{0} t_{3} t_{0}\right)^{n} \mid n \in N\right\} \text { and } x^{-1} t_{5} t_{0} t_{6} t_{5} t_{0} \in M\right) .
\end{aligned}
$$

The new double cosets have single coset representatives $M t_{0} t_{3} t_{0} t_{1} N$ and $M t_{0} t_{3} t_{0} t_{2} N$, we represent them as [0301] and [0302], respectively.

$M t_{0} t_{3} t_{0} t_{1} N$

Continuing with the double coset $M t_{0} t_{3} t_{0} t_{1} N$, we find the coset stabiliser $N^{(0301)}=$ $N^{0301}=\langle e\rangle$. Only e will fix 0,1 , and 3 . Hence the number of single cosets in [0301] is $\frac{|N|}{\left|N^{(0301)}\right|}=\frac{14}{1}=14$. The orbits of $N^{(0301)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\} .
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{3} t_{0} t_{1}$ of the double coset $M t_{0} t_{3} t_{0} t_{1} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{0} t_{1} t_{1}=M t_{0} t_{3} t_{0} \in[030] \\
& t_{0} t_{3} t_{0} t_{1} t_{2}=y x^{2} t_{6} t_{2} t_{1} t_{0} \Longrightarrow M t_{0} t_{3} t_{0} t_{1} t_{2}=M t_{6} t_{2} t_{1} t_{0} \in[0321] \\
& =\left\{N\left(t_{0} t_{3} t_{2} t_{1}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{3} t_{0} t_{1} t_{3}=y t_{6} t_{4} t_{0} \Longrightarrow M t_{0} t_{3} t_{0} t_{1} t_{3}=M t_{6} t_{4} t_{0} \in[026] \\
& =\left\{N\left(t_{0} t_{2} t_{6}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{0} t_{1} t_{4}=x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} t_{0} t_{3} t_{2} t_{3} \Longrightarrow M t_{0} t_{3} t_{0} t_{1} t_{4}=M t_{0} t_{3} t_{2} t_{3} \in[0323] \\
& \left(\text { since }\left\{N\left(t_{0} t_{3} t_{2} t_{3}\right)^{n} \mid n \in N\right\} \text { and } x^{-2} t_{5} t_{0} t_{6} t_{5} t_{0} \in M\right) \\
& t_{0} t_{3} t_{0} t_{1} t_{5}=x^{2} t_{4} t_{6} t_{1} \Longrightarrow M t_{0} t_{3} t_{0} t_{1} t_{5}=M t_{4} t_{6} t_{1} \in[024] \\
& =\left\{N\left(t_{0} t_{2} t_{4}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{0} t_{1} t_{6}=x^{2} t_{0} t_{2} t_{3} t_{2} t_{0} t_{6} t_{2} t_{1} t_{0} t_{3} t_{1} t_{6} t_{5} \\
& \quad \Longrightarrow M t_{0} t_{3} t_{0} t_{1} t_{6}=M t_{6} t_{2} t_{1} t_{0} t_{3} t_{1} t_{6} t_{5} \in[03214206]
\end{aligned}
$$

$$
\text { (since } \left.\left\{N\left(t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6}\right)^{n} \mid n \in N\right\} \text { and } x^{2} t_{0} t_{2} t_{3} t_{2} t_{0} \in M\right)
$$

$$
t_{0} t_{3} t_{0} t_{1} t_{0}=y x^{2} t_{0} t_{4} t_{3} t_{0} t_{1} \Longrightarrow M t_{0} t_{3} t_{0} t_{1} t_{0}=M t_{0} t_{4} t_{3} t_{0} t_{1} \in[03406]
$$

$$
=\left\{N\left(t_{0} t_{3} t_{4} t_{0} t_{6}\right)^{n} \mid n \in N\right\}
$$

$M t_{0} t_{3} t_{0} t_{2} N$

Continuing with the double coset $M t_{0} t_{3} t_{0} t_{2} N$ we find the single coset stabilizer is trivial. However, the relation

$$
\begin{gathered}
t_{0} t_{3} t_{0} t_{2}=x^{-2} t_{6} t_{3} t_{6} t_{4} \\
\Longrightarrow M t_{0} t_{3} t_{0} t_{2}=M t_{6} t_{3} t_{6} t_{4}
\end{gathered}
$$

Then $M\left(t_{0} t_{3} t_{0} t_{2}\right)^{(0,6)(2,4)(1,5)}=M t_{3} t_{6} t_{3} t_{4}$.
But $M t_{3} t_{6} t_{3} t_{4}=M t_{0} t_{3} t_{0} t_{2} \Longrightarrow(0,6)(2,4)(1,5) \in N^{(0302)}$
since $M\left(t_{0} t_{3} t_{0} t_{2}\right)^{(0,6)(2,4)(1,5)}=M t_{3} t_{6} t_{3} t_{4}$

$$
\Longrightarrow N^{(0302)} \geq\langle(0,6)(2,4)(1,5)\rangle
$$

Since $\left|N^{(0302)}\right|=2$, the number of single cosets in [0302] is $\frac{|N|}{\left|N^{(0302)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(0302)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{3\},\{0,6\},\{2,4\},\{1,5\}\}
$$

Take an element from each orbit and multiply on the right by the single coset represen-
tative $M t_{0} t_{3} t_{0} t_{2}$ of the double coset $M t_{0} t_{3} t_{0} t_{2} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{0} t_{2} t_{2}=M t_{0} t_{3} t_{0} \in[030], \\
& M t_{0} t_{3} t_{0} t_{2} t_{1} \in[03021], \\
& M t_{0} t_{3} t_{0} t_{2} t_{3} \in[03023], \\
& t_{0} t_{3} t_{0} t_{2} t_{0}=t_{5} t_{0} t_{4} \Longrightarrow M t_{0} t_{3} t_{0} t_{2} t_{0}=M t_{5} t_{0} t_{4} \in[026] \\
& =\left\{N\left(t_{0} t_{2} t_{6}\right)^{n} \mid n \in N\right\} .
\end{aligned}
$$

The new double cosets have single coset representatives $M t_{0} t_{3} t_{0} t_{2} t_{1} N$ and $M t_{0} t_{3} t_{0} t_{2} t_{3} N$, we represent them as [03021] and [03023], respectively.

$M t_{0} t_{3} t_{0} t_{2} t_{1} N$

Continuing with the double coset $M t_{0} t_{3} t_{0} t_{2} t_{1} N$, we find the coset stabiliser $N^{(03021)}=$ $N^{03021}=\langle e\rangle$. Only e will fix $0,1,2$, and 3 . Hence the number of single cosets in [03021] is $\frac{|N|}{\left|N^{(03021)}\right|}=\frac{14}{1}=14$. The orbits of $N^{(03021)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{0\},\{1\},\{2\},\{3\},\{4\},\{5\},\{6\}\}
$$

We now take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{3} t_{0} t_{2} t_{1}$ of the double coset $M t_{0} t_{3} t_{0} t_{2} t_{1} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{0} t_{2} t_{1} t_{1}=M t_{0} t_{3} t_{0} t_{2} \in[0302], \\
& t_{0} t_{3} t_{0} t_{2} t_{1} t_{2}=x^{-1} t_{1} t_{2} t_{4} \Longrightarrow M t_{0} t_{3} t_{0} t_{2} t_{1} t_{2}=M t_{1} t_{2} t_{4} \in[013] \\
& =\left\{N\left(t_{0} t_{1} t_{3}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{0} t_{2} t_{1} t_{3}=x^{4} t_{2} t_{0} t_{1} t_{2} t_{0} t_{4} t_{0} t_{6} t_{5} t_{1} \Longrightarrow M t_{0} t_{3} t_{0} t_{2} t_{1} t_{3}=M t_{4} t_{0} t_{6} t_{5} t_{1} \in[03214] \\
& \left(\text { since }\left\{N\left(t_{0} t_{3} t_{2} t_{1} t_{4}\right)^{n} \mid n \in N\right\} \text { and } x^{4} t_{2} t_{0} t_{1} t_{2} t_{0} \in M\right), \\
& t_{0} t_{3} t_{0} t_{2} t_{1} t_{4}=x^{-2} t_{6} t_{3} t_{2} t_{6} \Longrightarrow M t_{0} t_{3} t_{0} t_{2} t_{1} t_{4}=M t_{6} t_{3} t_{2} t_{6} \in[0340] \\
& =\left\{N\left(t_{0} t_{3} t_{4} t_{0}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{0} t_{2} t_{1} t_{5}=x^{2} y t_{3} t_{6} t_{5} t_{6} \Longrightarrow M t_{0} t_{3} t_{0} t_{2} t_{1} t_{5}=M t_{3} t_{6} t_{5} t_{6} \in[0323] \\
& =\left\{N\left(t_{0} t_{3} t_{2} t_{3}\right)^{n} \mid n \in N\right\}, \\
& M t_{0} t_{3} t_{0} t_{2} t_{1} t_{6} \in[030216],
\end{aligned}
$$

$$
\begin{aligned}
& t_{0} t_{3} t_{0} t_{2} t_{1} t_{0}=x^{-3} t_{1} t_{3} t_{1} \Longrightarrow M t_{0} t_{3} t_{0} t_{2} t_{1} t_{0}=M t_{1} t_{3} t_{1} \in[020] \\
& =\left\{N\left(t_{0} t_{2} t_{0}\right)^{n} \mid n \in N\right\}
\end{aligned}
$$

The new double coset have single coset representative $M t_{0} t_{3} t_{0} t_{2} t_{1} t_{6} N$, we represent it as [030216], respectively.

$M t_{0} t_{3} t_{0} t_{2} t_{1} t_{6} N$

Continuing with the double coset $M t_{0} t_{3} t_{0} t_{2} t_{1} t_{6} N$ we find the single coset stabilizer is trivial. However, the relation

$$
\begin{gathered}
t_{0} t_{3} t_{0} t_{2} t_{1} t_{6}=x^{3} t_{2} t_{0} t_{1} t_{2} t_{0} t_{4} t_{1} t_{4} t_{2} t_{3} t_{5} \\
\Longrightarrow M t_{0} t_{3} t_{0} t_{2} t_{1} t_{6}=M t_{4} t_{1} t_{4} t_{2} t_{3} t_{5} \text { since } x^{3} t_{2} t_{0} t_{1} t_{2} t_{0} \in M
\end{gathered}
$$

Then $M\left(t_{0} t_{3} t_{0} t_{2} t_{1} t_{6}\right)^{(0,4)(3,1)(5,6)}=M t_{4} t_{1} t_{4} t_{2} t_{3} t_{5}$.
But $M t_{4} t_{1} t_{4} t_{2} t_{3} t_{5}=M t_{0} t_{3} t_{0} t_{2} t_{1} t_{6} \Longrightarrow(0,4)(3,1)(5,6) \in N^{(030216)}$
since $M\left(t_{0} t_{3} t_{0} t_{2} t_{1} t_{6}\right)^{(0,4)(3,1)(5,6)}=M t_{4} t_{1} t_{4} t_{2} t_{3} t_{5}$

$$
\Longrightarrow N^{(030216)} \geq\langle(0,4)(3,1)(5,6)\rangle .
$$

Since $\left|N^{(030216)}\right|=2$, the number of single cosets in [030216] is $\frac{|N|}{\left|N^{(030216)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(030216)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{2\},\{0,4\},\{3,1\},\{5,6\}\} .
$$

Take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{3} t_{0} t_{2} t_{1} t_{6}$ of the double coset $M t_{0} t_{3} t_{0} t_{2} t_{1} t_{6} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{0} t_{2} t_{1} t_{6} t_{6}=M t_{0} t_{3} t_{0} t_{2} t_{1} \in[03021], \\
& t_{0} t_{3} t_{0} t_{2} t_{1} t_{6} t_{2}=y x^{2} t_{0} t_{3} t_{0} t_{2} t_{1} t_{6} \Longrightarrow M t_{0} t_{3} t_{0} t_{2} t_{1} t_{6} t_{2}=M t_{0} t_{3} t_{0} t_{2} t_{1} t_{6} \in[030216] \\
& =\left\{N\left(t_{0} t_{3} t_{0} t_{2} t_{1} t_{6}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{0} t_{2} t_{1} t_{6} t_{3}=x^{-2} t_{4} t_{6} t_{2} \Longrightarrow M t_{0} t_{3} t_{0} t_{2} t_{1} t_{6} t_{3}=M t_{4} t_{2} \in[025] \\
& =\left\{N\left(t_{0} t_{2} t_{5}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{0} t_{2} t_{1} t_{6} t_{0}=x^{3} t_{2} t_{0} t_{1} t_{2} t_{0} t_{2} t_{3} t_{5} \Longrightarrow M t_{0} t_{3} t_{0} t_{2} t_{1} t_{6} t_{0}=M t_{2} t_{3} t_{5} \in[013] \\
& \left(\text { since }\left\{N\left(t_{0} t_{1} t_{3}\right)^{n} \mid n \in N\right\} \text { and } x^{3} t_{2} t_{0} t_{1} t_{2} t_{0} \in M\right) .
\end{aligned}
$$

$M t_{0} t_{3} t_{0} t_{2} t_{3} N$

Continuing with the double coset $M t_{0} t_{3} t_{0} t_{2} t_{3} N$ we find the single coset stabilizer is
trivial. However, the relation

$$
\begin{gathered}
t_{0} t_{3} t_{0} t_{2} t_{3}=x^{-2} t_{6} t_{3} t_{6} t_{4} t_{3} \\
\Longrightarrow M t_{0} t_{3} t_{0} t_{2} t_{3}=M t_{6} t_{3} t_{6} t_{4} t_{3}
\end{gathered}
$$

Then $M\left(t_{0} t_{3} t_{0} t_{2} t_{3}\right)^{(0,6)(2,4)(1,5)}=M t_{6} t_{3} t_{6} t_{4} t_{3}$.
But $M t_{6} t_{3} t_{6} t_{4} t_{3}=M t_{0} t_{3} t_{0} t_{2} t_{3} \Longrightarrow(0,6)(2,4)(1,5) \in N^{(03023)}$
since $M\left(t_{0} t_{3} t_{0} t_{2} t_{3}\right)^{(0,6)(2,4)(1,5)}=M t_{3} t_{6} t_{6} t_{4} t_{3}$

$$
\Longrightarrow N^{(03023)} \geq\langle(0,6)(2,4)(1,5)\rangle
$$

Since $\left|N^{(03023)}\right|=2$, the number of single cosets in [03023] is $\frac{|N|}{\left|N^{(03023)}\right|}=\frac{14}{2}=7$. The orbits of $N^{(03023)}$ on $\left\{t_{0}, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right\}$ are:

$$
\mathcal{O}=\{\{3\},\{0,6\},\{2,4\},\{1,5\}\} .
$$

Take an element from each orbit and multiply on the right by the single coset representative $M t_{0} t_{3} t_{0} t_{2} t_{3}$ of the double coset $M t_{0} t_{3} t_{0} t_{2} t_{3} N$. We have:

$$
\begin{aligned}
& M t_{0} t_{3} t_{0} t_{2} t_{3} t_{3}=M t_{0} t_{3} t_{0} t_{2} \in[0302], \\
& t_{0} t_{3} t_{0} t_{2} t_{3} t_{1}=x^{-3} t_{3} t_{4} t_{3} \Longrightarrow M t_{0} t_{3} t_{0} t_{2} t_{3} t_{1}=M t_{3} t_{4} t_{3} \in[010] \\
& =\left\{N\left(t_{0} t_{1} t_{0}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{0} t_{2} t_{3} t_{4}=x y t_{4} t_{3} t_{2} \Longrightarrow M t_{0} t_{3} t_{0} t_{2} t_{3} t_{4}=M t_{4} t_{3} t_{2} \in[012] \\
& =\left\{N\left(t_{0} t_{1} t_{2}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{3} t_{0} t_{2} t_{3} t_{0}=x^{-1} t_{5} t_{0} t_{6} t_{5} t_{0} t_{6} t_{3} t_{2} t_{5} t_{6} \Longrightarrow M t_{0} t_{3} t_{0} t_{2} t_{3} t_{0}=M t_{6} t_{3} t_{2} t_{5} t_{6} \in[03410] \\
& \text { (since } \left.\left\{N\left(t_{0} t_{3} t_{4} t_{1} t_{0}\right)^{n} \mid n \in N\right\} \text { and } x^{-1} t_{5} t_{0} t_{6} t_{5} t_{0} \in M\right) .
\end{aligned}
$$

We have completed the double coset enumeration since the set of right cosets is closed under right multiplication, hence, the index of M in G is 351 . We conclude:

$$
\begin{aligned}
& \quad G=M e N \cup M t_{0} N \cup M t_{0} t_{1} N \cup M t_{0} t_{2} N \cup M t_{0} t_{3} N \cup M t_{0} t_{1} t_{0} N \cup M t_{0} t_{1} t_{2} N \cup \\
& M t_{0} t_{1} t_{3} N \cup M t_{0} t_{1} t_{4} N \cup M t_{0} t_{1} t_{5} N \cup M t_{0} t_{1} t_{5} t_{2} N \cup M t_{0} t_{2} t_{4} N \cup M t_{0} t_{2} t_{5} N \cup M t_{0} t_{2} t_{6} N \cup \\
& M t_{0} t_{2} t_{0} N \cup M t_{0} t_{3} t_{2} N \cup M t_{0} t_{3} t_{2} t_{1} N \cup M t_{0} t_{3} t_{2} t_{3} N \cup M t_{0} t_{3} t_{2} t_{1} t_{4} N \cup M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} N \cup \\
& M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} N \cup M t_{0} t_{3} t_{2} t_{1} t_{4} t_{2} t_{0} t_{6} N \cup M t_{0} t_{3} t_{4} N \\
& \cup M t_{0} t_{3} t_{4} t_{1} N \cup M t_{0} t_{3} t_{4} t_{1} t_{0} N \cup M t_{0} t_{3} t_{4} t_{0} N \cup M t_{0} t_{3} t_{4} t_{0} t_{6} N \cup M t_{0} t_{3} t_{0} N \cup M t_{0} t_{3} t_{0} t_{1} N \cup \\
& M t_{0} t_{3} t_{0} t_{2} N \cup M t_{0} t_{3} t_{0} t_{2} t_{1} N \cup M t_{0} t_{3} t_{0} t_{2} t_{1} t_{6} N \cup M t_{0} t_{3} t_{0} t_{2} t_{3} N, \text { where }
\end{aligned}
$$

$$
G=\frac{2^{* 7}: 2 D_{14}}{\left(x y t^{x} t\right)^{3},(x t)^{7}}
$$

$$
\begin{aligned}
& |G| \leq|N|+\frac{|N|}{N^{(0)}}+\frac{|N|}{N^{(01)}}+\frac{|N|}{N^{(02)}}+\frac{|N|}{N^{(03)}}+\frac{|N|}{N^{(010)}}+\frac{|N|}{N^{(012)}}+\frac{|N|}{N^{(013)}}+\frac{|N|}{N^{(014)}}+\frac{|N|}{N^{(015)}}+ \\
& \frac{|N|}{N^{(0152)}}+\frac{|N|}{N^{(024)}}+\frac{|N|}{N^{(025)}}+\frac{|N|}{N^{(026)}}+\frac{|N|}{N^{(020)}}+\frac{|N|}{N^{(032)}}+\frac{|N|}{N^{(0321)}}+\frac{|N|}{N^{(0323)}}+\frac{|N|}{N^{(03214)}}+\frac{|N|}{N^{(032142)}} \\
& +\frac{|N|}{N^{(0321420)}}+\frac{|N|}{N^{(03214206)}}+\frac{|N|}{N^{(0034)}}+\frac{|N|}{N^{(0341)}}+\frac{|N|}{N^{(03410)}}+\frac{|N|}{N^{(03440)}}+\frac{|N|}{N^{(03406)}}+\frac{|N|}{N^{(030)}}+\frac{|N|}{N^{(0301)}}+ \\
& \frac{|N|}{N^{(00302)}}+\frac{|N|}{N^{(03021)}}+\frac{|N|}{N^{(030216)}}+\frac{|N|}{N^{(03023)}} \times|M| \\
& |G| \leq(1+7+14+14+14+14+14+14+14+7+14+14+14+14+14+7+7 \\
& +14+7+7+7+7+7+7+14+14+14+7+14+7+14+7+7) \times 28 \\
& |G| \leq 351 \times 28 \\
& |G| \leq 9828 .
\end{aligned}
$$

A Cayley diagram that summarizes the above information is given on the next page.

Figure 4.1: Cayley Diagram of $L_{2}(27)$ over $M=2 \cdot D_{14}$

4.2 Iwasawa's Lemma to Prove $L_{2}(27)$ over $M=2 D_{14}$ is Simple

Again, we use Iwasawa's lemma and the transitive action of G on the set of single cosets to prove $G \cong L_{2}(27)$ over $M=2 \cdot D_{14}$ is a simple group. Iwasawa's lemma has three sufficient conditions that we must satisfied:
(1) G acts on X faithfully and primitively
(2) G is perfect $\left(G=G^{\prime}\right)$
(3) There exist $x \in X$ and a normal abelian subgroup K of G^{x} such that the conjugates of K generate G.

Proof. 4.2.1 $G=L_{2}(27)$ over $M=2 D_{14}$ acts on X Faithfully
Let G acts on $X=\left\{M, M t_{0} N, M t_{0} t_{1} N, M t_{0} t_{2} N, M t_{0} t_{3} N, \ldots, M t_{0} t_{3} t_{0} t_{2} t_{3} N\right\}$, where X is a transitive G-set of degree 351. G acts on X implies there exist homomorphism

$$
f: G \longrightarrow S_{351} \quad(|X|=351)
$$

By First Isomorphic Theorem we have:

$$
G / \operatorname{ker} f \cong f(G)
$$

If $\operatorname{ker} f=1$ then $G \cong f(G)$. Only elements of N fix N implies $G^{1}=N$. Since X is transitive G - set of degree 351, we have:

$$
\begin{aligned}
|G| & =351 \times\left|G^{1}\right| \\
& =351 \times|M| \\
& =351 \times 28 \\
& =9828 \\
\Longrightarrow|G| & =9828 .
\end{aligned}
$$

From Cayley diagram, $|G| \leq 9828$. However, from above $|G|=9828$ implying $\operatorname{ker}(f)=$ 1. Since $\operatorname{ker} f=1$ then G acts faithfully on X.

4.2.2 $G=L_{2}(27)$ over $M=2 D_{14}$ acts on X Primitively

Since $G=L_{2}(27)$ is transitive on $|X|=351$, if B is a nontrivial block then we may assume that $M \in B$. However, $|B|$ must divide $|X|=351$. The only nontrivial blocks must be of size $3,9,13,27,39$, or 117 . Note if $B t_{0} \in B$ then $B=X$. So B is a trivial block. By inspection, we can see from the Cayley diagram that we cannot create a nontrivial block of size $3,9,13,27,39$, or 117 . Thus, G acts primitively on X.

4.2.3 $G=L_{2}(27)$ over $M=2 D_{14}$ is Perfect

Next we want to show that $G=G^{\prime}$. Since $G=<N, t>$, we have that $N \leq G^{\prime}$. Now $D_{14} \leq G \Longrightarrow D_{14}{ }^{\prime} \leq G^{\prime}$. The commutators subgroup of D_{14} is

$$
\begin{aligned}
D_{14}{ }^{\prime} & =<(1,2,3,4,5,6,0)>=<x> \\
& =\left\{e, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}\right\} \leq G^{\prime} .
\end{aligned}
$$

Consider the relations obtained through the double coset enumeration, previously given.

$$
\begin{aligned}
& t_{0} t_{2} t_{0} t_{4}=x t_{6} t_{4} t_{2} \Longrightarrow x=t_{0} t_{2} t_{0} t_{4} t_{2} t_{4} t_{6} \\
& t_{0} t_{2} t_{0} t_{3}=y t_{4} t_{3} t_{4} \Longrightarrow y=t_{0} t_{2} t_{0} t_{3} t_{4} t_{3} t_{4}
\end{aligned}
$$

Now $D_{14} \leq G \Longrightarrow D_{14}{ }^{\prime} \leq G^{\prime} . D_{14}{ }^{\prime}=<(1,2,3,4,5,6,0)>=<x>=\left\{e, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}\right\} \leq$ G^{\prime}. Note $G=<x, y, t>=<t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{0}>$. Our goal is to show that one of the $t_{i}^{\prime} s \in G^{\prime}$, then we can conjugate by $\langle x, y\rangle$ to obtain all the $t_{i}^{\prime} s$ in G^{\prime}. Consider, the relation:

$$
\begin{aligned}
x & =t_{0} t_{2} t_{0} t_{4} t_{2} t_{4} t_{6} \\
& =t_{0} t_{2} t_{0} t_{2} t_{2} t_{4} t_{2} t_{4} t_{6} \\
& =\left[t_{0}, t_{2}\right]\left[t_{2}, t_{4}\right] t_{6} \in G^{\prime}
\end{aligned}
$$

We see that $t_{6} \in G^{\prime}$. So $G^{\prime} \geq<x, t_{6}>=<t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{0}>=G$. But $G \geq G^{\prime}$. We conclude that $G=G^{\prime}$ and G is perfect.

4.2.4 Conjugates of a Normal Abelian K
 Generate $G=L_{2}(27)$ over $M=2 D_{14}$

Now we require $x \in X$ and a normal abelian subgroup K of G^{x},-the point stabilizer of x in G, such that the conjugates of K in G generate G.

Now $G^{1}=M=2 \cdot D_{14}$ possesses a normal abelian subgroup $K=\langle x\rangle$. Since $x \in$ $K \Longrightarrow x^{-3}, x^{-1} \in K$. Now we have the following relations:

$$
\begin{gathered}
x^{-3}=t_{0} t_{3} t_{0} t_{2} t_{1} t_{0} t_{1} t_{3} t_{1} \in K \text { and } \\
x^{-1}=t_{0} t_{3} t_{0} t_{2} t_{1} t_{2} t_{4} t_{2} t_{1} \in K \Longrightarrow x=t_{1} t_{2} t_{4} t_{2} t_{1} t_{2} t_{0} t_{3} t_{0} \in K .
\end{gathered}
$$

Now we multiply x^{-3} by x :

$$
x^{-3} x=x^{-2}=t_{0} t_{3} t_{0} t_{2} t_{1} t_{0} t_{1} t_{3} t_{1} t_{1} t_{2} t_{4} t_{2} t_{1} t_{2} t_{0} t_{3} t_{0} \in K
$$

We conjugate both sides by $t_{0} t_{3} t_{0} t_{2} t_{1}$:

$$
\begin{aligned}
\left(x^{-2}\right)^{t_{0} t_{3} t_{0} t_{2} t_{1}} & =\left(t_{0} t_{3} t_{0} t_{2} t_{1} t_{0} t_{1} t_{3} t_{2} t_{4} t_{2} t_{1} t_{2} t_{0} t_{3} t_{0}\right)^{t_{0} t_{3} t_{0} t_{2} t_{1}} \in K^{G} \\
t_{1} t_{2} t_{0} t_{3} t_{0} x^{-2} t_{0} t_{3} t_{0} t_{2} t_{1} & =t_{1} t_{2} t_{0} t_{3} t_{0} t_{0} t_{3} t_{0} t_{2} t_{1} t_{0} t_{1} t_{3} t_{2} t_{4} t_{2} t_{1} t_{2} t_{0} t_{3} t_{0} t_{0} t_{3} t_{0} t_{2} t_{1} \\
x^{-2} t_{6} t_{0} t_{5} t_{1} t_{5} t_{0} t_{3} t_{0} t_{2} t_{1} & =t_{0} t_{1} t_{3} t_{2} t_{4} t_{2} \in K^{G}
\end{aligned}
$$

$$
\begin{equation*}
\text { Thus, } t_{0} t_{1} t_{3} t_{2} t_{4} t_{2} \in K^{G} \text {. } \tag{4.1}
\end{equation*}
$$

Consider the relation:

$$
\begin{aligned}
x & =t_{0} t_{2} t_{4} t_{2} t_{6} t_{4} t_{6} \in K \\
(x)^{t_{0}} & =\left(t_{0} t_{2} t_{4} t_{2} t_{6} t_{4} t_{6}\right)^{t_{0}} \in K^{G} \\
t_{0} x t_{0} & =t_{0} t_{0} t_{2} t_{4} t_{2} t_{6} t_{4} t_{6} t_{0} \\
x t_{1} t_{0} & =t_{2} t_{4} t_{2} t_{6} t_{4} t_{6} t_{0} \in K^{G}
\end{aligned}
$$

$$
\begin{equation*}
\text { Thus, } t_{2} t_{4} t_{2} t_{6} t_{4} t_{6} t_{0} \in K^{G} \text {. } \tag{4.2}
\end{equation*}
$$

Now we multiply (4.1) and (4.2):

$$
\begin{aligned}
& x^{-2} t_{6} t_{0} t_{5} t_{1} t_{5} t_{0} t_{3} t_{0} t_{2} t_{1} x t_{1} t_{0}=t_{0} t_{1} t_{3} t_{2} t_{4} t_{2} t_{2} t_{4} t_{2} t_{6} t_{4} t_{6} t_{0} \in K^{G} \\
& x^{-1} t_{0} t_{1} t_{6} t_{2} t_{6} t_{1} t_{4} t_{1} t_{3} t_{2} t_{1} t_{0}=t_{0} t_{1} t_{3} t_{6} t_{4} t_{6} t_{0} \in K^{G} \\
& \left(x^{-1} t_{0} t_{1} t_{6} t_{2} t_{6} t_{1} t_{4} t_{1} t_{3} t_{2} t_{1} t_{0}\right)^{t_{0}}=\left(t_{0} t_{1} t_{3} t_{6} t_{4} t_{6} t_{0}\right)^{t_{0}} \in K^{G} \\
& t_{0} x^{-1} t_{0} t_{1} t_{6} t_{2} t_{6} t_{1} t_{4} t_{1} t_{3} t_{2} t_{1} t_{0} t_{0}=t_{0} t_{0} t_{1} t_{3} t_{6} t_{4} t_{6} t_{0} t_{0} \in K^{G} \\
& x^{-1} t_{6} t_{0} t_{1} t_{6} t_{2} t_{6} t_{1} t_{4} t_{1} t_{3} t_{2} t_{1}=t_{1} t_{3} t_{6} t_{4} t_{6} \in K^{G}
\end{aligned}
$$

$$
\begin{equation*}
\text { Thus, } t_{1} t_{3} t_{6} t_{4} t_{6} \in K^{G} \text {. } \tag{4.3}
\end{equation*}
$$

Consider the relations:

$$
\begin{aligned}
& x^{3}=t_{0} t_{3} t_{2} t_{3} t_{1} t_{3} t_{6} t_{4} \in K \Longrightarrow x^{-3}=t_{4} t_{6} t_{3} t_{1} t_{3} t_{2} t_{3} t_{0} \in K \text { and } \\
& x^{3}=t_{0} t_{3} t_{2} t_{3} t_{5} t_{1} t_{3} t_{4} \in K .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& e=x^{3} x^{-3}=t_{0} t_{3} t_{2} t_{3} t_{5} t_{1} t_{3} t_{4} t_{4} t_{6} t_{3} t_{1} t_{3} t_{2} t_{3} t_{0} \in K \\
& \Longrightarrow e=t_{0} t_{3} t_{2} t_{3} t_{5} t_{1} t_{3} t_{6} t_{3} t_{1} t_{3} t_{2} t_{3} t_{0} \in K \\
&(e)^{t_{0} t_{3} t_{2} t_{3}}=\left(t_{0} t_{3} t_{2} t_{3} t_{5} t_{1} t_{3} t_{6} t_{3} t_{1} t_{3} t_{2} t_{3} t_{0}\right)^{t_{0} t_{3} t_{2} t_{3}} \in K^{G} \\
& t_{3} t_{2} t_{3} t_{0} e t_{0} t_{3} t_{2} t_{3}=t_{3} t_{2} t_{3} t_{0} t_{0} t_{3} t_{2} t_{3} t_{5} t_{1} t_{3} t_{6} t_{3} t_{1} t_{3} t_{2} t_{3} t_{0} t_{3} t_{2} t_{3} \\
& e=t_{5} t_{1} t_{3} t_{6} t_{3} t_{1} \in K^{G}
\end{aligned}
$$

$$
\begin{equation*}
\text { Thus, } t_{5} t_{1} t_{3} t_{6} t_{3} t_{1} \in K^{G} \text {. } \tag{4.4}
\end{equation*}
$$

Next, we multiply (4.3) \& (4.4):

$$
\begin{aligned}
x^{-1} t_{6} t_{0} t_{1} t_{6} t_{2} t_{6} t_{1} t_{4} t_{1} t_{3} t_{2} t_{1} & =t_{1} t_{3} t_{6} t_{4} t_{6} t_{5} t_{1} t_{3} t_{6} t_{3} t_{1} \in K \\
\left(x^{-1} t_{6} t_{0} t_{1} t_{6} t_{2} t_{6} t_{1} t_{4} t_{1} t_{3} t_{2} t_{1}\right)^{t_{1} t_{3} t_{6}} & =\left(t_{1} t_{3} t_{6} t_{4} t_{6} t_{5} t_{1} t_{3} t_{6} t_{3} t_{1}\right)^{t_{1} t_{3} t_{6}} \in K^{G} \\
t_{6} t_{3} t_{1} x^{-1} t_{6} t_{0} t_{1} t_{6} t_{2} t_{6} t_{1} t_{4} t_{1} t_{3} t_{2} t_{1} t_{1} t_{3} t_{6} & =t_{6} t_{3} t_{1} t_{1} t_{3} t_{6} t_{4} t_{6} t_{5} t_{1} t_{3} t_{6} t_{3} t_{1} t_{1} t_{3} t_{6} \in K^{G} \\
x^{-1} t_{5} t_{2} t_{0} t_{6} t_{0} t_{1} t_{6} t_{2} t_{6} t_{1} t_{4} t_{1} t_{3} t_{2} t_{1} t_{1} t_{3} t_{6} & =t_{4} t_{6} t_{5} t_{1} t_{3} \in K^{G}
\end{aligned}
$$

Thus, $t_{4} t_{6} t_{5} t_{1} t_{3} \in K^{G}$.
Consider the relations:

$$
\begin{aligned}
& x=t_{0} t_{2} t_{4} t_{2} t_{6} t_{4} t_{6} \in K \text { and } \\
& x=t_{0} t_{2} t_{4} t_{6} t_{4} t_{1} t_{6} \in K \Longrightarrow x^{-1}=t_{6} t_{1} t_{4} t_{6} t_{4} t_{2} t_{0} \in K .
\end{aligned}
$$

Now, we multiply both relation:

$$
\begin{align*}
x x^{-1}= & e=t_{0} t_{2} t_{4} t_{2} t_{6} t_{4} t_{6} t_{6} t_{1} t_{4} t_{6} t_{4} t_{2} t_{0} \in K \\
e & =t_{0} t_{2} t_{4} t_{2} t_{6} t_{4} t_{1} t_{4} t_{6} t_{2} t_{0} \in K \\
(e)^{t_{0} t_{2} t_{4}}= & \left(t_{0} t_{2} t_{4} t_{2} t_{6} t_{4} t_{1} t_{4} t_{6} t_{4} t_{2} t_{0}\right)^{t_{0} t_{2} t_{4}} \in K^{G} \\
t_{4} t_{2} t_{0} e t_{0} t_{2} t_{4}= & t_{4} t_{2} t_{0} t_{0} t_{2} t_{4} t_{2} t_{6} t_{4} t_{1} t_{4} t_{6} t_{4} t_{2} t_{0} t_{0} t_{2} t_{4} \in K^{G} \\
e= & t_{2} t_{6} t_{4} t_{1} t_{4} t_{6} \in K^{G} \\
(e)^{t_{2} t_{6}}= & \left(t_{2} t_{6} t_{4} t_{1} t_{4} t_{6}\right)^{t_{2} t_{6}} \in K^{G} \\
t_{6} t_{2} e t_{2} t_{6}= & t_{6} t_{2} t_{2} t_{6} t_{4} t_{1} t_{4} t_{6} t_{2} t_{6} \in K^{G} \\
e= & t_{4} t_{1} t_{4} t_{6} t_{2} t_{6} \in K^{G} \\
& \text { Thus, } t_{4} t_{1} t_{4} t_{6} t_{2} t_{6} \in K^{G} . \tag{4.6}
\end{align*}
$$

Consider the relation:

$$
\begin{aligned}
x^{-2} & =t_{0} t_{2} t_{4} t_{1} t_{4} t_{3} t_{6} t_{3} \in K \\
\left(x^{-2}\right)^{t_{0} t_{2}} & =\left(t_{0} t_{2} t_{4} t_{1} t_{4} t_{3} t_{6} t_{3}\right)^{t_{0} t_{2}} \in K^{G} \\
t_{2} t_{0} x^{-2} t_{0} t_{2} & =t_{2} t_{0} t_{0} t_{2} t_{4} t_{1} t_{4} t_{3} t_{6} t_{3} t_{0} t_{2} \in K^{G} \\
x^{-2} t_{0} t_{5} t_{0} t_{2} & =t_{4} t_{1} t_{4} t_{3} t_{6} t_{3} t_{0} t_{2} \in K^{G} \\
& \Longrightarrow t_{4} t_{1} t_{4} t_{3} t_{6} t_{3} t_{0} t_{2} \in K^{G} \\
& \Longrightarrow\left(t_{4} t_{1} t_{4} t_{3} t_{6} t_{3} t_{0} t_{2}\right)^{-1} \in K^{G}
\end{aligned}
$$

So,

$$
\begin{equation*}
t_{2} t_{0} t_{3} t_{6} t_{3} t_{4} t_{1} t_{4} \in K^{G} \tag{4.7}
\end{equation*}
$$

Now, we multiply (4.6) \& (4.7):

$$
\begin{aligned}
e t_{2} t_{0} t_{5} t_{0} x^{2} & =t_{4} t_{1} t_{4} t_{6} t_{2} t_{6} t_{2} t_{0} t_{3} t_{6} t_{3} t_{4} t_{1} t_{4} \in K \\
\left(x^{2} t_{4} t_{2} t_{0} t_{2}\right)^{t_{4} t_{1} t_{4}} & =\left(t_{4} t_{1} t_{4} t_{6} t_{2} t_{6} t_{2} t_{0} t_{3} t_{6} t_{3} t_{4} t_{1} t_{4}\right)^{t_{4} t_{1} t_{4}} \in K^{G} \\
t_{4} t_{1} t_{4} x^{2} t_{4} t_{2} t_{0} t_{2} t_{4} t_{1} t_{4} & =t_{4} t_{1} t_{4} t_{4} t_{1} t_{4} t_{6} t_{2} t_{6} t_{2} t_{0} t_{3} t_{6} t_{3} t_{4} t_{1} t_{4} t_{4} t_{1} t_{4} \in K^{G} \\
x^{2} t_{6} t_{3} t_{6} t_{4} t_{2} t_{0} t_{2} t_{4} t_{1} t_{4} & =t_{6} t_{2} t_{6} t_{2} t_{0} t_{3} t_{6} t_{3} \in K^{G}
\end{aligned}
$$

$$
\begin{aligned}
\left(x^{2} t_{6} t_{3} t_{6} t_{4} t_{2} t_{0} t_{2} t_{4} t_{1} t_{4}\right)^{t_{3} t_{6} t_{3}} & =\left(t_{6} t_{2} t_{6} t_{2} t_{0} t_{3} t_{6} t_{3}\right)^{t_{3} t_{6} t_{3}} \in K^{G} \\
t_{3} t_{6} t_{3} x^{2} t_{6} t_{3} t_{6} t_{4} t_{2} t_{0} t_{2} t_{4} t_{1} t_{4} t_{3} t_{6} t_{3} & =t_{3} t_{6} t_{3} t_{6} t_{2} t_{6} t_{2} t_{0} t_{3} t_{6} t_{3} t_{3} t_{6} t_{3} \in K^{G} \\
x^{2} t_{5} t_{1} t_{5} t_{6} t_{3} t_{6} t_{4} t_{2} t_{0} t_{2} t_{4} t_{1} t_{4} t_{3} t_{6} t_{3} & =t_{3} t_{6} t_{3} t_{6} t_{2} t_{6} t_{2} t_{0} \in K^{G}
\end{aligned}
$$

$$
\begin{equation*}
\text { Thus, } t_{3} t_{6} t_{3} t_{6} t_{2} t_{6} t_{2} t_{0} \in K^{G} \text {. } \tag{4.8}
\end{equation*}
$$

Consider the relation

$$
\begin{equation*}
x^{-3}=t_{0} t_{2} t_{6} t_{4} t_{6} t_{5} t_{6} t_{3} \in K \tag{4.9}
\end{equation*}
$$

Now, we multiply (4.9) \& (4.8):

$$
\begin{aligned}
& x^{-3} x^{2} t_{5} t_{1} t_{5} t_{6} t_{3} t_{6} t_{4} t_{2} t_{0} t_{2} t_{4} t_{1} t_{4} t_{3} t_{6} t_{3}=t_{0} t_{2} t_{6} t_{4} t_{6} t_{5} t_{6} t_{3} t_{3} t_{6} t_{3} t_{6} t_{2} t_{6} t_{2} t_{0} \in K \\
& \Longrightarrow x^{-1} t_{5} t_{1} t_{5} t_{6} t_{3} t_{6} t_{4} t_{2} t_{0} t_{2} t_{4} t_{1} t_{4} t_{3} t_{6} t_{3}=t_{0} t_{2} t_{6} t_{4} t_{6} t_{5} t_{3} t_{6} t_{2} t_{6} t_{2} t_{0} \in K \\
& \left(x^{-1} t_{5} t_{1} t_{5} t_{6} t_{3} t_{6} t_{4} t_{2} t_{0} t_{2} t_{4} t_{1} t_{4} t_{3} t_{6} t_{3}\right)_{0} t_{2} t_{6}=\left(t_{0} t_{2} t_{6} t_{4} t_{6} t_{5} t_{3} t_{6} t_{2} t_{2} t_{0}\right)_{0} t_{2} t_{6} \in K^{G} \\
& \Longrightarrow t_{6} t_{2} t_{0} x^{-1} t_{5} t_{1} t_{5} t_{6} t_{3} t_{6} t_{4} t_{2} t_{0} t_{2} t_{1} t_{4} t_{3} t_{6} t_{3} t_{0} t_{2} t_{6} \\
& \quad=t_{6} t_{2} t_{0} t_{0} t_{2} t_{6} t_{4} t_{6} t_{5} t_{3} t_{6} t_{2} t_{6} t_{2} t_{0} t_{0} t_{2} t_{6} \in K^{G} \\
& \Longrightarrow t_{1} t_{6} t_{5} t_{1} t_{5} t_{6} t_{3} t_{6} t_{4} t_{2} t_{0} t_{2} t_{4} t_{1} t_{4} t_{3} t_{6} t_{3} t_{0} t_{2} t_{6}=t_{4} t_{6} t_{5} t_{3} t_{6} t_{2} \in K^{G} .
\end{aligned}
$$

So the inverse

$$
\begin{equation*}
t_{2} t_{6} t_{3} t_{5} t_{6} t_{4} \in K^{G} \tag{4.10}
\end{equation*}
$$

Now, we multiply (4.5) \& (4.10):

$$
t_{4} t_{6} t_{5} t_{1} t_{3} t_{2} t_{6} t_{3} t_{5} t_{6} t_{4} \in K .
$$

Next, we conjugate by $t_{4} t_{6} t_{5}$:

$$
\begin{aligned}
\left(t_{4} t_{6} t_{5} t_{1} t_{3} t_{2} t_{6} t_{3} t_{5} t_{6} t_{4}\right)^{t_{4} t_{6} t_{5}} & =t_{5} t_{6} t_{4} t_{4} t_{6} t_{5} t_{1} t_{3} t_{2} t_{6} t_{3} t_{5} t_{6} t_{4} t_{4} t_{6} t_{5} \in K^{G} \\
& =t_{1} t_{3} t_{2} t_{6} t_{3} \in K^{G} .
\end{aligned}
$$

Now, we conjugate $t_{1} t_{3} t_{2} t_{6} t_{3}$ by t_{1} :

$$
\left(t_{1} t_{3} t_{2} t_{6} t_{3}\right)^{t_{1}}=t_{1} t_{1} t_{3} t_{2} t_{6} t_{3} t_{1} \in K^{G}
$$

Thus, $t_{3} t_{2} t_{6} t_{3} t_{1} \in K^{G}$
Now, we need to multiply (4.11) \& (4.3):

$$
t_{3} t_{2} t_{6} t_{3} t_{1} t_{1} t_{3} t_{6} t_{4} t_{6}=t_{3} t_{2} t_{4} t_{6} \in K
$$

Then

$$
\left(t_{3} t_{2} t_{4} t_{6}\right)^{t_{3}}=t_{3} t_{3} t_{2} t_{4} t_{6} t_{3} \in K^{G}
$$

$$
\begin{equation*}
\text { Thus, } t_{2} t_{4} t_{6} t_{3} \in K^{G} \tag{4.12}
\end{equation*}
$$

Now we multiply (4.1) \& (4.12) to obtain the following:

$$
\begin{equation*}
t_{0} t_{1} t_{3} t_{2} t_{4} t_{2} t_{2} t_{4} t_{6} t_{3}=t_{0} t_{1} t_{3} t_{2} t_{6} t_{3} \in K \tag{4.13}
\end{equation*}
$$

By (4.11) we have the following:

$$
\begin{gathered}
t_{3} t_{2} t_{6} t_{3} t_{1} \in K \\
\left(t_{3} t_{2} t_{6} t_{3} t_{1}\right)^{t_{1}}=t_{1} t_{3} t_{2} t_{6} t_{3} t_{1} t_{1} \\
=t_{1} t_{3} t_{2} t_{6} t_{3} \in K^{G}
\end{gathered}
$$

So, $\left(t_{1} t_{3} t_{2} t_{6} t_{3}^{-1} \in K^{G}\right.$

$$
\begin{equation*}
\Longrightarrow t_{3} t_{6} t_{2} t_{3} t_{1} \in K^{G} \tag{4.14}
\end{equation*}
$$

Finally, we multiply (4.13) \& (4.14) to obtain the following:

$$
t_{0} t_{1} t_{3} t_{2} t_{6} t_{3} t_{3} t_{6} t_{2} t_{3} t_{1}=t_{0} \in K
$$

Thus, $t_{0} \in K$

$$
\begin{aligned}
& \Longrightarrow t_{0}^{G} \in K^{G} \\
& \Longrightarrow K^{G} \leq\left\{t_{0}, t_{0}^{x}, t_{0}^{x^{2}}, t_{0}^{x^{3}}, t_{0}^{x^{4}}, t_{0}^{x^{5}}, t_{0}^{x^{6}}\right\} \\
& \Longrightarrow K^{G} \leq\left\{t_{0}, t_{0}^{x}, t_{0}^{x^{2}}, t_{0}^{x^{3}}, t_{0}^{x^{4}}, t_{0}^{x^{5}}, t_{0}^{x^{6}}\right\}=<t_{0}, t_{1}, t_{2}, t_{3} t_{4}, t_{5}, t_{6}>=G .
\end{aligned}
$$

Hence, the conjugates of K generate G. Therefore, by Iwasawa's lemma, $G \cong L_{2}(27)$ is simple.

Chapter 5

Extension Problem

5.1 Extension Problem Preliminaries

Definition 5.1. (Extension). G is an extension of K by Q if G has a normal subgroup $K_{1} \cong K$ such that

$$
G / K_{1} \cong Q
$$

where G is a product of $K Q, G=K Q$. [Rot12]
Definition 5.2. (Normal series). A chain of subgroups of $G, G_{0}=G \supseteq G_{1} \supseteq$ $G_{2} \cdots \supseteq G_{n}=1$ such that

$$
G_{i} \unrhd G \forall i, 1 \leq i \leq n
$$

is called a normal series of G. [Rot12]
Definition 5.3. (Subnormal series). A chain of subgroups of $G, G_{0}=G \supseteq G_{1} \supseteq$ $G_{2} \cdots \supseteq G_{n}=1$ such that

$$
G_{i+1} \unrhd G_{i} \forall i, 0 \leq i \leq n-1
$$

is called a subnormal series of G. [Rot12]
Definition 5.4. (Composition series). A composition series is a normals series

$$
G_{0}=G \supseteq G_{1} \supseteq G_{2} \cdots \supseteq G_{n}=1
$$

in which, for all i, either G_{i+1} is a maximal normals subgroup of G_{i} or $G_{i+1}=G_{i}$. [Rot12]

Definition 5.5. (Composition factors). If G has a composition series, them the factor groups of this series is called the composition factors of G. [Rot12]

Note 5.6. Any two composition series of a group are isomorphic.
Note 5.7. The composition factors $G_{0} / G, G_{1} / G_{2}, \cdots G_{n-1} / G_{n}$ of the composition series $G_{0}=G \supseteq G_{1} \supseteq G_{2} \cdots \supseteq G_{n-1} \supseteq G_{n}$ are simple (A group G is simple if G and 1 are the only normal subgroups of G).
There are four possible extensions a group can have namely:
Definition 5.8. (Direct Product). A group G is direct product of N by H if N and H are both normal in G, denoted by $G=N \times H$. [Rot12]

Definition 5.9. (Semi-direct Product). A group G is a semi-direct product of N by H if there exist a complement $H_{1} \cong H$ and N is normal in G, denoted by $G=N: H$. [Rot12]

Definition 5.10. (Central Extension). A group G is a central extension of N by H if G is perfect, normal, and is also the center of G, denoted $G=N \cdot H$. [Rot12]

Definition 5.11. (Mixed Extension). A group G is a mixed extension if N is an abelian group which is not the center of G, denoted by $G=N^{*}: H$. [Rot12]

5.2 Mixed Extension $\left(G \cong\left(2^{6}: L_{2}(7)\right): 2\right)$

From an original progenitor we have found the following group

$$
G=<x, y, t \mid x^{7}, y^{2},(x y)^{2}, t^{2},(t, y),\left(x t t^{x}\right)^{8},(t t x t)^{3}>
$$

We will now prove that $\left(2^{6}: L_{2}(7)\right): 2$ is the homomorphic image of the progenitor mentioned above.

Proof. Using MAGMA we get the following composition factors.

```
> CompositionFactors(G1);
    G
    | Cyclic(2)
    *
    | A(1, 7) = L (2, 7)
    *
    | Cyclic(2)
    *
    | Cyclic(2)
    *
```

```
Cyclic(2)
Cyclic(2)
Cyclic(2)
Cyclic(2)
```

Therefore we have the following composition series,

$$
G \supseteq G_{1} \supseteq G_{2} \supseteq G_{3} \supseteq G_{4} \supseteq G_{5} \supseteq G_{6} \supseteq G_{7} \supseteq 1,
$$

where $G=\left(G_{1} / G_{2}\right) \cdot\left(G_{2} / G_{3}\right) \cdot\left(G_{3} / G_{4}\right) \cdot\left(G_{4} / G_{5}\right) \cdot\left(G_{5} / G_{6}\right) \cdot\left(G_{6} / G_{7}\right) \cdot\left(G_{7} / 1\right)$
$=C_{2} \cdot L_{2}(7) \cdot C_{2} \cdot C_{2} \cdot C_{2} \cdot C_{2} \cdot C_{2} \cdot C_{2}$. The normal lattice of G is
> NL:=NormalLattice(G1);
> NL;
Normal subgroup lattice

```
[4] Order 21504 Length 1 Maximal Subgroups: 3
[3] Order 10752 Length 1 Maximal Subgroups: 2
---
[2] Order 64 Length 1 Maximal Subgroups: 1
[1] Order 1 Length 1 Maximal Subgroups:
```

By inspection we find that the center of this group is order 1 which indicates that we do not have a central extension. Next we find that the minimal normal subgroup of G is of order 64. Since the minimal normal subgroup of G is an abelian p-group, it must be elementary abelian. Thus, NL[2] is isomorphic to $C_{2} \times C_{2} \times C_{2} \times C_{2} \times C_{2} \times C_{2}=$ $\left(C_{2}\right)^{6}$.

We now have G_{2} is isomorphic to $\left(C_{2}\right)^{6}$. Thus, $G_{1} / G_{2}=L_{2}(7)$ gives $G_{1} /\left(C_{2}\right)^{6}=$ $L_{2}(7)$. So $G_{1}=\left(C_{2}\right)^{6} \cdot L_{2}(7)$, with $\left(C_{2}\right)^{6}=\mathrm{NL}[2]$ normal in G_{2}. Note that $\left|L_{2}(7)\right|=168$. Therefore, we must find a normal subgroup of order 168. By inspection we look at the normal lattice of NL[3] to see that it does not have a normal subgroup of order 168. Since $N=\left(C_{2}\right)^{6}$ is an abelian group and is not the center of G thus G_{1} is a mixed extension. Thus, $\mathrm{NL}[3]$ is isomorphic to $2^{6}: L_{2}(7)$.

Next, we will show that $G_{1}=\left(C_{2}\right)^{6}: L_{2}(7)$.
Let $N=\left(C_{2}\right)^{6}$. We note that $\mathrm{N}=<k, l, m, n, o, p>=<k>\times<l>\times<m>\times<$ $n\rangle \times\langle o\rangle \times\langle p\rangle$ where k, l, m, n, o is of order 2. A presentation for N is $<k, l, m, n, o, p \mid k^{2}, l^{2}, m^{2}, n^{2}, o^{2}, p^{2},(k, l),(k, m),(k, n),(k, o),(k, p),(l, m),(l, n),(l, o)$ $(l, p),(m, n),(m, o),(m, p),(n, o),(n, p),(o, p)>$.
Now we have to write elements of $G_{1} / N=L_{2}(7)$ in terms of the generators of N. Note a presentation for $L_{2}(7)$ is

$$
<r, s \mid r^{2}, s^{4},(r s)^{7},(r, s)^{4},\left(r s^{2}\right)^{3}>
$$

We now find the set of right coset of N in G_{2}. Let s and t denoted by $N T[i]$ where i goes from 1 to 168 . There is an isomorphism from G_{1} / N to $L_{2}(7)$. In this isomorphism

$$
N T[2] \mapsto r \text { and } N T[3] \mapsto s
$$

Since the permutations are very large, permutation group acting on a set of cardinality 10750, we use the Schreier System in Magma to find the actions. Note in Magma we must store $T[2]=N T[2], T[3]=N T[3]$, and $T[3]^{4}=N(T[3])^{4}$ so they do not change everytime.

```
> N:=sub<G1|A,B,C,D,E,F>;
> NN<k,l,m,n,o,p>:=Group<k,l,m,n,o,plk^2,l^2,m^2,
n`2,o^2, p^2, (k,l), (k,m),(k,n),(k,o),(k,p),(l,m),(l,n),
(l,o),(l,p),(m,n),(m,o),(m,p),(n,o),(n,p),(o,p)>;
> #NN;
64
> Sch:=SchreierSystem(NN, sub<NN|Id(NN) >);
> ArrayP:=[Id(N): i in [1..64]];
> for i in [2..64] do
for> P:=[Id(N): l in [1..#Sch[i]]];
for> for j in [1..#Sch[i]] do
for|for> if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
for|for> if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
for|for> if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
for|for> if Eltseq(Sch[i])[j] eq 4 then P[j]:=D; end if;
for|for> if Eltseq(Sch[i])[j] eq 5 then P[j]:=E; end if;
for|for> if Eltseq(Sch[i])[j] eq 6 then P[j]:=F; end if;
for|for> end for;
for> PP:=Id(N);
for> for k in [1..#P] do
for|for> PP:=PP*P[k]; end for;
for> ArrayP[i]:=PP;
for> end for;
```

We let

$$
N T[2]=r \text { and } N T[3]=s
$$

Note that $(N T[3])^{4}=N(T[3])^{4}=N T 34=N$. We run the following loops to convert the elements of $L_{2}(7)$ in terms of the generators of N.

```
> for i in [1..64] do if ArrayP[i] eq T34 then Sch[i];
end if; end for;
l * m * p
> for i in [1..64] do if ArrayP[i] eq (T2,T3)^4 then Sch[i];
end if; end for;
k * l * m * O * p
```

So $(T[3])^{4} \in N$; that is;

$$
s^{4}=l m p
$$

Also $(N T[2], N T[3])^{4}=N(T[2], T[3])^{4}=N$. So $(T[2], T[3])^{4} \in N$; that is;

$$
(r, s)^{4}=k l m o p
$$

Thus, the elements of $L_{2}(7)$ in terms of the generators of N are:

$$
s^{4}=l m p \quad \text { and } \quad(r, s)^{4}=k l m o p .
$$

Now we need to conjugate the generators of N by the generators of $L_{2}(7)$ to determine the resulting elements of N. We use the following loops to find the resulting elements of N.

```
> for i in [1..64] do if ArrayP[i] eq A^T2
then Sch[i]; I[2]:=Sch[i]; end if; end for;
k * m * o
> for i in [1..64] do if ArrayP[i] eq B^T2
then Sch[i]; I[3]:=Sch[i]; end if; end for;
n * o * p
> for i in [1..64] do if ArrayP[i] eq C^T2
then Sch[i]; I[4]:=Sch[i]; end if; end for;
m
> for i in [1..64] do if ArrayP[i] eq D`T2
then Sch[i]; I[5]:=Sch[i]; end if; end for;
m * n * O
> for i in [1..64] do if ArrayP[i] eq E^T2
then Sch[i]; I[6]:=Sch[i]; end if; end for;
\circ
> for i in [1..64] do if ArrayP[i] eq F^T2
then Sch[i]; I[7]:=Sch[i]; end if; end for;
l * m * n
> for i in [1..64] do if ArrayP[i] eq A^T3
```

```
then Sch[i]; I[8]:=Sch[i]; end if; end for;
k * m * n * o * p
> for i in [1..64] do if ArrayP[i] eq B^T3
then Sch[i]; I[9]:=Sch[i]; end if; end for;
n * p
> for i in [1..64] do if ArrayP[i] eq C^T3
then Sch[i]; I[10]:=Sch[i]; end if;end for;
k
> for i in [1..64] do if ArrayP[i] eq D^T3
then Sch[i]; I[11]:=Sch[i]; end if;end for;
k * l * n * p
> for i in [1..64] do if ArrayP[i] eq E^T3
then Sch[i]; I[12]:=Sch[i]; end if;end for;
p
> for i in [1..64] do if ArrayP[i] eq F`T3
    then Sch[i]; I[13]:=Sch[i]; end if;end for;
k * l * m * n
```

Thus, $k^{r}=k m o, l^{r}=n o p, m^{r}=m, n^{r}=m n o, o^{r}=o, p^{r}=l m n, k^{s}=k m n o p, l^{s}=$ $n p, m^{s}=k, n^{s}=k \ln p, o^{s}=p$, and $p^{s}=k l m n$. In addition, we check in Magma the presentation of G_{1} :

```
> NN<k,l,m,n,o,p,r,s>:=Group<k,l,m,n,o,p,r,s|k^2,l^2,m^2,
n^2,o^2, p^2, (k,l), (k,m), (k,n), (k,o), (k,p), (l,m), (l, n), (l,o),
(l,p),(m,n),(m,o),(m,p),(n,o),(n,p),(o,p), r^2,
s^4=l*m*p,(r*s)^7,(r,s)^4=k*l*m*o*p,(r*s^2)^3,
k^r=k*m*o,l^r=n*o*p,m^r=m,
n^r=m*n*o,o^r=o, p^r=l*m*n,k^s=k*m*n*o*p,
l^s=n*p,m^s=k, n^s=k*l*n*p,o^s=p, p^s=k*l*m*n>;
> #NN;
10752
> f1,g,k1:=CosetAction(NN,sub<NN|Id(NN)>);
> s,t:=IsIsomorphic(NL[3],g);
> s;
true
```

Thus, we have G_{1} is isomorphic to $2^{6}: L_{2}(7)$. Hence, $G / G_{1}=C_{2}$ gives $G / 2^{6}: L_{2}(7)=$ C_{2}. So $G=2^{6^{*}}: L_{2}(7) \cdot C_{2}$, with $2^{6^{*}}: L_{2}(7)=\mathrm{NL}[3]$ normal in G_{1}.
Note C_{2} is not a normal subgroup of G, therefore, G cannot be a direct product. By further inspection we find that it must be a semi-direct product. So we find an element of order 2 in G but outside NL[3], say g. So we run the following loop:

```
> for g in G1 do if Order(g) eq 2 and sub<G1|NL[3],g> eq G1
```

```
then Z:=g;break; end if; end for;
> G1 eq sub<G1|NL[3],Z>;
true
```

Now we use the following loops in Magma to find the action of g on the generators k,l,m,n,o,p,r,s of NL[3].

```
> for i in [1..10752] do if ArrayP[i] eq A^Z
then Sch[i]; I[1]:=Sch[i]; end if; end for;
k
> for i in [1..10752] do if ArrayP[i] eq B^Z
then Sch[i]; I[1]:=Sch[i]; end if; end for;
k * s * 0 * s^-1
> for i in [1..10752] do if ArrayP[i] eq C^Z
then Sch[i]; I[1]:=Sch[i]; end if; end for;
n * O
> for i in [1..10752] do if ArrayP[i] eq D^Z
then Sch[i]; I[1]:=Sch[i]; end if; end for;
k * m * O * p
> for i in [1..10752] do if ArrayP[i] eq E^Z
then Sch[i]; I[1]:=Sch[i]; end if; end for;
k * o * p
> for i in [1..10752] do if ArrayP[i] eq F^Z
then Sch[i]; I[1]:=Sch[i]; end if; end for;
p
> for i in [1..10752] do if ArrayP[i] eq T2^Z
then Sch[i]; I[1]:=Sch[i]; end if; end for;
k * r * n * s * r * s^-1 * r
> for i in [1..10752] do if ArrayP[i] eq T3^Z
then Sch[i]; I[1]:=Sch[i]; end if; end for;
r * s * r * k * s * r * s^-1 * r * s * r
```

Thus we have:

$$
\begin{gathered}
g^{2}, k^{g}=\ln , l^{g}=\operatorname{sos}^{-1}, m^{g}=n^{s}, n^{g}=k s o s^{-1}, \\
o^{g}=k m n p, p^{g}=p^{s}, r^{g}=k s r l s r s^{-1} r s^{-1}, s^{g}=\text { rksrsrs }^{-1} r .
\end{gathered}
$$

Hence, we have the following presentation:
$H 1<k, l, m, n, o, p, r, s, g>:=G r o u p<k, l, m, n, o, p, r, s, g \mid k^{2}, l^{2}, m^{2}, n^{2}, o^{2}, p^{2}$,
$(k, l),(k, m),(k, n),(k, o),(k, p),(l, m),(l, n),(l, o),(l, p),(m, n),(m, o),(m, p),(n, o)$,
$(n, p),(o, p), r^{2}, s^{4}=l m p,(r s)^{7},(r, s)^{4}=k l m o p,\left(r s^{2}\right)^{3}, k^{r}=k m o, l^{r}=n o p$,
$m^{r}=m, n^{r}=m n o, o^{r}=o, p^{r}=l m n, k^{s}=k m n o p, l^{s}=n p, m^{s}=k, n^{s}=k \ln p$,
$o^{s}=p, p^{s}=k l m n, g^{2}, k^{g}=\ln , l^{g}=\operatorname{sos}^{-} 1, m^{g}=n^{s}, n^{g}=k s o s^{-} 1$,
$o^{g}=k m n p, p^{g}=p^{s}, r^{g}=k s r l s r s^{-} 1 r s^{-} 1, s^{g}=r k s r s r s^{-} 1 r>$.
Finally, we check if it is isomorphic to G_{1}.

```
> #H1;
21504
> f,h1,k1:=CosetAction(H1,sub<H1|Id(H1)>);
> s:=IsIsomorphic(h1,G1);
> s;
true
```

Thus we have solved the extension problem for this group and we can conclude that

$$
\begin{aligned}
G & =\left(2^{6}: L_{2}(7)\right): 2 \\
& \cong<k, l, m, n, o, p, r, s, g \mid k^{2}, l^{2}, m^{2}, n^{2}, o^{2}, p^{2},(k, l),(k, m),(k, n),(k, o),(k, p),(l, m), \\
& (l, n),(l, o),(l, p),(m, n),(m, o),(m, p),(n, o),(n, p),(o, p), r^{2}, s^{4}=\operatorname{lmp},(r s)^{7}, \\
& (r, s)^{4}=k l m o p,\left(r s^{2}\right)^{3}, k^{r}=k m o, l^{r}=n o p, m^{r}=m, n^{r}=m n o, o^{r}=o, p^{r}=l m n, \\
& k^{s}=k m n o p, l^{s}=n p, m^{s}=k, n^{s}=k l n p, o^{s}=p, p^{s}=k l m n, g^{2}, k^{g}=\ln , l^{g}=\operatorname{sos}^{-} 1, \\
& m^{g}=n^{s}, n^{g}=k s o s^{-} 1, o^{g}=k m n p, p^{g}=p^{s}, r^{g}=k s r l s r s^{-} 1 r s^{-} 1, s^{g}=r k s r s r s^{-} 1 r>.
\end{aligned}
$$

Chapter 6

Double Coset Enumeration of M_{11} over S_{4}

6.1 G Factor by a Subgroup of Order 12

Consider the group $G \cong<a, b, c, d, t \mid a^{2}, b^{3}, c^{4}, d^{4}, b^{-1} a b a, c^{-1} a c^{-1}, d^{-1} a d^{-1}, b c^{-1} b^{-1} d^{-1}$, $c^{-1} d^{-1} c d^{-1}, d^{-1} c^{-1} b^{-1} c b, t^{2},(t, b),\left(c t^{c}\right)^{6},\left(a b t^{c b^{-1}}\right)^{6},\left(a b^{-1} t\right)^{3}>$. Note $N=S_{4}$, where $a \sim(1,5)(2,8)(3,6)(4,7), b \sim(1,2,4)(5,8,7), c \sim(1,4,5,7)(2,6,8,3)$ and
$d \sim(1,3,5,6)(2,4,8,7)$. Now we look at the composition factors of this group:
G
| M11
*
Cyclic(3)
Cyclic(2)

* Cyclic(2)

1
Note the center of G is of order 1 . Now we look at the normal lattice of G :
Normal subgroup lattice
[6] Order 95040 Length 1 Maximal Subgroups: 35
[5] Order 31680 Length 1 Maximal Subgroups: 24

```
[4] Order 7920 Length 1 Maximal Subgroups: 1
---
[3] Order 12 Length 1 Maximal Subgroups: 2
---
[2] Order 4 Length 1 Maximal Subgroups: 1
[1] Order 1 Length 1 Maximal Subgroups:
```

We can see clearly that [3] is of order 12 , therefore we are going to factor G by a subgroup of order 12 , to obatin $G \cong M_{11}$:

```
>q,ff:=quo<G1|NL[3]>;
>CompositionFactors(q);
    G
        M11
    1
```

Now, we convert the action of the generators of [3] into word, to do so, we use the Shcreier System:

```
x:=NL[3].1;
y:=NL[3].2;
z:=NL[3].3;
A:=f(a);
B:=f(b);
C:=f(c);
D:=f(d);
E:=f(t);
N:=sub<G1|A,B,C,D,E>;
e:=0;f:=0;g:=0;h:=0;i:=0;j:=0;k:=6;l:=0;m:=6;n:=3; o:=0;
NN<a,b,c,d,t> := Group<a,b,c,d,t | a^2,b^3 3, c^4,d^4, b^^-1*a*b*a,
c^-1*a*c^^1, d^-1*a*d^-1, b* c^-1* b^^-1* d^-1,
```



```
(a*b*t^^(c*b^^-1))^ 6, (a*b ^ - 1*t)^ 3, >;
Sch:=SchreierSystem(NN, sub<NN|Id(NN) >) ;
ArrayP:=[Id(N): i in [1..#N]];
for i in [2..#N] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
if Eltseq(Sch[i])[j] eq -2 then P[j]:=B^-1; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
```

```
if Eltseq(Sch[i])[j] eq -3 then P[j]:=C^-1; end if;
if Eltseq(Sch[i])[j] eq 4 then P[j]:=D; end if;
if Eltseq(Sch[i])[j] eq -4 then P[j]:=D^-1; end if;
if Eltseq(Sch[i])[j] eq 5 then P[j]:=E; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
>for i in [1..#N] do if ArrayP[i] eq x then print Sch[i];
end if; end for;
    b * d * t * c^-1 * t * c * d^-1 * t * d * t * c^-1 * t
>for i in [1..#N] do if ArrayP[i] eq y then print Sch[i];
end if; end for;
b * d * t * d * t * c * t * d^-1 * t * b^-1 * c * t * c
* t * d * t * c^-1 * t
>for i in [1..#N] do if ArrayP[i] eq z then print Sch[i];
end if; end for;
b * c * t * c * t * d^-1 * t * c * t * d^-1 * t * d^-1
* t * b^-1 * c^-1 * t * c^-1 * t
```

Thus, by factoring the group of G by a subgroup of order 12 , we obtain the following:
$G \cong<a, b, c, d, t \mid a^{2}, b^{3}, c^{4}, d^{4}, b^{-1} a b a, c^{-1} a c^{-1}, d^{-1} a d^{-1}, b c^{-1} b^{-1} d^{-1}$,
$c^{-1} d^{-1} c d^{-1}, d^{-1} c^{-1} b^{-1} c b, t^{2},(t, b),\left(c t^{c}\right)^{6},\left(a b t^{c b^{-1}}\right)^{6},\left(a b^{-1} t\right)^{3}, b d t c^{-1} t c d^{-1} t d t c^{-1} t$, $b d t d t c t d^{-1} t b^{-1} c t c t d t c^{-1} t, b c t c t d^{-1} t c t d^{-1} t d^{-1} t b^{-1} c^{-1} t c^{-1} t>\cong M_{11}$.

6.2 Construction of M_{11} over S_{4}

We start by factoring the progenitor $2^{* 8}: S_{4}$ by the relations

$$
\begin{aligned}
& \left(c t^{c}\right)^{6},\left(a b t^{c b^{-1}}\right)^{6},\left(a b^{-1} t\right)^{3}, \\
& b d t c^{-1} t c d^{-1} t d t c^{-1} t, b d t d t c t d^{-1} t b^{-1} c t c t d t c^{-1} t, b c t c t d^{-1} t c t d^{-1} t d^{-1} t b^{-1} c^{-1} t c^{-1} t \\
& \text { to obtain the homomorphic image } G \cong M_{11} \text {, where }
\end{aligned}
$$

$a \sim(1,5)(2,8)(3,6)(4,7), b \sim(1,2,4)(5,8,7), c \sim(1,4,5,7)(2,6,8,3)$,
$d \sim(1,3,5,6)(2,4,8,7)$, and $t \sim t_{0} \sim t_{3}$. The index of S_{4} in G equals 330 . Now we expand the relations:

$$
\begin{aligned}
1=\left(c t^{c}\right)^{6} & =\left(c t_{2}\right)^{6}=c^{6} t_{2}^{c^{5}} t_{2}^{c^{4}} t_{2}^{c^{3}} t_{2}^{c^{2}} t_{2}^{c} t_{2}=c^{2} t_{6} t_{2} t_{8} t_{3} t_{2} t_{6} \\
& \Longrightarrow c^{2} t_{6} t_{2}=t_{2} t_{6} t_{8} t_{0},
\end{aligned}
$$

$$
\begin{aligned}
& 1=\left(a b t^{c b^{-1}}\right)^{6}=\left(a b t_{1}\right)^{6}=(a b)^{6} t_{1}^{(a b)^{5}} t_{1}^{(a b)^{4}} t_{1}^{(a b)^{3}} t_{1}^{(a b)^{2}} t_{1}^{(a b)} t_{1}=t_{7} t_{2} t_{5} t_{4} t_{8} t_{1} \\
& \Longrightarrow t_{7} t_{2}=t_{1} t_{8} t_{4} t_{5}, \\
& 1=\left(a b^{-1} t\right)^{3}=\left(a b^{-1}\right)^{3} t_{0}^{\left(a b^{-1}\right)^{2}} t_{0}\left(a b^{-1}\right) t_{0}=a t_{0} t_{6} t_{0} \\
& \Longrightarrow a t_{0}=t_{0} t_{6}, \\
& 1=b d t c^{-1} t c d^{-1} t d t c^{-1} t=b d c^{-1} t_{8} t_{0} t_{4} t_{8} t_{3} \\
& \Longrightarrow b d c^{-1} t_{8} t_{0}=t_{3} t_{8} t_{4}, \\
& 1=b d t d t c t d^{-1} t b^{-1} c t c t d t c^{-1} t=d t_{8} t_{1} t_{0} t_{7} t_{1} t_{4} t_{8} t_{0} \\
& \Longrightarrow d t_{8} t_{1} t_{0}=t_{0} t_{8} t_{4} t_{1}, \\
& 1=b c t c t d^{-1} t c t d^{-1} t d^{-1} t b^{-1} c^{-1} t c^{-1} t=c^{-1} t_{4} t_{2} t_{1} t_{0} t_{7} t_{6} t_{8} t_{0} \\
& \Longrightarrow c^{-1} t_{4} t_{2} t_{1} t_{0}=t_{0} t_{8} t_{6} t_{7} .
\end{aligned}
$$

We want to find the index of N in G. To do this, we perform a manual double coset enumeration of G over N. We take G and express it as a union of double cosets $N g N$, where g is an element of G. So $G=N e N \cup N g_{1} N \cup N g_{2} N \cup \ldots$ where g_{i} 's words in t_{i} 's.

We need to find all double cosets $[w]$ and find out how many single cosets each of them contains, where $[w]=\left[N w^{n} \mid n \in N\right]$. The double cosets enumeration is complete when the set of right cosets obtained is closed under right multiplication by t_{i} 's. We will identify, for each $[w]$, the double coset to which $N w t_{i}$ belongs for one symmetric generator t_{i} from each orbit of the coset stabilising group $N^{(w)}$

NeN
First, the double coset $N e N$, is denoted by $[*]$. This double coset contains only the single coset, namely N. Since N is transitive on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7} t_{8}\right\}$, the orbit of N on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7} t_{8}\right\}$ is:

$$
\mathbb{O}=\{\{1,2,0,4,5,6,7,8\}\}
$$

We choose t_{0} as our symmetric generator from \mathbb{O} and find to which double coset $N t_{0}$ belongs. $N t_{0} N$ will be a new double coset, denote it [0].

$N t_{0} N$

In order to find how many single cosets [0] contains, we must first find the coset stabiliser $N^{(0)}$. Then the number of single coset in [0] is equal to $\frac{|N|}{\left|N^{(0)}\right|}$. Now,

$$
N^{(0)}=N^{0}=<(1,2,4)(5,8,7)>
$$

so the number of the single cosets in $N t_{0} N$ is $\frac{|N|}{\left|N^{(0)}\right|}=\frac{24}{3}=8$. Furthermore, the orbits
of $N^{(0)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7} t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1,2,4\},\{5,8,7\},\{0\},\{6\}\} .
$$

We take t_{1}, t_{5}, t_{0}, and t_{6} from each orbit, respectively and to see which double coset $N t_{0} t_{1}, N t_{0} t_{5}, N t_{0} t_{0}$, and $N t_{0} t_{6}$ belong to. We have:

$$
\begin{gathered}
N t_{0} t_{1} \in[01] \\
N t_{0} t_{5} \in[05] \\
N t_{0} t_{0}=N \in[*] \\
a t_{0} t_{6}=t_{0} \Longrightarrow N t_{0} t_{6}=N t_{0} \in[0]
\end{gathered}
$$

The new double cosets have single coset representatives $N t_{0} t_{1}$ and $N t_{0} t_{5}$, which we represent them as [01] and [05] respectively.

$N t_{0} t_{1} N$

Consider $N t_{0} t_{1} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(01)}=N^{01}=\langle e\rangle$. Only identity (e) will fix 0 and 1 . Hence the number of single cosets living in $N t_{0} t_{1} N$ is $\frac{|N|}{\left|N^{(01)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(01)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{i}$ belongs to. We have:

$$
\begin{aligned}
N t_{0} t_{1} t_{1} & \in[0] \\
N t_{0} t_{1} t_{2} & \in[012] \\
N t_{0} t_{1} t_{0} & \in[010] \\
N t_{0} t_{1} t_{4} & \in[014] \\
t_{0} t_{1} t_{5} & =a t_{6} t_{1} \Longrightarrow N t_{0} t_{1} t_{5}=N t_{6} t_{1} \in[05] \\
N t_{0} t_{1} t_{6} & \in[016] \\
t_{0} t_{1} t_{7} & =b d^{-1} t_{1} t_{0} \Longrightarrow N t_{0} t_{1} t_{7}=N t_{1} t_{0} \in[05] \\
N t_{0} t_{1} t_{8} & \in[018] .
\end{aligned}
$$

The new double coset are $N t_{0} t_{1} t_{2} N, N t_{0} t_{1} t_{0} N, N t_{0} t_{1} t_{4} N, N t_{0} t_{1} t_{6} N$ and $N t_{0} t_{1} t_{8} N$, which we represent them as [012], [010], [014], [016], and [018] respectively.

$N t_{0} t_{5} N$

Consider $N t_{0} t_{5} N$ is a new double coset. We determine how many single cosets are in
the double coset. However, $N^{(05)}=N^{05}=\langle e\rangle$. Only identity (e) will fix 0 and 5 . Hence the number of single cosets living in $N t_{0} t_{5} N$ is $\frac{|N|}{\left|N^{(05)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(05)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{5} t_{i}$ belongs to. We have:

$$
\begin{aligned}
t_{0} t_{5} t_{1} & =a t_{6} t_{5} \Longrightarrow N t_{0} t_{5} t_{1}=N t_{6} t_{5} \in[01] \\
t_{0} t_{5} t_{2} & =b c t_{5} t_{0} \Longrightarrow N t_{0} t_{5} t_{2}=N t_{5} t_{0} \in[01] \\
N t_{0} t_{5} t_{0} & \in[050] \\
t_{0} t_{5} t_{4} & =d^{-1} b^{-1} t_{7} t_{5} t_{6} \Longrightarrow N t_{0} t_{5} t_{4}=N t_{7} t_{5} t_{6} \in[018] \\
N t_{0} t_{5} t_{5} & =N t_{0} \in[0] \\
t_{0} t_{5} t_{6} & =a t_{5} t_{0} t_{1} \Longrightarrow N t_{0} t_{5} t_{6}=N t_{5} t_{0} t_{1} \in[016] \\
t_{0} t_{5} t_{7} & =t_{4} t_{1} t_{6} \Longrightarrow N t_{0} t_{1} t_{7}=N t_{4} t_{1} t_{6} \in[012] \\
t_{0} t_{5} t_{8} & =b c^{-1} t_{1} t_{6} t_{2} \Longrightarrow N t_{0} t_{5} t_{8}=N t_{1} t_{6} t_{2} \in[014] .
\end{aligned}
$$

The new double coset is $N t_{0} t_{5} t_{0}$, denoted by [050].

$N t_{0} t_{1} t_{0} N$

Consider $N t_{0} t_{1} t_{0} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(010)}=N^{010}=\langle e\rangle$. Only identity (e) will fix 0 and 1 . Hence the number of single cosets living in $N t_{0} t_{1} t_{0} N$ is $\frac{|N|}{\left|N^{(010)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(010)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{0} t_{i}$ belongs to. We have:

$$
\begin{aligned}
& N t_{0} t_{1} t_{0} t_{1} \in[0101] \\
& N t_{0} t_{1} t_{0} t_{2} \in[0102] \\
& N t_{0} t_{1} t_{0} t_{0} \in[01] \\
& N t_{0} t_{1} t_{0} t_{4} \in[0104]
\end{aligned}
$$

$$
\begin{aligned}
t_{0} t_{1} t_{0} t_{5} & =t_{6} t_{1} t_{6} \Longrightarrow N t_{0} t_{1} t_{0} t_{5}=N t_{6} t_{1} t_{6} \in[050] \\
t_{0} t_{1} t_{0} t_{6} & =a t_{6} t_{5} t_{0} \Longrightarrow N t_{0} t_{1} t_{0} t_{6}=N t_{6} t_{5} t_{0} \in[016] \\
t_{0} t_{1} t_{0} t_{7} & =b d^{-1} t_{1} t_{3} t_{1} \Longrightarrow N t_{0} t_{1} t_{0} t_{7}=N t_{1} t_{3} t_{1} \in[050] \\
N t_{0} t_{1} t_{0} t_{8} & \in[0108]
\end{aligned}
$$

The new double coset are $N t_{0} t_{1} t_{0} t_{1} N, N t_{0} t_{1} t_{0} t_{2} N, N t_{0} t_{1} t_{0} t_{4} N$, and $N t_{0} t_{1} t_{0} t_{8} N$, which we represent them as [0101], [0102], [0104], and [0108] respectively.

$N t_{0} t_{1} t_{2} N$

Consider $N t_{0} t_{1} t_{2} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(012)}=N^{012}=<e>$. Only identity (e) will fix 0,1 , and 2 . Hence the number of single cosets living in $N t_{0} t_{1} t_{2} N$ is $\frac{|N|}{\left|N^{(012)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(012)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\}
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{2} t_{i}$ belongs to. We have:

$$
\begin{aligned}
t_{0} t_{1} t_{2} t_{1} & =b c t_{5} t_{0} t_{5} t_{8} \Longrightarrow N t_{0} t_{1} t_{2} t_{1}=N t_{5} t_{0} t_{5} t_{8} \in[0104] \\
N t_{0} t_{1} t_{2} t_{2} & \in[01] \\
t_{0} t_{1} t_{2} t_{0} & =b^{-1} d t_{0} t_{1} t_{8} \Longrightarrow N t_{0} t_{1} t_{2} t_{0}=N t_{0} t_{1} t_{8} \in[018] \\
t_{0} t_{1} t_{2} t_{4} & =b^{-1} t_{0} t_{2} t_{1} \Longrightarrow N t_{0} t_{1} t_{2} t_{4}=N t_{0} t_{2} t_{1} \in[014] \\
t_{0} t_{1} t_{2} t_{5} & =b c^{-1} t_{2} t_{5} t_{2} t_{6} \Longrightarrow N t_{0} t_{1} t_{2} t_{5}=N t_{2} t_{5} t_{2} t_{6} \in[0104] \\
t_{0} t_{1} t_{2} t_{6} & =t_{8} t_{5} \Longrightarrow N t_{0} t_{1} t_{2} t_{6}=N t_{8} t_{5} \in[05] \\
N t_{0} t_{1} t_{2} t_{7} & \in[0127] \\
t_{0} t_{1} t_{2} t_{8} & =a t_{0} t_{5} t_{2} \Longrightarrow N t_{0} t_{1} t_{2} t_{8}=N t_{0} t_{5} t_{2} \in[018]
\end{aligned}
$$

The new double coset is $N t_{0} t_{1} t_{2} t_{7} N$, denoted by [0127].

$N t_{0} t_{1} t_{4} N$

Consider $N t_{0} t_{1} t_{4} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(014)}=N^{014}=<e>$. Only identity (e) will fix 0,1 , and 4 . Hence the number of single cosets living in $N t_{0} t_{1} t_{4} N$ is $\frac{|N|}{\left|N^{(014)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(014)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\}
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{4} t_{i}$ belongs to. We have:

$$
\begin{aligned}
t_{0} t_{1} t_{4} t_{1} & =t_{7} t_{5} t_{7} t_{0} \Longrightarrow N t_{0} t_{1} t_{4} t_{1}=N t_{7} t_{5} t_{7} t_{0} \in[0102] \\
t_{0} t_{1} t_{4} t_{2} & =b t_{0} t_{4} t_{1} \Longrightarrow N t_{0} t_{1} t_{4} t_{2}=N t_{0} t_{4} t_{1} \in[012] \\
t_{0} t_{1} t_{4} t_{0} & =b d^{-1} t_{4} t_{6} t_{1} \Longrightarrow N t_{0} t_{1} t_{4} t_{0}=N t_{4} t_{6} t_{1} \in[014] \\
N t_{0} t_{1} t_{4} t_{4} & \in[01] \\
t_{0} t_{1} t_{4} t_{5} & =d b^{-1} t_{5} t_{4} t_{3} \Longrightarrow N t_{0} t_{1} t_{4} t_{5}=N t_{5} t_{4} t_{3} \in[014] \\
t_{0} t_{1} t_{4} t_{6} & =b d t_{1} t_{6} t_{1} t_{7} \Longrightarrow N t_{0} t_{1} t_{4} t_{6}=N t_{1} t_{6} t_{1} t_{7} \in[0102] \\
t_{0} t_{1} t_{4} t_{7} & =d^{-1} b^{-1} t_{5} t_{6} \Longrightarrow N t_{0} t_{1} t_{4} t_{7}=N t_{5} t_{6} \in[05] \\
t_{0} t_{1} t_{4} t_{8} & =b a t_{6} t_{7} t_{5} t_{2} \Longrightarrow N t_{0} t_{1} t_{4} t_{8}=N t_{6} t_{7} t_{5} t_{2} \in[0127] .
\end{aligned}
$$

$N t_{0} t_{1} t_{6} N$

Consider $N t_{0} t_{1} t_{6} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(016)}=N^{016}=\langle e\rangle$. Only identity (e) will fix 0,1 , and 6 . Hence the number of single cosets living in $N t_{0} t_{1} t_{6} N$ is $\frac{|N|}{\left|N^{(016)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(016)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{6} t_{i}$ belongs to. We have:

$$
\begin{aligned}
t_{0} t_{1} t_{6} t_{1} & =t_{5} t_{6} t_{5} \Longrightarrow N t_{0} t_{1} t_{6} t_{1}=N t_{5} t_{6} t_{5} \in[050] \\
t_{0} t_{1} t_{6} t_{2} & =b c^{-1} t_{6} t_{5} t_{0} \Longrightarrow N t_{0} t_{1} t_{6} t_{2}=N t_{6} t_{5} t_{0} \in[016] \\
t_{0} t_{1} t_{6} t_{0} & =a t_{6} t_{5} t_{6} \Longrightarrow N t_{0} t_{1} t_{6} t_{0}=N t_{6} t_{5} t_{6} \in[010] \\
t_{0} t_{1} t_{6} t_{4} & =b d^{-1} t_{6} t_{7} t_{1} \Longrightarrow N t_{0} t_{1} t_{6} t_{4}=N t_{6} t_{7} t_{1} \in[018] \\
t_{0} t_{1} t_{6} t_{5} & =a t_{1} t_{0} \Longrightarrow N t_{0} t_{1} t_{6} t_{5}=N t_{1} t_{0} \in[05] \\
N t_{0} t_{1} t_{6} t_{6} & \in[01] \\
t_{0} t_{1} t_{6} t_{7} & =t_{0} t_{4} t_{0} t_{5} \Longrightarrow N t_{0} t_{1} t_{6} t_{7}=N t_{0} t_{4} t_{0} t_{5} \in[0108] \\
t_{0} t_{1} t_{6} t_{8} & =c b^{-1} t_{6} t_{5} t_{0} \Longrightarrow N t_{0} t_{1} t_{6} t_{8}=N t_{6} t_{5} t_{0} \in[016] .
\end{aligned}
$$

$N t_{0} t_{1} t_{8} N$

Consider $N t_{0} t_{1} t_{8} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(018)}=N^{018}=\langle e\rangle$. Only identity (e) will fix 0,1 , and 8 .

Hence the number of single cosets living in $N t_{0} t_{1} t_{8} N$ is $\frac{|N|}{\left|N^{(018)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(018)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{8} t_{i}$ belongs to. We have:

$$
\begin{aligned}
t_{0} t_{1} t_{8} t_{1} & =c b^{-1} t_{0} t_{1} t_{0} t_{8} \Longrightarrow N t_{0} t_{1} t_{8} t_{1}=N t_{0} t_{1} t_{0} t_{8} \in[0108] \\
t_{0} t_{1} t_{8} t_{2} & =a t_{6} t_{5} t_{8} \Longrightarrow N t_{0} t_{1} t_{8} t_{2}=N t_{6} t_{5} t_{8} \in[012] \\
t_{0} t_{1} t_{8} t_{0} & =b c t_{0} t_{1} t_{2} \Longrightarrow N t_{0} t_{1} t_{8} t_{0}=N t_{0} t_{1} t_{2} \in[012] \\
t_{0} t_{1} t_{8} t_{4} & =b^{-1} c t_{8} t_{7} t_{6} t_{5} \Longrightarrow N t_{0} t_{1} t_{8} t_{4}=N t_{8} t_{7} t_{6} t_{5} \in[0187] \\
t_{0} t_{1} t_{8} t_{5} & =b^{-1} d t_{6} t_{8} t_{0} \Longrightarrow N t_{0} t_{1} t_{8} t_{5}=N t_{6} t_{8} t_{0} \in[016] \\
t_{0} t_{1} t_{8} t_{6} & =b c^{-1} t_{2} t_{1} \Longrightarrow N t_{0} t_{1} t_{8} t_{6}=N t_{2} t_{1} \in[05] \\
N t_{0} t_{1} t_{8} t_{7} & \in[0187] \\
N t_{0} t_{1} t_{8} t_{8} & \in[01] .
\end{aligned}
$$

The new double coset is $N t_{0} t_{1} t_{8} t_{7} N$, denoted by [0187].

$N t_{0} t_{5} t_{0} N$

Consider $N t_{0} t_{5} t_{0} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(050)}=N^{050}=\langle e\rangle$. Only identity (e) will fix 0 , and 5 . Hence the number of single cosets living in $N t_{0} t_{5} t_{0} N$ is $\frac{|N|}{\left|N^{(050)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(050)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{5} t_{0} t_{i}$ belongs to. We have:

$$
\begin{aligned}
t_{0} t_{5} t_{0} t_{1} & =t_{6} t_{5} t_{6} \Longrightarrow N t_{0} t_{5} t_{0} t_{1}=N t_{6} t_{5} t_{6} \in[010] \\
t_{0} t_{5} t_{0} t_{2} & =b^{-1} d t_{5} t_{0} t_{5} \Longrightarrow N t_{0} t_{5} t_{0} t_{2}=N t_{5} t_{3} t_{5} \in[010] \\
N t_{0} t_{5} t_{0} t_{0} & \in[05] \\
t_{0} t_{5} t_{0} t_{4} & =a t_{7} t_{5} t_{7} t_{6} \Longrightarrow N t_{0} t_{5} t_{0} t_{4}=N t_{7} t_{5} t_{7} t_{6} \in[0108] \\
t_{0} t_{5} t_{0} t_{5} & =a t_{0} t_{1} t_{0} t_{1} \Longrightarrow N t_{0} t_{5} t_{0} t_{5}=N t_{0} t_{1} t_{0} t_{1} \in[0101] \\
t_{0} t_{5} t_{0} t_{6} & =t_{1} t_{6} t_{5} \Longrightarrow N t_{0} t_{5} t_{0} t_{6}=N t_{1} t_{6} t_{5} \in[016]
\end{aligned}
$$

$$
\begin{aligned}
& t_{0} t_{5} t_{0} t_{7}=d b^{-1} t_{4} t_{1} t_{4} t_{6} \Longrightarrow N t_{0} t_{5} t_{0} t_{7}=N t_{4} t_{1} t_{4} t_{6} \in[0102] \\
& t_{0} t_{5} t_{0} t_{8}=c b^{-1} t_{1} t_{6} t_{1} t_{2} \Longrightarrow N t_{0} t_{5} t_{0} t_{8}=N t_{1} t_{6} t_{1} t_{2} \in[0104] .
\end{aligned}
$$

$N t_{0} t_{1} t_{0} t_{1} N$

Consider $N t_{0} t_{1} t_{0} t_{1} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(0101)}=N^{0101}=\langle e\rangle$. But $N t_{0} t_{1} t_{0} t_{1}$ is not distinct. We have $N t_{0} t_{1} t_{0} t_{1}=N t_{0} t_{2} t_{0} t_{2}=N t_{0} t_{4} t_{0} t_{4}$. Thus, there exist $\left\{n \in N \mid N\left(t_{0} t_{1} t_{0} t_{1}\right)^{n}=\right.$ $\left.N t_{0} t_{2} t_{0} t_{2}=N t_{0} t_{4} t_{0} t_{4}\right\}$ such that

$$
\begin{gathered}
N t_{0} t_{1} t_{0} t_{1}^{(1,2,4)(5,8,7)}=N t_{0} t_{2} t_{0} t_{2} \Longrightarrow(1,2,4)(5,8,7) \in N^{(0101)} \\
N t_{0} t_{2} t_{0} t_{2}^{(1,2,4)(5,8,7)}=N t_{0} t_{4} t_{0} t_{4} \Longrightarrow(1,2,4)(5,8,7) \in N^{(0101)} \\
\Longrightarrow N t_{0} t_{1} t_{0} t_{1}=N t_{0} t_{2} t_{0} t_{2}=N t_{0} t_{4} t_{0} t_{4} .
\end{gathered}
$$

Thus, $(1,2,4)(5,8,7) \in N^{(0101)}$. We conclude:

$$
N^{(0101)} \geq<(1,2,4)(5,8,7)>
$$

so the number of the single cosets in $N t_{0} t_{1} t_{0} t_{1} N$ is $\frac{|N|}{\left|N^{(0101)}\right|}=\frac{24}{3}=8$. Furthermore, the orbits of $N^{(0101)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7} t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1,2,4\},\{5,8,7\},\{0\},\{6\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{0} t_{1} t_{i}$ belongs to. We have:

$$
\begin{aligned}
N t_{0} t_{1} t_{0} t_{1} t_{1} & \in[010] \\
t_{0} t_{1} t_{0} t_{1} t_{5} & =a t_{0} t_{5} t_{0} \Longrightarrow N t_{0} t_{1} t_{0} t_{1} t_{5}=N t_{0} t_{5} t_{0} \in[050] \\
N t_{0} t_{1} t_{0} t_{1} t_{0} & \in[01010] \\
t_{0} t_{1} t_{0} t_{1} t_{6} & =a t_{0} t_{1} t_{0} t_{1} \Longrightarrow N t_{0} t_{1} t_{0} t_{1} t_{6}=N t_{0} t_{1} t_{0} t_{1} \in[0101]
\end{aligned}
$$

The new double coset is $N t_{0} t_{1} t_{0} t_{1} t_{0} N$, denoted by [01010].

$N t_{0} t_{1} t_{0} t_{2} N$

Consider $N t_{0} t_{1} t_{0} t_{2} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(0102)}=N^{0102}=\langle e\rangle$. Only identity (e) will fix 0,1 , and 2. Hence the number of single cosets living in $N t_{0} t_{1} t_{0} t_{2} N$ is $\frac{|N|}{\left|N^{(0102)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(0102)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{0} t_{2} t_{i}$ belongs
to. We have:

$$
\begin{aligned}
t_{0} t_{1} t_{0} t_{2} t_{1} & =c b^{-1} t_{5} t_{0} t_{8} \Longrightarrow N t_{0} t_{1} t_{0} t_{2} t_{1}=N t_{5} t_{0} t_{8} \in[014] \\
N t_{0} t_{1} t_{0} t_{2} t_{2} & \in[010] \\
t_{0} t_{1} t_{0} t_{2} t_{0} & =b c t_{0} t_{1} t_{0} t_{8} \Longrightarrow N t_{0} t_{1} t_{0} t_{2} t_{0}=N t_{0} t_{1} t_{0} t_{8} \in[0108] \\
t_{0} t_{1} t_{0} t_{2} t_{4} & =c d^{-1} t_{0} t_{2} t_{0} t_{1} \Longrightarrow N t_{0} t_{1} t_{0} t_{2} t_{4}=N t_{0} t_{2} t_{0} t_{1} \in[0104] \\
t_{0} t_{1} t_{0} t_{2} t_{5} & =t_{2} t_{5} t_{6} \Longrightarrow N t_{0} t_{1} t_{0} t_{2} t_{5}=N t_{2} t_{5} t_{6} \in[014] \\
t_{0} t_{1} t_{0} t_{2} t_{6} & =b c t_{8} t_{5} t_{8} \Longrightarrow N t_{0} t_{1} t_{0} t_{2} t_{6}=N t_{8} t_{5} t_{8} \in[050] \\
t_{0} t_{1} t_{0} t_{2} t_{7} & =b t_{5} t_{3} t_{7} t_{2} \Longrightarrow N t_{0} t_{1} t_{0} t_{2} t_{7}=N t_{5} t_{3} t_{7} t_{2} \in[0187] \\
t_{0} t_{1} t_{0} t_{2} t_{8} & =a t_{6} t_{5} t_{6} t_{2} \Longrightarrow N t_{0} t_{1} t_{0} t_{2} t_{8}=N t_{6} t_{5} t_{6} t_{2} \in[0108] .
\end{aligned}
$$

$N t_{0} t_{1} t_{0} t_{4} N$

Consider $N t_{0} t_{1} t_{0} t_{4} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(0104)}=N^{0104}=\langle e\rangle$. Only identity (e) will fix 0,1 , and 4. Hence the number of single cosets living in $N t_{0} t_{1} t_{0} t_{4} N$ is $\frac{|N|}{\left|N^{(0104)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(0104)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{0} t_{4} t_{i}$ belongs to. We have:

$$
\begin{aligned}
t_{0} t_{1} t_{0} t_{4} t_{1} & =d^{-1} b^{-1} t_{7} t_{5} t_{0} \Longrightarrow N t_{0} t_{1} t_{0} t_{4} t_{1}=N t_{7} t_{5} t_{0} \in[012] \\
t_{0} t_{1} t_{0} t_{4} t_{2} & =c t_{0} t_{4} t_{0} t_{1} \Longrightarrow N t_{0} t_{1} t_{0} t_{4} t_{2}=N t_{0} t_{4} t_{0} t_{1} \in[0102] \\
t_{0} t_{1} t_{0} t_{4} t_{0} & =t_{4} t_{6} t_{4} t_{1} \Longrightarrow N t_{0} t_{1} t_{0} t_{4} t_{0}=N t_{4} t_{6} t_{4} t_{1} \in[0104] \\
N t_{0} t_{1} t_{0} t_{4} t_{4} & \in[010] \\
t_{0} t_{1} t_{0} t_{4} t_{5} & =t_{5} t_{4} t_{5} t_{3} \Longrightarrow N t_{0} t_{1} t_{0} t_{4} t_{5}=N t_{5} t_{4} t_{5} t_{3} \in[0104] \\
t_{0} t_{1} t_{0} t_{4} t_{6} & =d b^{-1} t_{1} t_{6} t_{7} \Longrightarrow N t_{0} t_{1} t_{0} t_{4} t_{6}=N t_{1} t_{6} t_{7} \in[012] \\
t_{0} t_{1} t_{0} t_{4} t_{7} & =b d t_{5} t_{6} t_{5} \Longrightarrow N t_{0} t_{1} t_{0} t_{4} t_{7}=N t_{5} t_{6} t_{5} \in[050] \\
t_{0} t_{1} t_{0} t_{4} t_{8} & =d b^{-1} t_{7} t_{2} t_{5} t_{6} \Longrightarrow N t_{0} t_{1} t_{0} t_{4} t_{8}=N t_{7} t_{2} t_{5} t_{6} \in[0187] .
\end{aligned}
$$

$N t_{0} t_{1} t_{0} t_{8} N$

Consider $N t_{0} t_{1} t_{0} t_{8} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(0108)}=N^{0108}=\langle e\rangle$. Only identity (e) will fix 0,1 , and 8. Hence the number of single cosets living in $N t_{0} t_{1} t_{0} t_{8} N$ is $\frac{|N|}{\left|N^{(0108)}\right|}=\frac{24}{1}=24$.

The orbits of $N^{(0108)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{0} t_{8} t_{i}$ belongs to. We have:

$$
\begin{aligned}
t_{0} t_{1} t_{0} t_{8} t_{1} & =b c^{-1} t_{0} t_{1} t_{8} \Longrightarrow N t_{0} t_{1} t_{0} t_{8} t_{1}=N t_{0} t_{1} t_{8} \in[018] \\
t_{0} t_{1} t_{0} t_{8} t_{2} & =a t_{6} t_{5} t_{6} t_{8} \Longrightarrow N t_{0} t_{1} t_{0} t_{8} t_{2}=N t_{6} t_{5} t_{6} t_{8} \in[0102] \\
t_{0} t_{1} t_{0} t_{8} t_{0} & =b^{-1} d t_{0} t_{1} t_{0} t_{2} \Longrightarrow N t_{0} t_{1} t_{0} t_{8} t_{0}=N t_{0} t_{1} t_{0} t_{2} \in[0102] \\
t_{0} t_{1} t_{0} t_{8} t_{4} & =d b^{-1} t_{7} t_{2} t_{5} t_{6} \Longrightarrow N t_{0} t_{1} t_{0} t_{8} t_{4}=N t_{7} t_{2} t_{5} t_{6} \in[0127] \\
t_{0} t_{1} t_{0} t_{8} t_{5} & =t_{0} t_{2} t_{6} \Longrightarrow N t_{0} t_{1} t_{0} t_{8} t_{5}=N t_{0} t_{2} t_{6} \in[016] \\
t_{0} t_{1} t_{0} t_{8} t_{6} & =a t_{2} t_{1} t_{2} \Longrightarrow N t_{0} t_{1} t_{0} t_{8} t_{6}=N t_{2} t_{1} t_{2} \in[050] \\
t_{0} t_{1} t_{0} t_{8} t_{7} & =a b t_{1} t_{6} t_{7} t_{8} \Longrightarrow N t_{0} t_{1} t_{0} t_{8}=N t_{1} t_{6} t_{7} \in[0127] \\
N t_{0} t_{1} t_{0} t_{8} t_{8} & \in[010] .
\end{aligned}
$$

$N t_{0} t_{1} t_{2} t_{7} N$

Consider $N t_{0} t_{1} t_{2} t_{7} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(0127)}=N^{0127}=\langle e\rangle$. Only identity (e) will fix $0,1,7$, and 2. Hence the number of single cosets living in $N t_{0} t_{1} t_{2} t_{7} N$ is $\frac{|N|}{\left|N^{(0127)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(0127)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{2} t_{7} t_{i}$ belongs to. We have:

$$
\begin{aligned}
& t_{0} t_{1} t_{2} t_{7} t_{1}=a t_{7} t_{5} t_{0} t_{8} \Longrightarrow N t_{0} t_{1} t_{2} t_{7} t_{1}=N t_{7} t_{5} t_{0} t_{8} \in[0127] \\
& t_{0} t_{1} t_{2} t_{7} t_{2}=b^{-1} c t_{5} t_{0} t_{5} t_{7} \Longrightarrow N t_{0} t_{1} t_{2} t_{7} t_{2}=N t_{5} t_{0} t_{5} t_{7} \in[0108] \\
& t_{0} t_{1} t_{2} t_{7} t_{0}=d^{-1} b^{-1} t_{2} t_{4} t_{6} t_{1} \Longrightarrow N t_{0} t_{1} t_{2} t_{7} t_{0}=N t_{2} t_{4} t_{6} t_{1} \in[0127] \\
& t_{0} t_{1} t_{2} t_{7} t_{4}=b^{-1} a t_{6} t_{8} t_{5} \Longrightarrow N t_{0} t_{1} t_{2} t_{7} t_{4}=N t_{6} t_{8} t_{5} \in[014] \\
& t_{0} t_{1} t_{2} t_{7} t_{5}=a t_{2} t_{5} t_{4} t_{2} \Longrightarrow N t_{0} t_{1} t_{2} t_{7} t_{5}=N t_{2} t_{5} t_{4} t_{3} \in[0127] \\
& t_{0} t_{1} t_{2} t_{7} t_{6}=c b t_{4} t_{8} t_{4} t_{5} \Longrightarrow N t_{0} t_{1} t_{2} t_{7} t_{6}=N t_{4} t_{8} t_{4} t_{5} \in[0108] \\
& N t_{0} t_{1} t_{2} t_{7} t_{7} \in[012] \\
& t_{0} t_{1} t_{2} t_{7} t_{8}=b a t_{8} t_{7} t_{0} t_{5} \Longrightarrow N t_{0} t_{1} t_{2} t_{7} t_{8}=N t_{8} t_{7} t_{0} t_{5} \in[0127] . \\
& N t_{0} t_{1} t_{8} t_{7} N
\end{aligned}
$$

Consider $N t_{0} t_{1} t_{8} t_{7} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(0187)}=N^{0187}=\langle e\rangle$. Only identity (e) will fix 0,1 , 7 , and 8. Hence the number of single cosets living in $N t_{0} t_{1} t_{8} t_{7} N$ is $\frac{|N|}{\left|N^{(0187)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(0187)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{1} t_{8} t_{7} t_{i}$ belongs to. We have:

$$
\begin{aligned}
t_{0} t_{1} t_{8} t_{7} t_{1} & =b c t_{8} t_{7} t_{6} t_{5} \Longrightarrow N t_{0} t_{1} t_{8} t_{7} t_{1}=N t_{8} t_{7} t_{6} t_{5} \in[0187] \\
t_{0} t_{1} t_{8} t_{7} t_{2} & =b^{-1} d^{-1} t_{5} t_{4} t_{5} t_{3} \Longrightarrow N t_{0} t_{1} t_{8} t_{7} t_{2}=N t_{5} t_{4} t_{5} t_{3} \in[0104] \\
t_{0} t_{1} t_{8} t_{7} t_{0} & =b d^{-1} t_{6} t_{7} t_{1} t_{2} \Longrightarrow N t_{0} t_{1} t_{8} t_{7} t_{0}=N t_{6} t_{7} t_{1} t_{2} \in[0187] \\
t_{0} t_{1} t_{8} t_{7} t_{4} & =b^{-1} c^{-1} t_{2} t_{4} t_{3} t_{1} \Longrightarrow N t_{0} t_{1} t_{8} t_{7} t_{4}=N t_{2} t_{4} t_{3} t_{1} \in[0187] \\
t_{0} t_{1} t_{8} t_{7} t_{5} & =b c^{-1} t_{2} t_{4} t_{0} \Longrightarrow N t_{0} t_{1} t_{8} t_{7} t_{5}=N t_{2} t_{4} t_{0} \in[018] \\
t_{0} t_{1} t_{8} t_{7} t_{6} & =b^{-1} d t_{6} t_{8} t_{4} t_{1} \Longrightarrow N t_{0} t_{1} t_{8} t_{7} t_{6}=N t_{6} t_{8} t_{4} \in[0187] \\
N t_{0} t_{1} t_{8} t_{7} t_{7} & \in[018] \\
N t_{0} t_{1} t_{8} t_{7} t_{8} & =b^{-1} c^{-1} t_{1} t_{6} t_{1} t_{7} \Longrightarrow t_{0} t_{1} t_{8} t_{7} t_{8}=N t_{1} t_{6} t_{1} t_{7} \in[0102] .
\end{aligned}
$$

$N t_{0} t_{1} t_{0} t_{1} t_{0} N$

Now $N t_{0} t_{1} t_{0} t_{1} t_{0} N$ is indeed a new double coset. We determine how many single cosets are in this double coset. We have $\left.N^{(01010)}=N^{01010}=<e\right\rangle$. $N t_{0} t_{1} t_{0} t_{1} t_{0}$ has twenty four names. We have the following:

$$
\begin{gathered}
N t_{0} t_{1} t_{0} t_{1}^{(1,2,4)(5,8,7)}=N t_{0} t_{2} t_{0} t_{2} t_{0} \Longrightarrow(1,2,4)(5,8,7) \in N^{(01010)} \\
N t_{0} t_{2} t_{0} t_{2}^{(1,4,5,7)(2,6,8,0)}=N t_{2} t_{6} t_{2} t_{6} t_{2} \Longrightarrow(1,4,5,7)(2,6,8,0) \in N^{(01010)}
\end{gathered}
$$

Therefore, $N^{(01010)}=n \in N \mid N(01010)^{n}=N(01010)$.
Thus, $N^{(01010)} \geq<(1,2,4)(5,8,7),(1,4,5,7)(2,6,8,0)>$ then $N^{(01010)}=N$.
Hence $\left|N^{(01010)}\right|=24$, so the number of single cosets in $N^{(01010)}$ is $\frac{|N|}{\left|N^{(01010)}\right|}=\frac{24}{24}=1$. The orbit of $N^{(01010)}$ on $\{1,2,0,4,5,6,7,8\}$ is $\{1,2,0,4,5,6,7,8\}$. Take a representative from this orbit, say t_{0}. Hence $N t_{0} t_{1} t_{0} t_{1} t_{0} t_{0} \in[0101]$. Therefore, eight symmetric generators will go back to $N t_{0} t_{1} t_{0} t_{1} N$.

We have completed the double coset enumeration since the set of right cosets is closed under right multiplication, hence, the index of N in G is 330 . We conclude:

$$
G=N \cup N t_{0} N \cup N t_{0} t_{1} N \cup N t_{0} t_{5} N \cup N t_{0} t_{1} t_{0} N \cup N t_{0} t_{1} t_{2} N \cup N t_{0} t_{1} t_{4} N \cup
$$

$N t_{0} t_{1} t_{6} N \cup N t_{0} t_{1} t_{8} N \cup N t_{0} t_{5} t_{0} N \cup N t_{0} t_{1} t_{0} t_{1} N \cup N t_{0} t_{1} t_{0} t_{2} N \cup N t_{0} t_{1} t_{0} t_{4} N \cup N t_{0} t_{1} t_{0} t_{8} N \cup$
$N t_{0} t_{1} t_{2} t_{7} N \cup N t_{0} t_{1} t_{8} t_{7} N \cup N t_{0} t_{1} t_{0} t_{1} t_{0} N$, where

$$
\begin{aligned}
& G \cong 2^{* 8}: S_{4} /\left(c t^{c}\right)^{6},\left(a b t^{c b^{-1}}\right)^{6},\left(a b^{-1} t\right)^{3}, b d t c^{-1} t c d^{-1} t d t c^{-1} t, \\
& \quad \quad b d t d t c t d^{-1} t b^{-1} c t c t d t c^{-1} t, b c t c t d^{-1} t c t d^{-1} t d^{-1} t b^{-1} c^{-1} t c^{-1} t \\
& |G| \leq\left(|N|+\frac{|N|}{N^{(0)}}+\frac{|N|}{N^{(01)}}+\frac{|N|}{N^{(05)}}+\frac{|N|}{N^{(010)}}+\frac{|N|}{N^{(012)}}+\frac{|N|}{N^{(014)}}+\frac{|N|}{N^{(016)}}+\frac{|N|}{N^{(018)}}+\right. \\
& \left.\frac{|N|}{N^{(0050)}}+\frac{|N|}{N^{(0101)}}+\frac{|N|}{N^{(0102)}}+\frac{|N|}{N^{(0104)}}+\frac{|N|}{N^{(0108)}}+\frac{|N|}{N^{(0127)}}+\frac{|N| \mid}{N^{(0187)}}+\frac{|N|}{N^{(01010)}}\right) \times|N| \\
& |G| \leq(1+8+24+24+24+24+24+24+24+24+8+24+24+24+24+24+1) \times 24 \\
& |G| \leq 330 \times 24 \\
& |G| \leq 7920 .
\end{aligned}
$$

A Cayley diagram that summarizes the above information is given below:

Figure 6.1: Cayley Diagram of M_{11} over S_{4}

Our goal is to apply Iwasawa's lemma to prove that $G \cong M_{11}$ over S_{4} is a simple group. However, by inspection, we can see from the Cayley diagram that Iwasawa's lemma fails since we have imprimitive blocks of size 2 . Thus, $G \cong M_{11}$ over S_{4} is not a simple group.

In the next section, we will look at the maximal subgroup of $G \cong M_{11}$ and construct a Cayley diagram of M_{11} over M.

6.3 Construction of M_{11} over $M=2 \cdot S_{4}$

We start by factoring the progenitor $2^{* 8}: S_{4}$ by the relations
$\left(c t^{c}\right)^{6},\left(a b t^{c b^{-1}}\right)^{6},\left(a b^{-1} t\right)^{3}$,
$b d t c^{-1} t c d^{-1} t d t c^{-1} t, b d t d t c t d^{-1} t b^{-1} c t c t d t c^{-1} t, b c t c t d^{-1} t c t d^{-1} t d^{-1} t b^{-1} c^{-1} t c^{-1} t$
to obtain the homomorphic image $G \cong M_{11}$, where
$a \sim(1,5)(2,8)(3,6)(4,7), b \sim(1,2,4)(5,8,7), c \sim(1,4,5,7)(2,6,8,3)$,
$d \sim(1,3,5,6)(2,4,8,7)$, and $t \sim t_{0} \sim t_{3}$. In the previous section, we expanded the above relations.

Let M be the group generated by the control group $N=S_{4}$ and $d t_{0} t_{5} t_{0} t_{5} t_{0}=$ $d * t * d^{-} 1 * t * d * t * d^{-} 1 * t * d * t$. That is,

$$
M=\left\langle N, d t_{0} t_{5} t_{0} t_{5} t_{0}\right\rangle,=2 S_{4} \text { where }|M|=48
$$

Then M is the maximal subgroup.
We decompose G into the double cosets $M w N$, where w is a word in $t_{i}^{\prime} s$, via double coset enumeration.

We proceed to do a manual double coset enumeration of G over M and N. Denote $[w]$ to be the double coset $M w N$, where w is a word in the $t_{i}^{\prime} s$.

MeN

We begin with the double coset $M e N$, denote [*]. This double coset contains only one single coset, namely M. The single coset stabilizer of M is N, which is transitive on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ and therefore has a single orbit,

$$
\mathcal{O}=\{\{1,2,0,4,5,6,7,8\}\}
$$

Take an element from \mathcal{O} say t_{0} and multiply the single coset representative M by it to obtain $M t_{0}$. This is a new double coset $M t_{0} N$, denote it [0].

$M t_{0} N$

In order to find how many single cosets [0] contains, we must first find the coset stabiliser $N^{(0)}$. Then the number of single coset in [0] is equal to $\frac{|N|}{\left|N^{(0)}\right|}$. Now,

$$
N^{(0)}=N^{0}=<(1,2,4)(5,8,7)>
$$

so the number of the single cosets in $M t_{0} N$ is $\frac{|N|}{\left|N^{(0)}\right|}=\frac{24}{3}=8$. Furthermore, the orbits of $N^{(0)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7} t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1,2,4\},\{5,8,7\},\{0\},\{6\}\} .
$$

We take t_{1}, t_{5}, t_{0}, and t_{6} from each orbit, respectively and to see which double coset $M t_{0} t_{1}, M t_{0} t_{5}, M t_{0} t_{0}$, and $M t_{0} t_{6}$ belong to. We have:

$$
\begin{aligned}
M t_{0} t_{1} & \in[01], \\
M t_{0} t_{5} & \in[05], \\
M t_{0} t_{0} & =M \in[*], \\
a t_{0} t_{6} & =t_{0} \Longrightarrow M t_{0} t_{6}=M t_{0} \in[0] .
\end{aligned}
$$

The new double cosets have single coset representatives $M t_{0} t_{1}$ and $M t_{0} t_{5}$, which we represent them as [01] and [05] respectively.

$$
M t_{0} t_{1} N
$$

Consider $M t_{0} t_{1} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(01)}=N^{01}=\langle e\rangle$. Only identity (e) will fix 0 and 1 . Hence the number of single cosets living in $M t_{0} t_{1} N$ is $\frac{|N|}{\left|N^{(01)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(01)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $M t_{0} t_{1} t_{i}$ belongs to. We have:

$$
\begin{aligned}
M t_{0} t_{1} t_{1} & \in[0], \\
M t_{0} t_{1} t_{2} & \in[012], \\
t_{0} t_{1} t_{0} & =t_{0} t_{1} t_{0} t_{1} t_{0} t_{0} t_{1} \Longrightarrow M t_{0} t_{1} t_{0}=M t_{0} t_{1} t_{0} \in[01], \\
M t_{0} t_{1} t_{4} & \in[014] \\
t_{0} t_{1} t_{5} & =a t_{6} t_{1} \Longrightarrow M t_{0} t_{1} t_{5}=M t_{6} t_{1} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\}, \\
M t_{0} t_{1} t_{6} & \in[016],
\end{aligned}
$$

$$
\begin{aligned}
t_{0} t_{1} t_{7} & =d b^{-1} t_{1} t_{0} \Longrightarrow N t_{0} t_{1} t_{7}=N t_{1} t_{0} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\}, \\
M t_{0} t_{1} t_{8} & \in[018] .
\end{aligned}
$$

The new double coset are $M t_{0} t_{1} t_{2} N, M t_{0} t_{1} t_{4} N, M t_{0} t_{1} t_{6} N$ and $M t_{0} t_{1} t_{8} N$, which we represent them as [012], [014], [016], and [018] respectively.

$M t_{0} t_{5} N$

Consider $M_{0} t_{5} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(05)}=N^{05}=\langle e\rangle$. Only identity (e) will fix 0 and 5 . Hence the number of single cosets living in $M t_{0} t_{5} N$ is $\frac{|N|}{\left|N^{(05)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(05)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $M t_{0} t_{5} t_{i}$ belongs to. We have:

$$
\begin{aligned}
t_{0} t_{5} t_{1} & =a t_{6} t_{5} \Longrightarrow M t_{0} t_{5} t_{1}=M t_{6} t_{5} \in[01]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
t_{0} t_{5} t_{2} & =b c t_{5} t_{0} \Longrightarrow M t_{0} t_{5} t_{2}=M t_{5} t_{0} \in[01]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\}, \\
t_{0} t_{5} t_{0} & =t_{0} t_{5} t_{0} t_{5} t_{0} t_{0} t_{5} \Longrightarrow M t_{0} t_{5} t_{0}=M t_{0} t_{5} \in[05] \\
& \left(\text { since }\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \text { and } t_{0} t_{5} t_{0} t_{5} t_{0} \in M\right), \\
t_{0} t_{5} t_{4} & =d^{-1} b^{-1} t_{7} t_{5} t_{6} \Longrightarrow M t_{0} t_{5} t_{4}=M t_{7} t_{5} t_{6} \in[018]=\left\{N\left(t_{0} t_{1} t_{8}\right)^{n} \mid n \in N\right\}, \\
M t_{0} t_{5} t_{5} & =M t_{0} \in[0] \\
t_{0} t_{5} t_{6} & =a t_{5} t_{0} t_{1} \Longrightarrow M t_{0} t_{5} t_{6}=M t_{5} t_{0} t_{1} \in[016]=\left\{N\left(t_{0} t_{1} t_{6}\right)^{n} \mid n \in N\right\}, \\
t_{0} t_{5} t_{7} & =t_{4} t_{1} t_{6} \Longrightarrow M t_{0} t_{1} t_{7}=M t_{4} t_{1} t_{6} \in[012]=\left\{N\left(t_{0} t_{1} t_{2}\right)^{n} \mid n \in N\right\}, \\
t_{0} t_{5} t_{8} & =b c^{-1} t_{1} t_{6} t_{2} \Longrightarrow M t_{0} t_{5} t_{8}=M t_{1} t_{6} t_{2} \in[014]=\left\{N\left(t_{0} t_{1} t_{4}\right)^{n} \mid n \in N\right\} .
\end{aligned}
$$

$M t_{0} t_{1} t_{2} N$

Consider $M t_{0} t_{1} t_{2} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(012)}=N^{012}=\langle e\rangle$. Only identity (e) will fix 0,1 , and 2 . Hence the number of single cosets living in $M t_{0} t_{1} t_{2} N$ is $\frac{|N|}{\left|N^{(012)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(012)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $M t_{0} t_{1} t_{2} t_{i}$ belongs
to. We have:

$$
\begin{aligned}
t_{0} t_{1} t_{2} t_{1} & =t_{0} t_{2} t_{0} t_{2} t_{0} t_{5} t_{0} t_{8} \Longrightarrow M t_{0} t_{1} t_{2} t_{1}=M t_{0} t_{5} t_{8} \in[014] \\
& \left(\text { since }\left\{N\left(t_{0} t_{1} t_{4}\right)^{n} \mid n \in N\right\} \text { and } t_{0} t_{2} t_{0} t_{2} \in M\right), \\
M t_{0} t_{1} t_{2} t_{2} & \in[01] \\
t_{0} t_{1} t_{2} t_{0} & =b^{-1} d t_{0} t_{1} t_{8} \Longrightarrow M t_{0} t_{1} t_{2} t_{0}=M t_{0} t_{1} t_{8} \in[018]=\left\{N\left(t_{0} t_{1} t_{8}\right)^{n} \mid n \in N\right\}, \\
t_{0} t_{1} t_{2} t_{4} & =b^{-1} t_{0} t_{2} t_{1} \Longrightarrow M t_{0} t_{1} t_{2} t_{4}=M t_{0} t_{2} t_{1} \in[014]=\left\{N\left(t_{0} t_{1} t_{4}\right)^{n} \mid n \in N\right\}, \\
t_{0} t_{1} t_{2} t_{5} & =t_{0} t_{1} t_{0} t_{1} t_{0} t_{2} t_{5} t_{6} \Longrightarrow M t_{0} t_{1} t_{2} t_{5}=M t_{2} t_{5} t_{6} \in[014] \\
& \left(\text { since }\left\{N\left(t_{0} t_{1} t_{4}\right)^{n} \mid n \in N\right\} \text { and } t_{0} t_{1} t_{0} t_{1} t_{0} \in M\right), \\
t_{0} t_{1} t_{2} t_{6} & =t_{8} t_{5} \Longrightarrow M t_{0} t_{1} t_{2} t_{6}=M t_{8} t_{5} \in[05]==\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\}, \\
M t_{0} t_{1} t_{2} t_{7} & \in[0127] \\
t_{0} t_{1} t_{2} t_{8} & =a t_{0} t_{5} t_{2} \Longrightarrow M t_{0} t_{1} t_{2} t_{8}=M t_{0} t_{5} t_{2} \in[018]=\left\{N\left(t_{0} t_{1} t_{8}\right)^{n} \mid n \in N\right\} .
\end{aligned}
$$

The new double coset is $M t_{0} t_{1} t_{2} t_{7} N$, denoted by [0127].

$M t_{0} t_{1} t_{4} N$

Consider $M t_{0} t_{1} t_{4} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(014)}=N^{014}=\langle e\rangle$. Only identity (e) will fix 0,1 , and 4 . Hence the number of single cosets living in $M t_{0} t_{1} t_{4} N$ is $\frac{|N|}{\left|N^{(014)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(014)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $M t_{0} t_{1} t_{4} t_{i}$ belongs to. We have:

$$
\begin{aligned}
t_{0} t_{1} t_{4} t_{1} & =c t_{0} t_{8} t_{0} t_{8} t_{0} t_{7} t_{5} t_{0} \Longrightarrow M t_{0} t_{1} t_{4} t_{1}=M t_{7} t_{5} t_{0} \in[012] \\
& \left(\text { since }\left\{N\left(t_{0} t_{1} t_{2}\right)^{n} \mid n \in N\right\} \text { and } c t_{0} t_{8} t_{0} t_{8} t_{0} \in M\right), \\
t_{0} t_{1} t_{4} t_{2} & =b t_{0} t_{4} t_{1} \Longrightarrow M t_{0} t_{1} t_{4} t_{2}=M t_{0} t_{4} t_{1} \in[012]=\left\{N\left(t_{0} t_{1} t_{2}\right)^{n} \mid n \in N\right\}, \\
t_{0} t_{1} t_{4} t_{0} & =b d^{-1} t_{4} t_{6} t_{1} \Longrightarrow M t_{0} t_{1} t_{4} t_{0}=M t_{4} t_{6} t_{1} \in[014] \\
M t_{0} t_{1} t_{4} t_{4} & \in[01] \\
t_{0} t_{1} t_{4} t_{5} & =d b^{-1} t_{5} t_{4} t_{3} \Longrightarrow M t_{0} t_{1} t_{4} t_{5}=M t_{5} t_{4} t_{3} \in[014]=\left\{N\left(t_{0} t_{1} t_{4}\right)^{n} \mid n \in N\right\},
\end{aligned}
$$

$$
\begin{aligned}
& t_{0} t_{1} t_{4} t_{6}=c t_{0} t_{2} t_{0} t_{2} t_{0} t_{1} t_{6} t_{7} \Longrightarrow M t_{0} t_{1} t_{4} t_{6}=M t_{1} t_{6} t_{7} \in[012] \\
& \quad\left(\text { since }\left\{N\left(t_{0} t_{1} t_{2}\right)^{n} \mid n \in N\right\} \text { and } c t_{0} t_{2} t_{0} t_{2} t_{0} \in M\right) \\
& t_{0} t_{1} t_{4} t_{7}=d^{-1} b^{-1} t_{5} t_{6} \Longrightarrow M t_{0} t_{1} t_{4} t_{7}=M t_{5} t_{6} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{1} t_{4} t_{8}=b a t_{6} t_{7} t_{5} t_{2} \Longrightarrow M t_{0} t_{1} t_{4} t_{8}=M t_{6} t_{7} t_{5} t_{2} \in[0127]=\left\{N\left(t_{0} t_{1} t_{2} t_{7}\right)^{n} \mid n \in N\right\} . \\
& \boldsymbol{M} \boldsymbol{t}_{\mathbf{0}} \boldsymbol{t}_{\mathbf{1}} \boldsymbol{t}_{\mathbf{6}} \boldsymbol{N}
\end{aligned}
$$

Consider $M t_{0} t_{1} t_{6} N$ is a new double coset. We determine how many single cosets are in the double coset. However,

$$
M t_{0} t_{1} t_{6}=M t_{6} t_{5} t_{0}
$$

Then $N\left(t_{0} t_{1} t_{0}\right)^{(1,5)(2,8)(0,6)}=N t_{6} t_{5} t_{1}$. But $N t_{6} t_{5} t_{1}=N t_{0} t_{1} t_{6} \Longrightarrow(1,5)(2,8)(0,6) \in$ $N^{(015)}$ since $N\left(t_{0} t_{1} t_{5}\right)^{(0,6)(1,5)(2,4)}=N t_{6} t_{5} t_{1}$

$$
\Longrightarrow N^{(015)} \geq\langle(1,5)(2,8)(0,6)\rangle .
$$

Hence the number of single cosets living in $M t_{0} t_{1} t_{6} N$ is $\frac{|N|}{\left|N^{(016)}\right|}=\frac{24}{2}=24$. The orbits of $N^{(016)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1,5\},\{2,8\},\{0,6\},\{4,7\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $M t_{0} t_{1} t_{6} t_{i}$ belongs to. We have:

$$
\begin{aligned}
& t_{0} t_{1} t_{6} t_{1}=t_{0} t_{1} t_{0} t_{1} t_{0} t_{5} t_{6} \Longrightarrow M t_{0} t_{1} t_{6} t_{1}=M t_{5} t_{6} \in[05] \\
& \quad\left(\text { since }\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \text { and } t_{0} t_{1} t_{0} t_{1} t_{0} \in M\right) \\
& t_{0} t_{1} t_{6} t_{2}=t_{0} t_{8} t_{0} t_{8} t_{0} t_{0} t_{6} t_{1} t_{6} \Longrightarrow M t_{0} t_{1} t_{6} t_{2}=M t_{0} t_{1} t_{6} \in[016] \\
& \quad\left(\text { since }\left\{N\left(t_{0} t_{1} t_{6}\right)^{n} \mid n \in N\right\} \text { and } t_{0} t_{8} t_{0} t_{8} t_{0} \in M\right), \\
& t_{0} t_{1} t_{6} t_{4}=b d^{-1} t_{6} t_{7} t_{1} \Longrightarrow M t_{0} t_{1} t_{6} t_{5}=t_{6} t_{7} t_{1} \in[018]=\left\{N\left(t_{0} t_{1} t_{8}\right)^{n} \mid n \in N\right\}, \\
& M t_{0} t_{1} t_{6} t_{6} \in[01] .
\end{aligned}
$$

$M t_{0} t_{1} t_{8} N$

Consider $M t_{0} t_{1} t_{8} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(018)}=N^{018}=<e>$. Only identity (e) will fix 0,1 , and 8 . Hence the number of single cosets living in $M t_{0} t_{1} t_{8} N$ is $\frac{|N|}{\left|N^{(018)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(018)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $M t_{0} t_{1} t_{8} t_{i}$ belongs
to. We have:

$$
\begin{aligned}
& t_{0} t_{1} t_{8} t_{1}=b c t_{0} t_{2} t_{0} t_{2} t_{0} t_{0} t_{1} t_{8} \Longrightarrow M t_{0} t_{1} t_{8} t_{1}=M t_{0} t_{1} t_{0} t_{8} \in[018] \\
& \quad\left(\text { since }\left\{N\left(t_{0} t_{1} t_{8}\right)^{n} \mid n \in N\right\} \text { and } b c t_{0} t_{2} t_{0} t_{2} t_{0} \in M\right), \\
& t_{0} t_{1} t_{8} t_{2}=a t_{6} t_{5} t_{8} \Longrightarrow M t_{0} t_{1} t_{8} t_{2}=M t_{6} t_{5} t_{8} \in[012]=\left\{N\left(t_{0} t_{1} t_{2}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{1} t_{8} t_{0}=b c t_{0} t_{1} t_{2} \Longrightarrow M t_{0} t_{1} t_{8} t_{0}=M t_{0} t_{1} t_{2} \in[012]=\left\{N\left(t_{0} t_{1} t_{2}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{1} t_{8} t_{4}= \\
& \quad\left(t_{0} t_{2} t_{0} t_{2} t_{0} t_{7} t_{2} t_{5} t_{6} \Longrightarrow M t_{0} t_{1} t_{8} t_{4}=M t_{7} t_{2} t_{5} t_{6} \in[0127]\right. \\
& \quad\left(\text { since }\left\{N\left(t_{0} t_{1} t_{2} t_{7}\right)^{n} \mid n \in N\right\} \text { and } c t_{0} t_{2} t_{0} t_{2} t_{0} \in M\right), \\
& t_{0} t_{1} t_{8} t_{5}= \\
& \quad t_{0} t_{1} t_{0} t_{1} t_{0} t_{0} t_{2} t_{6} \Longrightarrow M t_{0} t_{1} t_{8} t_{5}=M t_{0} t_{2} t_{6} \in[016] \\
& \quad\left(\text { since }\left\{N\left(t_{0} t_{1} t_{6}\right)^{n} \mid n \in N\right\} \text { and } t_{0} t_{1} t_{0} t_{1} t_{0} \in M\right), \\
& t_{0} t_{1} t_{8} t_{6}=b c^{-1} t_{2} t_{1} \Longrightarrow M t_{0} t_{1} t_{8} t_{6}=M t_{2} t_{1} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{1} t_{8} t_{7}=b t_{0} t_{8} t_{0} t_{8} t_{0} t_{1} t_{6} t_{7} t_{8} \Longrightarrow M t_{0} t_{1} t_{8} t_{7}=M t_{1} t_{6} t_{7} t_{8} \in[0127] \\
& \quad\left(\text { since }\left\{N\left(t_{0} t_{1} t_{2} t_{7}\right)^{n} \mid n \in N\right\} \text { and } b t_{0} t_{8} t_{0} t_{8} t_{0} \in M\right), \\
& M t_{0} t_{1} t_{8} t_{8} \in[01] . \\
& M t_{0} t_{1} t_{2} t_{7} \boldsymbol{N}
\end{aligned}
$$

Consider $M t_{0} t_{1} t_{2} t_{7} N$ is a new double coset. We determine how many single cosets are in the double coset. However, $N^{(0127)}=N^{0127}=\langle e\rangle$. Only identity (e) will fix $0,1,7$, and 2. Hence the number of single cosets living in $M t_{0} t_{1} t_{2} t_{7} N$ is $\frac{|N|}{\left|N^{(0127)}\right|}=\frac{24}{1}=24$. The orbits of $N^{(0127)}$ on $\left\{t_{1}, t_{2}, t_{0}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}\right\}$ are:

$$
\mathbb{O}=\{\{1\},\{2\},\{0\},\{4\},\{5\},\{6\},\{7\},\{8\}\} .
$$

Take a representative t_{i} from each orbit and see which double cosets $M t_{0} t_{1} t_{2} t_{7} t_{i}$ belongs to. We have:

$$
\begin{aligned}
& t_{0} t_{1} t_{2} t_{7} t_{1}=a t_{7} t_{5} t_{0} t_{8} \Longrightarrow M t_{0} t_{1} t_{2} t_{7} t_{1}=M t_{7} t_{5} t_{0} t_{8} \in[0127]=\left\{N\left(t_{0} t_{1} t_{2} t_{7}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{1} t_{2} t_{7} t_{2}= b t_{0} t_{2} t_{0} t_{2} t_{0} t_{5} t_{0} t_{7} \Longrightarrow M t_{0} t_{1} t_{2} t_{7} t_{2}=M t_{5} t_{0} t_{7} \in[018] \\
& \quad\left(\text { since }\left\{N\left(t_{0} t_{1} t_{8}\right)^{n} \mid n \in N\right\} \text { and } b t_{0} t_{2} t_{0} t_{2} t_{0} \in M\right), \\
& t_{0} t_{1} t_{2} t_{7} t_{0}=d^{-1} b^{-1} t_{2} t_{4} t_{6} t_{1} \Longrightarrow M t_{0} t_{1} t_{2} t_{7} t_{0}=M t_{2} t_{4} t_{6} t_{1} \in[0127] \\
& t_{0} t_{1} t_{2} t_{7} t_{4}=b^{-1} a t_{6} t_{8} t_{5} \Longrightarrow M t_{0} t_{1} t_{2} t_{7} t_{4}=M t_{6} t_{8} t_{5} \in[014]=\left\{N\left(t_{0} t_{1} t_{4}\right)^{n} \mid n \in N\right\}, \\
& t_{0} t_{1} t_{2} t_{7} t_{5}=a t_{2} t_{5} t_{4} t_{2} \Longrightarrow M t_{0} t_{1} t_{2} t_{7} t_{5}=M t_{2} t_{5} t_{4} t_{3} \in[0127]=\left\{N\left(t_{0} t_{1} t_{2} t_{7}\right)^{n} \mid n \in N\right\},
\end{aligned}
$$

$t_{0} t_{1} t_{2} t_{7} t_{6}=t_{0} t_{8} t_{0} t_{8} t_{0} t_{4} t_{8} t_{5} \Longrightarrow M t_{0} t_{1} t_{2} t_{7} t_{6}=M t_{4} t_{8} t_{5} \in[018]$
(since $\left\{N\left(t_{0} t_{1} t_{8}\right)^{n} \mid n \in N\right\}$ and $t_{0} t_{8} t_{0} t_{8} t_{0} \in M$),
$M t_{0} t_{1} t_{2} t_{7} t_{7} \in[012]$
$t_{0} t_{1} t_{2} t_{7} t_{8}=$ bat $_{8} t_{7} t_{0} t_{5} \Longrightarrow M t_{0} t_{1} t_{2} t_{7} t_{8}=M t_{8} t_{7} t_{0} t_{5} \in[0127]=\left\{N\left(t_{0} t_{1} t_{2} t_{7}\right)^{n} \mid n \in N\right\}$.
We have completed the double coset enumeration since the set of right cosets is closed under right multiplication, hence, the index of M in G is 165 . We conclude:

$$
G=M e N \cup M t_{0} N \cup M t_{0} t_{1} N \cup M t_{0} t_{5} N \cup M t_{0} t_{1} t_{2} N \cup M t_{0} t_{1} t_{4} N \cup M t_{0} t_{1} t_{6} N \cup
$$

$M t_{0} t_{1} t_{8} N \cup M t_{0} t_{1} t_{2} t_{7} N$, where

$$
G \cong 2^{* 8}: S_{4} /\left(c t^{c}\right)^{6},\left(a b t^{c b^{-1}}\right)^{6},\left(a b^{-1} t\right)^{3}, b d t c^{-1} t c d^{-1} t d t c^{-1} t,
$$

$$
b d t d t c t d^{-1} t b^{-1} c t c t d t c^{-1} t, b c t c t d^{-1} t c t d^{-1} t d^{-1} t b^{-1} c^{-1} t c^{-1} t
$$

$|G| \leq|N|+\frac{|N|}{N^{(0)}}+\frac{|N|}{N^{(01)}}+\frac{|N|}{N^{(05)}}+\frac{|N|}{N^{(012)}}+\frac{|N|}{N^{(014)}}+\frac{|N|}{N^{(016)}}+\frac{|N|}{N^{(018)}}+\frac{|N|}{N^{(0127)}} \times|M|$
$|G| \leq(1+8+24+24+24+12+24+24) \times 28$
$|G| \leq 165 \times 48$
$|G| \leq 7920$.
A Cayley diagram that summarizes the above information is given below:

Figure 6.2: Cayley Diagram of M_{11} over $2 \cdot S_{4}$

6.4 Iwasawa's Lemma to Prove M_{11} over $M=2 S_{4}$ is Simple

Again, we use Iwasawa's lemma and the transitive action of G on the set of single cosets to prove $G \cong M_{11}$ over $M=2 \cdot S_{4}$ is a simple group. Iwasawa's lemma has three sufficient conditions that we must satisfied:
(1) G acts on X faithfully and primitively
(2) G is perfect $\left(G=G^{\prime}\right)$
(3) There exist $x \in X$ and a normal abelian subgroup K of G^{x} such that the conjugates of K generate G.

Proof. 6.4.1 $G=M_{11}$ over $M=2 S_{4}$ acts on X Faithfully
Let G acts on $X=M, M t_{0} N, M t_{0} t_{1} N, M t_{0} t_{5} N, M t_{0} t_{1} t_{2} N, M t_{0} t_{1} t_{4}, M t_{0} t_{1} t_{6}, M t_{0} t_{1} t_{8}$, $M t_{0} t_{1} t_{2} t_{7} N$, where X is a transitive G-set of degree 165. G acts on X implies there exist homomorphism

$$
f: G \longrightarrow S_{165} \quad(|X|=165)
$$

By First Isomorphic Theorem we have:

$$
\mathcal{G} / \operatorname{ker} f \cong f(\mathcal{G}) .
$$

If $\operatorname{ker} f=1$ then $G \cong f(G)$. Only elements of N fix N implies $G^{1}=N$. Since X is transitive G - set of degree 165, we have:

$$
\begin{aligned}
|G| & =165 \times\left|G^{1}\right| \\
& =165 \times|M| \\
& =165 \times 48 \\
& =7920 \\
\Longrightarrow|G| & =7920 .
\end{aligned}
$$

From Cayley diagram, $|G| \leq 7920$. However, from above $|G|=7920$ implying $\operatorname{ker}(f)=$ 1. Since $\operatorname{ker} f=1$ then G acts faithfully on X.

6.4.2 $G=M_{11}$ over $M=2 S_{4}$ acts on X Primitively

Since $G=M_{11}$ is transitive on $|X|=165$, if B is a nontrivial block then we may assume that $M \in B$. However, $|B|$ must divide $|X|=165$. The only nontrivial blocks must be of size $3,5,11,15,33$, or 55 , since $|B|$ must divide $|X|$.
Case (1): If $M t_{0} \in B$ then $B=\left\{M, M t_{0}\right\}=\left\{M, M t_{0} N\right\}$ (since $N \in B, B M=B$)
$\Longrightarrow B=\left\{M, M t_{0}, M t_{1}, M t_{2}, M t_{3}, M t_{4}, M t_{5}, M t_{6}, M t_{7}, M t_{8}\right\}$
$B t_{1}=\left\{M, M t_{0} t_{1}, M, M t_{2} t_{1}, M t_{3} t_{1}, M t_{4} t_{1}, M t_{5} t_{1}, M t_{6} t_{1}, M t_{7} t_{1}, M t_{8} t_{1}\right\}$
$\Longrightarrow M \in B \cap B t_{1}$.
Now $B=\left\{M, M t_{0} N, M t_{0} t_{1} N, M t_{0} t_{5} N\right\}$, where $|B|=57$ (passed all possible nontrivial blocks).
Note if $B t_{0} \in B$ then $B=X$.
Case (2): Consider $B=\left\{M, M t_{0} N, M t_{0} t_{1} N\right\}$, where $|B|=33$ but if we have $\left\{M, M t_{0} N\right\}$ we are going to have the entire group $B=X$. Thus, G acts primitively on X.

6.4.3 $G=M_{11}$ over $M=2 S_{4}$ is Perfect

Next we want to show that $G=G^{\prime}$. Since $G=<N, t>$, we have that $N \leq G^{\prime}$. Now $S_{4} \leq G \Longrightarrow S_{4}{ }^{\prime} \leq G^{\prime}$. The commutators subgroup of S_{4} is

$$
S_{4}^{\prime}=<[a, b] \mid a, b \in S_{4}>=<a, b, c, d>\leq G^{\prime} .
$$

Now by expanding the main relations we get the following:

$$
\begin{gathered}
a=t_{0} t_{6} t_{0} \\
d=t_{0} t_{8} t_{4} t_{1} t_{7} t_{0} t_{1} t_{8} \\
c=t_{4} t_{2} t_{1} t_{0} t_{7} t_{6} t_{8} t_{0} \\
b d c^{-1} t_{8} t_{0} t_{4} t_{8} t_{0}=1
\end{gathered}
$$

Now we use the above relation and we solve for b by replacing $d=t_{0} t_{8} t_{4} t_{1} t_{7} t_{0} t_{1} t_{8}$ and $c^{-1}=t_{0} t_{8} t_{6} t_{7} t_{0} t_{1} t_{2} t_{4}:$

$$
\begin{gathered}
b d c^{-1} t_{8} t_{0} t_{4} t_{8} t_{0}=1 \\
\Longrightarrow b=t_{0} t_{8} t_{4} t_{0} t_{8} t_{4} t_{2} t_{1} t_{0} t_{7} t_{6} t_{8} t_{0} t_{8} t_{1} t_{0} t_{7} t_{1} t_{4} t_{8} t_{0}
\end{gathered}
$$

So, $G=<a, b, c, d, t>=<t_{0}, t_{1}, t_{2}, t_{3}, t_{5}, t_{6}, t_{7}, t_{8}>$. Our goal is to show that one of the $t_{i}^{\prime} s \in G^{\prime}$, then we can conjugate by $\langle a, b, c, d\rangle$ to obtain all of the $t_{i}^{\prime} s$ in G^{\prime}. Since
$a \in G^{\prime}$. Then

$$
\begin{aligned}
a & =t_{0} t_{6} t_{0} \in G^{\prime} \\
& =t_{0} t_{6} t_{0} t_{6} t_{6} \in G^{\prime}\left(\text { since }\left|t_{i}^{\prime} s\right|=2\right) \\
& =\left[t_{0}, t_{6}\right] t_{6} \in G^{\prime} \\
& \Longrightarrow t_{6} i n G^{\prime}
\end{aligned}
$$

So $t_{6} \in G^{\prime} \Longrightarrow t_{6}^{c}, t_{6}^{c^{2}}, t_{6}^{t^{3}} \in G^{\prime}$ (since $c, c^{2}, c^{3} \in G$ and $G^{\prime} \unlhd G$) also
$t_{6}^{a d}, t_{6}^{b d}, t_{6}^{d c^{3}}, t_{6}^{c^{3} d} \in G^{\prime}\left(\right.$ since $a d, b d, d c^{3}, c^{3} d \in G$ and $\left.G^{\prime} \unlhd G\right)$
$\Longrightarrow G^{\prime}=<t_{6}, t_{8}, t_{0}, t_{2}, t_{5}, t_{1}, t_{7}, t_{4}>$.
Thus, $G \geq G^{\prime} \geq<t_{0}, t_{1}, t_{2} t_{4}, t_{5} t_{6} t_{7} t_{8}>=G$. We conclude that $G^{\prime}=G$ and G is perfect.

6.4.4 Conjugates of a Normal Abelian K

Generate $G=M_{11}$ over $M=2 S_{4}$
Now we require $x \in X$ and a normal abelian subgroup K of G^{x},-the point stabilizer of x in G, such that the conjugates of K in G generate G.
Now $G^{1}=M=2 \cdot S_{4}$ possesses a normal abelian subgroup $K=\langle a\rangle$. We use the same relation, as we did in the previous part:

$$
\begin{aligned}
a & =t_{0} t_{6} t_{0} \in K \\
\Longrightarrow a^{t_{0}} & =\left(t_{0} t_{6} t_{0}\right)^{t_{0}} \in K^{G} \\
\Longrightarrow t_{0} a t_{0} & =t_{0} t_{0} t_{6} t_{0} t_{0} \in K \\
\Longrightarrow a t_{6} t_{0} & =t_{6} \in K
\end{aligned}
$$

$$
\begin{aligned}
& \text { So } t_{6}^{G} \in K^{G} \\
& \Longrightarrow K^{G} \geq\left\{t_{6}, t_{6}^{c}, t_{6}^{c^{2}}, t_{6}^{3^{3}}, t_{6}^{a d}, t_{6}^{b d}, t_{6}^{d{ }^{3}}, t_{6}^{c^{3}} d\right\} \\
& \Longrightarrow K^{G} \geq\left\{t_{6}, t_{8}, t_{0}, t_{2}, t_{5}, t_{1}, t_{7}, t_{4}\right\}=G
\end{aligned}
$$

Hence, the conjugates of K generate G. Therefore, by Iwasawa's lemma, $G \cong M_{11}$ is a simple group.

Chapter 7

Double Coset Enumeration of M_{12}

over $\left(3^{2}: 2: S_{4}\right)$

7.1 Factoring by the Center $(Z(G))$ of $2^{* 72}:\left(3^{2}: 2 S_{4}\right)$

Consider the group $G=2^{* 72}:\left(3^{2}: 2 S_{4}\right)$ factored by the relator $\left[a c^{-1} b^{-1} c b^{2} t_{2}\right]^{3}$. Note: $N=\left(3^{2}: 2 S_{4}\right)=<a, b, c>$ and $|N|=432$, where $a \sim(2,8)(3,15)(4,20) \ldots(59,65)(60,64)(68,72)$, $b \sim(1,2,9,13,6,8)(3,16,25,10,40,23) \ldots(33,70,65,54,63,51)(43,72,68,62,60,64)$, and $c \sim(1,3,5,15)(2,10,12,42) \ldots(48,58,65,72)(49,63,68,59)$.
Let $t \sim t_{1} \sim t_{0}$.
Now we look at the composition factors of G given below:

```
G
    | M12
*
    Cyclic(2)
1
```

Thus, $G \cong 2 \times M 12$. Now, we use Magma to factor the group by the center $Z(G)$ and we get that $Z(G)=<a b^{3} c t b t b^{-1} t b t c>$.
Hence,

$$
G=\frac{2^{* 72}:\left(3^{2}: 2 \cdot S_{4}\right)}{\left[a c^{-1} b^{-1} c c^{2} t_{2}\right]^{3}, a b^{3} c t b t b^{-1} t b t c} \cong M_{12} .
$$

7.2 Construction of M_{12} over $\left(3^{2}: 2 S_{4}\right)$

$$
\begin{aligned}
& \text { Now consider the group } \\
& G=\frac{2^{* 72}:\left(3^{2}: 2 \cdot S_{4}\right)}{\left[a c^{-1} b^{-1} c b^{2} t_{2}\right]^{3}, a b^{3} c t b t b^{-1} t b t c .} \\
& \text { Note: } N=\left(3^{2}: 2 \cdot S_{4}\right)=<a, b, c>\text { and }|N|=432, \text { where } \\
& a \sim(2,8)(3,15)(4,20) \ldots(59,65)(60,64)(68,72), \\
& b \sim(1,2,9,13,6,8)(3,16,25,10,40,23) \ldots(33,70,65,54,63,51)(43,72,68,62,60,64), \\
& \text { and } c \sim(1,3,5,15)(2,10,12,42) \ldots(48,58,65,72)(49,63,68,59) . \\
& \text { Let } t \sim t_{1} \sim t_{0} .
\end{aligned}
$$

Let us expand the relations:

$$
\begin{gathered}
{\left[a c^{-1} b^{-1} c b^{2} t_{2}\right]^{3}=1 \text { with } \pi=a c^{-1} b^{-1} c b^{2} \text { becomes }} \\
1=\left[\pi t_{2}\right]^{3}=\pi^{3} t_{2}^{\pi^{2} t_{2}^{\pi} t_{2}=a c b t_{23} t_{54} t_{2}} \\
\Longrightarrow 1=a c b t_{23} t_{54} t_{2} \\
\Longrightarrow a c b t_{23} t_{54}=t_{2}, \\
1=a b^{3} c t b t b^{-1} t b t c=a b^{3} c b c t_{10} t_{3} t_{10} t_{3} \\
\Longrightarrow a b^{3} c b t_{10} t_{3}=t_{3} t_{10} .
\end{gathered}
$$

We want to find the index of N in G. To do this, we perform a manual double coset enumeration of G over N. We take G and express it as a union of double cosets $N g N$, where g is an element of G. So $G=N e N \cup N g_{1} N \cup N g_{2} N \cup \ldots$ where g_{i} 's words in t_{i} 's.

We need to find all double cosets $[w]$ and find out how many single cosets each of them contains, where $[w]=\left[N w^{n} \mid n \in N\right]$. The double cosets enumeration is complete when the set of right cosets obtained is closed under right multiplication by t_{i} 's. We need to identify, for each $[w]$, the double coset to which $N w t_{i}$ belongs for one symmetric generator t_{i} from each orbit of the coset stabilising group $N^{(w)}$

NeN

First, the double coset $N e N$, is denoted by [*]. This double coset contains only the single coset, namely N. Since N is transitive on $\left\{t_{0}, t_{2}, t_{3}, \ldots, t_{70}, t_{71}, t_{72}\right\}$, the orbit of N on $\left\{t_{0}, t_{2}, t_{3}, \ldots, t_{70}, t_{71}, t_{72}\right\}$ is:

$$
\mathbb{O}=\left\{t_{0}, t_{2}, t_{3}, \ldots, t_{70}, t_{71}, t_{72}\right\}
$$

We choose t_{0} as our symmetric generator from \mathbb{O} and find to which double coset $N t_{0}$ belongs. $N t_{0} N$ will be a new double coset, denoted by [0]. Hence, 72 symmetric
generators will go the new double coset [0].

$N t_{0} N$

In order to find how many single cosets [0] contains, we must first find the coset stabilizer $N^{(0)}$. Then the number of single coset in [0] is equal to $\frac{|N|}{\left|N^{(0)}\right|}$. Now, $N^{(0)}=N^{0}$ $=<a, a c b^{-1} c^{-1} b^{-1} c>$ so the number of the single cosets in $N t_{0} N$ is $\frac{|N|}{\left|N^{(0)}\right|}=\frac{43}{6}=72$.
Furthermore, the orbits of $N^{(0)}$ on $\left\{t_{0}, t_{2}, t_{3}, \ldots, t_{70}, t_{71}, t_{72}\right\}$ are:
$\mathbb{O}=\{0\},\{7\},\{35\},\{2,8,34\},\{5,28,14\},\{13,39,31\},\{3,15,70,66,46,27\}$,
$\{4,20,11,71,44,52\},\{6,9,32,12,26,37\},\{10,19,72,57,68,24\},\{16,30,67,51,50,41\}$,
$\{17,38,29,36,61,40\},\{18,54,60,53,64,47\},\{21,23,55,49,33,58\},\{25,45,48,62,63,43\}$, and $\{22,23,55,49,33,58\}$.
Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{i}$ belongs to We have:

$$
\begin{aligned}
& N t_{0} t_{0}=N \in[*] \\
& t_{0} t_{7}=t_{35} \Longrightarrow N t_{0} t_{7}=N t_{35} \in[0]=\left\{N t_{0}^{n} \mid n \in N\right\} \\
& t_{0} t_{35}=t_{7} \Longrightarrow N t_{0} t_{35}=N t_{7} \in[0]=\left\{N t_{0}^{n} \mid n \in N\right\} \\
& N t_{0} t_{2} \in[02] \\
& N t_{0} t_{5} \in[05] \\
& N t_{0} t_{13} \in[013] \\
& t_{0} t_{3}=c^{-1} b^{-1} t_{2} t_{6} \Longrightarrow N t_{0} t_{3}=N t_{2} t_{6} \in[013]=\left\{N\left(t_{0} t_{13}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{4}=b c b t_{14} t_{19} \Longrightarrow N t_{0} t_{4}=N t_{14} t_{19} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{6}=a b t_{18} t_{55} \Longrightarrow N t_{0} t_{6}=N t_{18} t_{55} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{10}=b^{3} t_{15} t_{62} \Longrightarrow N t_{0} t_{10}=N t_{15} t_{62} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{16}=a c^{-1} b^{-1} c b^{2} c t_{28} t_{37} \Longrightarrow N t_{0} t_{16}=N t_{28} t_{37} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{17}=a b c b t_{15} t_{29} \Longrightarrow N t_{0} t_{17}=N t_{15} t_{29} \in[013]=\left\{N\left(t_{0} t_{13}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{18}=a b^{-1} c^{-1} b^{-1} c b t_{59} t_{41} \Longrightarrow N t_{0} t_{18}=N t_{59} t_{41} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{21}=a b^{-1} c^{-1} b^{-1} c b t_{17} \Longrightarrow N t_{0} t_{21}=N t_{17} \in[0]=\left\{N\left(t_{0}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{25}=a c^{-1} b c b t_{53} t_{58} \Longrightarrow N t_{0} t_{25}=N t_{53} t_{58} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{22}=a b^{-1} c^{-1} b c b t_{36} \Longrightarrow N t_{0} t_{22}=N t_{36} \in[0]=\left\{N\left(t_{0}\right)^{n} \mid n \in N\right\} .
\end{aligned}
$$

The new double cosets have single coset representatives $N t_{0} t_{2}, N t_{0} t_{5}$, and $M t_{0} t_{13}$, we represent them as [02], [05], and [013], respectively.

$N t_{0} t_{2} N$

Continuing with the double coset $N t_{0} t_{2} N$, we find the point stabilizer N^{02}. This is $N^{02}=<a c b^{-1} c^{-1} b^{-1} c>$. Also, with the relation $t_{0} t_{2}=a b c b^{-2} c b t_{16} t_{40} \Longrightarrow N t_{0} t_{2}=$ $N t_{16} t_{40}$. Then $N\left(t_{0} t_{2}\right)^{(0,16,6,17,32,57)(2,40,13,44,39,66) \cdots=a b c b^{-2}}=N t_{16} N t_{40}$. But $N t_{16} t_{40}=$ $N t_{0} t_{2} \Longrightarrow a b c b^{-2} \in N^{(02)}$ since $N\left(t_{0} t_{2}\right)^{a b c b^{-2}}=N t_{16} t_{40}$. Thus the coset stabiliser is

$$
N^{(02)} \geq<a c b^{-1} c^{-1} b^{-1} c, a b c b^{-2}>
$$

Since $\left|N^{(02)}\right|=36$, the number of single cosets in $[02]$ is $\frac{|N|}{\left|N^{(02)}\right|}=\frac{432}{36}=12$. $\mathbb{O}=\{0,16,67,52,6,44,39,19,32,57,17,13,66,61,29,15,2,40\}$, $\{3,70,26,10,37,60,45,72,28,18,43,7,62,55,5,22,63,31\}$, $\{4,11,36,30,38,65,47,51,27,24,69,68,25,64,49,46,23,48\}$, $\{8,34,53,41,54,71,50,33,14,20,35,21,58,12,56,42,9,59$.

Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{2} t_{i}$ belongs to.
We have:

$$
\begin{aligned}
N t_{0} t_{2} t_{2} & =N t_{0} \in[0] \\
t_{0} t_{2} t_{3} & =c b^{-1} c^{-1} b^{-1} c^{-1} b^{-1} t_{61} t_{33} \Longrightarrow N t_{0} t_{2} t_{3}=N t_{61} t_{33} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
t_{0} t_{2} t_{4} & =c b^{-2} c b c t_{28} t_{37} \Longrightarrow N t_{0} t_{2} t_{4}=N t_{28} t_{37} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
t_{0} t_{2} t_{8} & =c^{-1} b c b t_{71} t_{43} \Longrightarrow N t_{0} t_{2} t_{8}=N t_{71} t_{43} \in[013]=\left\{N\left(t_{0} t_{13}\right)^{n} \mid n \in N\right\}
\end{aligned}
$$

$N t_{0} t_{5} N$

Continuing with the double coset $N t_{0} t_{5} N$, we find the point stabilizer N^{05}. This is $N^{05}=<a>$. Also, with the relation $t_{0} t_{5}=a t_{5} t_{0} \Longrightarrow N t_{0} t_{5}=N t_{5} t_{0}$.
Then $N\left(t_{0} t_{5}\right)^{(0,5)(2,12)(3,15) \cdots=c^{2}}=N t_{5} N t_{0}$. But $N t_{5} t_{0}=N t_{0} t_{5} \Longrightarrow c^{2} \in N^{(02)}$ since $N\left(t_{0} t_{5}\right)^{c^{2}}=N t_{5} t_{0}$. Thus the coset stabiliser is

$$
N^{(05)} \geq<a, c^{2}>
$$

Since $\left|N^{(05)}\right|=4$, the number of single cosets in $[05]$ is $\frac{|N|}{\left|N^{(05)}\right|}=\frac{432}{4}=108$. The orbits of $N^{(05)}$ on $\left\{t_{0}, t_{2}, t_{3}, \ldots, t_{70}, t_{71}, t_{72}\right\}$ are:
$\mathbb{O}=\{0,5\},\{3,15\},\{7,34\},\{13,35\},\{33,55\},\{50,67\},\{2,8,12,37\},\{4,20,23,22\}$, $\{6,9,31,39\},\{10,19,42,21\},\{11,44,46,70\},\{14,28,26,32\},\{16,30,53,47\},\{17,38,56,69\}$,
$\{18,54,61,29\},\{24,57,51,41\},\{25,45,36,40\},\{27,66,64,60\},\{43,62,71,52\}$,
$\{48,63,65,59\},\{49,58,68,72\}$.
Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{5} t_{i}$ belongs to. We have:

$$
\begin{aligned}
& N t_{0} t_{5} t_{5}=N t_{0} \in[0] \\
& t_{0} t_{5} t_{3}=c b^{-2} t_{63} t_{60} \Longrightarrow N t_{0} t_{5} t_{3}=N t_{63} t_{60} \in[02]=\left\{N\left(t_{0} t_{2}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{7}=a b c^{2} b^{-1} t_{72} t_{17} \Longrightarrow N t_{0} t_{5} t_{7}=N t_{72} t_{17} \in[013]=\left\{N\left(t_{0} t_{13}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{13}=a c^{-1} b^{3} c^{-1} t_{68} t_{46} \Longrightarrow N t_{0} t_{5} t_{13}=N t_{68} t_{46} \in[02]=\left\{N\left(t_{0} t_{2}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{33}=a c^{2} b^{-1} c^{-1} t_{2} t_{37} \Longrightarrow N t_{0} t_{5} t_{33}=N t_{2} t_{37} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{50}=b^{2} c b^{-1} c^{-1} t_{37} t_{2} \Longrightarrow N t_{0} t_{5} t_{50}=N t_{37} t_{2} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{2}=a c b^{-2} t_{44} t_{59} \Longrightarrow N t_{0} t_{5} t_{2}=N t_{44} t_{59} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{4}=b c b^{2} t_{72} t_{57} \Longrightarrow N t_{0} t_{5} t_{4}=N t_{72} t_{57} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{6}=a b^{-1} c b c^{2} t_{24} t_{68} \Longrightarrow N t_{0} t_{5} t_{6}=N t_{24} t_{68} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{10}=b^{3} c b^{-1} t_{20} t_{53} \Longrightarrow N t_{0} t_{5} t_{10}=N t_{20} t_{53} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{11}=a c^{-1} b c b^{-2} t_{63} \Longrightarrow N t_{0} t_{5} t_{11}=N t_{63} \in[0]=\left\{N\left(t_{0}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{14}=a c^{-1} b^{3} c t_{60} \Longrightarrow N t_{0} t_{5} t_{14}=N t_{60} \in[0]=\left\{N\left(t_{0}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{16}=a c b^{3} c^{-1} t_{28} \Longrightarrow N t_{0} t_{5} t_{16}=N t_{28} \in[0]=\left\{N\left(t_{0}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{17}=c b^{-1} c^{-1} b^{-1} c^{-1} t_{71} t_{21} \Longrightarrow N t_{0} t_{5} t_{17}=N t_{71} t_{21} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{18}=a b^{2} c b^{-1} c^{-1} t_{49} \Longrightarrow N t_{0} t_{5} t_{18}=N t_{49} \in[0]=\left\{N\left(t_{0}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{24}=a c b^{-2} t_{42} t_{50} \Longrightarrow N t_{0} t_{5} t_{24}=N t_{42} t_{50} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{25}=a b^{-1} c b^{-1} t_{64} t_{23} \Longrightarrow N t_{0} t_{5} t_{25}=N t_{64} t_{23} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{27}=a c b^{2} c t_{48} \Longrightarrow N t_{0} t_{5} t_{27}=N t_{48} \in[0]=\left\{N\left(t_{0}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{43}=b^{2} c^{-1} b^{-1} c^{-1} t_{50} t_{42} \Longrightarrow N t_{0} t_{5} t_{25}=N t_{64} t_{23} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{48}=b^{c} t_{14} \Longrightarrow N t_{0} t_{5} t_{48}=N t_{14} \in[0]=\left\{N\left(t_{0}\right)^{n} \mid n \in N\right\} \\
& t_{0} t_{5} t_{49}=a c^{-1} b^{-1} c^{-1} b^{2} t_{54} t_{42} \Longrightarrow N t_{0} t_{5} t_{49}=N t_{54} t_{42} \in[013]=\left\{N\left(t_{0} t_{13}\right)^{n} \mid n \in N .\right\}
\end{aligned}
$$

$N t_{0} t_{13} N$

Continuing with the double coset $N t_{0} t_{13} N$, we find the point stabilizer N^{013}. This is
$N^{013}=\langle a\rangle$. Also, with the relation $t_{0} t_{13}=b^{3} t_{69} t_{49} \Longrightarrow N t_{0} t_{13}=N t_{69} t_{49}$. Then $N\left(t_{0} t_{13}\right)^{(1,69,13,49)(2,38,6,27) \cdots=b^{-1} c b c}=N t_{69} N t_{49}$. But $N t_{69} t_{49}=N t_{0} t_{13} \Longrightarrow b^{-1} c b c \in$ $N^{(013)}$ since $N\left(t_{0} t_{13}\right)^{b^{-1} c b c}=N t_{69} t_{49}$. Thus the coset stabiliser is

$$
N^{(013)} \geq<a, b^{-1} c b c>
$$

Since $\left|N^{(013)}\right|=16$, the number of single cosets in [013] is $\frac{|N|}{\left|N^{(013)}\right|}=\frac{432}{16}=27$.
The orbits of $N^{(013)}$ on $\left\{t_{0}, t_{2}, t_{3}, \ldots, t_{70}, t_{71}, t_{72}\right\}$ are:
$\mathbb{O}=\{1,69,56,13,61,49,29,58\},\{5,30,16,7,62,36,43,40\},\{21,42,70,63,46,35,48,34\}$, $\{2,8,38,24,17,6,67,57,9,71,27,11,50,66,52,44\}$,
$\{3,15,22,60,23,10,31,64,19,32,45,72,39,25,26,68\}$,
$\{4,20,37,18,12,47,51,54,53,59,28,55,41,14,65,33\}$.
Take a representative t_{i} from each orbit and see which double cosets $N t_{0} t_{13} t_{i}$ belongs to. We have:

$$
\begin{aligned}
N t_{0} t_{13} t_{13} & =N t_{0} \in[0] \\
t_{0} t_{13} t_{7} & =c b^{3} c t_{66} t_{59} \Longrightarrow N t_{0} t_{13} t_{7}=N t_{66} t_{59} \in[02]=\left\{N\left(t_{0} t_{2}\right)^{n} \mid n \in N\right\} \\
t_{0} t_{13} t_{21} & =t_{29} t_{43} \Longrightarrow N t_{0} t_{13} t_{21}=N t_{29} t_{43} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} \\
t_{0} t_{13} t_{2} & =a b^{-1} c b c b^{-1} t_{44} \Longrightarrow N t_{0} t_{13} t_{2}=N t_{44} \in[0]=\left\{N\left(t_{0}\right)^{n} \mid n \in N\right\} \\
t_{0} t_{13} t_{3} & =c^{-1} b^{2} t_{27} \Longrightarrow N t_{0} t_{13} t_{3}=N t_{27} \in[0]=\left\{N\left(t_{0}\right)^{n} \mid n \in N\right\} \\
t_{0} t_{13} t_{4} & =b c b^{-1} c^{-1} b^{-1} c^{-1} t_{62} t_{15} \Longrightarrow N t_{0} t_{13} t_{4}=N t_{62} t_{15} \in[05]=\left\{N\left(t_{0} t_{5}\right)^{n} \mid n \in N\right\} .
\end{aligned}
$$

We have completed the double coset enumeration since the set of right cosets is closed under right multiplication, hence, the index of N in G is 220 . We conclude:

$$
\begin{aligned}
& G=N \cup N t_{0} N \cup N t_{0} t_{2} N \cup N t_{0} t_{5} N \cup N t_{0} t_{13} N, \text { where } \\
& \qquad G=\frac{2^{* 72}:\left(3^{2} \cdot 2 \cdot S_{4}\right)}{\left[a c^{-1} b^{-1} c b^{2} t_{2}\right]^{3}, a b^{3} c t b t b^{-1} t b t c .} \\
& |G| \leq\left(|N|+\frac{|N|}{N^{(0)}}+\frac{|N|}{N^{(01)}}+\frac{|N|}{N^{(05)}}+\frac{|N|}{N^{(013)}}\right) \times|N| \\
& |G| \leq(1+72+12+108+27) \times 432 \\
& |G| \leq 220 \times 432 \\
& |G| \leq 95040 .
\end{aligned}
$$

A Cayley diagram that summarizes the above information is given on the next page.

Figure 7.1: Cayley Diagram of M_{12} over $\left(3^{2}: 2: S_{4}\right)$

Chapter 8

Tabulated Images

$8.1 \quad 2^{* 7}:(7: 2)$

It can be proved that the progenitor given above has M_{23} as a homomorphic image. While looking to find the Mathieu M_{23} group, we ran the following progenitor and what we found is listed below:

```
G<a,b,t> := Group<a,b,t |a^3, b^(-2)*a^-1*b*a,t^2,(t,a),
((a*b^2)*t^(b^-2))^c,}((a*\mp@subsup{b}{}{\wedge}2)*t^^(b^-1))^d
((a*b^2)*t^^(b*a*b))^e,((a*b^2)^-1*t^^(b^-2))^f,
((a*b^2)^-1*t^(b^-1))^g,((a*b^2)^-1*t^ (b*a*b))^h,
(b*t^(b^-1))^i,(b^3*t^(b^-1))^j>;
```

Table 8.1: Some Finite Images of the Progenitor $2^{* 7}:(7: 2)$

c	d	e	f	g	h	i	j	Order of G	Shape of G
0	0	0	0	0	5	0	8	1774080	$4 M_{22}$
0	0	0	0	6	10	0	6	15120	$3:\left(A_{7}: 2\right)$
0	0	0	0	7	7	0	6	20160	A_{8}

$8.2 \quad 2^{* 6}:\left(S_{3} \times 2\right)$

It can be proved that the progenitor given above has M_{24} as a homomorphic image. While looking to find the Mathieu M_{24} group, we ran the following progenitors and what we found is listed below:

```
G<a,b,c,t> := Group<a,b,c,t |a^2,b^2,c^3, (a*b)^2,(a*c^-1)^2,
b*c^-1*b*c,t^2,(t,a*b),(b*t)^d,(b*t^c)^^,(b*t^(a*c^-1))^f,
(a*t)^g,(a*t^c)^h, (a*t^(a*c))^i,(a*b*t)^j,(a*b*t`a)^^k,
(a*b*t^c)^1,(a*b*t^(a*c))^m,(c*t)^n,(c*t^a)^o,
(b*c*t) ^p>;
```

Table 8.2: Some Finite Images of the Progenitor $2^{* 6}:\left(S_{3} \times 2\right)$

d	e	\ldots	m	n	o	p	Order of G	Shape of G
0	0	\ldots	0	0	3	4	240	$\left(2 \times 4_{5}\right): 2$
0	0	\ldots	0	0	3	4	2184	$P G L_{2}(13)$
0	0	\ldots	3	0	0	7	24360	$P G L_{2}(29)$
0	0	\ldots	5	5	0	5	1267200	$2\left(\left(2^{4}\right)^{\cdot}: L_{2}(11)\right): A_{5}$

```
for d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,u in [0..10] do
G<a,b,c,t> := Group<a,b,c,t |a^2,b^2,c^3, (a*b)^2, (a*c^-1)^2,
b*c^-1*b*c,t^2,(t,a*b),(b*t)^d,(b*t^c)^e,
    (b*t^(a*c^-1))^f,(a*t)^g,(a*t^c)^h,
(a*t^(a*c))^i,(a*b*t)^j,(a*b*t^a)^k,(a*b*t`c)^^l,
(a*b*t^ (a*c)) ^m,(c*t)^n,(c*t^a)^o,(b*c*t)^p,
(a*t)^q,(b*t)^r,(t*t^a)^s,(t*t`a)^u=a*b>;
```

Table 8.3: Some Finite Images of the Progenitor $2^{* 6}:\left(S_{3} \times 2\right)$

d	e	\ldots	o	p	q	r	s	u	Order of G	Shape of G
0	0	\ldots	0	7	4	8	8	7	336	$P G L_{2}(7)$
0	0	\ldots	0	9	0	4	2	3	4896	$P G L_{2}(17)$
0	0	\ldots	4	6	0	0	6	3	1140480	$6 \times\left(M_{12}: 2\right): 2$
0	0	\ldots	4	10	0	0	4	2	6635520	$\left(2^{7}: S_{4}(3)\right): 2$
0	0	\ldots	5	0	8	0	4	9	120	$2 \times A_{5}$

$8.32^{* 8}: S_{4}$

It can be proved that the progenitor given above has M_{11} as a homomorphic image. While looking to find the Mathieu M_{11} group, we ran the following progenitor and what we found is listed below:
$G<a, b, c, d, t>:=G r o u p<a, b, c, d, t \mid a \wedge 2, b \wedge 3, c^{\wedge} 4, d^{\wedge} 4$,

```
b^-1*a*b*a, c^-1*a*c^-1, d^-1*a* d^-1,
```



```
t^2,(t,b),(a*t^ (c* b^ -1))^e, (c*b*t^ (c*b^^-1))^A,
(c*b*t^c)^ g, (b^-1* c^-1*t^^(c*b^ -1) )^h, (b^ - 1* c^^-1*t*^c)^i,
```



```
(a*b^^-1*t)^n,(a*b^^-1*t^(c*b ^-1))^o>;
```

Table 8.4: Some Finite Images of the Progenitor $2^{* 8}: S_{4}$

e	f	\ldots	j	k	l	m	n	o	Order of G	Shape of G
0	0	\ldots	0	0	0	0	0	4	120	$2 \times A_{5}$
0	0	\ldots	0	6	0	6	3	0	95040	$\left(2^{2} \times 3\right) M_{11}$

$8.4 \quad 2^{* 8}:\left(2^{3}: 2\right)$

It can be proved that the progenitor given above has M_{12} as a homomorphic image. While looking to find the Mathieu M_{12} group, we ran the following progenitor and what we found is listed below:

```
G<a,b,c,d,t> := Group<a,b,c,d,t |a^2,b^4,c^2,d^2,
b^-2*d, (b^-1*a)^2, (b^-1*c)^2,a*c* b^-1*a*c,t^2,
(t,a), (d*t)^e,(c*t)^f,(c*t^b)^g,(a*t)^h,
(a*t`b)^i,(a*t^c)^j,(b*t)^k,(a*c*t)^l,(a*c*b*t)^m>;
```

Table 8.5: Some Finite Images of the Progenitor $2^{* 8}:\left(2^{3}: 2\right)$

e	f	g	h	i	j	k	l	m	Order of G	Shape of G
0	0	0	0	0	3	3	0	9	2448	$L_{2}(17)$
0	0	0	0	0	3	3	0	10	2160	$3:\left(A_{6} \times 2\right)$
0	0	0	0	0	4	0	5	6	80640	$2:\left(A_{8} \times 2\right)$

$8.5 \quad 2^{* 72}:\left(3^{2}:\left(2 S_{4}\right)\right)$
It can be proved that the progenitor given above has M_{12} as a homomorphic image. While looking to find the Mathieu M_{12} group, we ran the following progenitor and what we found is listed below:

```
G<a,b,c,t>:=Group<a,b,c,t| a^2,b^6, c^4,(b^-1 * a)^2,
```



```
c^}-1*\mp@subsup{b}{}{\wedge}-1*\mp@subsup{c}{}{\wedge}-2*\mp@subsup{b}{}{\wedge}-1*\mp@subsup{c}{}{\wedge}2* * b^-1* c^ - 1,
t^2,(t,a),(t,a * c * b^^1 * c^-1 * b^^-1 * c), (b^3*t)^d,
(b^3*t^ ( b^^ 3* c^2) )^ e, (b^3*t^c)^ f, (a*t)^ g, (a*t^c c)^h,
```



```
(b^ 3* c^ 2*t^^c)^ o, (b^2*t)^^p,(b^2 * t ^ c c)^ q,
(b^2*t^ (a*c^^-1* b ^ - 1* c* b ) ) ^r, (b* c^ - 1*t) ^s,
```



```
(b*c^-1*t`^(b^-1* c* b^ - 1) )^ x, (c*t)^ y,
(c*t^`) ^ z,(c*t`^(b^-1*c*b^^-1))^hh,
(b*t)^ii,(b*t^c)^jj;(b*t^(b^2))^^kk,
(b*t^(b^2* c) )^ ll, (b*t^ (b^-1* c* b^ - 1) )^mm,
(a*b*c^2*t)^nn,(a*b*c^2*t^(b))^oo,
(a*b*c^2 2*t^ (b^^2*c) )^pp,(a*b*c*t)^qq,
```



```
(a*c^-1* 㐌^-1*c* * ^ 2*t^(b) )^vv,
```


Table 8.6: Some Finite Images of the Progenitor $2^{* 72}:\left(3^{2}:\left(2 S_{4}\right)\right)$

d	e	\ldots	qq	rr	ss	uu	vv	ww	Order of G	Shape of G
0	0	\ldots	0	0	0	0	3	0	190080	$2 \cdot M_{12}$

Appendix A: MAGMA Code for Permutation Progenitor of A_{5}

```
G<x,y>:=Group< x,y | x^2 = y^3 = (x*y)^ 5 = 1>;
S:=Alt(5);
xx:=S!(1,2) (3,4);
yy:=S! (1,3,5);
N:=sub<S|xx,yy>;
Sch:=SchreierSystem(G,sub<G|Id(G) >) ;
ArrayP:=[Id(N): i in [1..60]];
for i in [2..60] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
if Eltseq(Sch[i])[j] eq -2 then P[j]:=yy^-1; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [1..60] do Sch[i], ArrayP[i]; end for;
N1:=Stabiliser(N,1);N1;
C:= Classes(N);C;
C2:=Centraliser(N,N! (1,2) (3,4)); C2;
C3:=Centraliser(N,N! (1, 2, 3)); C3;
C4:=Centraliser(N,N! (1,2,3,4,5));C4;
C5:=Centraliser(N,N!(1, 3, 4, 5, 2));C5;
Set(C2);Orbits(C2);
Set(C3);Orbits(C3);
Set(C4);Orbits(C4);
Set(C5);Orbits(C5);
```


Appendix B: MAGMA Code for Monomial Progenitor of

```
11*2 :m D D 
```

```
D:=DihedralGroup (5);D;
xx:=D! (1, 2, 3,4,5);
yy:=D!(1,5) (2,4);
G:=sub<D|xx,yy>;
H:=sub<G| (1, 2, 3, 4,5)>;
Set(H);
C:=Classes(G);C;
Cprime:=Classes(H);
Cprime;
CT:=CharacterTable(D);
ch:=CharacterTable(H);
CT;
ch;
I:=Induction(ch[2],D);
Norm(I);
for i in [1..#CT] do if I eq CT[i] then i; end if; end for;
I eq CT[4];
T:=Transversal(G,H);T;
C:=CyclotomicField(5: Sparse := true);
A:=[0: i in [1..4]];
for i in [1..2] do if xx*T[i]^-1 in H
then if ch[2](xx*T[i]^-1) eq C.1
then A[i]:=2; else if ch[2](xx*T[i]^-1) eq C.1^2
then A[i]:=4; else
A[i]:= ch[2](xx*T[i]^-1); end if; end if; end if;
end for;
for i in [1..2] do if T[2]*xx*T[i]^-1 in H
```

```
then if ch[2](T[2]*xx*T[i]^-1) eq C.1
then A[2+i]:=2; else if ch[2](T[2]*xx*T[i]^-1) eq C.1^2
then A[2+i]:=4; else
A[2+i]:= ch[2](T[2]*xx*T[i]^-1); end if; end if; end if;
end for;
B:=[0: i in [1..4]];
for i in [1..2] do if yy*T[i]^-1 in H
then if ch[2](yy*T[i]^-1) eq C.1
then B[i]:=2; else if ch[2](yy*T[i]^-1) eq C.1^2
then B[i]:=4; else
B[i]:= ch[2](yy*T[i]^-1); end if; end if; end if;
end for;
for i in [1..2] do if T[2]*yy*T[i]^-1 in H
then if ch[2](T[2]*yy*T[i]^-1) eq C.1
then B[2+i]:=2; else if ch[2](T[2]*Yy*T[i]^-1) eq C.1^2
then B[2+i]:=4; else
B[2+i]:= ch[2](T[2]*YY*T[i]^-1); end if; end if; end if;
end for;
G:=GL(2,11);
A:=G!A;A;
B:=G!B;B;
M:=sub<G|A,B>;
#M;
Order(A);
Order(B);
s:=IsIsomorphic(M,DihedralGroup(5)); s;
/*Monomial Progenitor on 20 letters */
G< x,y>:= Group< x,y|x^5 = y^2 = (x*y)^2 = 1 >;
S:=Sym(20);
xx:=S!(1,7,9,17,5) (3,15,19,13,11)
(2,6,18,10,8) (4,12,14,20,16);
yy:=S!(1, 2) (3,4) (5,6) (7, 8) (9,10) (11, 12) (13,14)
(15,16) (17,18) (19,20);
N:=sub<S|xx,yY>;
Sch:=SchreierSystem(G,sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..10]];
for i in [2..10] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=xx^-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
end for;
PP:=Id(N);
```

```
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [1..10] do Sch[i], ArrayP[i]; end for;
Normaliser:=Stabiliser(N,{1,3,5,7,9,11,13,15,17,19});
Normaliser;
Normaliser eq sub<N| (1, 9, 5, 7, 17)(2, 18, 8, 6, 10)
(3, 19, 11, 15, 13)(4, 14, 16, 12, 20)>;
G < x,y,t >:= Group< x,y,t|x^5 = y^2 = (x*y)^2 = 1,
t^11, t^(x^2)=t^5>;
/*Verify*/
G< x,y,t>:= Group< x,y,t|x^5 = y^2 = (x*y)^2 = 1,
    t^11, (t,y*x), t*t^x=t`x*t>;
f, G1,k:=CosetAction(G,sub<G|x,y>);
#G;#k;
IN:=sub<G1|f(x),f(y)>;
T:=sub<G1|f(t)>;#T;
#Normaliser(IN,T);
Index(IN,Normaliser(IN,T));
/* here is the progenitor adding relations with first
order relation */
G< x,y>:= Group< x,y|x^5 = y^2 = (x*y)^2 = 1>;
D:=DihedralGroup(5);D;
xx:=D! (1,2,3,4,5);
yy:=D!(1,5) (2,4);
N:=sub<D|xx,yy>;
Sch:=SchreierSystem(G,sub<G|Id(G) >);
ArrayP:=[Id(N): i in [1..10]];
for i in [2..10] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=xx^-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [1..10] do Sch[i], ArrayP[i]; end for;
C:= Classes(N); C;
C2:=Centraliser(N,N! (1,5) (2,4));C2;
```

```
C3:=Centraliser(N,N! (1, 2, 3, 4,5));C3;
C4:=Centraliser(N,N!(1,3,5,2,4));C4;
Set(C2);Orbits(C2);
Set(C3);Orbits(C3);
Set(C4);Orbits(C4);
```


Appendix C: MAGMA Code for Progenitor of $2 * 7: D_{14}$

```
G<x,y>:=Group<x,y|x^7, y^2, (x*y)^2>;
D:=DihedralGroup (7);
xx:=D!(1,2,3,4,5,6,7);
yy:=D!(1, 6) (2, 5) (3, 4);
N:=sub<D|xx,yy>;
Sch:=SchreierSystem(G,sub<G|Id(G) >) ;
ArrayP:=[Id(N): i in [1..14]];
for i in [2..14] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=xx^-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [1..14] do Sch[i], ArrayP[i]; end for;
N7:=Stabiliser(N,7);
N7;
G<x,y,t>:=Group<x,y,t|x^7, y^2, (x*y)^2, t^2, (t,y)>;
/* Give all first order relations that this progenitor
can be factored by */
C:= Classes(N);C;
C2:=Centraliser(N,N! (1,6) (2,5) (3,4));C2;
C3:=Centraliser(N,N! (1, 2, 3, 4, 5, 6, 7) ); C3;
C4:=Centraliser(N,N! (1, 3,5,7,2,4,6));C4;
C5:=Centraliser(N,N! (1,4,7,3,6,2,5));C5;
```

```
Set(C2);Orbits(C2);
Set(C3);Orbits(C3);
Set(C4);Orbits(C4);
Set(C5);Orbits(C5);
```


Appendix D: MAGMA Code for DCE of $2^{* 3}: S_{3}$

```
G<x,y,t>:=Group<x,y,t|x^3, Y^ 2, (x*y)^2,
t^2,(t,y),t*t`x=x^-1*t^x*t*t^ (x^2) > ;
#G;
S:=Sym(3);
xx:=S!(1,2,3);
yy:=S!(1,2);
N:=sub<S|xx,yy>;
f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
IN:=sub<G1|f(x),f(y)>;
ts := [Id(G1): i in [1 .. 3] ];
ts[3]:=f(t); ts[1]:=f(t^x); ts[2]:=f(t^(x^2));
DoubleCosets(G,sub<G|x, Y>, sub<G|x,y>);
#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
prodim := function(pt, Q, I)
/*
Return the image of pt under permutations
    Q[I] applied sequentially.
*/
    v := pt;
        for i in I do
            v := v^(Q[i]);
        end for;
return v;
end function;
cst := [null : i in [1 .. Index(G,sub<G|x,y>)]]
where null is [Integers() | ];
        for i := 1 to 3 do
        cst[prodim(1, ts, [i])] := [i];
    end for;
```

```
    m:=0;
for i in [1..20] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
N31:=Stabiliser (N, [3,1]);
SSS:={[3,1]}; SSS:=SSS^N;
SSS;
# (SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[3]*ts[1] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N31; #N31;
T31:=Transversal(N,N31);
for i in [1..#T31] do
ss:=[3,1]^T31[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..20] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N31);
    for g in IN do for }h\mathrm{ in IN do
    if ts[3]*ts[1]*ts[2] eq g*(ts[3]*ts[1])^h then g,h;
    end if; end for; end for;
for i in [1..10] do i, cst[i]; end for;
ts[3]*ts[1]*ts[2] eq f(x^-1)*ts[1]*ts[3];
N313:=Stabiliser (N, [3,1,3]);
SSS:={[3,1,3]}; SSS:=SSS^N;
SSS;
# (SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[3]*ts[1]*ts[3] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
```

```
N313s:=N313;
T313:=Transversal(N,N313);
for i in [1..#T313] do
ss:=[3,1,3]^T313[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..20] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N313);
N3131:=Stabiliser (N,[3,1,3,1]);
SSS:={[3,1,3,1]}; SSS:=SSS^N;
SSS;
# (SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[3]*ts[1]*ts[3]*ts[1] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]*ts[Rep (Seqq[i])[4]]
then print Rep(Seqq[i]);
end if; end for; end for;
N3131s:=N3131;
for n in N do if 3^n eq 3 and 1^n eq 2
then N3131s:=sub<N|N3131s,n>; end if; end for;
#N3131s;
N3131s;
[3,1,3,1]^N3131s;
N3131:=Stabiliser (N, [3,1,3,1]);
N3131;
N3131:=sub<N| (1,2)>;
#N3131;
[3,1,3,1]^N3131;
T:=Transversal(N,N3131);
    for i in [1..#T] do
{[3,1,3,1]^N3131}^T[i];
end for;
```

```
for n in IN do if ts[3]*ts[2]*ts[3]*ts[2] eq
n*ts[3]*ts[1]*ts[3]*ts[1] then n; end if; end for;
for i in [1..10] do i, cst[i]; end for;
ts[3]*ts[2]*ts[3]*ts[2] eq f(x^-1)*ts[3]*ts[1]*ts[3]*ts[1];
T3131:=Transversal(N,N3131);
for i in [1..#T3131] do
ss:=[3,1,3,1]^T3131[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..20] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N3131);
N31313:=Stabiliser (N, [3,1,3,1,3]);
SSS:={[3,1,3,1,3]}; SSS:=SSS^N;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[3]*ts[1]*ts[3]*ts[1]*ts[3] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep (Seqq[i])[2]]*
ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i]) [4]]
*ts[Rep(Seqq[i])[5]] then print Rep(Seqq[i]);
end if; end for; end for;
N31313s:=N31313;
for n in N do if 3^n eq 3 and 1^n eq 2
then N31313s:=sub<N|N31313s,n>; end if; end for;
#N31313s;
N31313s;
[3,1,3,1,3]^N31313s;
N31313:=Stabiliser (N,[3,1,3,1,3]);
N31313;
N31313:=sub<N| (1,2,3),(1,2)>;
#N31313;
[3,1,3,1,3]^N31313;
T:=Transversal(N,N31313);
    for i in [1..#T] do
```

```
{[3,1,3,1,3]^N31313}^T[i];
end for;
T31313:=Transversal(N,N31313);
for i in [1..#T31313] do
ss:=[3,1,3,1,3]^T31313[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..20] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N31313);
/*Relations*/
for n in IN do if ts[1]*ts[2]*ts[1]*ts[2]*ts[1] eq
n*ts[3]*ts[1]*ts[3]*ts[1]*ts[3] then n; end if; end for;
for i in [1..10] do i, cst[i]; end for;
ts[1]*ts[2]*ts[1]*ts[2]*ts[1] eq f((x^-1)^y)
*ts[3]*ts[1]*ts[3]*ts[1]*ts[3];
for n in IN do if ts[2]*ts[3]*ts[2]*ts[3]*ts[2] eq
n*ts[3]*ts[1]*ts[3]*ts[1]*ts[3] then n; end if; end for;
ts[2]*ts[3]*ts[2]*ts[3]*ts[2] eq f(x^-1)*ts[3]
*ts[1]*ts[3]*ts[1]*ts[3];
for n in N do if 3^n eq 3 and 1^n eq 2 then
N31313s:=sub<N|N31313s,n>; end if; end for;
#N31313s;
[3,1,3,1,3]^N31313s;
for n in IN do if ts[3]*ts[2]*ts[3]*ts[2]*ts[3] eq
n*ts[3]*ts[1]*ts[3]*ts[1]*ts[3] then n; end if; end for;
for i in [1..10] do i, cst[i]; end for;
ts[3]*ts[2]*ts[3]*ts[2]*ts[3] eq f(x^-1)*ts[3]
*ts[1]*ts[3]*ts[1]*ts[3];
for n in IN do if ts[2]*ts[1]*ts[2]*ts[1]*ts[2] eq
n*ts[3]*ts[1]*ts[3]*ts[1]*ts[3] then n; end if; end for;
ts[2]*ts[1]*ts[2]*ts[1]*ts[2] eq f((x^-1)^y)*
ts[3]*ts[1]*ts[3]*ts[1]*ts[3];
```


Appendix E: MAGMA Code for DCE of $2 \times L_{2}(8)$ over D_{14}

```
S:=Sym(7);
xx:=S!(1, 2, 3, 4, 5, 6, 7);
Yy:=S!(1, 6) (2, 5) (3, 4);
    N:=sub<S|xx,yy>;
#N;
N7:=Stabiliser(N,7);
N7;
G<x,y,t>:=Group<x,y,t|x^7, y^2, (x*y)^2, t^2, (t,y),
(x*t*t^x)^2,(t*t*x*t)^ 9>;
f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
#G;
IN:=sub<G1|f(x),f(y)>;
ts := [Id(G1) : i in [1 .. 7]];
ts[7] := f(t); ts[1] := f(t^x);
ts[2] := f(t^(x^2)); ts[3] := f(t^(x^3));
ts[4] := f(t^(x^4)); ts[5] := f(t^(x^5));
ts[6] := f(t`^(x^6));
f(x^2)*ts[1]*ts[2]*ts[7]*ts[1];
f(x^2)*ts[1]*ts[2] eq ts[1]*ts[7];
f(x^2)*ts[1]*ts[7]*ts[6]*ts[5]*ts[4]
*ts[3]*ts[2]*ts[1]*ts[7];
f(x^2)*ts[1]*ts[7]*ts[6]*ts[5]*ts[4]
*ts[3]*ts[2] eq ts[7]*ts[1];
DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
Index(G,sub<G|x,y>);
prodim := function(pt, Q, I)
/*
Return the image of pt under permutations
```

```
Q[I] applied sequentially.
*/
    v := pt;
        for i in I do
            v := v^(Q[i]);
        end for;
return v;
end function;
cst := [null : i in [1 .. Index(G,sub<G|x,y>)]]
where null is [Integers() | ];
        for i := 1 to 7 do
            cst[prodim(1, ts, [i])] := [i];
        end for;
    m:=0;
for i in [1..72] do if cst[i] ne [] then m:=m+1; end if;
end for; m;
N7 := Stabiliser (N, [7]);
N7; #N7;
Orbits(N7);
N71:=Stabiliser (N, [7,1]);
SSS:={[7,1]}; SSS:=SSS^N;
SSS;
# (SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[1] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N71s := N71;
for n in N do if 7^n eq 7 and 1^n eq 6
then N71s:=sub<N|N71s,n>;
end if;end for;
#N71s;
[7,1]^N71s;
for n in IN do if ts[7]*ts[1] eq n*ts[7]*ts[6]
then n; end if; end for;
for i in [1..15] do i, cst[i]; end for;
ts[7]*ts[1]eq f(((x^2)^-1)^x)*ts[7]*ts[6];
N71:=Stabiliser (N,[7,1]);
N71;
N71:=sub<N| (1, 6) (2,5) (3,4)>;
```

```
#N71;
[7,1]^N71;
T:=Transversal(N,N71);
    for i in [1..#T] do
{[7,1]^N71}^T[i];
end for;
T71:=Transversal(N,N71);
for i in [1..#T71] do
ss:=[7,1]^T71[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..72] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N71);
N72:=Stabiliser (N, [7,2]);
SSS:={[7,2]}; SSS:=SSS^N;
SSS;
# (SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[2] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N72s := N72;
for n in N do if 7^n eq 3 and 2^n eq 1
then N72s:=sub<N|N72s,n>; end if;\
    end for;
#N72s;
[7,2]^N72s;
for n in IN do if ts[7]*ts[2] eq n*ts[3]*ts[1] then
n; end if; end for;
for i in [1..15] do i, cst[i]; end for;
ts[7]*ts[2]eq f((x^2)^((x)^-1))*ts[3]*ts[1];
N72:=Stabiliser (N, [7,2]);
N72;
N72:=sub<N| (1, 2) (4,6) (3,7)>;
#N72;
[7,2]^N72;
T:=Transversal(N,N72);
    for i in [1..#T] do
```

```
{[7,2]^N72}^T[i];
end for;
T72:=Transversal(N,N72);
for i in [1..#T72] do
ss:=[7,2]^T72[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..72] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N72);
N73:=Stabiliser (N, [7,3]);
SSS:={[7,3]}; SSS:=SSS^N;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[3] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N73; #N73;
T73:=Transversal(N,N73);
for i in [1..#T73] do
ss:=[7,3]^T73[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..72] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73);
/*
[71]
*/
N712:=Stabiliser (N,[7,1,2]);
SSS:={[7,1,2]}; SSS:=SSS^N;
SSS;
# (SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[1] *ts[2]eq
```

```
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N712s := N712;
for n in N do if 7^n eq 3 and 1^n eq 2 and 2^n
eq 1 then N712s:=sub<N|N712s,n>; end if;
    end for;
#N712s;
[7,1,2]^N712s;
for n in IN do if ts[7]*ts[1]*ts[2] eq
n*ts[3]*ts[2]*ts[1] then
n; end if; end for;
for i in [1..15] do i, cst[i]; end for;
ts[7]*ts[1]*ts[2]eq f((x^2)^(x^-1))*ts[3]*ts[2]*ts[1];
N712:=Stabiliser (N, [7,1,2]);
N712;
N712:=sub<N| (1, 2) (4,6) (3,7)>;
#N712;
[7,1,2]^N72;
T:=Transversal(N,N712);
    for i in [1..#T] do
{[7,1,2]^N712}^T[i];
end for;
T712:=Transversal(N,N712);
for i in [1..#T712] do
ss:=[7,1,2]^T712[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..72] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N712);
N713:=Stabiliser (N,[7,1,3]);
SSS:={[7,1,3]}; SSS:=SSS^N;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[1] *ts[3]eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
```

```
then print Rep(Seqq[i]);
end if; end for; end for;
N713s := N713;
#N713s;
[7,1,3]^N713s;
T713:=Transversal(N,N713);
for i in [1..#T713] do
ss:=[7,1,3]^T713[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..72] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N713);
N717:=Stabiliser (N, [7,1,7]);
SSS:={[7,1,7]}; SSS:=SSS^N;
SSS;
# (SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[1] *ts[7]eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N717s := N717;
for n in N do if 7^n eq 1 and 1^n eq 7
then N717s:=sub<N|N717s,n>; end if;
    end for;
for n in N do if 7^n eq 6 and 1^n eq 7
then N717s:=sub<N|N717s,n>; end if; end for;
#N717s;
[7,1,7]^N717s;
N717s;
for n in IN do if ts[7]*ts[1]*ts[7] eq
    n*ts[1]*ts[7]*ts[1]then
n; end if; end for;
for n in IN do if ts[7]*ts[1]*ts[7] eq
n*ts[6]*ts[7]*ts[6]then
n; end if; end for;
for i in [1..15] do i, cst[i]; end for;
```

```
N717:=Stabiliser (N, [7,1,7]);
N717;
N717:=sub<N|(1, 7) (2, 6) (3, 5),
    (1, 7, 6, 5, 4, 3, 2)>;
#N717;
[7,1,7]^N717;
T:=Transversal(N,N717);
    for i in [1..#T] do
{[7,1,7]^N717}^T[i];
end for;
T717:=Transversal(N,N717);
for i in [1..#T717] do
ss:=[7,1,7]^T717[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..72] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N717);
/*
[72]
*/
N725:=Stabiliser (N, [7, 2, 5]);
SSS:={[7,2,5]}; SSS:=SSS^N;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[2] *ts[5]eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
    *ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N725s := N725;
for n in N do if 7^n eq 3 and 2^n eq 1 and
    5^n eq 5 then N725s:=sub<N|N725s,n>; end if;
    end for;
#N725s;
[7,2,5]^N725s;
for n in IN do if ts[7]*ts[2]*ts[5] eq
n*ts[3]*ts[1]*ts[5] then n; end if; end for;
for i in [1..15] do i, cst[i]; end for;
/*Add relation*/
```

```
N725:=Stabiliser (N, [7, 2,5]);
N725;
N725:=sub<N| (1,2) (3,7) (4,6)>;
#N725;
[7,2,5]^N725;
T:=Transversal(N,N72);
    for i in [1..#T] do
{[7, 2]^N72}^T[i];
end for;
T725:=Transversal(N,N725);
for i in [1..#T725] do
ss:=[7, 2,5]^T725[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..72] do if cst[i] ne []
then m:=m+1; end if; end for; m;
/*
[73]
*/
N736:=Stabiliser (N, [7, 3, 6]);
SSS:={[7,3,6]}; SSS:=SSS^N;
SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[7]*ts[3] *ts[6]eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N736s := N736;
for n in N do if 7^n eq 7 and 4^n eq 3 and 1^n
eq 6 then N736s:=sub<N|N736s,n>; end if;
    end for;
#N736s;
N736s;
[7,3,6]^N736s;
for n in IN do if ts[7]*ts[3]*ts[6] eq
n*ts[7]*ts[4]*ts[1] then n; end if; end for;
for i in [1..15] do i, cst[i]; end for;
```

```
N736:=Stabiliser (N, [7, 3, 6]);
N736;
N736:=sub<N| (1,6) (2,5) (3,4)>;
#N736;
[7,3,6]^N736;
T:=Transversal(N,N736);
    for i in [1..#T] do
{[7,3,6]^N736}^T[i];
end for;
T736:=Transversal(N,N736);
for i in [1..#T736] do
ss:=[7,3,6]^T736[i];
cst[prodim(1, ts, ss)] := ss;
end for;
m:=0; for i in [1..72] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N736);
/*Relations*/
for g in IN do for h in IN do
    if ts[7]*ts[2]*ts[3] eq g*(ts[7]*ts[1]*ts[3] )^h
then g,h;end if; end for; end for;
ts[7]*ts[2]*ts[3] eq f(x^-3)*ts[5]*ts[4]*ts[2];
for g in IN do for h in IN do
    if ts[7]*ts[2]*ts[4] eq g*(ts[7]*ts[3] )^h then g,h;
end if; end for; end for;
ts[7]*ts[2]*ts[4] eq f(x)*ts[4]*ts[1];
for g in IN do for h in IN do
    if ts[7]*ts[3]*ts[1] eq g*(ts[7]*ts[3] )^h then
g,h; end if; end for; end for;
ts[7]*ts[3]*ts[1] eq f(x^-1)*ts[2]*ts[6];
for g in IN do for h in IN do
    if ts[7]*ts[3]*ts[2] eq g*(ts[7]*ts[1]*ts[2] )^h
then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[2] eq f(x^2)*ts[2]*ts[3]*ts[4];
for g in IN do for h in IN do
    if ts[7]*ts[3]*ts[4] eq g*(ts[7]*ts[1]*ts[3] )^h
    then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[4] eq f(x)*ts[7]*ts[1]*ts[3];
for g in IN do for h in IN do
    if ts[7]*ts[3]*ts[5] eq g*(ts[7]*ts[2]*ts[5] )^h
then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[5] eq ts[3]*ts[5]*ts[1];
for g in IN do for h in IN do
    if ts[7]*ts[3]*ts[7] eq g*(ts[7]*ts[2])^h
```

```
then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[7] eq f(x)*ts[4]*ts[2];
for g in IN do for h in IN do
    if ts[7]*ts[1]*ts[3]*ts[1] eq g*(ts[7]*ts[1]*ts[3])^h
then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[3]*ts[1] eq f(x^-4)*ts[2]*ts[1]*ts[6];
for g in IN do for h in IN do
    if ts[7]*ts[1]*ts[3]*ts[2] eq g*(ts[7]*ts[2])^h
    then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[3]*ts[2] eq f(x^2)*ts[2]*ts[4];
for g in IN do for h in IN do
    if ts[7]*ts[1]*ts[3]*ts[4] eq g*(ts[7]*ts[3])^h
then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[3]*ts[4] eq f(x^-1)*ts[7]*ts[3];
for g in IN do for h in IN do
    if ts[7]*ts[1]*ts[3]*ts[4] eq g*(ts[7]*ts[3]*ts[6])^h
then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[3]*ts[5] eq f(x^-1)*ts[1]*ts[4]*ts[7];
for g in IN do for h in IN do
    if ts[7]*ts[1]*ts[3]*ts[6] eq g*(ts[7]*ts[2]*ts[5])^h
then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[3]*ts[6] eq f(x^-1)*ts[5]*ts[3]*ts[7];
for g in IN do for h in IN do
    if ts[7]*ts[1]*ts[3]*ts[7] eq g*(ts[7]*ts[1]*ts[2])^h
then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[3]*ts[7] eq f(x^-2)*ts[4]*ts[3]*ts[2];
for g in IN do for h in IN do
    if ts[7]*ts[1]*ts[2]*ts[4] eq g*(ts[7]*ts[1]*ts[3])^h
then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[2]*ts[4] eq f(x^-2)*ts[4]*ts[3]*ts[1];
for g in IN do for h in IN do
    if ts[7]*ts[1]*ts[2]*ts[5] eq g*(ts[7]*ts[3]*ts[6])^h
then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[2]*ts[5] eq ts[5]*ts[1]*ts[4];
for g in IN do for h in IN do
    if ts[7]*ts[1]*ts[2]*ts[7] eq g*(ts[7]*ts[3])^h
then g,h; end if; end for; end for;
ts[7]*ts[1]*ts[2]*ts[7] eq f(x^-2)*ts[5]*ts[1];
for g in IN do for h in IN do
    if ts[7]*ts[2]*ts[5]*ts[1] eq g*(ts[7]*ts[3])^h
then g,h; end if; end for; end for;
ts[7]*ts[2]*ts[5]*ts[1] eq f(x^2)*ts[6]*ts[3];
    if ts[7]*ts[2]*ts[5]*ts[4] eq g*(ts[7]*ts[1]*ts[3])^h
    then g,h; end if; end for; end for;
```

```
ts[7]*ts[2]*ts[5]*ts[4] eq f(x^-4)*ts[5]*ts[6]*ts[1];
for g in IN do for h in IN do
    if ts[7]*ts[2]*ts[5]*ts[7] eq g*(ts[7]*ts[2]*ts[5])^h
then g,h; end if; end for; end for;
ts[7]*ts[2]*ts[5]*ts[7] eq f(x^-4)*ts[4]*ts[6]*ts[2];
for g in IN do for h in IN do
    if ts[7]*ts[3]*ts[6]*ts[5] eq g*(ts[7]*ts[3]*ts[6])^h
then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[6]*ts[5] eq f(x^2)*ts[3]*ts[6]*ts[2];
for g in IN do for h in IN do
    if ts[7]*ts[3]*ts[6]*ts[3] eq g*(ts[7]*ts[1]*ts[3])^h
    then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[6]*ts[3] eq f(x)*ts[1]*ts[7]*ts[5];
for g in IN do for }h\mathrm{ in IN do
    if ts[7]*ts[3]*ts[6]*ts[7] eq g*(ts[7]*ts[1]*ts[2])^h
then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[6]*ts[7] eq ts[2]*ts[3]*ts[4];
/***********Factor by the center******************/
D:=DihedralGroup (7);
xx:=D!(1,2,3,4,5,6,7);
yy:=D!(1, 6) (2, 5) (3, 4);
N:=sub<D|xx, yy>;
#N;
Set (N);
G<x,y,t>:=Group<x,y,t|x^7, y^2, (x*y)^2, t^2,
(t,y),(x*t*t^x)^2, (t*t*x*t)^9>;
    #G;
f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
Center(G1);
aa:= G1! (1, 20) (2, 12) (3, 6) (4, 7) (5, 11) (8, 13)
(9, 18)(10, 19)(14, 21) (15, 22) (16, 29)(17, 30)
(23, 31) (24, 32) (25, 38) (26, 33) (27, 43) (28, 35)
(34, 44)(36,45)(37, 52) (39, 46) (40, 56) (41, 55)
(42, 48)(47, 57) (49, 58) (50, 62) (51, 63) (53, 68)
(54, 67)(59, 69) (60, 65)(61, 71) (64, 66) (70, 72);
A:=f(x);
B:=f(y);
C:=f(t);
N:=sub<G1|A,B,C>;
NN<x,y,t>:=Group<x,y,t|x^7, y^2, (x*y)^2, t`^2,(t,y),
(x*t*t^x)^2, (t*t*x*t)^9>;
```

```
Sch:=SchreierSystem(NN, sub<NN|Id(NN) >) ;
ArrayP:=[Id(N): i in [1..#N]];
for i in [2..#N] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=A^-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [1..#N] do if ArrayP[i] eq aa
then print Sch[i]; end if; end for;
/* Gives me the center in terms of x, y, and t */
G<x,y,t>:=Group<x,y,t|x^7, y^2, (x*y)^2, t^2,
(t,y), (x*t*t^x)^2,(t*t*x*t)^ 9,x*y*t*x*t*x^-1*t>;
f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
/***********************************************************)
/* Now we need to construct the double
coset enumeration using the above presentation */
D:=DihedralGroup (7);
xx:=D!(1,2,3,4,5,6,7);
Yy:=D! (1, 6) (2, 5) (3, 4);
N:=sub<D|xx,yy>;
#N;
Set(N);
G<x,y,t>:=Group<x,y,t|x^7, y^2, (x*y)^2, t^2,
(t,y),(x*t)^0, (x*t*t^x)^2, (x*y*t^x*t)^0,
    (t*t*x*t)^ 9, x*y*t*x*t*x^-1*t>;
f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
#DoubleCosets(G,sub<G|x,y>,sub<G|x,y>);
Index (G,sub<G|x,y>);
IN:=sub<G1|f(x),f(y)>;
ts := [Id(G1) : i in [1 .. 7]];
ts[7] := f(t); ts[1] := f(t^x); ts[2] := f(t^(x^2));
    ts[3] := f(t^(x^3)); ts[4] := f(t^(x^4));
```

```
ts[5] := f(t^(x^5)); ts[6] := f(t^(x^6));
f(x^2)*ts[1]*ts[2]*ts[7]*ts[1];
f(x^2)*ts[1]*ts[7]*ts[6]*ts[5]*ts[4]*ts[3]*ts[2]*ts[1]*ts[7];
f(x*y)*ts[7]*ts[6]*ts[7];
prodim := function(pt, Q, I)
/*
Return the image of pt under permutations
Q[I] applied sequentially.
*/
    v := pt;
        for i in I do
            v := v^(Q[i]);
        end for;
return v;
end function;
cst := [null : i in [1 .. Index(G, sub<G|x, y>)]]
where null is [Integers() | ];
        for i := 1 to 7 do
            cst[prodim(1, ts, [i])] := [i];
        end for;
    m:=0;
for i in [1..36] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
N7 := Stabiliser (N, [7]);
N7; #N7;
T7:=Transversal(N,N7);
for i in [1..#T7] do
ss:=[7]^T7[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..36] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7);
T71:=Transversal(N,N71);
for i in [1..#T71] do
ss:=[7,1]^T71[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..36] do if cst[i] ne []
then m:=m+1; end if; end for; m;
for g in IN do for h in IN do
    if ts[7]*ts[6] eq g*(ts[7])^h then g,h;
end if; end for; end for;
for i in [1..15] do i, cst[i]; end for;
```

```
/*Relation*/
ts[7]*ts[6] eq f(x*y)*ts[7];
for g in IN do for h in IN do
    if ts[7]*ts[1] eq g*(ts[7])^h
then g,h; end if; end for; end for;
/*Relation*/
ts[7]*ts[1] eq f((x^6)*y)*ts[7];
    N72:=Stabiliser (N,[7,2]);
    SSS:={[7,2]}; SSS:=SSS^N;
    SSS;
# (SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
    if ts[7]*ts[2] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N72s := N72;
for n in N do if 7^n eq 3 and 2^n eq 1
then N72s:=sub<N|N72s,n>; end if; end for;
#N72s;
[7,2]^N72s;
    for n in IN do if ts[7]*ts[2] eq n*ts[3]*ts[1] then
    n; end if; end for;
    for n in IN do if ts[7]*ts[2] eq n*ts[3]*ts[1] then
    n; end if; end for;
/*RELATION */
ts[7]*ts[2] eq f(x^2)*ts[3]*ts[1];
N72:=Stabiliser (N, [7,2]);
N72;
N72:=sub<N| (1,2) (3,7) (4,6)>;
#N72;
[7,2]^N72;
T:=Transversal(N,N72);
    for i in [1..#T] do
{[7,2]^N72}^T[i];
end for;
T72:=Transversal(N,N72);
for i in [1..#T72] do
ss:=[7,2]^T72[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
```

```
m:=0; for i in [1..36] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N72);
    N73:=Stabiliser (N, [7, 3]);
    SSS:={[7,3]}; SSS:=SSS^N;
    SSS;
# (SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
    if ts[7]*ts[3] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N73s := N73;
#N73s;
[7,3]^N73s;
T:=Transversal(N,N73);
    for i in [1..#T] do
{[7,3]^N73}^T[i];
end for;
T73:=Transversal(N,N73);
for i in [1..#T73] do
ss:=[7,3]^T73[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..36] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73);
for g in IN do for h in IN do
    if ts[7]*ts[3]*ts[1] eq g*(ts[7]*ts[3])^h
then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[1] eq f(x^-1)*ts[2]*ts[6];
for g in IN do for h in IN do
    if ts[7]*ts[3]*ts[2] eq g*(ts[7]*ts[2])^h
    then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[2] eq f((x^2)y)*ts[5]*ts[3];
for g in IN do for h in IN do
    if ts[7]*ts[3]*ts[4] eq g*(ts[7]*ts[3])^h
then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[4] eq f(y)*ts[7]*ts[3];
for g in IN do for h in IN do
    if ts[7]*ts[3]*ts[5] eq g*(ts[7]*ts[2]*ts[5])^h
```

```
then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[5] eq ts[3]*ts[5]*ts[1];
for g in IN do for h in IN do
    if ts[7]*ts[3]*ts[6] eq g*(ts[7]*ts[2]*ts[5])^h
then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[6] eq f(y)*ts[5]*ts[3]*ts[7];
for g in IN do for h in IN do
    if ts[7]*ts[3]*ts[7] eq g*(ts[7]*ts[2])^h
then g,h; end if; end for; end for;
ts[7]*ts[3]*ts[7] eq f(x)*ts[4]*ts[2];
N723:=Stabiliser (N, [7,2,3]);
T723:=Transversal(N,N723);
for i in [1..#T723] do
ss:=[7, 2, 3]^T723[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..36] do if cst[i] ne []
then m:=m+1; end if; end for; m;
for g in IN do for h in IN do
    if ts[7]*ts[2]*ts[3] eq g*(ts[7]*ts[3])^h
then g,h; end if; end for; end for;
ts[7]*ts[2]*ts[3] eq f(x)*ts[5]*ts[2];
N724:=Stabiliser (N, [7,2,4]);
T724:=Transversal(N,N724);
for i in [1..#T724] do
ss:=[7, 2,4]^T724[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..36] do if cst[i] ne []
then m:=m+1; end if; end for; m;
for g in IN do for h in IN do
    if ts[7]*ts[2]*ts[4] eq g*(ts[7]*ts[3])^h
then g,h; end if; end for; end for;
ts[7]*ts[2]*ts[4] eq f(x)*ts[4]*ts[1];
    N725:=Stabiliser (N, [7,2,5]);
    SSS:={[7,2,5]}; SSS:=SSS^N;
    SSS;
# (SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
    if ts[7]*ts[2]*ts[5] eq
```

```
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N725s := N725;
for n in N do if 7^n eq 3 and 2^n eq 1 and
5^n eq 5 then N725s:=sub<N|N725s,n>;
end if; end for;
#N725s;
[7, 2,5]^N725s;
    for n in IN do if ts[7]*ts[2]*ts[5] eq
n*ts[3]*ts[1]*ts[5] then
    n; end if; end for;
ts[7]*ts[2]*ts[5] eq f(x^2)*ts[3]*ts[1]*ts[5];
N725:=Stabiliser (N, [7, 2,5]);
N725;
N725:=sub<N| (1, 2) (3,7) (4,6)>;
#N725;
[7,2,5]^N725;
T:=Transversal(N,N725);
    for i in [1..#T] do
{[7,2,5]^N725}^T[i];
end for;
T725:=Transversal(N,N725);
for i in [1..#T725] do
ss:=[7, 2,5]^T725[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..36] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N725);
for g in IN do for h in IN do
    if ts[7]*ts[2]*ts[5]*ts[1] eq g*(ts[7]*ts[3])^h
then g,h; end if; end for; end for;
ts[7]*ts[2]*ts[5]*ts[1] eq f(x^2)*ts[6]*ts[3];
for g in IN do for h in IN do
    if ts[7]*ts[2]*ts[5]*ts[3] eq g*(ts[7]*ts[2]*ts[5])^h
then g,h; end if; end for; end for;
ts[7]*ts[2]*ts[5]*ts[3] eq f(x^6)*ts[6]*ts[4]*ts[1];
for g in IN do for h in IN do
    if ts[7]*ts[2]*ts[5]*ts[4] eq g*(ts[7]*ts[3])^h
then g,h; end if; end for; end for;
ts[7]*ts[2]*ts[5]*ts[4] eq f((x^6)*y)*ts[5]*ts[1];
```


Appendix F: MAGMA Code for DCE of $L_{2}(27)$ over a Maximal

Subgroup

```
G<x,y,t>:=Group<x,y,t|x^7, y^2, (x*y)^2,
    t^2,(t,y),(x*t)^0,(x*t*t^x)^0, (x*y*t^x*t)^ 3,
(t*t*x*t)^7>;
f,G1,k:=CosetAction(G, sub<G|x,y>);
CompositionFactors(G1);
M:=MaximalSulogroups(G1);
M;
#G1;
#G1/351;
M3:=M[3] `subgroup;
f(x) in M3 and f(y) in M3;
C:=Conjugates(G1,M3);
CC:=SetToSequence(C);
for i in [1..#C] do if f(x) in CC[i] and f(y) in
CC[i] then
i; end if; end for;
H:=sub<G1|CC[124]>; #H;
f(x) in H and f(y) in H;
for g in G1 do if sub<G1|f(x),f(y)> eq
H then gg=g; end if; end for;
for i in [0..6] do for j in [0..1] do for k,l,m,n,o
in [0..6] do if gg eq
```



```
then i,j,k,l,m,n,o; end if; end for; end for; end for;
sub<G1|f(t^ (x^2) *t^(x^4)*t^ (x^5) *t^(x^4)
*t^(x^2)),f(x),f(y)> eq H;
G<x,y,t>:=Group<x,y,t|x^7, y^2, (x*y)^2, t^2, (t,y),
```

```
(x*t)^0,(x*t*t^x)^^0,(x*y*t ^ x*t)^3, (t*t*x*t)^7>;
H:=sub<G|x,y,t^(x^2)*t^(x^4)*t^(x^ 5) *t^(x^4)
*t^(x^2)>; #H;
f,G1,k:=CosetAction(G,H);
IN:=sub<G1|f(x),f(y)>;
IM:= sub<G1|IN,f(t^ (x^2)*t^(x^4)*t^ (x^5)
*t^(x^4)*t`^(x^2))>;
#IN; #IM;
/**************************************** /
D:=DihedralGroup (7);
xx:=D! (1, 2, 3, 4,5,6,7);
yy:=D!(1, 6) (2, 5) (3, 4);
N:=sub<D|xx, yy>;
#N;
Set(N);
G<x,y,t>:=Group<x,y,t|x^7, y^2, (x*y)^2, t^2,
(t,y), (x*t)^0, (x*t*t^x)^0, (x*y*t^x*t)^3, (t*t*x*t)^7>;
H:=sub<G| x,y,t^(x^2)*t^ (x^4)*t^ (x^5)*t^(x^4)
*t^(x^2)>;
#H;
f,G1,k:=CosetAction(G,H);
IN:=sub<G1|f(x),f(y)>;
IM:=sub<G1|IN,f(t` (x^2)*t^(x^4)*t^(x^5)*t` (x^4)*t^(x^2))>;
#IN; #IM;
ts := [Id(G1) : i in [1 .. 7]];
ts[7] := f(t); ts[1] := f(t^x); ts[2] := f(t^(x^2));
    ts[3] := f(t^(x^3)); ts[4] := f(t^(x^4));
ts[5] := f(t^(x^5)); ts[6] := f(t^(x^6));
f(x*y)*ts[1]*ts[7]*ts[5] eq ts[7]*ts[1]*ts[6];
ts[6]*ts[5]*ts[4] eq ts[7]*ts[1]*ts[2]*ts[3];
DoubleCosets(G,H,sub<G|x,y>);
#DoubleCosets(G,H,sub<G|x,y>);
Index(G,H);
prodim := function(pt, Q, I)
    v := pt;
        for i in I do
            v := v^(Q[i]);
    end for;
return v;
end function;
cst := [null : i in [1 .. Index (G,H)]]
where null is [Integers() | ];
    for i := 1 to 7 do
        cst[prodim(1, ts, [i])] := [i];
```

```
        end for;
    m:=0;
for i in [1..351] do if cst[i] ne [] then m:=m+1;
end if; end for; m;
N7 := Stabiliser (N, [7]);
N7; #N7;
T7:=Transversal(N,N7);
for i in [1..#T7] do
ss:=[7]^T7[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7);
N71:=Stabiliser (N, [7,1]);
    SSS:={[7,1]}; SSS:=SSS^N;
    SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[1] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N71s := N71;
#N71s;
[7,1]^N71s;
T:=Transversal(N,N71);
    for i in [1..#T] do
{[7,1]^N71}^T[i];
end for;
T71:=Transversal(N,N71);
for i in [1..#T71] do
ss:=[7,1]^T71[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N71);
N72:=Stabiliser (N,[7,2]);
```

```
SSS:={[7,2]}; SSS:=SSS^N;
SSS;#(SSS);
Seqq:=Setseq(SSS); Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[2] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N72s := N72;
#N72s;
[7,2]^N72s;
T:=Transversal(N,N72);
    for i in [1..#T] do
{[7, 2]^N72}^T[i];
end for;
T72:=Transversal(N,N72);
for i in [1..#T72] do
ss:=[7,2]^T72[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N72);
    N73:=Stabiliser (N, [7, 3]);
    SSS:={[7,3]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N73s := N73;
#N73s;
[7,3]^N73s;
T:=Transversal (N,N73);
    for i in [1..#T] do
{[7, 3]^N73}^T[i];
end for;
T73:=Transversal(N,N73);
```

```
for i in [1..#T73] do
ss:=[7,3]^T73[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73);
    N717:=Stabiliser (N, [7,1,7]);
    SSS:={[7,1,7]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[1]*ts[7] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N717s := N717;
#N717s;
[7,1,7]^N717s;
T:=Transversal(N,N717);
    for i in [1..#T] do
{[7,1,7]^N717}^T[i];
end for;
T717:=Transversal(N,N717);
for i in [1..#T717] do
ss:=[7,1,7]^T717[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N717);
    N712:=Stabiliser (N, [7,1,2]);
    SSS:={[7,1,2]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[1]*ts[2] eq
```

```
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if;
end for; end for;
N712s := N712;
#N712s;
[7,1,2]^N712s;
T:=Transversal(N,N712);
    for i in [1..#T] do
{[7,1,2]^N712}^T[i];
end for;
T712:=Transversal(N,N712);
for i in [1..#T712] do
ss:=[7,1,2]^T712[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N712);
    N713:=Stabiliser (N, [7,1,3]);
    SSS:={[7,1,3]}; SSS:=SSS^N;
    SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[1]*ts[3] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N713s := N713;
#N713s;
[7,1,3]^N712s;
T:=Transversal(N,N713);
    for i in [1..#T] do
{[7,1,3]^N713}^T[i];
end for;
T713:=Transversal(N,N713);
for i in [1..#T713] do
ss:=[7,1,3]^T713[i];
```

```
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N713);
    N714:=Stabiliser (N, [7,1,4]);
    SSS:={[7,1,4]}; SSS:=SSS^N;
    SSS;
#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[1]*ts[4] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N714s := N714;
#N714s;
[7,1,4]^N714s;
T:=Transversal(N,N714);
    for i in [1..#T] do
{[7,1,4]^N714}^T[i];
end for;
T714:=Transversal(N,N714);
for i in [1..#T714] do
ss:=[7,1,4]^T714[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N714);
for g in IM do for h in IN do
    if ts[7]*ts[1]*ts[6] eq g*(ts[7]*ts[1]*ts[3])^h
then g,h; end if; end for; end for;
/*Relation */
ts[7]*ts[1]*ts[6] eq f(x*y)*ts[1]*ts[7]*ts[5];
    N715:=Stabiliser (N, [7,1,5]);
    SSS:={[7,1,5]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
```

```
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[1]*ts[5] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N715s := N715;
for n in N do if 7^n eq 6 and 1^n eq 5 and
5^n eq 1 then N715s:=sub<N|N715s,n>; end if;
end for;
#N715s;
[7,1,5]^N715s;
N715:=Stabiliser (N, [7,1,5]);
N715;
N715:=sub<N| (6,7) (1,5) (2,4)>;
#N715;
[7,1,5]^N715;
T:=Transversal(N,N715);
    for i in [1..#T] do
{[7,1,5]^N715}^T[i];
end for;
T715:=Transversal(N,N715);
for i in [1..#T715] do
ss:=[7,1,5]^T715[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N715);
    N726:=Stabiliser (N, [7,2,6]);
    SSS:={[7,2,6]}; SSS:=SSS^N;
    SSS;
# (SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[2]*ts[6] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
```

```
end if; end for; end for;
N726s := N726;
#N726s;
[7, 2,6]^N715s;
T:=Transversal(N,N726);
    for i in [1..#T] do
{[7,2,6]^N726}^T[i];
end for;
T726:=Transversal(N,N726);
for i in [1..#T726] do
ss:=[7, 2, 6]^T726[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N726);
    N727:=Stabiliser (N, [7,2,7]);
    SSS:={[7,2,7]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[2]*ts[7] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N727s := N727;
#N727s;
[7, 2, 7]^N727s;
T:=Transversal(N,N727);
    for i in [1..#T] do
{[7, 2,7]^N727}^T[i];
end for;
T727:=Transversal(N,N727);
for i in [1..#T727] do
ss:=[7, 2,7]^T727[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N727);
```

```
N724:=Stabiliser (N, [7,2,4]);
SSS:={[7,2,4]}; SSS:=SSS^N;
SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[2]*ts[4] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N724s := N724;
#N724s;
[7, 2,4]^N724s;
T:=Transversal(N,N724);
    for i in [1..#T] do
{[7,2,4]^N724}^T[i];
end for;
T724:=Transversal(N,N724);
for i in [1..#T724] do
ss:=[7,2,4]^T724[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N724);
N725:=Stabiliser (N, [7,2,5]);
SSS:={[7,2,5]}; SSS:=SSS^N;
SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[2]*ts[5] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N725s := N725;
#N725s;
[7,2,5]^N725s;
```

```
T:=Transversal(N,N725);
    for i in [1..#T] do
{[7,2,5]^N725}^T[i];
end for;
T725:=Transversal(N,N725);
for i in [1..#T725] do
ss:=[7, 2,5]^T725[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N725);
    N737:=Stabiliser (N, [7, 3,7]);
    SSS:={[7,3,7]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3]*ts[7] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N737s := N737;
for n in N do if 7^n eq 5 and 3^n eq 2
and 7^n eq 5 then N737s:=sub<N|N737s,n>;
end if; end for;
#N737s;
[7,3,7]^N737s;
N737:=Stabiliser (N, [7,3,7]);
N737;
N737:=sub<N| (1,4) (2,3) (5,7)>;
#N737;
[7,3,7]^N737;
T:=Transversal(N,N737);
    for i in [1..#T] do
{[7,3,7]^N737}^T[i];
end for;
T737:=Transversal(N,N737);
for i in [1..#T737] do
ss:=[7,3,7]^T737[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
```

```
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N737);
    N732:=Stabiliser (N,[7,3,2]);
    SSS:={[7,3,2]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3]*ts[2] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep (Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N732s := N732;
for n in N do if 7^n eq 2 and 3^n eq 6
and 2^n eq 7 then N732s:=sub<N|N732s,n>;
    end if; end for;
#N732s;
[7,3,2]^N732s;
N732:=Stabiliser (N,[7,3,2]);
N732;
N732:=sub<N| (2,7) (3,6) (4,5)>;
#N732;
[7,3,2]^N732;
T:=Transversal(N,N732);
    for i in [1..#T] do
{[7,3,2]^N732}^T[i];
end for;
T732:=Transversal(N,N732);
for i in [1..#T732] do
ss:=[7,3,2]^T732[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N732);
    N734:=Stabiliser (N,[7,3,4]);
    SSS:={[7,3,4]}; SSS:=SSS^N;
    SSS;
# (SSS);
```

```
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3]*ts[4] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]
then print Rep(Seqq[i]);
end if; end for; end for;
N734s := N734;
for n in N do if 7^n eq 2 and 3^n eq 6
and 4^n eq 5 then N734s:=sub<N|N734s,n>;
end if; end for;
#N734s;
[7,3,4]^N734s;
N734:=Stabiliser (N, [7,3,4]);
N734;
N732:=sub<N| (2,7) (3,6) (4,5)>;
#N732;
[7,3,2]^N732;
T:=Transversal(N,N734);
    for i in [1..#T] do
{[7,3,4]^N734}^T[i];
end for;
T734:=Transversal(N,N734);
for i in [1..#T734] do
ss:=[7,3,4]^T734[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N734);
    N7323:=Stabiliser (N, [7, 3,2,3]);
    SSS:={[7,3,2,3]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3]*ts[2]*ts[3] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
then print Rep(Seqq[i]);
```

```
end if; end for; end for;
N7323s := N7323;
#N7323s;
[7,3,2,3] ^N7323s;
T:=Transversal(N,N7323);
    for i in [1..#T] do
{[7,3,2,3]^N7323}^T[i];
end for;
T7323:=Transversal(N,N7323);
for i in [1..#T7323] do
ss:=[7,3,2,3]^T7323[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7323);
    N7321:=Stabiliser (N,[7,3,2,1]);
    SSS:={[7,3,2,1]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3]*ts[2]*ts[1] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
then print Rep(Seqq[i]);
end if; end for; end for;
N7321s := N7321;
for n in N do if 7^n eq 2 and 3^n eq 6
and 2^n eq 7 and 1^n eq 1 then
N7321s:=sub<N|N7321s,n>; end if; end for;
#N7321s;
[7,3,2,1] ^N7321s;
    for n in IM do if ts[7]*ts[3]*ts[2]*ts[1]
eq n*ts[2]*ts[6]*ts[7]*ts[1] then
    n; end if; end for;
N7321:=Stabiliser (N,[7, 3,2,1]);
N7321;
N7321:=sub<N| (2,7) (3,6) (4,5)>;
#N7321;
[7,3,2,1]^N7321;
T:=Transversal(N,N7321);
```

```
    for i in [1..#T] do
{[7,3,2,1]^N7321}^T[i];
end for;
T7321:=Transversal(N,N7321);
for i in [1..#T7321] do
ss:=[7,3,2,1]^T7321[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7321);
    N7347:=Stabiliser (N, [7,3,4,7]);
    SSS:={[7,3,4,7]}; SSS:=SSS^N;
    SSS;
# (SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3]*ts[4]*ts[7] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
then print Rep(Seqq[i]);
end if; end for; end for;
N7347s := N7347;
#N7347s;
[7,3,4,7] NN7347s;
T:=Transversal(N,N7347);
    for i in [1..#T] do
{[7,3,4,7]^N7347}^T[i];
end for;
T7347:=Transversal(N,N7347);
for i in [1..#T7347] do
ss:=[7,3,4,7]^T7347[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7347);
N7341:=Stabiliser (N, [7, 3,4,1]);
SSS:={[7,3,4,1]}; SSS:=SSS^N;
SSS;#(SSS);
Seqq:=Setseq(SSS);
```

```
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3]*ts[4]*ts[1] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
then print Rep(Seqq[i]);
end if; end for; end for;
N7341s := N7341;
N7341s := N7341;
for n in N do if 7^n eq 2 and 3^n eq 6
    and 4^n eq 5 and 1^n eq 1 then
N7341s:=sub<N|N7341s,n>; end if;
end for;
#N7341s;
[7,3,4,1] ^N7341s;
N7341:=Stabiliser (N,[7, 3, 4,1]);
N7341;
N7341:=sub<N| (2,7) (3,6) (4,5)>;
#N7341;
[7,3,4,1]^N7341;
T:=Transversal(N,N7341);
    for i in [1..#T] do
{[7,3,4,1]^N7341}^T[i];
end for;
T7341:=Transversal(N,N7341);
for i in [1..#T7341] do
ss:=[7,3,4,1]^T7341[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7341);
    N7371:=Stabiliser (N,[7, 3,7,1]);
    SSS:={[7, 3,7,1]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3]*ts[7]*ts[1] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
```

```
then print Rep(Seqq[i]);
end if; end for; end for;
N7371s := N7371;
#N7371s;
[7,3,7,1] ^N7371s;
T:=Transversal(N,N7371);
    for i in [1..#T] do
{[7,3,7,1]^N7371}^T[i];
end for;
T7371:=Transversal(N,N7371);
for i in [1..#T7371] do
ss:=[7,3,7,1]^T7371[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7371);
    N7372:=Stabiliser (N, [7, 3,7,2]);
    SSS:={[7, 3,7,2]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3]*ts[7]*ts[2] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
then print Rep(Seqq[i]);
end if; end for; end for;
N7372s := N7372;
for n in N do if 7^n eq 6 and 3^n eq 3
and 7^n eq 6 and 2^n eq 4 then
N7372s:=sub<N|N7372s,n>; end if; end for;
#N7372s;
[7,3,7,2] ^N7372s;
N7372:=Stabiliser (N,[7,3,7,2]);
N7372;
N7372:=sub<N| (6,7) (2,4) (1,5)>;
#N7372;
[7,3,7,2]^N7372;
T:=Transversal(N,N7372);
    for i in [1..#T] do
{[7,3,7,2]^N7372}^T[i];
```

```
end for;
T7372:=Transversal(N,N7372);
for i in [1..#T7372] do
ss:=[7,3,7,2]^T7372[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7372);
    N7152:=Stabiliser (N,[7, 1,5,2]);
    SSS:={[7,1,5,2]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[1]*ts[5]*ts[2] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
then print Rep(Seqq[i]);
end if; end for; end for;
N7152s := N7152;
#N7152s;
[7,1,5,2]^N7152s;
T:=Transversal(N,N7152);
    for i in [1..#T] do
{[7,1,5,2]^N7152}^T[i];
end for;
T7152:=Transversal(N,N7152);
for i in [1..#T7152] do
ss:=[7,1,5,2]^T7152[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7152);
    N73417:=Stabiliser (N, [7, 3,4,1,7]);
    SSS:={[7, 3,4,1,7]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
```

```
for n in IM do
    if ts[7]*ts[3]*ts[4]*ts[1]*ts[7] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
*ts[Rep(Seqq[i])[5]]
then print Rep(Seqq[i]);
end if; end for; end for;
N73417s := N73417;
#N73417s;
[7,3,4,1,7]^N73417s;
T:=Transversal(N,N73417);
    for i in [1..#T] do
{[7,3,4,1,7]^N73417}^T[i];
end for;
T73417:=Transversal(N,N73417);
for i in [1..#T73417] do
ss:=[7,3,4,1,7]^T73417[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73417);
N73214:=Stabiliser (N,[7, 3, 2,1,4]);
    SSS:={[7,3,2,1,4]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3]*ts[2]*ts[1]*ts[4] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
*ts[Rep(Seqq[i])[5]]
then print Rep(Seqq[i]);
end if; end for; end for;
N73214s := N73214;
for n in N do if 7^n eq 4 and 3^n eq 1
and 2^n eq 2 and 1^n eq 3 and 4^n eq 7 then
N73214s:=sub<N|N73214s,n>; end if; end for;
#N73214s;
[7,3,2,1,4]^N73214s;
    for n in IM do if ts[7]*ts[3]*ts[2]*ts[1]*ts[4] eq
```

```
n*ts[4]*ts[1]*ts[2]*ts[3]*ts[7] then n; end if;
end for;
N73214:=Stabiliser (N, [7, 3,2,1,4]);
N73214;
N73214:=sub<N| (4,7) (1,3) (5, 6) >;
#N73214;
[7,3,2,1,4]^N73214;
T:=Transversal(N,N73214);
    for i in [1..#T] do
{[7,3,2,1,4]^N73214}^T[i];
end for;
T73214:=Transversal(N,N73214);
for i in [1..#T73214] do
ss:=[7,3,2,1,4]^T73214[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73214);
N73723:=Stabiliser (N, [7, 3,7,2,3]);
    SSS:={[7,3,7,2,3]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
if ts[7]*ts[3]*ts[7]*ts[2]*ts[3] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]*ts[Rep (Seqq[i])[4]]
*ts[Rep(Seqq[i])[5]]
then print Rep(Seqq[i]);
end if; end for; end for;
N73723s := N73723;
for n in N do if 7^n eq 6 and 3^n eq 3 and
    7^n eq 6 and 2^n eq 4 and 3^n eq 3
then N73723s:=sub<N|N73723s,n>;
end if; end for;
#N73723s;
[7,3,7,2,3]^N73723s;
    for n in IM do if ts[7]*ts[3]*ts[7]*ts[2]*ts[3] eq
    n*ts[6]*ts[3]*ts[6]*ts[4]*ts[3] then n;
end if; end for;
N73723:=Stabiliser (N, [7, 3,7,2,3]);
```

```
N73723;
N73723:=sub<N| (6,7) (2,4) (1,5)>;
#N73723;
[7,3,7,2,3]^N73723;
T:=Transversal(N,N73723);
    for i in [1..#T] do
{[7,3,7,2,3]^N73723}^T[i];
end for;
T73723:=Transversal(N,N73723);
for i in [1..#T73723] do
ss:=[7,3,7,2,3]^T73723[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73723);
N732142:=Stabiliser (N,[7,3,2,1,4,2]);
SSS:={[7,3,2,1,4,2]}; SSS:=SSS^N;
SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3]*ts[2]*ts[1]*ts[4]*ts[2] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
*ts[Rep(Seqq[i])[5]]*ts[Rep(Seqq[i])[6]]
then print Rep(Seqq[i]);
end if; end for; end for;
N732142s := N732142;
for n in N do if 7^n eq 4 and 3^n eq 1
and 2^n eq 2 and 1^n eq 3 and 4^n eq 7
and 2^n eq 2 then N732142s:=
sub<N|N732142s,n>; end if; end for;
#N732142s;
[7,3,2,1,4,2] ^N732142s;
    for n in IM do if ts[7]*ts[3]*ts[2]*ts[1]*ts[4]*ts[2]
eq n*ts[4]*ts[1]*ts[2]*ts[3]*ts[7]*ts[2] then n;
end if; end for;
N732142:=Stabiliser (N,[7,3,2,1,4,2]);
N732142;
N732142:=sub<N| (4,7) (1,3) (5,6)>;
#N732142;
```

```
[7,3,2,1,4,2]^N732142;
T:=Transversal(N,N732142);
    for i in [1..#T] do
{[7,3,2,1,4,2]`N732142}^T[i];
end for;
T732142:=Transversal(N,N732142);
for i in [1..#T732142] do
ss:=[7,3,2,1,4,2]^T732142[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N732142);
N7321427:=Stabiliser (N, [7, 3, 2, 1, 4, 2, 7]);
    SSS:={[7,3,2,1,4,2,7]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3]*ts[2]*ts[1]*ts[4]*ts[2]*ts[7] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i]) [4]]*
ts[Rep(Seqq[i])[5]]*ts[Rep(Seqq[i])[6]]*
ts[Rep(Seqq[i])[7]]
then print Rep(Seqq[i]);
end if; end for; end for;
N7321427s := N7321427;
for n in N do if 7^n eq 5 and 3^n eq 2 and
2^n eq 3 and 1^n eq 4 and 4^n eq 1
and 2^n eq 3 then
N7321427s:=sub<N|N7321427s,n>;
    end if; end for;
#N7321427s;
[7,3,2,1,4,2,7]^N7321427s;
    for n in IM do if ts[7]*ts[3]*ts[2]*ts[1]
*ts[4]*ts[2]*ts[7] eq n*ts[5]*ts[2]*ts[3]*ts[4]
*ts[1]*ts[3]*ts[5] then n; end if; end for;
N7321427:=Stabiliser (N, [7, 3, 2, 1, 4, 2,7]);
N7321427;
N7321427:=sub<N| (5,7) (2, 3) (1,4)>;
#N7321427;
[7,3,2,1,4,2,7]^N7321427;
```

```
T:=Transversal(N,N7321427);
    for i in [1..#T] do
{[7, 3, 2, 1,4,2,7]^N7321427}^T[i];
end for;
T7321427:=Transversal(N,N7321427);
for i in [1..#T7321427] do
ss:=[7,3,2,1,4,2,7]^T7321427[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N7321427);
N73214276:=Stabiliser (N,[7,3,2,1,4,2,7,6]);
    SSS:={[7,3,2,1,4,2,7,6]}; SSS:=SSS^N;
    SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3]*ts[2]*ts[1]*ts[4]*ts[2]*ts[7]*ts[6] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*
ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]*
ts[Rep(Seqq[i])[5]]*ts[Rep (Seqq[i]) [6]]*
ts[Rep(Seqq[i]) [7]]*ts[Rep(Seqq[i]) [8]]
then print Rep(Seqq[i]);
end if; end for; end for;
N73214276s := N73214276;
for n in N do if 7^n eq 5 and 3^n eq 2
and 2^n eq 3 and 1^n eq 4 and 4^n eq 1
    and 2^n eq 3 and 7^n eq 5 and 6^n eq 6
then N73214276s:=sub<N|N73214276s,n>;
    end if; end for;
#N73214276s;
[7,3,2,1,4,2,7,6]^N73214276s;
    for n in IM do if ts[7]*ts[3]*ts[2]*ts[1]
*ts[4]*ts[2]*ts[7]*ts[6] eq n*ts[5]*ts[2]
*ts[3]*ts[4]*ts[1]*ts[3]*ts[5]*ts[6]
then n; end if; end for;
N73214276:=Stabiliser (N,[7, 3,2,1,4,2,7,6]);
N73214276;
N73214276:=sub<N| (5,7) (2,3) (1,4)>;
#N73214276;
[7,3,2,1,4,2,7,6]^N73214276;
```

```
T:=Transversal(N,N73214276);
    for i in [1..#T] do
{[7,3,2,1,4,2,7,6]^N73214276}^T[i];
end for;
T73214276:=Transversal(N,N73214276);
for i in [1..#T73214276] do
ss:=[7,3,2,1,4,2,7,6]^T73214276[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73214276);
N73476:=Stabiliser (N, [7, 3,4,7,6]);
SSS:={[7,3,4,7,6]}; SSS:=SSS^N;
SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3]*ts[4]*ts[7]*ts[6] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*
ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
*ts[Rep(Seqq[i])[5]]
then print Rep(Seqq[i]);
end if; end for; end for;
N73476s := N73476;
#N73476s;
[7,3,4,7,6]^N73476s;
T:=Transversal(N,N73476);
    for i in [1..#T] do
{[7,3,4,7,6]^N73476}^T[i];
end for;
T73476:=Transversal(N,N73476);
for i in [1..#T73476] do
ss:=[7,3,4,7,6]^T73476[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73476);
N73721:=Stabiliser (N, [7,3,7,2,1]);
SSS:={[7,3,7,2,1]}; SSS:=SSS^N;
```

```
SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3]*ts[7]*ts[2]*ts[1] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*
ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
*ts[Rep(Seqq[i])[5]]
then print Rep(Seqq[i]);
end if; end for; end for;
N73721s := N73721;
#N73721s;
[7,3,7,2,1]^N73721s;
T:=Transversal(N,N73721);
    for i in [1..#T] do
{[7, 3,7, 2,1]^N73721}^T[i];
end for;
T73721:=Transversal(N,N73721);
for i in [1..#T73721] do
ss:=[7,3,7,2,1]^T73721[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N73721);
N737216:=Stabiliser (N, [7, 3, 7, 2,1,6]);
SSS:={[7,3,7,2,1,6]}; SSS:=SSS`N;
SSS;#(SSS);
Seqq:=Setseq(SSS); Seqq;
for i in [1..#SSS] do
for n in IM do
    if ts[7]*ts[3]*ts[7]*ts[2]*ts[1]*ts[6] eq
    n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
*ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]
*ts[Rep(Seqq[i])[5]]*ts[Rep(Seqq[i])[6]]
then print Rep(Seqq[i]);
end if; end for; end for;
N737216s := N737216;
for n in N do if 7^n eq 4 and 3^n eq 1 and 7^n
eq 4 and 2^n eq 2 and 1^n eq 3 and 6^n eq 5
    then N737216s:=sub<N|N737216s,n>; end if; end for;
#N737216s;
```

```
[7,3,7,2,1,6]^N737216s;
    for n in IM do if ts[7]*ts[3]*ts[7]*ts[2]*ts[1]*ts[6]
eq n*ts[4]*ts[1]*ts[4]*ts[2]*ts[3]*ts[5] then
    n; end if; end for;
N737216:=Stabiliser (N, [7,3,7,2,1,6]);
N737216;
N737216:=sub<N| (4,7) (1, 3) (5,6)>;
#N737216;
[7, 3,7,2,1,6]^N737216;
T:=Transversal(N,N737216);
    for i in [1..#T] do
{[7,3,7,2,1,6]^N737216}^T[i];
end for;
T737216:=Transversal(N,N737216);
for i in [1..#T737216] do
ss:=[7,3,7,2,1,6]^T737216[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..351] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N737216);
/********************************************/
/*We use the Schreier System to convert
permutation into word*/
D:=DihedralGroup (7);
xx:=D! (1, 2, 3,4,5,6,7);
yy:=D!(1, 6) (2, 5) (3, 4);
N:=sub<D|xx, Yy>; #N; Set (N);
G<x,y,t>:=Group<x,y,t|x^7, y^2, (x*y)^2, t^2,
(t,y), (x*t)^ 0, (x*t*t^x)^0, (x*y*t^x*t)^3, (t*t*x*t)^ 7> ;
H:=sub<G| x,y,t^( (x^2)*t^ (x^4)*t^(x^5)*t^ (x^4)*t^ (x^2) > ;
#H;
f,G1,k:=CosetAction(G,H);
IN:=sub<G1|f(x),f(y)>;
IM:=su.b<G1|IN,f(t^(x^2)*t^ (x^4)*t^(x^5)*
t^(x^4)*t^ (x^2))>;
#IN; #IM;
ts := [Id(G1) : i in [1 .. 7]];
ts[7] := f(t); ts[1] := f(t`x); ts[2] := f(t`^(x^2));
    ts[3] := f(t^(x^3)); ts[4] := f(t^(x^4));
    ts[5] := f(t^(x^5)); ts[6] := f(t^(x^6));
A:=f(x);
B:=f(y);
C:=f(t);
```

```
N:=sub<G1|A,B,C>;
NN<x,y,t>:=Group<x,y,t|x^7, y^2, (x*y)^2,
    t^2,(t,y),(x*t)^0, (x*t*t`x)^ 0, (x*y*t^x*t)^3,
    (t*t*x*t)^7>;
G1:=NN;
Sch:=SchreierSystem(NN, sub<NN|Id(NN) >) ;
ArrayP:=[Id(N): i in [1..#N]];
for i in [2..#N] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
if Eltseq(Sch[i])[j] eq -1 then P[j]:=A^-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
```


Appendix G: MAGMA Code for Mixed Extension $\left(2^{6}: L_{2}(7)\right): 2$

```
a:=0; b:=8;c:=0; d:=3;
G<x,y,t>:=Group<x,y,t|x^7, Y^2, (x*y)^2, t^2,
(t,y),(x*t)^a,(x*t*t^x)^b,(x*y*t^x*t)^c,
(t*t*x*t)^d>;#G;
f,G1,k:=CosetAction(G,sub<G|x,y>);
CompositionFactors(G1);
Center(G1);
NL:=NormalLattice(G1);
NL;
MinimalNormalSubgroups(G1);
X:=A.belianGroup(GrpPerm,[2, 2, 2, 2, 2, 2]);
s:=IsIsomorphic(X,NL[2]);s;
q,ff:=quo<NL[3]|NL[2]>;
CompositionFactors(q);
NumberOfGenerators(NL[3]);
T:=Transversal(NL[3],NL[2]);
/*Note we store the generators of NL[2] and the
transversals of NL[3]*/
NumberOfGenerators(NL[2]);
/* now write schreier system, you want the
action of 2^6 so write it with that, you need N and NN,
check their number so you know they equal
64=2^6 */
N:=sub<G1|A,B,C,D,E,F>; #N;
/*presentation for 2^6=64 abelian they commute*/
NN<k,l,m,n,o,p>:=Group<k,l,m,n,o,p|k^2, l^2,m^2,
n^2,o^2, p^2, (k,l), (k,m), (k,n), (k,o), (k, p), (l,m), (l, n),
(l,o),(l, p),(m,n),(m,o),(m,p),(n,o),(n, p), (o, p)>;
#NN;
/* now you can run the system, [1..64] because 2^6.
```

```
then there are 6 generators so there will be six things,
in this case they're all order 2 (2^6) so you don not
include their inverses */
Sch:=SchreierSystem(NN,sub<NN|Id(NN) >) ;
ArrayP:=[Id(N): i in [1..64]];
for i in [2..64] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
if Eltseq(Sch[i])[j] eq 4 then P[j]:=D; end if;
if Eltseq(Sch[i])[j] eq 5 then P[j]:=E; end if;
if Eltseq(Sch[i])[j] eq 6 then P[j]:=F; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
/* that's the system, so now you can write T[3]^4 as
elements of 2^6, earlier we called T[3]^4= T34 */
for i in [1..64] do if ArrayP[i] eq T34 then Sch[i];
end if; end for;
T34 eq D;
Order(ff(T2));
q;
#sub<q| ff(T2),ff(T3)>;
Order(ff(T2)*ff(T3));
H<r,s>:= Group<r,s|r^2,s^4,(r*s)^7,(r,s)^4,(r*s^2)^3>;
/*PSL(2,7) Presentation*/
/* H<r,s>:= Group<r,s,lr^2,s^4=n,(r*s)^7,(r,s)^4,
(r*s^2)^3>; */
I:=[Id(NN): i in [1..13]];
for i in [1..64] do if ArrayP[i] eq T34 then
Sch[i]; I[1]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq A^T2 then
Sch[i]; I[2]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq B^T2 then
Sch[i]; I[3]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq C^T2
then Sch[i]; I[4]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq D`T2
then Sch[i]; I[5]:=Sch[i]; end if; end for;
```

```
for i in [1..64] do if ArrayP[i] eq E^T2
then Sch[i]; I[6]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq F^T2
then Sch[i]; I[7]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq A^T3
then Sch[i]; I[8]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq B^T3
then Sch[i]; I[9]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq C^T3
then Sch[i]; I[10]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq D^T3
then Sch[i]; I[11]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq E^T3
then Sch[i]; I[12]:=Sch[i]; end if; end for;
for i in [1..64] do if ArrayP[i] eq F^T3
then Sch[i]; I[13]:=Sch[i]; end if; end for;
I;
    Order((T2,T3));
    Order((T2*T3^2));
    I:=[Id(NN): i in [1..14]];
    Order(ff((T2,T3)));
    (T2,T3)^4 in N;
    for i in [1..64] do if ArrayP[i] eq (T2,T3)^4
then Sch[i]; end if; end for;
    NN<k,l,m,n,o,p,r,s>:=Group<k,l,m,n,o,p,r,s|k^2, l^2 2,
m^2, n^2,o^2, p^2, (k,l), (k,m), (k,n), (k,o), (k, p), (l,m), (l,
n),(l,o), (l, p), (m,n), (m,o), (m,p), (n,o), (n, p), (o, p), r^2,
s^4=l*m*p,(r*s)^ 7, (r,s)^4=k*l*m*o*p, (r*s^2)^ 3,k^r=k*m*o,
l^r=n*o*p,m^r=m, n^r=m*n*o,o^r=o, p^r=l*m*n,
k^s=k*m*n*o*p,l^s=n*p,m^s=k, n^s=k*l*n*p,o^s=p,
p^s=k*l*m*n>;
    #NN;
    f1,g,k1:=CosetAction(NN, sub<NN|Id(NN) > );
    s,t:=IsIsomorphic(NL[3],g);
    S;
/*Now find an element of order 2 in G1 but outside NL[3]*/
for g in G1 do if Order(g) eq 2 and sub<G1|NL[3],g> eq G1
then Z:=g;break; end if; end for;
G1 eq sub<G1|NL[3],Z>;
/*--------------------------------------------*/
```

$/ *$ We find the action of Z on the generators
$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{T} 2, \mathrm{~T} 3$ of $\mathrm{NL}[3] * /$
$\mathrm{N}:=$ sub<G1|A, B, C, D, E, F, T2, T3>; \#N;

```
    NN<k,l,m,n,o,p,r,s>:=Group<k,l,m,n,o,p,r,s|k^2,l^2,
m^2,n^2,o^2, p^2,(k,l),(k,m),(k,n),(k,o),(k,p),(l,m), (l,n),
    (l,o), (l,p),(m,n),(m,o),(m,p),(n,o),(n,p),(o,p),r^2, s^4=
l*m*p,(r*s)^7,(r,s)^4=k*l*m*o*p,
    (r*s^2)^3,k^r=k*m*o,l^r=n*o*p,m^r=m, n^r=m*n*o,o^r=o,
p^r=l*m*n,k^s=k*m*n*o*p,l^s=n*p,m^s=k,n^s=k*l*n*p,
o^s=p,p^s=k*l*m*n>;
Sch:=SchreierSystem(NN,sub<NN|Id(NN) >);
ArrayP:=[Id(N): i in [1..10752]];
for i in [2..10752] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
if Eltseq(Sch[i])[j] eq 4 then P[j]:=D; end if;
if Eltseq(Sch[i])[j] eq 5 then P[j]:=E; end if;
if Eltseq(Sch[i])[j] eq 6 then P[j]:=F; end if;
if Eltseq(Sch[i])[j] eq 7 then P[j]:=T2; end if;
if Eltseq(Sch[i])[j] eq 8 then P[j]:=T3; end if;
if Eltseq(Sch[i])[j] eq -8 then P[j]:=T3^-1; end if;
end for;
PP:=Id(N);for k in [1..#P] do
PP:=PP*P[k]; end for;ArrayP[i]:=PP;end for;
I:=[Id(NN): i in [1..8]];
for i in [1..10752] do if ArrayP[i] eq A^Z then
Sch[i]; I[1]:=Sch[i]; end if; end for;
for i in [1..10752] do if ArrayP[i] eq B^Z then
Sch[i]; I[1]:=Sch[i]; end if; end for;
for i in [1..10752] do if ArrayP[i] eq C^Z then
Sch[i]; I[1]:=Sch[i]; end if; end for;
for i in [1..10752] do if ArrayP[i] eq D^Z then
Sch[i]; I[1]:=Sch[i]; end if; end for;
for i in [1..10752] do if ArrayP[i] eq E^Z then
Sch[i]; I[1]:=Sch[i]; end if; end for;
for i in [1..10752] do if ArrayP[i] eq F^Z then
Sch[i]; I[1]:=Sch[i]; end if; end for;
for i in [1..10752] do if ArrayP[i] eq T2^Z then
Sch[i]; I[1]:=Sch[i]; end if; end for;
for i in [1..10752] do if ArrayP[i] eq T3^Z then
Sch[i]; I[1]:=Sch[i]; end if; end for;
/*The presentation of the mixed estension */
    H1<k,l,m,n,o,p,r,s,g>:=Group<k,l,m,n,o,p,r,s,g|
k^2,l^2,m^2, n^2,o^2, p^2,(k,l),(k,m),(k,n),(k,o),(k,p),
```

```
(l,m), (l,n),(l,o), (l,p),(m,n),(m,o),(m,p),(n,o),(n,p),
(o,p),r^2, s^4 = l*m*p, (r*s)^ 7, (r,s)^ 4 =k*l*m*o*p,
(r*s^2)^3,k^r=k*m*o,l^r=n*o*p,m^r=m, n^r=
m*n*O,o^r=o, p^r=l*m*n,k^s=k*m*n*o*p,l^s=
n*p,m^s=k, n^s=k*l*n*p,o^s=p, p^s=k*l*m*n,
g^2,k^g=l * n, l^g=s*o*s^^1,m^g=n^s, n^ g=
k*s*o*s^-1,o^g=k*m*n*p, p^ g=p^s,r^g=
k * s * r * l * s * r * s^-1 * r * s^-1, s^g=
r * k * s * r * s * r * s^-1 * r>;
#H1;
    f,h1,k1:=CosetAction(H1,sub<H1|Id(H1)>);
    s:=IsIsomorphic(h1,G1);s;
```


Appendix H: MAGMA Code for DCE of M_{12}

```
S1:=Sym(72);
aa:=S1!(2, 8) (3, 15) (4, 20) (6, 9) (10, 19) (11, 44) (12, 37)
(14, 28)(16, 30) (17,38) (18, 54) (21, 42) (22, 23) (24, 57)
(25, 45)(26, 32) (27, 66) (29, 61) (31,39) (33, 55) (36, 40)
(41, 51) (43, 62) (46, 70) (47, 53) (48, 63) (49, 58) (50, 67)
(52, 71) (56, 69) (59, 65) (60, 64) (68, 72);
bb:=S1!(1, 2, 9, 13, 6, 8) (3, 16, 25, 10, 40, 23)
(4, 21, 53, 47, 42, 20)(5, 26, 39, 7, 31, 32)
(11, 29, 57, 24, 61, 44)(12, 28, 35, 14, 37, 34)
(15, 22, 36,19, 45, 30) (17, 49, 50, 66, 69, 71)
(18, 59, 46, 55, 41, 48) (27, 67, 58,38, 52, 56)
(33, 70, 65, 54, 63, 51) (43, 72, 68, 62, 60, 64);
    Cc:=S1!(1, 3, 5, 15) (2, 10, 12, 42) (4, 22, 23, 20)
(6, 29, 31, 54) (7, 33, 34, 55) (8, 21, 37, 19)
(9, 18, 39, 61)(11, 45, 46, 40) (13, 50, 35, 67)
(14, 52, 26,62) (16, 38, 53, 69) (17, 30, 56, 47)
(24, 41, 51, 57) (25, 44, 36, 70) (27,60, 64, 66)
(28, 43, 32, 71) (48, 58, 65, 72) (49, 63, 68, 59);
N:=sub<S1| aa,bb, cc>;
G<a,b,c>:=Group<a,b,c| a^2,b^6, c^4,
(b^-1 * a)^2,
(a*c^-1)^2,
```



```
(c^-1*b)^ 3,
```



```
Sch:=SchreierSystem(G,sub<G|Id(G)>);
ArrayP:=[Id(N): i in [1..432]];
for i in [2..432] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
```

```
if Eltseq(Sch[i])[j] eq 1 then P[j]:=aa; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=bb; end if;
if Eltseq(Sch[i])[j] eq -2 then P[j]:=bb`-1; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=cc; end if;
if Eltseq(Sch[i])[j] eq -3 then P[j]:=cc^-1; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [50..100] do Sch[i], ArrayP[i]; end for;
G<a,b,c,t>:=Group<a,b,c,t| a^2,b^6,c^4,
(b^-1 * a)^2,
(a*c^-1)^2,
b^-1*\mp@subsup{c}{}{\wedge}-2* * b^ 2* *^2* * b^-1,
    (c^-1*b)^3,
```



```
t^2,(t,a),(t,a * c * b^-1 * c^-1 * b^-1 * c),
(a*c^-1*b^-1*c** ^ 2*t^(b) )^ 3>;
#G;
f,G1,k:=CosetAction(G,sub<G|a,b,c>);
CompositionFactors(G1);
Center(G1);
/*store center as ccc */
A:=f(a);
B:=f(b);
C:=f(c);
D:=f(t);
N:=sub<G1|A,B,C,D>;
NN<a,b,c,t>:=Group<a,b,c,t| a^2,b^6,c^4,
    (b^-1 * a)^2,
(a*c^-1)^2,
```



```
    (c^-1*b)^3,
```



```
t^2,(t,a),(t,a * c * b^-1 * c^-1 * b^-1 * c),
(a*c^-1*b^-1*c* * ` 2*t*^(b) )^ 3>;
Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);
ArrayP:=[Id(N): i in [1..#N]];
for i in [2..#N] do
P:=[Id(N): l in [1..#Sch[i]]];
for j in [1..#Sch[i]] do
if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;
```

```
if Eltseq(Sch[i])[j] eq -1 then P[j]:=A^-1; end if;
if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;
if Eltseq(Sch[i])[j] eq -2 then P[j]:=B^-1; end if;
if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;
if Eltseq(Sch[i])[j] eq -3 then P[j]:=C^-1; end if;
if Eltseq(Sch[i])[j] eq 4 then P[j]:=D; end if;
end for;
PP:=Id(N);
for k in [1..#P] do
PP:=PP*P[k]; end for;
ArrayP[i]:=PP;
end for;
for i in [1..#N] do if ArrayP[i] eq ccc then
print Sch[i]; end if; end for; /* Gives me the center
    in terms of a, b, c, and t */
/************************************************************
/* Now we need to construct the double coset
enumeration G=M12=9540*/
S1:=Sym(72);
aa:=S1!(2, 8) (3, 15) (4, 20) (6, 9) (10, 19) (11, 44) (12, 37)
(14, 28) (16, 30) (17,38) (18, 54) (21, 42) (22, 23) (24, 57)
(25, 45) (26, 32) (27, 66) (29, 61) (31,39) (33, 55) (36, 40)
(41, 51) (43, 62) (46, 70) (47, 53) (48, 63) (49, 58) (50, 67)
(52, 71) (56, 69) (59, 65) (60, 64) (68, 72);
bb:=S1!(1, 2, 9, 13, 6, 8) (3, 16, 25, 10, 40, 23)
(4, 21, 53, 47, 42, 20)(5, 26, 39, 7, 31, 32)
(11, 29, 57, 24, 61, 44)(12, 28, 35, 14, 37, 34)
(15, 22, 36,19, 45, 30) (17, 49, 50, 66, 69, 71)
(18, 59, 46, 55, 41, 48) (27, 67, 58,38, 52, 56)
(33, 70, 65, 54, 63, 51) (43, 72, 68, 62, 60, 64);
    cc:=S1!(1, 3, 5, 15)(2, 10, 12, 42) (4, 22, 23, 20)
(6, 29, 31, 54) (7, 33, 34, 55) (8, 21, 37, 19)
(9, 18, 39, 61) (11, 45, 46, 40) (13, 50, 35, 67)
(14, 52, 26,62) (16, 38, 53, 69) (17, 30, 56, 47)
(24, 41, 51, 57) (25, 44, 36, 70) (27,60, 64, 66)
(28, 43, 32, 71) (48, 58, 65, 72) (49, 63, 68, 59);
N:=sub<S1|aa,bb, cc>;
G<a,b,c,t>:=Group<a,b,c,t| a^2,b^6, c^4,
(b^-1 * a)^2,
(a*c^-1)^2,
b^ - 1* c^ - 2* b ` 2 * * c^ 2* * b^ - 1,
(c^-1*b)^ 3,
```



```
t^2,(t,a),(t,a* c * b^-1 * c^-1 * b^-1 * c),
(a*c^-1*b ^ - 1* c* b ` 2*t (b) (b)^3,
a * b^3 * c * t * b * t * b^-1 * t * b * t * c>;
f,G1,k:=CosetAction(G,sub<G|a,b,c>) ;
CompositionFactors(G1);
#G1;
DoubleCosets(G,sub<G|a,b,c>,sub<G|a,b, c> );
#DoubleCosets(G, sub<G|a,b,c>,sub<G|a,b,c>);
Index (G, sub<G|a,b,c>) ;
IN:=sub<G1|f(a),f(b), f( c)>;
ts := [Id(G1) : i in [1 .. 72]];
ts[1] := f(t); ts[2]:=f(t^b); ts[3]:=f(t^c);
ts[4]:=f(t^(b^-1*c* b^-1)); ts[5]:=f(t^(c^2));
ts[6]:=f(t^ (a* b^-2)); ts[7]:=f(t`^(b^2* c^2*b));
ts[8]:=f(t^(a*b^-1)); ts[9]:=f(t^ (a*b^^2));
ts[10]:=f(t^(a*b*c)); ts[11]:=f(t`^((b*c)^2));
ts[12]:=f(t^(b* c^2));ts[13]:=f(t^(b^3));
ts[14]:=f(t`(c*b*c*b* c^-1)); ts[15]:=f(t^(a*c^-1));
ts[16]:=f(t^ (a*c*b)); ts[17]:=f(t^(a* c^-1* b^ - 1* c^-1));
ts[18]:=f(t^(b^2*C)); ts[19]:=f(t^ (a*b^^-1* c^-1));
ts[20]:=f(t^(b* c^-1*b)); ts[21]:=f(t^ (b^-1*c));
ts[22]:=f(t^(c^-1*b)); ts[23]:=f(t^ (c*b^-1));
ts[24]:=f(t^( (b^2* c^-1* 㐌^-1)); ts[25]:=f(t^(b*c* (b^-1));
ts[26]:=f(t^(c^2*b)); ts[27]:=f(t` (b^3* c^-1*b^^1));
ts[28]:=f(t^ (b*c^2*b)); ts[29]:=f(t^ (a*b^^-2*c));
ts[30]:=f(t` (a* c^-1*b^^1)); ts[31]:=f(t^(c^2*b^-2));
ts[32]:=f(t^(c^2* * ^^-1)); ts[33]:=f(t^(b* c*b^-1* c^-1*b^-1));
ts[34]:=f(t^((b*C*b^-1)^2)); ts[35]:=f(t^(b^3*C^2));
ts[36]:=f(t^(a* c^-1* b^2)); ts[37]:=f(t^(b^^1*c^2));
ts[38]:=f(t^(c*b*c)); ts[39]:=f(t^^(b^2* c^2));
ts[40]:=f(t^(b*c*b)); ts[41]:=f(t^(b^2* c^-1* 亘^-1*c));
ts[42]:=f(t^(b^-1*c*b^3)); ts[43]:=f(t^(c^2*b^-1*c^-1));
ts[44]:=f(t^(b^2* c^-1*b)); ts[45]:=f(t^ (a*c^-1*b^-2));
```



```
ts[48]:=f(t^(b^2* c* b^-1)); ts[49]:=f(t^(c^-1* (b^-1* c^-1*b));
```



```
ts[52]:=f(t^(c^2*b* c^-1)); ts[53]:=f(t^(a*b^-1*c*b));
ts[54]:=f(t^(a*b^^2* c^-1)); ts[55]:=f(t^(b*c*b*c^-1*b));
ts[56]:=f(t^(c^-1*b^-1*c)); ts[57]:=f(t^(b^ - 2* c* b ) );
ts[58]:=f(t^ (c*b* C* b^^1)); ts[59]:=f(t^( (b^2* c*b));
ts[60]:=f(t^(c^2*b* c*b)); ts[61]:=f(t^ (b^2*c^-1));
ts[62]:=f(t^ (c^2*b*c)); ts[63]:=f(t^(b^^-2* c^-1*b));
ts[64]:=f(t^(c^2* * ^^ - ** c^-1* * `^-1));
```

```
ts[65]:=f(t^(a*b^-2* c^-1* * ^^-1));
ts[66]:=f(t^(a*c*b* c^-1*b^-1)); ts[67]:=f(t`^(b^3*c^-1));
ts[68]:=f(t^(b^2*C*b* c^-1)); ts[69]:=f(t^(c*b* c^-1));
```



```
ts[72]:=f(t^(c^2* * ^^ - 1* c^-1*b));
prodim := function(pt, Q, I)
/*
Return the image of pt under
permutations Q[I] applied sequentially.
*/
    v := pt;
        for i in I do
            v := v^(Q[i]);
        end for;
return v;
end function;
cst := [null : i in [1 .. Index (G, sub<G|a,b,c>)]]
where null is [Integers() | ];
        for i := 1 to 72 do
            cst[prodim(1, ts, [i])] := [i];
        end for;
    m:=0;
for i in [1..220] do if cst[i] ne [] then
m:=m+1; end if; end for; m;
N1 := Stabiliser (N, [1]);
N1; #N1;
T1:=Transversal(N,N1);
for i in [1..#T1] do
ss:=[1]^T1[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..220] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N1);
N12:=Stabiliser (N,[1,2]);
N12;
SSS:={[1,2]}; SSS:=SSS ^N;
SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
```

```
if ts[1]*ts[2] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N12s := N12;
for n in N do if 1^n eq 16 and 2^n eq 40
then N12s:=sub<N|N12s,n>; end if; end for;
#N12s;
N12s;
    [1,2]^N12s;
    for n in IN do if ts[1]*ts[2] eq n*ts[16]*ts[40] then
    n; end if; end for;
ts[1]*ts[2] eq f(a*b*c*b^ (-2)* c*b) *ts[16]*ts[40];
N12:=Stabiliser (N,[1,2]);
N12;
N12:=sub<N| (3, 70) (4, 11) (5, 28) (6, 32) (8, 34) (9, 12)
(10, 72) (13, 39) (15, 66) (16, 67) (17, 29) (18, 60) (19, 57)
(20, 71) (21, 56) (22, 55) (23, 49) (24, 68) (25, 48)
(26, 37) (27, 46) (30, 51) (33, 58) (36, 38) (40, 61)
(41, 50)(42, 59) (43, 63) (44, 52) (45, 62) (47, 64)
(53, 54)(65, 69),(1, 16, 52, 39, 44, 19)
(2, 40, 29, 32, 17, 15) (3, 26, 60, 43, 5, 22)
(4, 36, 65, 68, 46, 23) (6, 57, 61, 13, 66, 67)
(7, 70, 10, 28, 72, 18)(8, 53, 71,35, 58, 54)
(9, 59, 50, 14, 56, 42)(11, 30, 27, 64, 69, 25)
(12, 20, 21, 34, 41, 33) (24, 48, 38, 47, 49, 51)
(31, 63, 62, 37, 45, 55), (1, 16, 6, 17, 32, 57)
(2, 40, 13, 44, 39, 66)(3, 10, 18, 43, 62, 55)
(4, 30, 24, 46, 64, 49)(5, 72, 28, 22, 31, 63)
(7, 70, 26, 45, 37, 60)(8, 41, 14,56, 34, 53)
(9, 20, 35, 58, 12, 59) (11, 36, 47, 69, 68, 48)
(15, 67, 52,19, 61, 29) (21, 42, 50, 33, 54, 71)
(23, 51, 27) (25, 38, 65)>;
#N12;
[1,2]^N12;
T:=Transversal(N,N12);
    for i in [1..#T] do
{[1,2]^N12}^T[i];
end for;
T12:=Transversal(N,N12);
for i in [1..#T12] do
ss:=[1,2]^T12[i];
cst[prodim(1, ts, ss)] := ss;
end for;
```

```
m:=0; for i in [1..220] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N12);
N15:=Stabiliser (N, [1,5]);
N15;
SSS:={[1,5]}; SSS:=SSS^N;
SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[1]*ts[5] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N15s := N15;
for n in N do if 1^n eq 5 and 5^n eq 1
then N15s:=sub<N|N15s,n>; end if; end for;
#N15s;
N15s;
[1,5]^N15s;
    for n in IN do if ts[1]*ts[5] eq n*ts[5]*ts[1] then
    n; end if; end for;
ts[1]*ts[5] eq f(a)*ts[5]*ts[1];
N15:=Stabiliser (N,[1,5]);
N15;
N15:=sub<N| (2, 8) (3, 15) (4, 20) (6, 9) (10, 19)
(11, 44) (12, 37) (14, 28) (16, 30) (17, 38) (18, 54)
(21, 42) (22, 23) (24, 57) (25, 45) (26, 32) (27, 66)
(29, 61) (31, 39) (33, 55) (36, 40) (41, 51) (43, 62)
(46, 70) (47, 53) (48, 63)(49, 58) (50, 67) (52, 71)
(56, 69)(59, 65) (60, 64) (68, 72),(1, 5) (2, 12)
(3, 15) (4, 23) (6, 31) (7, 34) (8, 37) (9, 39) (10, 42)
(11, 46) (13, 35) (14, 26) (16, 53) (17, 56) (18, 61)
(19, 21) (20, 22) (24, 51) (25, 36) (27, 64) (28, 32)
(29, 54) (30, 47) (33, 55) (38, 69) (40, 45) (41, 57)
(43, 71) (44, 70) (48, 65) (49, 68) (50, 67) (52, 62)
(58, 72) (59, 63) (60, 66), (1, 5) (2, 37) (4, 22) (6, 39)
(7, 34)(8, 12) (9, 31) (10, 21) (11, 70) (13, 35)(14,
32)(16, 47)(17, 69) (18, 29) (19, 42) (20, 23) (24, 41)
(25, 40) (26, 28) (27, 60) (30, 53) (36, 45) (38, 56)
(43, 52)(44, 46) (48, 59)(49, 72) (51, 57) (54,
61)(58, 68)(62, 71) (63, 65) (64, 66)>;
```

```
#N15;
[1,5]^N15;
T:=Transversal(N,N15);
    for i in [1..#T] do
{[1,5]^N15}^T[i];
end for;
T15:=Transversal(N,N15);
for i in [1..#T15] do
ss:=[1,5]^T15[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..220] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N15);
N113:=Stabiliser (N, [1,13]);
N113;
SSS:={[1,13]}; SSS:=SSS^N;
SSS;#(SSS);
Seqq:=Setseq(SSS);
Seqq;
for i in [1..#SSS] do
for n in IN do
if ts[1]*ts[13] eq
n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]
then print Rep(Seqq[i]);
end if; end for; end for;
N113s := N113;
for n in N do if 1^n eq 69 and 13^n eq 49
then N113s:=sub<N|N113s,n>; end if; end for;
#N113s;
N113s;
    [1,13]^N113s;
    for n in IN do if ts[1]*ts[13] eq n*ts[69]*ts[49] then
    n; end if; end for;
ts[1]*ts[13] eq f(b^3)*ts[69]*ts[49];
N113:=Stabiliser (N,[1,13]);
N113;
N113:=sub<N| (2, 8) (3, 15) (4, 20) (6, 9) (10, 19)
    (11, 44)(12, 37) (14, 28) (16, 30) (17, 38) (18, 54)
    (21, 42) (22, 23) (24, 57) (25, 45) (26, 32) (27, 66)
    (29, 61)(31,39)(33, 55) (36, 40) (41, 51) (43, 62)
    (46, 70)(47, 53) (48, 63) (49, 58) (50, 67) (52, 71)
    (56, 69)(59, 65)(60, 64)(68, 72),(1, 69, 13, 49)
```

```
(2, 38, 6, 27)(3, 22, 10, 45)(4, 37, 47, 28) (5, 30, 7, 36)
(8, 24, 9, 11) (12, 51, 14, 65) (15, 60, 19, 72)
(16, 62, 40, 43)(17, 67, 66, 52) (18, 53, 55, 20)
(21, 70, 42, 63) (23, 31, 25, 26) (29, 56, 61, 58)
(32,68, 39, 64)(33, 41, 54, 59) (34, 46, 35, 48)
(44, 50, 57, 71), (1, 69, 61, 56, 13, 49, 29, 58)
(2, 24, 71, 17, 6, 11, 50, 66) (3, 60, 32, 23,
    10, 72, 39, 25)(4, 18, 59, 12, 47, 55, 41, 14)
(5, 30, 62, 16, 7, 36, 43,40)(8, 38, 67, 57, 9, 27,
    52, 44)(15, 22, 31, 64, 19, 45, 26, 68) (20, 37,
51, 54, 53, 28, 65, 33) (21, 63, 34, 46, 42, 70, 35, 48)>;
#N113;
[1,13]^N113;
T:=Transversal(N,N113);
    for i in [1..#T] do
{[1,13]^N113}^T[i];
end for;
T113:=Transversal(N,N113);
for i in [1..#T113] do
ss:=[1,13]^T113[i];
cst[prodim(1, ts, ss)] := ss;
    end for;
m:=0; for i in [1..220] do if cst[i] ne []
then m:=m+1; end if; end for; m;
Orbits(N113);
/*Relations*/
for g in IN do for h in IN do
    if ts[1]*ts[7] eq g*(ts[1])^h then g,h; end if;
end for; end for;
ts[1]*ts[7] eq ts[35];
for g in IN do for h in IN do
    if ts[1]*ts[35] eq g*(ts[1])^h then g,h;
end if; end for; end for;
ts[1]*ts[35] eq ts[7];
for g in IN do for h in IN do
    if ts[1]*ts[21] eq g*(ts[1])^h then g,h;
end if; end for; end for;
ts[1]*ts[21] eq f(a* b^-1 * c^-1 * b^-1 * c * b)
*ts[17];
for g in IN do for h in IN do
    if ts[1]*ts[3] eq g*(ts[1]*ts[13])^h
then g,h; end if; end for; end for;
ts[1]*ts[3] eq f(c^-1*b^-1)*ts[2]*ts[6];
for g in IN do for h in IN do
```

```
    if ts[1]*ts[4] eq g*(ts[1]*ts[5])^h then
g,h; end if; end for; end for;
ts[1]*ts[4] eq f(b*c*b)*ts[14]*ts[9];
for g in IN do for h in IN do
    if ts[1]*ts[6] eq g*(ts[1]*ts[5])^h then
g,h; end if; end for; end for;
ts[1]*ts[6] eq f(a*b)*ts[18]*ts[55];
for g in IN do for h in IN do
    if ts[1]*ts[10] eq g*(ts[1]*ts[5])^h then g,h;
end if; end for; end for;
ts[1]*ts[10] eq f(b^3)*ts[15]*ts[62];
for g in IN do for h in IN do
    if ts[1]*ts[16] eq g*(ts[1]*ts[5])^h
    then g,h; end if; end for; end for;
ts[1]*ts[16] eq f(a * c^-1 * b^-1 * c * b^^2 * c)
*ts[28]*ts[37];
for g in IN do for h in IN do
    if ts[1]*ts[17] eq g*(ts[1]*ts[13])^h then g,h;
end if; end for; end for;
ts[1]*ts[17] eq f(a * b * c * b)*ts[15]*ts[29];
for g in IN do for h in IN do
    if ts[1]*ts[18] eq g*(ts[1]*ts[5])^h then
    g,h; end if; end for; end for;
ts[1]*ts[18] eq f(a * b^-1 * c^-1 * b^-1 * c * b)
*ts[59]*ts[41];
for g in IN do for h in IN do
    if ts[1]*ts[25] eq g*(ts[1]*ts[5])^h
then g,h; end if; end for; end for;
ts[1]*ts[25] eq f(a * c^-1 * b * c * b) *ts[53]
*ts[58];
for g in IN do for h in IN do
    if ts[1]*ts[22] eq g*(ts[1])^h then g,h; end
    if; end for; end for;
for g in IN do for h in IN do
if ts[1]*ts[2]*ts[3] eq g*(ts[1]*ts[5])^h then
g,h; end if; end for; end for;
ts[1]*ts[2]*ts[3] eq f(c * b^-1 * c^-1 * b^^1
* c^-1 * b^-1) *ts[61]*ts[33];
for g in IN do for }h\mathrm{ in IN do
if ts[1]*ts[2]*ts[4] eq g*(ts[1]*ts[5])^h
then g,h; end if; end for; end for;
ts[1]*ts[2]*ts[4] eq f(c * b^-2 * c * b * c)
*ts[28]*ts[37];
for g in IN do for h in IN do
```

```
if ts[1]*ts[2]*ts[8] eq g*(ts[1]*ts[13])^h
then g,h; end if; end for; end for;
ts[1]*ts[2]*ts[8] eq f(c^-1 * b * c * b)*
ts[71]*ts[43];
for g in IN do for }h\mathrm{ in IN do
if ts[1]*ts[5]*ts[3] eq g*(ts[1]*ts[2])^h
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[3] eq f(c * b^-2)*ts[63]*ts[60];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[7] eq g*(ts[1]*ts[13])^h
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[7] eq f(a * b * c^2 * b^-1)*
ts[72]*ts[17];
for g in IN do for }h\mathrm{ in IN do
if ts[1]*ts[5]*ts[13] eq g*(ts[1]*ts[2])^h
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[13] eq f(a * c^-1 * b^3
* c^-1)*ts[68]*ts[46];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[33] eq g*(ts[1]*ts[5])^h
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[33] eq f(a * c^2 * b^-1 *
    c^-1)*ts[2]*ts[37];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[50] eq g*(ts[1]*ts[5])^h
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[50] eq f(b^2 * c * b^^1 * c^-1)
*ts[37]*ts[2];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[2] eq g*(ts[1]*ts[5])^h
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[2] eq f(a * c * b^-2)*ts[44]*ts[59];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[4] eq g*(ts[1]*ts[5])^h
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[4] eq f(b * c * b^2) *ts[72]*ts[57];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[6] eq g*(ts[1]*ts[5])^h
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[6] eq f(a * b^-1 * c * b * c^2)*ts[24]*ts[68];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[10] eq g*(ts[1]*ts[5])^h
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[10] eq f(b^3 * c * b^-1)*ts[20]*ts[53];
```

```
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[11] eq g*(ts[1])^h then g,h;
end if; end for; end for;
ts[1]*ts[5]*ts[11] eq f(a * c^-1 * b * c * b^-2) *ts[63];
for g in IN do for h in IN do
    if ts[1]*ts[5]*ts[14] eq g*(ts[1])^h then g,h;
end if; end for; end for;
ts[1]*ts[5]*ts[14] eq f(a * c^-1 * b^3 * c)*ts[60];
for g in IN do for h in IN do
    if ts[1]*ts[5]*ts[16] eq g*(ts[1])^h
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[16] eq f(a * c * b^3 * c^-1)*ts[28];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[17] eq g*(ts[1]*ts[5])^h
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[17] eq f(c * b^-1 * c^-1 * b^-1
* c^-1)*ts[71]*ts[21];
for g in IN do for h in IN do
    if ts[1]*ts[5]*ts[18] eq g*(ts[1])^h then
g,h; end if; end for; end for;
ts[1]*ts[5]*ts[18] eq f(a * b^2 * c * b^-1
* c^-1)*ts[49];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[24] eq g*(ts[1]*ts[5])^h
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[24] eq f(a * c * b^-2)*ts[42]*ts[50];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[25] eq g*(ts[1]*ts[5])^h
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[25] eq f(a * b^-1 * c * b^-1)
*ts[64]*ts[23];
for g in IN do for h in IN do
    if ts[1]*ts[5]*ts[27] eq g*(ts[1])^h then
g,h; end if; end for; end for;
ts[1]*ts[5]*ts[27] eq f(a * c * b^2 * c) *ts[48];
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[43] eq g*(ts[1]*ts[5])^h
    then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[43] eq f(b^2 * c^-1 * b^-1
    * c^-1)*ts[50]*ts[42];
for g in IN do for h in IN do
    if ts[1]*ts[5]*ts[48] eq g*(ts[1])^h
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[48] eq f(b^c)*ts[14];
```

```
for g in IN do for h in IN do
if ts[1]*ts[5]*ts[49] eq g*(ts[1]*ts[13])^h
then g,h; end if; end for; end for;
ts[1]*ts[5]*ts[49] eq f(a * c^-1 * b^-1
    * c^-1 * b^2) *ts[54]*ts[42];
for g in IN do for h in IN do
    if ts[1]*ts[13]*ts[1] eq g*(ts[1])^h
then g,h; end if; end for; end for;
ts[1]*ts[13]*ts[1] eq ts[13];
for g in IN do for h in IN do
if ts[1]*ts[13]*ts[5] eq g*(ts[1]*ts[2])^h
then g,h; end if; end for; end for;
ts[1]*ts[13]*ts[5] eq ts[1]*ts[34];
for g in IN do for h in IN do
    if ts[1]*ts[13]*ts[2] eq g*(ts[1])^h
then g,h; end if; end for; end for;
ts[1]*ts[13]*ts[2] eq f(a * b^-1 * c *
    b * c * b^-1) *ts[44];
for g in IN do for h in IN do
    if ts[1]*ts[13]*ts[3] eq g*(ts[1])^h
then g,h; end if; end for; end for;
ts[1]*ts[13]*ts[3] eq f(c^-1 * b^2)*ts[27];
for g in IN do for h in IN do
if ts[1]*ts[13]*ts[4] eq g*(ts[1]*ts[5])^h
then g,h; end if; end for; end for;
ts[1]*ts[13]*ts[4] eq f(b * c * b^-1 *
    c^-1 * b^-1 * c^-1)*ts[62]*ts[15];
for g in IN do for h in IN do
if ts[1]*ts[13]*ts[21] eq g*(ts[1]*ts[5])^h
then g,h; end if; end for; end for;
ts[1]*ts[13]*ts[21] eq ts[29]*ts[43];
for g in IN do for h in IN do
if ts[1]*ts[13]*ts[7] eq g*(ts[1]*ts[2])^h
    then g,h; end if; end for; end for;
ts[1]*ts[13]*ts[7] eq f(c * b^3 * c)
*ts[66]*ts[59];
```


Bibliography

[CCN $\left.{ }^{+} 85\right]$ John H Conway, Robert T Curtis, Simon P Norton, Richard A Parker, and Robert A Wilson. Atlas of Finite Groups. Clarendon Press, Oxford, 1985.
[CP93] J Cannon and C Playoust. An introduction to MAGMA. University of Sydney, Sydney, Australia, 1993.
[Cur07] Robert Curtis. Symmetric generation of groups: with applications to many of the sporadic finite simple groups. Number 111. Cambridge University Press, 2007.
[dILT05] Maria de la Luz Torres. Symmetric generation of finite groups. Master's thesis, CSUSB, 2005.
[HK06] Z Hasan and A Kasouha. Symmetric representation of the elements of finite groups. arXiv preprint math/0612042, 2006.
[Led87] Walter Ledermann. Introduction to group characters. CUP Archive, 1987.
[Rot12] Joseph Rotman. An introduction to the theory of groups, volume 148. Springer Science \& Business Media, 2012.
[WWT $\left.{ }^{+} 05\right]$ Robert Wilson, Peter Walsh, Jonathan Tripp, Ibrahim Suleiman, Richard Parker, Simon Norton, Simon Nickerson, Steve Linton, John Bray, and Rachel Abbott. Atlas of finite group representations, version 3. available at the time of writing from http://brauer. maths. qmul. ac. uk/Atlas/v3, 2005.

