
California State University, San Bernardino
CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

9-2015

THE DESIGN AND IMPLEMENTATION OF
AN ADAPTIVE CHESS GAME
Mehdi Peiravi
mehdi peiravi, mpeiraviusa@gmail.com

Follow this and additional works at: http://scholarworks.lib.csusb.edu/etd

This Project is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks. It has been accepted for inclusion in
Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact
scholarworks@csusb.edu.

Recommended Citation
Peiravi, Mehdi, "THE DESIGN AND IMPLEMENTATION OF AN ADAPTIVE CHESS GAME" (2015). Electronic Theses, Projects,
and Dissertations. Paper 228.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CSUSB ScholarWorks

https://core.ac.uk/display/55333451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.csusb.edu/?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.csusb.edu/?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/grad-studies?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/etd/228?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

THE DESIGN AND IMPLEMENTATION OF

 AN ADAPTIVE CHESS GAME

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Mehdi Peiravi

September 2015

THE DESIGN AND IMPLEMENTATION

OF AN ADAPTIVE CHESS GAME

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Mehdi Peiravi

September 2015

Approved by:

Haiyan Qiao, Committee Chair, Computer Science

Kerstin Voigt, Committee Member

Ernesto Gomez, Committee Member

© 2015 Mehdi Peiravi

iii

ABSTRACT

In recent years, computer games have become a common form of

entertainment. Fast advancement in computer technology and internet speed

have helped entertainment software developers to create graphical games that

keep a variety of players’ interest. The emergence of artificial intelligence

systems has evolved computer gaming technology in new and profound ways.

Artificial intelligence provides the illusion of intelligence in the behavior of NPCs

(Non-Playable-Characters). NPCs are able to use the increased CPU, GPU,

RAM, Storage and other bandwidth related capabilities, resulting in very difficult

game play for the end user. In many cases, computer abilities must be toned

down in order to give the human player a competitive chance in the game. This

improves the human player’s perception of fair game play and allows for

continued interest in playing. A proper adaptive learning mechanism is required

to further this human player’s motivation. During this project, past achievements

of adaptive learning on computer chess game play are reviewed and adaptive

learning mechanisms in computer chess game play is proposed. Adaptive

learning is used to adapt the game’s difficulty level to the players’ skill levels.

This adaptation is done using the player’s game history and current performance.

The adaptive chess game is implemented through the open source chess game

engine Beowulf, which is freely available for download on the internet.

iv

ACKNOWLEDGEMENTS

 In performing this project, I was fortunate enough to receive wonderful

guidance and assistance from some distinguished professors. I would like to

show specific gratitude and thanks to Dr. Voigt for granting me admission to this

institution and for kindly presiding on my committee. In addition, I would like to

express my sincere appreciation to Dr. Qiao for her advice and patience with me

throughout this endeavor.

 On a purely human note, I would like to acknowledge Ali and Hale Hejazi

for their continuous support and love. Their kindness to me when I entered this

country will be forever appreciated.

v

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER ONE: INTRODUCTION .. 1

1.1. History of Computer Chess Play .. 1

1.1.1. An “Elaborate Hoax”... 1

1.1.2. Artificial Intelligence in Computer Chess .. 3

1.1.3. Sargon Computer Chess .. 3

1.1.4. Deep Blue .. 4

1.2. Components of Computer Chess Play ... 4

1.2.1. Chess Engine ... 4

1.2.2. GUIs for Chess Games .. 4

CHAPTER TWO: METHODOLOGY ... 6

2.1. Game Tree and Chess ... 6

2.2. Search Algorithms .. 7

2.2.1. Minimax Algorithm .. 7

2.2.2. Alpha-Beta Pruning .. 8

2.2.3. NegaScout ... 8

2.2.4. NegaMax .. 9

2.3. Board Representations ... 9

2.3.1. Piece Lists .. 9

2.3.2. Array Based ... 9

2.3.3. 0x88 Method .. 10

vi

2.3.4. Bitboard .. 11

CHAPTER THREE: DESIGN AND IMPLEMENTATION 12

3.1. The Beowulf Chess Engine and Difficulty Level 12

3.1.1. The Beowulf Chess Engine .. 12

3.1.2. Game Skill Levels .. 14

3.1.3. Adding New Function to Evaluate Movements 14

3.1.4. Giving the Computer Player a Difficulty Level 16

3.2. Making a Computer Play against a Computer .. 29

3.3. Current Position.. 30

3.4. Creating the Adaptive Chess Engine .. 31

3.5. Saving the Skill Level ... 32

CHAPTER FOUR: TESTING AND RESULTS .. 34

4.1. Testing Cases .. 34

4.1.1. Test Case 1 .. 35

4.1.2. Test Case 2 .. 47

4.1.3. Test Case 3 .. 70

4.2. Results Analysis ... 89

CHAPTER FIVE: CONCLUSION .. 91

REFERENCES ... 92

vii

LIST OF TABLES

Table 1. Test Case 1 .. 47

Table 2. Test Case 2 .. 69

Table 3. Test Case 3 .. 88

viii

LIST OF FIGURES

Figure 1.Game Starts Test Case 1 ... 35

Figure 2.Screenshot 1 Test Case 1 .. 36

Figure 3.Screenshot 2 Test Case 1 .. 37

Figure 4.Screenshot 3 Test Case 1 .. 38

Figure 5.Screenshot 4 Test Case 1 .. 39

Figure 6.Screenshot 5 Test Case 1 .. 40

Figure 7.Screenshot 6 Test Case 1 .. 41

Figure 8.Screenshot 7 Test Case 1 .. 42

Figure 9.Screenshot 8 Test Case 1 .. 43

Figure 10.Screenshot 9 Test Case 1 .. 44

Figure 11.Screenshot 10 Test Case 1 .. 45

Figure 12.Screenshot 11 Test Case 1 .. 46

Figure 13.Game Starts Test Case 2 ... 48

Figure 14.Screenshot 1 Test Case 2 .. 49

Figure 15.Screenshot 2 Test Case 2 .. 50

Figure 16.Screenshot 3 Test Case 2 .. 51

Figure 17.Screenshot 4 Test Case 2 .. 52

Figure 18.Screenshot 5 Test Case 2 .. 53

Figure 19.Screenshot 6 Test Case 2 .. 54

Figure 20.Screenshot 7 Test Case 2 .. 56

Figure 21.Screenshot 8 Test Case 2 .. 57

ix

Figure 22.Screenshot 9 Test Case 2 .. 58

Figure 23.Screenshot 10 Test Case 2 .. 59

Figure 24.Screenshot 11 Test Case 2 .. 60

Figure 25.Screenshot 12 Test Case 2 .. 61

Figure 26.Screenshot 13 Test Case 2 .. 62

Figure 27.Screenshot 14 Test Case 2 .. 63

Figure 28.Screenshot 15 Test Case 2 .. 64

Figure 29.Screenshot 16 Test Case 2 .. 65

Figure 30.Screenshot 17 Test Case 2 .. 66

Figure 31.Screenshot 18 Test Case 2 .. 67

Figure 32.Screenshot 19 Test Case 2 .. 68

Figure 33.Game Starts Test Case 3 ... 70

Figure 34.Screenshot 1 Test Case 3 .. 71

Figure 35.Screenshot 2 Test Case 3 .. 72

Figure 36.Screenshot 3 Test Case 3 .. 73

Figure 37.Screenshot 4 Test Case 3 .. 74

Figure 38.Screenshot 5 Test Case 3 .. 75

Figure 39.Screenshot 6 Test Case 3 .. 76

Figure 40.Screenshot 7 Test Case 3 .. 77

Figure 41.Screenshot 8 Test Case 3 .. 78

Figure 42.Screenshot 9 Test Case 3 .. 79

Figure 43.Screenshot 10 Test Case 3 .. 80

x

Figure 44.Screenshot 11 Test Case 3 .. 81

Figure 45.Screenshot 12 Test Case 3 .. 82

Figure 46.Screenshot 13 test Case 3 ... 83

Figure 47.Screenshot 14 Test Case 3 .. 84

Figure 48.Screenshot 15 Test Case 3 .. 85

Figure 49.Screenshot 16 Test Case 3 .. 86

Figure 50.Screenshot 17 Test Case 3 .. 87

Figure 51.Screenshot 18 Test Case 3 .. 88

1

CHAPTER ONE

INTRODUCTION

1.1. History of Computer Chess Play

1.1.1. An “Elaborate Hoax”

The first chess playing automaton was built in 1769 by the Hungarian-born

engineer Baron Wolfgang for the amusement of the Austrian Queen Maria

Theresa.[3] Later, it was revealed that it was a hoax and its outstanding

capability originated from a human player that was hidden inside it. It was later

described in an essay by Edgar Allan Poe, "Maelzel's Chess-Player.". The first

article on computer chess was “Programming a computer for playing chess [3]''

published in Philosophical Magazine, March 1950 by Claude Shannon, a

research worker at Bell Telephone Laboratories in New Jersey. In his article,

Shannon described how to program a computer to play chess based on position

scoring and move selection.

The first computer chess program was written by Alan Turing in 1950.[3]

This was soon after the second World War. At that time the computer was not

invented so he had to run the program using pencil and paper and acting as a

human CPU and each move took him between 15 to 30 minutes.[3] He also

proposed the Turing test, which stated that in time a computer can be

programmed to acquire abilities that need human intelligence (like playing a

chess game). If the human who is playing does not see the other human or

2

computer during the game, he would not know whether he is playing with a

human or with a computer.

Later in 1951, Turing wrote his program named “Turbochamp'' on the

Ferranti Mark I computer at Manchester University.[3] He never completed his

program but his colleague, Dr. Dietrich Prinz wrote a chess playing computer

program for the Ferranti computer that was able to examine every possible move

until it found the optimal move. An early computer was built under the direction of

Nicholas Metropolis at the Los Alamos Scientific Laboratory.[3] It was named

MANIAC I and it was based on the von Neumann architecture of the IAS. This

machine was programmable, filled with thousands of vacuum tubes and

switches, and it was able to execute 10,000 instructions per second. MANIAC I

was able to play chess using a 6''x6'' chessboard and it took twelve minutes for it

to search four moves ahead.[3]

The first chess program that played a chess game professionally was

created by Alex Bernstein, an IBM employee in 1957.[3] He and his three

colleagues created a chess program at the Masschusetts Institute of Technology

that ran on an IBM 704. It took about eight minutes for their chess program to

make a move. In 1958, the first chess program to be written in a high-level

language was developed by Allen Newell, Herbert Simon and Cliff Shaw at

Carnegie-Mellon.[3] Their program was called NSS (Newell, Simon, Shaw) and it

took about an hour to make a move. They combined algorithms that searched for

good moves with heuristics algorithms and ran on a JOHNNIAC computer.

3

1.1.2. Artificial Intelligence in Computer Chess

The first chess program that played chess credibly was written by Alan

Kotok (1942-2006) at the Massachusetts Institute of Technology.[3] It was written

on an IBM 7090 and it was able to beat chess beginners.

Richard Greenbaltt, an MIT expert in artificial intelligence, with Donald

Eastlake wrote their chess program in 1960.[3] Their chess program was named

MacKack and it was the first chess program to play in human tournaments. It was

the first to be granted a chess rating and draw and win against a human being in

tournament play.

1.1.3. Sargon Computer Chess

A chess game named SARGON was written by Dan and Kathleen `Kathe'

Spracklen on a Z80- based computer called Wavemate Jupiter III using assembly

language.[3] It was introduced in 1978 at the West Coast Computer Fair and it

won the first computer chess tournament held for microcomputers. Its name

“Sargon'' was taken from the historical kings, Sargon of Akkad or Sargon of

Assyria, and it was written entirely in capitals because early computer operating

systems like CP/M did not support lower-case file names.

Three doctoral students created the chess program Chiptest in 1985.

Their chess program was developed into Deep Thought which shared first place

with Grandmaster Tony Miles in the 1988 U.S. Open championship and defeated

the sixteen year-old Grandmaster Judit Polgar in 1993. [3]

4

1.1.4. Deep Blue

The world champion Gary Kasparov was defeated by IBM's chess

program, Deep Blue in a six-game series.[3] Deep Blue was designed to

consider several billion possibilities at once and it used a series of complicated

formulas that took into consideration the state of the game. The game also kept a

record of several past matches and Kasparov found this out which is why the

game was able to beat him.

1.2. Components of Computer Chess Play

1.2.1. Chess Engine

Chess engine is a computer program that decides what move to make

during the game. It makes some calculations based on the current position to

decide the next move.[14] There are many chess engines available to download

but in this project we will use Beowulf chess engine that is open source. Some

other open source chess engines include: stockfish, Gull, Protector, Minkochess,

Texel, Scorpio, Crafty, Arasan, Exchess, Octochess, Rodent, Redqueen, and

Danasah. There are also other chess engines that are free to use like: Critter,

Hannibal, Spike, Quazar, Nemo, Dirty, Gaviota, Prodeo and Nebula. Some

commercial chess games include: Houdini, Rybka, Komodo, Vitruvius, Hiarcs,

Chiron, Shredder, and Junior. [5]

1.2.2. GUIs for Chess Games

GUI (Graphical User Interface) is a user interface where the user and the

chess game can interact with each other. [15] Unlike text-based user interfaces

5

where input and output is in plain text, GUI uses a more complicated graphical

representation of the program and also it creates a more flexible user interaction

by using pointing devices, mice, pens, and graphics tablets that allow the user to

interact with the computer more easily. A graphical interface for the chess game

has a graphical chess board that allows users to enter moves by clicking on the

board or dragging a piece on the board just like a real chess game. [15]

There are many chess GUIs available to download. Some chess GUIs include

Aquarium, Arena, Chess Academy, Chess for Android, ChessGUI,

ChessPartner GUI, Chess Wizard, ChessX, Fritz GUI, Glaurung GUI, Hiarcs,

Chess Explorer, jose, Mayura Chess Board, Scid vs. PC, Shredder GUI,

Tarrasch GUI, WinBoard, and XBoard.

6

CHAPTER TWO

METHODOLOGY

2.1. Game Tree and Chess

In chess, game tree is a directed graph whose nodes are positions in the

game and edges are moves the players make. Each node in the game tree has a

value and leaf node that the game ends at are labeled with the payoff earned by

each player.[4] In the game tree, the player’s position in the game is represented

by nodes and the edges represent the moves they can make at that position. The

Beowulf chess engine finds the best move in game by searching the game tree.

The Game tree is also important in artificial intelligence because the search

algorithm, using the MinMax algorithm or other search algorithms, searches the

game tree to find the best move. The complete game tree starts from the initial

position and contains all the possible moves in the game. In a complete game

tree, the number of leaf nodes is the number of possible different ways the game

can be played. Some game trees like tic-tac-toe are easier to search but

searching the complete tree in larger games like chess takes a longer time.

Instead of searching the complete tree, the chess program searches a partial

game tree. It starts from the current position and it searches as many plies as it

can in the limited time. Increasing the search depth (number of plies it searches)

will result in finding a better move but it takes more time to search.

7

2.2. Search Algorithms

In computer chess games, the search algorithms are used to find the best

move. The search algorithm will look ahead for different moves and evaluate the

positions after making each move. Different chess engines use different search

algorithms. Some search algorithms include: Minimax algorithm, NegaMax

algorithm, NegaScout algorithm, and Alpha-Beta algorithm.

2.2.1. Minimax Algorithm

The score in a two player zero-sum game like chess can be determined by

the Minimax algorithm after a certain number of moves. In the Minimax algorithm

we are trying to minimize the possible loss in a worst case scenario. We can also

think of it as maximizing the minimum gain.[7] The Minimax theorem states that

for every 2-person zero-sum game with finite strategies, there exists a value V,

such that given player 2's strategy, the best payoff possible for player 1 is V and

given player 1's strategy, the best payoff possible for player 2 is -V. This means

that player 1 strategy brings a best payoff possible of V for him regardless of

player 2's strategy and player 2 strategy brings a best payoff possible of -V for

him regardless of player 1's strategy. This theorem was established by John von

Neumann. He says, "As far as I can see, there could be no theory of games ...

without that theorem ... I thought there was nothing worth publishing until the

{Minimax Theorem} was proved.[7]

8

2.2.2. Alpha-Beta Pruning

The Alpha-Beta pruning algorithm is an enhancement to the Minimax

search algorithm.[8] It applies a branch and bound technique to eliminate the

need to search large portions of the game tree. When it finds at least one

possibility that proves the move is worse than a previously examined move, it

stops completely evaluating that move and those moves will not be evaluated in

the future. If we apply the Alpha-Beta algorithm to the Minimax tree it will return

the same move the Minimax algorithm would return but it prunes away portions

of the game tree that possibly can't influence the decision. The values of Alpha

and Beta represent the minimum score that the maximizing player is assured

and the maximum score that the minimizing player is assured, respectively.[8]

2.2.3. NegaScout

The Negascout is a search algorithm that computes the Minimax value of

a node in a game tree faster than Alpha-Beta pruning.[9] The Nega-Scout

algorithm works faster than Alpha-Beta pruning because it doesn't examine

nodes that can be pruned by Alpha-Beta. The NegaScout needs a good move

ordering in order to work. If the game has random move ordering then the Alpha-

Beta algorithm still works best. The NegaScout search algorithm was invented by

Alexander Reinefeld and it gives typically 10 percent performance increase in

chess engines compared to alpha-beta pruning.[9]

9

2.2.4. NegaMax

The Negamax search is a variant form of the Minimax algorithm. It

simplifies the Minimax algorithm based on the fact that:

 max (a, b) = -min (-a, -b).[10]

This means that a value that a position has for one player is the negation of the

value that position has for the other player. This lets us use a single procedure to

value both positions. It is different from NegaScout which uses the alpha-beta

pruning which is an enhancement to the MiniMax algorithm.[10]

2.3. Board Representations

2.3.1. Piece Lists

Since the early computers had a very limited amount of memory, spending

64 memory locations for the pieces was too much. Instead of that, early chess

games saved the locations of up to 16 pieces in their memory. In newer chess

games, the piece list is still in use, but they also use a separate board

representation structure. This allows the chess engine to access the pieces

faster.

2.3.2. Array Based

The chess board can also be represented by creating an 8x8 two-

dimensional array or one 64 element one-dimensional array. Each one of these

64 elements stores the information for each piece on the chess board. One

approach is to use 0 for an empty square, positive numbers for white pieces and

negative numbers for black pieces. For example, the white king can be +4 and

10

the black king -4. In this approach the chess game has to check each move to be

sure it is on the board. This will slow down the chess game and decrease

performance. To solve this problem we can use a 12x12 array and assign the

value 99 to spaces on the edge of the board, where pieces cannot be placed.

This will let the chess game know that the destination square is not on the board

while making the moves. For better memory usage, we can use a 10x12 array.

This representation will have the same functionality but the leftmost and the

rightmost edges are overlapped. In some other chess games, 16x16 arrays are

used. This allows the programmers to achieve better performance and implement

some coding tricks due to the increased availability of memory (for example,

attacks).

2.3.3. 0x88 Method

In the 0x88 method, instead of a 64 bit array, a one-dimensional 16x8

array is used. There are actually two boards next to each other and the board on

the left has the actual values. For each square on the board, binary layout 0rrr0fff

is used to coordinate rank and file in the array (rrr are the 3 bits that represent

the rank and fff are 3 bits that represent the file). We can check to see if a

destination square is on the board by ANDing the square value with 0x88

(10001000 in binary). If the result of AND is not zero that means the square is off

board. To know if two squares are in the same row, column, or diagonal, we can

subtract the values of two square coordinates.

11

2.3.4. Bitboard

Another way to represent the chess board is using Bitboard. In this

method we use 64-bits to save the states of each place on the board, a

sequence of 64 bits in which each one can be true or false. We can also use a

series of Bitboards to represent the chess board. This allows computers with 64-

bit processors to use bit parallel operations and to take advantage of their

increased processing power.

12

CHAPTER THREE

DESIGN AND IMPLEMENTATION

3.1. The Beowulf Chess Engine and Difficulty Level

3.1.1. The Beowulf Chess Engine

In this project we made changes to the Beowulf chess engine. The goal of

the Beowulf chess project was to create a challenging chess game that is open

source, is freely available for download, and is well documented. It can be

downloaded from: http://www.frayn.net/beowulf/

This chess engine works in text mode but it can be integrated with graphical

interfaces like Xboard and Windboard. It’s written in C language and it consists of

the following files:

Main.c

 This is the main file for the chess game. It includes the main structure for

the program, loads the data into the program, and initializes and runs the state

machine. This is the main file that we will modify during this project.

Eval.c

 This file is used for evaluating board positions. It consists of different

functions, such as Analyse, which is used to display and print the current board

analysis and Eval function, which evaluates game position.

Comp.c

 This file contains all the functions that calculate the computer movement.

Each time the computer moves, it calls the Comp function to analyze the board

13

position to find out the best move. This function uses the parameters in Params

and calculates the best move for the current side.

Beowulf.cfg

 This is the configuration file for the Beowulf chess engine. It gives a

default skill level of 1 to both Black and White players and loads the opening

book and the personality file. It also turns on RESIGN, which lets Beowulf resign

in a losing position.

Pers.c

 This file contains the personality code. It was disabled during the project to

change the difficulty level of the game.

Parser.c

 This file is used to parse the input string from the player. The input that the

user enters is passed to the Parseinput function which interprets the input.

Board.c

 This file contains all the algorithms working with Bitboards.

Checks.c

 This file has all the functions that check for checkmates, threats, and

checks.

Moves.c

 For each position in the game, a list of all possible moves is created using

the functions in this file.

Rand64.c

14

 This is a pseudo-random number generator for 64-bit machines. It is

based on Isaac64.

Tactics.c

 This file contains different functions that evaluate the value for different

pieces in different board positions.

3.1.2. Game Skill Levels

In this game, skill level is a number from 1 to 10. 1 is the lowest skill level

and 10 is the highest. The higher the skill level, the stronger the player is. During

the game the skill level for the White or Black player can be changed by

assigning a number from 1 to 10 to their skill level. The skill level for the Black

player can be changed by assigning a number from 1 to 10 to Params.BSkill.

Also, we can change the white player’s skill level by assigning a number from 1

to 10 to Params.WSkill.

Another way to define the skill level is by giving the depth parameter a

value in comp function. Since the chess engine uses the comp function to

calculate the best move, we pass a parameter to it in order to define the difficulty

level. The White player uses comp function and we pass parameter “i” to it. The

Black player uses comp2 and we pass parameter “j” to it. This parameter can be

changed during the game to change the difficulty level of that player.

3.1.3. Adding New Function to Evaluate Movements

The Beowulf game by default starts in player mode. It shows a prompt for

the user to enter his move. By entering the Xboard command, the computer

15

starts playing. The chess engine uses comp function in comp.c to calculate the

best move. In order to create an adaptive chess engine I created another

function named comp2. By checking the Current_Board.side we can know which

side is taking its turn. This variable can be either white or black depending on

which player is taking their turn. In order to have an evaluation of every

movement we created the Analyse2(Current_Board) function in parser.c. This

function compares the black player’s points to the white player’s points. If both

players have the same number of points it returns 0, if the Black player is ahead,

then it will subtract the White player’s score from the Black player’s and return

that value. If the White player is ahead, then it will return the difference as a

negative value. Each time after the White player makes his move, we call the

evaluation function to see the player’s position in the game. The Analyse2

function is shown below:

 int Analyse2(Board B) {

 int side = B.side, sc;

 double score;

 BOOL TB = FALSE;

 CompDat Params;

 fprintf(stdout,"Current Position\n----------------\n\n");

 fprintf(stdout,"White Points: %d\n",B.WPts);

 fprintf(stdout,"Black Points: %d\n",B.BPts);

 if (B.WPts==B.BPts)

 {

 fprintf(stdout,"(Even Sides");

 return(0);

16

 }

 if (B.WPts<B.BPts) {

 fprintf(stdout,"(Black is Ahead by %d Pt",B.BPts-B.WPts);

 if (B.BPts-B.WPts>1) fprintf(stdout,"s");

 return(B.BPts-B.WPts);

 }

 if (B.WPts>B.BPts) {

 fprintf(stdout,"(White is Ahead by %d Pt",B.WPts-B.BPts);

 if (B.WPts-B.BPts>1) fprintf(stdout,"s");

 return(-(B.WPts-B.BPts));

 }

 fprintf(stdout,")\n");

}

3.1.4. Giving the Computer Player a Difficulty Level

In order to change the difficulty level of a player, we can change the value

of Params.Time, Params.MoveTime, or Params.Depth parameters.

Params.MoveTime is the maximum time for a move in seconds, and

Params.Depth is the minimum search depth in ply. Depth overrides the

Params.Movetime parameter.

Also, turning off the opening book by disabling the LoadOpeningBook

function in the main function and/or turning off the personality file by disabling the

LoadPersonalityFile function will decrease the difficulty level of Beowulf chess

game.

17

The following parameters are defined in the Defaults function and are set

to values each time the game starts in the main function. In order to change the

computer player level we can change these parameters.

 /* Setup the computer parameters */

 Params.Depth = 5; /* Minimum Search Depth in ply. Overrides 'MoveTime' */

 Params.Time = Params.OTime = 1; /* Total Clock Time = 5 minutes in

centiseconds */

 Params.MoveTime = 1; /* Maximum time in seconds. 'Depth' overrides this */

 Params.Test = FALSE; /* Not running a test suite */

 Params.Mps = 0; /* Moves per session. 0 = all */

 Params.Inc = 0; /* Time increase per move */

 automoves = 0;

 NHash = 0;

 TableW = TableB = NULL;

 Randomise();

 GlobalAlpha = -CMSCORE;

 GlobalBeta = CMSCORE;

}

During the game we can change the difficulty level of the player by

passing the depth value to them. Since we use comp function for the White

player and comp2 for the Black player we pass parameters “i” and “j” to them.

These parameters can change during the game to create the adaptive engine.

This is the comp function for the White player: [13]

MOVE Comp(int i) {

 int depth=i,inchk,val=0,score=0;

#ifdef BEOSERVER

 int n;

18

 float ExtendCostAv;

#endif // BEOSERVER

 longlong LastPlyNodecount=1;

 BOOL Continue=FALSE,resign=FALSE;

 Board BackupBoard=Current_Board,*B = &BackupBoard;

 MOVE Previous=NO_MOVE,BookMove=NO_MOVE,BestMove;

 HashElt *Entry=NULL;

 BOOL bBreakout = FALSE;

 /* Reset the input flag before we do anything. This flag tells us about how

 * and why the comp() procedure exited. Normally it is INPUT_NULL,

 * which tells * us all is OK. Sometimes it is set to different values, often in

analysis mode */

 InputFlag = INPUT_NULL;

 /* Check the Opening Book First */

 if (AnalyseMode==FALSE && BookON) {

 BookMove = CheckOpening(B,&val);

 }

 if (BookMove!=NO_MOVE) {

 /* Check some values for the book move, i.e. EP and castle */

 BookMove = CheckMove(BookMove);

 if (UCI) fprintf(stdout,"bestmove ");

 else if (XBoard) fprintf(stdout,"move ");

#ifdef BEOSERVER

 else fprintf(stdout,"Best Move = ");

#endif

 PrintMove(BookMove,TRUE,stdout);

#ifdef BEOSERVER

19

 fprintf(stdout,"\n");

#endif

 fprintf(stdout," <Book %d%%>\n",val);

 if (!AnalyseMode && (XBoard || AutoMove)) {

 MoveHistory[mvno] = BookMove;

 UndoHistory[mvno] = DoMove(&Current_Board,BookMove);

 mvno++;

 }

 AnalyseMode = FALSE;

 return BookMove;

 }

 /* Setup the Hash Table */

 SetupHash();

 /* Setup the draw by repetition check. InitFifty holds the number of moves

*backwards we can look before the last move which breaks a fifty move draw

*chain. We need to store this to help with the draw checking later on. */

 InitFifty = GetRepeatedPositions();

 /* Reset Initial values */

 ResetValues(B);

 /* Test for check */

 inchk = InCheck(B,B->side);

 /* Display the current positional score */

 fprintf(stdout,"Current Position = %.2f\n",(float)InitialScore/100.0f);

 position=InitialScore; //We add this to store the position for the white player

20

 /* Count the possible moves */

 TopPlyNMoves = (int)CountMoves(B,1,1);

 if (!XBoard) fprintf(stdout,"Number of Possible Moves =

%d\n\n",TopPlyNMoves);

 if (TopPlyNMoves==0) {

 //If it's end of game

 fprintf(stdout,"Game Ended!\n");

/* fprintf(stdout,"Black player level after adoption is:

%d\n",adoptionlevel);*/

 /* getchar();*/

 if (inchk)

 {

 fprintf(stdout,"You are in Checkmate!\n");

 return NO_MOVE;

 }

 else

 {

 fprintf(stdout,"You are in Stalemate!\n");

 return NO_MOVE;

 }

 return NO_MOVE;

 if (AnalyseMode) bBreakout = TRUE;

 else return NO_MOVE;

 }

#ifdef BEOSERVER

 // Reset the NodeID count

21

 NextNodeID = 0;

 fprintf(stdout,"Calculating Approximate NODE Complexities\n");

 // Calculate Node complexities for various depths

 for (n=1;n<5;n++) {

 // Output the details

 fprintf(stdout,"Count Nodes : Depth = %d, N=%d\n",n,(int)CountMoves(B,n,1));

 }

#endif

 /* Generate the hash key for this position */

 GenerateHashKey(B);

 /* Start the Game Clock */

 SetStartTime();

 /* Set up the necessary algorithm variables */

 RootAlpha = GlobalAlpha; RootBeta = GlobalBeta;

 TBHit = TRUE;

#ifdef BEOSERVER

 /* Set up the Node Table for the Parallel algorithm */

 NodeTable = (NODETABLE

*)calloc(sizeof(NODETABLE),NODE_TABLE_SIZE);

 for (n=0;n<NODE_TABLE_SIZE;n++) NodeTable[n].entries = 0;

 /* Set up the minimum parallel depth to 'not defined' */

 SeqDepth= -1;

#endif // BEOSERVER

 /* ----=== Begin Iterative Deepening Loop ===---- */

 do {

 // break out if we're in analysis mode and this position is

 // either checkmate or stalemate. Go straight into a loop

 // waiting for input instead

22

 if (bBreakout) break;

 GlobalDepth = depth;

 /* --== Do Search Recursion Here ==-- */

#ifdef BEOSERVER

 /* If we've spent long enough searching natively then start

 * distributing nodes to the peer nodes. If we're pondering

 * then don't bother with the parallel search - just fill up

 * the native hash tables. Don't parallel search easy nodes. */

 if (bParallel && GetElapsedTime() > MIN_SEQ_TIME && !Pondering &&

!bEasyNode) {

 if (SeqDepth == -1) {

 SeqDepth = depth;

 // Estimate branching complexity

 ExtendCost = (float)Nodecount / (float)TopPlyNMoves;

 ExtendCostAv = (float)pow(ExtendCost,1.0f/(float)(depth-1));

 fprintf(stdout,"Averaged Extend Cost = %.3f\n",ExtendCostAv);

 ExtendCost = (float)Nodecount / (float)LastPlyNodecount;

 fprintf(stdout,"Last Ply Extend Cost = %.3f\n",ExtendCost);

 ExtendCost = min(ExtendCost, ExtendCostAv);

 fprintf(stdout,"Adopted Minimum Value of %.3f\n",ExtendCost);

 }

 // Do the parallel search

 score = RunParallel(B,depth,inchk,InitFifty,GetElapsedTime());

 }

 else

#endif // BEOSERVER

23

 /* Use the recursive negascout algorithm to find the score. If we already

 * have an estimate of the true score then use this and search only in a

window

 * around it. */

 if (!USE_WINDOW || depth==2)

 score = Search(B,-

CMSCORE,CMSCORE,depth*ONEPLY,0,inchk,InitFifty,0,NO_MOVE);

 else {

 RootAlpha = PreviousScore - WINDOW;

 RootBeta = PreviousScore + WINDOW;

 LastPlyNodecount = Nodecount;

 score =

Search(B,RootAlpha,RootBeta,depth*ONEPLY,0,inchk,InitFifty,0,NO_MOVE);

 /* If this aspiration search fails low or high then search it properly with

 * safer bounds instead. Also increase the window size. */

 if (score<=RootAlpha || score >= RootBeta) {

 if (!AbortFlag && !IsCM(score)) {

 if (score >= RootBeta && Post) PrintThinking(score,B);

 if (score <= RootAlpha) {RootAlpha = -CMSCORE; RootBeta = score+1;}

 if (score >= RootBeta) {RootBeta = CMSCORE; RootAlpha = score-1;}

 score =

Search(B,RootAlpha,RootBeta,depth*ONEPLY,0,inchk,InitFifty,0,NO_MOVE);

 /* If the second search also fails with a cutoff (strangely) then we must

 * do a full re-search with infinite bounds. The expectation is that this

 * happens extremely rarely. Of course, it shouldn't happen at all, ideally.

 * The fact that it sometimes does is due to a phenomenon called "search

 * instability", and it's a complete pain! At least we'll have a full hash

24

 * table! */

 if (!AbortFlag && (score <= RootAlpha || score >= RootBeta)) {

 RootBeta = CMSCORE;

 RootAlpha = -CMSCORE;

 score =

Search(B,RootAlpha,RootBeta,depth*ONEPLY,0,inchk,InitFifty,0,NO_MOVE);

 }

 }

 else if (!AbortFlag && IsCM(score) && Post) PrintThinking(score,B);

 }

 else if (!AbortFlag) PrintedPV = FALSE;

 // Is this an easy node? (i.e. a simple recapture move that must be

played)

 if (TopOrderScore > NextBestOrderScore + EASY_MOVE_MARGIN &&

BestMoveRet != NO_MOVE && TopOrderScore ==

SEE(B,MFrom(BestMoveRet),MTo(BestMoveRet),IsPromote(BestMoveRet)) *

100) {

 bEasyMove = TRUE;

 }

 else bEasyMove = FALSE;

 }

 /* --== Search Finished ==-- */

 /* Probe the hashtable for the suggested best move */

 Entry = HashProbe(B);

 if (Entry) {

 BestMove = Entry->move;

25

 score = (int)Entry->score;

 }

 else {BestMove = NO_MOVE;fprintf(stdout,"Could Not Find First Ply Hash

Entry!\n");}

 if (BestMove == NO_MOVE) {fprintf(stderr,"No Best Move! Assigning

previous\n");BestMove = Previous;}

 /* If we aborted the search before any score was returned, then reset to the

 * previous ply's move score */

 if (AbortFlag && BestMove == NO_MOVE) score = PreviousScore;

 /* Otherwise store what we've found */

 else {

 PreviousScore = score;

 Previous = BestMove;

 }

 BestMoveRet = Previous;

 /* Go to the next depth in our iterative deepening loop */

 depth++;

 /* Check to see if we should continue the search */

 if (AnalyseMode) Continue = Not(AbortFlag);

 else Continue = ContinueSearch(score,B->side,depth);

 } while (IsCM(score)==0 && (TopPlyNMoves>1 || AnalyseMode) && Continue

&& !TBHit);

 /* --== End Iterative Deepening Loop ==-- */

26

 /* Store total time taken in centiseconds */

 TimeTaken = GetElapsedTime();

 /* Expire the hash tables if we're playing a game. This involves making all the

 * existing entries 'stale' so that they will be replaced immediately in future,

 * but can still be read OK for the time-being. */

 if (!Params.Test && !AnalyseMode && (Params.Time > 100)) ExpireHash();

 /* If we've not got round to printing off a PV yet (i.e. we've had an early exit

 * before PrintThinking() has been called) then do so now. */

 if (!PrintedPV) {PrintedPV=TRUE;PrintThinking(score,B);}

 /* Check to see if we should resign from this position. Only do this if we've

thought

 * for long enough so that the search is reliable and the current position is also

 * losing by at least a pawn, depending on the skill level. */

 if (!Pondering && !Params.Test && Params.Resign && depth>=7 &&

Params.Time<Params.OTime && InitialScore<(Skill*10)-200)

 resign = CheckResign(score);

 /* Check to see if we should offer a draw from EGTB search */

#ifdef OFFER_TB_DRAW

 if (!Pondering && !Params.Test && XBoard && TBON &&

ProbeEGTB(B,&score,0)) {

 if (!IsCM(score)) fprintf(stdout,"offer draw\n");

 }

#endif

 /* Write the PV to a text string in case we're writing a logfile */

27

 WritePVToText(B);

 /* Print timing and search information */

 if (!XBoard) PrintInfo(score);

 /* Output details of the move chosen, and play that move if necessary */

 if (InputFlag == INPUT_RESIGN) InputFlag = INPUT_STOP;

 if (UCI) {

 fprintf(stdout,"bestmove ");

 PrintMove(Previous,FALSE,stdout);

 fprintf(stdout,"\n");

 }

 if (!UCI && !Pondering && (AutoMove || XBoard) && !resign && !AnalyseMode

&&

 InputFlag != INPUT_STOP) {

 if (XBoard) {

 fprintf(stdout,"move ");

 PrintMove(Previous,FALSE,stdout);

 fprintf(stdout,"\n");

 }

 MoveHistory[mvno] = Previous;

 UndoHistory[mvno] = DoMove(&Current_Board,Previous);

 mvno++;

 MoveHistory[mvno] = NO_MOVE;

 /* We've been told to move immediately, we've just moved as required,

 * so flag that this is accomplished */

 if (InputFlag == INPUT_MOVE_NOW) InputFlag = INPUT_NULL;

 }

28

 /* If we're altering the position whilst in analysis mode, then do so */

 if (!Pondering && AnalyseMode) {

 // We got a CM score from this analysis - just wait for more commands

 if (InputFlag == INPUT_NULL) {

 // Wait for something to do

 while ((InputFlag = CheckUserInput()) == INPUT_NULL);

 }

 if (InputFlag == INPUT_MOVE) {

 MoveHistory[mvno] = MoveToPlay;

 UndoHistory[mvno] = DoMove(&Current_Board,MoveToPlay);

 mvno++;

 MoveHistory[mvno] = NO_MOVE;

 }

 if (InputFlag == INPUT_UNDO) {

 mvno--;

 UndoMove(&Current_Board,MoveHistory[mvno],UndoHistory[mvno]);

 }

 if (InputFlag == INPUT_NEW) {

 ResetBoard(&Current_Board);

 }

 }

 /* Tidy up */

 if (InputFlag == INPUT_NULL || InputFlag == INPUT_STOP || InputFlag ==

INPUT_WORK_DONE) AnalyseMode=FALSE;

 if (IsCM(score)==1) CMFound=TRUE;

 if (Params.Test || AnalyseMode) ResetHash();

#ifdef BEOSERVER

 for (n=0;n<NODE_TABLE_SIZE;n++) {

29

 if (NodeTable[n].entries > 0) free(NodeTable[n].list);

 }

 free(NodeTable);

#endif // BEOSERVER

 /* Return the best move that we found */

 return Previous;

}

The Black player uses Comp2 function to make moves. Comp2 function is

the same as Comp function but takes a “j” parameter. This parameter is assigned

to depth.

3.2. Making a Computer Play against a Computer

By default, the Beowulf chess engine starts playing in user player mode

(human player vs computer player). We made some changes to the code to

make the computer play against itself. We created strings input2, input3 and

input4. Input2 and input4 are assigned to “comp\n”. Input 3 is assigned to

“xboard\n” and input5 is assigned to “eval\n”. By calling the ParseInput function

with parameter input4 the computer starts playing the game (as the white player).

When it’s time for the black player to make a move we call ParseInput with

parameter input2.

 In main function we define the skill level for the black player and white

player with the following commands:

 Params.BSkill=1;

30

 Params.WSkill=5;

When the ParsInput function is called with ”comp\n” value it returns “S_SEARCH”

which has a value of 1 and sets the computer processing. We have created

another copy of comp() function in comp.c and we named it comp2().The

following code will use the comp() function for the white player and the comp2()

function for the black player:

If (Current_Board.side==WHITE) { if (Comp()==-1) ComputerGO = FALSE;}

else

{if (Comp2()== -1) ComputerGO = FALSE;}

Current_Board.side value lets us know which player is going to make a

move. Based on its value, 0 for the white player and 1 for the black player, we

call different functions. This makes the computer move for the black player.

3.3. Current Position

The approximations we are using to calculate the player’s position in the

game are:

0.3 shows that the player has first move advantage.

0.6 +- shows a slight advantage for the player

0.9 +- shows a clear advantage for the player

Any number 1.3 + shows the player is winning the game.

If the current position is a number between 0 and 1.3, the game is still

close. When the current position gets to a number more than 1.3 the player has

clear advantage and he is winning the game. If the current position is greater

31

than 1.3 for 3 moves, then we will decrease the skill level. The game will continue

on. Each time the player’s current position is greater than 1.3 for three

consecutive moves, we decrease the skill level. This continues until two players

have the same difficulty level.

3.4. Creating the Adaptive Chess Engine

During the game we check the current position for each player to see if

that player is playing better than his opponent and use this to adapt the player’s

level as explained above. Current position for each player shows if that player is

winning the game or if he is losing. Any positive number from 0 to 1 shows

advantage for that player and any number greater than 1.3 shows that player is

winning. We created a global variable named position to save the current position

for each player during the game.

/* Display the current positional score */

 fprintf (stdout,"Current Position = %.2f\n",(float)InitialScore/100.0f);

 position=InitialScore; //We add this to store the position for the white player

In the main function we can check that value to see if that player has

advantage or not:

if ((float)position/100.0f>0.9) { fprintf(stdout,"White player has advantage"); }

 We created two variables named bposition and wposition and gave them

each a value of 0. Each time one player has advantage we add 1 to these

variables:

if ((float)position/100.0f > 1.3)

32

 {

 bposition++;

 if (bposition>=3 && wdifficulty<5)

 {

 fprintf(stdout,"changing white player level");

 wdifficulty++;

 Params.WSkill++;

 bposition=0;

 }

 }

 }

 The following code increases the difficulty level of the white player when

the black player has had clear advantages for 3 moves. This lets the white player

to adapt to the black player during the game.

3.5. Saving the Skill Level

After each game, the white player keeps the adapted skill level and starts

the next game with that skill level. If the comp function returns -1 that means that

the game is over. This is the condition that shows us the game ended after the

white player moved:

if (Comp(wdifficulty) == -1) {//if the game ends

And we use this condition to check to see if the game ended after the

black player moved:

if (Comp2(5) == -1) {//if the game ends

33

We created a label named “play” to start the next game. After each game

ends we call the functions to initialize the game and then start the new game by

calling that label.

In order to save the output to a file we used the following command in the

command prompt:

Beowulf >> output.txt

 This command redirects the output to a text file named output.txt in the

project folder.

We can open this file later using a text editor like notepad to see the history of

the game play in order to see the adaptive process.

34

CHAPTER FOUR

TESTING AND RESULTS

4.1. Testing Cases

We have three test cases for the adaptive engine. In the first test case the

computer player (white player) plays with another computer player (black player).

The black player has a skill level of 5 and the white player starts with a lower skill

level and adapts to the black player during the game. In the second test case, the

black player starts the game with a skill level of 1 and the white player starts the

game with a higher skill level. During the game the white player adapts to the

black player’s skill level. In the 3th test case, the computer player (black player)

starts the game with a skill level of 5 and adapts to the human player (white

player) during the game.

35

4.1.1. Test Case 1

In the first test case, the computer player (white player) plays with another

computer player (back player) and adapts to the black player’s skill level, which is

5. In this test case, the computer player (the white player) is used to simulate the

human player. The objective of this test case is to test whether the white player

(adaptive engine) adapts to the black player during the game. The initial skill

level for the black player is 5. When the game starts we can choose the skill level

for the white player before adaption which can be a number from 1 to 6 (1 is the

easiest skill level and 6 is the strongest).

Figure 1.Game Starts Test Case 1

36

As shown in Figure 1, we select 2 as the skill level for the white player

(adaptive engine) and the game starts. The white player makes the first move

(b1c3). The current position is 0 and both players have an equal score of 39.

Figure 2.Screenshot 1 Test Case 1

As shown in Figure 3, the black player makes a move (c7c6). The Black

player’s difficulty level is 5. Then white player moves (c3b5). Both players have

the same score at this time, and the current position is near to 0 (0.38).

37

Figure 3.Screenshot 2 Test Case 1

After several moves, the current position for the black player becomes 0.5

and for the white player (adaptive engine) it becomes -2.09. This shows that the

black player is in a better position than the white player. The black player’s score

is 346 and the white player’s score is 318. This is shown in Figure 4.

38

Figure 4.Screenshot 3 Test Case 1

As shown in Figure 5, the black player makes another move (f6h5) and its

current position becomes 1.93. The current position for the white player is -1.55.

This means that the black player is in a better position than the white player and

he is more likely to win the game.

39

Figure 5.Screenshot 4 Test Case 1

As shown in Figure 6, the black player makes another move (b8a6) and

the white player (adaptive engine) also makes a move (e3d4). The black player’s

score is 460 and the white player’s score is 370. The current position for the

black player is 1.49 and for the white player it is -1.39. We can see that the black

player has a clear advantage over the white player.

40

Figure 6.Screenshot 5 Test Case 1

Since the black player is winning the game, the skill level for the white

player (adaptive engine) increases to 3 to adapt to the black player. The black

player makes a move (c2d2) and the white player makes a move (f1c1). The

41

black player’s score is 489 and the white player’s score is 382. This is shown in

Figure 7.

Figure 7.Screenshot 6 Test Case 1

As shown in Figure 8, after several moves, the black player still has a

clear advantage. The white player’s skill level changes from 3 to 4 to adapt to the

42

stronger player. The current position for the black player is 4.41 and for the white

player it is -4.25. The black player’s score is 576 and the white player’s score is

416.

Figure 8.Screenshot 7 Test Case 1

43

Since the black player still has a clear advantage, the white player’s skill

level changes from 4 to 5. Now both players are playing at the same difficulty

level. This is shown in Figure 9.

Figure 9.Screenshot 8 Test Case 1

As shown in Figure 10, both players are playing at the same skill level.

The black player’s current position has changed to 6.84 and the white player’s

44

current position has changed to -108.83. This shows that the white player

(adaptive engine) is losing the game.

Figure 10.Screenshot 9 Test Case 1

Finally, the black player wins the game with the move e6d5. The white

player’s skill level after adaption is 5. The black player’s score is 999 and the

white player’s score is 441. The game asks the user if he wants to continue

playing the game or quit. This is shown in Figure 11.

45

Figure 11.Screenshot 10 Test Case 1

If the user chooses to continue the game, the game starts again and the

white player plays at the adapted skill level, which is 5. This is shown in Figure

12.

46

Figure 12.Screenshot 11 Test Case 1

47

Table 1. Test Case 1

White

Player's

Move

Black

Player's

Move

White

player's

difficulty

level

Black

Player's

difficulty

level

White

Player's

current

position

Black

player's

current

Position

White

Player's

Score

Black

Player's

Score

B1C3 C7C6 2 5 0 0 39 39

C3B5 2 5 0.38 -0.20 78 78

O-O B2C2 2 5 -2.09 0.50 318 346

C1B2 F6H5 2 5 -1.55 1.93 339 384

E3D4 B8A6 2 5 -1.39 1.49 370 460

F1C1 C2D2 3 5 -2.81 1.47 382 489

G1F1 F2G2 4 5 -4.25 4.41 416 576

A3F8 E7E6 5 5 -5.01 4.94 436 661

H4H3 E6D5 5 5 -108.83 6.84 441 776

4.1.2. Test Case 2

In the second test case, the computer player (white player) plays with

another computer player (black player) and it adapts to the black player’s skill

level, which is 1. In this test case, a computer player is used to simulate the

human player. The objective of this test case is to test whether the white player

(adaptive engine) adapts to the black player during the game. The following

screenshots show how this adaptation happens. When the game starts, the

48

computer prompts the user to enter the skill level for the white player. This skill

level can be a number from 1 to 6.

Figure 13.Game Starts Test Case 2

As shown in Figure 14, the user enters 5 for the white player’s difficulty

level. The game starts and the black player’s difficulty level is 1. The white player

(adaptive engine) makes the move c2c3 and the black player makes the move

b8c6. The current position for the white player is 0 and for the black player it is

0.11. Both players have an equal score of 39.

49

Figure 14.Screenshot 1 Test Case 2

The white player (adaptive engine) makes the second move d1b3 and the

black player makes the move f7f6. Both players have an equal score of 78. The

current position for the white player is -0.34 and for the black player it is 0.51.

50

This is shown in Figure 15.

Figure 15.Screenshot 2 Test Case 2

As shown in Figure 16, the white player (adaptive engine) makes the third

move b3b7 and the black player makes the move c8b7. Both players’ still have

the same score of 117. The current position for the white player is -0.47 and for

the black player it is -0.63.

51

Figure 16.Screenshot 3 Test Case 2

As shown in Figure 17, the white player (adaptive engine) makes the

move g1f3 and the black player makes the move e7e6. The current position for

the white player increases to 0.80 and for the black player it decreases to -0.98.

This shows that the white player’s position keeps getting better in the game. The

white player’s score is 147 and the black player’s score is 155. The white player

52

still has a skill level of 5 and the black player’s skill level is 1.

Figure 17.Screenshot 4 Test Case 2

The white player (adaptive engine) makes the next move f3g5 and the

black player responds with the move f6g5. The current position for the white

player is 1.01 and for the black player it is -0.95. Since the white player has a

current position greater than 1, the white player has a clear advantage over the

black player. The white player’s score is 177 and the black player’s score is 193.

53

The white player still has a skill level of 5 and the black player has a skill level of

1.This is shown in Figure 18.

Figure 18.Screenshot 5 Test Case 2

As shown in Figure 19, the white player (adaptive engine) makes the

move d2d3 and the black player responds with g5g4. The current position for the

white player is 0.88 and for the black player it is -1.17. The white player’s score is

54

204 and black player’s score is 231. The white player’s skill level is still 5 and the

black player’s skill level is 1. Since the current position for the black player is

decreasing, it shows that the black player is more likely to lose the game.

Figure 19.Screenshot 6 Test Case 2

55

The white player (adaptive engine) makes the move c1e3 and the black

player makes the move a7a6. The current position for the white player changes

to 1.16 and for the black player it changes to -1.28. The white player’s score is

231 and the black player’s score is 269. The skill level for the white player is still

5 and for the black player it is 1. Since the white player’s current position is 1.16,

he has a clear advantage over the black player. This is shown in Figure 20.

56

Figure 20.Screenshot 7 Test Case 2

 As shown in Figure 21, the white player (adaptive engine) makes the next

move b1d2 and the black player makes the move g8e7. The current position for

the white player increases to 1.21 and for the black player it decreases to -1.4.

The white player’s skill level is still 5 and the black player’s skill level is 1.

57

Figure 21.Screenshot 8 Test Case 2

After several moves, the white player’s current position changes to 1.48

and the black player’s current position changes to -1.49. This shows that the

58

white player is in a winning position. The white player (adaptive engine) still has a

skill level of 5 and the black player’s skill level is 1. This is shown in Figure 22.

Figure 22.Screenshot 9 Test Case 2

 As show in Figure 23, the white player makes the move h1g1 and the

black player makes the move d7d6. The current position for the white player is

59

1.3 and for the black player it is -1.41.

Figure 23.Screenshot 10 Test Case 2

After several moves, the current position for the white player changes to

2.05 and for the black player it changes to -3.66. Since the white player had an

advantage over the black player (his current position was more than 1.3) for 3

consecutive rounds, the skill level for the white player changes to 4. The white

60

player makes the move b3c5 and the black player makes the move d6c5. You

can see this in Figure 24.

Figure 24.Screenshot 11 Test Case 2

 As shown in Figure 25, the white player’s skill level is 4 and the black

player’s skill level is 1. The white player makes the move g4f4 and the black

player makes the move f8g7. The white player’s current position is 3.34 and the

black player’s current position is -3.58. Since the white player’s current position is

still greater than 1, he is in a better position than the black player.

61

Figure 25.Screenshot 12 Test Case 2

The white player makes the move f4f5 and the black player makes the

move g7c3. The current position for the white player is 3.35 and for the black

player it is -3.3. This shows that the white player still has advantage over the

black player. The skill level for the white player is 4 and for the black player it is

1. This is shown in Figure 26.

62

Figure 26.Screenshot 13 Test Case 2

The white player makes the move e1d1 and the black player makes the

move c3e5. As shown in Figure 27, since the white player had advantage over

the black player (his current position was more than 1.3) for 3 consecutive

rounds, the skill level for the white player changes to 3. The black player still has

a skill level of 1. The current position for the white player is 2.23 and for the black

player it is -2.13.

63

Figure 27.Screenshot 14 Test Case 2

The white player makes the move f5e5 and the black player makes the

move a8c8. Now the white player’s skill level is 3 and the black player’s skill level

is 1. The white player’s current position is 2.12 and the black player’s current

position is -2.46. The white player’s current position still shows that he has

advantage over the black player. You can see this in Figure 28.

64

Figure 28.Screenshot 15 Test Case 2

 After several moves, the white player makes the move a1c1 and the black

player makes the move c6d5. The white player’s current position changes to

3.69 and the black player’s current position changes to -3.84. The white player is

still in a better position than the black player. Since the skill level of the white

player is more than 1.3 for 3 consecutive moves, the skill level for the white

65

player changes from 3 to 2. The black player still has a skill level of 1. This is

shown in Figure 29.

Figure 29.Screenshot 16 Test Case 2

 The white player makes the move e2e4 and the black player makes the

move d5e6. As shown in Figure 30, the white player’s skill level is 2 and the

66

black player’s skill level is 1. The current position for the white player changes to

3.27 and for the black player it changes to -3.35.

Figure 30.Screenshot 17 Test Case 2

The white player makes the move d1e2 and the black player makes the

move d8d3. The current position for the white player changes to 3.8 and for the

black player it changes to -4. The white player’s skill level is 2 and the black

67

player’s skill level is 1. We can see that the white player still has advantage over

the black player. You can see this in Figure 31.

Figure 31.Screenshot 18 Test Case 2

Since the white player has had advantage over the black player for 3

consecutive moves, the skill level for the white player changes from 2 to 1. The

black player still has a skill level of 1. The current position for the white player is

68

2.39 and for the black player it is -2.43. The white player makes the move e2d3

and the black player makes the move h8d8. This is shown in Figure 32.

Figure 32.Screenshot 19 Test Case 2

Now both players have the same skill level. During this test case, the

white player (adaptive engine) adapted to the black player. He started the game

69

with a skill level of 5 and his skill level kept adapting until his skill matched the

black player’s skill level of 1.

Table 2. Test Case 2

White

Player's

Move

Black

Player's

Move

White

player's

difficulty

level

Black

Player's

difficulty

level

White

Player's

current

position

Black

player's

current

Position

White

Player's

Score

Black

Player's

Score

C2C3 B8C6 5 1 0 0.11 39 39

D1B3 F7F6 5 1 -0.34 0.51 78 78

B3B7 C8B7 5 1 -0.47 -0.36 117 117

G1F3 E7E6 5 1 0.80 -0.98 147 155

F3G5 F6G5 5 1 1.01 -0.95 177 193

D2D3 G5G4 5 1 0.88 -1.17 204 231

C1E3 A7A6 5 1 1.16 -1.28 231 269

B1D2 G8E7 5 1 1.21 -1.40 258 307

G2D5 E6D5 5 1 1.48 -1.49 390 481

H1G1 D7D6 5 1 1.30 -1.41 413 512

B3C5 D6C5 5 1 2.05 -3.66 489 603

G4F4 F8G7 4 1 3.34 -3.58 502 632

F4F5 G7C3 4 1 3.35 -3.30 519 658

E1D1 C3E5 4 1 2.23 -2.13 535 684

F5E5 A8C8 3 1 2.12 -2.46 551 710

70

A1C1 C6D5 3 1 3.69 -3.84 583 755

E2E4 D5E6 2 1 3.27 -3.53 594 777

D1E2 D8D3 2 1 3.80 -4 605 799

E2D3 H8D8 1 1 2.39 -2.43 615 821

4.1.3. Test Case 3

In the third test case, the computer is not used to simulate the human

player. The real human player (the white player) plays with a computer player

(the black player). The objective of this test case is to test whether the black

player (adaptive engine) is able to adapt to the real human player. The initial skill

level for the black player (adaptive engine) is 5. The following screenshots show

how this adaptation happens. When the game starts, the computer prompts the

user to enter the player’s name.

Figure 33.Game Starts Test Case 3

71

 After the user enters his name, the game starts. The human player makes

the first move: a2a3. As shown in Figure 34 the black player (adaptive engine)

makes the move e7e6. The black player’s difficulty level is 5 and the current

position is -0.01.

Figure 34.Screenshot 1 Test Case 3

As shown in Figure 35, after the human player makes the move c2c3 and

the black player makes the move d8h4. The black player’s current position

changes to 0.39

72

Figure 35.Screenshot 2 Test Case 3

73

Then the human player makes the move e2e3 and the black player makes

the move h4f2. The current position for the black player is 0.03.

Figure 36.Screenshot 3 Test Case 3

As shown in Figure 37, the human player makes the move f2e1 and the

black player makes the move f8a3. The black player’s difficulty level is 5 and the

current position for the black player is 1.49. According to section 3.3 since the

black player’s position is more than 1, he has advantage over the human player.

74

Figure 37.Screenshot 4 Test Case 3

 As shown in Figure 38, the human player makes the move e1f2

and the black player makes the move g8h6. The current position for the

black player is 1.42. The black player has advantage over the white

player.

75

Figure 38.Screenshot 5 Test Case 3

As shown in Figure 39, the human player makes the move b2a3. The

black player makes the move h6f5. The black player’s difficulty level is 5 and its

76

current position is 2.7. The black player has advantage over the human player.

Figure 39.Screenshot 6 Test Case 3

As shown in Figure 40, the human player makes the move a3a4. The

black player makes the move f5e3. The difficulty level for the black player is now

4 and its current position is 2.73. The black player still has advantage over the

77

white player and is winning the game.

Figure 40.Screenshot 7 Test Case 3

As shown in Figure 41, the human player makes the move d2e3. The

black player makes the move d7d5. The black player’s difficulty level is 4 and its

current position is 3.77. The black player has advantage over the white player

and is winning the game.

78

Figure 41.Screenshot 8 Test Case 3

As shown in Figure 42, the human player makes the move g2g3. The

black player makes the move c8d7. The black player’s difficulty level is 4 and its

current position is 4.10. The black player has advantage over the white player

79

and is winning the game.

Figure 42.Screenshot 9 Test Case 3

As shown in Figure 43, the human player makes the move a4a5. The

black player makes the move b8c6. The black player’s difficulty level has

changed to 3. The current position for the black player (adaptive engine) is 4.04.

The black player has advantage over the white player and is winning the game.

80

Figure 43.Screenshot 10 Test Case 3

As shown in Figure 44, the human player makes the move h2h3. The

black player makes move c6a5. The current position for the black player is 4.31

and its skill level is 3. The black player has advantage over the white player and

is winning the game.

81

Figure 44.Screenshot 11 Test Case 3

As shown in Figure 45, the human player makes the move a4a5. The

black player makes the move b8c6. The black player’s difficulty level is 3. The

current position for the black player is 4.04 and is winning the game.

82

Figure 45.Screenshot 12 Test Case 3

As shown in Figure 46, the human player makes the move g3g4. The

black player makes the move o-o. The black player’s difficulty level is 3. The

current position for the black player is 5.54 and the black player is winning the

game.

83

Figure 46.Screenshot 13 test Case 3

As shown in Figure 47, the human player makes the move g4g5. The

black player makes the move f7f6. The black player’s difficulty level changed to

2. The current position for the black player is 5.88. The black player has

advantage over the human player and is winning the game.

84

Figure 47.Screenshot 14 Test Case 3

As shown in Figure 48, the human player makes the move g5f6. The black

player makes the move f8f6. The black player’s difficulty level is 2. The current

position for the black player is 4.45 and the black player is winning the game.

85

Figure 48.Screenshot 15 Test Case 3

As shown in Figure 49, the human player makes the move h3h4. The

black player makes the move f6f1. The black player’s difficulty level is 2. The

current position for the black player is 5.6. The black player has advantage over

the white player and is winning the game.

86

Figure 49.Screenshot 16 Test Case 3

 As shown in Figure 50, the human player makes the move e1f1. The black

player makes the move d7b5. The black player’s difficulty level changed to 1.

The current position for the black player is 5.35. The black player has advantage

over the white player and is winning the game.

87

Figure 50.Screenshot 17 Test Case 3

As shown in Figure 51, the human player makes the move c3c4. The

black player makes the move d5c4. The black player’s difficulty level is 1 and the

current position for the black player is 5.37. The black player has advantage and

is winning the game.

88

Figure 51.Screenshot 18 Test Case 3

 Table 3. Test Case 3

White

Player's

Move

Black

Player's

Move

Black

Player's

difficulty

level

Black

Player's

current

position

A2A3 E7E6 5 -0.01

C2C3 D8H4 5 0.39

E2E3 H4F2 5 0.03

F2E1 F8A3 5 1.49

E1F2 G8H6 5 1.42

B2A3 H6F5 5 2.70

89

A3A4 F5E3 4 2.73

D2E3 D7D5 4 3.77

G2G3 C8D7 4 4.10

A4A5 B8C6 3 4.04

H2H3 C6A5 3 4.31

A4A5 B8C6 3 4.04

G3G4 O-O 3 5.54

G4G5 F7F6 2 5.88

G5F6 F8F6 2 4.45

H3H4 F6F1 2 5.60

E1F1 D7B5 1 5.35

C3C4 D5C4 1 5.37

As shown in table 3, the black player’s (adaptive engine) initial skill level

was 5 and it adapted to the human player’s skill level. From this test case we can

conclude that the human player’s skill level was 1 during the game.

4.2. Results Analysis

We have 3 different test cases. In order to create the adaptive engine, we

created another function that calculates points for each move and the game

score for each player. This point system was not effective in evaluating the

players’ position in the game. Later, we didn’t use that point system and instead

we used the variable “Current Position” that is evaluated by the game engine.

90

 In the first test case, computer played with another computer (white vs.

black) and the white player adapted to the black player’s skill level. The white

player’s initial skill level was 1 and the black player’s initial skill level was 5. The

white player took 9 moves to adapt from 1 to 5. The white player’s position was 0

at the start of the game and it changed to -108.83 when the game ended. The

black player’s position was 0 at the start of the game, and it changed to 6.84

when the game ended. The black player won the game.

In test case 2, computer played with another computer (Black vs. White)

and the black player adapted to the white player’s skill level. The white player’s

initial skill level was 5 and the black player’s initial skill level was 1.The black

player took 19 moves to adapt to the white player’s skill level. The white player’s

position was 0 when the game started, and it changed to 2.39 by the end of the

game. The black player’s position was 0.11 when the game started and it

changed to -2.43 by the end of the game. The white player won the game.

In test case 3, a human player (white player) played with a computer

(black player) and the computer adapted to the human player’s level. The

computer player took 18 moves to adapt to the human player. The black player’s

current position was -0.01 when the game started and it changed to 5.37 by the

end of the game. The computer (black player) won the game. The computer’s

(black player) skill level was 1 after adaptation. We can conclude that the human

player’s skill level was 1 during the game.

91

CHAPTER FIVE

CONCLUSION

In this project I modified the Beowulf chess engine to adapt to a player’s skill

level. After each move, the players are assigned points according to how good

the move was. A total score is given to each player after the game. When the

game starts both players have current position of 0. After each move, their

current position changes. If the current position is positive it means that they are

in the winning position and if it negatives it mean that they are in loosing position.

We use this variable to create the adaptive engine. If the current position is

greater than 1.3 for 3 consecutive moves the adaptive engine changes the skill

level. There were 3 test cases used to test the adaptation. In the first test case,

the computer played with another computer player and the weaker player

adapted to the stronger player’s level during the game. In the second test case,

the computer played with itself and the stronger player adapted to the weaker

player’s level during the game. In the third test case, the computer played with a

human player and adapted to the human player’s skill level.

Future work for this project will include using the graphical interface (Xboard

or Winboard) for the adaptive chess engine, and creating a database to save

each player’s moves, current positions, and scores.

92

REFERENCES

1- “Iterative deepening depth-first search” Retrieved from:

http://en.wikipedia.org/wiki/Iterative_deepening_depth-first_search

[May 5, 2015].

2- “Board representation (chess)" Retrieved from:

http://en.wikipedia.org/wiki/Board_representation_(chess)

[December 19, 2014].

3- "a-history-of-computer-chess" Retrieved from:

http://hightechhistory.com/2011/04/21/

a-history-of-computer-chess-from-the-mechanical-turk-to-Cdeep-blue/

 [June 15, 2013].

4- "Project web page for the Beowulf computer chess engine" Retrieved

from:

http://www.frayn.net/beowulf/

 [June 15, 2013].

5- "Engine ratings" Retrieved from:

 http://computerchess.org.uk/ccrl/4040/rating_list_all.html,

[May 16, 2015].

6- "Game tree" Retrieved from:

 http://en.wikipedia.org/wiki/Game_tree

93

[June 15, 2013].

7- "Minimax" Retrieved from:

https://en.wikipedia.org/wiki/Minimax

[June 15, 2013].

8- "Alpha–beta pruning" Retrieved from:

http://en.wikipedia.org/wiki/Alpha-beta_pruning

[June 15, 2013].

9- "Negascout" Retrieved from:

http://en.wikipedia.org/wiki/Negascout, 16 September 2013

[June 15, 2013].

10- "Negamax" Retrieved from:

http://chessprogramming.wikispaces.com/Negamax, June 1, 2013

[June 15, 2013].

11- Nil J. Nillson, "Artificial Intelligence: A New Synthesis, Morgan Kaufmann

Publishers", June 1, 2013 [June 15, 2013].

12- “Position Scores and Evaluation” Retrieved from:

 http://www.chess.com/forum/view/game-analysis/position-scores-and-

evaluation

94

13- “Beowulf Computer Chess Engine” Retrieved from:

http://www.frayn.net/beowulf/

[Dec 14, 2005].

14- “Chess Engine” Retrieved from:

 http://en.wikipedia.org/wiki/Chess_engine

[May 4, 2015].

15- “Graphical User Interface” Retrieved from:

http://chessprogramming.wikispaces.com/GUI

[2015].

	California State University, San Bernardino
	CSUSB ScholarWorks
	9-2015

	THE DESIGN AND IMPLEMENTATION OF AN ADAPTIVE CHESS GAME
	Mehdi Peiravi
	Recommended Citation

	Microsoft Word - 449632-convertdoc.input.437194.4sFLl.docx

