
California State University, San Bernardino
CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

6-2015

SYMMETRIC PRESENTATIONS OF NON-
ABELIAN SIMPLE GROUPS
Leonard B. Lamp
Cal State San Bernardino, leonarddotlamp@gmail.com

Follow this and additional works at: http://scholarworks.lib.csusb.edu/etd

This Thesis is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks. It has been accepted for inclusion in
Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact
scholarworks@csusb.edu.

Recommended Citation
Lamp, Leonard B., "SYMMETRIC PRESENTATIONS OF NON-ABELIAN SIMPLE GROUPS" (2015). Electronic Theses, Projects,
and Dissertations. Paper 222.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CSUSB ScholarWorks

https://core.ac.uk/display/55333399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.csusb.edu/?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.csusb.edu/?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/grad-studies?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.lib.csusb.edu/etd/222?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F222&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


Symmetric Presentations of Non-Abelian Simple Groups

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Arts

in

Mathematics

by

Leonard Bo Lamp

June 2015



Symmetric Presentations of Non-Abelian Simple Groups

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Leonard Bo Lamp

June 2015

Approved by:

Dr. Zahid Hasan, Committee Chair Date

Dr. Gary Gri�ng, Committee Member

Dr. Joseph Chavez, Committee Member

Dr. Charles Stanton, Chair, Dr. Corey Dunn

Department of Mathematics Graduate Coordinator,

Department of Mathematics



iii

Abstract

The goal of this thesis is to show constructions of some of the sporadic groups

such as the Mathieu group, M12, the Janko group J1, Projective Special Linear groups,

PSL(2, 8), and PSL(2, 11), Unitary group U(3, 3) and many other non-abelian simple

groups. Our purpose is to find all simple non-abelian groups as homomorphic images of

permutation or monomial progenitors, as well as grasping a deep understanding of group

theory. Extension theory is used to determine groups up to isomorphisms. The progenitor,

developed by Robert T. Curtis, is an infinite semi-direct product of the following form:

P ⇠= 2⇤n : N = {⇡w|⇡ 2 N , w is a reduced word in the t0is} where 2⇤n denotes a

free product of n copies of the cyclic group of order 2 generated by involutions ti, for

1  i  n; and N is a transitive permutation group of degree n which acts on the

free product by permuting the involuntary generators by conjugation. Thus we develop

methods for factoring by a suitable number of relations in the hope of finding all finite

non-abelian simple groups, and in particular one of the 26 sporadic simple groups. Then

the algorithm for double coset enumeration together with the First Isomorphism Theorem

aids us in proving the homomorphic image of the group we have constructed. After being

presented with a group G, we then compute the composition series to solve extension

problems. Given a composition such as G = G0 � G1 � · · · � Gn�1 � Gn = 1 and the

corresponding factor groups G0/G1 = Q1, · · · , Gn�2/Gn�1 = Qn�1, Gn�1/Gn = Qn. We

note that G1 = 1, implying Gn�1 = Qn. As we move to the next composition factor

we see that Gn�2/Qn = Qn�1, so that Gn�2 is an extension of Qn�1 by Qn. Following

this procedure we can recapture G from the products of Qi and thus solve the extension

problem. The Jordan-Holder theorem then allows us to develop a process to analyze all

finite groups. If we knew all finite simple groups and could solve their extension problem,

we would arrive at the isomorphism type. We will present how we solve extensions

problems while our main focus will lie on extensions that will include the following: semi-

direct products, direct products, central extensions and mixed extensions. Lastly, we

will discuss Iwasawa’s Lemma and how double coset enumeration aids us in showing the

simplicity of some of our groups.
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Chapter 1

Introduction

1.1 The Origin of the Progenitor

The aim of our research is to find representations for all simple groups through

the use of a group construction, developed by Robert T. Curtis [Cur07], called a pro-

genitor. The progenitor was developed when Curtis was asked if the Mathieu group M24

could contain two copies of the linear group PSL(2, 3) which intersect in a subgroup iso-

morphic to the symmetric group S4. The use of this information was needed to construct

a group with particular properties. Through Curtis’ analysis, he found that M24 had

seven generating involutions whose set normalizer was the maximal subgroup PSL(2, 3).

Given the simplicity of M24 together with the maximality of PSL(2, 3), implied that

these seven involutions must generate M24. These ideas developed the creation of the

progenitor which showed that M24 is a homomorphic image of PSL(2, 3) .

Through Curtis’ e↵orts we further investigate progenitors of our own in the

hope of finding finite homomorphic images as simple groups. In essence, if we wanted

a representation for a group, G, such that G =< t1, t2, · · · , tn > where |ti| = 2, for

1  i  n, then we need an N = Normalizer(G, {< t1 >,< t2 >, · · · , < tn >}) where

N acts transitively on {< t1 >,< t2 >, · · · , < tn >}. Given these conditions we then

can say G is a homomorphic image of the progenitor 2⇤n : N . To further understand

this concept we will show a smaller example using G = S4, and also how the group is

expressed as the progenitor 2⇤3 : S3.
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1.2 S4 as a Homomorphic Image of 2⇤3 : S3

First we note that our G has to be generated by involutions. Thus,

G = S4 =< (1, 2), (1, 3), (1, 4) >. We let (1, 2), (1, 3) and (1, 4) act as t1, t2, and t3

respectively in our discussion from above. Now, to compute the normalizer of

{< (1, 2) >,< (1, 3) >,< (1, 4) >}, we need to find the set of permutations in S4 that

upon conjugation of the members of the set {< (1, 2) >,< (1, 3) >,< (1, 4) >} send the

set to itself. We find that such a set is {e, (2, 3), (2, 4), (3, 4), (2, 3, 4), (2, 4, 3)}. Notice

that this set is generated by < (2, 3, 4), (2, 3) >. Hence, the normalizer of

T = {< (1, 2) >,< (1, 3) >,< (1, 4) >} in G is S3 =< (2, 3, 4), (2, 3) > and the normalizer

acts transitively on T, since there exists a permutation of our S3 that will take us from

one generator of S4 to any other generator, namely (2, 3), (2, 4) and (3, 4).

1.2.1 Curtis M24 Example

InM24, [Cur07] found that N = PSL(2, 3) with N\N t = S4 and the centralizer,

CM24(S4) =< t >, then t commuted element wise and [PSL(2, 3) : S4] = 7. This implied

M24 =< t1, t2, t3, t4, t5, t6, t7 >. Applying these concepts to G = S4 above, we see that

S4 =< (1, 2), (1, 3), (1, 4) > and our N , is S3. If we let t = (1, 4) then |S3 \ St
3| = 2 since

S3 = {(2, 3, 4), (2, 4, 3), (2, 3), (2, 4), (3, 4), e}

S
(1,4)
3 = {(2, 3, 1), (2, 1, 3), (2, 3), (2, 1), (3, 1), e}

Thus, S3 \ St
3 = {e, (2, 3)}. The centralizer in S4 of the set {e, (2, 3)} is equal to the

number of conjugates in S4 of (1, 4). We find that the centralizer is given as follows:

C(S4, {e, (2, 3)}) = {e, (1, 4), (2, 3), (1, 4)(2, 3)}. Computing the transversals of {e, (2, 3)}

in S3 =< (2, 3, 4), (2, 3) > and putting them in a set T , we get T = {e, (2, 4), (3, 4)}.

Therefore (1, 4) has 3 conjugates (1, 4)e = (1, 4), (1, 4)(2,4) = (1, 2) and (1, 4)(3,4) = (1, 3).

Notice that these conjugates generate G = S4. In summary, S4 =< (1, 2), (1, 3), (1, 4) >,

where the normalizer(S4, < (1, 2), (1, 3), (1, 4) >) = S3 =< (2, 3, 4), (2, 3) >. In addition,

|S3 \ St
3| = 2 implies | Stabilizer(S3, 3) | = 2 and t3 has 3 conjugates under conjugation

by S3. Hence, S4 is a homomorphic image of 2⇤3 : S3.
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1.2.2 Find a Relation that Produces 2⇤3 : S3
⇠= S4

Recall that a progenitor is an infinite group, thus we may be able to show that

S4 is a finite homomorphic image of 2⇤3 : S3 from the criterion above. However, in order

to get a finite image we need to find a relation that will create a finite presentation

isomorphic to S4. Fortunately, this has been investigated by [Cur07] and we will explain

his results. Consider the relation x = t1t2t1. The presentation of the progenitor 2⇤3 : S3

is given as: < x, y, t >=< x3, y2, (xy)2, t2, (t, y) >. Inserting the relation we achieve

< x, y, t >=< x3, y2, (xy)2, t2, (t, y), x = ttxt >. Upon completion of the double coset

enumeration we find that f(x) = (2, 3, 4), f(y) = (3, 4), and f(t) = (1, 2). We find that

H =< f(x), f(y) > is isomorphic to S3, which is maximal in S4. Also, f(t) 2 S4 but

f(t) /2 S3 implies that G =< f(x), f(y), f(t) >= S4. The details of this discovery and the

double coset enumeration of this group can be found in the appendix. In the chapters that

follow, we will provide charts of progenitors and the groups they produce with particular

relations.
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Chapter 2

Progenitors and Group Related

Preliminaries

In this chapter, we will provide the foundation in which we have found all

the homomorphic images of non-abelian simple groups presented in this paper. The

progenitor is a construction that was developed by Robert T. Curtis in his search to find

a presentation for all finite non-abelian simple groups. The progenitor is a semi-direct

product of the following form: P ⇠= 2⇤n: N = {⇡w|⇡ 2 N, w is a reduced word in the

t0is} where 2⇤n denotes a free product of n copies of the cyclic group of order 2 generated

by involutions ti for 1  i  n; and N is a transitive permutation group of degree n

which acts on the free product by permuting the involuntary generators by conjugation.

[Cur07] A progenitor is essentially a presentation for an infinite group, when factored by

relations generate images for finite groups. Thus we develop methods for factoring by

any number of relations in the hope of finding all non-abelian simple groups.

To get a full understanding of what is meant by the development of a progenitor

we start introducing some elementary definitions.

2.1 Preliminaries

Definition 2.1. [Rot95] Let G be a set. A binary operation on G is a function that

assigns each ordered pair of elements of G an element of G.



5

Definition 2.2. [Rot95]A semigroup (G,⇤) is a nonempty set G equipped with an as-

sociative operation ⇤.

Definition 2.3. [Rot95]A group is a semigroup G containing an element e such that

(i) e ⇤ a = a = a ⇤ e for all a 2 G

(ii) for every a 2 G, there is an element b 2 G with a ⇤ b = e = b ⇤ a

Theorem 2.4. [Rot95] First Isomorphism Theorem

Let f : G ! H be a homomorphism with kernel K. Then K is a normal subgroup of G

and G/K ⇠= imf

Proof. Let K C G. Define ' : G/K ! H by the mapping '(Ka) = f(a). We will show

that ' is a well defined one to one and onto homomorphism. To see that ' is well-defined,

we assume that Ka = Kb, hence ab�1
2 K. Then

1 = f(ab�1) = f(a)f(b)�1, and f(a) = f(b).

Thus '(Ka) = '(Kb) as desired. Now we show that ' is a homomorphism:

'(KaKb) = '(Kab) = f(ab) = f(a)f(b) = '(Ka)'(Kb)

Clearly, im' = imf . Now show that ' is an injection. Assume '(Ka) = '(Kb), then

f(a) = f(b); hence f(ab�1) = 1, ab�1
2 K and Ka = Kb. We have shown that ' is an

isomorphism.

Theorem 2.5. [Rot95] Second Isomorphism Theorem

Let N and T be subgroups of G with N normal. Then N \ T is normal in T and

T/(N \ T ) ⇠= NT/N

Proof. We want to apply the First Isomorphism Theorem. Thus we will find a homomor-

phism from N onto NT/T with kernel N\T . Define a map ✓ : T ! TN/N by ✓(a) = aN .

Suppose that a, b 2 T . Then ✓(ab) = abN = (aN)(bN) = ✓(a)✓(b). Thus, � is a ho-

momorphism. Now, ✓ is onto since if aN 2 TN/N with a 2 TN . We note that a = tn

where t 2 T and n 2 N . Now n�1N = N , thus tN = an�1N = aN . We conclude that

✓(t) = aN . Finally, if a 2 T , then ✓(a) = N () a 2 T \N . So ker✓ = T \N . Using the

First Isomorphism Theorem we can now conclude that T/(N \ T ⇠= ✓(N)) = NT/N
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Theorem 2.6. [Rot95] Third Isomorphism Theorem

Let K  H  G, where both K and H are normal subgroups of G. Then H/K is a

normal subgroup of G/K and

(G/K)(H/K) ⇠= G/H.

Proof. This theorem is easily proved using the First Isomorphism Theorem. First we

consider the natural map G ! G/H. The kernel of, H, contains K. We define the

mapping f : G/K ! G/H by f(Ka) = Ha. We note that this mapping is well-defined

since K  H. Notice that the mapping sends the left coset gK to the left coset gH. Now

assume that gK is in the kernel. Then the left coset gH is the identity coset, such that

gH = H, implying g 2 H. Thus the kernel consists of those left cosets of the form gK

for g 2 H, that is H/K. Thus the result now follows by the First Isomorphism Theorem,

and this completes the proof.

Theorem 2.7. [Rot95] If K  H and [H : K] = n, then there is a homomorphism

� : H ! Sn with ker�  K.

Proof. If a 2 H and X is the set of all the right cosets of H in K, we define a function

�a : X ! X by Kh 7! Kha for all h 2 H. We know that � : X ! X is 1� 1 if and only

if there exists a function f : X ! X such that �(f) = 1X . Therefore we need to show

(�a)�1 = �a�1 . So, given that �a : Kh 7! Kha, then (�a)�1 : Kha 7! Kh. Now,

�a�1 : Kh ! Kha�1

Taking the composition �a�a�1 we have,

�a�a�1 : Kh ! Kha�1
! Kh

Therefore (�a)�1 = �a�1 and �a 2 SX for all a 2 H. We now note that, a 7! �a : X ! X

is a homomorphism given by the mapping � : H ! SX
⇠= Sn. To show this mapping is a

homomorphism we let Kh 2 X then if a, b 2 H we have

(ab)� = (Kh)(ab)� = (Kha)(b�) = Khab = a�b�. If a 2 ker� this implies Kha = Kh

for all h 2 H. Letting h = Id then we have Ka = K and by properties of cosets we know

a 2 K and ker�  K.
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Theorem 2.8. [Rot95] If K  H, then H acts transitively on the set of all right cosets

of H over K.

Proof. Let X be the set of all right cosets of H over K and assume Kh 2 X. To show

that H acts transitively on the set of right cosets we must find h 2 H such that K ! Kh,

but h 2 H so there exists h 2 H such that K ! Kh, thus H acts transitively on the set

of all right cosets of H in K.

Definition 2.9. [Rot95] If X is a nonempty subset of a group F , then F is a free group

with basis X if, for every group G and every function f : X ! G, there exists a unique

homomorphism � : F ! G extending f . Moreover, X generates F .

Definition 2.10. [Rot95] Given a set X, there exists a free group F with basis X.

Theorem 2.11. [Rot95] Every group G is a quotient of a free group.

Proof. Let G be a group. Define a set X = {xg|g 2 G} so that f : X ! G is a bijection

defined given by xg ! g. By Theorem 2.10, we let F be a free group with basis X.

Then by definition of a free group their exist a unique homomorphism � : F ! G that

extends f . Moreover, � is onto since f is onto. Now F
ker� = G, so G is a quotient of a

free group.

Definition 2.12. [Rot95] Let X be a set and let � be a family of words on X. A group

G has generators X and relations � if G ⇠= F/R, where F is the free group with basis

X and R is the normal subgroup of F generated by �. The ordered pair (X|�) is called

a presentation of G.
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2.2 Examples of Presentations

Show that a presentation for D8 is given as < x, y|x4 = 1, y2 = 1, (x ⇤ y)2 = 1 >

Proof. Let F be a free group with basis X = {x, y} and define a homomorphism

� : F ! D8 by �(x) = (1, 2, 3, 4) and �(y) = (1, 3) From definition 2.7, we have � is an

onto homomorphism. Let G = F
R , where R =< x4, y2, (x ⇤ y)2 >. Now � : F ! D8 and

we have F
ker�

⇠= D8. Now we must show that R = ker�. So,

�(x4) = (�(x))4 = (1, 2, 3, 4)4 = 1 =) x4 2 ker�

�(y2) = (�(y))2 = (1, 3)2 = 1 =) y2 2 ker�

�((x ⇤ y)2) = (�(x)�(y))2 = ((1, 2, 3, 4)(1, 3))2 = ((12)(34))2 = 1 =) (x ⇤ y)2 2 ker�

Thus x4, y2, (x ⇤ y)2 2 ker�. Hence, < x4, y2, (x ⇤ y)2 >= R ✓ ker�.

Now, |FR | � |

F
ker� | =) |

F
R | � |D8| = 8. So, |G| � 8. Now we will show |G|  8.

G = F
R  {R,Rx,Rx2, Rx3, Ry,Rxy,Rx2y,Rx3y}

The above set is closed under right multiplication by x and by y, since

(Rxy)y = xRy2 = XR = RX and

R(xy)2 = R

=) Rxyxy = R

=) xRyx = Ry�1

=) Ryx = x�1Ry�1

=) Ryx = Rx�1y�1

=) Ryx = Rx3Ry

=) Ryx = Rx3y

So, Ryx = Rx3y and Rxyx = xRyx = xRx3y = Rx4y = Ry belongs to the set

above. Thus, |G|  8. Hence |G| = 8. By the Third Isomorphism Theorem, we have an

onto homomorphism  : F
R !

F
ker� (R < ker�  F ). Thus, F/R

ker 
⇠= F

ker� . Hence ker = 1

and F/R ⇠= F/ker� ⇠= D8.
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Definition 2.13. [Cur07]Let G be a group and T = {t1, t2, ..., tn} be a symmetric gener-

ating set for G with |ti| = m. Then if N = NG(T̄ ), then we define the progenitor to be

the semi direct product m⇤n : N , where m⇤n is the free product of n copies of the cyclic

group Cm.

Definition 2.14. [Rot95]If H  G and g 2 G, then the conjugate gHg�1 is

{ghg�1 : h 2 H}. The conjugate gHg�1 is often denoted by Hg

Definition 2.15. [Rot95]If H  G, then the normalizer of H in G, denoted by NG(H),

is

NG(H) = {a 2 G : aHa�1 = H} .

Definition 2.16. [Rot95]If a 2 G, then the centralizer of a in G, denoted by CG(a), is

the set of all x 2 G which commute with a.

Definition 2.17. [Rot95] If a 2 G, the number of conjugates of a is equal to the index

of its centralizer:

|aG| = [G : CG(a)], and this number is a divisor of |G| when G is finite.

Theorem 2.18. [Rot95] If G is a finite group and H  G, then the number of conjugates

of H in G is [G : NG(H)].

Proof. Let [H] denote the set of all the conjugates of H, and let G/N denote the set of all

left cosets of N = NG(H) in G. We define a mapping f : [H] ! G/N by f(aHa�1) = aN .

If aHa�1 = bHb�1 for some b 2 G then b�1aHa�1b = H and b�1a normalizes H. So,

b�1a 2 N , and so by properties of cosets bN = aN , thus f is well defined. Now show f is

one to one. If aN = f(aHa�1) = f(cHc�1) = cN for some c 2 G, then c�1a 2 N , c�1a

normalizes H, c�1aHa�1c = H, and aHa�1 = cHc�1. Clearly the function is onto, since

if a 2 G then aN = f(aHa�1). Therefore, we have f as a one to one and onto mapping

so |[H]| = |G/N | = [G : NG(H)].

From the two previous theorems mentioned above, we can now discuss a way to

naturally write a progenitor. As defined above, the presentation of a progenitor is of the

form 2⇤n : N , where N acts transitively on the t0s. Since N is said to be transitive on the

t0s we can determine the number of conjugates of our t by taking the index of the point

stabilizer N1 in N . In comparison to definition 2.10, we see that N =< X|R >, implying

that our progenitor will take the following form:
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m⇤n : N ⇠=< X, t|R, tm, (t,N1) >

Notice that we allow our t to commute with the point stabilizer that corresponds with our

associated t. Hence, |tn| = |N : N1
|, as desired. We will illustrate the above description

in the following example.

Example 2.19. Show that the presentation for 2⇤3 : S3 can be written in a simpler form.

Let S3 =< (1, 2, 3), (1, 2) > and note 2⇤3 means that we have three elements of

order two, and allow these to be represented as t0s. Then the presentation for 2⇤3 : S3 is

given as

{x, y, t1, t2, t3|x
3, y2, (x ⇤ y)2, t21, t

2
2, t

2
3, t

x
1 = t2, t

y
1 = t2, t

x
2 = t3, t

y
2 = t1, t

x
3 = t1, t

y
3 = t3}

Now the same presentation can be written as:

{x, y, t1|x
3, y2, (x ⇤ y)2, t21, (t,N

1 = (x ⇤ y))}

When we say t21, this implies (tx)2 = 1, (tx
2
)2 = 1 and (ty)2 = 1. In addition, (t,N1) is

equivalent to writing tx1 = t2, t
y
1 = t2, t

x
2 = t3, t

y
2 = t1, t

x
3 = t1, t

y
3 = t3.

We then define {x, y, t1|x
3, y2, (x ⇤ y)2, t21, (t,N

1 = x ⇤ y)} as a symmetric presentation.
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2.3 Blocks, Transitivity, Primitivity, and Iwasawa’s Lemma

Definition 2.20. [Rot95]If X is a set and G is a group, then X is a G� set if there is

a function ↵ : G⇥X ! X (called an action), denoted by ↵ : (g, x) 7! gx, such that:

(i) 1 ⇤ x = x for all x 2 X

(ii) g(hx) = (gh)x for all g, h 2 G and x 2 X. We say that G acts on X. If

|X| = n, then n is called the degree of the G� setX.

Definition 2.21. [Rot95] If X is a G� set, then a block is a subset B of X such that,

for each g 2 G, either gB = B or gB \ B = ;. Note gB = {gx : x 2 B}. Nontrivial

blocks are ;, X, and one-point subsets.

Definition 2.22. [Rot95] A G� set X is transitive if it has only one orbit; that is, for

every x, y 2 X, there exists � 2 G with y = �x.

Definition 2.23. [Rot95] Let G be a transitive group on X and B be a nontrivial block

then

(1) B is a block 8 g 2 G

(2) 9 g1, g2, g3, · · · , gm such that X = Bg1, Bg2, · · · , Bgm and Bgi \Bgj = ; 8

i 6= j

(3) |Bg|||X| 8 g 2 G

Theorem 2.24. [Rot95]If X is a transitive G� set of degree n, and if x 2 X, then

|G| = n|Gx|

Proof. From definition 2.17 we have |Gx| = [G : Gx]. Since we assume thatX is transitive,

Gx = X, and so n = |G|/|Gx|

Definition 2.25. [Rot95]A G � set X is transitive if it has only one orbit; that is, for

every x, y 2 X, there exists � 2 G with y = �x.

Definition 2.26. [Rot95]A transitive G�set X is primitive if it contains no nontrivial

block; otherwise, it is imprimitive.

Theorem 2.27. [Rot95]Let X be a finite G� set, and let H  G act transitively on X.

Then G = HGx for each x 2 X.
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Proof. Let g 2 G and x 2 X and g = hg0. G is transitive on X then gx 2 X for g 2 G

but H is transitive on X. Thus Hx = {h1x, h2x, ..., hnx} = X. Now there 9h 2 H such

that hx = gx implying x = h�1gx. Note that h�1g stabilizes x. Therefore h�1g 2 Gx.

So, g = h(h�1g). If g 2 G then g 2 HGx, and G ✓ HGx. However, HGx ✓ G. Thus

since, Gx ✓ G and H ✓ G this implies HGx = G

Theorem 2.28. [Rot95]Every doubly-transitve G� set is primitive.

Proof. Let B be a nontrivial block that contains x, y. So B = {x, y, ...}. Let z 2 X be

such that x 6= z, y 6= z and z /2 B. Since x is doubly transitive 9g 2 G such that gx = x

and gy = z. Now, gB = {x, z} and x 2 B \ gB but B 6= gB. B is not a non trivial block,

contradiction. Thus there are no nontrivial blocks, so X is primitive.

Theorem 2.29. [Rot95]Let X be a G� set and x, y 2 X.

(i) If H  G, then Hx \Hy = 6= ; =) Hx = Hy

(ii) If H is normal in G, then the subsets Hx are blocks of X.

Proof. For the proof of (i), let X be a G � set and x, y 2 X and z 2 Hx \ Hy. Then

z 2 Hx and z 2 Hy =) 9h1, h2,2 H such that z = h1x and z = h2y. So, h1x = h2y

and Hh1x = Hh2y =) Hx = Hy.

For the proof of (ii) let g 2 G and assume gHx \ Hx = ;. Now Hg = gH since H is

normal in G. So, gHx = (gH)x = (Hg)x = Hgx. Assume that gB \ G 6= ; and show

that gB = B. Thus GHx \Hx 6= ; =) Hgx \Hx 6= ;. Then 9 h1, h2 2 H such that

h1gx = h2x. Then by takingH of both sides we see thatHgx = Hx =) gHx = Hx.

Theorem 2.30. [Rot95]If X is a faithful primitive G � set of degree n � 2. If H is

normal in G and if H 6= 1, then X is a transitive H � set.

Proof. We need to show that Hx = x. Let x 2 X, we know from definition 2.28 that

Hx is block, but x is primitive implies Hx bust be a trivial block. So hx 6= ; since

Hx = {hx|h 2 H} � {x}. Assume Hx = {x} then hx = x for all h 2 H, but we have

Gx = {g 2 G|gx = x}. Thus H  Gx but H is normal in G. Then gHg�1 = H for all

g 2 G. Let g 2 G. Thus gHg�1
✓ gGxg

�1 =) H ✓ gGxg
�1, but gGxg�1 = Ggx. From

this we obtain H ✓ Ggx for all g 2 G, x 2 X. So, H ✓ Gy 9y 2 X. So H ✓ \y2XGy.

Let a 6= e 2 \y2XGy. Then a 2 Gy for all y 2 X =) ax = x for all x 2 X. Then

a 2 kerf (taking the mapping f : G ! Sx into account). Therefore kerf 6= 1, and a is a



13

non-identity element of G that fixes all elements of X implying that X is not faithful, a

contradiction.

Finally, with all the theorems and lemma’s mentioned above we arrive at our

intended destination.

Theorem 2.31. Iwasawa’s Lemma

Let G0 = G (such a group is called perfect) and let X be a faithful primitive G � set.

If there is x 2 X and an abelian normal subgroup K of Gx whose conjugates {ghg�1
}

generate G, then G is simple.

Proof. Let H 6= 1 be a normal subgroup of G. Show that H = G and

KG = {gk�1g|k 2 K, g 2 G} generates G. Let g 2 G then g =
Q

gikig
�1
i , since

H is normal G and X is faithful and primitive by definition 2.25. Hence, G = Hx

implies gi = hisi where hi 2 H and si 2 Gx. So g =
Q

gikig
�1
i =

Q
hisiki(hisi)�1 =

Q
hisikis

�1
i h�1

i ✓ HKH. Since H is normal K  G =) HK  G. Thus for all g 2 G,

g 2 HK implies G ✓ HK. Therefore we have G = HK. Now by the use of the Second

Isomorphism Theorem we have HK/H ⇠= K/(H \K). Then G/H ⇠= K/(H \K), since

G = HK. Now K/(H \ K) is abelian since K is abelian. Thus G/H is abelian. Now

from theorem 2.30 we have G0
✓ H, but G = G0, so G ✓ H. Recall that H is normal in

G, so G = H. Therefore G is simple and this completes the proof.
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Chapter 3

Writing Progenitors

In this chapter we will discuss how to write symmetric presentations for several

progenitors. For clarity, we will include examples. Our aim is to use these progenitors

to find finite homomorphic images of finite non-abelian simple groups. To find such

homomorphic images one must factor the progenitor by relations. We wish to discuss two

famous methods for writing relations first.

3.1 Writing Relations

3.1.1 Factoring by the Famous Lemma

Frequently, we take a progenitor of the form m⇤n : N factored by a single

relator to produce a simple group. However, finding such a relation raises much di�culty.

Naturally, one may ask what forms these relations should take in order to produce groups

of interest. [Why06] Recall that a progenitor is an infinite group. In order to achieve

a finite homomorphic image we must factor our progenitor by elements of both N and

the free product group m⇤n together. Robert Curtis explored a way to write elements of

our control group N in terms of symmetric generators. His e↵orts helped developed the

following lemma. The lemma, which is used extensively through this thesis, gives us a

way in which to factor the progenitor so that we can find such images.
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Theorem 3.1. Famous Lemma

N\ < ti, tj > CN (Nij) where Nij denotes the stabilizer in N of the two points i and j.

Proof. Let w 2 N\ < ti, tj >. We need to show w 2 C = Centralizer(N,N titj ). Recall

the definition of centralizer:

Centralizer(N,H) = {n 2 N |nh = hn8h 2 H}

Hence w 2 C if w commutes with every elements of N ij . Let ⇡ 2 N ij then

w⇡ = w

=) ⇡�1w⇡ = w

=) w⇡ = ⇡w

Thus ⇡ commutes with every element of Nij , completing the proof.

The above lemma is powerful and we will consider the relations it produces as we

begin to factor our progenitors. This lemma provides a method for constructing groups

given that our progenitor is of the form 2⇤n : N where N is transitive on n letters. Note

< ti, tj >= {t2i , t
2
j , (titj)

k = 1} = D2k the dihedral group of order 2k. Also, its well known

that

Center(D2k) =

8
><

>:

1, if k is odd

< (titj)
k
2 >, if k is even

Thus for each two point stabilizer we compute the centralizer of the two point

stabilizer in N and then write elements of N in terms of < ti, tj > in the following way.

8
><

>:

(xti)m = 1,where m is odd and x sends 1 to 2

(titj)m = x,where m is even and x fixes both 1 and 2

An example of using this famous lemma is provided below.

Example 3.2. Take N = S4 =< (1, 2, 3, 4), (1, 2) >. Now we compute

Centrailzer(S4, Stabilizer(S4, [1, 2])). Note that we are stabilizing the points 1 and 2.

Therefore Stabilizer(N, [1, 2]) =< (3, 4) >. Next we compute the centralizer by finding

which elements of N commute with {e, (3, 4)}.
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Thus Centralizer(N,Stabiliser(S4, [1, 2])) = {e, (1, 2), (3, 4), (1, 2)(3, 4)}. Using the above

definition to write these as relations we have the following:

(t1t2)
m = (3, 4),m is even

((1, 2)t1)
m = 1,m is odd

((12)(34)t1)
m = 1,m is odd

3.1.2 First Order Relations

We wish to find a method to exhaust all possible relations of a particular pro-

genitor that would allow us to find all possible finite homomorphic images. J.N. Bray,

A.N.A Hammus, and R.T. Curtis developed a way to exhaust all relations of the form

(⇡tai )
b = 1, where ⇡ 2 N and w is a word in the t0is, which they called the first order

relations. In order to find these relations, we begin by finding the

Centralizer(N, elements in conjugacy class). Next we compute the orbits of the central-

izer and then write relations by taking the class representative and right multiplying

by a single ti from each orbit respectively. We will illustrate this through the following

example.[Why06]

Example 3.3. Let N = A4 =< (1, 2)(3, 4), (1, 2, 3) >. To find all first order relations we

first compute the classes of A4. The classes of A4 are as follows:

Table 3.1: Classes of A4

Class Number Order Class Representative Length

[1] 1 e 1
[2] 2 (1,2)(3,4) 3
[3] 3 (1,2,3) 4
[4] 3 (1,3,2) 4

We need to compute the centralizer of each class representative in N = A4 and

then find the orbits of the corresponding centralizer. The following table is constructed

to show how to write each relation from each class.
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Table 3.2: First Order Relations

Cl. Num Cl. Rep Cent(N,Class Rep) Orb Rels

[2] (1,2)(3,4) < (1, 2)(3, 4), (1, 3)(2, 4) > {1,2,3,4} (1,2)(3,4)t1
[3] (1,2,3) < (1, 2, 3) > {1,2,3} {4} (1,2,3)t1,(1,2,3)t4
[4] (1,3,2) < (1, 3, 2) > {1,2,3} {4} (1,3,2)t1,(1,3,2)t4

Keeping these techniques in mind we reach the main concept of this chapter,

writing progenitors.

3.2 Permutation Progenitors

From chapter 1 we know a progenitor is an infinite semi-direct product, m⇤n : N ,

where m represents the order of the t0s, n represents the number of t0s, and N is our

control group. When we write a permutation progenitor we take N to be transitive on n

letters, hence m⇤n : N . The general form of a permutation progenitor is of the form:

< x, y, t| < x, y >⇠= N, tm, (t,N i) >,where N i stands for the stabilizer of i in N

Definition 3.4. [Cur07]A symmetric presentation of a group G is a definition of G of

the form

G ⇠= 2⇤n:N
⇡1w1,⇡2w2,···

where 2⇤n denotes a free product of n copies of the cyclic group of order 2, N is transitive

permutation group of degree n which permutes the n generators of the cyclic group by

conjugation, thus defining semi-direct product, and the relators ⇡1w1,⇡2w2, · · · have been

factored out.

From definition 2.16 we note (t,N i) gives the number of conjugates of t. Defini-

tion 2.16 states that the number of conjugates of H in G is equal to [G : Cg(a)]. Applying

this concept to our case we have the index of theCentralizer(N, t) equal to the number

of conjugates of t, which is equal to the stabilizer of a single point in N .

Example 3.5. We will illustrate how to write a permutation progenitor by using the

following example. Let N = S3 and note S3 is transitive on 3 letters. Let

S3 =< (1, 2, 3), (2, 3) > and take x ⇠ (1, 2, 3) and y ⇠ (2, 3). Then a presentation for S3 is

< x, y|x2, y2, (xy)2 >. Now we must introduce a symmetric generator which we routinely



18

use as t. Allowing our t ⇠ t1 and also of order 2, we will begin to write the progenitor

2⇤3 : S3. Since we want to label our t as t1, we must compute N1. Now N1 =< (2, 3) >

and we notice y ⇠ (2, 3). We have performed all the needed computations for writing our

progenitor. Thus

23 : S3 =< x, y, t|x3, y2, (xy)2, t2, (t, y) >

We have wrote progenitors for many groups and the presentations of each group will be

presented in the chapters that follow.

3.3 Monomial Presentation Progenitors

Definition 3.6. [Cur07]A monomial representation of a group G is a homomorphism

from G into GL(n, F ), the group of nonsingular n⇥n matrices over the field F , in which

the image of every element of G is a monomial matrix over F .

Definition 3.7. [Led87]A matrix in which there is precisely one non-zero term in each

row and in each column is said to be monomial.

3.3.1 Character Theory Preliminaries

Definition 3.8. [Led87] Let A(x) = (aij(x)) be a matrix representation of G of degree

m. We consider the characteristic polynomial of A(x), namely

det(�I �A(x)) =

0

BBBBB@

�� a11(x) �a12(x) · · · �a1m(x)

�� a11(x) �a12(x) · · · �a1m(x)

· · · · · · · · ·

�� am1(x) �am2(x) · · · �� amm(x)

1

CCCCCA

This is a polynomial of degree m in �, and inspection shows that the coe�cient of ��m�1

is equal to

�(x) = a11(x) + a22(x) + ..+ amm(x)

It is customary to call the right-hand side of this equation the trace of A(x), abbreviated

as trA(x), so that

�(x) = trA(x)
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We regard �(x) as a function on G with values in K, and we call it the character of

A(x).

Definition 3.9. Equivalent Representation

[Led87] Let ⇢ : G ! GL(n,F) and T 2 GL(n,F). Then T�1⇢T is also a representation

of G and T�1⇢T and ⇢ are called equivalent.

Definition 3.10. Trivial Character

[Led87] The Trivial Character is the character � of the trivial representation, where

� : G ! F given by �(g) = 18g 2 G.

Definition 3.11. Character Table of a Cyclic Group

[Led87]The G be a cyclic group of order n. The G =< z >, and |z| = n. Let ✏r = e
2⇡ir
n ,

where r = 0, 1, 2, · · · , n, be the nth roots of unity. For zs 2 G, s = 0, 1, 2, · · · , n the values

of the n irreducible characters �r are given by �r(zs) = e
2⇡irs

n , where r = 0, 1, 2, · · · , n.

Theorem 3.12. [Led87]The number of irreducible character of G is equal to the number

of conjugacy classes of G

3.3.2 Orthogonality Relations

Definition 3.13. [Led87]Let G be a finite group having the distinct irreducible characters

�(1),�(2), · · · ,�(k). Let 1  i, j  k. Then < �i,�j >= �ij. Note that �ij denotes the

Kronecker delta defined as �ij = 0, if i 6= j and �ij = 1 if i = j

If we treat the character table as a matrix the following additional relations

hold:

(a) In a character table, let X be the row vector (h↵�
(i)
↵ ) and Y be the conjugate of the

row vector (�(j)
↵ ). If i 6= j, then the ordinary dot product X · Y = 0

(b) In a character table, let X be the row vector (h↵�
(i)
↵ ). Then the ordinary dot product

X · �
(j)
↵ = |G|. Note that �(i)

↵ = �↵(g), where g is an element the conjugacy class C↵.

Definition 3.14. [Led87] Let G be a finite group having the distinct irreducible characters

�(1),�(2), · · · ,�(k). Let 1  i, j  k. Then
Pk

i=1 �
(i)
↵ �

(i)
� = |G|

h↵
�↵�

(a) In a character table, the dot product of any column with the conjugate of

any other column is 0.

(b) In a character table, the dot product of the column ↵ with its own conjugate

is |G|
h↵

.
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Definition 3.15. [Led87] The sum of squares of the degrees of the distinct irreducible

characters of G is equal to |G|. The degree of a character � is �(1). Note that a

character whose degree is 1 is called a linear character.

Definition 3.16. Lifting Process

[Isa76]Let N be a normal subgroup of G and suppose that A0(Nx) is a representation

of degree m of the group G/N . Then A(x) = A0(Nx) defines a representation of G/N

lifted from G/N . If �0(Nx) is a character of A0(Nx), then �(x) = �0(Nx) is the lifted

character of A(x). Also, if u 2 N , then A(u) = Im, �(u) = m = �(1). The lifting process

preserves irreducibility.

Definition 3.17. Induced Character

[Isa76] Let H  G and �(u) be a character of H and define �(x) = 0 if x 2 H, then

�G(x) =

8
><

>:

�(x), x 2 H

0x /2 H

is an induced character of G.

Definition 3.18. Formula for Induced Character

[Isa76] Let G be a finite group and H be a subgroup such that [G : H] = |G|
|H| = n. Let

C↵, ↵ = 1, 2, · · ·m be the conjugacy classes of G with |C↵| = h↵, ↵ = 1, 2, · · ·m. Let �

be a character of H and �G be the character of G induced from the character � of H up

to G. The values of �G on the m classes of G are given by:

�G↵ =
n

h↵

X

w2C↵\H
�(w),↵ = 1, 2, 3, · · · ,m.

Example 3.19. We wish to obtain the character table for S3 =< (1, 2, 3), (1, 2) >. Now

we know by theorem 3.12 the number of conjugacy classes of S3 is equal to the number of

irreducible characters. Note to find the conjugacy classes of a group G, we take an element

g 2 G and conjugate it by every element of G. The elements that this set produces lie in

the same conjugacy class. For instance, take (1, 2) 2 S3. Then

(1, 2)e = (1, 2)

(1, 2)(1,2) = (2, 1)

(1, 2)(1,3) = (3, 2)

(1, 2)(2,3) = (1, 3)
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(1, 2)(1,2,3) = (2, 3)

(1, 2)(1,3,2) = (3, 1).

Thus the elements {(1, 2), (1, 3), (2, 3)} are in one conjugacy class of S3. The list

of classes of S3 are given below.

Table 3.3: Classes of S3

Class Number Order Class Representative Length

[1] 1 e 1
[2] 2 (1,2) 3
[3] 3 (1,2,3) 2

Now for us to complete the character table of S3, we must first apply the lifting

process to induce a character from a subgroup of S3. We let H  G where H =< (1, 2) >

such that [G : H] = |G|
|H| =

6
2 = 3. Using theorem 3.11, the character table for Z2

⇠= H

follows:

Table 3.4: Character Table of Z2

Conjugacy Classes C1 C2

Order 1 2

�01 1 1
�11 1 e⇡i = �1

Next we lift �11 from H up to G by using the formula, �G↵ = n
h↵

P
w2C↵\H �(w),

where C↵ are the classes of G, h↵ is the size of the class ↵, and ↵ in the number of classes

of G. We will begin by lifting character �1 from H. Therefore,

�21 =
3

3

X

w2C1\H
�(e) = 1

�22 =
3

3

X

w2C2\H={(1,2)}

�((1, 2)) = �1

This gives us the value for the second character of S3. Now, up to this point

our character table for S3 is
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Table 3.5: Character Table of S3

Conjugacy Classes C1 C2 C3

Order 1 2 3

�1 1 1 1
�2 1 -1
�3

To find the remaining values in the character table we will use our orthogonality

relations. For instance, by definition 3.15, the sum of squares of the degree of distinct

irreducible characters of G is equal to |G|. Let the unknown character of �3 be labeled

as x, then by using definition 3.15 we have,

12 + 12 + x2 = 6

=) x2 = 4

=) x = 2

Thus the degree of �3 of S3 is 2. Then using definition 3.13 the value of �3 for (1, 2) is

given as

1 ⇤ 1 + 1 ⇤ �1 ⇤ 2 ⇤ x = 0

=) x = 0

By definition 3.14 the missing value for character 2 is found by :

1 ⇤ 1 ⇤ 1 + 3 ⇤ 1 ⇤ �1 + 2 ⇤ 1 ⇤ x = 0

=) 1� 3 + 2x = 0

=) 2x = 2

=) x = 1

Finally we can find the last values of our character table by using definition 3.13 once

again,
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1 ⇤ 1 + 1 ⇤ 1 ⇤ �1 + 2 ⇤ x = 0

=) 2 + 2x = 0

=) 2x = �2

=) x = �1

Thus our character table for S3 is given below.

Table 3.6: Character Table of S3

Conjugacy Classes C1 C2 C3

Order 1 2 3

�1 1 1 1
�2 1 -1 1
�3 2 0 -1

Definition 3.20. Formula for Monomial Representation

Let � be a linear character of the subgroup H of index n in G and let

G = H [Ht1 [Ht2 [ · · ·[Htn. Let x 2 G. Then the monomial representation of G has

the formula:

A(x) =

0

BBBBB@

�(t1xt
�1
1 ) �(t1xt

�1
2 ) · · · �(t1xt�1

n )

�(t2xt
�1
1 ) �(t2xt

�1
2 ) · · · �(t2xt�1

n )

· · · · · · · · ·

�(tnxt
�1
1 ) �(tnxt

�1
2 ) · · · �(tnxt�1

n )

1

CCCCCA

Theorem 3.21. Monomial Character

[Isa76]Let � be a character of G. Then � is monomial if � = �G, where � is a linear

character of some subgroup (not necessarily proper) of G. If � is monomial then � is

a↵orded by a monomial representation X of G; that is, each row and column of X(g) has

exactly one nonzero entry for each g 2 G. Moreover, the nonzero entries of X(g), for

any g 2 G, are nth roots of unity for some, since G is finite.
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3.4 Finding a Monomial Representation

Now that we have some background of character theory we are now ready to find

a monomial representation. After finding said representation we can use this to write our

monomial progenitor. To find a monomial presentation we find a subgroup H of a group

G whose index is equal to the degree of an irreducible character of G. We then induce a

character from H up to G. Finally we use the formula for finite monomial representation

to find our desired representations of G. We will illustrate the process described above

for G = A4.

Example 3.22. Write a Presentation for 33 :m A4

Given that A4 has a monomial irreducible representation in dimension 3 write

a progenitor for 3⇤3 :m A4. Knowing that A4 has a monomial irreducible in dimension 3

implies the order of our subgroup H must be of order 4, since |A4|
|H| = 3 =) 12

|H| = 3. So,

|H| = 4. Let H =< x, y > G, where x ⇠ (1, 2)(3, 4), and y ⇠ (1, 3)(2, 4). The character

table of H and G are given below:

Table 3.7: Character Table of H

Conjugacy Classes C1 C2 C3 C4

Order 1 2 2 2

�1 1 1 1 1
�2 1 -1 1 -1
�3 1 1 -1 -1
�4 1 -1 -1 1

Table 3.8: Character Table of G

Conjugacy Classes C1 C2 C3 C4

Order 1 2 3 3

�1 1 1 1 1
�2 1 1 J -1-J
�3 1 1 -1-J J
�4 3 -1 0 0

Next we induce a linear character from H up to G. Each character of H has

degree 1, thus every character of H is linear. We will induce �2. Recall the formula for

inducing a character is
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�G↵ =
n

h↵

X

w2C↵\H
�(w)

Taking a representative from each class and using the formula above we have:

For the first class of G

�2(e) =
3

1

X

w2C1\H
�2(w)

=
3

1

X

w={e}

�2(e)

= 3 ⇤ 1

= 3

Now we compute for the second class of G.

�2((1, 2)(3, 4)) =
3

3

X

w2C2\H
�2(w)

We note that w = {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

=
3

3

X

w2C2\H
�2(w)

= 1 ⇤ [�2((1, 2)(3, 4)) + �2((1, 3)(2, 4)) + �2((1, 4)(2, 3))]

= 1 ⇤ [�1 + 1 +�1]

= �1

Now �2((1, 2, 3)) = 0, since C3 \H = ; and �2((1, 3, 2)) = 0, since C4 \H = ;.

In addition �G2 = 3 �1 0 0 = �4. Finally we can find a monomial representation of G

using definition 3.20. Computing the transversals of H in G, we find the set is given

as T = {e, (1, 2, 3), (1, 3, 2)}. Let T1 = e, T2 = (1, 2, 3), T3 = (1, 3, 2) and B(e) = 1,

B(x) = �1, B(y) = 1, B(xy) = �1, and B(g) = 0 if g /2 H.
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Then,

A(x) =

2

664

B(T1 xT
�1
1 ) B(T1 xT

�1
2 ) B(T1 xT

�1
3 )

B(T2 xT
�1
1 ) B(T2 xT

�1
2 ) B(T2 xT

�1
3 )

B(T3 xT
�1
1 ) B(T3 xT

�1
2 ) B(T3 xT

�1
3 )

3

775

To compute the above matrix we substitute in the values we have defined above.

Doing so will produce the following matrix:

A(x) =

0

BB@

�1 0 0

0 1 0

0 0 1

1

CCA

Now doing the same process for matrix A(y), we get the following:

A(y) =

2

664

B(T1 y T
�1
1 ) B(T1 y T

�1
2 ) B(T1 y T

�1
3 )

B(T2 y T
�1
1 ) B(T2 y T

�1
2 ) B(T2 y T

�1
3 )

B(T3 y T
�1
1 ) B(T3 y T

�1
2 ) B(T3 y T

�1
3 )

3

775

Substituting our values for y and using how we defined our transversals we have:

A(y) =

0

BB@

0 1 0

0 0 1

1 0 0

1

CCA

The entries of both matrices are ±1, and the smallest field that contains these

entries is Z3. This implies that our t0s are of order 3. The following is a monomial

representation for A4, since A4 =< x, y|x2, y3, (xy)3 > and it is easily checked that

|A(x)| = 2, |A(y)| = 3, and |A(x)A(y)| = 3. Now we will convert the above representation

into permutations using the following definition.

Definition 3.23. Convert Matrix into Permutations

Let A be a matrix where aij stands for the ith row and jth column of the matrix.

Then if 8
><

>:

aij = �1 =) ti ! t�1
j

aij = 1 =) ti ! t1j

Applying the definition to the Matrix A(x) we get
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a11 = �1 =) t1 ! t�1
1

a22 = 1 =) t2 ! t2

a33 = �1 =) t3 ! t�1
3

Now converting A(y) we get

a12 = 1 =) t1 ! t2

a23 = 1 =) t2 ! t3

a31 = 1 =) t3 ! t1

Recall that the number of t0s are equal to [G : H] = 3, but now our t0is have

order 3. Therefore we will label them as shown in the table below:

Table 3.9: Labeling our t0s

1 2 3 4 5 6

t1 t2 t3 t�1
1 t�1

2 t�1
3

Using the labeling above and the outcomes from A(x), we will find a permutation

representation of A(x).

Table 3.10: Labeling our t0s

1 2 3 4 5 6

t1 t2 t3 t�1
1 t�1

2 t�1
3

# # # # # #

t�1
1 t2 t�1

3 t1 t�1
2 t3

4 2 6 1 5 3

Following the above labeling we get xx = (1, 4)(3, 6).
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Now for A(y)

Table 3.11: Labeling our t0s

1 2 3 4 5 6

t1 t2 t3 t�1
1 t�1

2 t�1
3

# # # # # #

t2 t3 t1 t�1
2 t�1

3 t�1
1

2 3 1 5 6 4

Following the above labeling we get yy = (1, 2, 3)(4, 5, 6). Again we note that

(xx)2, (yy)3 and (xx ⇤ yy)3, so < xx, yy >⇠= A4

Now, we are at the point where we can write a monomial progenitor. Similar to

the way we wrote permutation progenitors, monomial progenitors are of the form

< x, y, t| < x, y >⇠= N, tm, Normalizer(N,< t >) >

where N is the permutation group that came from converting the matrices above. The

only notable di↵erence between permutation progenitors and monomial progenitors is that

we compute the normalizer of our t, instead of the stabilizer of one point in N . To write

our progenitor we need to choose a symmetric generator t. Let us choose t ⇠ t1. Then

the Normalizer(N,< t1 >) =< (2, 5)(3, 6) >. If x ⇠ (1, 4)(3, 6) and y ⇠ (1, 2, 3)(4, 5, 6)

then yxy�1
⇠ (2, 5)(3, 6). We note that t1 commutes with this permutation. Thus our

presentation of our progenitor 3⇤3 :m A4 is given as:

< x, y, t|x2, y3, (xy)3t3, (t, yxy�1) >

Our progenitor is infinite so we need to add the first order relations mentioned at the

beginning of this chapter, to find finite homomorphic images. Lists of these images are

presented in charts in the chapters that follow.
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3.5 Wreath Product Progenitors

The wreath product of the group H by K, denoted H oK is a semi-direct product

Hn : K, where n is the number of letters on which K acts and Hn is the direct product

of n isomorphic copies of H. Since the extension of a wreath product, Hn by K, is a

semi-direct product, K also permutes the n copies of H. The o�cial definition of a wreath

product is given below.

Definition 3.24. Wreath Product

The wreath product is a semi-direct product of two groups, X and Y , such that

X \ Y = ;. Define H  SX and K  SY . Let Z = X ⇥ Y , such that X \ Y = ;. Define

a permutation group Z, an let � 2 H, y 2 Y and k 2 K, where

�(y) =

8
><

>:

(x, y) 7! (x�, y)

(x, y1) 7! (x, y1), y 6= y1

Note � 2 SZ since (�(y))�1 = ��1(y). Then

� : H �! SZ =) H = {�(y)|� 2 H} = H(y)

� 7! �(y), such that < H(y)|y 2 Y >= D�y2Y H(y) Note: �(y) and �(y1) does

not move the same element of Z and
Q

H(yi) < H(y)|y 2 Y, y 6= yi >= 1

H(yi)/ < H(y)|y 2 Y >.

Then define k 2 K as k⇤(x, y) 7! (x, yk). Given,

 : K �! SZ and k 7! k⇤ is one to one then K ⇠= {k⇤|k 2 K} = k⇤. Therefore,

the functions � 7! �(y), where y is a fixed element of Y with image H(y), and k 7!

k⇤ with image K⇤ are monomorphism from H and K to Sym(Z). This is written as

H oK =< H(y), k⇤y 2 Y >, this is referred to the Base, B. [May14]

For more details see text book [Rot95]. For a better understanding of how wreath products

are written, consider the following example of Z2 oA5.

Example 3.25. Writing the Progenitor on Z2 oA5

Let H and K be permutation groups on X = {1, 2} and Y = {3, 4, 5, 6, 7}

respectively, where H = Z2 and K = A5. Let Z = X ⇥ Y . We will then define a

permutation group on Z, called the wreath product of H by K.
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Let,

H = Z2 =< (1, 2) >

K = A5 =< (3, 4)(5, 6), (3, 7, 6) >

Then we define

Z = X ⇥ Y = {(1, 3), (1, 4), (1, 6), (1, 7), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7)}. Consider the

following labeling of the elements of Z:

Table 3.12: Labeling Z

Labeling Element

8 (1,3)
9 (1,4)
10 (1,5)
11 (1,6)
12 (1,7)
13 (2,3)
14 (2,4)
15 (2,5)
16 (2,6)
17 (2,7)

Let � 2 H and y be a element of Y and compute �(3), �(4), �(5), �(6), and �(7)

using the relation defined below:

�(y) =

8
><

>:

(x, y) 7! (x�, y)

(x, y1) 7! (x, y1), y 6= y1

Letting � = (1, 2) and computing the �(3), �(4), �(5), �(6), and �(7) we get:
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Table 3.13: �(3)

Labeling Element Element Labeling

8 (1,3) 7! (2,3) 13
9 (1,4) 7! (1,4) 9
10 (1,5) 7! (1,5) 10
11 (1,6) 7! (1,6) 11
12 (1,7) 7! (1,7) 12
13 (2,3) 7! (1,3) 8
14 (2,4) 7! (2,4) 14
15 (2,5) 7! (2,5) 15
16 (2,6) 7! (2,6) 16
17 (2,7) 7! (2,7) 17

Table 3.14: �(4)

Labeling Element Element Labeling

8 (1,3) 7! (1,3) 8
9 (1,4) 7! (2,4) 14
10 (1,5) 7! (1,5) 10
11 (1,6) 7! (1,6) 11
12 (1,7) 7! (1,7) 12
13 (2,3) 7! (2,3) 13
14 (2,4) 7! (1,4) 9
15 (2,5) 7! (2,5) 15
16 (2,6) 7! (2,6) 16
17 (2,7) 7! (2,7) 17

Table 3.15: �(5)

Labeling Element Element Labeling

8 (1,3) 7! (1,3) 8
9 (1,4) 7! (1,4) 9
10 (1,5) 7! (2,5) 15
11 (1,6) 7! (1,6) 11
12 (1,7) 7! (1,7) 12
13 (2,3) 7! (2,3) 13
14 (2,4) 7! (2,4) 14
15 (2,5) 7! (1,5) 10
16 (2,6) 7! (2,6) 16
17 (2,7) 7! (2,7) 17
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Table 3.16: �(6)

Labeling Element Element Labeling

8 (1,3) 7! (1,3) 8
9 (1,4) 7! (1,4) 9
10 (1,5) 7! (1,5) 10
11 (1,6) 7! (2,6) 16
12 (1,7) 7! (1,7) 12
13 (2,3) 7! (2,3) 13
14 (2,4) 7! (2,4) 14
15 (2,5) 7! (2,5) 15
16 (2,6) 7! (1,6) 11
17 (2,7) 7! (2,7) 17

Table 3.17: �(7)

Labeling Element Element Labeling

8 (1,3) 7! (1,3) 8
9 (1,4) 7! (1,4) 9
10 (1,5) 7! (1,5) 10
11 (1,6) 7! (1,6) 11
12 (1,7) 7! (2,7) 17
13 (2,3) 7! (2,3) 13
14 (2,4) 7! (2,4) 14
15 (2,5) 7! (2,5) 15
16 (2,6) 7! (2,6) 16
17 (2,7) 7! (1,7) 12
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Thus from our computations above we have

�(3) = ((1, 3), (2, 3)) ⇠ (8, 13)

�(4) = ((1, 4), (2, 4)) ⇠ (9, 14)

�(5) = ((1, 5), (2, 5)) ⇠ (10, 15)

�(6) = ((1, 6), (2, 6)) ⇠ (11, 16)

�(7) = ((1, 7), (2, 7)) ⇠ (12, 17)

Now we will label a = (8, 13), b = (9, 14), c = (10, 15), d = (11, 16), and e = (12, 17),

which we will use later when writing our progenitor.

Let k 2 K and define K⇤ : (x, y) 7! (x, (y)k), as in the definition above, then

k = (3, 4)(5, 6)⇤

Table 3.18: (3, 4)(5, 6)⇤

Labeling Element Element Labeling

8 (1,3) 7! (1,4) 9
9 (1,4) 7! (1,3) 8
10 (1,5) 7! (1,6) 11
11 (1,6) 7! (1,5) 10
12 (1,7) 7! (1,7) 12
13 (2,3) 7! (2,4) 14
14 (2,4) 7! (2,3) 13
15 (2,5) 7! (2,6) 16
16 (2,6) 7! (2,5) 15
17 (2,7) 7! (2,7) 17

Thus (3, 4)(5, 6)⇤ : ((1, 3), (1, 4))((1, 5), (1, 6)), ((2, 3), (2, 4)),

((2, 5)(2, 6)) ⇠ (8, 9)(10, 11)(13, 14)(15, 16). Label (8, 9)(10, 11)(13, 14)(15, 16) = f .

Table 3.19: (3, 7, 6)⇤

Labeling Element Element Labeling

8 (1,3) 7! (1,7) 12
9 (1,4) 7! (1,4) 9
10 (1,5) 7! (1,5) 10
11 (1,6) 7! (1,3) 8
12 (1,7) 7! (1,6) 11
13 (2,3) 7! (2,7) 17
14 (2,4) 7! (2,4) 14
15 (2,5) 7! (2,5) 15
16 (2,6) 7! (2,3) 13
17 (2,7) 7! (2,6) 16
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Thus (3, 7, 6)⇤ : ((1, 3), (1, 7), (1, 6))((2, 3), (2, 7), (2, 6)) ⇠ (8, 12, 11)(13, 17, 16).

Label (8, 12, 11)(13, 17, 16) = g.

Therefore by definition, Z2 oA5 = (Z2⇥Z2⇥Z2⇥Z2⇥Z2) : A5. Before we write

the full presentation for the above group we need to compute the action of A5 =< f, g >

on Z5
2 =< a, b, c, d, e >. Then,

(8, 13)(8,9)(10,11)(13,14)(15,16) = (9, 14) =) af = b

(8, 13)(8,12,11)(13,17,16) = (12, 17) =) ag = e

(9, 14)(8,9)(10,11)(13,14)(15,16) = (8, 13) =) bf = a

(9, 14)(8,12,11)(13,17,16) = (9, 14) =) bg = b

(10, 15)(8,9)(10,11)(13,14)(15,16) = (11, 16) =) cf = d

(10, 15)(8,12,11)(13,17,16) = (10, 15) =) cg = c

(11, 16)(8,9)(10,11)(13,14)(15,16) = (10, 15) =) df = c

(11, 16)(8,12,11)(13,17,16) = (8, 13) =) dg = a

(12, 17)(8,9)(10,11)(13,14)(15,16) = (12, 17) =) ef = e

(12, 17)(8,12,11)(13,17,16) = (11, 16) =) eg = d

So a presentation for Z2 oA5 is given as:

< a, b, c, d, e, f, g|a2, b2, c2, d2, e2, (a, b), (a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, d),

(c, e), (d, e), f2, g3, (fg)5, af = b, ag = e, bf = a, bg = b, cf = d, cg = c, df = c, dg = a, ef =

e, eg = d >

Now since we have a permutation representation for N = Z2 oA5 we can write a

progenitor using the same method we took for writing permutation progenitors. Finding

the wreath products can be tedious and time consuming, however there is a shortcut to

finding a presentation for the wreath product that was developed by Jesse Train.
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3.5.1 Method to Writing Wreath Products

Jesse Train [Tra13], a masters student and Alumni of CSUSB developed a

method in writing wreath products. We will illustrate his method on the same example

presented above to show that his method does produce the same outcome.

Example 3.26. We have Z5
2 : A5 ,where Z2

⇠=< a|a2 > and we name the five copies of

Z2 as

Z5
2
⇠=< a|a2 > ⇥ < b|b2 > ⇥ < c|c2 > ⇥ < d|d2 > ⇥ < e|e2 >. Since Z5

2 is a

direct product then the presentation for Z5
2 is as follows:

< a, b, c, d, e|a2, b2, c2, d2, e2, (a, b), (a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, d),

(c, e), (d, e) >.

We also note that a well known presentation for A5 is A5
⇠=< x, y|x2, y3, (xy)5 >.

Next we label the five copies of Z2 as a = 1, b = 2, c = 3, and d = 4. We know that

a permutation representation for A5 is given as < (1, 2)(3, 4), (1, 5, 4) >. By letting

x ⇠ (1, 2)(3, 4) and y ⇠ (1, 5, 4), we have

ax = b, ay = e, bx = a, by = b, cx = d, cy = c, dx = c, dy = a, ex = e, ey = d.

Using all the above information we can write the wreath product of Z2 o A5. Note, this

presentation is identical to the previous example.

< a, b, c, d, e, f, g|a2, b2, c2, d2, e2, (a, b), (a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, d),

(c, e), (d, e), f2, g3, (fg)5, af = b, ag = e, bf = a, bg = b, cf = d, cg = c, df = c, dg = a, ef =

e, eg = d >

3.5.2 More Examples of Jesse Train’s Method

Example 3.27. Construct the Wreath Product of Z2 o S4 [Tra13] .

By definition, Z2 oS4
⇠= Z2 ⇥Z2 ⇥Z2 ⇥Z2 : S4. Given S4

⇠=< (1, 2, 3, 4), (1, 2) >

and labeling the generators as follows we have < x1 > ⇥ < x2 > ⇥ < x3 > ⇥ < x4 >:<

(1, 2, 3, 4), (1, 2) >. The presentation of the wreath product is given as:

< a, b, c, d, e, f |a2, b2, c2, d2, (a, b), (a, c), (a, d), (b, c), (b, d), (c, d), e4, f2, (ef)3, ae = b, af =

b, be = c, bf = a, ce = d, cf = c, de = a, df = d >.
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Example 3.28. Construct the Wreath Product of Z3 o Z2. By definition,

Z3 o Z2
⇠= Z3 ⇥ Z3 : Z2. Given Z2

⇠=< (1, 2) > and labeling the generators as follows we

have < x1 > ⇥ < x2 >:< (1, 2) >. Finding the action of Z2 = (1, 2) on the two copies of

Z3 we have the presentation of the wreath product given below:

< a, b, c|a3, b3, (a, b), c2, ac = b, bc = a >

3.6 Finding a Permutation Representation for Wreath Prod-

ucts

In the first example, when we wrote the presentation for the wreath product,

we also found it’s permutation representation. However, using this method, we notice

that we have a presentation for the wreath product, but we lack the permutations that

correspond to each generator. Without these permutations we cannot define a symmetric

generator t and thus cannot form our progenitor. Fortunately, we can use MAGMA to

help in solving this problem. Depending on the size of the group there are two ways we

have to finding the required permutation representation.

3.6.1 Using a Simple Loop

MAGMA has a command for wreath products. Using the command for finding the

wreath product of Z2 o S4 is given below:

W := WreathProduct(CyclicGroup(2), S4)

In the example above, we have found a presentation using the method for Z2 o S4, which

was

< a, b, c, d, e, f |a2, b2, c2, d2, (a, b), (a, c), (a, d), (b, c), (b, d), (c, d), e4, f2, (ef)3, ae = b, af =

b, be = c, bf = a, ce = d, cf = c, de = a, df = d >

To find a permutation that corresponds to the generators a, b, c, d, e and f , we

run the loop given below.
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for A,B,C,D,E,F in W do if Order(A) eq 2 and Order(B) eq 2

and Order(C) eq 2 and Order(D) eq 2 and (A,B) eq Id(W)

and (A,C) eq Id(W) and (A,D) eq Id(W) and (B,C) eq Id(W)

and (B,D) eq Id(W) and (C,D) eq Id(W) and Order(E) eq 4

and Order(F) eq 2 and Order((e*f)) eq 3 and A^E eq B and

B^E eq C and C^E eq D and D^E eq A and A^F eq B and

B^F eq A and C^F eq C and D^F eq D and W eq

sub<W|A,B,C,D,E,F> then A,B,C,D,E,F; break; end if;

end for;

The loop essentially looks for permutations in W that correspond to our given

presentation. This method works, however as the wreath products get larger, MAGMA

takes a much longer time to compute the permutations. If this is the case, we then use

the classes of W to find our needed permutations.

3.6.2 Using Classes to Find Permutations of Wreath Products

MAGMA can compute classes of groups using the command Classes. We note

MAGMA stores the classes in the following form

<Order of Element, Number of Elements, Class Representative>. Hence if

C := Class(G) =) C[1] =< 1, 1, Id(G) > and C[1][3] gives the permutation represen-

tative for the first class of G.

Using MAGMA the classes of W are shown below.

Conjugacy Classes of group W

----------------------------

[1] Order 1 Length 1

Rep Id(W)

[2] Order 2 Length 1

Rep (1, 2)(3, 4)(5, 6)(7, 8)

[3] Order 2 Length 4

Rep (5, 6)

[4] Order 2 Length 4

Rep (3, 4)(5, 6)(7, 8)

[5] Order 2 Length 6

Rep (1, 2)(5, 6)
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[6] Order 2 Length 12

Rep (1, 5)(2, 6)(3, 7)(4, 8)

[7] Order 2 Length 12

Rep (1, 3)(2, 4)

[8] Order 2 Length 12

Rep (1, 7)(2, 8)(3, 4)(5, 6)

[9] Order 2 Length 24

Rep (1, 3)(2, 4)(5, 6)

[10] Order 3 Length 32

Rep (1, 5, 7)(2, 6, 8)

[11] Order 4 Length 12

Rep (1, 5, 2, 6)(3, 7, 4, 8)

[12] Order 4 Length 12

Rep (1, 3, 2, 4)

[13] Order 4 Length 12

Rep (1, 2)(3, 4)(5, 8, 6, 7)

[14] Order 4 Length 24

Rep (1, 5, 2, 6)(3, 7)(4, 8)

[15] Order 4 Length 24

Rep (1, 3, 2, 4)(5, 6)

[16] Order 4 Length 48

Rep (1, 3, 5, 7)(2, 4, 6, 8)

[17] Order 6 Length 32

Rep (3, 7, 5, 4, 8, 6)

[18] Order 6 Length 32

Rep (1, 5, 7)(2, 6, 8)(3, 4)

[19] Order 6 Length 32

Rep (1, 5, 8, 2, 6, 7)(3, 4)

[20] Order 8 Length 48

Rep (1, 7, 5, 4, 2, 8, 6, 3)
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Now there are 20 classes of W and we notice that classes 2� 9 contain elements

of order 2, and our generators a, b, c, d are of this order. Therefore, our permutation

representation for each of those generators lie in one of these classes. Now we union the

classes together and ask MAGMA to find our permutations for these generators. We

take a similar approach in finding the permutations for generators e and f . The generator

e is an element of order 4 which will lie in the union of classes 11 and 12, while f is of

order 2 which will lie in classes 2� 9 mentioned above. Following the presentation as we

did before in the loop above, we generate the following loop:

for A,B,C,D,F in Class(W,CC[2][3]) join Class(W,CC[3][3])

join Class(W,CC[4][3]) join Class(W,CC[5][3]) join

Class(W,CC[6][3]) join Class(W,CC[7][3]) join

Class(W,CC[8][3]) do for E in Class(W,CC[11][3]) join

Class(W,CC[12][3]) join Class(W,CC[13][3]) join

Class(W,CC[14][3]) join Class(W,CC[15][3]) join

Class(W,CC[16][3]) do if Order(E*F) eq 3 and (A,B) eq

Id(W) and (A,C) eq Id(W) and (A,D) eq Id(W) and (B,C)

eq Id(W) and (B,D) eq Id(W) and (C,D) eq Id(W) and A^E

eq B and B^E eq C and C^E eq D and D^E eq A and A^F

eq B and B^F eq A and C^F eq C and D^F eq D and W eq

sub<W|A,B,C,D,E,F> then A,B,C,D,E,F; break; end if;

end for; end for;

Throughout the thesis we have wrote many progenitors involving the three types

mentioned in this chapter. These presentations along with the homomorphic images they

produced are presented in the next chapters.



40

Chapter 4

Finite Extensions

4.1 Extensions and Related Theorems

Definition 4.1. [Rot95]If K and Q are groups, then an extension of K by Q is a group

G having a normal subgroup K1
⇠= K with G/K1

⇠= Q.

Definition 4.2. [Rot95]If H and K are groups, then their direct product, denoted by

H ⇥K, is the group with elements all ordered pairs (h, k), where h 2 H and k 2 K and

with operation

(h, k)(h0, k0) = (hh0, kk0)

Definition 4.3. [Rot95]A group G is a semi-direct product of the subgroups K by the

subgroups Q, denoted by G = K : Q, if K is normal in G and K has a complement

Q1
⇠= Q.

Definition 4.4. [Rot95]A central extension of K by Q is an extension G of K by Q

with K  Z(G).

Definition 4.5. A mixed extension combines the properties of both a semi-direct prod-

uct and central extension, where G = NK and N is a normal subgroup of a group G but

is not central.
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Definition 4.6. [Rot95] A normal series

G = H0 � H1 � · · · � Hm = 1

is a refinement of a normal series

G = H0 � H1 � · · · � Hm = 1

if G0, G1, ..., Gn is a subsequence of H0, H1, ..., Hm.

Definition 4.7. [Rot95]A composition series is a normal series

G = G0 � G1 � · · · � Gn = 1

in which, for all i either Gi+1 is a maximal normal subgroup of Gi or Gi+1 = Gi.

Theorem 4.8. Jordan Hölder

[Rot95] Every two composition series of a group G are equivalent.

Proof. Since every composition series are normal series, then every two composition series

of G have equivalent refinements. Now every composition series is a normal series with

maximal length. A refinement repeats several of the factors so its new factor group have

order 1. Thus, two composition series of G are equivalent.

Definition 4.9. [Rot95] If G has a composition series, then the factor groups of this

series are called the composition factors of G

Definition 4.10. [Rot95] If K  G, then a (right) transversal of K in G is a subset

T of G consisting of one element from each right coset of K in G.

We now wish to express how groups can be represented as many di↵erent exten-

sions. We will first show this in simpler examples and expand this idea to the composition

factors of homomorphic images of some progenitors.
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4.1.1 Simple Extension Examples

Example 4.11. Prove the following and write a presentation in each case.

(a) C8
⇠= C•

2C4 and C8
⇠= C•

4C2

(b)(C4 ⇥ C2) ⇠= C•
2C

2
2 and C3

2
⇠= (C2 ⇥ C2

2 )

Proof. (Proof of part a) Now we know

C8 =< (1, 2, 3, 4, 5, 6, 7, 8) >= {e, a, a2, a3, a4, a5, a6, a7}. We say that C8 is an extension

of C2 by C4 where C2 is a normal subgroup of C8. We let

N = C2 =< a4 >= {e, (1, 5)(2, 6)(3, 7)(4, 8)}, and a presentation for N =< a|a2 = 1 >.

Using the idea of factor sets we then compute the right cosets of N in G. Thus,

G/N = {N,N(1, 2, 3, 4, 5, 6, 7, 8), N(1, 3, 5, 7)(2, 4, 6, 8), N(1, 8, 7, 6, 5, 4, 3, 2, 1)}. We then

let the element (1, 2, 3, 4, 5, 6, 7, 8) = b, which will act as the second generator of our final

presentation. Now we note that b4 = a. We have now written C4 as products of elements

from the center which corresponds to the definition of a central extension written above.

Therefore, our final presentation is C•
2C4 =< a, b|a2, b4 = a >.

Now to show that C8
⇠= C•

4C2, we again recognize that

C8 =< (1, 2, 3, 4, 5, 6, 7, 8) >= {e, a, a2, a3, a4, a5, a6, a7}. However, in this case we find

that the central element is of order 4. Let the central element be represented as

a = (1, 3, 5, 7)(2, 4, 6, 8) and a presentation for the central element be:

N =< a|a4 = 1 >= {e, (1, 3, 5, 7)(2, 4, 6, 8), (1, 5)(3, 7)(2, 6)(3, 7)(4, 8),

(1, 7, 5, 3)(2, 8, 6, 4)}. Computing the right cosets of G over N gives the following: G/N =

{N,N(1, 2, 3, 4, 5, 6, 7, 8)}. We let b = (1, 2, 3, 4, 5, 6, 7, 8) and notice that b2 = a. There-

fore, our final presentation is C•
4C2 =< a, b|a4, b3 = a >.

(Proof of part b) Let G = C4 ⇥ C2 be an extension of N = C2 by H = C2
2 . Now a

presentation for G =< a, b|a4, b2, (a, b) > and the permutation representation of G is

given by the following set:

{e, (1,3)(2,6)(4,7)(5,8),(1,4,5,2)(3,7,8,6), (1,7,5,6)(2,3,4,8), (1,8)(2,7)(3,5)(4,6),

(1,2,5,4)(3,6,8,7), (1,5)(2,4)(3,8)(6,7), (1,6,5,7)(2,8,4,3)}.

Since we are writing a central extension, where our center is N = C2 ,we let

N ⇠= C2 =< a|a2 = 1 >=< (1, 5)(2, 4)(3, 8)(6, 7) >.
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Computing the right transversals of G/N we get

G/N = {N,N(1, 2, 5, 4)(3, 6, 8, 7), N(1, 3)(2, 6)(4, 7)(5, 8), N(1, 6, 5, 7)(2, 8, 4, 3)}. Now

our H is generated by two elements, say b and c. Let b = (1, 2, 5, 4)(3, 6, 8, 7) and

c = (1, 3)(2, 6)(4, 7)(5, 8). Notice that b2 = a and c2 = e. Now the element in ques-

tion is (1, 6, 5, 7)(2, 8, 4, 3). This element can be expressed in terms of a and b. Thus,

(1, 6, 5, 7)(2, 8, 4, 3) = (b ⇤ c). Then squaring this element we get (b ⇤ c)2 = a. Thus, our

final presentation of C•
2C

2
2 is

< a, b, c|a2, b2 = a, c2, (b ⇤ c)2 = a >.

Now show that C3
2
⇠= (C2

2 ⇥ C2).

Let G = C3
2 =< a, b, c|a2, b2, c2, (a, b), (a, c), (b, c) >. The elements of G are given as:

{e, (1,7)(2,8)(3,4)(5,6), (1,6)(2,4)(3,8)(5,7), (1,5)(2,3)(4,8)(6,7), (1,4)(2,6)(3,7)(5,8),

(1,3)(2,5)(4,7)(6,8), (1.8)(2,7)(3,6)(4,5),(1,2)(3,5)(4,6)(7,8)}.

Now N = C2 and its extended by H = C2
2 . A presentation for N =< a|a2 = 1 >=<

(1, 7)(2, 8)(3, 4)(5, 6) >. Then, G/N = {N,N(1, 2)(3, 5)(4, 6)(7, 8), N(1, 3)(2, 5)(4, 7)(6, 8),

N(1, 5)(2, 3)(4, 8)(6, 7)}. We let (1, 2)(3, 5)(4, 6)(7, 8), (1, 3)(2, 5)(4, 7)(6, 8),

(1, 5)(2, 3)(4, 8)(6, 7) be representatives for the elements b, c, d, respectively. We see that,

(1, 2)(3, 5)(4, 6)(7, 8)(1,3)(2,5)(4,7)(6,8) = (1, 2)(3, 5)(4, 6)(7, 8) =) bc = b or (b, c).

Also, (1, 7)(2, 8)(3, 4)(5, 6)(1,2)(3,5)(4,6)(7,8) = (1, 7)(2, 8)(3, 4)(5, 6) =) (a, b) and

(1, 7)(2, 8)(3, 4)(5, 6)(1,3)(2,5)(4,7)(6,8) = (1, 7)(2, 8)(3, 4)(5, 6) =) (a, c). Note (b ⇤ c) = d,

thus for a more e�cient presentation ofG, we can omit d from our final presentation. Thus

our final presentation is given as (C2 ⇥ C2
2 ) =< a, b, c|a2, b2, c2, (b, c), (a, b), (a, c) >.
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Lets do one more example with a much larger group.

Example 4.12. We will prove that the subgroup G of S24, given below, is a central

extension of Z2 by A5 and we will find a presentation for G.

S := Sym(24);

a := S!(1, 2, 5, 4)(3, 6, 8, 7)(9, 13, 11, 14)(10, 15, 12, 16)(17, 19, 18, 20)(21, 24, 23, 22);

b := S!(1, 3, 2)(4, 5, 8)(6, 9, 10)(7, 11, 12)(13, 16, 17)(14, 15, 18)(19, 21, 22)(20, 23, 24);

G := sub < S|a, b >;

Proof. Since the group is so large, we use MAGMA for many of the calculations. However,

the process in which we show the isomorphism is the same as above. First we let

G := sub < S|a, b > and then we compute the center by using the command, C :=

Center(G). MAGMA then returns

(1, 5)(2, 4)(3, 8)(6, 7)(9, 11)(10, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21, 23)(22, 24), as our cen-

ter. We then create a group with this being the generator, i.e N := sub < G|C >; We

then compute the quotient group of G/N by doing the following:

q, ff := quo < G|N >; We see that the quotient group, labeled as q, is generated by the

elements (1, 2)(3, 4), and (1, 3, 2)(4, 5, 6), also referred to as q.1 and q.2 respectively. Now

the generators of G, in this case a and b, are given as G.1 and G.2. Since we are showing

we have a central extension of Z2 by A5, we essentially want to express elements of q in

terms of our a and b. So we compute the following:

> q;

Permutation group q acting on a set of cardinality 6

Order = 60 = 2^2 * 3 * 5

(1, 2)(3, 4)

(1, 3, 2)(4, 5, 6)

> ff(G.1^2);

Id(q)

> ff(G.1^3);

(1, 2)(3, 4)

> ff(G.2^3);

Id(q)

> ff((G.1*G.2)^5);

Id(q)
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Allowing G.1 = a,G.2 = b and the central element to be represented as c, we

can write our presentation for a central extension of Z2 by A5. Let

H < a, b, c >:= Group < a, b, c|a2 = c, b3 = c, (a ⇤ b)5 = c, c2 >. We then check this

isomorphism with MAGMA.

> H<a,b,c>:=Group<a,b,c|a^2=c,b^3=c,(a*b)^5=c,c^2>;

> #H;

120

> f,H1,k:=CosetAction(H,sub<H|Id(H)>);

> s,t:=IsIsomorphic(G,H1);

> s;

true

Now we would like to apply these concepts to some more di�cult groups. We

will consider the composition series from the progenitor 2⇤4 : S4. Consider the group

G < x, y, t >:= Group < x, y, t|x4, y2, (x ⇤ y)3, t2, (t, y), (t, yx)(x3 ⇤ t ⇤ tx ⇤ ty)3 >; We have

MAGMA compute the composition factors of G.

> CompositionFactors(G1);

G

| Cyclic(2)

*

| Alternating(5)

*

| Cyclic(5)

*

| Cyclic(5)

*

| Cyclic(5)

1

>

Through the use of the Jordan-Holder Theorem, G can be decomposed in the following

fashion:

G � G1 � G2 · · · � G5, where G = (G/G1)(G1/G2)(G2/G3)(G3/G4)(G4/G5) =

(G/C2)(C2/A5)(A5/C5)(C5/C5)(C5/1)

We wish to solve this extension problem. We continue by finding the normal subgroup

lattice of G. Using MAGMA to compute the normal lattice of G we have,
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> NL:=NormalLattice(G1);

> NL;

Normal subgroup lattice

-----------------------

[1] Order 1 Length 1 Maximal Subgroups:

---

[2] Order 125 Length 1 Maximal Subgroups: 1

---

[3] Order 7500 Length 1 Maximal Subgroups: 2

---

[4] Order 15000 Length 1 Maximal Subgroups: 3

We first note that G does not have a center and thus cannot be a written as a central

extension. Through inspection it would seem as though NL[2] could be generated by a

direct product of three cyclic groups of order 5. This happened to be the case. During

this part of our research we assumed that our extension problem would be C3
5 : S5, after

writing a presentation for this group and asking MAGMA if both C3
5 : S5 and our G

were isomorphic we found that this was not the case. After some time we then noticed

there was not a subgroup of order 60 inside of NL[3] that could extend us to from NL[2]

to NL[3]. This gave us the inclination that we have a mixed extension. Now MAGMA

has a database for perfect groups so if we have a perfect group we can use MAGMA’S

presentation for that group.

Definition 4.13. [Rot95]If a, b 2 G, the commutator of a and b, denoted by [a, b], is

[a, b] = aba�1b�1

The commutator subgroup (or derived subgroup) of G, denoted by G0, is the subgroup

of G generated by all the commutators.

Definition 4.14. [Rot95] If G = G0, where G0 denotes the derived group, then G is said

to be perfect.

So, we ask MAGMA for the derived group of G1 and we get,

> D:=DerivedGroup(G1);

> #D;

7500

> IsPerfect(D);

true

> DerivedGroup(D) eq D;

true
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This shows us that NL[3] is a perfect group. We need to find a presentation for this, by

doing the following:

> DB := PerfectGroupDatabase();

> "A5" in TopQuotients(DB);

> ExtensionPrimes(DB, "A5");

{ 2, 3, 5, 7, 11, 19 }

Above we wanted to see a 5 since we have 5^3.

> ExtensionExponents(DB, "A5", 5);

{ 3, 4, 5, 6 }

Above we wanted to see a 3, since we have 5^3

> ExtensionNumbers(DB, "A5", 5, 3);

{ 1, 2 }

Above tells us that we have 2 presentations for the perfect group.

Let H1 is the first one.

> H1:=Group(DB, "A5", 5, 3,1);

> H1;

Finitely presented group H1 on 5 generators Relations

a^2 = Id(H1)

b^3=Id(H1)

(a * b)^5 = Id(H1)

x^5 = Id(H1)

y^5 = Id(H1)

z^5 = Id(H1)

(x, y) = Id(H1)

(x, z) = Id(H1)

(y, z) = Id(H1)

a^-1 * x * a * z^-1 = Id(H1)

a^-1 * y * a * y = Id(H1)

a^-1 * z * a * x^-1 = Id(H1)

b^-1 * x * b * z^-1 = Id(H1)

b^-1 * y * b * z^-1 * y = Id(H1)

b^-1 * z * b * z^-1 * y^2 * x^-1 = Id(H1)

> P1:=PermutationGroup(DB, "A5", 5, 3,1);

> s:=IsIsomorphic(NL[3],P1);

> s;

false

This shows that H1 was not the presentation that we needed.

So we try H2.

> P2:=PermuationGroup(DB,"A5",5,3,2);

> s:=IsIsomorphic(NL[3],P2);

> s;

true

> H2:=Group(DB, "A5", 5, 3,2);
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> H2;

Finitely presented group H1 on 5 generators Relations

a^2 = Id(H2)

b^3=Id(H2)

a * b * a * b * a * b * a * b * a * b * z^-1 = Id(H2)

x^5 = Id(H2)

y^5 = Id(H2)

z^5 = Id(H2)

(x, y) = Id(H2)

(x, z) = Id(H2)

(y, z) = Id(H2)

a^-1 * x * a * z^-1 = Id(H2)

a^-1 * y * a * y = Id(H2)

a^-1 * z * a * x^-1 = Id(H2)

b^-1 * x * b * z^-1 = Id(H2)

b^-1 * y * b * z^-1 * y = Id(H2)

b^-1 * z * b * z^-1 * y^2 * x^-1 = Id(H2)

Notice the di↵erence between H1 and H2. In the presentation of H2, we have the

generator of A5, in this case a and b, as a product of an element of the abelian group.

Then, at the bottom of the presentation we have, a�1 ⇤ x ⇤ a ⇤ z�1 = Id(H2), which is

equivalent to xa = z. This expresses how a acts on our abelian group, a property of semi

direct products.

Recall that mixed extension combines the properties of both semi-direct prod-

ucts and central extensions. This is clear in the presentation of H2. Now we can use this

presentation above for NL[3] and then extend it by the CyclicGroup(2) and we would be

done. However, we will try and find this presentation ourselves. There are two things we

need to answer. The first being how to find the representation of the two elements that

generate A5 in NL[2] and second how to express those generators as products of elements

of the generators of NL[2]. We start by factoring NL[3] by NL[2] and generating the

quotient group q.

> q,ff:=quo<NL[3]|NL[2]>;

q is the name of this quotient group while ff is the corresponding

mapping.

> A:=q.1;

> B:=q.2;

> ff(NL[3].1) eq A;

true

> ff(NL[3].2) eq B;
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true

> T:=Transversal(NL[3],NL[2]);

Note this decomposing NL[3] into right coset of NL[2]

> ff(T[2]) eq A;

true

> ff(T[3]) eq B;

true

> (A*B)^5;

Id(q)

(T[2]*T[3])^5 in NL[2];

true

> (T[2]*T[3])^5;

We have now found the two elements that generate A5 and that their product lies in

NL[2]. Using the Schreier System for NL[2], we can convert the above elements of NL[2]

and then we can also see how those elements act on the generators of NL[2]. Consider

the following:

> X:=NL[2].2;

> Y:=NL[2].3;

> Z:=NL[2].4;

> N:=sub<G1|X,Y,Z>;

> NN<k,l,m>:=Group<k,l,m|k^5,l^5,m^5,(k,l),(k,m),(l,m)>;

> Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

> ArrayP:=[Id(N): i in [1..125]];

> for i in [2..125] do

for> P:=[Id(N):1 in [1..#Sch[i]]];

for> for j in [1..#Sch[i]] do

for|for> if Eltseq(Sch[i])[j] eq 1 then P[j]:=X; end if;

for|for> if Eltseq(Sch[i])[j] eq -1 then P[j]:=X^-1; end if;

for|for> if Eltseq(Sch[i])[j] eq 2 then P[j]:=Y; end if;

for|for> if Eltseq(Sch[i])[j] eq -2 then P[j]:=Y^-1; end if;

for|for> if Eltseq(Sch[i])[j] eq 3 then P[j]:=Z; end if;

for|for> if Eltseq(Sch[i])[j] eq -3 then P[j]:=Z^-1; end if;

for|for> end for;

for> PP:=Id(N);

for> for k in [1..#P] do

for|for> PP:=PP*P[k]; end for;

for> ArrayP[i]:=PP;

for> end for;

> for i in [1..125] do if ArrayP[i] eq (T[2]*T[3])^5 then

Sch[i]; end if; end for;
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k * m^-2

> A:=[Id(NN) : i in [1..6]];

> for i in [1..125] do if X^T[2] eq ArrayP[i] then A[1]:=Sch[i];

Sch[i]; end if; end for;

1

> for i in [1..125] do if X^T[3] eq ArrayP[i] then A[2]:=Sch[i];

Sch[i]; end if; end for;

m * k^-2 * l^-2

> for i in [1..125] do if Y^T[2] eq ArrayP[i] then A[3]:=Sch[i];

Sch[i]; end if; end for;

k

> for i in [1..125] do if Y^T[3] eq ArrayP[i] then A[4]:=Sch[i];

Sch[i]; end if; end for;

l * k^-1

> for i in [1..125] do if Z^T[2] eq ArrayP[i] then A[5]:=Sch[i];

Sch[i]; end if; end for;

k^2 * l^2 * m^-1

> for i in [1..125] do if Z^T[3] eq ArrayP[i] then A[6]:=Sch[i];

Sch[i]; end if; end for;

m

> A;

[ l, m * k^-2 * l^-2, k, l * k^-1, k^2 * l^2 * m^-1, m ]

> NN<a,b,k,l,m>:=Group<a,b,k,l,m|k^5,l^5,m^5,(k,l),(k,m),(l,m),

a^2,b^3,(a*b)^5=k * m^-2,k^a=l, k^b=m*k^-2*l^-2,l^a=k,

l^b=l*k^-1,m^a=k^2*l^2*m^-1,m^b=m>;

> #NN;

7500

> N1:=CosetAction(NN,sub<NN|Id(NN)>);

> f1,N1,k1:=CosetAction(NN,sub<NN|Id(NN)>);

> #N1;

7500

> s:=IsIsomorphic(N1,NL[3]);

> s;

true

This completes the isomorphism type of this group. We now consider some more inter-

esting homomorphic images that resulted from the progenitor 2⇤4 : S4.
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4.1.2 Extension Problems Related to the Progenitor 2⇤4 : S4

The table presented below is a table of groups that we found from the progenitor

2⇤4 : S4. We will solve some of the extension problems of these groups.

a b c d e Order(G1) G

0 0 0 0 4 240 2•S6

0 0 0 3 4 120 S6

0 0 2 0 8 672 2•PGL(2, 7)
0 5 10 0 10 241920 6• : (PSL(3, 4)) : C2)
0 0 4 0 10 28800 2•((A5 ⇥A5) : C2)
7 10 0 0 0 24360 PGL(2, 29)
9 7 0 0 0 178920 PSL(2, 71)

Consider the first group listed in the table whose symmetric presentation is given as:

G < x, y, t >:= Group < x, y, t|x4, y2, (x ⇤ y)3, t2, (t, y), (t, yx), (x ⇤ y ⇤ t)4 >;

The composition factors of the group are given as:

> CompositionFactors(G1);

G

| Cyclic(2)

*

| Alternating(5)

*

| Cyclic(2)

1

We can decompose G as follows:

G = (G/G1)(G1/G2)(G2/G3)(G4/G5) = (G/C2)(C2/A5)(A5/C2)(C2/1). Now we wish

to solve this extension problem by first considering the normal lattice of G. The normal

lattice of G is given as,
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Normal subgroup lattice

-----------------------

[7] Order 240 Length 1 Maximal Subgroups: 4 5 6

---

[6] Order 120 Length 1 Maximal Subgroups: 3

[5] Order 120 Length 1 Maximal Subgroups: 2 3

[4] Order 120 Length 1 Maximal Subgroups: 3

---

[3] Order 60 Length 1 Maximal Subgroups: 1

---

[2] Order 2 Length 1 Maximal Subgroups: 1

---

[1] Order 1 Length 1 Maximal Subgroups:

We then use MAGMA to give us a computer based proof of the construction of

this group. We continue by finding that our group contains a central element of order

two. Since a center of a group is always normal and within the normal lattice we see that

the second group in our normal lattice is of order 2, we proceed to ask if that subgroup

is equal to the center, and this is indeed true. At this point we are continuing in such

a way that this group is a central extension. Thus, we then factor G by the center and

name this group q. Now our job is to solve the extension problem of q. The composition

factors of q are given as:

> NL[2] eq Center(G1);

true

> q,ff:=quo<G1|NL[2]>;

> CompositionFactors(q);

G

| Cyclic(2)

*

| Alternating(5)

1

From previous knowledge of extension, when we extend an alternating group by

a order 2 element, we often get a symmetric group. Now q would seem to be isomorphic

to S5. We check our assumption by first writing a presentation for S5 and then asking

MAGMA if our group S5 is isomorphic to our group q.

> H<a,b>:=Group<a,b|a^2,b^4,(a*b)^5,(a,b)^3>;
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> f2,H1,k2:=CosetAction(H,sub<H|Id(H)>);

> s,t:=IsIsomorphic(H1,q);

> s;

true

Now that we have our presentation for q, the only thing left to accomplish is to see which,

elements of q can be written in terms of the central element. Note that we say central

element, since our center consists of a single element of order two. As before, we compute

the right transversals of the center in our group G. Now we run the following loops in

MAGMA to see if we can write any elements our current presentation in terms of the

center. Let A,B be the first and second generators of our S5 respectively, and let C

represent the central element. (For completeness, one can check the appendix for the

entire code).

> for i in [0..2] do if A^2 eq C^i then i; break;

end if;end for;

0

> for i in [0..2] do if B^4 eq C^i then i; break;

end if;end for;

0

> for i in [0..2] do if (A*B)^5 eq C^i then i; break;

end if;end for;

0

> for i in [0..2] do if (A,B)^3 eq C^i then i; break;

end if;end for;

0

> for i in [0..2] do if B^8 eq C^i then i; break; end if;

end for;

0

> for i in [0..2] do for j in [0..4] do if A^C eq A^i*B^j then i;

break; end if;end for;

1 0

> for i in [0..2] do for j in [0..4] do if B^C eq A^i*B^j then i;

break; end if;end for;

0 1

The last two lines of our code imply that the central element commutes with both of the

generators of S5, a property that we already know from the definition of the center. At

last we can write our final presentation for G and see if our e↵orts give us the isomorphism

type of G.
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> H<a,b,c>:=Group<a,b,c|a^2,b^4,(a*b)^5,(a,b)^3,c^2,(c,a),(c,b)>;

> #H;

240

> f2,H1,k2:=CosetAction(H,sub<H|Id(H)>);

> s,t:=IsIsomorphic(H1,G1);

> s;

true

Now consider the group whose isomorphism type is presented as

2•PGL(2, 7). The symmetric presentation of this group is given as

G < x, y, t >:= Group < x, y, t|x4, y2, (x ⇤ y)3, t2, (t, y), (t, yx), (x ⇤ y ⇤ t)8 >. The compo-

sition factors of the group are given as,

CompositionFactors(G1);

G

| Cyclic(2)

*

| A(1, 7) = L(2, 7)

*

| Cyclic(2)

1

As in the group above, this group also has a center of order two. Thus, we

factor our group by this central element, and solve the extension problem of the new

group which we routinely label as q. The composition factors of q can be decomposed as

q = (G/G1)(G1/G2)(G2/G3) = (G/C2)(C2/PSL(2, 7))(PSL(2, 7)/1). Our assumption

is that our q is isomorphic to PGL(2, 7) and we could proceed by using the well known

presentation of PGL(2,7). However, we tried this approach and it was not the case. Thus

we use the presentation that is stored in MAGMA for PSL(2,7) and we will then extend

this by an element of order two, and thus expressing q as a semi-direct product.

The normal lattice for q is given below:

Normal subgroup lattice(q)

-----------------------

[3] Order 336 Length 1 Maximal Subgroups: 2

---

[2] Order 168 Length 1 Maximal Subgroups: 1

---

[1] Order 1 Length 1 Maximal Subgroups:

>FPGroup(nl[2]);
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Finitely presented group on 2 generators

Relations

$.1^2 = Id($)

$.2^4 = Id($)

$.2^-2 * $.1 * $.2^2 * $.1 * $.2^2 * $.1 = Id($)

($.1 * $.2^-1)^7 = Id($)

$.1, $.2 represent the first and generators of nl[2] respectively.

We then create a presentation for nl[2] using a and b as the

generators.

> H<a,b>:=Group<a,b|a^2,b^4,(a*b)^7,b^-2*a*b^2*a*b^2*a>;

> #H;

168

> f1,H1,k1:=CosetAction(H,sub<H|Id(H)>);

> s,t:=IsIsomorphic(H1,NL2[2]);

> s;

true

We are currently at nl[2] of the normal subgroup lattice, now we need an element

of order 2 that is not in nl[2] that sends us to nl[3] which will give us a presentation for

our q. We do so by using the subgroups of q in the following way.

> for i in [1..#S] do if #S[i]‘subgroup eq 2 and S[i]‘subgroup.1

notin nl[2] then i; end if; end for;

3

> S[3]‘subgroup.1;

(1, 8)(2, 5)(3, 4)(6, 24)(9, 27)(10, 19)(11, 17)(12, 18)(13, 16)

(15, 21)(22, 25)(23, 28)

> Z1:=q!(1, 8)(2, 5)(3, 4)(6, 24)(9, 27)(10, 19)(11, 17)(12, 18)

(13, 16)(15, 21)(22, 25)(23, 28);

Now that we have our element that will extend us to nl[3], we need to see how this element

acts on the elements that generate PSL(2, 7), since we are expressing this extension as a

semi-direct product. To do this e↵ectively, we use the Schreier System of our presentation

of PSL(2, 7) where A,B represent the generators of this group.

> N:=sub<q|A,B>;

> NN<i,j>:=Group<i,j|i^2,j^4,(i*j)^7,j^-2*i*j^2*i*j^2*i>;

> Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

> ArrayP:=[Id(N): i in [1..#N]];

> for i in [2..#N] do

for> P:=[Id(N): l in [1..#Sch[i]]];

for> for j in [1..#Sch[i]] do
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for|for> if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;

for|for> if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;

for|for> if Eltseq(Sch[i])[j] eq -2 then P[j]:=B^-1; end if;

for|for> end for;

for> PP:=Id(N);

for> for k in [1..#P] do

for|for> PP:=PP*P[k]; end for;

for> ArrayP[i]:=PP;

for> end for;

> for i in [1..#N] do if ArrayP[i] eq A^Z1 then print Sch[i];

for|if> end if; end for;

i^j

This shows that a^z=a^b

> for i in [1..#N] do if ArrayP[i] eq B^Z1 then print Sch[i];

for|if> end if; end for;

j^-1

This shows that b^z=b^-1

This completes the extension problem for q. However we still need to see if we

can express the products of elements of q in terms of the central element. We find that

this is not the case, but we do know that the central element commutes with all the

generators of q and this is enough to show the isomorphism type of G.

> H<a,b,c,d>:=Group<a,b,c,d|a^2,b^4,(a*b)^7,b^-2*a*b^2*a*b^2*a,

c^2,a^c=a^b,b^c=b^-1,d^2,(d,a),(d,b),(d,c)>;

> #H;

672

> f3,H3,k3:=CosetAction(H,sub<H|Id(H)>);

> s,t:=IsIsomorphic(H3,G1);

> s;

true

Now that we are comfortable with semi-direct products, central extensions, and

direct products, we will see how they all come together to find the isomorphism type of

the group presented above given as 2•((A5 ⇥A5) : C2). This will be the last composition

factor that we show for this group.
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The symmetric presentation of G is given as:

G < x, y, t >:= Group < x, y, t|x4, y2, (x⇤y)3, t2, (t, y), (t, yx), (x⇤y⇤t⇤tx⇤ty)4, (x⇤y⇤t)10 >

As before, we compute the normal lattice of G. We also find that G has a center

of order two which again happens to be equal to the second group in the normal lattice.

However, instead of factoring out by the center, we factor out by the largest abelian

subgroup which happens to NL[5]. In this case we are continuing by assuming that we

have a mixed extension. It will not be until we compute the action of the generators of

NL[5] on the elements of q to determine which type of extension we ultimately have. We

then factor this subgroup and find the isomorphism type of the remaining group q. Now

the composition factors of q and normal subgroup lattice of q is given as:

> CompositionFactors(q);

G

| Cyclic(2)

*

| Alternating(5)

*

| Alternating(5)

1

Normal subgroup lattice

-----------------------

[3] Order 7200 Length 1 Maximal Subgroups: 2

---

[2] Order 3600 Length 1 Maximal Subgroups: 1

---

[1] Order 1 Length 1 Maximal Subgroups:

Observing the composition factors and the normal lattice

together, we assume that the second normal subgroup

listed might be the direct product of both of the

Alternating(5) groups listed. We check this in the next

step.

> H<a,b,c,d>:=Group<a,b,c,d|a^2,b^3,(a*b)^5,c^2,d^3,(c*d)^5,

(a,c),(a,d),(b,c),(b,d)>;

> #H;

3600

> f1,H1,k1:=CosetAction(H,sub<H|Id(H)>);

> s,t:=IsIsomorphic(H1,NL[2]);

> s;

true

Note that we used Alt(5)=<x^2,y^3,(xy)^5> and we used two copies
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of then commuted all the elements since we have a direct product.

Lastly, we need to find an element of order 2 thats not in our current normal

subgroup that will send us to the last normal subgroup and thus completing this extension

problem of q.

Now we look for the element of order 2 in the third normal

subgroup of q.

> for z1 in NL[3] do if Order(z1) eq 2 and z1 notin NL[2]

and NL[3] eq sub<q|NL[2],z1> then Z1:=z1;break;

end if; end for;

> Z1;

(1, 29)(2, 14)(3, 5)(4, 34)(6, 35)(7, 17)(8, 30)(9, 27)

(10, 20)(12, 22)(13, 16)(18, 31)(19, 23)(24, 26)(32, 33)

> N:=sub<q|A,B,C,D>;

We then need to see how this element acts on elements

(Alt(5) X Alt(5)), since we are using the properties of a

semi-direct product.

> NN<a,b,c,d>:=Group<a,b,c,d|a^2,b^3,(a*b)^5,c^2,d^3,(c*d)^5,

(a,c),(a,d),(b,c),(b,d)>;

> Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

> ArrayP:=[Id(N): i in [1..#N]];

> Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

> ArrayP:=[Id(N): i in [1..#N]];

> for i in [2..#N] do

for> P:=[Id(N): l in [1..#Sch[i]]];

for> for j in [1..#Sch[i]] do

for|for> if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;

for|for> if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;

for|for> if Eltseq(Sch[i])[j] eq -2 then P[j]:=B^-1; end if;

for|for> if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;

for|for> if Eltseq(Sch[i])[j] eq 4 then P[j]:=D; end if;

for|for> if Eltseq(Sch[i])[j] eq -4 then P[j]:=D^-1; end if;

for|for> end for;

for> PP:=Id(N);

for> for k in [1..#P] do

for|for> PP:=PP*P[k]; end for;

for> ArrayP[i]:=PP;

for> end for;

> for i in [1..#N] do if ArrayP[i] eq A^Z1 then print Sch[i];

for|if> end if; end for;

c * d * c * d^-1 * c * d * c * d^-1 * c

>

> for i in [1..#N] do if ArrayP[i] eq B^Z1 then print Sch[i];
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for|if> end if; end for;

d * c * d^-1 * c * d * c

> for i in [1..#N] do if ArrayP[i] eq C^Z1 then print Sch[i];

for|if> end if; end for;

a^b

> for i in [1..#N] do if ArrayP[i] eq D^Z1 then print Sch[i];

for|if> end if; end for;

b^-1 * a * b * a * b^-1 * a * b^-1

Using this above information we write our final presentation

for $q$.

> H<a,b,c,d,e>:=Group<a,b,c,d,e|a^2,b^3,(a*b)^5,c^2,d^3,

(c*d)^5,

(a,c),(a,d),(b,c),(b,d),e^2,a^e=c*d*c*d^-1*c*d*c*d^-1*c,

b^e=d*c*d^-1*c*d*c,c^e=a^b,d^e=b^-1*a*b*a*b^-1*a*b^-1>;

> f2,H2,k2:=CosetAction(H,sub<H|Id(H)>);

> s,t:=IsIsomorphic(H2,NL[3]);

> s;

true

To complete the isomorphism type of G, we wish to find how the elements of q

can be written in term of the central element. Without loss of generality we wish to use

the presentation for q that MAGMA has stored. So, the presentation for q is

H < a, b, c, d, e >:= Group < a, b, c, d, e|a2, b3, (a ⇤ b)5, c2, d3, (c ⇤ d)5, (a, c), (a, d), (b, c),

(b, d), e2, ae = c ⇤ d ⇤ c ⇤ d�1 ⇤ c ⇤ d ⇤ c ⇤ d�1 ⇤ c, be = d ⇤ c ⇤ d�1 ⇤ c ⇤ d ⇤ c, ce = ab, de =

b�1 ⇤ a ⇤ b ⇤ a ⇤ b�1 ⇤ a ⇤ b�1 >;

Now we compute the right transversals of the the subgroup NL[5] and then see

if we can write any of the elements of q in terms of the generators of NL[5]. Note that if

we have a mixed extension it will contain the properties of both a semi-direct product and

a central extension. We let E,F be the generators of NL[5] and compute the following:

Now we have checked that the second transversal is equal to the

generator a in our presentation for $q$. We have done similar

checked for b and d as well. So, we label A,B,D accordingly.

> A:=T[2];

> B:=T[3];

> D:=T[4];

> for i,j in [0..2] do if (T[3]*T[4])^2 eq C.1^i*C.2^j then i,j;

end if;end for;

0 0

> for i,j in [0..2] do if (A)^2 eq C.1^i*C.2^j then i,j;
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end if;end for;

> for i,j in [0..2] do if (A)^4 eq C.1^i*C.2^j then i,j;

end if;end for;

0 0

> for i,j in [0..2] do if (B)^2 eq C.1^i*C.2^j then i,j;

end if;end for;

0 0

> for i,j in [0..2] do if (D)^2 eq C.1^i*C.2^j then i,j;

end if;end for;

0 0

> for i,j in [0..2] do if (B * A^-1)^3 eq C.1^i*C.2^j then i,j;

end if;end for;

0 0

>

> for i,j in [0..2] do if

A^-1 * D * A * D * A * B * A^-1 * D * A^-1 * D * A * D

eq C.1^i*C.2^j then i,j; end if;end for;

1 0

> for i,j in [0..2] do if (D * A^-1)^15 eq C.1^i*C.2^j then i,j;

end if;end for;

0 1

Now using the above information we find a possible

presentation for G

> H<i,j,k,l,m>:=Group<i,j,k,l,m|i^4,j^2,k^2,(j * k)^2,

(j * i^-1)^3,(i * k * i^-1 * j)^2,i^-1 * k * i * k * i * j

* i^-1 * k * i^-1 * k * i * k=l,(k * i^-1)^15=m,l^2,m^2,

(m,l),(l,i),(l,j),(l,k),(m,i),(m,j),(m,k)>;

Notice that we made the generators of NL[5] commute with all

the generators. If this is the presentation for G then we have

shown that this is a central extension rather than mixed, since

H does not possess properties of a semi-direct product.

> #H;

28800

> #G1;

28800

> f1,H1,k1:=CosetAction(H,sub<H|Id(H)>);

> s,t:=IsIsomorphic(H1,G1);

> s;

true

This solves the extension problem for G, and so G is 22
•
((A5 ⇥A5) : C2).

We have an understanding of semi-direct product, central, and direct extension

problems. Lets take a look at the mixed extension 6• : (PSL(3, 4) : C2). The symmetric
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presentation of this group is:

G < x, y, t >:= Group < x, y, t|x4, y2, (x ⇤ y)3, t2, (t, y), (t, yx), (x ⇤ t ⇤ tx)5, (x ⇤

y ⇤ t ⇤ tx ⇤ ty)10, (x ⇤ y ⇤ t)10 >; Computing the composition factors of the group we get

> CompositionFactors(G1);

G

| Cyclic(2)

*

| A(2, 4) = L(3, 4)

*

| Cyclic(2)

*

| Cyclic(3)

1

We can decompose G such that G = (G/G1)(G1/G2)(G2/G3)(G4/G5)

= (G/C2)(C2/PSL(3, 4))(PSL(3, 4)/C2)(C2/C3)(C3/1). Now we wish to solve this ex-

tension problem by first considering the normal lattice of G. The normal lattice of G is

given as

Normal subgroup lattice

-----------------------

[6] Order 241920 Length 1 Maximal Subgroups: 5

---

[5] Order 120960 Length 1 Maximal Subgroups: 4

---

[4] Order 6 Length 1 Maximal Subgroups: 2 3

---

[3] Order 3 Length 1 Maximal Subgroups: 1

[2] Order 2 Length 1 Maximal Subgroups: 1

---

[1] Order 1 Length 1 Maximal Subgroups:

We continue in our normal fashion by using MAGMA to tell us whether or

not G has a center. In fact, G does have a center and it is equivalent to the second

normal subgroup listed in the lattice. However, we wish to take a more e�cient approach

in solving this extension. As we have seen in the beginning of the chapter involving

extensions, many groups can be expressed as several di↵erent extension types. Therefore

we set out to express this group as a mixed extension. Recall, that mixed extensions

possess properties of both semi-direct products and central extensions, and it must also
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be noted that mixed extensions are formed upon extension of a normal abelian group.

We find that the subgroup of order 6 listed in the normal lattice is the largest abelian

subgroup of G. Now we also find that subgroup is generated by the second and third

normal subgroup. We find the isomorphism type of this normal abelian subgroup of order

6 is a direct product of the normal subgroup of order 3 and the normal subgroup of order

2. A presentation for this group is written as H < d, e >:=< d, e|d3, e2(d, e) >. We will

return to the importance of this presentation towards the end of the extension problem.

Now we factor the subgroup of order 6, NL[6], from G, and again label it q. As before,

our concern now is the isomorphism type of q. Thus we look at the composition factors

and the normal lattice of q. So,

> CompositionFactors(q);

G

| Cyclic(2)

*

| A(2, 4) = L(3, 4)

Normal subgroup lattice

-----------------------

[3] Order 40320 Length 1 Maximal Subgroups: 2

---

[2] Order 20160 Length 1 Maximal Subgroups: 1

---

[1] Order 1 Length 1 Maximal Subgroups:

Since q does not have a center, then it clearly cannot be written as a central

extension. From the normal lattice we see that we don’t have a normal subgroup of order

2 which cancels out the possibility for expressing q as a direct product. Thus we continue

by writing q as a semi-direct product. From experience solving extension problems, we

assume that q is possibly isomorphic to PGL(3, 4). However this is not the case. Note

that PSL(3, 4) is a group of order 20160. We use [WB99] as reference for a presentation

for PSL(3, 4) and then use MAGMA to tell us if our presentation is correct. Hence,
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> H<a,b>:=Group<a,b|a^2,b^4,(a*b)^7,(a*b^2)^5,(a*b*a*b^2)^7,

(a*b*a*b*a*b^2*a*b^-1)^5>;

> f1,H1,k1:=CosetAction(H,sub<H|Id(H)>);

> s,t:=IsIsomorphic(H1,NL[2]);

> s;

true

Following our assumption that q is a semi-direct product of PSL(3, 4) by C2 we

need to find an element of order 2 that lies in q but not in NL[2] but also produces q.

We do so by using the following loop.

for z1 in NL[3] do if Order(z1) eq 2 and z1 notin NL[2] and NL[3]

eq sub<q|NL[2],z1> then Z1:=z1;break; end if; end for;

Once we have stored this element, we use the Schreier System to see how this

element acts on the generators of NL[2], hence a and b. The results are shown below:

> for i in [1..#N] do if ArrayP[i] eq A^Z1 then print Sch[i];

end if; end for;

a*b*a*b^-1*a*b*a*b*a*b^-1*a*b^-1*a*b*a*b^-1*a*

b^2 * a * b^-1 * a * b^2

> for i in [1..#N] do if ArrayP[i] eq B^Z1 then print Sch[i];

end if; end for;

a * b * a * b^-1 * a * b * a * b^-1 * a * b^-1 * a * b * a *

b * a * b^-1

We enter this information into a new presentation, which we name as H, and

use MAGMA to verify that this presentation is isomorphic to q.

H<a,b,c>:=Group<a,b,c|a^2,b^4,(a*b)^7,(a*b^2)^5,

(a*b*a*b^2)^7,(a*b*a*b*a*b^2*a*b^-1)^5,c^2,a^c=a*b*a*b^-1

*a*b*a*b*a*b^-1*a*b^-1*a*b*a*b^-1*a*b^2*a*b^-1*a*b^2,b^c

=a*b*a*b^-1*a*b*a*b^-1*a*b^-1*a*b*a*b*a*b^-1>;

> f2,H2,k2:=CosetAction(H,sub<H|Id(H)>);

> s,t:=IsIsomorphic(H2,q);

> s;

true

Now that we have the isomorphism type of q, we must find how the elements of

the normal abelian group act on q. To do so, we find the transversals of NL[4] in G1. At

this point we need to find a permutation representation of the elements a, b, and c that

we have used in our presentation. Note that f2, in the above code is a mapping that
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sends a to a permutation that is written on the number of letters that is equal to the

order of H. In addition, in the code s, t := IsIsomorphic(H2, q); s represents a boolean

value while t is a mapping that sends elements of H2 to elements of q ⇢ G. We run the

following loops to make sure we have the exact permutation elements that correspond to

our presentation.

T:=Transversal(G1,NL[4]);

> A:=t(f2(a));

> B:=t(f2(b));

> C:=t(f2(c));

> for i in [1..#T] do if ff(T[i]) eq A then i; end if;end for;

16890

> for i in [1..#T] do if ff(T[i]) eq B then i; end if;end for;

6838

> for i in [1..#T] do if ff(T[i]) eq C then i; end if;end for;

14720

> A:=T[16890];

> B:=T[6838];

> C:=T[14720];

We now have the permutations that we desire. As mentioned above, we know

that NL[4] is a direct product of NL[2] by NL[3], where NL[2] is generated by an element

of order 2 and NL[3] is generated by an element of order 3. Thus, we need to find such

elements that correspond to the presentation, H < d, e >:=< d, e|d3, e2(d, e) >. Writing

a mixed extension requires us to know whether we can express any of the elements in our

presentation for q in terms of our normal abelian subgroup and also how the generators

of that subgroup act on the generators of NL[4]. Therefore we run the following loops.

> for d,e in NL[4] do if Order(e) eq 2 and Order(d) eq 3 and e^d

eq e then D:=d; E:=e; end if; end for;

> sub<G1|E,D> eq NL[4];

true

> for i in [0..3] do for j in [0..2] do if A^2 eq D^i*E^j then

i,j; break; end if;end for; end for;

0 0

This tells us that a^2 is just equal to the identity of G.

> for i in [0..3] do for j in [0..2] do if B^4 eq D^i*E^j then

i,j; break; end if;end for; end for;

0 0

This tells us that b^4 is just equal to the identity of G.

> for i in [0..3] do for j in [0..2] do if (A*B)^7 eq D^i*E^j
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then i,j; break; end if;end for; end for;

1 1

This tells us that (a*b)^7=d*e

> for i in [0..3] do for j in [0..2] do if (A*B^2)^5 eq D^i*E^j

then i,j; break; end if;end for; end for;

0 0

This tells us that (a*b^2)^5 is just equal to the identity of G.

> for i in [0..3] do for j in [0..2] do if (A*B*A*B^2)^7 eq

D^i*E^j then i,j; break; end if;end for; end for;

1 0

This tells us that (a*b*a*b^2)^7=d

> for i in [0..3] do for j in [0..2] do if

(A * B * A * B * A * B^2 * A * B^-1)^5 eq D^i*E^j then i,j;

break; end if;end for

for|for> ; end for;

2 0

This tells us that (a*b*a*b*a*b^2*a*b^-1)^5=d

> for i in [0..3] do for j in [0..2] do if C^2 eq D^i*E^j then

i,j; break; end if;end for; end for;

0 0

This tells us that c^2 is just equal to the identity of G.

> for i in [0..3] do for j in [0..2] do if A^C eq D^i*E^j then

i,j; break; end if;end for; end for;

> for i in [0..3] do for j in [0..2] do if B^C eq D^i*E^j then

i,j; break; end if;end for; end for;

> for i,k in [0..2] do for j in [0..4] do if A^D eq A^i*B^j*C^k

then i,j,k; break; end if; end for;end for;

1 0 0

This implies that a commutes with d.

> for i,k in [0..2] do for j in [0..4] do if A^E eq A^i*B^j*C^k

then i,j,k; break; end if; end for; end for;

1 0 0

This implies that a commutes with e.

> for i,k in [0..2] do for j in [0..4] do if B^E eq A^i*B^j*C^k

then i,j,k; break; end if; end for; end for;

0 1 0

This implies that b commutes with e.

> for i,k in [0..2] do for j in [0..4] do if B^D eq A^i*B^j*C^k

then i,j,k; break; end if; end for; end for;

0 1 0

This implies that b commutes with d.

> for l in [0..3] do for i,k,m in [0..2] do for j in [0..4] do

if C^D eq A^i*B^j*C^k*D^l*E^m then i,j,k,l,m; break; end if;

end for; end for;
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for> end for;

0 0 1 2 0

This implies that c^d=c*d^2

> for i,k in [0..2] do for j in [0..4] do if C^E eq A^i*B^j*C^k

then i,j,k; break; end if; end for;

for> end for;

0 0 1

This implies that c commutes with e.

Note, the second to the last loop reassures us that we do indeed have a mixed

extension. If a, b, and c had commuted with both d and e then we would have had a

central extension. Finally, we check to see if we have accomplished our goal by entering

in the above information into our presentation and using MAGMA to see if the two groups

are isomorphic. Thus we have,

> H<a,b,c,d,e>:=Group<a,b,c,d,e|d^3,e^2,(d,e),a^2,b^4,(a*b)^7=

d*e,(a*b^2)^5,(a*b*a*b^2)^7=d,(a*b*a*b*a*b^2*a*b^-1)^5=d^2,

c^2,a^c=a*b*a*b^-1*a*b*a*b*a*b^-1*a*b^-1*a*b*a*b^-1*a*

b^2*a*b^-1*a*b^2,b^c=a*b*a*b^-1*a*b*a*b^-1*a*b^-1*a*b*a

*b*a*b^-1,a^d=a,a^e=a,b^d=b,b^e=b,c^d=c*d^2,c^e=c>;

> #H;

241920

> #G1;

241920

> f2,H2,k2:=CosetAction(H,sub<H|Id(H)>);

> s,t:=IsIsomorphic(H2,G1);

> s;

true

This completes the isomorphism type of G.
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Chapter 5

Progenitors with Isomorphism

Types

5.1 7⇤3 :m S3

G<x,y,t>:=Group<x,y,t|x^3,y^2,(x*y)^2,t^7,t^x=t^2,

(y*t)^i,(x*t*t^x*t^(x^2))^j,(y*t^2)^k,(x*y*t^3)^l>;

Table 5.1: 7⇤3 :m S3

i j k l G

0 0 0 4 6⇥ PSL(2, 7)
0 0 0 3 PSL(2, 7)
5 6 7 14 A7

15 0 15 5 J1
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5.2 2⇤9 : D18

G<x,y,t>:=Group<x,y,t|x^{-9},y^2,(x^{-1}*y)^2,t^2,(t,y*x)

,(x^3*t)^i,(x^4*t^x)^j,(y*t)^k,(x*t*t^{x^2}*t)^l>;

Table 5.2: 2⇤9 : D18

i j k l G

0 0 3 5 PSL(2, 19)
0 16 4 2 2⇥ PSL(2, 17)
0 3 6 0 ((2⇥ PSL(2, 19)) : 2)
0 9 7 2 PSL(2, 8)
2 0 7 9 PSL(2, 71)
2 0 7 10 PGL(2, 29)
2 0 7 11 PSL(2, 43)
2 0 8 7 PGL(2, 41)
2 0 13 4 PGL(2, 27)
2 9 18 4 PGL(2, 17)
2 10 9 0 6⇥ PSL(2, 19)
2 10 10 10 2•(U(3, 4) : 2)
2 10 15 5 J1
2 10 13 6 (U(3, 4) : 2)
2 11 12 6 (M12 : 2)
2 12 15 5 J2
2 13 7 0 PSL(2, 13)
2 13 8 8 PGL(3, 3)

5.3 2⇤6 : ((C3 ⇥ C3) : C2)

G<a,b,c,t>:=Group<a,b,c,t|a^2,b^3,c^3,b^a=b,c^a=c^2,

c^b=c,t^2,(t,b^-1*c^-1),(a*t)^i,(a*b^-1*c^-1*t)^j,

(c^-1*t^a*t)^k,(b^-1*c^-1*t^a)^l,(a*b*c*t*t^c*t)^m>;

Table 5.3: 2⇤6 : ((C3 ⇥ C3) : C2)

i j k l m G

0 0 0 3 11 M12

0 0 5 3 0 3•S8

0 0 5 3 10 S8
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5.4 2⇤7 : (C7 : C3)

G<a,b,t>:=Group<a,b,t|a^3,b^7,b^a=b^2, t^2,(t,a),

(a*b*a^-1*t*t^(b^2))^i, (a^-1*t^b*t*t^b)^j,(b*a*t^(b^-1))^k,

(a*b^-1*a^-1*t*t^(b^2)*t^(b^-1))^l

>;

Table 5.4: 2⇤7 : (C7 : C3)

i j k l G

0 2 0 0 U(3, 3)
0 0 5 0 4⇥M22

0 7 5 8 M22

5.5 2⇤5 : ((C5 : C2) : C2)

G<a,b,c,t>:=Group<a,b,c,t|a^2=b,b^2,c^5,b^a=b,c^a=c^2,

c^b=c^4,t^2,(t,a),(t,b),(b*c*t)^i,(a*c^-1*a*t)^j,(c*t)^k,

(c^2*t*t^c^2)^l,(a^-1*t*t^c*t)^m>;

Table 5.5: 2⇤5 : ((C5 : C2) : C2)

i j k l m G

0 0 6 6 12 (4⇥M12) : 2
0 0 7 0 7 2•SZ(8)
0 0 7 13 7 SZ(8)
0 0 8 5 7 2•(PSL(3, 4) : 2)
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5.6 2⇤12 : (22 : 3)

G<x,y,z,t>:=Group<x,y,z,t|x^3,y^2,z^2,y^x=z,

z^x=y*z,t^2,(x*t)^a,(x^2*y*z*t^(y))^b,

(y*x*z*x^2*t*t^y)^c,((x*y*z)^a*t*t^z)^d,(t*(t)^(z))^e

>;

Table 5.6: 2⇤12 : (22 : 3)

a b c d e f G

0 2 3 0 4 8 PGL(2, 7)
0 2 4 5 5 6 ((22 ⇥ U(3, 5)) : 3) : 2
2 0 3 7 0 0 PSL(2, 13)⇥ PGL(2, 7)
2 7 0 6 5 3 J1
2 7 8 6 0 3 PSL(2, 97)
2 8 4 6 6 0 3• : (((4⇥ PSL(3, 3)) : 3) : 2)
2 9 0 0 3 3 PSL(2, 37)
2 10 5 6 5 3 6⇥M12

5.7 2⇤11 : D22

G<x,y,t>:=Group<x,y,t|x^11,y^2,(x^-1*y)^2,t^2,(t,y*x),

(y*t^(x^-1))^i,(x*t)^j, (x^2*t*t^y)^k, (x^5*t)^l,

(x*t*t^y*t^x)^m>;

Table 5.7: 2⇤11 : D22

i j k l m G

0 12 6 4 2 (2⇥ 11)• : (PGL(2, 11))
0 5 5 0 2 2⇥ PSL(2, 89)
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5.8 2⇤10 : D20

G<x,y,t>:=Group<x,y,t|x^10,y^2,(x^-1*y)^2,t^2,(t,y*x),

(y*x^2*t)^i,(x^5*t)^j, (y*t*t^x*t^(x^2))^k, (y*t^(x^2))^l,

(x*y*t^x)^m, (x^2*t)^n>;

Table 5.8: 2⇤10 : D20

i j k l m n G

0 0 0 2 4 6 2⇥ PGL(2, 11)
0 0 6 2 4 7 PGL(2, 29)
0 0 0 3 4 5 PGL(2, 16)
0 0 0 3 6 3 2•((A5 ⇥A5) : 2)
0 0 0 3 4 4 S3 : PGL(2, 25)
0 0 2 3 12 10 (6⇥ PSL(2, 11)) : 2
0 0 2 4 7 10 (2⇥A7) : 2
0 0 2 10 5 5 (2⇥A5 ⇥ PSL(2, 7)) : 2
0 0 3 2 0 5 2•PSL(2, 59)
0 0 3 2 7 0 2•PSL(2, 29)
0 0 6 2 4 7 PSL(2, 29)

5.9 2⇤14 : D28

G<x,y,t>:=Group<x,y,t|x^14,y^2,(x^-1*y)^2,t^2,(t,y*x),

(x*t)^i, (x*y*t^x^3)^j,(x^6*t)^k, (x^5*t)^l>;

Table 5.9: 2⇤14 : D28

i j k l G

0 0 4 3 3⇤ : (((PSL(2, 7)⇥ PGL(2, 13)) : 2) : 2)
0 6 4 3 S3 : PGL(2, 13)
8 8 3 4 2•((PSL(2, 7)⇥ PSL(2, 7) : 2) : 2)
0 12 3 4 6• : PGL(2, 10)
3 4 15 14 PGL(2, 29)
3 8 3 7 PGL(2, 7)
3 9 3 7 PSL(2, 8)
3 13 3 7 PSL(2, 13)
4 8 3 8 2•PGL(2, 49)
4 3 0 0 2•PSL(2, 43)
7 0 4 3 2•PSL(2, 13)
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5.10 2⇤11 : L2(7)

G<a,b,t>:=Group<a,b,t|a^5,b^3,b*a^2*b^-1*a^2*b*a^-1*b^-1*a^-1,

(a*b*a*b*a)^2, t^2, (t,a^2 * b^-1 * a^-1 * b * a^-2),

(t,a^-1 * b * a^2 * b * a^2), (t,b * a^-2 * b * a^-1 * b * a),

(t, a * b^-1 * a * b^-1 * a^-1 * b * a),

(b*t*t^b*t^b^2)^i, (a*b^-1*t^b*a^4)^j, (b^-1*a^-1*t*t^a*t)^k,

(b^2*a*t*t^(a*b^-1)*t^a^4)^l, (a*t)^m,

(a^2 * b * a^-1 * b * a^-1 * b^-1 * a*t)^n>;

Table 5.10: 2⇤11 : L2(7)

i j k l m n G

0 0 0 6 0 4 211 : PSL(2, 11)
0 0 0 5 19 5 J1

5.11 3⇤3 :m S4

G<x,y,t>:=Group<x,y,t|x^4,y^2,(x*y)^3,t^3,(t,x^2*y),t^y=t^2,

(y*t)^i,((x^2*y)^2*t^(x^3))^j,(y*x^2*t^x)^k, (y*t^x)^l,

(y*x*t^x)^m>;

Table 5.11: 3⇤3 :m S4

i j k l m G

2 0 0 0 5 PGL(2, 11)
0 2 6 5 13 PSL(2, 25)
0 0 12 6 8 PGL(3, 3)
0 2 6 10 7 3•(A7 : 2)
0 2 6 0 12 (3⇥ PSL(3, 5)) : 2
0 0 6 10 13 2•PSL(2, 25)
0 2 14 14 6 (3⇥ PSL(2, 13)) : 2
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5.12 2⇤7 : (7 : 3)

G<a,b,t>:=Group<a,b,t|a^3,b^7,b^a=b^2,t^2,(t,a),

(a*b*a^-1*t*t^(b^2))^i,(a^-1*t^b*t*t^b)^j,

(b*a*t^(b^-1))^k,(a*b^-1*a^-1*t*t^(b^2)*t^(b^-1))^l>;

Table 5.12: 2⇤7 : (7 : 3)

i j k l G

0 0 5 0 6•M22

0 0 5 8 4•M22

0 2 8 6 U(3, 3) : 2
0 7 5 8 M22

5.13 2⇤7 : ((7 : 3) : 2)

G<a,b,c,t>:=Group<a,b,c,t|a^2,b^3,c^7,b^a=b,c^a=c^6,c^b=c^2,

t^2,(t,a),(t,b), (a*b*c^-1*b^-1*t)^i, (a*c*t)^j,

(c*t^c*t^(c^2)*t^(c*b^-1))^k, (a*b*t^c)^l, (b^-1*c*t)^m,

(b*c*b^-1*t*t^c^4*t)^n>;

Table 5.13: 2⇤7 : ((7 : 3) : 2)

i j k l m n G

0 0 0 7 7 6 J2

5.14 7⇤2 :m D18

G<x,y,t>:=Group<x,y,t|x^-9,y^2,(x^-1*y)^2,t^7,t^x=t^2,

(y*t)^i,(y*t^x)^j,(y*t^(x^2))^k,(x*t)^l,(x*t*t^x*t)^m>;

Table 5.14: 7⇤2 :m D18

i j k l m G

0 0 3 0 3 PSL(2, 7)
0 0 4 9 0 S3 ⇥ PSL(2, 7)
0 5 7 9 12 A7

0 6 7 3 9 26 : PSL(2, 7)
5 15 5 3 3 J1
6 6 6 0 3 (3 : PGL(3, 4)) : 2
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5.15 2⇤10 : (2•(5 : 2) : 2)

G<a,b,c,t>:=Group<a,b,c,t|a^4,b^2,c^5,b^a=b,c^a=c^2,

c^b=c^4,t^2,(t,a),(a*t)^i,(t*t^(b))^j,(t*a*t)^k,(t^c*t)^l,

(c*t^a)^m,(b*t*c)^n>;

Table 5.15: 2⇤10 : (2•(5 : 2) : 2)

i j k l m n G

4 1 0 9 8 6 (4⇥M12) : 2

5.16 2⇤6 : (3•(3 : 2))

G<a,b,c,t>:=Group<a,b,c,t|a^2,b^3,c^3,b^a=b,c^a=c^2,

c^b=c,t^2,(t,b^-1*c^-1),(a*t)^i,(a*b^-1*c^-1*t)^j,

(c^-1*t^a*t)^k,(b^-1*c^-1*t^a)^l,(a*b*c*t*t^c*t)^m>;

Table 5.16: 2⇤6 : (3•(3 : 2))

i j k l m G

0 0 20 3 9 4• : ((A5)3 : 3
0 0 0 3 10 3•(A7 : 2)
0 0 6 3 11 M12

0 0 5 3 10 A7 : 2
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Chapter 6

Manual Double Coset

Enumeration

6.1 Definition for Double Coset Enumeration

Definition 6.1. Double Coset

[Cur07] Let H and K be subgroups of the group G and define a relation on G as follows:

x ⇠ y () 9h 2 H and k 2 K such that y = hxk

where ⇠ is an equivalence relation and the equivalence classes are sets of the following

form

HxK = {hxk|h 2 H, k 2 K} = [k2KHxk = [h2HhxK

Such a subset of G is called a double coset.

Now we consider the double cosets of the form NxN , where x = ⇡w for some

n 2 N and w is a reduced word in the t0is. Thus NxN = N⇡wN = NwN = [w].

Definition 6.2. [Cur07] Let G be a group of permutations of a set S. For each g, s 2 S,

let gs = g, then we call the set of s 2 S the point stabilizer of g 2 G.

Definition 6.3. [Cur07] The coset stabilizing group of a coset Nw is defined as

N (w) = {⇡ 2 N |Nw⇡ = Nw}

where n 2 N and w a reduced word in the t0is.
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Theorem 6.4. Number of single cosets in NwN [Cur07]The above definition gives,

N (w) = {⇡ 2 N |Nw⇡ = Nw}

= {⇡ 2 N |(Nw)⇡ = Nw}

= N \Nw

The number of single cosets in NwN is given by [N : N (w)]

Definition 6.5. Let G be a group of permutations of a set S. For each s in S, let

orbG(s) = {�(s)|� 2 G}. The set orbG(s) is a subset of S called the orbits of s under

G. We use |orbG(s)| to denote the number of elements in orbG(s).

6.2 Double Coset Enumeration 2⇤5 : A5

We factor the progenitor 2⇤5 : A5 by a single relator, t3t4t1t2t5 = e, and let

G ⇠= 2⇤5 : A5 be a symmetric presentation of G given by:

< x, t, y|x2, y3, (xy)5, t2, (t, x), (t, xyx?1, xy?1), (xyt)5 >

where N ⇠= A5 =< x, y|x2, y3, (xy)5 > and x ⇠ (1, 2)(3, 4)y ⇠ (1, 3, 5). Our relation is

t3t4t1t2t5 = e. First, we are going to rearrange our relation,

t3t4t1t2t5 = e

=) t3t4t1 = t5t2

=) t3t4 = t5t2t1

We will begin the manual double coset enumeration by looking at our first

double coset. Note the definition of a double coset is as follows: NwN = {Nwn|n 2

N}. For our first double coset we have, NeN = {Nen|n 2 N} = {N} denoted by

[*], which contains one single coset. N is transitive on {1, 2, 3, 4, 5}, so it has a single

orbit {1, 2, 3, 4, 5}. Take a representative from the orbit, say 5, and find to which double

coset Nt5 belongs. This will create a new double coset, which we will label as [5]. Note

Nt5N = {Nt1, Nt2, Nt3, Nt4, Nt5}. Now consider the coset stabilizer N (5). Note that

the coset stabilizer of Nt5 is equal to the point stabilizer N5.
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Thus N (5) =< (1, 2)(3, 4), (2, 3, 4), (1, 3, 4) > and the number of the single cosets in the

double coset, Nt5N , is at most: |N |
|N(5)| = 60

12 = 5. Looking at the generators of N (5),

we can see that the orbits of N (5) on {1, 2, 3, 4, 5} are {1, 2, 3, 4} and {5}. We take a

representative from each orbit, say 1 and 5 respectively and then determine to which

double coset Nt5t5, and Nt5t1 belong. All the t0s have order two, thus Nt5t5 = N 2 [⇤].

Since the orbit {5} contains one element, then one symmetric generator goes back to the

double coset [⇤]. Now, Nt5t1 2 Nt5t1N is a new double coset we have yet to see, therefore

this will be our new double coset. Note four symmetric generators go to the next double

coset which we will label [51].

We then consider the coset stabilizer of N (51). N (51) = N51 =< (2, 3, 4) > and

the number of single cosets in the double coset, Nt5t1N , is at most: |N |
|N(51)| =

60
3 = 20.

In order to find the distinct single cosets in [51], we must find the right cosets of N (51)

in N . Without the loss of generality, they are Nt5t1(e), Nt5t1(1, 2)(3, 4), Nt5t1(1, 3, 5),

Nt5t1(1, 2, 3, 4, 5), Nt5t1(1, 4, 3, 5, 2),Nt5t1(1, 5, 3), Nt5t1(2, 4, 5), Nt5t1(1, 2, 5, 3, 4),

Nt5t1(1, 5, 4, 3, 2), Nt5t1(1, 3, 2, 5, 4), Nt5t1(2, 3)(4, 5), Nt5t1(1, 4, 2, 3, 5),

Nt5t1(1, 5, 2, 4, 3), Nt5t1(1, 3, 2, 5, 4), Nt5t1(1, 4, 2, 5, 3), Nt5t1(1, 5)(2, 3), Nt5t1(1, 4, 2),

Nt5t1(3, 4, 5), Nt5t1(1, 3, 4), Nt5t1(1, 2)(4, 5). Taking a representative from each of the

cosets, we form the set of transversals, say T . Then, T = {(e), (1, 2)(3, 4), (1, 3, 5)

, (1, 2, 3, 4, 5), (1, 4, 3, 5, 2), (1, 5, 3), (2, 4, 5), (1, 2, 5, 3, 4), (1, 5, 4, 3, 2), (1, 3, 2, 5, 4),

(2, 3)(4, 5), (1, 4, 2, 3, 5), (1, 5, 2, 4, 3), (1, 3, 2, 5, 4), (1, 4, 2, 5, 3), (1, 5)(2, 3), (1, 4, 2),

(3, 4, 5), (1, 3, 4), (1, 2)(4, 5)}.

Conjugating the coset Nt5t1 by each of the elements in the set T , we get the other dis-

tinct cosets in Nt5t1N . Thus we will have the following cosets in the double coset [51] :

Nt1t3, Nt5t3, Nt4t1, Nt5t4, Nt2t4, Nt1t4, Nt3t4, Nt3t1, Nt1t2, Nt5t2, Nt4t2, Nt2t1, Nt5t1

, Nt1t5, Nt2t5, Nt3t5, Nt4t3, Nt3t2, Nt2t3, Nt4t5. Looking at the generators of N (51), we

can see that the orbits of N (51) on {1, 2, 3, 4, 5} are {2, 3, 4}, {1} and {5}. We take a

representative from each orbit, say {2}, {1}, and {5} respectively and then determine

to which double coset Nt5t1t2, Nt5t1t1 and Nt5t1t5 belong. Since our t0s have order 2,

Nt5t1t1 = N 2 [5]. The orbit containing 1 only has one symmetric generator which will

be sent back to that double coset [5]. We have yet to see Nt5t1t5 2 Nt5t1t5N , a new

double coset which we will label as [515]. The coset Nt5t1t2 requires further investiga-

tion. Our relation is t3t4t1 = t5t2, and to obtain all of the relations we conjugate our
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relation by N . However, we want to know specifically where the coset Nt5t1t2 goes. The

conjugation of t3t4t1 = t5t2 by (1, 2, 3, 5, 4) 2 N gives

t3t4t
(1,2,3,5,4)
1 = t5t

(1,2,3,5,4)
2 =) t5t1t2 = t1t3. This implies Nt5t1t2 = Nt1t3 2 [51].

Therefore the coset Nt5t1t2 will loop back to [51]. Since there are three symmetric gen-

erators in the orbit that contains 2, three symmetric generators will loop back into the

double coset [51]. Continuing with our new double coset [515], we will compute the coset

stabilizing group N (515). Note that the coset stabilizing group

N (515) = N (51) =< (2, 3, 4) > . Although, this increases with our relation. We then con-

jugate our new coset Nt5t1t5 by all elements of N . It gives us a list of 20 single cosets, and

the set is given as follows: {Nt1t5t1, Nt2t4t2, Nt3t5t3, Nt2t1t2, Nt3t1t3, Nt4t2t4, Nt5t3t5,

Nt5t4t5, Nt1t4t1, Nt1t2t1, Nt5t1t5, Nt1t3t1, Nt4t5t4, Nt2t5t2, Nt3t4t3, Nt5t2t5, Nt3t2t3,

Nt2t3t2,

Nt4t3t4}. We find that Nt5t1t5 = Nt2t1t2 = Nt3t1t3 = Nt4t1t4. These relations will

increase the elements in our coset stabilizer, since

Nt5t1t
(2,4,5)
5 = Nt2t1t2 = Nt5t1t5N =) (2, 4, 5) 2 N (515)

Nt5t1t
(2,4,3)
5 = Nt5t1t5 = Nt5t1t5N =) (2, 4, 3) 2 N (515)

Nt5t1t
(2,3)(4,5))
5 = Nt4t1t4 = Nt5t1t5N =) (2, 3)(4, 5) 2 N (515)

Nt5t1t
(3,4,5)
5 = Nt3t1t3 = Nt5t1t5N =) (3, 4, 5) 2 N (515)

Thus, N (515)
�< (2, 4, 3), (2, 4, 5), (2, 5)(3, 4), (2, 3, 5) >= {e, (2, 4, 3), (2, 5)(3, 4),

(2, 3, 5), (3, 4, 5), (2, 4, 5), (2, 5, 4), (2, 3, 4), (3, 5, 4), (2, 4)(3, 5), (2, 5, 3), (2, 3)(4, 5)}.

The number of single cosets in the double coset,Nt5t1t5N , is at most |N |
|N(515)| =

60
12 = 5. In

order to find the di↵erent cosets in [515], we find the right cosets of N (515) in N . The right

cosets are as follows: Nt5t1t5(e), Nt5t1t5(1, 2)(3, 4), Nt5t1t5(1, 3, 5), Nt5t1t5(1, 4, 3, 5, 2),

Nt5t1t5(1, 5, 3). Taking a representative from each of the cosets, we form the set of

transversals, T = {(e), (1, 2)(3, 4), (1, 3, 5), (1, 4, 3, 5, 2), (1, 5, 3)}. Conjugating the coset

Nt5t1t5N by each of the elements in the set T , we get the other distinct cosets in

Nt5t1t5N . Thus we will have the following cosets in the double coset [515] with their

equal names: 515 ⇠ 212 ⇠ 313 ⇠ 414
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{515 ⇠ 212 ⇠ 313 ⇠ 414}(1,2)(3,4) = {525 ⇠ 121 ⇠ 424 ⇠ 323}

{515 ⇠ 212 ⇠ 313 ⇠ 414}(1,3,5) = {131 ⇠ 232 ⇠ 535 ⇠ 343}

{515 ⇠ 212 ⇠ 313 ⇠ 414}(1,4,3,5,2) = {242 ⇠ 141 ⇠ 545 ⇠ 343}

{515 ⇠ 212 ⇠ 313 ⇠ 414}(1,5,3) = {353 ⇠ 252 ⇠ 151 ⇠ 454}

Looking at the generators of N (515), we can see that the orbits of N (515) on

{1, 2, 3, 4, 5} are {2, 3, 4, 5} and {1}. We take a representative from each orbit, say 5 and

1 respectively, and then determine to which double coset Nt5t1t5t1, and Nt5t1t5t5 belong.

Since our t0s have order 2 Nt5t1t5t5 2 Nt5t1 = [51]. The orbit that contains 5 has three

other symmetric generators thus a total of four symmetric generators will be sent back to

the double coset [51]. We have yet to see Nt5t1t5t1 2 Nt5t1t5t1N = [5151]. Now the coset

stabilizing group of N (5151) = N (51) =< (2, 3, 4) >. However, as before this increases with

our relation. Proceeding as we did with the double coset [515] we conjugate the coset

Nt5t1t5t1 by all the elements of N . It gives us a list of 20 di↵erent single cosets and they

are shown below. {Nt1t5t1t5, Nt2t4t2t4, Nt3t5t3t5, Nt2t1t2t1, Nt3t1t3t1, Nt4t2t4t2,

Nt5t3t5t3, Nt5t4t5t4, Nt1t4t1t4, Nt1t2t1t2, Nt5t1t5t1, Nt1t3t1t3, Nt4t5t4t5,

Nt2t5t2t5, Nt3t4t3t4, Nt5t2t5t2, Nt3t2t3t2, Nt2t3t2t3, Nt4t3t4t3}.

We have that, Nt1t5t1t5 = Nt2t4t2t4 = Nt3t5t3t5 = Nt2t1t2t1 = Nt3t1t3t1 = Nt4t2t4t2 =

Nt5t3t5t3 = Nt5t4t5t4 = Nt1t4t1t4 = Nt2t1t2t1 = Nt5t1t5t1 = Nt1t3t1t3 = Nt4t5t4t5 =

Nt2t5t2t5 = Nt3t4t3t4 = Nt5t2t5t2 = Nt3t2t3t2 = Nt2t3t2t3 = Nt4t3t4t3. These relations

will increase the elements in our coset stabilizer, since

Nt5t1t5t
(2,4,5)
1 = Nt2t1t2t1 = Nt5t1t5t1N =) (2, 4, 5) 2 N (5151)

Nt5t1t5t
(2,4,3)
1 = Nt5t1t5t1 = Nt5t1t5t1N =) (2, 4, 3) 2 N (5151)

Nt5t1t5t
(1,3,2,5,4)
1 = Nt4t1t4t1 = Nt5t1t5t1N =) (1, 3, 2, 5, 4) 2 N (5151)

Nt5t1t5t
(1,3)(4,5)
1 = Nt4t3t4t3 = Nt5t1t5t1N =) (1, 3)(4, 5) 2 N (5151)

Nt5t1t5t
(2,3,5)
1 = Nt2t1t2t1 = Nt5t1t5t1N =) (2, 3, 5) 2 N (5151)

Nt5t1t5t
(1,3,5,4,2)
1 = Nt4t3t4t3 = Nt5t1t5t1N =) (1, 3, 5, 4, 2) 2 N (5151)
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Thus N (5151)
�< (2, 4, 3), (2, 4, 5), (2, 5)(3, 4), (2, 3, 5), (1, 3, 2, 5, 4), (1, 3, 5, 4, 2),

(1, 3)(4, 5) >. The number of single cosets in the double cose Nt5t1t5t1N , is at most
|N |

|N(5151)| =
60
60 = 1. Also note that there is only one single orbit of N (5151) on {1, 2, 3, 4, 5},

which is {1, 2, 3, 4, 5}. If we take a representative from the orbit say {1}, we can see that

Nt5t1t5t1t1 2 Nt5t1t5 = [515]. Thus five symmetric generators take us back. Finally, our

Cayley diagram is as follows.

Figure 6.1: Cayley Diagram of 2⇤5 : A5

6.3 Finding the Center of the Cayley Diagram

From the diagram above, it is clear that G contains a center. We first gather the

stabilizer of a coset in G that fixes another coset at a maximum distance from the first.

The blocks of imprimitivity are of size two, thus |Z(G)| = 2 where Z(G) =< nw >. Let

 : G �! S32 and let G =<  (x), (y), (t5) >. Given G is a G� set, then by definition

a block is a subset B of G such that, for each g 2 G, either gB = B or gB \ B = ;

Suppose that {1, 32} is a block of G. From above, {1, 32} (x), (y), (t5) = {1, 32} or

{1, 32} (x), (y), (t5) = ;:

{1, 32}(3,5)(4,7)(6,9)(8,12)(10,17)(11,18)(13,22)(14,24)(15,25)(16,27)(19,28)(20,30)(21,26)(23,31)

= {1, 32}

{1, 32}(2,3,4)(6,10,11)(8,13,14)(9,15,16)(12,20,21)(18,27,26)(19,29,23)(22,25,30) = {1, 32}

{1, 32}(1,2)(3,6)(4,8)(5,9)(7,12)(10,17)(11,19)(13,23)(14,24)(15,26)(16,20)(18,28)(21,25)(22,31)(27,30)(29,32)

= {2, 29}
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Now consider the block {2, 29} and proceed as we have above. Then,

{2, 29}(3,5)(4,7)(6,9)(8,12)(10,17)(11,18)(13,22)(14,24)(15,25)(16,27)(19,28)(20,30)(21,26)(23,31)

= {1, 32}

{2, 29}(2,3,4)(6,10,11)(8,13,14)(9,15,16)(12,20,21)(18,27,26)(19,29,23)(22,25,30) = {3, 23}

{2, 29}(1,2)(3,6)(4,8)(5,9)(7,12)(10,17)(11,19)(13,23)(14,24)(15,26)(16,20)(18,28)(21,25)(22,31)(27,30)(29,32)

= {1, 32}

It can also be shown that {3,23}, {4,19}, {5,31}, {6,13}, {7,28}, {8,11}, {9,22},

{10,14}, {12,18}, {15,25}, {16,30}, {17,24}, {20,27}, and {21,26} are also blocks of G.

Therefore the blocks of G are: {{1,32}, {2,29}, {3,23}, {4,19}, {5,31}, {6,13}, {7,28},

{8,11}, {9,22}, {10,14}, {12,18}, {15,25}, {16,30}, {17,24}, {20,27}, {21,26}}. Since G

contains nontrivial blocks, G is imprimitive. We must now find the non-identity element,

say z, of the center. From the Cayley diagram in the previous example, we note that

the last double cost, [5151], has one single coset which was Nt5t1t5t1. We then set

Nt5t1t5t1 = e =) nt5t1t5t1 = e where n 2 N , since z 2 G = 2⇤5:A5
t3t4t1t2t5=e and z = nw,

where n 2 N and w is a word in the t0s. To factor G by the center, we need to consider

nt5t1t5t1 = e 2 G. Thus, t5t1t5t1 = n�1. We let m = n�1 =) t5t1t5t1 = m. We now

compute m by its action on the cosets {Nt1, Nt2, Nt3, Nt4, Nt5}. Computing the action

of m on the coset Nt1 we get:
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Ntm1 = Ntt5t1t5t11

= N(t5t1t5t1)
�1t1t5t1t5t1

= Nt1t5t1t5t1t5t1t5t1

= Nt1t5t1t5t5t4t3t2t1t1t5t1t5t1

= Nt1t5t1t4t3t2t5t1t5t1

= Nt1t5t1t1t5t3t2t4t4t3t2t5t1t5t1

= Nt1t3t2t3t2t5t1t5t1

= Nt1t3t2t1t4t1t5t1

= Nt1t3t2t1t4t4t2t3t5t1t1t5t1

= Nt1t3t2t1t2t3t1

= Nt1t3t2t1t5t4

= Nt1

We now compute the action of m on Nt2 :

Ntm2 = Ntt5t1t5t12

= N(t5t1t5t1)
�1t2t5t1t5t1

= Nt1t5t1t5t2t5t1t5t1

= Nt1t5t1t5t4t3t1t5t1

= Nt1t5t1t1t2t5t1

= Nt1t5t2t5t1

= Nt1t1t3t4t2t5t5t2t5t1

= Nt3t4t5t1

= Nt2
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The action of m on the coset Nt3 :

Ntm3 = Ntt5t1t5t13

= N(t5t1t5t1)
�1t3t5t1t5t1

= Nt1t5t1t5t3t5t1t5t1

= Nt1t5t1t5t2t4t1t1t5t1

= Nt1t5t1t5t2t4t5t1

= Nt1t5t1t1t3t5t1

= Nt1t5t3t5t1

= Nt1t1t4t2t3t5t5t3t5t1

= Nt4t2t5t1

= Nt3

The action of m on the coset Nt4 :

Ntm4 = Ntt5t1t5t14

= N(t5t1t5t1)
�1t4t5t1t5t1

= Nt1t5t1t5t4t5t1t5t1

= Nt1t5t1t5t3t2t1t1t5t1

= Nt1t5t1t5t3t2t5t1

= Nt1t5t1t1t4t5t1

= Nt1t5t4t5t1

= Nt1t1t2t3t4t5t5t4t5t1

= Nt2t3t5t1

= Nt4

Next, we need to compute the action of m on the coset Nt5. To show this we will first
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show that t5t1t5t1 = t1t5t1t5. Our original relation is t3t4t1t2t5 = e

t3t4t1t2t5 = e

=) t5t2t1t1t2t5 = e

=) t5t1t5t4t3t1t1t2t5 = e

=) t5t1t5t4t3t2t5 = e

=) t5t1t5t1t2t5t3t3t2t5 = e

=) t5t1t5t1t2t5t2t5 = e

=) t5t1t5t1 = t2t5t2t5

Thus,

Ntm5 = Ntt5t1t5t15

= N(t5t1t5t1)
�1t5t5t1t5t1

= Nt1t5t1t5t1t5t1

= Nt1t2t5t2t5t5t1

= Nt1t2t5t2t1

= Nt1t2t5t5t3t4t1t2t2t1

= Nt1t2t3t4

= Nt5

Finally this tells us, Ntm1 = Nt1, Ntm2 = Nt2, Ntm3 = Nt3, Ntm4 = Nt4,

Ntm5 = Nt5. Thus m = e, and t5t1t5t1 = e is the generator of the center. Now we factor

G = 2⇤5:A5
t3t4t1t2t5=e by the additional center relation. However, we first determine whether

or not t5t1t5t1 = e, implies the original relation. Now,
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t5t1t5t1 = e

=) t5t
(1,3)(4,5)
1 = t1t

(1,3)(4,5)
5

=) t4t3 = t3t4

=) t4t3t1t2t5 = t3t4t1t2t5

Note t3t4t1t2t5 = e =) t3t4t1t2t
(1,2)(3,4)
5 = e(1,2)(3,4) =) t4t3t1t2t5 = e. Therefore we

have t3t4t1t2t5 = e. Hence, G factored by t5t1t5t1 = e is

G ⇠= 2⇤5:A5
t3t4t1t2t5=e,t5t1t5t1=e

⇠= 2⇤5:A5
t5t1t5t1=e .

Now we will begin manual double coset enumeration by first looking at our two

relations. Our relations are t3t4t1t2t5 =e and t5t1t5t1 = e. Now, t3t4t1t2t5 = e ()

t3t4t1 = t5t2 () t3t4 = t5t2t1 t5t1t5t1 = e () t5t1 = t1t5 Our first double

coset, NeN = {Nen|n 2 N} = {N} denoted by [⇤], contains one single coset. N is

transitive on {1,2,3,4,5}, so it has a single orbit {1,2,3,4,5}. We take a representative

from the orbit,say {5}, and find to which double coset Nt5 belongs. This will create a

new double coset, which we will label as [5]. Note Nt5N = {Nt1, Nt2, Nt3, Nt4, Nt5}.

Now consider the coset stabilizer N (5). Note that the coset stabilizer of Nt5 is equal

to the point stabilizer N5. Thus N (5) =< (1, 2)(3, 4), (1, 4)(2, 3), (1, 4, 3) > and the

number of the single cosets in the double coset, Nt5N , is at most |N |
|N(5)| = 60

12 = 5.

Looking at the generators of N (5), we can see that the orbits of N (5) on {1,2,3,4,5} are

{1,2,3,4} and {5}. We take a representative from each orbit, say 1 and 5 respectively

and then determine to which double coset Nt5t5,and Nt5t1 belong. All the t0s have

order two, thus Nt5t5 = N 2 [⇤]. Since the orbit {5} contains one element, then one

symmetric generator goes back to the double coset [⇤]. Now, Nt5t1 2 Nt5t1N is a

new double coset we have yet to see. Note four symmetric generators go to the next

double coset which we will label as [51]. We then consider the coset stabilizer of N (51).

N (51) = N51 =< (2, 3, 4) >. Although, this increases with our relation. From our

relation we have, t5t1t5t1 = e () t5t1 = t1t5 =) Nt5t1N = Nt1t5N . Therefore

(1, 5)(2, 4), (1, 5)(3, 4), (1, 5)(2, 3) 2 N (51) since
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Nt5t
(1,5)(2,4)
1 = Nt1t5 = Nt5t1N =) (1, 5)(2, 4) 2 N (51)

Nt5t
(1,5)(3,4)
1 = Nt1t5 = Nt5t1N =) (1, 5)(3, 4) 2 N (51)

Nt5t
(1,5)(2,3)
1 = Nt1t5 = Nt5t1N =) (1, 5)(2, 3) 2 N (51)

Thus N (51) =< (2, 3, 4), (1, 5)(2, 4), (1, 5)(3, 4), (1, 5)(2, 3) > and the number of single

cosets in the double coset, Nt5t1N , is at most |N |
|N(51)| = 60

6 = 10. In order to find the

distinct single cosets in [51], we must find the 51 right cosets of N (51)
2 N . Without loss

of generality, the are Nt5t1(e),Nt5t1(1, 2, 3),Nt5t1(2, 5, 3),Nt5t1(1, 2, 5),Nt5t1(1, 2)(4, 5),

Nt5t1(1, 5, 4),Nt5t1(3, 5, 4), Nt5t1(1, 3)(4, 5). Taking a representative from each of the

cosets, we form the set of transversals, T . Then, T = {(e), (1, 2, 3), (2, 5, 3), (1, 2, 5),

(1, 2)(4, 5), (1, 5, 3), (1, 2)(3, 5), (1, 5, 4), (3, 5, 4), (1, 3)(4, 5)}. Conjugating the coset Nt5t1

by each of the elements in the set T , we get the other distinct cosets in Nt5t1N . Thus we

will have the following cosets in the double coset [51] with their equal names: 51 ⇠ 15.

51 ⇠ 15(1,2,3) = 52 ⇠ 25

51 ⇠ 15(2,5,3) = 31 ⇠ 13

51 ⇠ 15(1,2,5) = 12 ⇠ 21

51 ⇠ 15(1,2)(4,5)) = 42 ⇠ 24

51 ⇠ 15(1,5,3) = 35 ⇠ 53

51 ⇠ 15(1,2)(3,5) = 32 ⇠ 23

51 ⇠ 15(1,5,4) = 45 ⇠ 54

51 ⇠ 15(3,5,4) = 41 ⇠ 14

51 ⇠ 15(1,3)(4,5) = 43 ⇠ 34

Looking at the generators of N (51), we can see that the orbits of N (51) on

{1,2,3,4,5} are {1,5} and {2,3,4}. We take a representative from each orbit, say 1, and

2 respectively and then determine to which double coset Nt5t1t1 and Nt5t1t2 belong.

Since the t0s have order 2, Nt5t1t1 = N 2 [5]. The orbit containing 1 has two symmetric
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generators which will be sent back to that double coset [5]. The coset Nt5t1t2 requires

further investigation. Our relation is t3t4t1 = t5t2, and to obtain all of the relations we

conjugate our relation by N . However, we want to know specifically where the coset

Nt5t1t2 goes. The conjugation of t3t4t1 = t5t2 by (1, 2, 3, 5, 4) 2 N gives t3t4t
(1,2,3,5,4)
1 =

t5t
(1,2,3,5,4)
2 =) t5t1t2 = t1t3 . This implies Nt5t1t2 = Nt1t3 2 [51]. Therefore the

coset Nt5t1t2 will loop back to the double coset [51]. Since there are three symmetric

generators in the orbit that contains 2, three symmetric generators will loop back into the

double coset [51]. This completes our double coset enumeration and our Cayley diagram

is as follows.

Figure 6.2: Cayley Diagram of 2⇤5 : A5 Factored by the Center
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Chapter 7

Double Coset Enumeration over

Maximal Subgroups

As we have seen before, double coset enumeration can get complex and di�cult.

Recall, the double coset enumeration process was done over a control group N that

decomposed our group G into the form NwN , where w is a word in the ti’s. It has been

suggested that following the same algorithm over a maximal subgroup can provide the

same information as does the enumeration over the smaller control group N . Thus, we

will find a single coset decomposition of a group, G over M , where N  M  G. We will

show that the double coset enumeration of G over M accomplishes the same task as the

double coset enumeration of G over N . We will show this with a much smaller example,

and then expand this concept to a much larger group.

7.1 Double Coset Enumeration of S5 ⇥ 2 over S4

We start by factoring the progenitor 2⇤4 : S4 by a single relator (1, 2, 4) =

t4t1t2t4. Now let,

G ⇠= 2⇤4:S4
(1,2,4)=t4t1t2t4

The symmetric presentation of G is given by:

G < x, y, t >:= Group < x, y, t|x4, y2, (x ⇤ y)3, t2, (t, y), (t, (xy)x
3
, (xy)x

2
t =

ttxtx
2
> where,
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N ⇠= S4 =< x, y|x4, y2, (x ⇤ y)3 > and our x ⇠ (1, 2, 3, 4) y ⇠ (1, 2) and our

t ⇠ t4.

Now we will follow the algorithm of double coset enumeration. First we note

that NeN = {Nen|n 2 N} = N . NeN will be labeled as [⇤], which contains one single

coset. N ⇠= S4 which is 4-transitive. Thus N is transitive on {1, 2, 3, 4}, so we have only

a single orbit {1, 2, 3, 4}. We take a representative from this orbit say {4} and find to

which double coset does Nt2 belongs. Clearly, this will give us our new double coset,

which we will label as [4]. Since,

Nt4 2 Nt4N = {Ntn4 |n 2 N} = {Nt1, Nt2, Nt3, Nt4}. Now we consider the coset

stabilizer, denoted as N (4). Note that the coset stabilizer of Nt4 is equal to the point

stabilizer N4. Thus,

N (4) = N4 =< (1, 2), (1, 3, 2), (2, 3) >= {e, (1, 2, 3), (1, 2), (1, 3, 2), (2, 3), (1, 3)}. Thus,

the number of the single cosets in Nt4N is at most: |N |
|N(4)| =

24
6 = 4. The orbits of the

coset stabilizing group can be found by simply looking at the generators. We can see

that the orbits of {1, 2, 3, 4} are {1, 2, 3} and {4}. We take a representative from each

orbit, say {2} and {4}, respectively. Now we determine to which double coset Nt4t2 ,

and Nt4t2 belong. All ti’s have order 2 thus, Nt4t4 = N 2 [⇤]. Therefore, since the orbit

{4} contains one element, then one symmetric generator goes back to the double coset

NeN , and Nt4t2 will send it forward to our next double coset. Note, three symmetric

generators go to the next double coset Nt4t2N 2 [42]. [42] is the label we use for the

double coset Nt4t2N . Continuing, we now consider the coset stabilizer N (42). The coset

stabilizer of Nt4t2 is given by: N (42)
� N42 = {e, (1, 3)}. Elements that fix 4 and 2 point

wise will also fix the coset Nt4t2N . Our goal is to find all permutations that stabilize the

coset Nt4t2. This is where we need to look at our relation, (1, 2, 4) = t4t1t2t4.

(1, 2, 4) = t4t1t2t4 ) (1, 2, 4)t4t2 = t4t1

Taking N of both sides of the equation we see that the permutation (1, 2, 4) will

get absorbed by N , since (1, 2, 4) 2 N . Thus we get Nt4t2 = Nt4t1. Recall the definition

of coset stabilizer. The coset stabilizer is defined as NwN = {Nwn = Nw|n 2 N}. So we

search for permutations that sends 4 ! 4 and 2 ! 1, since these will stabilize the coset

Nt4t2. Hence, the permutations (1, 2) 2 N (42) and (1, 3, 2) 2 N (42), since Nt4t
(1,2)
2 =

Nt4t1 = Nt4t2 ) (1, 2) 2 N (42). Nt4t
(1,3,2)
2 = Nt4t1 = Nt4t2 ) (1, 3, 2) 2 N (42).
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Now N (4,2)
�< (1, 3), (1, 2), (1, 3, 2) >= {e, (1, 2, 3), (1, 2), (1, 3, 2), (2, 3), (1, 3)}. Thus,

Nt4t2 = Nt4t1 = Nt4t3. The number of the single cosets in Nt4t2N is at most: |N |
|N(42)| =

24
6 = 4. In order to find the other three distinct cosets with three equal names for each in

Nt4t2N , we find the right cosets of N (42) in N . We will take the following right cosets,

Nt4t2e, Nt4t2(1, 2, 3, 4), Nt4t2(1, 3)(2, 4), Nt4t2(1, 4, 3, 2). Taking a representative for

each of the cosets we form the transversal, T . T = {e, (1, 2, 3, 4), (1, 3)(2, 4), (1, 4, 3, 2)}.

By taking these representatives and conjugating the three di↵erent names we found above,

we will get the other three distinct cosets in Nt4t2N . From above we found 42 ⇠ 41 ⇠ 43.

42 ⇠ 41 ⇠ 43 conjugated by (1, 2, 3, 4) yields 13 ⇠ 12 ⇠ 14

42 ⇠ 41 ⇠ 43 conjugated by (1, 3)(2, 4) yields 24 ⇠ 23 ⇠ 21

42 ⇠ 41 ⇠ 43 conjugated by (1, 4, 3, 2) yields 31 ⇠ 34 ⇠ 32

Looking at the generators of N (42) on {1, 2, 3, 4}, we can see that it will have

two orbits {1, 2, 3} and {4}. We take a representative from each orbit, say {2} and {4}

respectively and see to which double cosetNt4t2t2 andNt4t2t4 belong. Again, all ti’s have

order 2 thus, Nt4t2t2 = N 2 [4]. Therefore, since the orbit {2} contains three elements,

then three symmetric generators go back to the double coset Nt4N , and Nt4t2t4 will

send it forward to our next double coset. Before we continue investigating this double

coset, we will first return to our relation. As stated previously conjugating our relation(s)

by N yields more relationships. Note, conjugating (1, 2, 4) = t4t1t2t4 by (1, 4) gives us

(4, 2, 1) = t1t4t2t1 ) (4, 2, 1)t1t2 = t1t4. Now, we need to look for the coset stabilizer of

Nt4t2t4N . From the last double coset we found that 42 ⇠ 41 ⇠ 43. By multiplying t4 to

the right of each of these equal names, the equality still holds. Thus 424 ⇠ 414 ⇠ 434.

This implies that N (424)
� N (42) = {e, (1, 2, 3), (1, 2), (1, 3, 2), (2, 3), (1, 3)}. From our

relation we see, (1, 2, 4)t4t2 = t4t1 ) (1, 2, 4)t4t2t4 = t4t1t4.
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From above, we can replace t1t4 by (4, 2, 1)t1t2 to achieve

(1, 2, 4)t4t2t4 = t4t1t4

= t4(4, 2, 1)t1t2

= t2t1t2

Now taking N of both sides we see Nt4t2t4N = Nt2t1t2. So, we search for

permutations that send 4 ! 2 and 2 ! 1, since these will stabilize the cosetNt4t2t4. Thus

the permutation(4, 2, 1) 2 N (424), since Nt4t2t
(4,2,1)
4 = Nt2t1t2 = Nt4t2t4 ) (4, 2, 1) 2

N (424). Notice when we add this element in to the set above we get all of S4, since

N (424)
�< (1, 3), (1, 2), (1, 3, 2), (4, 2, 1) >= S4. Therefore, the number of the single

cosets Nt4t2t4N is at most: |N |
|N(424)| = 24

24 = 1. To achieve all the equal names of this

double coset, we can conjugate t4t2t4 by all of N (424). This gives us

313 ⇠ 343 ⇠ 323 ⇠ 242 ⇠ 232 ⇠ 212 ⇠ 131 ⇠ 121 ⇠ 141 ⇠ 424 ⇠ 414 ⇠ 434.

Again, by looking at the generators of N (424) on {1, 2, 3, 4}, we can see that it

will have a single orbit of {1, 2, 3, 4}. We take a representative from this orbit, say {4},

and we note that Nt4t2t4t4 = Nt4t2 2 [42]. Therefore, four symmetric generators go back

to the double coset Nt4t2N . Therefore, we have completed the double coset enumeration

and it shows that the index of N ⇠= S4 in G is at most: 1 + 4 + 4 + 1 = 10 ) |G| 

10 ⇤ |N | = 10 ⇤ 24 = 240.

Figure 7.1: Calyey Diagram of S5 over S4
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7.2 Double Coset Enumeration of H over N

Now let H =< x, y, ttx > be a subgroup of G that is isomorphic to S4. We will

perform a manual double coset enumeration of H over N . Thus,

H = NeN [Nt4t1N

= N [Nt4t1 [Nt1t3 [Nt2t4 [Nt3t1

7.3 Double Coset Enumeration of G over H

We begin this double coset enumeration as we do with N . We note that Hen =

{Hen|n 2 H} = H. HeN will be labeled as [⇤], which contains one single coset. Now H

is a subgroup of G that contains N and N is transitive on {1,2,3,4}. Thus, by taking a

representative from this set, say 4, will give us our new double coset Ht4N , which we will

label as [4]. Now by definition, Ht4N = {Htn4 |n 2 N} = {Ht4, Ht1, Ht2, Ht3}. However,

the order of H is 120. If {Ht4, Ht1, Ht2, Ht3} are all distinct then this would allow us

to say the order of G > 240 which is a contradiction. Thus we must show that the single

cosets are not all distinct. Now,

Ht1N = Ht2N

() Ht1 = Ht2

() = Ht1t2 2 H

Notice we let H =< x, y, ttx >=< x, y, t1t2 >. Thus Ht1t2 2 H Also, since

N is 4�transitive a similar argument can be applied for t2 and t3. Therefore, only one

single coset exists in Ht4N , namely Ht4. The double coset enumeration of G over H then

becomes

G = HeN [Ht4N

= H [Ht4
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7.4 Computing Double Coset Enumeration of G over N

Given the info above, we can compute the single coset decomposition of G over N .

G = HeN [Ht4N

= H [Ht4t

= N [Nt4t1 [Nt1t3 [Nt2t4 [Nt3t1 [Nt4[

Nt4t1t4 [Nt1t3t4 [Nt2t4t4 [Nt3t1t4

Using the relations from G we know that Nt1t3 = Nt1t4 ) Nt1t3t4 = Nt1.

Also, Nt3t1 = Nt3t4 ) Nt3t1t4 = Nt3, and Nt2t4t4 = Nt2 since our t’s are of order 2.

Thus our final single coset decomposition is as follows:

G = HeN [Ht4N

= H [Ht4t

= N [Nt4t1 [Nt1t3 [Nt2t4 [Nt3t1 [Nt4[

Nt4t1t4 [Nt1 [Nt2 [Nt3

From this example we have shown that by computing the double coset enumer-

ation of both G over H and H over N we can form the double coset enumeration of G

over N . This process allows us the ability to perform the double coset enumeration over

a maximal subgroup of G and ultimately end up with the same result as the double coset

enumeration of G over N , with a much smaller Cayley diagram.
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7.4.1 Mathematical Insight

When we find the single coset decomposition of our maximal subgroup M over

N we are expressing M as the following

M = [x2TNx

where T represents the transversals for N in M .

Now computing the single coset decomposition for M in G we get a similar equation

G = [y2T 0My

where T 0 represents the transversals for M in G.

By putting the two compositions together we arrive at the composition of G

over N ,

G = [y2T 0My = [x2T,y2T 0Nxy

7.5 Double Coset Enumeration of U(3,3) over a Maximal

Subgroup

Typically, double coset enumeration is done over the control group N, as seen in

the previous examples. However, this process can get very complex and tedious. To allow

for a much easier computation, we can accomplish the same goal by doing the process of

double coset enumeration over a maximal subgroup of the image of our progenitor. Thus,

we take a N  M  G and achieve the single coset decomposition of G = [Mt0isN .

We then compute the double coset enumeration of M over N (as shown in the above

example). This leads us to the double coset enumeration of G over N .

We will now perform manual double coset enumeration of U(3, 3) over M ⇠=

PGL(2, 7). The symmetric presentation 2⇤7 : (C7 : C3) is given by: < a, b, t|a3, b7, b9 =

b2, t2, (t, a), (a�1tbt)tb)2 >, where (C7 : C3) =< a, b > and the action of N on the symmet-

ric generators is given by a ⇠ (2, 3, 4)(5, 7, 6) and b ⇠ (1, 2, 3, 5, 4, 6, 7). We factor our pro-

genitor by the relation ((2, 4, 3)(5, 6, 7)t2t1t2)2 = e, which is equivalent to t3t1t3t2t1t2 = e.
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However, instead of the double coset enumeration over N , as usual, we will be perform-

ing the double coset enumeration over M =< f(a), f(b), f(tbtbta�1btbtb2) > which is

isomorphic to PGL(2, 7).

First we need to look for the first double coset of our Cayley diagram. Since

we are doing a double coset enumeration over M, our double coset definition changes to

MwN = {Mwn
|n 2 N}. So, for our first double coset we have, MeN = {Men|n 2 N} =

{Me|e 2 N} = {M}. We will denote the first node as [⇤], which contains one single coset.

Our Cayley diagram this far is,

Figure 7.2: First Double Coset

Now N is transitive on {1, 2, 3, 4, 5, 6, 7} so it has a single orbit {1, 2, 3, 4, 5, 6, 7}.

Now taking a representative from this orbit, namely 1 and right multiplying it to the

existing double coset we get a new double coset Mt1N , which we will denote by [1].

Note, Mt1N = {Mtn1 |n 2 N} = {Mt1,Mt2,Mt3,Mt4,Mt5,Mt6,Mt7}. Now con-

sider the coset stabilizer M (1), which is equal to the point stabilizer M1. M (1) =<

(2, 3, 4)(5, 7, 6) >= {e, (2, 3, 4)(5, 7, 6), (2, 4, 3)(5, 6, 7)}. Then the number of single cosets

ofMt1N is at most |N |
|M(1)| =

21
3 = 7. Now looking at the generators ofM (1) we can see that

the orbits on {1, 2, 3, 4, 5, 6, 7} are {1}, {2, 3, 4} and {5, 6, 7}. We take a representative

from each orbit, say {1}, {2}, and {5} respectively. Now we determine to which double

coset Mt1t1,Mt1t2, and Mt1t5 belong. Since ti’s have order 2 Mt1t1 2 M 2 [⇤]. Thus

one symmetric generator goes back. From our relation we have that Mt1t2N = Mt1t5N .

Thus six symmetric generators send us to our new double coset Mt1t5 which we will

denote as [15].

Taking a look at our next double coset and using the definition we find that

Mt1t5N = {Mt1t
n
5 |n 2 N} = {Mt1t5,Mt1t7,Mt2t4,Mt1t6,Mt2t1,Mt3t2,Mt3t6,Mt2t7,

Mt3t1,Mt4t3,Mt5t3,Mt4t5,Mt5t7,Mt4t1,Mt5t2

,Mt6t5,Mt7t4,Mt6t4,Mt7t6,Mt6t2,Mt7t3}
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Next we know that M (15)
� M15 =< e >. Our relation will not increase

the number of elements in the coset stabilizing group M (15) . Thus, the number of

single cosets Mt1t5N is at most: |N |
|M(15)| =

21
1 = 21. The orbits on {1, 2, 3, 4, 5, 6, 7} are

{1},{2},{3},{4},{5},{6}, and {7}. Taking a representative from each orbit we must see

to which double coset Mt1t5t1,Mt1t5t2,Mt1t5t3,Mt1t5t4,Mt1t5t5,Mt1t5t6, and Mt1t5t7

belong. Clearly, Mt1t5t5 2 [1]. From our relation we also have that Mt1t5t1 = Mt5.

Thus two symmetric generators will go back to [1]. Through further investigation and

many conjugations of our relation we find that

Mt1t5t2 = Mt4t6

Mt1t5t4 = Mt7t2

Mt1t5t6 = Mt7t2

Mt1t5t7 = Mt4t6

From these relations we find that four symmetric generators will loop back into

the double coset [15]. Now, the only symmetric generator that sends us forward is {3}.

Thus our new double coset is Mt1t5t3N , which we will label as [153].

Now consider the coset stabilizer of N (153). We know that N (153) = N153 =<

e >. After conjugating our relation and simplifying we have that Mt1t5t3 = Mt3t1t5 =

Mt5t3t1. Thus we look in N for permutations that send 1 ! 3, 5 ! 1 and 3 ! 5

and as well as permutations that send 1 ! 5, 5 ! 5, and 3 ! 1. Thus Mt1t5t3 �<

(1, 3, 5)(2, 7, 6)(1, 5, 3)(2, 6, 7) >. Thus, the number of single cosets Mt1t5N is at most:
|N |

|M(153)| =
21
3 = 7. In order to find the other six distinct cosets with three equal names for

each in Nt1t5t3N we find the right cosets of M (153) in N . We will take the following right

cosets, and put them in a set T . So T = {e, (2, 3, 4)(5, 7, 6), (1, 5, 2)(3, 4, 6), (2, 4, 3)(5, 6, 7),

(1, 7, 6, 4, 5, 3, 2), (1, 7, 4)(3, 5, 6), (1, 6, 2)(4, 7, 5)}. Taking these representatives and conju-

gating them by the three di↵erent names we found above, we will get the other six distinct

cosets in Nt1t5t3N with their three names. From above we found 153 ⇠ 315 ⇠ 531.

153 ⇠ 315 ⇠ 531 conjugated by (2, 3, 4)(5, 7, 6) yields 174 ⇠ 417 ⇠ 741

153 ⇠ 315 ⇠ 531 conjugated by (1, 5, 2)(3, 4, 6) yields 524 ⇠ 452 ⇠ 245

153 ⇠ 315 ⇠ 531 conjugated by (2, 4, 3)(5, 6, 7) yields 162 ⇠ 216 ⇠ 621

153 ⇠ 315 ⇠ 531 conjugated by (1, 7, 6, 4, 5, 3, 2) yields 732 ⇠ 273 ⇠ 327

153 ⇠ 315 ⇠ 531 conjugated by (1, 7, 4)(3, 5, 6) yields 765 ⇠ 576 ⇠ 657

153 ⇠ 315 ⇠ 531 conjugated by (1, 6, 2)(4, 7, 5) yields 643 ⇠ 364 ⇠ 436
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Looking at the generators of M (153), we see that the orbits on {1,2,3,4,5,6,7} are

{4},{1,3,5}, and {2,7,6}. Taking a representative from each orbit, say {4},{3}, and {2}

respectively, we need to find to which double coset Mt1t5t3t4, Mt1t5t3t3, and Mt1t5t3t2

belong. Note Mt1t5t3t3 2 [15], since all ti’s are of order 2. Now using the our relations

we have that,

Mt1t5t3t4 = Mt1t3t5

Mt1t5t3t2 = Mt1t3t5.

From above, we see that a total of 3 symmetric generators go back to [15] while

the other 4 loop back into the current double coset. This completes the double coset

enumeration of U(3, 3) over the maximal subgroup M ⇠= PGL(2, 7).

Figure 7.3: Caley Graph of U(3, 3)
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Now we will perform the double coset of U(3, 3) over H ⇠=< a, b, tbtbta�1btbtb2 >

G = HeN [Ht1N [Ht1t5N [Ht1t5t3N

= H [Ht1 [Ht2 [Ht3 [Ht4 [Ht5 [Ht6 [Ht7[

Ht1t5 [Ht1t7 [Ht2t4 [Ht1t6 [Ht2t1 [Ht3t2[

Ht3t6 [Ht2t7 [Ht3t1 [Ht4t3 [Ht5t3 [Ht4t5[

Ht5t7 [Ht4t1 [Ht5t2 [Ht6t5 [Ht7t4 [Ht6t4[

Ht7t6 [Ht6t2 [Ht7t3 [Ht1t5t3 [Ht1t7t4[

Ht5t2t4 [Ht1t6t2 [Ht7t3t2 [Ht7t6t5 [Ht6t4t3.

Similar to the example above, we will now compute the double coset enumeration

of H over N .

H = NeN [Ntbtbta�1btbtb2N

= N [Nt6t2t4t5t3 [Nt3t1t4t6t7 [Nt7t4t3t6t2[

Nt4t1t5t3t2 [Nt3t1t6t7t1 [Nt6t1t6t1 [Nt3t4t5t2t1[

Nt4t6t4t6 [Nt7t1t7t1 [Nt5t7t3t2t1 [Nt5t3t5t3[

Nt6t7t6t7 [Nt5t2t5t2 [Nt4t1t4t1 [Nt5t4t7t6t1

Combining the two decompositions above we could find the single coset decom-

position of G over N which would result in 576 single cosets. If this were to be further

investigated, one should compute the single cosets over N as needed.
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Chapter 8

Use of Iwasawa’s Theorem

8.1 Use of Iwasawa’s

We consider

G ⇠= 2⇤4:S4
(xt0)11,(yxt0)11,y=(t0t1)3

A presentation for the group G is as follows:

< x, y, t|x4, y2, (xy)3, t2, (t, y), (tx, y), (xt)11, (yxt)11, y = (ttx)3 >

where x ⇠ (0, 1, 2, 3) and y ⇠ (2, 3).

The manual double coset enumeration was done by Lamies AlNazzal [Lam04],

and the corresponding Cayley diagram is given as follows:
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Figure 8.1: Caley Diagram of L2(23) over A4

Iwasawa’s lemma consists of three critertion to prove that a group G is simple.

If G acts on X faithfully and primitively, G is perfect, and 9 x 2 X and a normal abelian

subgroup K of Gx such that the conjugates of K 2 G generate G, then G is simple.

We will first show that G acts on X faithfully and primitively.

Proof. Now from our Cayley diagram we have that G acts on

X = {N,Nt0N,Nt0t1N,Nt0t1t0N,Nt0t1t2N,Nt0, t1t0t2N,Nt0t1t2t0N,Nt0t1t2t1N,

Nt0t1t2t3N,Nt0t1t2t0t2N,Nt0t1t2t0t1N,Nt0t1t2t0t3N,Nt0t1t2t3t0N,

Nt0t1t2t3t1N,Nt0t1t2t0t3t2N,Nt0t1t2t3t1t0N}

G acts on X =) 9 a homomorphism f : G ! S253. By the First Isomorphism

Theorem then G/kerf ⇠= f(G). If the kerf = 1 then f is faithful. Now N acts as the

identity element of G, so we cannot have non identity elements of G be taken to non-

identity elements of Sx. G acts on X faithfully if gx = x, 8x 2 X exactly when g = e.

From our cayley diagram above we see that |G| � 6072. However, theorem 2.21 gives

|G| = 253 ⇤ |G1| = 253⇥ 24 = 6072. Therefore the kerf = 1 and the action of G on X is

faithful.
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Now show that G is primitive by showing that G is transitive and there are no

nontrivial blocks. Now from the Cayley diagram it is apparent that G is transitive on X.

Since we will use this argument frequently, a proof of this statement is given below.

Theorem 8.1. If a group G can be represented as a Cayley diagram, then G is transitive

Proof. Given that G can be represented as a Cayley diagram, we see that every double

coset is given a label, say NwN . Now transitivity would imply that there exist an

element(s) of g 2 G such that you can go from one single coset to any other in the Cayley

diagram. Assume we pick an arbitrary single coset, Nw̄ that lives inside the double coset

NwN . Then by the definition of double coset, i.e. Nwn = {Nwn
|n 2 N}, there exists an

n 2 N such that Nw̄n = Nw. Now by right multiplying by w�1, we arrive at N . Clearly,

from here we can then multiply by the appropriate w to then arrive at whichever double

coset we desire. Since we can move through the Cayley diagram my multiplying by the

correct elements of G, this shows that G is transitive.

Continuing we will show that G has no nontrivial blocks. Recall that the prop-

erty of a block states that |B| must divide |X|. Therefore, the only possible sizes for a

block are 11 and 23. Let B be a nontrivial block, then transitive allows for N 2 B. Then

if Nt0 2 B then Bt0 = {N,Nt0}. By the definition of a block, if we take elements of

G and multiply by B, we will see that B contains the entire double coset Nt0N . ** As

short hand, if one of the single cosets of G over N is in B, then the entire double coset

containing that single coset is in B. Therefore, B={N ,Nt0N}={N,Nt0, Nt1, Nt2, Nt3}.

Recall the definition of a block, 8g 2 G, gB = B or gB \ B = ;. Now let g = t1and

compute gB. Now

B = {Nt1, Nt0t1, Nt1t1 = N,Nt2t1, Nt3t1}, since N 2 B \Bt0, B = Bt0. Now

from ** B = {N,Nt0N,Nt0t1N} and |B| = 17. So,

B = {N,Nt0, Nt1, Nt2, Nt3, Nt0t1, Nt1t2, Nt1t3, Nt1t0, Nt2t3, Nt2t0, Nt2t1,

Nt0t2, Nt0t3, Nt3t0, Nt3t1, Nt3t2}. Now let g = t2 and compute gB. We now see that

B = {Nt2, · · · , Nt2t2, Nt0t1t2, · · · }. Thus Nt0t1t2N 2 B. Since N is common

and either gB = B or gB \ B = ;, we have gB = B. Now |B| = 41, but |X| = 253 and

the only divisors of 253 are 1, 11, 23, and 253. This concludes that if B is a nontrivial

block and N 2 B then if Nt0 2 B B = X.
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Through inspection, of the Cayley diagram, we see that the only time we can

have a block of order 23 is if we include Nt0,however from above we see if we include this

single coset the result turns out to be the entire set X. Thus since we cannot form a block

of 11 or 23, G contains no non trivial blocks and is transitive, achieving G is primitive.

Next we show that G = G0. Now we know that N = S4 ✓ G implying S0
4 ✓ G0.

The derived group of S4 is given as S0
4 =< (1, 2, 3), (2, 3, 4) >. Now (1, 2, 3) = yx2yxy

and (2, 3, 4) = x2yx3. Thus we know yx2yxy, x2yx3 2 G0. From above we see that G is

generated by x, y, t but our relations give us y = t0t1t0t1t0t1 and x3t0t1t2t3t0t1t2t3t0t1t2 =

1 =) x = t0t1t2t3t0t1t2t3t0t1t2. Thus x, y can be written in terms of t0s. This allows us

to say G is generated by the t0is, hence G =< t0, t1, t2, t3 > .

Now,

yt1t0 = t0t1t0t1

yt1t0 = [0, 1]

Thus this implies yt1t0 2 G0. So far, G0
�< yt0t1, x

2yx3, yx2yxy >. Since G0 E G, then

for any a 2 G0 and 8g 2 G, ag 2 G0. So yt0t1 = t0t1t0t1 and we know (1, 0, 2) 2 S0
4 ✓ G0.

Thus if (1, 0, 2) 2 G0, then its inverse must also live there. Hence, (1, 2, 0) 2 G0. Note

that (1, 2, 0) = t1t0t2t1t0t2t1t0t2t1t0 and yt0t1 = t0t1t0t1.

Now,

(1, 2, 0)yt0t1 = t1t0t2t1t0t2t1t0t2t1t0t0t1t0t1

= t1t0t2t1t0t2t1t0t2t0t1
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Therefore t1t0t2t1t0t2t1t0t2t0t1 2 G0 Now conjugate the above element by t1t0t2 2

G. Note this element will be in G0.

t1t0t2t1t0t2t1t0t2t0t
t1t0t2
1 = t2t0t1t1t0t2t1t0t2t1t0t2t0t1t1t0t2

= t1t0t2t1t0 2 G0

Now we must multiply yt0t1 = t0t1t0t1 by the element above and since G0 is a

group the result will lie in G0.

So,

t0t1t0t1t1t0t2t1t0 = t0t1t2t1t0

Lastly, by conjugating this element by t0t1 2 G we achieve t0t1t2t1t
t0t1
0 =

t1t0t0t1t2t1t0t0t1 = t2.

Now t2 2 G0. Conjugating t2 by x, x2, and x3 gives t3, t0, t1 respectively. How-

ever, G � G0
�< t0, t1, t2, t3 >= G. Thus G = G0 and G is perfect.

Finally, we require x 2 X and a normal abelian subgroup K  Gx such that the

conjugates of K generate G. Recall, G1 = N = S4. Now let

K =< (1, 3)(2, 0), (1, 0)(2, 3) >. So, (0, 2)(1, 3) = t0t1t2t3t1t0t1t3t0t2t3t1.
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Chapter 9

Double Coset Enumeration of

L2(8) over D18

A symmetric presentation of 2⇤9 : D18 is given by:

G < x, y, t >:= Group < x, y, t|x�9, y2, (x�1
⇤ y)2, t2, (t, y ⇤ x), (x4 ⇤ tx)9, (y ⇤ t)7, (x ⇤ t ⇤

tx
2
⇤ t)2 >; where D18 =< x, y >, and the action of N on the symmetric generators is

given by x ⇠ 1, 2, 3, 4, 5, 6, 7, 8, 9), y ⇠ (1, 9)(2, 8)(3, 7)(4, 6). We factor G by using the

following relations to obtain

2⇤9:D18
(xt1t3t1)2,(x4t2)9,(yt1)7

⇠= L2(8)

9.1 Manual Double Coset Enumeration

We begin by looking for our first double coset. Recall the definition of a double

coset, NwN = {Nwn
|n 2 N}. Thus we have, NeN = {Nen|n 2 N} = {Nn|n 2 N} =

{N}. Standardly, we will denote NeN as [⇤], and N contains one single coset. N is

transitive on {1, 2, 3, 4, 5, 6, 7, 8, 9}, so it has a single orbit {1, 2, 3, 4, 5, 6, 7, 8, 9}. Now

take a representative, say {1}, from this orbit, and find which double coset Nt1 belong.

This will generate a new double coset, Nt1N , which we will label as [1]. By definition,

Nt1N = {Ntn1 |n 2 N} = {Nt1, Nt2, Nt3, Nt4, Nt5, Nt6, Nt7, Nt8, Nt9}. Now we con-

sider the coset stabilizer N (1). The coset stabilizer of Nt1 is equal to the point stabilizer

N1. Thus, N (1) = N1 =< (2, 9)(3, 8)(4, 7)(5, 6) >. Then the number of single cosets in

Nt1N is at most |N |
|N(1)| =

18
2 = 9 Observing the generators of N (1), we can see that the
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orbits on {1, 2, 3, 4, 5, 6, 7, 8, 9} are {1}, {3, 8}, {2, 9}, {4, 7}, and {5, 6}. Taking a represen-

tative from each orbit, say {1}, {3}, {2}, {4}, and {5} respectively we wish to determine to

which double cosetNt1t1, Nt1t3, Nt1t2, Nt1t4, andNt1t5 belong. Since our t0s are of order

two we see that Nt1t1 = N 2 [⇤]. Thus one symmetric generator will send us back to the

double coset labeled [⇤] Consider the following relation: t1t3 = (1, 3)(4, 9)(5, 8)(6, 7)t1. By

taking N to both sides of the equation, Nt1t3 = Nt1. Since the orbit containing 3 has two

elements then two symmetric generators will loop back into the double coset labeled [1].

Now we don’t have any relations involving Nt1t2,and Nt1t4. However, through the use of

MAGMA we find that Nt1t4N = Nt1t5N thus the only two double cosets left to investi-

gate are [12], and [14]. Next, we will consider the double coset Nt1t2N . The coset stabi-

lizer N (1,2)
� N1,2 = {e}. Considering our given relations we try to see if we can increase

our coset stabilizing group. We have t1t2 = (1, 9, 8, 7, 6, 5, 4, 3, 2)t6t5 =) Nt1t2 = Nt6t5.

Thus (1, 6)(2, 5)(3, 4)(7, 9) 2 N (1,2) since Nt1t
1,6)(2,5)(3,4)(7,9)
2 = Nt6t5, but Nt1t2 = Nt6t5

, hence (1, 6)(2, 5)(3, 4)(7, 9) stabilizes the coset Nt1t2. Thus the number of single cosets

in Nt1t2N is at most |N |
|N(1,2)| = 18

2 = 9. To get the other distinct cosets we must

find the right distinct cosets of N (1,2). This will give us a set of transversals that will

contain 2 equal names in each. The following set is the set of transversals, T : T =

{e, (1, 2, 3, 4, 5, 6, 7, 8, 9), (1, 4, 7)(2, 5, 8)(3, 6, 9), (1, 9, 8, 7, 6, 5, 4, 3, 2), (1, 3, 5, 7, 9, 2, 4, 6, 8),

(1, 5, 9, 4, 8, 3, 7, 2, 6), (1, 8, 6, 4, 2, 9, 7, 5, 3), (1, 6, 2, 7, 3, 8, 4, 9, 5), (1, 7, 4)(2, 8, 5)(3, 9, 6)}.

If we take a representative from the above set and conjugate Nt1t2 = Nt6t5, which we

will write as 12 ⇠ 65 (for easier notational purposes), we will gain the other eight distinct

cosets in Nt1t2.

(12 ⇠ 65)e = 12 ⇠ 65 (12 ⇠ 65)(1,2,3,4,5,6,7,8,9) = 23 ⇠ 75

(12 ⇠ 65)(1,4,7)(2,5,8)(3,6,9) = 45 ⇠ 98 (12 ⇠ 65)(1,9,8,7,6,5,4,3,2) = 91 ⇠ 54

(12 ⇠ 65)(1,3,5,7,9,2,4,6,8) = 34 ⇠ 87 (12 ⇠ 65)(1,5,9,4,8,3,7,2,6) = 56 ⇠ 19

(12 ⇠ 65)(1,8,6,4,2,9,7,5,3) = 89 ⇠ 43 (12 ⇠ 65)(1,6,2,7,3,8,4,9,5) = 67 ⇠ 21

(12 ⇠ 65)(1,7,4)(2,8,5)(3,9,6) = 78 ⇠ 32

Looking at the generators of the coset stabilizing group of N (1,2), we can compute the

orbits to be {8}, {1, 6}, {2, 5}, {3, 4}, and {7, 9}. Taking a representative from each orbit,

say {8}, {1}, {2}, {3}, and {7} respectively we wish to determine to which double coset

Nt1t2t8, Nt1t2t1, Nt1t2t2, Nt1t2t3, and Nt1t2t7 belong. Again, since our t0s are of order

2 then Nt1t2t2 2 [1]. Since the orbit containing 2 has two elements, then two symmetric
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generators go back to [1]. Through the use of MAGMA we obtain two relations: t1t2t1 =

x4t1t9 and t1t2t7 = yx4t1t2. Taking N to right side of each of these relations we find that

Nt1t2t1 = Nt1t9 2 Nt1t2N and Nt1t2t7 = Nt1t2 2 Nt1t2N . Notice that each of the

orbits containing 1 and 7 each have order 2. Thus 2 + 2 symmetric generators will

loop back inside to [12]. In addition through the use of MAGMA we have found that

Nt1t2t8N = Nt1t4N and Nt1t2t3N = Nt1t4N . Therefore a total of 2 + 1 symmetric

generators will send us to the double coset [14].

Next we investigate the double coset Nt1t4N , [14]. The coset stabilizer N (1,4)
�

N1,4 = {e}. Considering our given relations we try to see if we can increase our coset

stabilizing group. We have t1t4 = (1, 9, 8, 7, 6, 5, 4, 3, 2)t8t5 =) Nt1t4 = Nt8t5. Thus

(1, 8)(2, 7)(3, 6)(4, 5) 2 N (1,4) since Nt1t
(1,8)(2,7)(3,6)(4,5)
4 = Nt8t5, but Nt1t4 = Nt8t5 ,

hence (1, 8)(2, 7)(3, 6)(4, 5) stabilizes the coset Nt1t4. Thus the number of single cosets

in Nt1t4N is at most |N |
|N(1,4)| = 18

2 = 9. To get the other distinct cosets we must

find the right distinct cosets of N (1,4). This will give us a set of transversals that will

contain 2 equal names in each. The following set is the set of transversals, T : T =

{e, (1, 2, 3, 4, 5, 6, 7, 8, 9), (1, 9, 8, 7, 6, 5, 4, 3, 2), (1, 3, 5, 7, 9, 2, 4, 6, 8), (1, 8, 6, 4, 2, 9, 7, 5, 3),

(1, 4, 7)(2, 5, 8)(3, 6, 9), (1, 7, 4)(2, 8, 5)(3, 9, 6), (1, 5, 9, 4, 8, 3, 7, 2, 6), (1, 6, 2, 7, 3, 8, 4, 9, 5)}.

If we take a representative from the above set and conjugate Nt1t4 = Nt8t5, which we

will write as 14 ⇠ 85 again for easier notational purposes, we will gain the other eight

distinct cosets in Nt1t4.

(14 ⇠ 85)e = 14 ⇠ 85 (14 ⇠ 85)(1,2,3,4,5,6,7,8,9) = 25 ⇠ 96

(14 ⇠ 85)(1,9,8,7,6,5,4,3,2) = 93 ⇠ 74 (14 ⇠ 85)1,3,5,7,9,2,4,6,8) = 36 ⇠ 17

(14 ⇠ 85)(1,8,6,4,2,9,7,5,3) = 82 ⇠ 63 (14 ⇠ 85)(1,4,7)(2,5,8)(3,6,9) = 47 ⇠ 28

(14 ⇠ 85)(1,7,4)(2,8,5)(3,9,6) = 71 ⇠ 52 (14 ⇠ 85)(1,5,9,4,8,3,7,2,6) = 58 ⇠ 39

(14 ⇠ 85)(1,6,2,7,3,8,4,9,5) = 69 ⇠ 41

Looking at the generators of the coset stabilizing group of N (1,4), we can compute the

orbits to be {9}, {1, 8}, {2, 7}, {3, 6}, and {4, 5}. Taking a representative from each orbit,

say {9}, {1}, {2}, {3}, and {4} respectively we wish to determine to which double coset

Nt1t4t9, Nt1t4t1, Nt1t4t2, Nt1t4t3, and Nt1t4t4 belong. Again, since our t0s are of order

2 then Nt1t4t4 2 [1]. Since the orbit containing 2 has two elements, then two symmetric

generators go back to [1]. However through the use of MAGMA we have that t1t4t1 =

yx2t6 2 [1]. Thus a total of 4 = 2 + 2 symmetric generators go back to the double
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Figure 9.1: Cayley Diagram of L2(8)

coset Nt1N . In addition we also have the relations t1t4t9 = t2t3, t1t4t2 = x3yt9t1, and

t1t4t3 = x4yt2t5 and applying N to both sides to each of these relations we have the

following:

Nt1t4t9 = Nt2t3 2 [12] Nt1t4t2 = Nt9t1 2 [12] Nt1t4t3 = Nt1t4 2 [14]

This completes the double coset enumeration of L2(8) over D18.

9.2 Iwasawa’s Lemma to Show G ⇠= L2(8)

In order to prove that a group is simple using Iwasawa’s Lemma, we must show

the following three criteria hold:

(1) G acts faithfully and primitively X

(2) G is perfect (G = G0)

(3) There 9x 2 X and a normal abelian subgroup K of Gx such that the

conjugates of K generate G.

9.2.1 G Acts Faithfully X

Let G act on X = {N,Nt1N,Nt1t2N,Nt1t4N}. G acts on X =) there exists

a homomorphism

f : G �! Sx (|x| = 18)
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By the First Isomorphism Theorem we have

G
kerf

⇠= f(G)

If ker(f) = 1 then we say f is faithful. Recall Gx represents the stabilizer of x in G.

Now, G1 = N , as routine, since the only elements of N . Thus by definition 2.23

|G| = 28 ⇤ |G1|

= 28 ⇤ |N |

= 28 ⇤ 18

= 504

=) |G| = 504

From our Cayley diagram, |G|  504. However, from above |G| = 504 implying that

ker(f) = 1. Since ker(f) = 1 then G acts faithfully on |X|.

9.2.2 G Acts Primitively on X

To show that G is primitive, we must show that G is transitive on X and there

exists no nontrivial blocks of X. From theorem 8.1 our Cayley diagram of G over N

allows us to conclude that G is transitive. In addition, as stated in definition 2.26 if G is

a transitive group on X and B is a nontrivial block then |Bg|||X|, 8g 2 G. By observation

of our Cayley diagram we see that the only divisors of |X| = 28 are 1, 2, 4, 7, 14 and 28

and we cannot create blocks of these sizes. Thus, we conclude that G is primitive.

9.2.3 G is Perfect, G0 = G

Next we want to show that G = G0. Now D18  G, so D0
18  G0. Now the

derived group, D0
18 =< (1, 2, 3, 4, 5, 6, 7, 8, 9) > G0, where x ⇠ (1, 2, 3, 4, 5, 6, 7, 8, 9).

Also, G is generated by < x, y, t > but from our relations we see that y = t1t9t1t9t1t9t1

and x2 = t1t3t1t2t4t2 =) x = (t1t3t1t2t4t2)5. Since x, y can be written in terms of t0s

then G =< t1, t2, t3, t4.t5, t6, t7, t8, t9 >.

Since G0/G then for any a 2 G0 and 8g 2 G then ag 2 G0. Now since,

N 0 < x > G then x2 2 G0. Thus,
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x2 = t1t3t1t2t4t2

Conjugating both sides by t1t2 we get

(x2)t1t2 = (t1t3t1t2t4t2)
t1t2

t2t1x
2t1t2 = t2t1t1t3t1t2t4t2t1t2

x2t4t3t1t2 = t2t1t1t3t1t2t4t2t1t2

x2 = t2t1t1t3t1t2t4t2t1t2t2t1t3t4

Since our t0s are of order 2 some t0s will cancel and we are left with,

x2 = t2t3t1t2t4t2t3t4

Recall that the derived group is generated by the commutators thus the commutator

[2, 4], [4, 3] 2 G0. Using this fact we simplify to achieve the following:

x2 = t2t3t1t2t4t2t3t4

= t2t3t1[2, 4]t4t3t4

= t2t3t1[2, 4][4, 3]t3 2 G0

Now if we conjugate t2t3t1[2, 4][4, 3]t3 by t3 and right multiply by the inverse of the

commutators [2, 4], [4, 3] 2 G0 we will have:

t3t2t3t1

=) [3, 2]t2t1 2 G0

Now left multiplying by the inverse of the commutator [3,2] we obtain t2t1 2 G0
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From our double coset enumeration we also have relation t1t2t1 = x4t1t9 =)

x4 = t1t2t1t9t1. Since x4 2 N 0
 G0 then t1t2t1t9t1 2 G0. Now [1, 9] 2 G0, so

t1t2t1t9t1 2 G0

=) t1t2[1, 9]t9

=) t9t1t2 2 G0

From our steps above we have to show that t9t1t2 2 G0 and t2t1 2 G0. Since, G0

is a group and is closed under multiplication then

(t9t1t2)(t2t1) = t9t1t2t2t1 = t9 2 G0

Now conjugating t9 2 G0 by all powers of x shows that t1, t2, t3, t4, t5, t6, t7, t8, t9 2

G0, but G � G0
� < t1, t2, t3, t4, t5, t6, t7, t8, t9 >= G. Thus G = G0 and G is perfect.

9.2.4 Conjugates of a Normal Abelian Subgroup K Generate G

Now we require x 2 X and a normal abelian subgroup K  Gx such that the

conjugates of K generate G. Recall, G1 = N = D18. Let K =< (1, 2, 3, 4, 5, 6, 7, 8, 9) >.

Now since K is normal then for any a 2 K and 8g 2 G then ag 2 K.

Since x2 2 K and x2 = t1t3t1t2t4t2. Now, conjugating the relation x2 =

t1t3t1t2t4t2 by t1 2 G the result will lie in K, since K is normal. Thus,

x2 = t1t3t1t2t4t2

=) (x2)t1 = (t1t3t1t2t4t2)
t1

=) t1x
2t1 = t1t1t3t1t2t4t2t1

=) x2t3t1 = t1t1t3t1t2t4t2t1

=) x2 = t1t1t3t1t2t4t2t1t1t3

Since our t0s are of order 2 some t0s will cancel and we are left with,

x2 = t3t1t2t4t2t3 2 K
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Now conjugating t3t1t2t4t2t3 by t3 gives us t1t2t4t2 2 K. Next if we conjugate t1t2t4t2 2 K

by t2t4 2 G we get (t1t2t4t2)t2t4 = t4t2t1t2 2 K.

As a result from our double coset enumeration we also have the relation x3 =

t1t2t6t1t2. Now, conjugating this relation by t1 2 G the result will again lie in K. Thus,

x3 = t1t2t6t1t2

=) (x3)t1 = (t1t2t6t1t2)
t1

=) t1x
3t1 = t1t1t2t6t1t2t1

=) x3t4t1 = t1t1t2t6t1t2t1t1t4

=) x3 = t2t6t1t2t4

Therefore we have t2t6t1t2t4 2 K and t4t2t1t2 2 K. Since, K is a group and is

closed under multiplication then

(t2t6t1t2t4)(t4t2t1t2) = t2t6t2 2 K

Finally, conjugating t2t6t2 by t2 2 G we see t2t6t
t2
2 = t6 2 K. Now con-

jugating t6 2 K by all powers of x shows that t1, t2, t3, t4, t5, t6, t7, t8, t9 2 K, but

= G < t1, t2, t3, t4, t5, t6, t7, t8, t9 >. Thus the conjugates of K generate G. Therefore

by Iwasawa’s Lemma, G ⇠= L2(8) is simple.

9.3 J1 is Simple

We will now show that G = J1, which was found from the progenitor 7⇤3 :m S3

is simple. However, since J1 is such a large group we will have to MAGMA verify all

three conditions of the lemma.

To show G is transitive and primitive we normally would construct a Cayley

diagram and show there exists no non-trivial blocks, where G acts on the set X consist-

ing of the cosets from the double coset enumeration. Now completing the double coset

enumeration over the maximal subgroup 2•A5  G is both transitive and primitive. The

code below verifies the above statements.

> G<x,y,t>:=Group<x,y,t|x^3,y^2,(x*y)^2,t^7,t^x=t^2, (y*t)^15,

(y*t^2)^15,(x*y*t^3)^5>;
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> f,G1,k:=CosetAction(G,sub<G|x,y>);

> CompositionFactors(G1);

G

| J1

1

> M:=MaximalSubgroups(G1);

> M;

Conjugacy classes of subgroups

------------------------------

[1] Order 42 Length 4180

Permutation group acting on a set of cardinality 29260

Order = 42 = 2 * 3 * 7

[2] Order 110 Length 1596

Permutation group acting on a set of cardinality 29260

Order = 110 = 2 * 5 * 11

[3] Order 114 Length 1540

Permutation group acting on a set of cardinality 29260

Order = 114 = 2 * 3 * 19

[4] Order 60 Length 2926

Permutation group acting on a set of cardinality 29260

Order = 60 = 2^2 * 3 * 5

[5] Order 120 Length 1463

Permutation group acting on a set of cardinality 29260

Order = 120 = 2^3 * 3 * 5

[6] Order 168 Length 1045

Permutation group acting on a set of cardinality 29260

Order = 168 = 2^3 * 3 * 7

[7] Order 660 Length 266

Permutation group acting on a set of cardinality 29260

Order = 660 = 2^2 * 3 * 5 * 11

> C:=Conjugates(G1,M[5]‘subgroup);

> C:=SetToSequence(C);

Recall when we are performing double coset enumeration

over a maximal subgroup we have to make sure that our N

lies inside the maximal subgroup.

> for i in [1..#C] do if f(x) in C[i] and f(y) in C[i] then i;

end if; end for;

> 189

> C189:=C[189];

> f2,G2,k2:=CosetAction(G1,C189);

> IsPrimitive(G2);
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true

Now we must show that G is perfect by showing G = G0. The code below

confirms G is perfect.

> D:=DerivedGroup(G2);

> D eq G2;

true

Finally we must find a normal abelian subgroup K  G1 = N such that the

conjugates of K generate G. This step is shown in the code given below:

> NL:=NormalLattice(C189);

> NL;

> IsAbelian(NL[2]);

true

> sub<G1|NL[2]^G1> eq G1;

true

By the use of MAGMAwe have shown that J1 is simple. For further investigation

and completeness, one should perform the double coset enumeration over the maximal

subgroup by hand.
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Chapter 10

Conclusion

As we came to the end of our research, we began to concentrate our attention

on Robert Curtis’ [Cur07] example of how M24 was generated by seven involutions, men-

tioned in chapter 1. As a result of his findings we investigated numerous progenitors of

all di↵erent types in the hope of finding sporadic groups. We wrote such progenitors on

many groups with no thinking behind the choice of our control groups. We then searched

for a method to find a more e�cient way to choose a control group N , that upon writing

our progenitor would generate a homomorphic image of a target sporadic group. We note

that each sporadic group is simple and thus is generated by involutions (Feit Thompson

Theorem). Knowing M24 was simple, [Cur07] used a maximal subgroup, M of M24 and

found an element of order two that was not contained in M which then would generate

M24. Expanding on this idea we came up with the following observation:

Lemma 10.1. If G =< t1, t2, · · · , tn > where |ti| = 2, for 1  i  n, and N =

Normalizer(G, {< t1 >,< t2 >, · · · , < tn >}) where N acts transitively on {< t1 >

,< t2 >, · · · , < tn >}, then G is a homomorphic image of the progenitor 2⇤n : N

Curtis also proven the following theorem:

Theorem 10.2. Any finite non-abelian simple group is an image of a progenitor of form

P = 2⇤n : N , where N is transitive subgroup of the symmetric group of Sn.

The above theorem and lemma allowed us to prove a corollary to this theorem.
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Corollary 10.3. Let G be a non-abelian simple group with H is a proper subgroup of

G and assume 9t 2 G such that |t| = 2 and G =< H, t >. Then G is a homomorphic

image of 2⇤n : H, where H is a transitive subgroup of Sn. Moreover, H has a faithful

permutation representation representation of the cosets of H over K, where K is the

centralizer of t in H.

Proof. Let G be non-abelian and simple. Let H be a proper subgroup of G with t 2 G

such that t /2 H, |t| = 2 and G =< H, t >. We will now show that

G =< tH >. < tH > is normalized by H and t. Therefore,

G =< H, t >=< tH >, otherwise < tH > 6= 1 / G, but G is simple.

Thus G = {t1, t2, · · · , tn}, |ti| = 2 for 1  i  n. By theorem 2.7 we can define a

homomorphism � : 2⇤n : H ! G given by �(ti) = ti and �(H) = H. We note that

�(H) = H, ti has n conjugates under �(H), and �(H) acts as H on the n conjugates of

ti by conjugation implying that G is a homomorphic image of 2⇤n : H. To show that H

is a transitive subgroup of Sn we must show H acts faithfully on the set {t1, t2, · · · , tn}

by conjugation. Clearly, H is transitive on n letters, since {t1, t2, · · · , tn} was generated

by tHi . Lastly, to show that H acts faithfully on {t1, t2, · · · , tn} then the only element

that commutes with each ti must be the identity element. Assume by contradiction, that

9 h 2 H 6= Id such that tHi = ti for 1  i  n. Therefore, tih = hti for 1  i  n,

but G =< t1, t2, · · · , tn >. Thus h commutes with g, 8g 2 G. Therefore, h 2 Z(G)

but G is simple and Z(G) / G implies Z(G) = G, but G is non-abelian, a contradiction.

Therefore, H is a transitive subgroup of Sn that acts faithfully.

We note that ourH is written on the same number of letters that G is written on,

but we want to find a transitive and faithful permutation representation of H of degree n.

Allowing K  H, with K equal to the centralizer of t in H, we find that the right cosets

of H in K will always generate a transitive and faithful permutation representation. To

show this we must first show that K is a subgroup of H. We note that K is not empty

since e 2 K, (tei = ti). Now let h1 2 K,h2 2 K then show h1 ⇤ h
�1
2 2 K. Now if h 2 K

then h�1
2 K since
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thi = ti

h�1tih = ti

(h�1tih)
h�1

= th
�1

i

hh�1tihh
�1 = th

�1

i

ti = th
�1

i

Now h1 2 K =) th1
i = ti and h2 2 K =) h�1

2 2 K, from above. Thus h�1
2 2 K =)

t
h�1
2

i = ti. So,

th1
i t

h�1
2

i = titi = e 2 K

Thus by the one step subgroup test K is a subgroup of H. By Theorem 2.9 we know

that H over K is transitive on the n letters. It is left to show that the action of H on

the cosets is faithful. We note that Khi = Khj () thi
i = t

hj

i , since if

Khi = Khj

() Khih
�1
j = K

() hih
�1
j 2 K

() t
hih

�1
j

i = ti

() thi
i = t

hj

i

Thus, if 9 h 2 H such that Khih = Khi then thih
i = thi

i =) [thi
i ]h = thi

i . So

thi = ti for all 1  i  n implies h 2 Z(G) since G =< t1, t2, · · · , tn >. Now G is simple

gives h = 1. Therefore H acts faithfully on H over K .

In light of the above corollary Dustin Grindsta↵ and I have developed a pro-

gram in MAGMA to find such control groups, H. Corollary 10.3 implies that given a

subgroup, H of such a group G, we can always find a transitive and faithful permutation

representation on the cosets of a subgroup K of H. The program is presented below.

load "Simple Group";
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count:=0;

SG:=Subgroups(G);

for i in [1..#SG] do for t in G do

if Order(t) eq 2 and t notin SG[i]‘subgroup and

sub<G|SG[i]‘subgroup,t> eq G then

H:=SG[i]‘subgroup;

K:=Centraliser(H,t);

f,N,k:=CosetAction(H,K);

"=============================================";

"2 *",Index(H,K),": N";

"t =", t;

"N = \n", N;

"\n", CompositionFactors(N);

"\n", FPGroup(N);

"\nStabiliser of 1 in N\n", Stabiliser(N,1);

"\n\n\n";

count:=count+1;

break; end if; end for; end for;

count;

From running the above program and creating their corresponding progenitors

we have found the following groups.

While running the program to find homomorphic images of J2 it produced a

group H ⇠= 2•(24 : 5) who which was transitive on 32 letters. As a result we wrote a

permutation progenitor and found the following group. We would like to note that the

relations that we used to find this group was a combination of first order relations and

relations of our own with much thought in mind.

G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^2,b^2,c^2,d^2,f^2,(a*d)^2,

(b*d)^2,(c*d)^2,b*e^-1*a*e,d*e^-1*d*e,f*e^-1*c*e,a*b*a*b*d,

a*c*a*c*d,e*d*a*e^-1*f,c*a*b*a*c*b,e^-3*d*e^-2,e^-1*c*b*a*e*a*c,t^2,

(t,d*e),(f*e^-1*t)^i,(e*c*f*e*t*t^a)^j,

(a*b*t^c*t^b)^k,(f*a*e^-2*t*t^a*t)^l,(a*t^c)^m

>;

Table 10.1: 2⇤32 : (2•(24 : 5))

i j k l m G

0 0 5 0 3 5•J2
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As our research came to an end we didn’t get to investigate the program as much

as we would like. Often times if we ran the program looking for a particular sporadic

group we didn’t the one we were looking for but we did find others of interest. In the

following list of tables we first note the group we were trying to find but were unsuccessful,

while listing the groups of much importance.
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While looking for J1 we ran the following two progenitors and this is what we

found.

G<x,y,t>:=Group<x,y,t|x^3,x*y^-1*x^-1*y^2,t^2,(t,x),(y*x*t)^i,

(y*x*t^y*t*t^y)^j,(x^-1*y^-1*t^y*t*t^(y^4))^k,(y*t*t^(y^2)*t)^l,

(y^3*t*t^(x*y))^m

>;

Table 10.2: 2⇤7 : (7 : 3)

i j k l m G

0 0 5 5 0 2•(6⇥M22)
0 0 5 8 0 4⇥M22

0 6 6 8 5 PGL(3, 4)⇥ 2
0 0 7 6 6 A8

G<x,y,t>:=Group<x,y,t|x^3,x*y^-1*x^-1*y^2,t^2,(t,x),(y*x*t)^i,

(y*x*t^y*t*t^y)^j,(x^-1*y^-1*t^y*t*t^(y^4))^k,(y*t*t^(y^2)*t)^l,

(y^3*t*t^(x*y))^m

>;

Table 10.3: 2⇤7 : (7 : 3)

i j k l m G

0 0 0 0 3 32 ⇥ (PSL(3, 4) : 2)
0 0 2 0 0 U(3, 3) : 2

While looking for J2 we ran the following two progenitors and what we found is

listed below.

G<a,b,c,d,t>:=Group<a,b,c,d,t|a^4,b^3,c^4,d^2,a^-2*d,

c^-1*a^2*c^-1,c^-1*b*a*b^-1,a^-1*c^-1*a*c^-1,a^-1*b^-1*a^-1*b*c^-1,t^2,

(t,b),

(a*b*t)^i,

(b^-1*a^-1*t^c)^j,

(b*d*t*t^c)^k,

(b*d*t)^l,

(d*b^-1*t^a)^m,

(d*b^-1*t)^o

>;
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Table 10.4: 2⇤7 : (7 : 2)

i j k l m n o G

0 0 3 0 0 8 3 23 ⇥ PSL(2, 3)
0 0 4 0 6 0 0 S8

0 0 4 0 8 2 3 27 ⇥ U(3, 3)
0 0 5 0 6 8 3 M11

G<a,b,c,d,t>:=Group<a,b,c,d,t|a^4,b^3,c^4,d^2,a^-2*d,

c^-1*a^2*c^-1,c^-1*b*a*b^-1,a^-1*c^-1*a*c^-1,a^-1*b^-1*a^-1*b*c^-1,t^2,

(t,b),

(d*b^-1*t^a)^i,

(b*d*t^a)^j,

(b*d*t^c*t^a*t)^k,

(d*a*t)^l

>;

Table 10.5: 2⇤7 : (7 : 2)

i j k l G

0 6 3 6 (22 ⇥M11) : 3

Lastly, we tried to find the Mathieu M24 group, however we were unsuccessful.

Instead we found the groups listed below.

Table 10.6: 2⇤5 : (5 : 2)

i j k G

0 3 9 PSL(2, 19)
0 3 10 2•PSL(2, 19)
0 3 11 PSL(2, 89)
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Appendix A

Double Coset Enumeration Codes

A.1 Double Coset Enumeration of PSL(2, 8) over D18

i:=0;j:=9;k:=7;l:=2;

G<x,y,t>:=Group<x,y,t|x^-9,y^2,(x^-1*y)^2,t^2,(t,y*x),

(x^3*t)^i,

(x^4*t^x)^j,

(y*t)^k,

(x*t*t^x^2*t)^l

>;

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

S:=Sym(9);

xx:=S!(1, 2, 3, 4, 5, 6, 7, 8, 9);

yy:=S!(1, 9)(2, 8)(3, 7)(4, 6);

N:=sub<S|xx,yy>;

H1:=sub<G|x,y>;

#DoubleCosets(G,H1,H1);

IN:=sub<G1|f(x),f(y)>;

ts:=[Id(G1):i in [1..9]];

ts[1]:=f(t);

ts[2]:=(f(t)^f(x));

ts[3]:=(f(t)^f(x^2));

ts[4]:=(f(t)^f(x^3));

ts[5]:=(f(t)^f(x^4));

ts[6]:=(f(t)^f(x^5));

ts[7]:=(f(t)^f(x^6));

ts[8]:=(f(t)^f(x^7));

ts[9]:=(f(t)^f(x^8));

prodim := function(pt, Q, I)
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/*

Return the image of pt under permutations Q[I] applied sequentially.

*/

v := pt;

for i in I do

v := v^(Q[i]);

end for;

return v;

end function;

cst := [null : i in [1 .. Index(G,sub<G|x,y>)]] where null is

[Integers() | ];

for i := 1 to 9 do

cst[prodim(1, ts, [i])] := [i];

end for;

m:=0;

for i in [1..28] do if cst[i] ne [] then m:=m+1; end if; end for; m;

N1:=Stabiliser (N,[1]);

SSS:={[1]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IN do

if ts[1]eq

n*ts[Rep(Seqq[i])[1]]

then print Rep(Seqq[i]);

end if; end for; end for;

N1; #N1;

T1:=Transversal(N,N1);

for i in [1..#T1] do

ss:=[1]^T1[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..28] do if cst[i] ne []

then m:=m+1; end if; end for; m;

Orbits(N1);

//Checking Orbits//

for g in IN do for h in IN do if ts[1]*ts[2] eq g*(ts[1])^h then

"true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[3] eq g*(ts[1])^h then

"true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[4] eq g*(ts[1])^h then
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"true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[5] eq g*(ts[1])^h then

"true"; break; end if; end for; end for;

N12:=Stabiliser (N,[1,2]);

SSS:={[1,2]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IN do

if ts[1]*ts[2]eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);

end if; end for; end for;

N12s:=N12;

for n in N do if 1^n eq 6 and 2^n eq 5 then N12s:=sub<N|N12s,n>;

end if; end for;

N12s; #N12s;

[1,2]^N12s;

T12:=Transversal(N,N12s);

for i in [1..#T12] do

ss:=[1,2]^T12[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..28] do if cst[i] ne []

then m:=m+1; end if; end for; m;

for i in [1..#T12] do ([1,2]^N12s)^T12[i]; end for;

Orbits(N12s);

for g in IN do for h in IN do if ts[1]*ts[4] eq g*(ts[1]*ts[2])^h then

"true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[2]*ts[8] eq g*(ts[1]*ts[4])^h

then "true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[2]*ts[1] eq g*(ts[1]*ts[7])^h

then "true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[2]*ts[3] eq g*(ts[1]*ts[4])^h

then "true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[2]*ts[7] eq g*(ts[1]*ts[2])^h

then "true"; break; end if; end for; end for;

N14:=Stabiliser (N,[1,4]);

SSS:={[1,4]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);
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Seqq;

for i in [1..#SSS] do

for n in IN do

if ts[1]*ts[4]eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);

end if; end for; end for;

N14s:=N14;

for n in N do if 1^n eq 8 and 4^n eq 5 then N14s:=sub<N|N14s,n>;

end if; end for;

N14s; #N14s;

[1,4]^N14s;

T14:=Transversal(N,N14s);

for i in [1..#T14] do

ss:=[1,4]^T14[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..28] do if cst[i] ne []

then m:=m+1; end if; end for; m;

for i in [1..#T14] do ([1,4]^N14s)^T14[i]; end for;

Orbits(N14s);

for g in IN do for h in IN do if ts[1]*ts[5] eq g*(ts[1]*ts[4])^h

then "true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[4] eq g*(ts[1]*ts[2])^h

then "true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[4]*ts[9] eq g*(ts[1]*ts[2])^h

then "true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[4]*ts[1] eq g*(ts[1])^h

then "true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[4]*ts[2] eq g*(ts[1]*ts[2])^h

then "true"; break; end if; end for; end for;

for g in IN do for h in IN do if ts[1]*ts[4]*ts[3] eq g*(ts[1]*ts[4])^h

then "true"; break; end if; end for; end for;

xxx:=f(x);

yyy:=f(y);

ttt:=f(t);

N:=sub<G1|f(x),f(y),f(t)>;

ArrayP:=[Id(N): i in [1..#N]];

Sch:=SchreierSystem(G,sub<G|Id(G)>);

ArrayP:=[Id(N): i in [1..#N]];

for i in [2..#N] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=xxx; end if;
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if Eltseq(Sch[i])[j] eq -1 then P[j]:=xxx^-1; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=yyy; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=ttt; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

for i in [1..#N] do if ArrayP[i] eq N!(2, 4, 6, 10, 16, 15, 9, 5, 3)

(7, 13, 21, 27, 22, 14, 8, 12, 11)(17, 25, 19, 23,

28, 24, 20, 26, 18)

then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq N!(2, 16, 3, 10, 5, 6, 9, 4, 15)

(7, 22, 11, 27, 12, 21, 8, 13, 14)(17, 28, 18, 23,

26, 19, 20, 25, 24)then print Sch[i];

end if; end for;

A.2 Double Coset Enumeration of PSL(2,23) to Find Re-

lations

G<x,y,t>:=Group<x,y,t|x^4,y^2,(x*y)^3,t^2,(t,y),(t^x,y),(x*t)^11,

(y*x*t)^11,y=(t*t^x)^3>;

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

S:=Sym(4);

xx:=S!(1,2,3,4);

yy:=S!(2,3);

N:=sub<S|xx,yy>;

IN:=sub<G1|f(x),f(y)>;

ts:=[Id(G1):i in [1..4]];

ts[4]:=f(t);

ts[1]:=(f(t)^f(x));

ts[2]:=(f(t)^f(x^2));

ts[3]:=(f(t)^f(x^3));

N4121:=Stabiliser (N,[4,1,2,1]);

SSS:={[4,1,2,1]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do



126

for n in IN do

if ts[4]*ts[1]*ts[2]*ts[1]eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*ts[Rep(Seqq[i])[3]]

*ts[Rep(Seqq[i])[4]]

then print Rep(Seqq[i]);

end if; end for; end for;

N4121s:=N4121;

for n in N do if 4^n eq 3 and 1^n eq 2 and 2^n eq 1 and 1^n eq 2 then

N4121s:=sub<N|N4121s,n>; end if; end for;

T4121:=Transversal(N,N4121s);

for i in [1..#T4121] do ([4,1,2,1]^N4121s)^T4121[i]; end for;

So 3242~1424

for g in IN do if ts[3]*ts[2]*ts[4]*ts[2] eq g*(ts[1]*ts[4]*ts[2]*ts[4])

then g; end if; end for;

xx:=f(x);

yy:=f(y);

tt:=f(t);

N:=sub<G1|xx,yy,tt>;

NN<x,y,t>:=Group<x,y,t|x^4,y^2,(x*y)^3,t^2,(t,y),(t^x,y),(x*t)^11,

(y*x*t)^11,y=(t*t^x)^3>;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..#N]];

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..#N]];

for i in [2..#N] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;

if Eltseq(Sch[i])[j] eq -1 then P[j]:=xx^-1; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=tt; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

for i in [1..#N] do if ArrayP[i] eq A then print Sch[i];

end if; end for;

//y * x^2 * y * x

x:=S!(1,2,3,4);

y:=S!(2,3);

N412432:=Stabiliser (N,[4,1,2,4,3,2]);

SSS:={[4,1,2,4,3,2]}; SSS:=SSS^N;
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SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IN do

if ts[4]*ts[1]*ts[2]*ts[4]*ts[3]*ts[2] eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*ts[Rep(Seqq[i])[3]]*

ts[Rep(Seqq[i])[4]]*ts[Rep(Seqq[i])[5]]*ts[Rep(Seqq[i])[6]]

then print Rep(Seqq[i]);

end if; end for; end for;

N412432s:=N412432;

for n in N do if 4^n eq 1 and 1^n eq 2 and 2^n eq 3 and 4^n eq 1 and 3^n

eq 4 and 2^n eq 3 then N412432s:=sub<N|N412432s,n>; end if; end for;

for n in N do if 4^n eq 2 and 1^n eq 3 and 2^n eq 4 and 4^n eq 2 and 3^n

eq 1 and 2^n eq 4 then N412432s:=sub<N|N412432s,n>; end if; end for;

for n in N do if 4^n eq 3 and 1^n eq 4 and 2^n eq 1 and 4^n eq 3 and 3^n

eq 2 and 2^n eq 1 then N412432s:=sub<N|N412432s,n>; end if; end for;

T412432:=Transversal(N,N412432s);

for i in [1..#T412432] do ([4,1,2,4,3,2]^N412432s)^T412432[i]; end for;

f(t*t^x*t^(x^2)*t*t^(x^3)*t^(x^2)*t^(x^3)*t*t^x*t^(x^3)*t^(x^2)*t^x);

for g in IN do if ts[4]*ts[1]*ts[3]*ts[4]*ts[2]*ts[3] eq

g*(ts[2]*ts[4]*ts[1]*ts[2]*ts[3]*ts[1] ) then A:=g; end if; end for;

for i in [1..#N] do if ArrayP[i] eq A then print Sch[i];

end if; end for;

N414:=Stabiliser (N,[4,1,4]);

SSS:={[4,1,4]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IN do

if ts[4]*ts[1]*ts[4]eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*ts[Rep(Seqq[i])[3]]

then print Rep(Seqq[i]);

end if; end for; end for;

N414s:=N414;

for n in N do if 4^n eq 1 and 1^n eq 4 and 4^n eq 1 then

N414s:=sub<N|N414s,n>; end if; end for;

T414:=Transversal(N,N414s);

for i in [1..#T414] do ([4,1,4]^N414s)^T414[i]; end for;

for g in IN do if ts[2]*ts[3]*ts[2]eq g*(ts[3]*ts[2]*ts[3]) then

A:=g; end if; end for;
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N4142:=Stabiliser (N,[4,1,4,2]);

SSS:={[4,1,4,2]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IN do

if ts[4]*ts[1]*ts[4]*ts[2]eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*

ts[Rep(Seqq[i])[3]]*ts[Rep(Seqq[i])[4]]

then print Rep(Seqq[i]);

end if; end for; end for;

N4142s:=N4142;

for n in N do if 4^n eq 1 and 1^n eq 4 and 4^n eq 1

and 2^n eq 2

then N4142s:=sub<N|N4142s,n>; end if; end for;

T4142:=Transversal(N,N4142s);

for i in [1..#T4142] do ([4,1,4,2]^N4142s)^T4142[i];

end for;

for g in IN do if ts[3]*ts[1]*ts[3]*ts[1] eq

g*(ts[3]*ts[1]*ts[3])

then A:=g; end if; end for;

xxx:=S!(1,2,3,4);

yyy:=S!(2,3);

N412314:=Stabiliser (N,[4,1,2,3,1,4]);

SSS:={[4,1,2,3,1,4]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IN do

if ts[4]*ts[1]*ts[2]*ts[3]*ts[1]*ts[4] eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*ts[Rep(Seqq[i])[3]]*

ts[Rep(Seqq[i])[4]]*ts[Rep(Seqq[i])[5]]*ts[Rep(Seqq[i])[6]]

then print Rep(Seqq[i]);

end if; end for; end for;

N412314s:=N412314;

for n in N do if 4^n eq 1 and 1^n eq 3 and 2^n eq 2 and 3^n eq 4

and 1^n eq 3 and 4^n eq 1 then N412314s:=sub<N|N412314s,n>;

end if; end for;

for n in N do if 4^n eq 3 and 1^n eq 4 and 2^n eq 2 and 3^n eq 1

and 1^n eq 4 and 4^n eq 3 then N412314s:=sub<N|N412314s,n>;
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end if; end for;

T412314:=Transversal(N,N412314s);

for i in [1..#T412314] do ([4,1,2,3,1,4]^N412314s)^T412314[i]; end for;

for g,h in IN do if ts[4]*ts[1]*ts[2]*ts[3]*ts[1]*ts[4] eq

g*(ts[4]*ts[1]*ts[2]*ts[3]*ts[1]*ts[4]*ts[2])^h then g,h; end if;

end for;

A:=G1!(2, 3, 4)(6, 13, 10)(7, 11, 14)(8, 9, 12)(15, 17, 19)(16, 40, 34)

(18, 20, 44)(21, 35, 38)(22, 37, 26)(23, 31, 46)(24, 33, 32)

(25, 36, 29)(27, 30, 28)(39, 42, 55)(41, 94, 92)(43, 56, 97)(45, 98, 68)

(47, 70, 99)(48, 50,53)(49, 109, 54)(51, 87, 111)(52, 107, 86)

(57, 103, 90)(58, 89, 78)(59, 75,119)(60, 85, 84)(61, 110, 63)

(62, 88, 81)(64, 82, 65)(66, 67, 71)(69, 83,108)(72, 77, 104)

(73, 80, 79)

(74, 91, 76)(93, 96, 127)(95, 184, 182)(100,102, 105)(101, 190, 126)

(106, 142, 189)(112, 113, 133)(114, 201, 206)(115, 117, 130)

(116, 212, 196)(118, 138, 188)(120, 122, 125)(121, 194, 139)

(123,175, 219)(124, 216, 173)(128, 214, 180)(129, 209, 166)

(131, 163, 231)(132,203, 200)(134, 199, 171)(135, 205, 137)

(136, 202, 169)(140, 186, 145)(141,187, 144)(143, 197, 210)

(146, 218, 156)(147, 192, 217)(148, 179, 178)(149,152, 224)

(150, 177, 215)(151, 181, 153)(154, 172, 193)(155, 176, 174)

(157,191, 158)(159, 170, 204)(160, 165, 198)(161, 168, 167)

(162, 195, 164)(183,185, 244)(207, 208, 239)(211, 213, 232)

(220, 221, 241)(222, 223, 243)(225,226, 240)(227, 253, 252)

(228, 230, 229)(233, 246, 251)(234, 236, 237)

(235, 250, 249)(242, 247, 248);

B:=G1!(2, 4)(6, 14)(7, 10)(8, 12)(11, 13)(15, 17)(16, 38)(20, 44)

(21, 34)(22, 46)(23, 26)(24, 36)(25, 33)(27, 28)(29, 32)(31, 37)

(35, 40)(39, 53)(41, 111)(42,50)(43, 54)(45, 99)(47, 68)(48, 55)

(49, 97)(51, 92)(52, 90)(56, 109)(57,86)(58, 108)(59, 63)(60, 104)

(61, 119)(62, 91)(64, 80)(65, 79)(66, 71)(69, 78)(70, 98)(72, 84)

(73, 82)(74, 88)(75, 110)(76, 81)(77, 85)(83, 89)(87,94)(93, 133)

(95, 206)(96, 113)(100, 102)(101, 189)(103, 107)(106, 126)

(112, 127)(114, 182)(115, 125)(116, 219)(117, 122)(118, 139)

(120, 130)(121,188)(123, 196)(124, 210)(128, 200)(129, 217)

(131, 156)(132, 180)(134,215)(135, 224)(136, 181)(137, 149)

(138, 194)(140, 187)(141, 186)(142,190)(143, 173)(144, 145)

(146, 231)(147, 166)(148, 204)(150, 171)(151,202)(152, 205)

(153, 169)(154, 198)(155, 195)(157, 168)(158, 167)(159, 178)

(160, 193)(161, 191)(162, 176)(163, 218)(164, 174)(165, 172)

(170, 179)(175, 212)(177, 199)(183, 239)(184, 201)(185, 208)

(192, 209)(197, 216)(203, 214)(207, 244)(211, 241)(213, 221)

(220, 232)(222, 230)(223,228)(225, 237)(226, 236)(227, 249)

(229, 243)(233, 248)(234, 240)(235, 252)(238, 245)(242, 251)
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(246, 247)(250, 253);

for i in [1..#N] do if ArrayP[i] eq A then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq B then print Sch[i];

end if; end for;

xxx:=S!(1,2,3,4);

yyy:=S!(2,3);

for g,h in IN do if ts[4]*ts[1]*ts[2]*ts[1]*ts[4] eq

g*(ts[4]*ts[1]*ts[2]*ts[3])^h then g,h; end if; end for;

for i in [1..#N] do if ArrayP[i] eq g then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq h then print Sch[i];

end if; end for;

A.3 Double Coset Enumeration of U(3,3) over a Maximal

Subgroup

i:=0;j:=2;

G<a,b,t>:=Group<a,b,t|a^3,b^7,b^a=b^2,t^2,(t,a),

(a*b*a^-1*t*t^(b^2))^i,

(a^-1*t^b*t*t^b)^j

>;

f,G1,k:=CosetAction(G,sub<G|a,b>);

S:=Sym(5);

ww:=S!(2, 3, 4, 5);

xx:=S!(2,4)(3,5);

yy:=S!(1,2,3,5,4);

N:=sub<S|ww,xx,yy>;

M:=MaximalSubgroups(G1);

C:=Conjugates(G1,M[1]‘subgroup);

C:=Setseq(C);

for i in [1..#C] do if f(a) in C[i] and f(b) in C[i] then i;

end if; end for;

NumberOfGenerators(C[33]);

A:=C[28].1;

B:=C[28].2;

xx:=f(a);

yy:=f(b);

tt:=f(t);

N:=sub<G1|xx,yy,tt>;

#N;

NN<a,b,t>:=Group<a,b,t|a^3,b^7,b^a=b^2,t^2,(t,a),

(a^-1*t^b*t*t^b)^2>;
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Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..#N]];

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..#N]];

for i in [2..#N] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=xx; end if;

if Eltseq(Sch[i])[j] eq -1 then P[j]:=xx^-1; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=yy; end if;

if Eltseq(Sch[i])[j] eq -2 then P[j]:=yy^-1; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=tt; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

for i in [1..#N] do if ArrayP[i] eq A then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq B then print Sch[i];

end if; end for;

i:=0;j:=2;

G<a,b,t>:=Group<a,b,t|a^3,b^7,b^a=b^2,t^2,(t,a),

(a*b*a^-1*t*t^(b^2))^i,

(a^-1*t^b*t*t^b)^j

>;

f,G1,k:=CosetAction(G,sub<G|a,b>);

for g in C[28] do if sub<G1|f(a),f(b),g> eq C[28] then g;

end if; end for;

S:=Sym(576);

T:=S!(1, 506)(2, 431)(3, 337)(4, 428)(5, 220)(6, 513)(7, 503)

(8, 438)(9, 95)(10, 274)(11, 143)(12, 153)(13, 444)(14, 434)

(15, 525)(16, 217)(17, 249)(18, 267)(19, 275)(20, 512)(21, 157)

(22, 40)(23, 240)(24, 549)(25, 270)(26, 135)(27, 134)(28, 179)

(29, 86)(30, 163)(31, 71)(32, 138)(33, 158)(34, 89)(35, 385)

(36, 142)(37, 218)(38, 511)(39, 518)(41, 47)(42, 162)(43, 229)

(44, 419)(45, 221)(46, 137)(48, 122)(49, 140)(50, 288)(51, 542)

(52, 354)(53, 383)(54, 238)(55, 149)(56, 279)(57, 350)(58, 316)

(59, 441)(60, 455)(61, 423)(62, 517)(63, 480)(64, 550)(65, 104)
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(66, 401)(67, 559)(68,308)(69, 439)(70, 362)(72, 370)(73, 183)

(74, 319)(75, 242)(76, 378)(77, 196)(78, 239)(79, 414)(80, 285)

(81, 489)(82, 351)(83, 457)(84, 338)(85, 376)(87, 359)(88, 191)

(90, 257)(91, 398)(92, 507)(93, 410)(94, 458)(96, 515)(97, 342)

(98, 384)(99, 287)(100, 462)(101, 417)(102, 309)(103, 348)(105,409)

(106, 231)(107, 449)(108, 538)(109, 203)(110, 466)(111, 305)

(112, 372)(113, 488)(114, 421)(115, 402)(116, 141)(117, 294)(118, 380)

(119, 358)(120, 422)(121, 554)(123, 301)(124, 181)(125, 253)(126, 151)

(127, 456)(128, 485)(129, 306)(130, 176)(131, 546)(132, 408)(133, 326)

(136,161)(139, 254)(144, 344)(145, 341)(146, 332)(147, 391)(148, 166)

(150,187)(152, 245)(154, 522)(155, 258)(156, 371)(159, 479)(160, 375)

(164, 207)(165, 280)(167, 227)(168, 339)(169, 277)(170, 300)(171, 430)

(172, 330)(173, 262)(174, 299)(175, 268)(177, 182)(178, 329)(180, 425)

(184, 474)(185, 519)(186, 562)(188, 266)(189, 420)(190, 505)(192, 404)

(193, 353)(194, 259)(195, 263)(197, 224)(198, 366)(199, 246)(200, 233)

(201,260)(202, 251)(204, 528)(205, 400)(206, 459)(208, 388)(209, 331)

(210,523)(211, 367)(212, 365)(213, 361)(214, 282)(215, 468)(216, 310)

(219,521)(222, 335)(223, 315)(225, 454)(226, 499)(228, 432)(230, 486)

(232,465)(234, 281)(235, 501)(236, 530)(237, 320)(241, 276)(243, 496)

(244,575)(247, 442)(248, 392)(250, 545)(252, 460)(255, 395)(256, 555)

(261,557)(264, 552)(265, 537)(269, 481)(271, 360)(272, 494)(273, 429)

(278,463)(283, 539)(284, 548)(286, 298)(289, 461)(290, 415)(291, 544)

(292,377)(293, 379)(295, 411)(296, 407)(297, 543)(302, 571)(303, 476)

(304,526)(307, 547)(311, 567)(312, 576)(313, 527)(314, 450)(317, 451)

(318,498)(321, 514)(322, 541)(323, 508)(324, 427)(325, 470)(327, 566)

(328,531)(333, 469)(334, 487)(336, 565)(340, 445)(343, 484)(345, 532)

(346,475)(347, 570)(349, 446)(352, 529)(355, 560)(356, 453)(357, 574)

(363,535)(364, 533)(368, 509)(369, 448)(373, 563)(374, 524)(381, 491)

(382,500)(386, 471)(387, 561)(389, 572)(390, 540)(393, 443)(394, 477)

(396,440)(397, 553)(399, 490)(403, 564)(405, 502)(406, 504)(412, 568)

(413, 558)(416, 569)(418, 467)(424, 536)(426, 472)(433, 520)(435, 447)

(436, 483)(437, 573)(452, 551)(464, 510)(473, 482)(478, 492)(493, 516)

(495, 556)(497, 534);

for i in [1..#N] do if ArrayP[i] eq T then print Sch[i];

end if; end for;

#sub<G1|f(a),f(b),f(t * b * t * b * t * a^-1 * b * t * b * t * b^2)>;

//////////DOUBLE COSET ENUMERATION///////////////////

i:=0;j:=2;

G<a,b,t>:=Group<a,b,t|a^3,b^7,b^a=b^2,t^2,(t,a),

(a*b*a^-1*t*t^(b^2))^i,

(a^-1*t^b*t*t^b)^j

>;

H1:=sub<G|a,b>;

H2:=sub<G|a,b,t * b * t * b * t * a^-1 * b * t * b * t * b^2>;
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DoubleCosets(G,H2,H1);

f,G1,k:=CosetAction(G,sub<G|a,b>);

#k;

S:=Sym(7);

xx:=S!(2, 3, 4)(5, 7, 6);

yy:=S!(1, 2, 3, 5, 4, 6, 7);

N:=sub<S|xx,yy>;

#N;

IM:=sub<G1|f(a),f(b),

f(t * b * t * b * t * a^-1 * b * t * b * t * b^2)>;

IN:=sub<G1|f(a),f(b)>;

ts:=[Id(G1):i in [1..7]];

ts[1]:=f(t);

ts[2]:=(f(t)^f(b));

ts[3]:=(f(t)^f(b^2));

ts[4]:=(f(t)^f(b^4));

ts[5]:=(f(t)^f(b^3));

ts[6]:=(f(t)^f(b^5));

ts[7]:=(f(t)^f(b^6));

prodim := function(pt, Q, I)

/*

Return the image of pt under permutations Q[I] applied sequentially.

*/

v := pt;

for i in I do

v := v^(Q[i]);

end for;

return v;

end function;

cst := [null : i in [1 .. Index(G,sub<G|a,b>)]] where null is

[Integers() | ];

for i := 1 to 7 do

cst[prodim(1, ts, [i])] := [i];

end for;

m:=0;

for i in [1..576] do if cst[i] ne [] then m:=m+1; end if; end for; m;

N1:=Stabiliser (N,[1]);

SSS:={[1]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do
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for n in IN do

if ts[1]eq

n*ts[Rep(Seqq[i])[1]]

then print Rep(Seqq[i]);

end if; end for; end for;

N1; #N1;

T1:=Transversal(N,N1);

for i in [1..#T1] do

ss:=[1]^T1[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..576] do if cst[i] ne []

then m:=m+1; end if; end for; m;

Orbits(N1);

N15:=Stabiliser (N,[1,5]);

SSS:={[1,5]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IM do

if ts[1]*ts[5]eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);

end if; end for; end for;

N15; #N15;

T15:=Transversal(N,N15);

for i in [1..#T15] do

ss:=[1,5]^T15[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..576] do if cst[i] ne []

then m:=m+1; end if; end for; m;

Orbits(N15);

CHECKING WHERE EACH ORBIT GOES {1},and {5}

for g in IM do for h in IN do if ts[1]*ts[5]*ts[1] eq

g*(ts[1])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[5] eq

g*(ts[1])^h then

"true"; break; end if; end for; end for;

CHECKING WHERE EACH ORBIT GOES {2},{4},{6} and {7}

for g in IM do for h in IN do if ts[1]*ts[5]*ts[2] eq
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g*(ts[1]*ts[2])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[4] eq

g*(ts[1]*ts[2])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[6] eq

g*(ts[1]*ts[2])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[7] eq

g*(ts[1]*ts[2])^h then

"true"; break; end if; end for; end for;

N12:=Stabiliser (N,[1,2]);

SSS:={[1,2]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IM do

if ts[1]*ts[2]eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]

then print Rep(Seqq[i]);

end if; end for; end for;

N12; #N12;

T12:=Transversal(N,N12);

for i in [1..#T12] do

ss:=[1,2]^T12[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..576] do if cst[i] ne []

then m:=m+1; end if; end for; m;

Orbits(N12);

for g in IM do for h in IN do if ts[1]*ts[2]*ts[1] eq

g*(ts[1])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]*ts[2] eq

g*(ts[1])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]*ts[3] eq

g*(ts[1]*ts[5])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]*ts[4] eq

g*(ts[1]*ts[5])^h then

"true"; break; end if; end for; end for;
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for g in IM do for h in IN do if ts[1]*ts[2]*ts[5] eq

g*(ts[1]*ts[5])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2]*ts[7] eq

g*(ts[1]*ts[5])^h then

"true"; break; end if; end for; end for;

N153:=Stabiliser (N,[1,5,3]);

SSS:={[1,5,3]}; SSS:=SSS^N;

SSS;

#(SSS);

Seqq:=Setseq(SSS);

Seqq;

for i in [1..#SSS] do

for n in IM do

if ts[1]*ts[5]*ts[3]eq

n*ts[Rep(Seqq[i])[1]]*ts[Rep(Seqq[i])[2]]*ts[Rep(Seqq[i])[3]]

then print Rep(Seqq[i]);

end if; end for; end for;

N153s:=N153;

for n in N do if 1^n eq 3 and 5^n eq 1 and 3^n eq 5 then

N153s:=sub<N|N153s,n>; end if; end for;

for n in N do if 1^n eq 5 and 5^n eq 3 and 3^n eq 1 then

N153s:=sub<N|N153s,n>; end if; end for;

N153s; #N153s;

[1,5,3]^N153s;

T153:=Transversal(N,N153s);

for i in [1..#T153] do

ss:=[1,5,3]^T153[i];

cst[prodim(1, ts, ss)] := ss;

end for;

m:=0; for i in [1..364] do if cst[i] ne []

then m:=m+1; end if; end for; m;

for i in [1..#T153] do ([1,5,3]^N153s)^T153[i]; end for;

Orbits(N153s);

for g in IM do for h in IN do if ts[1]*ts[5]*ts[3]*ts[1] eq

g*(ts[1]*ts[5])^h then"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[3]*ts[2] eq

g*(ts[1]*ts[5]*ts[3])^h then "true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[3]*ts[3] eq

g*(ts[1]*ts[5])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[3]*ts[4] eq

g*(ts[1]*ts[5]*ts[3])^h then

"true"; break; end if; end for; end for;
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for g in IM do for h in IN do if ts[1]*ts[5]*ts[3]*ts[5] eq

g*(ts[1]*ts[5])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[3]*ts[6] eq

g*(ts[1]*ts[5]*ts[3])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[5]*ts[3]*ts[7] eq

g*(ts[1]*ts[5]*ts[3])^h then

"true"; break; end if; end for; end for;

for g in IM do for h in IN do if ts[1]*ts[2] eq g*(ts[1]*ts[5])^h

then "true"; break;

end if; end for; end for;
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Appendix B

J1 is Simple Using Iwasawa’s

i:=15;j:=0;k:=15;l:=5;

G<x,y,t>:=Group<x,y,t|x^3,y^2,(x*y)^2,t^7,t^x=t^2,

(y*t)^i,

(x*t*t^x*t^(x^2))^j,

(y*t^2)^k,

(x*y*t^3)^l

>;

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

M:=MaximalSubgroups(G1);

C:=Conjugates(G1,M[5]‘subgroup);

C:=SetToSequence(C);

for i in [1..#C] do if f(x) in C[i] and f(y) in C[i] then i;

end if; end for;

C189:=C[189];

NL:=NormalLattice(C402);

NL;

sub<G1|NL[2]^G1> eq G1;

f2,G2,k2:=CosetAction(G1,C402);

IsPrimitive(G2);

#Stabiliser(G2,402);

#sub<G1|C402>;

A:=C189.1;

B:=C189.2;

C:=C189.3;

D:=DerivedGroup(G2);

D eq G2;
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Appendix C

Solved Composition Factor of the

6• : (PSL(2, 4) : 2)

a:=0;b:=5;c:=10;d:=0;e:=10;

G<x,y,t>:=Group<x,y,t|x^4,y^2,(x*y)^3,t^2,(t,y),(t,y^x),(x*t)^a,

(x*t*t^x)^b,(x*y*t*t^x*t^(y))^c,(x^3*t*t^x*t^y)^d,(x*y*t)^e>;

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

NL:=NormalLattice(G1);

NL;

IsAbelian(NL[4]);

q,ff:=quo<G1|NL[4]>;

D:=DirectProduct(NL[2],NL[3]);

s,t:=IsIsomorphic(D,NL[4]);

s;

H<a,b>:=Group<a,b|a^2,b^4,(a*b)^7,(a*b^2)^5,

(a*b*a*b^2)^7,(a*b*a*b*a*b^2*a*b^-1)^5>;

f1,H1,k1:=CosetAction(H,sub<H|Id(H)>);

NL:=NormalLattice(q);

NL;

s,t:=IsIsomorphic(H1,NL[2]);

s;

for z1 in NL[3] do if Order(z1) eq 2 and z1 notin NL[2] and

NL[3] eq sub<q|NL[2],z1> then Z1:=z1;break; end if; end for;

s,t:=IsIsomorphic(H1,NL[2]);

A:=t(f1(a));

B:=t(f1(b));

N:=sub<q|A,B>;

NN<a,b>:=Group<a,b|a^2,b^4,(a*b)^7,(a*b^2)^5,
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(a*b*a*b^2)^7,(a*b*a*b*a*b^2*a*b^-1)^5>;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..#N]];

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

for i in [2..#N] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;

if Eltseq(Sch[i])[j] eq -2 then P[j]:=B^-1; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

for i in [1..#N] do if ArrayP[i] eq A^Z1 then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq B^Z1 then print Sch[i];

end if; end for;

H<a,b,c>:=Group<a,b,c|a^2,b^4,(a*b)^7,(a*b^2)^5,(a*b*a*b^2)^7,

(a*b*a*b*a*b^2*a*b^-1)^5,c^2,a^c=a*b*a*b^-1*a*b*a*b*\

a*b^-1*a*b^-1*a*b*a*b^-1*a*b^2*a*b^-1*a*b^2,b^c=a*b*a*

b^-1*a*b*a*b^-1*a*b^-1*a*b*a*b*a*b^-1>;

f2,H2,k2:=CosetAction(H,sub<H|Id(H)>);

s,t:=IsIsomorphic(H2,q);

s;

NL:=NormalLattice(G1);

T:=Transversal(G1,NL[4]);

A:=t(f2(a));

B:=t(f2(b));

C:=t(f2(c));

for i in [1..#T] do if ff(T[i]) eq A then i; end if;end for;

for i in [1..#T] do if ff(T[i]) eq B then i; end if;end for;

for i in [1..#T] do if ff(T[i]) eq C then i; end if;end for;

A:=T[16890];

B:=T[6838];

C:=T[14720];

for d,e in NL[4] do if Order(e) eq 2 and Order(d) eq 3 and e^d eq e

then D:=d; E:=e; end if; end for;

Order(D);

sub<G1|E,D> eq NL[4];

for i in [0..3] do for j in [0..2] do if A^2 eq D^i*E^j

then i,j; break; end if;
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end for; end for;

for i in [0..3] do for j in [0..2] do if B^4 eq D^i*E^j

then i,j; break; end if;

end for; end for;

for i in [0..3] do for j in [0..2] do if (A*B)^7 eq D^i*E^j

then i,j; break; end if;

end for; end for;

for i in [0..3] do for j in [0..2] do if (A*B^2)^5 eq D^i*E^j

then i,j; break; end if;

end for; end for;

for i in [0..3] do for j in [0..2] do if (A*B*A*B^2)^7 eq D^i*E^j

then i,j; break;

end if;end for; end for;

for i in [0..3] do for j in [0..2] do if

(A * B * A * B * A * B^2 * A * B^-1)^5 eq

D^i*E^j then i,j; break; end if;end for; end for;

for i in [0..3] do for j in [0..2] do if C^2 eq D^i*E^j then

i,j; break; end if;end for;

end for;

for i in [0..3] do for j in [0..2] do if A^C eq D^i*E^j then

i,j; break; end if;end for;

end for;

for i in [0..3] do for j in [0..2] do if B^C eq D^i*E^j then

i,j; break; end if;end for;

end for;

for i,k in [0..2] do for j in [0..4] do if A^D eq

A^i*B^j*C^k then i,j,k; break; end if;

end for;end for;

for i,k in [0..2] do for j in [0..4] do if A^E eq

A^i*B^j*C^k then i,j,k; break; end if;

end for; end for;

for i,k in [0..2] do for j in [0..4] do if B^E eq

A^i*B^j*C^k then i,j,k; break; end if;

end for; end for;

for i,k in [0..2] do for j in [0..4] do if B^D eq

A^i*B^j*C^k then i,j,k; break; end if;

end for; end for;

for i,k in [0..2] do for j in [0..4] do if C^D eq

A^i*B^j*C^k then i,j,k; break; end if;

end for; end for;

for l in [0..3] do for i,k,m in [0..2] do for j in [0..4]

do if C^D eq A^i*B^j*C^k*D^l*

E^m then i,j,k,l,m; break; end if; end for; end for;

end for;
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for i,k in [0..2] do for j in [0..4] do if C^E eq

A^i*B^j*C^k then i,j,k; break; end if;

end for;end for;

H<a,b,c,d,e>:=Group<a,b,c,d,e|d^3,e^2,(d,e),a^2,

b^4,(a*b)^7=d*e,(a*b^2)^5,

(a*b*a*b^2)^7=d,(a*b*a*b*a*b^2*a*b^-1)^5\

=d^2,c^2,a^c=a*b*a*b^-1*a*b*a*b*a*b^-1*a*b^-1*

a*b*a*b^-1*a*b^2*a*b^-1*a*

b^2,b^c=a*b*a*b^-1*a*b*a*b^-1*a*b^-1*a*b*a*b\

*a*b^-1,a^d=a,a^e,a,b^d=b,b^e=b,c^d=c*d^2,c^e=c>;

#H;

H<a,b,c,d,e>:=Group<a,b,c,d,e|d^3,e^2,(d,e),a^2,b^4,

(a*b)^7=d*e,(a*b^2)^5,

(a*b*a*b^2)^7=d,(a*b*a*b*a*b^2*a*b^-1)^5\

=d^2,c^2,a^c=a*b*a*b^-1*a*b*a*b*a*b^-1*a*b^-1*a*b

*a*b^-1*a*b^2*a*b^-1*a*b^2,

b^c=a*b*a*b^-1*a*b*a*b^-1*a*b^-1*a*b*a*b\

*a*b^-1,a^d=a,a^e=a,b^d=b,b^e=b,c^d=c*d^2,c^e=c>;

#H;

#G1;

f2,H2,k2:=CosetAction(H,sub<H|Id(H)>);

s,t:=IsIsomorphic(H2,G1);

s;
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Appendix D

Unsuccessful Progenitors and

their Relations

D.1 Wreath Product Z2 Wr A5

S:=Sym(10);

tt:=S!(1,6);

uu:=S!(2,7);

vv:=S!(3,8);

ww:=S!(4,9);

xx:=S!(5,10);

yy:=S!(1,2)(3,4)(6,7)(8,9);

zz:=S!(1,5,4)(6,10,9);

N:=sub<S|tt,uu,vv,ww,xx,yy,zz>;

#N;

NN<a,b,c,d,e,f,g>:=Group<a,b,c,d,e,f,g|a^2,b^2,c^2,d^2,

e^2,(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),

f^2,g^3,(f*g)^5,a^f=b,b^f=a,c^f=d,d^f=c,e^f=e,a^g=e,

b^g=b,c^g=c,d^g=a,e^g=d>;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..#N]];

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..#N]];

for i in [2..#N] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=tt; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=uu; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=vv; end if;
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if Eltseq(Sch[i])[j] eq 4 then P[j]:=ww; end if;

if Eltseq(Sch[i])[j] eq 5 then P[j]:=xx; end if;

if Eltseq(Sch[i])[j] eq 6 then P[j]:=yy; end if;

if Eltseq(Sch[i])[j] eq 7 then P[j]:=zz; end if;

if Eltseq(Sch[i])[j] eq -7 then P[j]:=zz^-1; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

N1:=Stabiliser(N,[1]);

N1;

for i in [1..#N] do if ArrayP[i] eq N!(2, 7) then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq N!(3, 8) then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq N!(4, 9) then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq N!(5, 10) then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq

N!(2, 9)(3, 5)(4, 7)(8, 10) then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq

N!(3, 9, 10)(4, 5, 8) then print Sch[i];

end if; end for;

/*Progenitor */

G<a,b,c,d,e,f,g,t>:=Group<a,b,c,d,e,f,g,t|a^2,b^2,c^2,d^2,e^2,(a,b),

(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),f^2,g^3,

(f*g)^5,a^f=b,b^f=a,c^f=d,d^f=c,e^f=e,a^g=e,b^g=b,c^g=c,d^g=a,

e^g=d,t^2,(t,b),

(t,c),(t,d),(t,e),(t,b*d*g*f*g^-1),(t,c*e*g^-1*f*g*f*g^-1*f*g^-1)>;

C:=Centraliser(N,Stabiliser(N,[1,2]));

C;

for i in [1..#N] do if ArrayP[i] eq N!(3, 8)(4,9)(5,10) then

print Sch[i];end if; end for;

for i in [1..#N] do if ArrayP[i] eq

N!(1, 6)(2, 7)(3, 8)(4, 9)(5, 10) then print Sch[i];

end if; end for;

for i in [1..#N] do if ArrayP[i] eq N!(2, 7)(3, 8)(4, 9)(5, 10)

then print Sch[i];

end if; end for;

for i,j,k,l,m in [0..50] do
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G<a,b,c,d,e,f,g,t>:=Group<a,b,c,d,e,f,g,t|a^2,b^2,c^2,d^2,e^2,(a,b),

(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),f^2,g^3,

(f*g)^5,a^f=b,b^f=a,c^f=d,d^f=c,e^f=e,a^g=e,b^g=b,c^g=c,d^g=a,

e^g=d,t^2,(t,b),(t,c),(t,d),(t,e),(t,b*d*g*f*g^-1),

(t,c*e*g^-1*f*g*f*g^-1*f*g^-1),

(f*t)^i,

(g*t*t^a*t^g*e)^j,

(b*c*d*e*t^f*t^f*b)^k,

(a*b*c*d*e*t)^l,

c*d*e=(t*t^f)^m>;

if Index(G,sub<G|a,b,c,d,e,f,g>) ge 2 then i,j,k,l,m,

Index(G,sub<G|a,b,c,d,e,f,g>), #G;

end if; end for;

D.2 Wreath Product Z2 Wr S4

W:=WreathProduct(CyclicGroup(2),Sym(4));

W;

G<a,b,c,d,e,f>:=Group<a,b,c,d,e,f|a^2,b^2,c^2,d^2,(a,b),

(a,c),(a,d),(b,c),(b,d),(c,d),e^4,f^2,(e*f)^3,a^e=b,b^e=c,

c^e=d,d^e=a,a^f=b,b^f=a,c^f=c,d^f=d>;

#G;

/*First I tried this*/

for A,B,C,D,E,F in W do if Order(A) eq 2 and Order(B) eq 2 and

Order(C) eq 2and Order(D) eq 2 and (A,B) eq Id(W) and (A,C) eq

Id(W) and (A,D) eq Id(W) and (B,C) eq Id(W) and (B,D) eq Id(W)

and (C,D) eq Id(W) and Order(E) eq 4 and Order(F) eq 2 and

Order((e*f)) eq 3 and A^E eq B and B^E eq C and C^E eq D and \

D^E eq A and A^F eq B and B^F eq A and C^F eq C and D^F eq

D and W eq sub<W|A,B,C,D,E,F> then A,B,C,D,E,F; break; end if;

end for;

/*Now the Classes*/

CC:=Classes(W);

#CC;

C[2][1];

C[8][1];

for A,B,C,D,F in Class(W,CC[2][3]) join Class(W,CC[3][3]) join

Class(W,CC[4][3]) join Class(W,CC[5][3]) join Class(W,CC[6][3])

join Class(W,CC[7][3]) join Class(W,CC[8][3]) do for E in

Class(W,CC[11][3]) join Class(W,CC[12][3]) join Class(W,CC[13][3]) j

oin Class(W,CC[14][3]) join Class(W,CC[15][3]) join

Class(W,CC[16][3]) do if Order(E*F) eq 3 and (A,B) eq Id(W) and (A,C)

eq Id(W) and (A,D) eq Id(W) and (B,C) eq Id(W) and (B,D) eq Id(W) and



146

(C,D) eq Id(W) and A^E eq B and B^E eq C and C^E eq D and D^E eq A

and A^F eq B and B^F eq A and C^F eq C and D^F eq D and W eq

sub<W|A,B,C,D,E,F> then A,B,C,D,E,F; break; end if; end for; end for;

G<a,b,c,d,e,f>:=Group<a,b,c,d,e,f|a^2,b^2,c^2,d^2,(a,b),(a,c),(a,d),

(b,c),(b,d),(c,d),e^4,f^2,(e*f)^3,a^e=b,b^e=c,c^e=d,d^e=a,a^f=b,

b^f=a,c^f=c,d^f=d>;

#G;

f,N,k:=CosetAction(G,sub<G|Id(G)>);

A:=N.1;B:=N.2; C:=N.3; D:=N.4; E:=N.5; F:=N.6;

NN:=G;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..384]];

for i in [2..384] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;

if Eltseq(Sch[i])[j] eq 4 then P[j]:=D; end if;

if Eltseq(Sch[i])[j] eq 5 then P[j]:=E; end if;

if Eltseq(Sch[i])[j] eq -5 then P[j]:=E^-1; end if;

if Eltseq(Sch[i])[j] eq 6 then P[j]:=F; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

S:=Subgroups(N);

for i in [1..#S] do if Index(N,S[i]‘subgroup) eq 8 then i; end if;

end for;

H:=S[171]‘subgroup;

for i in [1..384] do if ArrayP[i] eq H.1 then Sch[i]; end if; end for;

for i in [1..384] do if ArrayP[i] eq H.2 then Sch[i]; end if; end for;

for i in [1..384] do if ArrayP[i] eq H.3 then Sch[i]; end if; end for;

for i in [1..384] do if ArrayP[i] eq H.4 then Sch[i]; end if; end for;

for i in [1..384] do if ArrayP[i] eq H.5 then Sch[i]; end if; end for;

G<a,b,c,d,e,f>:=Group<a,b,c,d,e,f|a^2,b^2,c^2,d^2,(a,b),(a,c),(a,d),

(b,c),(b,d),(c,d),e^4,f^2,(e*f)^3,a^e=b,b^e=c,c^e=d,d^e=a,a^f=b,

b^f=a,c^f=c,d^f=d>;

HH:=sub<G|a,a * b * c * d * e * f * e^2 * f,e^2 * f * e^-1,a*c,b*c>;

#HH;
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f,G1,k:=CosetAction(G,HH);

#G1;

IsIsomorphic(G1,W);

S:=Sym(8);

A:=S!(5,6);

B:=S!(7,8);

C:=S!(1,2);

D:=S!(3,4);

E:=S!(1,3,6,7)(2,4,5,8);

F:=S!(5,8)(6,7);

N:=sub<S|A,B,C,D,E,F>;

NN:=G;

N1:=Stabiliser(N,[1]);

N1;

for i in [1..384] do if ArrayP[i] eq N!(3,6)(4,5) then print Sch[i];

end if; end for;

G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^2,b^2,c^2,d^2,(a,b),(a,c),

(a,d),(b,c),(b,d),(c,d),e^4,f^2,(e*f)^3,a^e=b,b^e=c,c^e=d,d^e=a,

a^f=b,b^f=a,c^f=c,d^f=d, t^2, (t,a), (t,b), (t,d), (t,f),(t,e*f*e^-1)>;

for i,j,k,l,m,n in [0..10] do

G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^2,b^2,c^2,d^2,(a,b),

(a,c),(a,d),(b,c),(b,d),(c,d),e^4,f^2,(e*f)^3,a^e=b,b^e=c,c^e=d,

d^e=a,a^f=b,b^f=a,c^f=c,d^f=d, t^2, (t,a), (t,b), (t,d), (t,f),

(t,e*f*e^-1), (a*t)^i,(e*t*t^(b))^j,(t*f*t)^k,(e*t*t^(d))^l,

(c*t^(f*c))^m,(c*t*e)^n>;if Order(G) ge 18 then i,j,k,l,m,n,

Order(G); end if;

end for;

D.3 Wreath Product Z2 Wr A4

W:=WreathProduct(CyclicGroup(2),Alt(4));

#W;

G<a,b,c,d,e,f>:=Group<a,b,c,d,e,f|a^2,b^2,c^2,

d^2,(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),e^3,f^2,(e*f)^3,

(e,f)^2,a^e=b,b^e=c,c^e=a,d^e=d,a^f=b,b^f=a,c^f=d,

d^f=c>;

#G;

/*for A,B,C,D,E,F in W do if Order(A) eq 2 and

Order(B) eq 2 and Order(C) eq 2\

and Order(D) eq 2 and (A,B) eq Id(W) and (A,C) eq

Id(W) and (A,D) eq Id(W) and (B,C) eq Id(W) and

(B,D) eq Id(W) and (C,D) eq Id(W)

and Order(E) eq 3 and O\
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rder(F) eq 2 and Order((e*f)) eq 3 and Order((e,f)) eq 2

and A^E eq B and B^E eq C and C^E eq A and \

D^E eq D and A^F eq B and B^F eq A and C^F eq D and

D^F eq C and W eq sub<W|A,\

B,C,D,E,F> then A,B,C,D,E,F; break; end if; end for;*/

CC:=Classes(W);

for A,B,C,D,F in Class(W,CC[2][3]) join Class(W,CC[3][3]) join

Class(W,CC[4][3]) join Class(W,CC[5][3]) join

Class(W,CC[6][3]) do for E in Class(W,CC[7][3]) join

Class(W,CC[8][3]) do if Order(E*F) eq 3 and Order((E,F))

eq 2 and (A,B) eq Id(W) and (A,C) eq Id(W) and (A,D) eq

Id(W) and (B,C) eq Id(W) and (B,D) eq Id(W) and (C,D) eq

Id(W) and A^E eq B and B^E eq C and C^E eq A and

D^E eq D and A^F eq B and B^F eq A and C^F eq D and

D^F eq C and W eq sub<W|A,B,C,D,E,F> then A,B,C,D,E,F;

break; end if; end for; end for;

S:=Sym(8);

A:=S!(3,4);

B:=S!(7,8);

C:=S!(1,2);

D:=S!(5,6);

E:=S!(1,3,8)(2,4,7);

F:=S!(1,5)(2,6)(3,8)(4,7);

N:=sub<S|A,B,C,D,E,F>;

NN:=G;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..192]];

for i in [2..192] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=A; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=B; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=C; end if;

if Eltseq(Sch[i])[j] eq 4 then P[j]:=D; end if;

if Eltseq(Sch[i])[j] eq 5 then P[j]:=E; end if;

if Eltseq(Sch[i])[j] eq -5 then P[j]:=E^-1; end if;

if Eltseq(Sch[i])[j] eq 6 then P[j]:=F; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

for i in [1..192] do if ArrayP[i] eq N!(3,4) then print Sch[i];
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end if; end for;

for i in [1..192] do if ArrayP[i] eq N!(7,8) then print Sch[i];

end if; end for;

for i in [1..192] do if ArrayP[i] eq N!(5,6) then print Sch[i];

end if; end for;

for i in [1..192] do if ArrayP[i] eq N!(3,6,7,4,5,8) then

print Sch[i];

end if; end for;

G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^2,b^2,c^2,d^2,(a,b)

,(a,c),(a,d),(b,c),(b,d),(c,d),e^3,f^2,(e*f)^3,(e,f)^2,a^e=b,

b^e=c,c^e=a,d^e=d,a^f=b,b^f=a,c^f=d,d^f=c,t,(t,a),(t,b),(t,d),

(t,a*f*e*f)>;

for i,j,k,l,m,n in [0..10] do

G<a,b,c,d,e,f,t>:=Group<a,b,c,d,e,f,t|a^2,b^2,c^2,d^2,

(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),e^3,f^2,(e*f)^3,(e,f)^2,

a^e=b,b^e=c,c^e=a,d^e=d,a^f=b,b^f=a,c^f=d,d^f=c,t,

(t,a),(t,b),(t,d),(t,a*f*e*f),(a*t)^i,(e*t*t^(b))^j,(t*f*t)^k,

(e*t*t^(d))^l,(c*t^(f*c))^m,(c*t*e)^n>;

if Order(G) ge 18 then i,j,k,l,m,n, Order(G); end if; end for;

D.4 Wreath Product Z3 Wr Z2

W:=WreathProduct(CyclicGroup(3),CyclicGroup(2));

G<a,b,c>:=Group<a,b,c|a^3,b^3,(a,b),c^2,a^c=b,b^c=a>;

#G;

for A,B,C in W do if Order(A) eq 3 and Order(B) eq 3 and

(A,B) eq Id(W) and Order(C) eq 2 and A^C eq B and B^C eq A

and W eq sub<W|A,B,C> then A,B,C; break; end if; end for;

S:=Sym(6);

A:=S!(4,5,6);

B:=S!(1,2,3);

C:=S!(1,4)(2,5)(3,6);

N:=sub<S|A,B,C>;

N eq W;

N1:=Stabiliser(N,1);

G<a,b,c,t>:=Group<a,b,c,t|a^3,b^3,(a,b),c^2,a^c=b,

b^c=a,t^2,(t,a)>;

for i,j,k,l,m,n in [0..10] do

G<a,b,c,t>:=Group<a,b,c,t|a^3,b^3,(a,b),c^2,a^c=b,b^c=a,t^2,

(t,a),(a*t)^i,(t*t^(b))^j,(t*a*t)^k,(t^c*t)^l,(c*t^a)^m,(b*t*c)^n>;

if Order(G) ge 18 then i,j,k,l,m,n, Order(G); end if; end for;



150

Appendix E

Di�cult Extension Problems

E.1 Mixed Extension Using Database

a:=0;b:=0;c:=0;d:=3;e:=0;

G<x,y,t>:=Group<x,y,t|x^4,y^2,(x*y)^3,t^2,(t,y),(t,y^x),(x*t)^a,

(x*t*t^x)^b,(x*y*t*t^x*t^(y))^c,(x^3*t*t^x*t^y)^d,(x*y*t)^e>;

f,G1,k:=CosetAction(G,sub<G|x,y>);

#G1;

CompositionFactors(G1);

NL:=NormalLattice(G1);

NL;

D:=DerivedGroup(G1);

D;

s:=IsIsomorphic(D,NL[3]);

IsPerfect(D);

DerivedGroup(D) eq D;

DB := PerfectGroupDatabase();

"A5" in TopQuotients(DB);

ExtensionPrimes(DB, "A5");

ExtensionExponents(DB, "A5", 5);

ExtensionNumbers(DB, "A5", 5, 3);

H1:=Group(DB, "A5", 5, 3,1);

H1;

P1:=PermutationGroup(DB, "A5", 5, 3,1);

s:=IsIsomorphic(NL[3],P1);

s;

P2:=PermutationGroup(DB, "A5", 5, 3,2);

s:=IsIsomorphic(NL[3],P2);

s;

H2:=Group(DB, "A5", 5, 3,2);
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H2;

q,ff:=quo<NL[3]|NL[2]>;

A:=q.1;

B:=q.2;

ff(NL[3].1) eq A;

ff(NL[3].2) eq B;

T:=Transversal(NL[3],NL[2]);

ff(T[2]) eq A;

ff(T[3]) eq B;

#T;

(A*B)^5;

(T[2]*T[3])^5 in NL[2];

(T[2]*T[3])^5;

X:=NL[2].2;

Y:=NL[2].3;

Z:=NL[2].4;

C:=T[2];

D:=T[3];

N:=sub<G1|X,Y,Z>;

NN<k,l,m>:=Group<k,l,m|k^5,l^5,m^5,(k,l),(k,m),(l,m)>;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..125]];

for i in [2..125] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=X; end if;

if Eltseq(Sch[i])[j] eq -1 then P[j]:=X^-1; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=Y; end if;

if Eltseq(Sch[i])[j] eq -2 then P[j]:=Y^-1; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=Z; end if;

if Eltseq(Sch[i])[j] eq -3 then P[j]:=Z^-1; end if;

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

X eq NL[3].3;

Y eq NL[3].4;

Z eq NL[3].5;

for i in [1..125] do if ArrayP[i] eq (C*D)^5 then Sch[i];

end if; end for;

A:=[Id(NN) : i in [1..6]];

for i in [1..125] do if X^C eq ArrayP[i] then A[1]:=Sch[i];
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Sch[i]; end if; end for;

for i in [1..125] do if X^D eq ArrayP[i] then A[2]:=Sch[i];

Sch[i]; end if; end for;

for i in [1..125] do if Y^C eq ArrayP[i] then A[3]:=Sch[i];

Sch[i]; end if; end for;

for i in [1..125] do if Y^D eq ArrayP[i] then A[4]:=Sch[i];

Sch[i]; end if; end for;

for i in [1..125] do if Z^C eq ArrayP[i] then A[5]:=Sch[i];

Sch[i]; end if; end for;

for i in [1..125] do if Z^D eq ArrayP[i] then A[6]:=Sch[i];

Sch[i]; end if; end for;

A;

NN<a,b,k,l,m>:=Group<a,b,k,l,m|k^5,l^5,m^5,(k,l),(k,m),(l,m),

a^2,b^3,(a*b)^5=k * m * l^-2,

k^a=m^-1,k^b= k * m,l^a= m * k^-1 * l^-1,l^b= m,m^a= k^-1,

m^b= l^-1 * m^-1>;

#NN;

N1:=CosetAction(NN,sub<NN|Id(NN)>);

f1,N1,k1:=CosetAction(NN,sub<NN|Id(NN)>);

#N1;

s:=IsIsomorphic(N1,NL[3]);

s;

for r in G1 do if Order(r) eq 2 and r notin NL[3] and G1 eq

sub<G1|NL[3],r> then R:=r; break; end if; end for;

G1 eq sub<G1|NL[3],R>;

N:=sub<G1|X,Y,Z,C,D>;

NN<a,b,k,l,m>:=Group<a,b,k,l,m|k^5,l^5,m^5,(k,l),(k,m),(l,m),

a^2,b^3,(a*b)^5=k * m * l^-2,

k^a=m^-1,k^b= k * m,l^a= m * k^-1 * l^-1,l^b= m,m^a= k^-1,

m^b= l^-1 * m^-1>;

Sch:=SchreierSystem(NN,sub<NN|Id(NN)>);

ArrayP:=[Id(N): i in [1..7500]];

for i in [2..7500] do

P:=[Id(N): l in [1..#Sch[i]]];

for j in [1..#Sch[i]] do

if Eltseq(Sch[i])[j] eq 1 then P[j]:=X; end if;

if Eltseq(Sch[i])[j] eq -1 then P[j]:=X^-1; end if;

if Eltseq(Sch[i])[j] eq 2 then P[j]:=Y; end if;

if Eltseq(Sch[i])[j] eq -2 then P[j]:=Y^-1; end if;

if Eltseq(Sch[i])[j] eq 3 then P[j]:=Z; end if;

if Eltseq(Sch[i])[j] eq -3 then P[j]:=Z^-1; end if;

if Eltseq(Sch[i])[j] eq 4 then P[j]:=C; end if;

if Eltseq(Sch[i])[j] eq 5 then P[j]:=D; end if;

if Eltseq(Sch[i])[j] eq -5 then P[j]:=D^-1; end if;



153

end for;

PP:=Id(N);

for k in [1..#P] do

PP:=PP*P[k]; end for;

ArrayP[i]:=PP;

end for;

A:=[Id(NN) : i in [1..5]];

for i in [1..7500] do if X^R eq ArrayP[i] then A[1]:=Sch[i];

Sch[i]; end if; end for;

for i in [1..7500] do if Y^R eq ArrayP[i] then A[2]:=Sch[i];

Sch[i]; end if; end for;

for i in [1..7500] do if Z^R eq ArrayP[i] then A[3]:=Sch[i];

Sch[i]; end if; end for;

for i in [1..7500] do if C^R eq ArrayP[i] then A[4]:=Sch[i];

Sch[i]; end if; end for;

for i in [1..7500] do if D^R eq ArrayP[i] then A[5]:=Sch[i];

Sch[i]; end if; end for;

E.2 Extension Problem (2⇥ 11)• : (PGL(2, 11))

i:=0;j:=0;k:=0;l:=4;m:=2;

G<x,y,t>:=Group<x,y,t|x^11,y^2,(x^-1*y)^2,t^2,(t,y*x),

(y*t^(x^-1))^i,

(x*t)^j,

(x^2*t*t^y)^k,

(x^5*t)^l,

(x*t*t^y*t^x)^m

>;

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

Center(G1);

NL:=NormalLattice(G1);

NL;

IsAbelian(NL[4]);

q,ff:=quo<G1|NL[4]>;

CompositionFactors(q);

s,t:=IsIsomorphic(q,PGL(2,11));

s;

FPGroup(q);

H<a,b,c>:=Group<a,b,c|a^-11,b^2,c^2,(a^-1*b)^2,(a*c*b)^2,

a^2*c*a^-2*c*a*b*c,\

(a*c*a*c*a^2)^2>;

#H;
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#PGL(2,11);

f1,H1,k1:=CosetAction(H,sub<H|Id(H)>);

s,t:=IsIsomorphic(H1,q);

s;

A:=t(f1(a));

B:=t(f1(b));

C:=t(f1(c));

T:=Transversal(G1,NL[4]);

for i in [1..#T] do if ff(T[i]) eq A then i; end if; end for;

for i in [1..#T] do if ff(T[i]) eq B then i; end if; end for;

for i in [1..#T] do if ff(T[i]) eq C then i; end if; end for;

A:=T[367];

B:=T[694];

C:=T[495];

NL[4];

D:=DirectProduct(CyclicGroup(2),CyclicGroup(11));

s,t:=IsIsomorphic(D,NL[4]);

s;

for d,e in NL[4] do if Order(d) eq 2 and Order(e) eq 11 and d^e eq d

then D:=d; E:=e; end if; end for;

Order(D);

H;

for i in [0..1] do for j in [0..10] do if A^-11 eq D^i*E^j then

i,j; break; end if; end for; end for;

for i in [0..1] do for j in [0..10] do if B^2 eq D^i*E^j then

i,j; break; end if; end for; end for;

for i in [0..1] do for j in [0..10] do if C^2 eq D^i*E^j then

i,j; break; end if; end for; end for;

for i in [0..1] do for j in [0..10] do if (A^-1*B)^2 eq D^i*E^j

then i,j; break; end if; end for; end for;

for i in [0..1] do for j in [0..10] do if (A*C*B)^2 eq D^i*E^j

then i,j; break; end if; end for; end for;

for i in [0..1] do for j in [0..10] do if A^2*C*A^-2*C*A*B*C eq

D^i*E^j then i,j; break; end if; end for; end for;

for i in [0..1] do for j in [0..10] do if (A*C*A*C*A^2)^2 eq D^i*E^j

then i,j;

break; end if; end for; end for;
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for i,b,c in [0..1] do for j in [0..10] do for a in [0..21] do if A^D eq

A^a*B^b*C^c*D^i*E^j

then a,b,c,i,j; break; end if; end for; end for;end for;

for i,b,c in [0..1] do for j in [0..10] do for a in [0..21] do if B^D eq

A^a*B^b*C^c*D^i*E^j

then a,b,c,i,j; break; end if; end for; end for;end for;

for i,b,c in [0..1] do for j in [0..10] do for a in [0..21] do if C^D eq

A^a*B^b*C^c*D^i*E^j then a,b,c,i,j; break; end if; end for;

end for;end for;

for i,b,c in [0..1] do for j in [0..10] do for a in [0..21] do

if A^E eq A^a*B^b*C^c*D^i*E^j then a,b,c,i,j; break; end if; end for;

end for;end for;

for i,b,c in [0..1] do for j in [0..10] do for a in [0..21] do if B^E

eq A^a*B^b*C^c*D^i*E^j then a,b,c,i,j; break; end if; end for; end for;

end for;

for i,b,c in [0..1] do for j in [0..10] do for a in [0..21] do if C^E eq

A^a*B^b*C^c*D^i*E^j then a,b,c,i,j; break; end if; end for; end for;

end for;

H<a,b,c,d,e>:=Group<a,b,c,d,e|a^-11=d,b^2,c^2,(a^-1*b)^2,(a*c*b)^2=

e^6,a^2*c*a^-2*c*a*b*c=e,(a*c*a*c*a^2)^2=e^10,d^2,e^11,(d,e),a^d=a,

b^d=b,c^d=c,a^e=a,b^e=b*e^2,c^e=c*e^2>;

f2,H2,k2:=CosetAction(H,sub<H|Id(H)>);

s,t:=IsIsomorphic(H2,G1);

s;

E.3 Extension Problem 2•(U(3, 4) : 2)

i:=2;j:=10;k:=10;l:=10;

G<x,y,t>:=Group<x,y,t|x^-9,y^2,(x^-1*y)^2,t^2,(t,y*x),

(x^3*t)^i,

(x^4*t^x)^j,

(y*t)^k,

(x*t*t^x^2*t)^l

>;

f,G1,k:=CosetAction(G,sub<G|x,y>);

CompositionFactors(G1);

NL:=NormalLattice(G1);
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NL;

Center(G1);

q,ff:=quo<G1|NL[2]>;

CompositionFactors(q);

Center(q);

Permutation group acting on a set of cardinality 1600

Order = 1

nl:=NormalLattice(q);

nl;

//FROM ATLAS WE HAVE A PRESENTATION FOR U(3,4):2 //

H<a,b>:=Group<a,b|a^2,b^3,(a*b)^8,(a,b)^13,

(a,b*a*b*a*b*a*b^-1*a*b*a*b)^2,(a\

,b^-1*a*b*a*b)^5>;

#H;

f1,H1,k1:=CosetAction(H,sub<P|Id(H)>);

s,t:=IsIsomorphic(P1,q);

s;

T:=Transversal(G1,NL[2]);

Current total memory usage: 96.2MB, failed memory request: 13982.0MB

System error: Out of memory.

At this point we would of found elements from the above presentation

that can be written in terms of the center but Magma ran out of storage.
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