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ABSTRACT

Data clustering is a data analysis technique that groups data based on a

measure of similarity. When data is well clustered the similarities between

the objects in the same group are high, while the similarities between objects

in different groups are low. The data clustering technique is widely applied

in a variety of areas such as bioinformatics, image segmentation and market

research.

This project conducted an in-depth study on data clustering with focus

on density-based clustering methods. The latest density-based (CFSFDP)

algorithm is based on the idea that cluster centers are characterized by

a higher density than their neighbours and by a relatively larger distance

from points with higher densities. This method has been examined, ex-

perimented, and improved. These methods (KNN-based, Gaussian Kernel-

based and Iterative Gaussian Kernel-based) are applied in this project to

improve (CFSFDP) density-based clustering. The methods are applied to

four milestone datasets and the results are analyzed and compared.
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1. INTRODUCTION TO DATA CLUSTERING

1.1 Overview

Clustering analysis is aimed at classifying objects into categories on the basis of their

similarity, and, nowadays, it is a technique used in many different fields such as bioin-

formatics, image segmentation and market research [1]. The goal of data clustering

is to find groups of similar objects in a dataset while keeping them separated from

the noisy points (outliers). Data objects that are classified in the same group should

display similar properties based on particular criteria because with such classification

information, it is possible to infer the properties of a specific object based on the

category to which it belongs [2].

A summary of the goals of cluster analysis has been done by Aldenderfer and

Blashfield (1984) [3]:

• Development of a classification

• Investigation of useful conceptual schemes for grouping entities

• Hypothesis generation through data exploration

• Hypothesis testing or the attempt to determine if types defined through other

procedures are in fact present in a data set.

Cluster analysis is a useful tool in large scale data analysis providing a compressed
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representation of the data. Even if several different clustering strategies have been

proposed and many different algorithms have been published to group similar data,

cluster analysis determine which criterion is the best solution in general [2].

1.2 Significance

Data clustering became an important problem solving technique because it can be

achieved by various algorithms that differ significantly in their notion of what consti-

tutes a cluster and how to efficiently find them [17].

Cluster analysis itself does not use one specific algorithm, for a general task but

rather various algorithms that differ significantly in their notion of what constitutes

a cluster and how to efficiently find them. Popular notions of clusters include groups

with small distances among the cluster members, dense areas of the data space and

intervals or particular statistical distributions [16].

Data Clustering can therefore be formulated as a multi-objective optimization

problem. The appropriate clustering algorithm and parameter settings (including

values such as the distance function to use, which is a density threshold or the num-

ber of expected clusters) depend on the individual data set and intended use of the

results. Cluster analysis is considered an iterative process of knowledge discovery and

interactive multi-objective optimization that involves trial and failure [17].

Clustering has been applied in a wide variety of fields [16]:

1. Biology. One example of how clustering can be used is human genetic clustering

the similarity of genetic data to infer population structures.

2. Computer sciences. One example of clustering is image segmentation to divide
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a digital image into distinct regions for border detection or object recognition.

3. Life and medical sciences. One example of how clustering can be used is to

analyze patterns of antibiotic resistance and to classify antimicrobial compounds

according to their mechanism of action.

4. Astronomy and earth sciences. One example of how clustering can be used is

to reconstruct missing bottom hole core data or missing log curves in order to

evaluate reservoir properties.

5. Social sciences. One example of how clustering can used is to identify areas

where there are greater incidences of particular types of crime.

6. Economics. One example of how clustering can be used is to group all the

shopping items available on the web into a set of unique products; all the items

in eBay can be grouped into unique products.

1.3 Grouping of Data Clustering Techniques

The definition of ”cluster” is groups containing data objects that are similar to each

other, while data objects in different clusters are not. It is very important to figure

out how to measure the closeness (similarity) or the distance (dissimilarity) between

a pair of objects, an object and a cluster, or a pair of clusters. The choice of how to

measure the proximity effects the formations of the resulting clusters, so the selection

of an appropriate proximity function is important. Unfortunately cluster analysis is

a subjective and problem-dependent process, so there is not a unique way to define

which is the best approach to measure the proximity and the features defining a
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cluster.

Clustering algorithms are generally classified into the following groups:[2], [4]

• K-means and K-medoids methods: suitable for convex clusters. Clusters are

usually formed by data close to each other and there is an objective function that

is optimized until the best cluster center is found. It seeks to cluster data points

by assigning each sample to the nearest mean, updating the cluster means and

re-assigning until the mean values no longer change or there are no re-allocations.

k represent the number of clusters and needs to be pre-defined and fixed. This

method is susceptible to differing results according to the initial samples chosen

[5].

• Distribution based algorithms: the dataset is described as a mix of predefined

probability distribution functions. It is a parametric approach where the un-

known density is assumed to belong to some parametric family like a Gaussian

distribution.

• Density-based cluster methods: they are non-shaped based methods and they

focus on the local density of data points. Density-Based Spatial clustering Ap-

plication with Noise (DBSCAN) is one case. A density threshold is chosen to be

discarded as the noise and the cluster is defined as a set of points that converge

to the same local maximum of the density distribution function. Density-Based

Clustering (DENCLUE) uses a density estimator to define the clusters. The

(DENCLUE) algorithm employs a cluster model based on kernel density estima-

tion. A cluster is defined by a local maximum of the estimated density function.

Data points are assigned to clusters by hill climbing, i.e. points going to the same

4



local maximum are put into the same cluster.A clustering in the (DENCLUE) is

defined by the local maxims of the estimated density function. A hill-climbing

procedure is started for each data instance, which assigns the instance to a local

maximum. A disadvantage of (DENCLUE) is that the used hill climbing may

make unnecessary small steps in the beginning, and this method never converges

exactly to the maximum, it just comes close.
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2. REVIEW OF DENSITY-BASED CLUSTERING

As previously mentioned, density-based clustering is an approach where the clusters

are defined by their density. It is a nonparametric approach: the number of clusters is

not needed input and no assumptions are made about the density distribution. This

method does not depend on the shape distribution of the data set.

Two user inputs are required: the minimum number of samples within a radius

for a sample to be considered dense and the radius itself. The clusters selected can

be imagined as resulting from a cut through a certain density level: each cut leads to

separate regions where the density is higher than the cut value. Each of these regions

corresponds to a cluster containing all the data points falling into this region. If the

level is chosen too low, different clusters will be merged to a single cluster. If the

density level is chosen too high, clusters exhibiting a lower density will be lost. The

choice of the cut off value chosen has a key role in density-based clustering.

This clustering technique is often used to find cluster data of points formed by

natural structures such as roads, volcanos and rivers. When used for ”natural” ap-

plication they are called ”natural clusters” [4].

A general formalization of a density-based cluster was proposed by Hartigan [6].

Given a density ρ(x) at each point x, a density threshold λ and a specific link for pairs

of objects, a density-contour cluster at level λ is defined as a maximally connected

6



set of points xi such that ρ(xi) > λ. The links between points may be specified using

a specific distance function.

The basic assumption is that the dataset is a sample from some unknown proba-

bility density and clusters are high-density areas of this dataset distribution. In order

to fulfill this assumption, it is necessary to know:

1. A local density estimate at each point.

2. A notion of connection between objects. Generally, points are connected if they

are within a certain distance dc from each other.

Clusters are constructed as sets of objects that are connected to objects whose density

exceeds some threshold λ. Objects that are not part of such clusters are called noise

or outliers.

There are various density-based methods proposed in the literature [7], [8]. In the

next chapters some density-based cluster methods will be described. Their main dif-

ferences involve the local density estimation, the algorithm used for finding connected

components and the notion of connectivity used.

2.1 Review of Density-based Clustering Algorithms

2.1.1 Density-Based Spatial Clustering Application with Noise (DBSCAN)

The density based spatial clustering of applications with noise (DBSCAN) algorithm

allows the use of index structures for density estimation. Given a distance threshold

dc and a density threshold minPts, the density of a point xi is defined as the number

of points that are within a radius dc around xi. The point xi is considered a core point

7



if minPtsi is bigger then minPts . Two points are considered directly connected if

they have a distance of less than dc. Two points are density connected if they are

connected to core points and these core points are density connected [9].

Fig. 2.1: Schematic representation of density connectivity. In blue the core points, in green the points on

the boundaries, in red the rest of the points.

Clusters can also contain border points that do not have the core point property.

Objects that are not part of a cluster are noise points. In an extreme case,a cluster

can only contain one core point.

DBSCAN computes to start a new cluster C with a not yet assigned core point x

by assigning all points to C that are connected to x. Each point is ”scanned” with a

radius dc to determine the connected points that have to be added to C. For a dataset

of N elements, the complexity of this operation is O(N) when applying a sequential

search, resulting in a total runtime complexity of O(N2) [2].
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2.1.2 Density-Based Clustering (DENCLUE)

Density-based Clustering (DENCLUE) uses a kernel density estimator to define density-

based clusters. Any density estimator can be used. For instance, a well known Gaus-

sian kernel can be chosen or a more complex SquareWave (uniform) kernel.

A local maximum of the density function is called a density attractor. Each point

x is associated with the density attractor located in the direction of maximum increase

in density from x. A density-based cluster is defined as a connected component of

density attractors with their associated points: their density estimate has to be above

the given threshold λ [9].

The implementation of DENCLUE relies on a Gaussian kernel and a sophisticated

data structure for fast local density estimation.

2.2 Datasets

Fig.2.2 show the four different datasets that have been tested:

• Aggregation: This dataset was used in an aggregation clustering problem. [11]

• Jain: This dataset is used in genetic algorithm. [12]

• Flame: This dataset is used on Microarray data analysis. [13]

• Spiral: This dataset is used for spectral clustering and path-based clustering.

[14]

The software MATLAB has been used to analyze the data. Different dc have been

applied in order to compare the different results obtained.
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Fig. 2.2: Dataset chosen to test different algorithms for data clustering A- Aggregation, B-Jain, C- Flame,

and D- Spiral.
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3. METHODOLOGY

3.1 Clustering by Fast Search and Find of Density Peaks (CFSFDP)

In the introduction, several different clustering strategies have been mentioned. Here

an alternative approach is proposed [1].

Starting from the distance between data points, the Clustering by Fast Search

and Find of Density Peaks (CFSFDP) is able to detect nonspherical clusters and to

automatically find the correct number of clusters. The local maxima in density of

data points is the parameter used to find the cluster centers. This method is based

on the assumption that cluster centers are surrounded by neighbors with lower local

density and that they are at a relatively large distance from any points with a higher

local density.

For each point i in the data set, two quantities that depend only on the distances

between data points, are calculated:

• ρi, local density.

• δi, distance from points of higher density.

Given dij distance between point i and j, dc cut off distance, n total number of

point, the local density ρi is defined as:

ρi =
n−1∑
j=1

χ(dij − dc)

11



χ(x) =


1 if x < 0

0 otherwise

ρi counts the number of points that are within the dc to the point i.

The distance from points of higher density δi is defined as:

δi = minj:ρj>ρi(dij)

δi = maxj(dij) for points with highest density

δi is calculated as the minimum distance between the point i and the point with

higher density. For the points with highest density a different definition is used in

such a way that δi is much larger than the typical nearest neighbor distance. The

cluster center is recognized as the points with the largest δi.

Fig. 3.1: ρ - Schematic representation of how ρi is calculated. In red there is the point with the highest

local density. δ - Schematic representation of how δi is calculated. In red there is the point with

the highest local density so δred is obtained considering its farthest point. For the blue point, with

lower density, δblue is calculated as the minimum distance between that point and any other point

with a higher local density.
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From these two definitions, it is clear how this method depends strongly on the

cut off distance chosen, but it make it possible to distinguish the cluster from the

higher value of both ρ and δ. Fig(3.2) shows a dataset of points and their decision

graph, δ VS ρ. From the decision graph it is easy to distinguish which points are the

centers of the cluster because of their higher δ and ρ [1].

Fig. 3.2: A - Data set distribution. The points are numbered starting from the highest to the lowest local

density. B - Density decision graph for the dataset on the left. The data points with higher δ and

ρ are selected as centers of the clusters (points 1 and 10). The points with high ρ and low δ belong

to the existing clusters. Points 7, 8 and 9 belong to the cluster centered in 1 (red). Points 13,

15 and 22 belong to the cluster centered in 10 (blue). The data points with low ρ and high δ are

considered outliers (black).
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3.2 Analysis

It has been proven [1] that the optimal choice for dc is such that the average number

of neighbors is around 1-2% of the total number of points in the dataset. For small

datasets, ρi can be affected by a large statistical error.

When finding the cluster using MATLAB, the user has an important role. In

fact a rectangle has to be selected to determine ρminimum and δminimum (Fig. 3.3).

Depending on the selection made, the clusters found have different sizes.

Fig. 3.3: Rectangle selected by the user to define ρminimum and δminimum.
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Fig. 3.4: Aggregation dataset, CFSFDP method applied.
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Fig. 3.5: Flame dataset, CFSFDP method applied.
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Fig. 3.6: Jain dataset, CFSFDP method applied.
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Fig. 3.7: Spiral dataset, CFSFDP method applied.
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4. ALGORITHM DESIGN, IMPLEMENTATION AND ANALYSIS

The CFSFDP algorithm has been implemented and modified using the tool MATLAB.

The data sets previously described have been implemented and different results have

been compared.

The code has been modified because several different algorithms have been applied.

The CFSFDP idea is kept but a few different modifications have been applied in order

to improve the results obtained.

4.1 KNN-based CFSFDP

4.1.1 Method

A possible solution to the problem of the dependency of the CFSFDP on dc is de-

scribed by Mr. Ryan Segher in [10].

The definition or ρi changes: instead of counting the number of neighbors within

a hard cutoff distance threshold, ρi is defined as the mean distance to the nearest M

neighbors:

ρi =

∑M
j=1(dij)

M

M is a percentage of the total number of points N in the data set, in particular,

given a ratio m

19



M = m ratio ∗N

M is a percentage of the total number of points and (N) is the total number of

points.

4.1.2 Results

Fig. 4.1: Aggregation dataset, KNN method applied.
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Fig. 4.2: Flame dataset, KNN method applied.

Fig. 4.3: Jain dataset, KNN method applied.
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Fig. 4.4: Spiral dataset, KNN method applied.

4.2 Gaussian Kernel-based CFSFDP

4.2.1 Method

A kernel density estimation has been chosen in order to infer a probability density at

each point in the dataset according to a specific distribution, called influence function.

The influence function describes the impact of a data point within its neighborhood,

or estimates the probability density at each point in the data set.

DBSCAN methods are a special case of kernel density estimation. Kernel density

estimation aims to find the denser regions of points exactly like clustering.

This new approach does not define the local density as the number of points within

the cut off value, but uses a Gaussian kernel to determine the ρi values. Moreover dc

corresponds to the standard deviation of Gaussian Kernel so it describes how much
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the data is dispersed.

The density for point i, i.e. ρi, can be calculated as the sum of the influence

function of point i for all data points. The density attractors are local maximals of

the overall density function.

ρi =
n−1∑
j=1

e(
dij
dc

)2

This method can be classified among the DENCLUE algorithms. ρ is calculated

for each neighbor. The use of the Gaussian distribution weighs the contribution of

every neighbor: if a point is closer, then its contribution is bigger. The standard

deviation is represented by dc.

4.2.2 Results

Fig. 4.5: Aggregation dataset, Gaussian Kernel method applied.
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Fig. 4.6: Flame dataset, Gaussian Kernel method applied.
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Fig. 4.7: Jain dataset, Gaussian Kernel method applied.
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Fig. 4.8: Spiral dataset, Gaussian Kernel method applied.
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4.3 Iterative Gaussian Kernel-based CFSFDP

4.3.1 Method

A more in depth analysis has been performed on the kernel density estimation. The

results obtained were particularly promising, so an iterative approach has been com-

bined with the statistical approach in order to improve the results.

In the previous section, the concept of kernel density estimation has been intro-

duced. In this section, a gradient-based optimization can be used to find the peaks:

regions with densities above a given threshold.

• x∗ is called a density attractor if it is a local maximum of the provability density

function (previously defined).

• The density gradient is used to find the density attractors, and it is calculated

as the derivative of the probability density function: ∇f ∗(X).

• It has been proven that x is density attracted to another point x* (which belongs

to its cluster) if xt+ 1 = xt + δ · ∇f ∗(xt) [15].

• δ is the step size chosen, in our case it is 1.

The new influence function chosen is obtained from the derivation of the Gaussian

definition of ρ described in the previous section [15].

∇ρi =
n−1∑
j=1

di,je
(
dij
dc

)2

ρi takes into account the distances between the point i and all the other points,

but during each iteration it is looking for attractors so it converges to 0.
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4.3.2 Results

Fig. 4.9: Aggregation dataset, Iterative Gaussian Kernel method applied.
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Fig. 4.10: Flame dataset, Iterative Gaussian Kernel method applied.
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Fig. 4.11: Jain dataset, Iterative Gaussian Kernel method applied.
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Fig. 4.12: Spiral dataset, Iterative Gaussian Kernel method applied.
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4.4 Comparisons and Analysis

The CFSFDP method has been proven to be very efficient at providing very good

results in cluster analysis [1]. But there are also some drawbacks:

• strict dependency on the cut off distance (dc) chosen.

• The user has to choose the average number of neighbors (in percentage) that

could form a cluster. This percentage is strictly related to dc (the more neighbors,

the greater dc is).

This is why several other methods have been presented in this work.

The KNN-based CFSFDP has a particular way to calculate the separation

scores. Usually, the separation score attempts to determine how good separated the

peak density points are from other points. This method dose affect the absolute values

of the scores. However, it does not significantly affect the main point. In general, the

KNN method is tested with a separation score. Using this method, it turns out that

the dependency from dc is less strong.

Since this method is independent from a cut off value, a statistical approach was

presented.

The results obtained with the Gaussian Kernel-based CFSFDP method are

pretty similar to the original method. The clusters are significantly distinctive and

the points with high ρ and δ are still the ones selected.

Using Gaussian distribution the cluster definition is ”smoother”. This method is

not effected as much as the previous one by the small number of points in the dataset

because of the Gaussian fit.
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The Iterative Gaussian Kernel-based CFSFDP method gives very good re-

sults, but it is more difficult to distinguish the cluster in the decision graph. Since the

local density is converging to zero, it is not possible to distinguish the cluster cores

from the decision graph. This is not fundamental but it is helpful in the analysis.

Moreover sometimes it can be complicated to select the right rectangle for defining

ρminimum and δminimum since ρ converges to zero.
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5. CONCLUSIONS

In this new density-based (CFSFDP) algorithm, the key idea is representing data into

2 D space with axes ρ and δ. ρ is calculated for each point of data as the local density,

i.e. the total number of data points around that data point. δ is calculated for each

point of data as distance, i.e. the minimal distance between two points with higher

density. The data points with high ρ and high δ will be selected as centers of new

clusters. The data points with high ρ and low δ belong to the existing clusters. The

data points with low ρ and high δ are treated as outliers. In this algorithm, density

ρ is dependent on dc where dc is the cutoff distance. The weakness of the CFSFDP

algorithm is a choice of dc value, which is a state of art, and a different choice of

dc value could lead to the different clustering result. However, CFSFDP overcomes

the weakness of other density-based algorithms such as DBSCAN. DBSCAN requires

prior knowledge of the radius and minimum points.

Those methods (KNN- based, Gaussian Kernel-based and Iterative Gaussian Kernel-

based) are applied to the CFSFDP algorithm. The KNN method overcame the sen-

sitivity of using dc when calculating the mean distance to the nearest neighbors of

local density ρ. The Gaussian Kernel method defines the local density as the number

of points within the cut off value, but uses the Gaussian Kernel to determine the

ρi value. And, dc corresponds to the standard deviation of the Gaussian Kernel, it
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describes how much the data is dispersed. Knowing the derivative of the Gaussian

Kernel, an Iterative Gaussian Kernel method was applied. In this method, the result

is almost perfect. However, ρ is more difficult to distinguish the cluster center in

the decision graph. Since the local density is converging to zero, it is impossible to

distinguish the cluster cores from the decision graph. And, it depends on the number

of iterations chosen.

in terms of results, the Iterative Gaussian Kernel has showed better among the

four methods; by which, almost all the points belong to a cluster which reduces the

problems of outliers points.

The publisher suggested dc should be in range between 1-2%. It would be useful

if the algorithm could calculate dc based on the dataset. Furthermore, the possible

future work based on this project is to find a better way to get dc without changing

it manually.
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